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Preface

This volume contains the papers presented at DGMM 2022: the IAPR International
Conference on Digital Geometry and Mathematical Morphology held during October
24–27, 2022, in Strasbourg.

DGMMis sponsored by the InternationalAssociation of PatternRecognition (IAPR),
and is associated with the IAPR Technical Committee on Discrete Geometry and
Mathematical Morphology (TC18).

This is the second joint event between the twomain conference series of IAPRTC18,
the International Conference onDiscrete Geometry for Computer Imagery (DGCI), with
21 previous editions, and the International Symposium on Mathematical Morphology
(ISMM), with 14 previous editions.

There were 45 submissions. Each submission was single-blind reviewed by at least
two reviewers. Based on 128 detailed reviews, we accepted 33 papers. The authors
of these 33 articles are from 10 different countries: Austria, Australia, Brazil, France,
Germany, Hungary, Italy, the Netherlands, Spain, and the UK.

The DGMM 2022 papers highlight the current trends and advances in discrete
geometry and mathematical morphology, be they purely theoretical contributions, algo-
rithmic developments, or novel applications in image processing, computer vision, and
pattern recognition.

In addition, four internationally well-known researchers were invited for keynote
lectures:

– Isabelle Bloch, on “Hybrid AI for knowledge representation andmodel-basedmedical
image understanding - Towards explainability”

– Nicolas Courty, on “Sliced Wasserstein on Manifolds: Spherical and Hyperbolical
cases”

– Christer Kiselman, on “Digital Geometry, Mathematical Morphology, and Discrete
Optimization: a survey”

– Christian Ronse, on “Reflections on a scientific career and its possible legacy”

Three of these speakers proposed an article that can be found in this volume.
Following the tradition of both DGCI and ISMM, the DGMM 2022 proceedings appear
in Springer’s LNCS series and a special issue of the Journal of Mathematical Imaging
and Vision, with extended versions of selected outstanding contributions, is planned.

We wish to thank the members of the Program Committee and all the volunteer
reviewers for their efforts in reviewing all submissions on time and giving extensive
feedback. We would like to thank all the other people involved in this conference: first,
the Steering Committee for giving us the chance to organize DGMM 2022; second, the
four invited speakers, Isabelle Bloch, Nicolas Courty, Christer Kiselman and Christian
Ronse, for accepting to share their recognized expertise; and finally, the most important
component of any scientific conference, the authors for producing the high-quality and
original contributions.
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We are thankful to the IAPR for its sponsorship and we acknowledge the EasyChair
conference management system that was invaluable in handling the paper submission,
the review process, and putting this volume together. We also acknowledge Springer for
making possible the publication of these proceedings in the LNCS series.

September 2022 Étienne Baudrier
Benoît Naegel

Adrien Krähenbühl
Mohamed Tajine
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Reflections on a Scientific Career and Its
Possible Legacy

Christian Ronse(B)

ICube, Université de Strasbourg, CNRS, 300 Bd Sébastien Brant,
CS 10413, 67412 Illkirch Cedex, France

cronse@unistra.fr

Abstract. I give the history of my research career, its evolving scien-
tific topics, my main results, and how the computer science and image
processing community reacted to them. I briefly describe my current
research on generalized flat morphology based on threshold summation.
I finally discuss possible future developments arising from my works, to
be pursued by a new generation.

Keywords: Discrete geometry and topology · Mathematical
morphology · Connections and partitions · Poset and lattice theory

1 Introduction

Benôıt Naegel suggested me to present a summary of my research career in
Discrete Geometry and Mathematical Morphology, and the possible lessons to
be drawn from it. Then I can also describe my current work on generalized flat
morphology.

I will give here only the most important ideas and results in my long career.
For more details, the reader can consult the complete list of my scientific publi-
cations:

https://christianronse.github.io/publist.html

and the one of my unpublished research reports (with PDF scans attached):

https://christianronse.github.io/wdrep.html

My career has known several changes in geographical localization, employ-
ment and scientific field of research, some quite drastic, leading to numerous
topics. I first summarize various things that I did before turning to image pro-
cessing (Sect. 2). Then I describe my work in DGMM, divided into four topics
(Sects. 3, 4, 5, and 6). Next, I present my current research topic, generalized
flat morphology based on threshold summation (Sect. 7). Finally, I discuss pos-
sible research arising from my works, notably in poset and lattice theory, to be
pursued by the younger generation (Sect. 8).
c© Springer Nature Switzerland AG 2022
É. Baudrier et al. (Eds.): DGMM 2022, LNCS 13493, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-19897-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19897-7_1&domain=pdf
http://orcid.org/0000-0001-8319-2615
https://christianronse.github.io/publist.html
https://christianronse.github.io/wdrep.html
https://doi.org/10.1007/978-3-031-19897-7_1
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2 Before Image Processing

I was trained in pure mathematics at the Université Libre de Bruxelles (1972–
76), where I got interested in group theory, finite geometries and graph theory.
Then I went to the University of Oxford to do my M.Sc. (1977) and D.Phil.
(1979), with a thesis on finite permutation groups.

Although lattice-theoretical methods frequently intervene in group theory (cf.
the Jordan-Hölder theorem), in combinatorics, and in geometry (cf. matroid the-
ory, and the lattice-theoretical characterization of projective spaces [1]), through-
out my studies I never heard of lattice theory. Indeed, this topic is generally
spurned within the community of pure mathematics, and I give a few examples
of that rejection in the following webpage:

https://christianronse.github.io/lt.html

With the development of computer science, the usefulness of lattice theory was
recognized in programming semantics [3], formal concept analysis [4], fuzzy set
theory, mathematical morphology [40], spatial logic [2], etc.

After my thesis, I was hired at the Philips Research Laboratory Brussels,
where I was immediately told that unless I find a new simple group, I would not
do any more group theory. I was first assigned to work with Marc Davio on the
design of “switching networks”, that is, how to efficiently construct a correspon-
dence between n inputs and n outputs by combining similar correspondences
for 2 inputs and 2 outputs; for instance, how to obtain all permutations by a
succession of involutions, see Fig. 1. This involves a mixture of combinatorics
and boolean design. In my view, it was the most boring period of my research
career, and it only led to banal results.

Fig. 1. Decomposition of permutations of 8 inputs into 5 stages of involutions, using
the Beneš network, a recursive form of the Clos network. From Wikipedia.

My first notable work at Philips was my study [9] of feedback shift reg-
isters, that is, sequences (xn)n∈IN given by a recurrence of the form xn+m =
f(xn, . . . , xn+m−1). When f is linear, the sequence can be described in terms
of the roots of the associated polynomial (cf. the Fibonacci sequence for the
polynomial X2 − X − 1). In the case where the terms xn are in a finite field, I
gave an algebraic theory of such recurrences which bears some similarity with
the theory of polynomials and ideals.

https://christianronse.github.io/lt.html
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3 Discrete Geometry and Topology

In the early 1980’s, I was advised to turn to digital image processing. I started
with 2D binary images on a square grid, with a special emphasis on their topol-
ogy. I gave an algorithm (implemented in Pascal) for detecting connected com-
ponents and holes in a 2D binary image [32].

My best work in this domain was my topological analysis of 2D thinning: my
Philips internal report R470 and the two journal articles derived from it. The first
one [10] characterized the topological validity of a 2D thinning or reduction by a
“strongly deletable set” of removed pixels, and showed that it can be achieved by
a succession of removals of simple pixels (i.e., a digital homotopy). The second
one [11] applied the theory to parallel algorithms for thinning or reduction: when
topology is not preserved, one must necessarily remove a “minimal non-deletable
set”, which will be either a pixel, a pair of adjacent pixels, or in the case of 8-
adjacency on the foreground, an isolated 2 × 2 triangle or square.

In order to publish these results, I had to “swim against the current” of
utilitarian image processing. My colleague Pierre Devijver expressed his reser-
vations about such topological abstractions. I submitted my first paper to IEEE
PAMI, where it was rejected; one referee was positive, the two others negative,
in the opinion that it represents only an elaboration on the work of Azriel Rosen-
feld, and advising me to study the preservation of geometry instead of topology.
The editor Theodosios Pavlidis seemed to have some regrets in his decision, and
asked me if I wanted a 4th referee. I then submitted it to PRL, where it was
also rejected, the referee complained that it was “difficult to read”. Finally I
submitted it to TCS, and after one year of silence, the editor in chief Maurice
Nivat sent me an postcard saying that the referee was enthusiastic, so it would
be the first article on image analysis to appear in TCS.

The second paper, submitted to DAM, was almost immediately accepted,
without revision. A few years later, these two papers would be cited in numerous
works on thinning. There is a lesson to be drawn from this episode: if you believe
in your work, you must pursue it, even if it is shunned by the mainstream.

Another interesting subject that I investigated at that time is the applica-
tion of convexity to discrete geometry, in particular characterizations of digital
convexity and of digital straight line segments. The two problems are related:
a straight line segment is the prototype of a convex set, and given a digital set
X, the set of all pairs (a, b) ∈ IR2 such that X is in the digitization of the line
y = ax + b is convex. The methodology can also be applied to the quantization
of linear and affine functions on IRn. See my Philips internal report R485 and
my publications on these topics between 1985 and 1990.

I must say that all these results were obtained in isolation, I had almost no
contacts with the discrete geometry community. I first became acquainted with
it on the occasion of the 1st DGCI conference held in Strasbourg in 1991, where
I was an invited speaker.

Much later, in Strasbourg at the end of the 1990’s, I started investigating
Hausdorff discretization in collaboration with my colleague Mohamed Tajine.
Given a metric space (E, d), the metric d leads to the Hausdorff metric Hd
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on compact subsets of E. Given a discrete subspace D of E, for any compact
subset K of E, we can choose as discretization of K any finite subset S of D
which minimizes the Hausdorff distance Hd(K,S) [38]. It includes as particular
case the covering and supercover discretizations [39]. The theory can be general-
ized to closed subsets of E instead of compact ones. Under minimal topological
conditions on E and D, the discretization of a connected closed subset of E
is connected for a specific adjacency graph on D [35]. More problems must be
investigated in this theory, in particular its topological aspects [44].

4 Algebraic Framework for Mathematical Morphology

In the early 1980’s, at Philips Research Laboratory Brussels, I investigated some
practical problems in image analysis, in particular digital subtraction angiogra-
phy for extracting blood vessels from X-ray images. I studied non-linear filters,
such as the median and rank filters, their weighted counterparts, the Kramer-
Bruckner filter, etc. This led me to the concept of order-configuration filters [12],
where the new value on a pixel is the value of one pixel in its window, chosen
according to the ordering of the values of all pixels in that window. In fact, this
corresponds to what one calls a flat operator in mathematical morphology.

Having invented in 1986 a new flat operator, the parametric (or rank-max)
opening, and applied it to digital subtraction angiography (see my Philips inter-
nal document WD47), I was introduced to the mathematical morphology com-
munity and I met Henk Heijmans. We immediately agreed to formalize the
lattice-theoretical basis of morphological operators, relying on classical lattice-
theoretical references, in particular the 1980 edition of [3]. Our two papers [6,34]
immediately became classical. Later we collaborated again on the topic of annu-
lar filters [5,33].

I studied various types of idempotent operators, in particular a generalization
of openings, where for each structuring element we take the composition of a hit-
or-miss transform followed by the dilation by the foreground structuring element
[13]. In fact, the grey-level hit-or-miss transform [7] (and the derived idempotent
operator) has been very useful in the analysis of angiographic images [8].

Mathematical morphology was put to practical use by several of my doctoral
students: Vincent Agnus (motion measurement), Benôıt Naegel (segmentation
of 3D hepatic images), Julien Lamy (segmentation of 3D images of the colon),
Nicolas Passat (segmentation of 3D cerebral vascular images), Erchan Aptoula
(multivariate image analysis), Bessem Bouraoui (segmentation of 3D coronary
images), and Alice Dufour (cerebrovascular atlas).

Since the 1980’s, I never saw any problem switching between discrete geome-
try and mathematical morphology, or combining both in practical applications.
This was not obvious for many others. When I came to Strasbourg in 1992,
the discrete geometry group headed by Jean Françon belonged to the computer
graphics team, and I once heard Françon complain that there were too many
image analysis talks at DGCI. Reciprocally, most researchers in mathematical
morphology had only the most basic notions in discrete geometry (dating from
the early 1970’s).
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In Strasbourg, the two topics of discrete geometry and mathematical mor-
phology progressively joined in the early 2000’s, becoming an official research
axis within the image analysis team in 2007. At that time, the two topics were
also combined in the A3SI team of the LIGM at Marne-la-Vallée; indeed, its
leader Gilles Bertrand had been working on discrete geometry, discrete topology
and mathematical morphology since 1984. However, in most of France, DG and
MM remained separated. The grouping of the two within the IAPR TC18 and
the GDR IM of the CNRS was achieved much later, in 2016 and 2017 respec-
tively.

5 Connectivity and Partitioning (Also Partial)

I come now to what I consider the most original part of my research: the theory
of connections and partial connections, and its relations with the lattices of
partitions and of partial partitions. Indeed, apart Jean Serra and myself, few
people obtained significant fundamental results on this topic, and some of my
works in this domain have become rather famous.

Serra [40] unified various types of connectivity into the notion of connection:
a family C of subsets of the space E to which belong the empty set and all
singletons, and such that for any subset B of C having a non-empty intersection,
the union of B belongs to C. The elements of C are called connected. He also
characterized connections in terms of the point openings γp, p ∈ E: for any
p ∈ E and X ∈ P(E), γp(X) is the connected component of X containing p
when p ∈ X, and the empty set when p /∈ X.

In [14] I gave a characterization of connections in terms of a family of separa-
tors. I also studied the lattice of connections and the construction of connections,
in particular what one calls second-generation connections, for instance Serra’s
connection by dilation [40], and the connection by opening first suggested by Hei-
jmans: we intersect a connection with the invariance domain of an opening, and
we add the singletons, see Fig. 2. In this latter example, adding the singletons
is an artificial operation necessary for satisfying the axiom that all singletons
belong to the connection. If we omit that, we have then a partial connection:
∅ ∈ C and for B ⊆ C with

⋂ B �= ∅, we must have
⋃ B ∈ C; here the singletons

do not necessarily belong to C.
I studied thus partial connections in [17]. For a connection, the connected

components of a set according to a connection from a partition of that set [40];
in the case of a partial connection, they make a partial partition of that set,
equivalently, a partition of a subset of it. Thus I studied also partial partitions.
They constitute a complete lattice for the standard order (π1 ≤ π2 iff each block
of π1 is included in a block of π2). Serra [42] had shown that a family C of subsets
of E comprising the empty set is a connection if and only if the set of partitions
of E with blocks in C is sup-closed; I extended this result, with more equivalent
conditions, and obtained the same result in the case of a partial connection and
partial partitions [17].

Given an operator σ that associates to each X ∈ P(E) a partial partition
σ(X) of X, we obtain an anti-extensive operator β(σ) on partial partitions which
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X
B

Fig. 2. Left: a structuring element B in ZZ2, connected for a connection C; the set of
all C-connected subsets of ZZ2 invariant under the opening by B constitutes a partial
connection CB . Right: the connected components of X under that partial connection CB

are the two C-connected components of the opening X ◦ B (in grey); in the connection
made of CB plus all singletons, all singletons of X \ (X ◦B) (in black) will be connected
components.

acts on a partial partition by applying σ to each block separately: β(σ)(π) =⋃
B∈π σ(B). Then β(σ) is an opening on partitions if and only if σ decomposes a

set into its connected components for some connection; we have the same result
for partial partitions and partial connections [21]. Non-increasing idempotent
operators of the form β(σ) were studied in [22], in particular those involved in
the iterative segmentation scheme of Serra or the “constrained segmentation”
according to Soille.

I analysed other operations on partitions and partial partitions, in particular
adjunctions [19], and closures obtained from closures on sets [24].

Serra generalized connections to arbitrary complete lattices (for instance, the
one of numerical images) [41], and together [36] we generalized the related oper-
ation of geodesic reconstruction to complete lattices where the binary infimum
distributes arbitrary suprema. I have generalized the geodesic reconstruction to
some non-distributive lattices, in particular the one of label images [31] and those
of partitions and of grey-level images with Keshet’s reference order [18].

6 New Orders on Partial Partitions

In [25–27] I introduced a dozen orders on partial partitions. Given a partial
partition π, the support of π, supp(π), is the union of all blocks of π; thus π is
a partition of supp(π); the background of π, back(π), is the complement of the
support, so back(π) = E \ supp(π).

In [25], I first noticed that the growth of a partial partition for the stan-
dard order combines three basic operations: creating new blocks (from back-
ground points), inflating individual blocks (adding to them background points),
and merging blocks. The three inverse operations are removing blocks, deflating
blocks (removing some but not all of their points), and splitting blocks. These six
operations can be represented by a triangle, where the operation corresponding
to any arrow can be obtained by composing two operations corresponding to the
two arrows forming a path from its origin to its goal, see Fig. 3, left:
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– Inflating blocks Bi into the blocks Ci (i ∈ I) can be done by creating the
blocks Ci \ Bi (i ∈ I), then merging the two blocks Bi and Ci \ Bi for all
i ∈ I.

– Merging blocks Bi (i ∈ I) can be done by removing all blocks Bi except one,
Bj , then inflating the block Bj into

⋃
i∈I Bi.

– In a non-empty partial partition, creating blocks Bi (i ∈ I) can be done
by inflating another block C into C ∪ ⋃

i∈I Bi, then splitting the block C ∪⋃
i∈I Bi into C and all Bi (i ∈ I).

deflating

inflating

splitting

merging

removing

creating

merging−inflating inclusion−inflating

regional

standard

linking

Fig. 3. Left: the diagram made by the 3 basic operations on blocks (upward arrows)
and their 3 inverses (downward arrows). Right: orders obtained by combining two types
of operations; here a dashed arrow indicates a third operation that can be obtained
by combining the two others. Top right: the 3 orders obtained by combining two types
of basic operations (upward arrows). Bottom right: 2 orders obtained by combining
one type of basic operation (upward arrow) with the inverse of another type of basic
operation (downward arrow).

Each type of basic growth operation taken alone gives rise to an order: the
inclusion order ⊆, the inflating and merging orders. Combining two of them gives
rise to the merging-inflating, inclusion-inflating and standard orders, see Fig. 3,
top right; note that in the standard order growth can be obtained by creating
blocks followed by merging blocks, from which inflating blocks also arises. In
these six orders, the growth of a partial partition can only increase |supp(π)|
and |supp(π)| − |π|, so these orders are appropriate to describe the bottom-up
growth of a segmentation.

Elaborating on the “building order” suggested by Serra [43], I introduced
in [26] a generalization of block merging, called apportioning : some blocks will
disappear, and their contents is apportioned between one or several remaining
blocks, that is, each disappearing block either is merged with one remaining
block, or is split into several parts, and each part is merged with one remaining
block, see Fig. 4. The resulting apportioning order contains the merging order.
As suggested by Serra, this order can be used to describe the elimination of
“parasitic” segmentation classes, for instance thick borders separating regions.
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π1 2π

Fig. 4. The apportioning order. Left: the initial partial partition π1; the pink and
yellow block will be apportioned. Middle: the pink block is split into two parts, one is
merged with the blue block, and the other with the green block; the yellow block is
merged with the blue block. Right: the resulting greater partial partition π2. (Color
figure online)

Combining apportioning with inflating blocks, one obtains the apportioning-
inflating order, which contains the merging-inflating order; combining apportion-
ing with creating blocks lead to the extended order, which contains the standard
order. These orders are again appropriate to describe the bottom-up growth of
a segmentation, with the added possibility of eliminating “parasitic” blocks.

In [27] I studied some orders where the growth of a partial partition can only
decrease |supp(π)| and |π|, so these orders can be relevant to image reduction
(or simplification), for instance in skeletonization and skeleton pruning. First, I
considered two orders where the growth of a partial partition combines one of
the three basic operations with the inverse of another one, see Fig. 3, bottom
right. In the regional order, a partial partition grows by merging or removing
blocks, and it constitutes a complete lattice isomorphic to the one of partitions of
E ∪{℘} for an additional point ℘. In the linking order, a partial partition grows
by merging and deflating blocks, from which removing blocks can be achieved;
it contains thus the regional order. Both orders seem relevant to some topics in
image processing.

I also considered the partial merging and partial apportioning orders, where
a “disappearing” block to be merged or apportioned can lose some points before
being merged or apportioned; finally there is the joining order, which contains the
five previous ones: here a partial partition grows by apportioning and deflating
blocks (we can thus remove blocks). However the interpretation of these three
orders is more difficult, and their practical relevance is questionable.

There is one combination of upward and downward arrows that I did not
give in Fig. 3, bottom right: removing blocks combined with inflating blocks,
from which merging blocks can be obtained. Unlike the orders given above, the
order generated in this way does not have good properties.

I have not yet pursued some topics briefly investigated in [23], such as maxi-
mal partial partitions in compound segmentation, or the selection of an optimal
partial partition with respect to some criteria.
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7 Current Research: Generalized Flat Morphology

In [15] I gave a general lattice-theoretical theory of flat morphological operators
derived from increasing operators on binary images. Let E be the space of points
and V the set of image values (for instance grey-levels, vectors, labels, etc.); in
fact, V can be any complete lattice with at least two elements. Consider the set
V E of images E → V .

For an image F : E → V and v ∈ V , define the threshold set Xv(F ) = {p ∈
E | F (p) ≥ v}; these sets form a stack, in other words Xv(F ) is decreasing in v:
w > v ⇒ Xw(F ) ⊆ Xv(F ). For B ⊆ E and v ∈ V , the cylinder of base B and
level v is the function CB,v given by setting for p ∈ E: CB,v(p) = v if p ∈ B, and
CB,v(p) = ⊥ if p /∈ B. Then every function F : E → V is the upper envelope
of the sets {v} × Xv(F ), in other words, F =

∨
v∈V CXv(F ),v. Thus, F can be

recovered by superposing its thresholdings at all values v ∈ V .
Let the operator ψ : P(E) → P(E) on binary images be increasing : X ⊆

Y ⇒ ψ(X) ⊆ ψ(Y ). Then for any F : E → V , the sets ψ(Xv(F )) form a stack,
they decrease with v. Now take the upper envelope of the sets {v}×ψ (Xv(F )), in
other words

∨
v∈V Cψ(Xv(F )),v, and this defines ψV (F ), the result of the operator

ψV on the image F . For every point p ∈ E we have:

ψV (F )(p) =
∨{

v ∈ V
∣
∣ p ∈ ψ(Xv(F ))

}
. (1)

Then ψV : V E → V E : F �→ ψV (F ) is the flat operator corresponding to ψ, or
the flat extension of ψ [15].

However, when the operator ψ is not increasing, this does not work, as the
sets ψ(Xv(F )) do not form a stack. In [29] I proposed to replace the lattice-
theoretical threshold superposition by a threshold summation. Indeed, in the
case where V is a chain and ψ is increasing, in (1) the set of all v ∈ V such
that p ∈ ψ(Xv(F )) forms an interval bounded by minV and ψV (F )(p), and
the summation will measure its length. Writing χ for the characteristic function
P(E) → {0, 1}E , we get

– in the discrete case V = {t0, . . . , tn}, where t0 < · · · < tn: ψV (F )(p) =
t0 +

∑n
i=1(ti − ti−1)χψ(Xti(F ))(p).

– in the continuous case V = [⊥,]: ψV (F )(p) = ⊥ +
∫ �

⊥ χψ(Xt(F ))(p) dt.

This method was given in [45] to construct flat operators in the case where
V = {0, 1, . . . , n}. In [29] I extended this approach to operators which are not
necessarily increasing, and whose result is not necessarily a binary image (for
instance, the morphological Laplacian). Moreover, I did not restrict myself to
the case where V is a chain, my theory works also for multivalued images.

My first step was to define, for a poset P ⊆ IRm, the summation S[a,b](f)
of a function f : P → IR over an interval [a, b] in P . I defined it in the case
where the function f is bounded, non-negative and decreasing. Assume now that
the poset P is bounded, that is, it has least and greatest elements; then every
function f : P → IR of bounded variation is the difference between two bounded,
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non-negative and decreasing functions. So, for a decomposition f = g −h, where
g and h are bounded, non-negative and decreasing, we can define S[a,b](f) =
S[a,b](g) − S[a,b](h); but for this definition to be independent of the choice of
the decomposition g − h, the summation must be additive on P , that is, for all
bounded, non-negative and decreasing functions g, h : P → IR, and all a, b ∈ P
with a < b, we must have S[a,b](g + h) = S[a,b](g) + S[a,b](h). Fortunately, the
summation is additive on any bounded chain, cartesian product of bounded
chains, or any complete sublattice of a cartesian product of complete chains.

Compared to the classical method of [15], my new approach to flat operators
is restricted to grey-level and vector images. Let U = IRm or U = u1ZZ × · · · ×
umZZ (u1, . . . , um > 0); let V be a bounded subset of U , having least and greatest
elements ⊥,: {⊥,} ⊆ V ⊆ [⊥,] ⊆ U . We will define operators acting on
images E → V , and the resulting images will be E → U ; in other words, we
will have operators V E → UE . Assuming that V = [⊥,] or V is a complete
sublattice of [⊥,], then the summation S is additive on V .

Recall the characteristic function χ : P(E) → {0, 1}E . Call a binary image
transformation a map P(E) → P(E), for instance a dilation or erosion; now call a
binary image measurement a map P(E) → KE , where K is a finite interval in ZZ;
for instance the morphological Laplacian χδ + χε − 2χid : P(E) → {−1, 0, 1}E ,
where id is the identity operator. Obviously, every binary image transformation
ψ corresponds to the binary image measurement χψ, with K = {0, 1}.

Given a binary image measurement μ, define the no-shift flat extension μ−V

of μ by setting for any image F : E → V and point p ∈ E:

μ−V (F )(p) = S(
μ(Xv(F ))(p)

∣
∣ v ∈ V

)
, (2)

in other words we take the summation over the interval [⊥,] of the function
V → IR : v �→ μ(Xv(F ))(p); for this definition to make sense, this function
v �→ μ(Xv(F ))(p) must be of bounded variation.

Given a binary image transformation ψ, define the shifted flat extension ψ+V

of ψ by setting for any image F : E → V and point p ∈ E:

ψ+V (F )(p) = ⊥ + (χψ)−V (F )(p) = ⊥ + S(
χψ(Xv(F ))(p)

∣
∣ v ∈ V

)
; (3)

again, the summation must be well-defined, in other words, the function v �→
χψ(Xv(F ))(p) must be of bounded variation. When ψ is increasing, the new
definition coincides with the classical one of [15]: ψ+V (F ) = ψV (F ).

In [29] I showed that several non-increasing morphological operators on grey-
level images, such as the Beucher gradient, the morphological Laplacian, the
white and black top-hats, and Soille’s “unconstrained” hit-or-miss transform are
the no-shift flat extensions of their counterparts for binary images. Some general
properties of flat operators shown in [15] also hold in the generalized framework.
Moreover, the flat extension of a connected operator is connected.

In the submitted sequel [30], I studied further properties of generalized flat
operators. In the case of increasing binary image transformations, it is known [15]
that the flat extensions of the union and intersection of operators are the supre-
mum and infimum of their flat extensions for the componentwise order on V E .
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When the operators are not increasing or do not have binary values, this supre-
mum and infimum takes another form. The flat extension of the composition of
an increasing binary image transformation followed by a binary image measure-
ment is the composition of their respective flat extensions, but this does not hold
if the binary image transformation is not increasing. For a binary image transfor-
mation that is not increasing, commutation with contrast mappings holds only
for linear plus constant contrast mappings, and commutation with thresholding
always fails. I have introduced the dual form of the flat extension, and then the
dual flat extension of an operator coincides with the dual by inversion of its flat
extension; under some conditions, it is also equal to the flat extension of the
dual by complementation of the operator. Finally, in the case of images with
non-negative values (⊥ = 0 or (0, . . . , 0)), convolution by a finite mask of values
is the flat extension of the same convolution operator on binary images.

8 Legacy for Future Generations

I write with the perspective that mathematical theory will still remain useful
in image processing research, in particular that investigators will not restrict
themselves to “deep learning” approaches to problem solving.

I stress that in mathematical morphology, one must have specialists knowing
the long mathematical heritage of poset and lattice theory [4]. Matheron, Serra
and myself have all sometimes proposed concepts and proved theorems that were
already given by mathematicians long ago. So, in [37] Serra and myself strived to
rely as much as possible on old references for definitions and theorems. Already
in the late 1980’s, Heijmans and myself had relied to a great extent on the
1980 edition of [3] for our study of the lattice-theoretical basis of morphological
operators [6,34].

Moreover, old results in lattice theory can be useful in the analysis of some
problems. In my investigation of flat operators [15,16], I relied on two different
characterizations of completely distributive complete lattices; in particular the
second one [16] had been given by Raney in 1960 and much later rediscovered
by Matheron under the name of “monoseparation”.

In my study of orders on partial partitions, I found that for a finite space
E, the growth from an initial partial partition π1 to a final one π2 involves
indecomposable elementary steps of different types (creating a singleton block,
increasing a block by one point, merging two blocks, etc.), and each type of step
appears a constant number of times in the growth. This is similar to the Jordan-
Hölder theorem in group theory. So in [28] I gave the most general definition of
upper or lower semimodularity in a poset, and proved a Jordan-Hölder theorem
on maximal chains, from which one can derive as examples the same theorem in
group theory, the above property of my orders on partial partitions, and also a
previous similar result in the poset of all closure ranges on a poset (dual of the
poset of closure operators on that poset) [20].

Many other concepts and results from old papers on lattice theory could find
their use in mathematical morphology, and possibly in discrete topology. Some
young researchers should investigate these links in depth.
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Sorbonne Université, CNRS, LIP6, Paris, France

isabelle.bloch@sorbonne-universite.fr

Abstract. In this paper, we advocate that combining several frame-
works in artificial intelligence, adopting a hybrid point of view for
both knowledge data representation and reasoning, offers opportunities
towards explainability. This idea is illustrated on the example of image
understanding, in particular in medical imaging, formulated as a spatial
reasoning problem.
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1 Introduction: Hybrid Artificial Intelligence

While symbolic and statistical machine learning methods for artificial intelligence
(AI) have been developed rather independently for decades, with alternated
predominance of one or the other along time, a trend is to merge both types
of approaches. Examples include neuro-symbolic approaches (see e.g. [18,25,26,
32,34]), among others. Here hybrid artificial intelligence is intended in a broader
sense, as the combination of several AI methods, whatever their type. These
methods may belong to the domains of abstract knowledge representation and
formal reasoning, based on logics, structural representations (such as graphs and
hypergraphs, ontologies, concept lattices...), fuzzy sets, machine learning.

Such combinations take inspiration from cognitive functions. Roughly speak-
ing, according to Kahneman [31] who distinguished two systems for thinking,
named system 1 and system 2, we may consider, from an AI point of view,
modeling system 1 by deep learning and system 2 by symbolic reasoning. Devel-
oping neuro-symbolic approaches is a new trend to combine the two systems (see
e.g. [32]). But again, more theories will be committed in our view of hybrid AI.

This work was partly supported by the author’s chair in Artificial Intelligence (Sor-
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The aim of this paper is not to propose new methods for hybrid AI, but rather
highlight how this way of thinking and designing AI systems offers opportunities
towards explainability, in the field of explainable AI (XAI), and as a mean to
maintain the link between knowledge and data. In that domain too, the two main
branches are developed quite independently, with early work (e.g. Peirce at the
end of the 19th century) focusing on logical reasoning based on abduction on the
one hand, versus recent methods focusing on features or data most involved in a
decision on the other hand (to name but a few). In the first paradigm, knowledge
is represented by symbols, in a given logic, and the reasoning power of this logic
plays then a major role. Reasoning is based on axioms, theories and inference
rules, leading to provable, non-refutable conclusions. In the second paradigm,
where data and experience play the major role, statistical guarantees can be
achieved, but conclusions are potentially refutable.

As an example, these ideas are illustrated in the field of image understanding,
formulated as a spatial reasoning problem, as described in Sect. 2. Examples of
combinations of different AI methods are given both for knowledge and data rep-
resentation in Sect. 3, and for reasoning in Sect. 4. These methods find concrete
applications in medical imaging (only briefly mentioned in this paper). Finally
a short discussion on open research directions concludes the paper (Sect. 5).

Although no technical details are given in this paper, it is noticeable that
mathematical morphology is a useful theory for knowledge representation (in
particular spatial relations, in conjunction with fuzzy set theory) and for rea-
soning (e.g. abductive reasoning in various logics), as shown in our previous work
(see e.g. [2,6–8,11]). For example, defining the region of space, in an image, satis-
fying some spatial relation with respect to a reference object can be obtained by
dilating the reference object (whether crisp or fuzzy) with a structuring element
modeling the semantics of the spatial relation of interest. Another example is
the use of erosion or derived operators to provide explanations to observations
according to a knowledge base (i.e. abductive reasoning), by applying these oper-
ators to the set of models of logical formulas or to a concept lattice.

2 Image Understanding and Spatial Reasoning

Image understanding refers, at the simplest level, to the problem of recognizing
an object or structure, or several objects in an image, either real, as an observa-
tion of a part of the real world, or synthetic. More generally, relations between
these objects should be considered, towards a global recognition of the scene
and a higher level interpretation. The question of semantics is central since it
is not directly in the image, but should be inferred based on visual features.
We advocate that knowledge should be involved in this process. Indeed, while
purely data driven approaches have proved to be powerful in image and com-
puter vision problems, with sometimes impressive results, they still require a
good accessibility to numerous and annotated data, which is not always possible
and which induces high costs (in terms of both human interactions and com-
putation). Knowledge and models have then an important role to play. Image
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understanding is then formulated as a spatial reasoning problem, combining
representations of data and knowledge, pertaining to both objects and relations
between objects (in particular spatial relations), and reasoning on them.

Spatial reasoning has been largely developed in symbolic AI, based mostly
on logics and benefiting from the reasoning apparatus of these logics [1]. It
has been much less developed for image understanding, where purely symbolic
approaches are limited to account for numerical information. This again votes for
hybrid approaches. Spatial reasoning evolved from purely qualitative and sym-
bolic approaches to more and more hybrid methods, involving methods from
mathematical morphology, fuzzy sets, graphs, machine learning, etc. to gain in
expressivity (sometimes at the price of increased complexity). As an example, let
us mention region connection calculus (RCC) that was first proposed in logical
frameworks (first order, modal), and then augmented with fuzzy sets to han-
dle imprecision, with mathematical morphology, with lattice-based reasoning,
etc. [1,9,33,39–41]. The main ingredients in spatial reasoning include knowledge
representation, imprecision representation and management, fusion of heteroge-
neous information (whether knowledge or data), reasoning and decision making.
Approaches for spatial reasoning take a lot of inspiration from work in philoso-
phy, linguistics, human perception, cognition, neuro-imaging, art, etc. (see e.g.
a related discussion for the case of spatial distances in [5]).

Models for image understanding are particularly useful to represent, in a for-
mal way, knowledge (about the domain, the scene content and in particular its
structure), image information (type of acquisition, geometry, characteristics of
signal and noise...), the potential imperfections of knowledge and data (impre-
cision, uncertainty, incompleteness...), as well as the combination of knowledge
and image information. These models are then included in algorithms to guide
image understanding in concrete applications. Conversely, models can be built
from data, for instance to infer knowledge, or to provide a digital twin of a patient
as a 3D model, useful to plan a surgery or a therapy, as well as to explain the
plan.

An important issue is the semantic gap [42], with the following question:
how to link visual percepts from the images to symbolic descriptions? In artifi-
cial intelligence, this is close to the notions known as the anchoring or symbol
grounding problem [15,29]. Solving the semantic gap issue has bidirectional con-
sequences: on the one hand, it allows moving from a concept to its instantiation
in the image (or feature) space, as a guide during spatial reasoning. On the other
hand, it is part of the explainability, since it links results inferred from the image
to concepts related to prior knowledge. For instance, anatomical knowledge says
that the heart is between the lungs. Since the heart might be difficult to recog-
nize directly in a medical image (e.g. a non-enhanced CT image), we may rely
on its relative position with respect to the lungs (which are easier to detect in
such images) to perform the task. Conversely, we can explain the recognition of
an image region as the heart because it is between the lungs.
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3 Representations

Representations of spatial entities can take various forms, either in the spa-
tial domain (region, key points, bounding box...), or abstractly, as in region
connection calculus (RCC), as formulas in a given logic. Semi-quantitative (or
semi-qualitative) representations as fuzzy sets (in either domain) constitute a
good midway and can accommodate both numerical and symbolic representa-
tions [46]. This becomes even more significant when considering representations
of spatial relations. The usefulness of fuzzy representations of spatial relations
was already advocated in the 1970’s [24], to account for their intrinsic imprecision
in concepts such as “close to”, “to the right of”, that are nevertheless perfectly
understandable in a given context. In our previous work, we designed mathemati-
cal models of several relations (set theoretical, topological, distances, directional
relations, more complex relations such as between, along, parallel...) by com-
bining formalisms from mathematical morphology and fuzzy sets. The common
underlying structure is the one of complete lattices, that allows instantiating the
definitions, with the very same formalism, in different frameworks: sets, fuzzy
sets, graphs and hypergraphs, formal concept lattices, conceptual graphs, ontolo-
gies... Note that most of these frameworks carry structural information, useful
for instance to represent the spatial arrangement of objects in a scene and in an
image. To take a simple example, a graph can represent this structure, where
vertices correspond to objects (e.g. anatomical structures in medical images)
and edges correspond to relations between objects (e.g. contrast between two
structures in a given imaging modality, relative position between objects...), this
graph being enhanced with the (fuzzy) representations of objects and their prop-
erties, and of relations. For instance, the representation of a spatial relation can
be abstract, as extracted from an ontology for example, or linked to the concrete
domain of an image (degree of satisfaction of the relation, region of space where
the relation to some object is satisfied...). Other structured representations of
knowledge (including spatial knowledge) may rely on grammars, decision trees,
relational algebras on temporal or spatial configurations, or graphical models.
They can also benefit from a fuzzy modeling layer, to cope with imprecision.

The relevance of fuzzy sets for knowledge representation relies in their capa-
bility to capture linguistic as well as quantitative knowledge and information. A
useful notion is the one of linguistic variable [47], where symbolic values (defined
at an ontological level) have semantics defined by membership functions on a
concrete domain (at the image or features level). The membership functions and
their parameters can be handcrafted, according to some expert knowledge on
the application domain. They can also be learned, for instance from annotated
data [4]. The advantage of such representations is that linguistic characteriza-
tions may be less specific than numerical ones (and therefore need less infor-
mation). Their two levels (syntactic and semantic) allow on the one hand for
approximate modeling of vague concepts and reasoning on them, and allow on
the other hand solving the semantic gap issue by providing semantics in concrete
domains, according to each specific context.
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4 Reasoning

Based on the previous representations, the reasoning part takes various forms,
separately or in combination, again in the spirit of hybrid AI. Let us mention a
few, mostly from our previous work, which led to applications in medical imaging,
in particular for brain structure recognition1: matching between a model and an
image based on graph representations [3,12,22,38]; sequential spatial reasoning
mimicking the usual cognitive process where one may focus on an object that is
easy to detect and to recognize, and then move progressively to more and more
difficult objects by exploring the space based on the spatial relations with respect
to previously recognized objects [10,14,19,23]; exploration of the whole space
and reducing progressively the potential region for each object, again mimicking
a type of cognitive process, for instance by expressing the task as a constraint
satisfaction problem [21,37]; logical reasoning based on abduction, to find the
best explanations to the observations according to the available knowledge [45];
logical reasoning driven by an ontology [30].

In all these methods, an important feature is the combination of several
approaches within the framework of hybrid AI, with the aim of explainability.
Abstract knowledge representation and formal reasoning (typically using logics)
allow building a knowledge base representing prior information (on anatomy
for the considered examples), and to reason on it. Structural representations
(graphs and hypergraphs, ontologies, conceptual graphs, concept lattices...) are
frameworks to convert expert knowledge on the spatial organization of organs
into operational computational models. Medical images may suffer from impre-
cision, due to their discrete nature, to the potential partial volume effect, to
reconstruction algorithms or to image processing steps. Knowledge is also often
expressed in vague terms, although perfectly intelligible by a human. All these
imperfections are modeled by resorting to fuzzy sets theory. In particular, the
semantic gap issue is solved by using linguistic variables, which link concepts to
visual percepts in the images, or more generally representations as fuzzy sets in
a concrete domain. This is a very crucial point to maintain the links between
data and knowledge, and is indeed key to explainability. Considering the exam-
ple of structure recognition based on spatial reasoning, explanations become
natural by identifying the spatial relations that actually play a role in the recog-
nition, as mentioned above. Furthermore, from a knowledge base on anatomy,
expressed in some logics, and from segmentation and recognition results, higher
level interpretations of an image can be derived using abductive reasoning [45].
The language in which the knowledge is expressed should be defined according
to the granularity level expected for the interpretation and to whom the descrip-
tion is dedicated (the explainee). For instance the description of the content of a
pathological brain image will depend on whether the explainee is anyone (with-
out assuming any particular expertise), the patient itself, or a medical expert

1 These are only examples and similar approaches have been developed in other appli-
cation domains, such as satellite imaging, video, music representations, etc.
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who wants to make a decision guided by this description to interact with other
experts.

Now, considering the huge recent developments in machine learning, and
in particular deep learning, a recent trend is to combine such approaches with
knowledge driven methods. This can be done at several levels (see e.g. [44]): to
enhance the input (e.g. by including in the input of a neural network a result
of some image processing method as in [17]); as regularization terms in the loss
function (e.g. to force the satisfaction of some relations) or to focus attention
on specific patches based on geometric or topological information (e.g. vessel
tree [43]); or as post-processing to improve results (e.g. [13]). Again one of the
advantages of such hybrid approaches is to improve interpretability and explain-
ability. This is particularly important in medical imaging to increase the confi-
dence the user may have in an approach based on deep learning, and therefore
to increase the adoption of such techniques.

5 Discussion

To go further in the field of hybrid AI and XAI for image understanding, princi-
ples expressed and discussed more generally in AI could be instantiated in this
particular domain of application, and pave the way for new research directions.

This starts with the definition of interpretability and explainability. An inter-
esting distinction is proposed in [20], where interpretability is defined via the
composition of elements that are meaningful for humans, while explanation is
strongly related to causality, and understanding is linked to unifying diversity
under a commun principle (this is maybe somewhat different when interpreting
an individual image as in medical imaging).

Seeing explanations as causality has been widely addressed, in particular by
Halpern and Pearl [27,28], and by Miller [35,36], where structural models play a
major role. Notions such as contrast and relevance are put to the fore, and would
be also important to consider in image understanding. For instance, explaining
why a decision was made by an algorithm and not another decision is a way
to make explanations more convincing. The level of explanation should depend
on the explainee, as mentioned before, and a deeper study of this aspect could
take inspiration from the work on intelligibility in [16] (for instance based on
projections on a given vocabulary). This goes with the idea of human-centered
evaluation of AI systems.

It has been advocated in [34] that new research should aim at developing a
hybrid, knowledge driven, reasoning based approach, centered around cognitive
models, that could provide the substrate for a richer, more robust AI than is
currently possible. This is exactly what research in image understanding based
on hybrid AI is trying to do, but still at a modest level.

Finally it would be interesting to investigate more deeply to which extent
hybrid AI and XAI could help answering questions related to ethics, in particular
in radiology.
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10. Bloch, I., Géraud, T., Mâıtre, H.: Representation and fusion of heterogeneous fuzzy
information in the 3D space for model-based structural recognition - application
to 3D brain imaging. Artif. Intell. 148, 141–175 (2003)

11. Bloch, I., Lang, J., Pino Pérez, R., Uzcátegui, C.: Morphologic for knowledge
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Abstract. We study difficulties that appear when well-established def-
initions and results in Euclidean geometry, especially in the theory of
convex sets and functions in vector spaces, are translated into a discrete
setting. Solutions to these problems are sketched.

1 Introduction

The purpose of this note is to briefly present three distinct but related branches of
science: digital geometry, mathematical morphology, and discrete optimization.
They are related by a common mindset and also by the many fields of knowledge
where they can be successfully applied and provide reliable solutions. They also
have in common the fact that the advent of computers has made it possible to
actually perform operations that have been studied for a long time.

Digital geometry is, in simple terms, the geometry of the computer screen.
While Euclid’s straight lines and planes have been studied for more than two
millennia, the concept of a digital straight line was clarified as late as in 1974
by Azriel Rosenfeld (1931–2004), a pioneer in the field. So work in this area has,
strictly speaking, not been going on for more than fifty years.

Mathematical morphology is, in equally simple words, the theory and practice
of transformations of sets and functions with an emphasis on their shapes, among
them the Boolean operations, but far from just these. In many cases, these
transformations have been known for a long time, but they have come into focus
for the same reason as digital geometry: the transformations can actually be
performed on a computer. The concept of shape in geometry is fundamental:
when do two figures have similar shapes? Approaching this seemingly innocent
question will reveal deep problems.

Among the operations of great importance here, infimal convolution and
discrete convolution on a group stand out.

Discrete optimization is a natural companion to digital geometry: we look for
the best solution to a problem among several possibilites, but now in a discrete
set.

My book (2022) might serve as an introduction to all three fields.
c© Springer Nature Switzerland AG 2022
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2 Digital Geometry

Discrete objects, like carpets and mosaics, have been around for thousands of
years. A carpet can consist of many knots, a mosaic of many little stones, tes-
sellas, but only finite in number. So this is the beginning of a study of locally
finite spaces.

Between two distinct points in the plane there is a third, the midpoint, but on
the computer screen two pixels can be neighbors without any pixel between them.
This makes the logic of digital geometry quite different from Euclidean geometry.
So we have to start from scratch in our thinking. A convenient model for the
computer screen is Z2, the set of points in the plane with integer coordinates—
although the screen is bounded, it is easier to work with a digital plane without
borders.

The concept of a straight line, apart from the easiest ones (which are the
horizontal, the vertical and the diagonal lines), is highly non-trivial. When we
come to planes in three-space and in higher dimensions, the difficulties in finding
useful and consistent definitions become even harder. There are several defini-
tions of a two-plane in three-space, all useful and each with its merits.

The two lines defined in Z2 by y = x and y = −x+1 do not intersect although
they are not parallel. Is this disturbing?

The two distinct parallel lines defined by y = x and y = �x + 1/2�, where
�t� is defined by the floor function

R � t �→ �t� ∈ Z, t − 1 < �t� � t, t ∈ R,

intersect in infinitely many points.
References for digital geometry include the doctoral thesis by Reveillès (1991)

and the book by Klette and Rosenfeld (2004).

3 Mathematical Morphology

The branch of science now called mathematical morphology started with the
study of minerals: the task was to describe shapes of particles taken from mines in
a more precise way than by just indicating their size. The theory was (quite log-
ically) born at l’École nationale supérieure des mines de Paris, founded already
in 1783 and now with campuses in Fontainebleau and Paris. So we are talking
about descriptions of shape and comparisons of shapes.

The two creators of this most successful branch of science were Georges Math-
eron (1930–2000) and Jean Serra, both at Fontainebleau at the time—their insti-
tution is now called le Centre de morphologie mathématique to honor the new
branch of science. The current director of the center is Jesús Angulo.

The most important early books on the subject are the books by Math-
eron & Serra (2002), Matheron (1975), Serra (1982) and the one edited by
Serra (1988). Among more recent sources, the one edited by Najman and Talbot
(2008a; 2008b) is important.
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4 Discrete Optimization

To optimize means ‘to find the best’. Is the lowest or the highest price the best?
First we must decided which function to consider.

We can usually not buy half an apple or half a car; quite often, only entire
numbers are allowed when we want to find an optimal solution to a problem.

Convex functions are indeed convenient when it comes to minimizing: a local
minimum is automatically also a global minimum. But when we come to func-
tions defined on the integers, this simple fact is no longer valid.

5 Discretizing Convexity

In no other field do the difficulties to discretize definitions and results come
clearer to the surface than for convexity. First of all, the theory of convex func-
tions in real vector spaces is an extremely well-developed branch of science with
forceful methods and a lot of important applications. It is therefore of special
interest to see what happens when we endeavour to make sense of discrete ver-
sions of convexity.

Let us look at three fundamental properties of convexity in vector spaces:

1. The image under a linear mapping of a convex set is convex. Equivalently,
the marginal function of a convex function is convex.

2. A local minimum of a convex function is global.
3. Between two given disjoint convex sets there is a separating hyperplane.

The first two are easily seen to be valid; the third is the Hahn–Banach Theorem
in finite dimension.

Let us note that these three important properties fail conspicuously in a
discrete setting:

1. Look at the function f : Z2 → Z defined by f(x, y) = |x−my| for (x, y) ∈ Z2.
Its marginal function fmarg : Z → Z, defined as

fmarg(x) = inf
y∈Z

f(x, y), x ∈ Z,

is equal to |x| for −m � x � m and given for other values of x by the fact
that it is periodic with period 2 m. Thus fmarg is a function with teeth as
large as we please. It is not reasonable to call such a function convex.
Still, we are tempted to accept f as a convex function since its extension to
R, given by the same formula, is convex. We conclude that it is in no way
sufficient to assume that a function on a discrete set like Zn has a convex
extension to Rn.

2. The function Z � x �→ �x/m�, which is one of several digitalizations of a
linear function, thus of a convex function, has a local minimum in quite a
large set; indeed it is � −1 in the set {x ∈ Z; −m � x < +∞}, where m ∈ N
can be as large as we want, but it is not bounded from below.
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3. Let us look at the two disjoint sets

A = {(x, y, z) ∈ Z3; z � 1 − 2|x + y − 1|} and
B = {(x, y, z) ∈ Z3; 2|x − y| � z}.

A separating plane must have the equation z = H(x, y) for some affine func-
tion H, which leads to

1 − 2|x + y − 1| � H(x, y) � 2|x − y|, (x, y) ∈ Z2.

Then these inequalities must hold also for (x, y) ∈ R2, in particular for x =
y = 1/2, which is not true. (The point (1/2, 1/2) exists in R2 but not in Z2.)

There are satisfactory solutions to these three problems—we shall return to these
in Sect. 7.

6 Duality in Convexity and Discrete Convexity

By duality I understand a situation when two structures operate against each
other. A well-known example is the duality between the Lebesgue spaces Lp(Rn)
and Lq(Rn) given by the bilinear form

Lp(Rn) × Lq(Rn) � (f, g) �→
∫
Rn

f(x)g(x)dx ∈ C,

where 1 < p < +∞ with 1/p + 1/q = 1 or (p, q) equal to (1,∞) or (∞, 1). This
duality corresponds in the theory of distributions to the bilinear form

D ′(Rn) × D(Rn) � (u, ϕ) �→ u(ϕ) ∈ C.

In convexity theory, the Fenchel transformation is a most successful example
of duality.

Given f : R → [−∞,+∞] we define its Fenchel transform f̃ by

f̃(ξ) = sup
x∈Rn

(ξ · x − f(x)), ξ ∈ Rn.

This function is always convex and lower semicontinuous, and it takes the value
−∞ only if it is equal to −∞ everywhere. Taking the transformation twice, we
get ˜̃

f � f with equality if and only if f has the three mentioned properties.
For functions defined on a discrete set like Zn we can still define it just by

restricting the variable x to Zn, but as we have seen, this does not suffice to
guarantee convexity of marginal functions.
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7 Solutions

We shall write P(X) for the family of all subsets of a given set X and shall
denote by F (X,Y ) the family of all mappings f : X → Y . Finally, let W be the
family of all finite compositions of difference operators Da defined by (Daf)(x) =
f(x + a) − f(x).

Definition 7.1. We define two mappings

Φ: P(W ) → F (X,Y ) and Ψ: F (X,Y ) → P(W )

by

Φ(A ) = {f ∈ F (X,Y ); R(f) � 0 for all R ∈ A }, A ∈ P(W ).

and

Ψ(B) = {R ∈ W ; R(f) � 0 for all f ∈ B}, B ∈ P(F (X,Y )).

These two mappings are obviously decreasing and the compositions

Ψ ◦ Φ: P(W ) → P(W ) and Φ ◦ Ψ: F (X,Y ) → F (X,Y )

are increasing and larger then the respective identity—we have a Galois corre-
spondance.

Definition 7.2. We shall say that a function f : Z2 → R is C -convex if R(f) �
0 for all R ∈ C , where C is any subset of W .

Definition 7.3. Convexity in one integer variable. We define

(R1(f))(x) = f(x − 1) − 2f(x) + f(x + 1), x ∈ Z,

and W1 = {R1}.

To be W1-convex is equivalent to possessing a convex extension defined on all of
R. This is the only reasonable definition of convexity on Z.

Definition 7.4. A convexity property in two integer variables. We define

(R2,b(f))(x, y) = f(x − 1, y + b) − 2f(x, y) + f(x+ 1, y), (x, y) ∈ Z2, b = −1, 0, 1,

and W2 = {R2,−1, R2,0, R2,1}.

Theorem 7.5. With W1 and W2 as just defined, the marginal function of a
W2-convex function f : Z2 → R is W1-convex.

The proof is in my book (2022), Theorem 12.3.1, page 262.
So this gives a satisfactory solution to the problem about convexity of the

marginal function of a function of two discrete variables. Similar results hold
for functions of any number of variables; see Theorem 12.9.1 on page 280 in my
book.
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Abstract. In this paper, we study a class of discrete Morse functions,
coming from Discrete Morse Theory, that are equivalent to a class of
simplicial stacks, coming from Mathematical Morphology. We show that,
as in Discrete Morse Theory, we can see the gradient vector field of a
simplicial stack (seen as a discrete Morse function) as the only relevant
information we should consider. Last, but not the least, we also show
that the Minimum Spanning Forest of the dual graph of a simplicial
stack is induced by the gradient vector field of the initial function. This
result allows computing a watershed-cut from a gradient vector field.

Keywords: Topological data analysis · Mathematical morphology ·
Discrete Morse Theory · Simplicial stacks · Minimum Spanning Forest

1 Introduction

We present here several results relating Mathematical Morphology [17] (MM) to
Discrete Morse Theory [13] (DMT). This strengthens previous works highlight-
ing links between MM and topology. In [6,7], it is demonstrated that watersheds
are included in skeletons on pseudomanifolds of arbitrary dimension. Recently
(see [1–3]), some relations between MM and Topological Data Analysis [16,20]
(TDA) have been exhibited: the dynamics [14], used in MM to compute mark-
ers for watershed-based image-segmentation, is equivalent to the persistence, a
fundamental tool from Persistent Homology [11].

In this paper, the first main result links the spaces used in MM and in
TDA: the main mathematical spaces used in DMT, discrete Morse functions [19]
(DMF), are equivalent, under some constraints, to spaces well-known in MM and
called simplicial stacks [6–8]. Simplicial stacks are a class of weighted simplicial
complexes whose upper threshold sets are also complexes. Indeed, in a DMF,
the values locally increase when we increase the dimension of the face we are
observing; in a simplicial stack, it is the opposite. Without surprise, we can then
observe that, under some constraints, any DMF is the opposite of a simplicial
stack, and conversely.
c© Springer Nature Switzerland AG 2022
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In TDA, it is a common practice to consider that the main information
conveyed by a DMF is its gradient vector field (GVF), naturally obtained by
pairing neighbor faces with the same value. Two DMFs with the same GVF are
then considered to be equivalent. Using the very same principle on simplicial
stacks, we can go further, and consider that a GVF encodes not only a class of
DMFs, but also the corresponding class of simplicial stacks.

The relation between TDA and MM in the context of DMFs and stacks
is not limited to the previous observations. In [8], the authors proved that a
watershed-cut is a Minimum Spanning Forests (MSF) cut in the dual graph of
a simplicial stack. We prove here that such a MSF can be extracted from the
GVF of the simplicial stack (seen as a DMF). Relations between watersheds and
Morse theory have long been informally known [10], but this is the first time that
a link is presented in the discrete setting, relying on a precise definition of the
watershed. Furthermore, as far as we know, this is the first time that a concept
from Discrete Morse Theory is linked to a classical combinatorial optimization
problem.

The plan of this paper is the following. Section 2 recalls the mathematical
background necessary to our proofs. Section 3 shows the equivalence between
DMF’s and simplicial stacks. Section 4 studies the link between MSFs and GVFs.
Section 5 concludes the paper.

2 Mathematical Background

2.1 Simplicial Complexes, Graphs and Pseudomanifolds

We call (abstract) simplex any finite nonempty set of arbitrary elements. The
dimension of a simplex x, denoted by dim(x), is the number of its elements minus
one. In the following, a simplex of dimension d will also be called a d-simplex. If
x is a simplex, we set Clo(x) = {y|y ⊆ x, y �= ∅}. A finite set X of simplices is a
cell if there exists x ∈ X such that X = Clo(x).

If X is a finite set of simplices, we write Clo(X) = ∪{Clo(x)|x ∈ X}, the set
Clo(X) is called the (simplicial) closure of X. A finite set X of simplices is a
(simplicial) complex if X = Clo(X).

In the sequel of the paper, K denotes a simplicial complex. A subcomplex of
K is a subset of K which is also a complex. Any element in K is a face of K and
we call d-face of K any face of K whose dimension is d. If σ, τ are two faces of K
with τ ⊂ σ, we say that σ is a coface of τ . Any d-face of K that is not included
in any (d + 1)-face of K is called a (d−)facet of K or a maximal face of K.

The dimension of K, written dim(K), is the largest dimension of its faces:
dim(K) = max{dim(x)|x ∈ K}, with the convention that dim(∅) = −1. If d is
the dimension of K, we say that K is pure whenever the dimension of all its
facets equals d.

Suppose that there is a pair of simplices1 (σ(p−1), τ (p)) of K with σ ⊂ τ such
that the only coface of σ is τ . Then K \ {σ, τ} is a simplicial complex called an

1 The superscripts correspond to the dimensions of the faces.
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elementary collapse of K. For an elementary collapse, such a pair {σ, τ} is called
a free pair, and σ is called a free face. Note that elementary collapses preserve
simple homotopy type [21]. A free pair {σ(d−1), τ (d)} is called a free d-pair, and
K\{σ(d−1), τ (d)} is called an elementary d-collapse. If a complex K

′ is the result
of a sequence of elementary d-collapses of K, we say that K′ is a d-collapse of K.
If, furthermore, there is no free d-pair for K

′, then K
′ is an ultimate d-collapse

of K.
In this paper, a graph G is a pure 1-dimensional simplicial complex. A sub-

graph is a subset of a graph which is also a graph. We denote the vertices (the
0-dimensional elements) of a graph G by V (G), and the edges (the 1-dimensional
elements) by E(G).

Let X be a set of simplices, and let d ∈ N. Let π = 〈x0, . . . , xl〉 be a sequence
of d-simplices in X. The sequence π is a d-path from x0 to xl in X if xi−1 ∩ xi

is a (d − 1)-simplex in X, for any i ∈ {1, . . . , l}. Two d-simplices x and y in X
are said to be d-linked for X if there exists a d-path from x to y in X. We say
that the set X is d-connected if any two d-simplices in X are d-linked for X.
We say that the set Y ⊂ X is a d-connected component (or simply, a connected
component) of X if Y is d-connected and maximal for this property.

Let X be a set of simplices, and let π = 〈x0, . . . , xl〉 be a d-path in X. The
d-path π is said simple if for any two distinct i and j in {0, . . . , l}, xi �= xj . It
can be easily seen that X is d-connected if and only if, for any two d-simplices
x and y of X, there exists a simple d-path from x to y in X.

A complex K of dimension d is said to be a d−pseudomanifold if

(1) K is pure,
(2) any (d − 1)−face of K is included in exactly two d−faces of K, and
(3) K is d−connected.

In the sequel of the paper, d ≥ 1 is an integer, and M denotes a d-pseudo-
manifold.

Proposition 1 (Ultimate collapses [6]). Let K be a proper subcomplex of the
d-pseudomanifold M. If the dimension of K is equal to d, then necessarily there
exists a free d-pair for K. In other words, the dimension of an ultimate d-collapse
of K is necessarily d − 1.

Following Proposition 1, we say that an ultimate d-collapse of K ⊂ M is thin.
Let x ∈ M, the star of x (in M), denoted by St(x), is the set of all simplices

of M that include x, i.e., St(x) = {y ∈ M | x ⊆ y}. If A is a subset of M, the set
St(A) = ∪x∈ASt(x) is called the star of A (in M). A set A of simplices of M is
a star (in M) if A = star(A).

2.2 Simplicial Stacks

Let F be a mapping M → Z. For any face σ of M, the value F (σ) is called the
altitude of F at σ. For k ∈ Z, the k-section of F , denoted by [F ≥ k] is equal to
{σ ∈ M | F (σ) ≥ k}. A simplicial stack F on M is a map from M to Z which
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satisfies that any of its k-section is a (possibly empty) simplicial complex. In
other words, a map F is a simplicial stack if, for any two faces σ and τ of M
such that σ ⊆ τ , F (σ) ≥ F (τ).

We say that a subset A of M is a minimum of F at altitude k ∈ Z when A is a
connected component of [F ≤ k] := {σ ∈ M | F (σ) ≤ k} and A∩ [F ≤ k−1] = ∅.
In the following, we denote by M−(F ) the union of all minima of F . We note
that, if F is a simplicial stack, then M−(F ) is a star. The divide of a simplicial
stack F is the set of all faces of M which do not belong to any minimum of F .
Note that since M−(F ), is a star, the divide is a simplicial complex.

Let σ be any face of M. When σ is a free face for [F ≥ F (σ)], we say that
σ is a free face for F . If σ is a free face for F , there exists a unique face τ
in [F ≥ F (σ)] such that (σ, τ) is a free pair for [F ≥ F (σ)], and we say that
(σ, τ) is a free pair for F . Let (σ, τ) be a free pair for F , then it is also a free
pair for [F ≥ F (σ)]. Thus, τ is a face of [F ≥ F (σ)], and we have σ ⊆ τ .
Therefore, we have F (τ) ≥ F (σ) and F (τ) ≤ F (σ) (since F is a stack), which
imply that F (τ) = F (σ). Let N ⊆ M, the indicator function of N, denoted by
1N : M → {0, 1}, is the mapping such that 1N(σ) is equal to 1 when σ belongs
to N and is equal to 0 when σ belongs to M \ N. The lowering of F at N is
the map F − 1N from M into Z. Let (σ(d−1), τ (d)) be a free pair for F . The
map F − 1{σ,τ} is called an elementary d-collapse of F . Thus, this elementary
d-collapse is obtained by subtracting 1 to the values of F at σ and τ . Note that
the obtained mapping is still a simplicial stack. If a simplicial stack F ′ is the
result of a sequence of elementary d-collapses on F , then we say that F ′ is a
d-collapse of F . If, furthermore, there is no free pair (σ(d−1), τd) for F ′, then F ′

is an ultimate d-collapse of F .

2.3 Watersheds of Simplicial Stacks

Let A and B be two nonempty stars in M. We say that B is an extension of A
if A ⊆ B, and if each connected component of B includes exactly one connected
component of A. We also say that B is an extension of A if A = B = ∅. Let X be
a subcomplex of the pseudomanifold M and let Y be a collapse of X, then the
complement of Y in M is an extension of the complement of X in M. Let A be
a nonempty open set in a pseudomanifold M and let X be a subcomplex of M.
We say that X is a cut for A if the complement of X is an extension of A and if
X is minimal for this property. Observe that there can be several distinct cuts
for a same open set A and, in this case, these distinct cuts do not necessarily
contain the same number of faces.

Let π = 〈x0, . . . , x�〉 be a d-path in M, and let F be a function on M. We say
that the d-path π is descending for F if for any i ∈ {1, . . . , �}, F (xi) ≤ F (xi−1).

Let X be a subcomplex of the pseudomanifold M. We assume that X is a
cut for M−(F ). We say that X is a watershed-cut of F if for any x ∈ X, there
exists two descending paths π1 = 〈x, x0, . . . , x�〉 and π2 = 〈x, y0, . . . , ym〉 such
that (1) x� and ym are simplices of two distinct minima of F ; and (2) xi �∈ X,
yj �∈ X, for any i ∈ {0, . . . , �} and j ∈ {0, . . . , m}.



GVFs and Watersheds 39

Several equivalent definitions of the watershed for pseudo-manifolds are given
in [6,7]. Also, it was shown that a watershed-cut of F is necessarily included in an
ultimate d-collapses of F . Thus, by Proposition 1, a watershed-cut is a thin divide.

In this paper, we focus on a definition relying on combinatorial optimization,
more precisely on the minimum spanning tree. For that, we need a notion of
“dual graph” of a pseudomanifold.

Starting from a d-pseudomanifold M valued by F : M → Z, we define the
dual (edge-weighted) graph of F as the 3-tuple GF = (V,E, FG) whose vertex set
V is composed of the d-simplices of M, whose edge set E is composed of the
pairs {σ, τ} such that σ, τ are d-faces of M and σ ∩ τ is a (d − 1)-face of M, and
whose edge weighting FG is made as follows: for two distinct d-faces σ, τ in M

sharing a (d−1)-face of M, FG({σ, τ}) = F (σ ∩ τ).
Let A and B be two non-empty subgraphs of the dual graph GF of F . We

say that B is a forest relative to A when

(1) B is an extension of A; and
(2) for any extension C ⊆ B of A, we have C = B whenever B and C share the

same vertices.

Informally speaking, the second condition imposes that we cannot remove any
edge from B while keeping an extension of A that has the same vertex set as B.
We say that B is a spanning forest relative to A for GF if B is a forest relative
to A and if B and GF share the same vertices.

The weight of A is defined as: FG(A) :=
∑

u∈E(A) FG(u). We say that B is a
minimum spanning forest (MSF) relative to A for FG if B is a spanning forest
relative to A for FG and if the weight of B is less than or equal to the weight of
any other spanning forest relative to A for FG .

Let A be a subgraph of GF , and let X be a set of edges of GF . We say that
X is an MSF cut for A if there exists an MSF B relative to A such that X is
the set of all edges of GF adjacent to two distinct connected components of B.

In the following, if S is a set of (d − 1)-faces of M, we set Edges(S) =
{{σ, τ} ∈ E(GF ) | σ ∩ τ ∈ S}. The dual graph of the minima of F is the graph
whose vertex set is the set M of d-faces of the minima of F and whose edge set
is composed of the edges of GF linking two elements of M .

Theorem 2 (Theorem 16 p. 10 [6]). Let X be a set of (d − 1)-faces of M, and
let F : M → Z

+ be a simplicial stack. The complex resulting from the closure of
X is a watershed-cut of F if, and only if, Edges(X) is a MSF cut for the dual
graph of the minima of F .

In other words, to compute the watershed of a stack F , it is sufficient to
compute in GF a MSF cut relative to the graph associated with the minima of
F . Different algorithms for computing MSF cuts are detailed in [8,9].

2.4 Basic Discrete Morse Functions

We rely here on the formalism presented in [19], with results from Forman and
Benedetti. A function F : A → B is said to be 2 − 1 when, for every b ∈ B,
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there exist at most two values a1, a2 ∈ A such that F (a1) = F (a2) = b. Let K

be a simplicial complex. A function F : K → Z is called weakly increasing if
F (σ) ≤ F (τ) whenever the two faces σ, τ of K satisfy σ ⊆ τ .

A basic discrete Morse function F : K → Z is a weakly increasing function
which is 2 − 1 and satisfies the property that if F (σ) = F (τ), then σ ⊆ τ or
τ ⊆ σ.

Let F : K → Z be a basic discrete Morse function. A simplex σ of K is said
to be critical when F is injective on σ. Otherwise, σ is called regular. When σ is
a critical simplex, F (σ) is called a critical value. If σ is a regular simplex, F (σ)
is called a regular value.

Discrete Morse functions are more general than basic discrete Morse func-
tions. A discrete Morse function (DMF) F on K is a function from F : K → Z

such that for every p-simplex σ ∈ K, we have

|{τ (p−1) ⊂ σ | F (τ) ≥ F (σ)}| ≤ 1 (1)

and
|{τ (p−1) ⊃ σ | F (τ) ≤ F (σ)}| ≤ 1. (2)

However, to each discrete Morse function, there exists a basic discrete Morse
function which is equivalent in the following sense (see Theorem 4 and Proposi-
tion 5). Two discrete Morse functions F, F ′ defined on the same simplicial com-
plex K are said to be Forman-equivalent when for any two faces σ(p), τ (p+1) ∈ K

satisfying σ ⊂ τ , F (σ) < F (τ) if and only if F ′(σ) < F ′(τ). Hence, in this paper,
we focus on basic discrete Morse functions.

Let F be a basic discrete Morse function on K. The (induced) gradient vector
field (GVF)

−−→
grad of F is defined by

−−→
grad(F ) :=

{
(σ(p), τ (p+1)) | σ, τ ∈ K , σ ⊂ τ , F (σ) ≥ F (τ)

}
. (3)

If (σ, τ) belongs to
−−→
grad(F ), then it is called a vector (for F ) whose σ is the tail

and τ is the head. The vector (σ, τ) is sometimes denoted by −→στ .
Let K be a simplicial complex. A discrete vector field V on K is defined by

V := {(σ(p), τ (p+1)) | σ ⊂ τ, each simplex of K is in at most one pair} (4)

Naturally, every GVF is a discrete vector field.
Let V be a discrete vector field on a simplicial complex K. A gradient path is

a sequence of simplices: (τ (p+1)
−1 , )σ(p)

0 , τ
(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , . . . , σ

(p)
k−1, τ

(p+1)
k−1 , σ

(p)
k ,

of K, beginning at either a critical simplex τ
(p+1)
−1 or a regular simplex σ

(p)
0 , such

that (σ(p)
� , τ

(p+1)
� ) belongs to V and τ

(p+1)
�−1 ⊃ σ

(p)
� for 0 ≤ � ≤ k − 1. If k �= 0,

then this path is said to be non-trivial. Note that the last simplex does not need
to be in a pair in V . A gradient path is said to be closed if σ

(p)
k = σ

(p)
0 .

Theorem 3 (Theorem 2.51 p.61 of [19]). A discrete vector field is the GVF of
a discrete Morse function if, and only if, this discrete vector field contains no
non-trivial closed gradient paths.
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Theorem 4 (Theorem 2.53 p.62 of [19]). Two discrete Morse functions defined
on a same complex K are Forman-equivalent if, and only if, they induce the
same GVF. A consequence is that any two Forman-equivalent discrete Morse
functions defined on a simplicial complex have the same critical simplices.

Proposition 5. If F is a discrete Morse function, there exists F ′ a basic dis-
crete Morse function that is Forman-equivalent to F .

Proposition 5 is a consequence of [19, Proposition 4.16]. Starting from a DMF
and computing its GVF, it is possible (by correctly ordering all the simplices)
to compute a basic DMF Forman-equivalent to it; such an algorithm preserves
the GVF. A precise algorithm, together with a proof of Proposition 5 relying on
this algorithm, will be provided in an extended version of this paper.

3 A Class of Simplicial Stack Equivalent to Morse
Functions

Simplicial stacks are weakly decreasing. We call basic simplicial stack, a simplicial
stack F that is 2 − 1 and satisfies the property that if F (σ) = F (τ), then σ ⊆ τ
or τ ⊆ σ. The proof of the following is straightforward.

Proposition 6. Let F be a function defined on M. Then F is a basic simplicial
stack if and only if −F is a basic discrete Morse function.

Hence, all properties of basic discrete Morse functions hold true for basic
simplicial stacks, and conversely. In the sequel of this paper, we exemplify that
fact with gradient vector fields.

Relying on Proposition 6, we define the gradient vector field of a basic sim-
plicial stack F as the GVF of the DMF −F it corresponds to.

As stated in Theorem 4, two basic DMF’s are Forman-equivalent if, and only
if, they induce the same GVF. In other words, at each GVF corresponds a class of
DMF’s. Using Proposition 6, we have a bijection between the space of basic DMF’s
and the space of basic simplicial stacks. This leads to the following corollary:

Corollary 7. If F is a basic DMF defined on M, there exists a class BD of basic
DMF’s and a class SS of basic simplicial stacks, bijective to BD, such that each
F ′ in one of those classes has the same gradient vector field as the one of F .

4 The Minimum Spanning Forest of a Stack and the GVF

4.1 The Forest Induced by a GVF

Let F a basic simplicial stack. As any k-section of F is a simplicial complex, and
as F is 2-1, we have the following proposition:

Proposition 8. Let F be a basic simplicial stack. We have:



42 N. Boutry et al.

1. M−(F ) is a set of simplices of dimension d.
2. Each minimum of F is made of a single simplex of M−(F ).
3. The set of edges of the dual graph of the minima is empty.

Let
−−→
grad be the GVF of F . Let

−→
ab be a vector of

−−→
grad such that dim(a) = d−1.

Since M is a pseudomanifold, the face a is included in two d-faces, the face b and
another d-face c. We write [

−→
ab] = {{b}, {c}, {b, c}} and we consider the graph:

G(
−−→
grad) = ∪{[

−→
ab] | −→

ab ∈ −−→
grad, dim(a) = d − 1}. (5)

Let G+(
−−→
grad) be the union of G(

−−→
grad) and of G(M−(F )), where G(M−(F ))

is the dual graph of the minima of F .

Proposition 9. The graph G+(
−−→
grad) is a spanning forest relative to the dual

graph of the minima of F .

The proof of this proposition relies on the following fact: any critical simplices
of F that is not a minimum of F is of dimension strictly lower than d.

Proof. We first show that G+(
−−→
grad) spans all vertices of the dual graph GF : as

G+(
−−→
grad) contains the dual graph of the minima, we only need to show that for

any d-face σ of M, σ �∈ M−(F ), there is a pair (τ (d−1), σ) of simplices in
−−→
grad.

[19, Remark 2.42] states that, for any simplex τ , exactly one of the following
holds true:

(i) τ is the tail of exactly one vector
(ii) τ is the head of exactly one vector
(iii) τ is neither the tail nor the head of a vector; that is τ is critical

By Proposition 8, item 2, each minimum of F is made of a single simplex of
M−(F ). By remark [19, Remark 2.42] above, it remains to show that, if σ is not
a minimum of F , it is regular, and hence the head of exactly one vector. As F
is a simplicial stack, its k-section for k = F (σ) contains all the simplices ν such
that ν ⊂ σ. We have F (ν) ≥ F (σ). Because σ is not a minimum, there exists a
simplex τ (d−1) such that F (τ (d−1)) = F (σ) with τ (d−1) ⊂ σ. This implies that
(τ (d−1), σ) ∈ −−→

grad.
By Theorem 3, G(

−−→
grad) does not contain any closed 1-path. Hence, G+(

−−→
grad)

is a forest relative to the dual graph of the minima of F . ��

Following Proposition 9, we say in the sequel that G+(
−−→
grad) is the forest

induced by the GVF
−−→
grad.
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4.2 The Forest Induced by a GVF Is the MSF

Proposition 10. Let F : M → Z be a basic simplicial stack, and let
−−→
grad be the

GVF of F . Then, any gradient-path π = (π(k))k∈[0,N ] of the GVF is increasing,
that is, for any k ∈ [0, N − 1], F (π(k)) ≤ F (π(k + 1)).

Proof. Let π some gradient-path of
−−→
grad, and let us assume without loss of

generality, that π(0) is a d-face of M. We know that the (d − 1)-face π(2k + 1)
is paired with the n-face π(2k + 2) in

−−→
grad for any k ∈ [0, (N − 1)/2 − 1] (N is

odd), which means that F (π(2k + 1)) = F (π(2k + 2)). We also know that F is a
stack, and then F decreases when we increase the dimension of the face, so for
any k ∈ [0, (N − 1)/2 − 1], F (π(2k)) ≤ F (π(2k + 1)). ��
Lemma 11. (MST Lemma [4,15]). Let G = (V,E, F ) be some edge-weighted
graph. Let v ∈ V be any vertex in G. A minimum spanning tree for G must
contain an edge vw that is a minimum weighted edge incident on v.

Theorem 12. Let F : M → Z
+ be a basic simplicial stack, and let

−−→
grad be the

GVF of F . The forest induced by
−−→
grad is the unique MSF relative to M−(F ) of

the dual graph of F .

Proof. By Proposition 9, G+(
−−→
grad) is a spanning forest relative to M−(F ), the

minima of F . As F is a basic simplicial stack, hence 2-1, all edges of the dual
graph GF = (V,E, FG) of F have a unique weight, and the MSF of the dual
graph GF is unique. It remains to prove that the induced forest is of minimum
cost.

Since gradients do not exist on minima, let us consider a d-simplex σ ∈
V \ M−(F ). Then, by Proposition 9, there exists exactly one vector in

−−→
grad,

which can be written (τ ∩ σ, σ), with τ ∈ V . By the definition of
−−→
grad, we have

F (τ ∩ σ) = F (σ).
Let θ ∈ V \ {τ} some d-simplex such that {τ, θ} belongs to E. Since F

is a simplicial stack, either the (d − 1)-face τ ∩ θ is critical (and F (τ ∩ θ) >

max(F (τ), F (θ))), or it is regular and τ ∩ θ is paired with θ in
−−→
grad (and F (θ) =

F (τ ∩ θ) > F (τ) by Proposition 10). Therefore, {σ, τ} is the lowest cost edge
incident to τ :

FG({σ, τ}) = F (τ ∩ σ) = F (σ) < min{FG({θ, τ}) ; {θ, τ} ∈ E, θ �= σ} (6)

and thus belongs to the MST of F by Lemma 11.
As by Proposition 9, the induced forest is a spanning forest relative to the

dual graph of the minima of F , it is then the minimum spanning tree of the dual
graph relative to the minima of F , which concludes the proof. ��

A summary of this result is depicted in Fig. 1, which shows a piece of a
pseudomanifold of dimension 2.
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Using Theorem 2 and Theorem 12, we can conclude that the cut of the forest
induced by the GVF is also a watershed-cut. This leads to the following corollary.

Corollary 13. Let F : M → Z
+ be a basic simplicial stack. Then, the

watershed-cut of F is provided equivalently by the MSF of F or by the GVF
of F .

Figure 2 illustrates this corollary: each tree of the induced forest is a connected
component of the dual graph, called a catchment basin of the watershed-cut.

Fig. 1. Starting from a Morse function, we obtain its equivalent simplicial stack up to
the minus sign. For simplicity, the simplicial stack is valued by 0 on all d-simplices at
the border. Then, we deduce the GVF of the initial Morse function and its MSF. This
illustrates that the MSF is the forest induced by the GVF of both a discrete
Morse function and the corresponding simplicial stack.
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Fig. 2. Illustration of the watershed-cut obtained from the GVF of a discrete Morse
function: we have a partition of the pseudo-manifold, such that each tree in the forest is
a basin of the watershed-cut. We also highlight the equality between the forest induced
by the GVF (in blue) and the MSF of the dual graph (in red). (Color figure online)

5 Conclusion

In this paper, we highlight some links between several notions that exist in
Discrete Topology and in Mathematical Morphology:

– discrete Morse functions are equivalent, under some constraints, to simplicial
stacks;

– gradient vector fields in the Morse sense are applicable to simplicial stacks;
– and the gradient vector field of a simplicial stack induces the Minimum Span-

ning Forest of its dual graph, leading to watershed-cuts.

In the extended version of this paper, we will relax the constraints for the equiv-
alence between discrete Morse function and simplicial stacks, and we will show
how to use the watershed to define a purely discrete version of the well-known
Morse-Smale complex [12].

In the future, we will continue looking for strong relations linking Discrete
Morse Theory and Mathematical Morphology, with the goal of using morpho-
logical tools for topological data analysis. We also aim at making clearer the
relation between discrete topology and discrete Morse theory, following [18] that
was inspired by [5].

Acknowledgements. The authors would like to thank both Julien Tierny and
Thierry Géraud, for many insightful discussions.
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a.kleefeld@fz-juelich.de
3 Faculty of Medical Engineering and Technomathematics,

University of Applied Sciences Aachen, Heinrich-Mußmann-Str. 1,
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Abstract. Fields of asymmetric tensors play an important role in many
applications such as medical imaging (diffusion tensor magnetic res-
onance imaging), physics, and civil engineering (for example Cauchy-
Green-deformation tensor, strain tensor with local rotations, etc.). How-
ever, such asymmetric tensors are usually symmetrized and then fur-
ther processed. Using this procedure results in a loss of information. A
new method for the processing of asymmetric tensor fields is proposed
restricting our attention to tensors of second-order given by a 2×2 array
or matrix with real entries. This is achieved by a transformation resulting
in Hermitian matrices that have an eigendecomposition similar to sym-
metric matrices. With this new idea numerical results for real-world data
arising from a deformation of an object by external forces are given. It is
shown that the asymmetric part indeed contains valuable information.

Keywords: Asymmetric tensor fields · Spectral decomposition · Line
integral convolution

1 Introduction

Fields of tensors are an essential notion in many applications such as medical
imaging, physics, and civil engineering. Tensors make their natural appearance
as Cauchy-Green-deformation tensor, strain tensor with local rotations, permit-
tivity tensor, etc., or as structure tensor in image processing itself. Although the
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notion of a tensor is quite sophisticated especially in mathematical literature,
in the context of this article we consider them simply as 2 × 2-arrays of com-
plex numbers subjected to the standard computational rules of matrix calculus.
Despite this fact, we refer to any mapping from a suitable set Ω ⊂ R

2 into the
set of matrices as a tensor field as it is common.

Symmetric matrices or second order tensors possess an eigenvalue decom-
position with real eigenvalues and mutually orthogonal eigenvectors. Hence, a
decomposition of a symmetric matrix S as

S = Q · D · Q�

with a diagonal matrix D and an orthogonal matrix Q is at our disposal. As
a consequence the functional calculus is sufficiently rich to pave the way to
transfer algorithms designed for the processing of real-valued data (functions)
to the setting of matrix-valued data (functions), let us refer to [4].

The visualization of symmetric tensors often makes use of the correspond-
ing quadratic form resulting in ellipses (n = 2) or ellipsoids (n = 3) (see for
example [8]), casting the information about eigenvalues and eigenvectors in an
appealing visual form. Particular visualization methodologies focus on the overall
appearance of the tensor field, its topological, global structure, and its connec-
tivity. Prominent is the line integral convolution (LIC) procedure that relies on
the dominant eigenvector, that is the (normalized) eigenvector belonging to the
largest eigenvalue of a symmetric matrix [5]. Clearly this concepts is no longer
applicable if the existence of a real-valued eigenvector cannot be guaranteed
as it is the case for general non-symmetric, hence, mostly non-diagonalizable
matrices. However, tensors of the latter type are of particular interest in many
applications. As a remedy a symmetrization is used leading to a manageable ten-
sor field, but at the price of a loss of the information captured in the asymmetric
part.

This is the reason why existing research [1,7,9–11] even in the 2D-case is
based on their visualization of asymmetric tensor fields relying on the decom-
position of an asymmetric tensor into the product of three matrix compo-
nents, whose corresponding physical concepts in civil engineering are respec-
tively expansion/contraction, rotation, and pure shear. But these approaches
have their intricacies and their generalization to dimension n = 3 does not seem
to be straightforward.

In this article, our response to this dilemma is “complexifying” the asym-
metric tensors by applying a mapping Ξ from the set of real square matrices
R

n×n into the set of Hermitian tensors Herm(n) := {K ∈ C
n×n : K = K∗}

with n ≥ 2 defined by (see also [2,3])

Ξ :
{
R

n×n −→ Herm(n)
A �−→ 1

2 (A + A�) + i
2 (A − A�) .

(1)

We will elaborate more on this mapping Ξ in Sect. 2, while we report on the
application of hermitization together with the LIC-procedure to real data sets
in Sect. 3. A short summary and an outlook is given in Sect. 4.
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2 The Conversion Process

Since tensors describing general deformation fields are usually not symmetric,
they are symmetrized leading to a loss of information captured in the asymmetric
part. In this article, those tensors are pre-processed by applying a mapping Ξ
given by (1) in the special case n = 2. Indeed, for any A ∈ R

2×2 we have
(Ξ(A))∗ = Ξ(A), where � and ∗ means transpose and conjugate transpose,
respectively. The reason for this pre-processing step is the fact that Hermitian
tensors allow for a rich tensor (or matrix) calculus almost as amenable as in
the case of real symmetric matrices since in both cases the matrices form a real
vector space and are unitarily diagonalizable with real eigenvalues. We point out
that some properties of this mapping and Hermitian tensors also hold for n ≥ 2.

Proposition 1. Ξ maps R
n×n bijectivly into the real vector space Herm(n).

Proof. The mapping Ξ is linear on a finite dimensional space and has a trivial
kernel. Hence, it is an isomorphism and therefore invertible.

For the sake of brevity we set H = (Hij)i,j=1,2 := Ξ(T ) and assume

H = UΛU∗ , Λ = diag(κ1, κ2)

with real eigenvalues κ1 ≥ κ2. A straightforward reckoning reveals

κ1 = (H11 + H22) /2 +
√

(H11 + H22)
2
/4 − (H11H22 − H12H21) (2)

and for the associated major eigenvector (not normalized)

u1 = (H12,−(H11 − κ1))
�

.

The second component of u1 is real, that is, Im(−(H11 − κ1)) = 0. That means
the imaginary part of this major eigenvector is aligned in the real x-direction.

Remark 1. Note that the eigenvector u1 can be multiplied by an arbitrary con-
stant, say c ∈ C, and still it will be an eigenvector. In fact, we can specifically
choose c = eiβ with β ∈ [0, 2π] without changing the original length of the eigen-
vector. That means we could theoretically align the major eigenvector in any
direction (if desired).

3 Numerical Results

Note that all the following figures are created with Matlab 2018a. The line
integral convolution algorithm has been downloaded from the web page https://
itp.tugraz.at/∼ahi/Uni/AppSoft/LIC/ which has been implemented in Matlab
by A. Hirczy.

Further, note that the data are generated from two real experiments. Pre-
cisely, the 2D tensor fields we are dealing with in this section are derived from

https://itp.tugraz.at/~ahi/Uni/AppSoft/LIC/
https://itp.tugraz.at/~ahi/Uni/AppSoft/LIC/
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the deformation of an object by external forces. The strain tensor is derived from
the gradient of the displacement occurring when external forces to an object are
applied (see [6, Section 2.2.3]). Here, we consider two configurations of forces,
indicated by the arrows in Fig. 1, acting on a 2D object of a square-like shape
with coordinates [−0.675, 0.675] × [−0.675, 0.675]. Non-zero forces are acting on
the right side of the square-shaped body, resembling a parabolic force pattern in
the first case (data set named “parabolic”), while the pattern is more sinusoidal
in the second case (data set named “sinusoidal”).

First, we will visualize the non-symmetric stress tensor field obtained from
the deformation gradient. Precisely, taking the partial derivative of the displace-
ment vector field with respect to the material coordinates gives the material
displacement gradient tensor which can be written as F − I where F is the
deformation gradient tensor field (see [6, Section 2.1.6 and Section 2.2.3]).

The stress tensor under consideration is a multiplication between a symmetric
stress tensor and the deformation gradient tensor. It is an asymmetric tensor,
thus it might give us some new insight.

Fig. 1. The two experiments parabolic and sinusoidal.

3.1 Non-symmetric Stress Tensor

Each of the resulting data sets are stress tensor fields with a (pixel) resolution
of 217 × 217. We transform the non-symmetric matrix into a Hermitian matrix
for each pixel and compute the real and imaginary part of the major eigenvector
corresponding to κ1 of (2). In sum, this results in two different vector fields. From
these vector fields integral lines are derived through convolution and visualized
by the LIC procedure. In addition, we plot the major eigenvector fields in quiver
plots as an alternative representation method for better visual comparison. Note
that we only visualize every fifth vector resulting in a 43×43 resolution to avoid
cluttering. We begin with the parabolic data set.

When the imaginary part is aligned in positive x-direction, then we color the
arrow in green. Otherwise, it is colored red, as shown in Fig. 2. Both the LIC-
representation and the quiver plot of the real part of the major eigenvector field
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clearly indicates that the parabolic pattern of forces applied on the right hand
side of the shape creates a corresponding response inside. The anti-symmetric
“left-right” pattern in the imaginary part of the major eigenvector field is a
striking feature in the quiver-plot while it is not so clearly discernible in the LIC-
picture. The later is no surprise since by its very construction the LIC-procedure
is not predisposed to capture the discontinuous behavior of the imaginary part
of the vector components.

Fig. 2. First column: Graphical representation of the line integral convolution (LIC) of
the real and imaginary part of the eigenvector corresponding to κ1 of (2) for the data
set parabolic having resolution 217 × 217. Second column: Thinned out quiver plots
(43 × 43 resolution) of the real and imaginary part of the same eigenvector fields.

In some applications, where tensorial quantities are derived from gradients,
for example, indefinite matrices may play a role. Using polar decomposition for
symmetrization inevitably causes positive definiteness of the resulting tensor,
which means an additional loss of information. Nevertheless, even in the case of
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positivity, the asymmetry captured in the imaginary part of the Hermitian tensor
reveals discontinuity properties of the data (visible in the quiver plots) that are
independent of the rotational ambiguity mentioned in Remark 1, and hence
they should not be discarded. Whether these discontinuities indicate possible
locations of emerging fractures in materials or real anomalies in flow patterns
is not yet clear. At this stage of our research a reasonable and authoritative
explanation still eludes the authors.

For the sake of comparison, we show in Fig. 3 the major eigenvector field
in its LIC-representation after the non-symmetric stress tensor data have been
symmetrized in each pixel simply by means of A �→ (A + A�)/2.

Fig. 3. Left: Graphical representation of the line integral convolution (LIC) of the
eigenvector corresponding to κ1 of the symmetrization (A + A�)/2 for the data set
parabolic. Right: Thinned out quiver plots (43×43 resolution) of the same symmetrized
real eigenvector fields.

As expected, the imaginary part is zero and does not contain any information,
hence we refrain from a graphical representation. A comparison of the major
eigenvector field stemming from the real part of the hermitization versus the
symmetrized tensor field reveals very little differences in the LIC-representation
as well as in the quiver plot. The reason might be that the non-symmetry in
the original data is not very pronounced and hence the imaginary part is rather
small. Nevertheless, the similarity between hermitization and symmetrized ver-
sion speaks for the reliability of the proposed approach.

Next, we process and visualize the stress tensor fields stemming from the
sinusoidal data set as illustrated in Fig. 4.

The LIC-representation and the quiver plot of the real part of the major
eigenvector field reveal an eddy-like structure inside the shape as a response
to the sinusoidal pattern of forces applied on the right border. The LIC image
of the imaginary part of the major eigenvector field indicates a complicated
pattern inside the object, and as before, the quiver plot capable of capturing
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Fig. 4. First column: Graphical representation of the line integral convolution (LIC) of
the real and imaginary part of the eigenvector corresponding to κ1 of (2) for the data
set sinusoidal having resolution 217 × 217. Second column: Thinned out quiver plots
(43 × 43 resolution) of the real and imaginary part of the same eigenvector fields.

the discontinuous “left-right” pattern, provides a similar but more discernible
internal structure. A thorough interpretation of such newly discovered pattern
will be the subject of future research.

For comparison, we show in Fig. 5 the major eigenvector after applying line
integral convolution to data being symmetrized via (A + A�)/2 in each pixel.

Again, the vanishing imaginary part is not graphically represented. In con-
trast to the findings for the previous data set a comparison of the major eigenvec-
tor field stemming from the real part of the hermitization versus the symmetrized
tensor field reveals significant differences in the LIC-representation as well as in
the quiver plot. We attribute this to a more pronounced non-symmetry and a
larger imaginary component if compared with the first data set. The data set
sinusoidal suggests that symmetrization indeed destroys a significant portion of
information and that this information not only might be preserved by hermitiza-
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Fig. 5. Left: Graphical representation of the line integral convolution (LIC) of the
eigenvector corresponding to κ1 of the symmetrization (A + A�)/2 for the data set
sinusoidal. Right: Thinned out quiver plots (43×43 resolution) of the same symmetrized
real eigenvector fields.

tion but also, via its imaginary part, might eventually lead to new interpretations
and insights.

3.2 Deformation Gradient Tensor

The deformation gradient tensor as a non-symmetric tensor is a meaningful
quantity, but it is not very much studied in the literature. We proceed almost
as before. We extract the deformation gradient tensor fields for both force con-
figurations (parabolic and sinusoidal), we use hermitization and then produce
graphical LIC and quiver representations as shown in Figs. 6 and 7.

In case of the data set parabolic the LIC representations of the deformation
gradient tensor field and the stress tensor field (refer to Fig. 2) look very much
the same if we look at the real part of the major eigenvector fields. Seemingly,
the same holds true for the quiver plots. However, the imaginary part exhibits
some differences between the deformation gradient field and the stress tensor
field both in the LIC and the quiver plot, albeit more pronounced in the latter
one, as expected.

The situation is different for the sinusoidal data set. We note some discrep-
ancies between the deformation gradient field, see Fig. 7, and the corresponding
stress tensor field, see Fig. 4, in all four representations, namely, LIC- and quiver
plots, real and imaginary parts.

The experiments show, that significant information about a field of non-
symmetric tensors is captured in the imaginary parts of its hermitization form,
which solely results from the non-symmetry. The outcome suggests that sym-
metrization of the tensors indeed eliminates information to some extent. The
imaginary part of the major eigenvector field displayed in quiver plots reveals
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Fig. 6. First column: Graphical representation of the line integral convolution (LIC) of
the real and imaginary part of the eigenvector corresponding to κ1 of (2) for the data
set parabolic having resolution 217 × 217. Second column: Thinned out quiver plots
(43 × 43 resolution) of the real and imaginary part of the same eigenvector fields.

this information, however, those plots by no means lend themselves to a straight-
forward interpretation; hence more research is needed in this direction.

4 Summary and Outlook

There are numerous examples of real second-order tensors in medical imaging
or civil engineering that are symmetric, hence they have an eigendecomposition,
which allows for a rather straightforward processing and analysis. However, the
original tensors encountered in applications might not be symmetric. Their anal-
ysis and processing is much more cumbersome, since SVD and Jordan decompo-
sition are complicated and sometimes insufficient substitutes for the lack of an
eigendecomposition. In order to circumvent this difficulty, the tensors are often
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Fig. 7. First column: Graphical representation of the line integral convolution (LIC) of
the real and imaginary part of the eigenvector corresponding to κ1 of (2) for the data
set sinusoidal having resolution 217 × 217. Second column: Thinned out quiver plots
(43 × 43 resolution) of the real and imaginary part of the same eigenvector fields.

symmetrized, and the asymmetric part is discarded, but this possibly comes
with the price of loosing the information captured in the asymmetry. Rewriting
a non-symmetric tensor as a Hermitian tensor, hermitization for short, allows
to preserve this information since Hermitian matrices possess an eigendecom-
position as well. However, the eigenvectors have complex-valued components,
which means, that the non-symmetry information is mainly cast into the imagi-
nary part of the eigenvectors while its real part is very close to the one stemming
from the symmetrized version. Although the complex eigenvector may be shifted
in phase (i.e. multiplied by eiβ with β ∈ [0, 2π]) the abrupt discontinuous behav-
ior of the imaginary part of the major eigenvector identifies edges in the tensor
field that clearly stem from the asymmetric parts of the tensors.



58 B. Burgeth et al.

The numerical results on non-symmetric 2D stress and deformation gradient
tensor fields clearly indicate that this part of information is indeed relevant,
albeit difficult to interpret from the quiver and LIC-plots.

In fact, we hope to find a better connection of the presented subject to image
processing and mathematical morphology in the future. The discovered discon-
tinuity represents a boundary of a region. If the external force pattern changes,
then this region will change as well leading to a moving boundary. Maybe this
movement can be related to some morphological operation. Knowledge of this
connection might enable us to predict the boundary of a yet unknown force
field. Hence, the extensive simulation of the mechanical response of external
forces applied to materials can be replaced by simple morphological operations
to obtain the location of such a discontinuity. This is especially relevant in three
dimensions.

More tests and research efforts in this direction will be a topic of our future
research.
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Abstract. Finding the minimum homology basis of a simplicial complex
is a hard problem unless one only considers the first homology group. In
this paper, we introduce a general heuristic for finding a short homology
basis of any dimension for digital objects (that is, for their associated
cubical complexes) with complexity O(m3 + βq ·n3), where m is the size
of the bounding box of the object, n is the size of the object and βq

is the rank of its qth homology group. Our heuristic makes use of the
thickness-breadth balls, a tool for visualizing and locating holes in digital
objects.

We evaluate our algorithm with a data set of 3D digital objects and
compare it with an adaptation of the best current algorithm for comput-
ing the minimum radius homology basis by Dey, Li and Wang [10].

Keywords: Digital object · Persistent homology · Short homology
basis · Thickness-breadth

1 Introduction

A 3D digital object is a finite set of voxels, that is, a subset of the regular
grid Z

3. This is a fundamental data representation of shapes because it is well
suited for data coming from volumetric acquisition devices, while its regular
structure allows for efficient data structures and algorithms. A digital object can
be endowed with a topological space by defining an adjacency relation between
its voxels, and more generally, by defining an associated topological object called
cubical complex. With a cubical complex we can start studying the topological
properties of a shape such as its connectivity, its homology and its homotopy
groups.

The homology groups are algebraic objects that rigorously define the notion
of hole in a space. Let us give an informal presentation in dimension one. The
elements of the first homology group are closed curves (called 1-cycles) under
an equivalence relation that implies that two 1-cycles are related if one can be
continuously transformed into the other. Hence, if an object has a tunnel, a 1-
cycle around this tunnel is not equivalent to a small 1-cycle on a side and thus
its homology group is not trivial. The first homology group is a quotient group
with the structure of a vector space, so its dimension is the number of holes in
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the object, and a basis can be used to visualize the holes of the object (see Fig. 1
for instance).

In order to enhance the visualization of the holes in an object, we look for
a minimal homology basis, that is, a set of 1-cycles generating the homology
group with total minimal length. Such a set is then tight around the holes and
allows us to identify them separately. Short homology bases find application in
contexts when one wishes to identify and locate the holes of an object such as
in [13,23].

Finding a minimal homology basis made of 1-cycles can be solved in poly-
nomial time using techniques from graph theory [11]. Unfortunately, the gener-
alization of this problem to higher dimension (with closed manifolds instead of
simply curves) has been proved to be NP-hard.

In this paper, we introduce a general heuristic for computing a short homol-
ogy basis for digital objects and homology groups of any dimension. Our algo-
rithm takes advantage of the thickness-breadth balls [16]. The thickness-breadth
balls were conceived as a visualization and a quantification tool for holes in
digital objects avoiding the use of homology groups because of the hardness of
optimizing its size, but we show in this paper that they can indeed be used for
computing a homology basis.

Our algorithm is easy to implement and runs in O(m3 + βq · n3), where m is
the number of points in the bounding box of the digital object, n is its size and
βq is the rank of its qth homology group. We evaluate our heuristic on a set of
3D digital objects and compare it with a randomized version of the algorithm
by Dey et al. [10] with similar time complexity. We show that our heuristic
produces good results and we provide an open-source implementation to ensure
the replicability of our results.

2 State of the Art

The problem of computing a minimal homology basis is well studied for simplicial
complexes. Simplicial complexes are endowed with nonnegative weights on their
simplices, which induce weights for every cycle. Thus, given a weighted simplicial
complex K and a dimension q > 0, the problem is to find a set of cycles with
minimum total weight such that their corresponding homology classes form a qth
homology basis. This problem was proved to be NP-hard for general simplicial
complexes and dimension q > 1 by Chen and Freedman [8], while Dey et al. [10]
found an algorithm in O(nω + β1 · n2) for the case q = 1, where n is the number
of simplices, ω < 2.38 is the matrix multiplication exponent and β1 is the rank
of the first homology group H1(K). Indeed, the case q = 1 has brought particu-
lar attention and different specialized algorithms exist for specific subclasses of
simplicial complexes [11,14,22].

Despite the hardness of the problem of minimal homology basis for dimension
q > 1, there are works studying how to efficiently find a solution. Escolar and
Hiraoka studied how to compute a solution using integer linear programming
in [15]. Chen and Freedman introduced in [7] a notion of weight of a cycle called
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radius and showed that the minimum basis using this measure can be computed
in O(βq ·n4). Their algorithm looks for the shortest non-trivial cycle in the com-
plex by computing the persistent homology of one filtration per 0-dimensional
simplex, seals this cycle, and repeats until the complex becomes acyclic. Dey
et al. improved this result in [10] by using annotations and considering all the
cycles at the same time with an algorithm that runs in O(nω+1). While both
these algorithms are not guaranteed to find a good approximation for a minimal
homology basis, they can be used as a heuristic.

3 Background

3.1 Digital Objects and Cubical Complexes

A d-dimensional digital object is a finite subset of Z
d. Its elements are called

pixels when d = 2, voxels when d = 3, or points in general.
We endow a digital object with an adjacency relation. Two points x, y ∈ Z

d

are said to be (3d − 1)-adjacent if ‖x − y‖∞ ≤ 1. The transitive closure of this
binary relation defines the connectivity of a digital object. We can obtain more
topological information from a digital object by defining its associated cubical
complex.

An elementary interval is an interval of the form [k, k + 1] or a degenerate
interval [k, k], where k ∈ Z. An elementary cube is the Cartesian product of d
elementary intervals. The number of non-degenerate intervals in this product is
the dimension of σ, which is denoted dim(σ). An elementary cube of dimension
q will be called a q-cube. Given two elementary cubes σ and τ such that σ � τ ,
we say that σ is a face of τ .

A (finite) cubical complex K is a collection of elementary cubes such that for
every σ ∈ K, its faces are also contained in K. For each q ≥ 0, we denote by Kq

the set of the q-cubes of K.
Given a digital object O, its associated cubical complex, K[O], is defined as

follows: for each point x = (x1, · · · , xd) of O, we add to the cubical complex the
d-cube [x1, x1 + 1] × · · · × [xd, xd + 1] together with its faces.

Note that we can also consider the (2d)-adjacency relation for the digital
object and define an associated cubical complex.

3.2 Homology

In this work, we consider only homology with coefficients in the field Z2 :=
(Z/2Z,+, ·). For a more general presentation of homology theory, we refer the
reader to [18,20].

A chain complex (C, ∂) is a sequence of Z2-vector spaces C0,C1, . . . (called
chain groups) and linear maps ∂1 : C1 → C0, ∂2 : C2 → C1, . . . (called boundary
operators) such that ∂q−1 ◦ ∂q = 0, for all q > 0.

A cubical complex K induces a chain complex. Cq is the Z2-vector space
generated by the q-cubes of K. Its elements (called q-chains or chains of dimen-
sion q) are formal sums of q-cubes with coefficients in Z2, and thus, they can be
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interpreted as sets of q-cubes. The linear operator ∂q maps each q-cube to the
sum of its (q − 1)-dimensional faces. For the 0-cubes, we define ∂0 = 0.

A q-chain x is a cycle if ∂q(x) = 0, and a boundary if x = ∂q+1(y) for some
(q + 1)-chain y. By the property ∂q−1 ◦ ∂q = 0, every boundary is a cycle, but
the converse is not true: a cycle that is not a boundary contains a “hole”. The
qth homology group of the chain complex (C, ∂) is the quotient space Hq(C) :=
ker(∂q)/ im(∂q+1), whose elements are classes under the equivalence relation

∀x, y ∈ Cq, x ∼ y ⇔ x − y ∈ im(∂q+1).

The dimension of the qth homology group is called the qth Betti number and
is denoted by βq, which is considered to be the number of holes of dimension q
in the chain complex.

An annotation [5] is a homomorphism a : Cq → Hq(C) such that for any
two q-cycles x, y ∈ ker(∂q), a(x) = a(y) if and only if [x] = [y]. Such a map can
be encoded in a βq(K) × |Kq| matrix and allows us to check if two cycles are
homologous or if a cycle is a boundary.

3.3 Persistent Homology

Given a sequence of cubical complexes K1, · · · ,Km, (standard) homology allows
us to obtain only the Betti numbers of each subcomplex Ki. However, if these
complexes are nested, then persistent homology [12] provides global homological
information.

Let K be a cubical complex. We say that a function f : K →
{a1 < · · · < am} ⊂ R is monotone if f(σ) ≤ f(τ) for all σ ⊂ τ . In such
a case, Ki := f−1(] − ∞, ai]) is a cubical complex for 1 ≤ i ≤ m, and
K1 ⊂ · · · ⊂ Km = K is the filtration induced by f .

Persistent homology formalizes the idea that we can track the same hole in
consecutive subcomplexes of a filtration, and hence detect the lifespan of the
hole. The definition of persistent homology is based on the inclusion between
the subcomplexes of the filtration, which induces a chain map between their
chain groups and a homomorphism between their homology groups. We omit
the details of this algebraic construction and directly point out that for each
dimension q, persistent homology defines a persistence diagram PDq(f) ⊂ R

2,
where each point (ai, aj) ∈ PDq(f) implies that there is a non-trivial homology
class [x] that appears in f−1(] − ∞, ai]) and becomes trivial in f−1(] − ∞, aj ]).

Computing the persistence diagrams is a very active research field [21]. An
algorithm in matrix multiplication time was introduced in [19]. Recent algo-
rithms [2,4] have theoretical cubic worst-case complexity but near linear com-
plexity in practice. These algorithms compute a partial matching of the cubes of
the complex, M =

⋃
i∈I{(σi, τi)}, such that dim(σi) + 1 = dim(τi). The persis-

tence diagram PDq(f) is derived from the matching M : its points are the pairs
(f(σ), f(τ)) for each (σ, τ) ∈ M,dim(σ) = q, together with the points (f(σ),∞)
for each unmatched q-cube σ. Moreover, persistent homology algorithms also
produce a representative cycle for each pair (σ, τ) ∈ M and for each unmatched
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cube while computing this matching M . Remark that the cycles associated to
the unmatched q-cubes of M are a basis of Hq(K).

4 Algorithm

In this section, we present our heuristic for obtaining a short homology basis
using the thickness-breadth balls.

Let us first define precisely our problem. Let O ⊂ Z
d be a digital object and

let us fix a dimension q ≥ 0. The size of a chain x ∈ Cq is the number of its
q-cubes. We are looking for a set of cycles {x1, . . . , xg} such that their homology
classes {[x1], . . . , [xg]} are a basis for the homology group Hq(K[O]) and the sum
of the sizes of the cycles is small. From now on we call g = βq(K[O]).

Our algorithm for computing a short homology basis consists of four steps:
(1) compute the breadth balls; (2) compute one filtration for each breadth ball
and extract a homology basis; (3) sort and annotate the cycles; (4) extract the
earliest basis. In the following we detail each of these steps.

Step 1: Breadth balls. Given the digital object O with bounding box BB =∏d
i=1[ai, bi] ⊂ Z

d, we define the filtration fsdt over the cubical complex K[BB]
induced by the signed distance transform of O. The signed distance transform of
O is the function that maps each point x /∈ O to its distance to O and each point
x ∈ O to its negative distance to Z

d \ O. The persistent homology computation
of this filtration fsdt produces a matching M , from which we take the subset
of q-cells B = {τ ∈ Kq[BB] : (σ, τ) ∈ M,fsdt(σ) < 0 < fsdt(τ)}. By the k-
triangle Lemma [12], B contains g q-cells. Also, B is a subset of K[BB] \ K[O].
See [16] for more details about the definition, properties and computation of the
thickness-breadth balls.

This step has time complexity O(m3), where m is the number of cells in
K[BB], that is, m =

∏d
i=1 2(bi − ai + 1) + 1.

Step 2: Compute g filtrations. For each cell τ ∈ B, we define a filtration fτ over
the complex K[O] based on the discrete geodesic distance. The discrete geodesic
distance between two 0-cubes σ1, σ2 is the size of the shortest path connecting
σ1 to σ2 along the 1-cubes of K[O]. Let τ0 be the closest 0-cube of K[O] to
τ (breaking ties arbitrarily), for each 0-cube σ of K[O], fτ (σ) is the minimum
geodesic distance from σ to τ0. This function fτ is extended to the rest of the
cubes of K[O] by taking the maximum value over their 0-dimensional faces so
that it is a filtration.

We compute the persistent homology of this filtration fτ and extract the
cycles associated to the unmatched q-cubes of K[O]. There are g such cycles,
namely {xτ,i}g

i=1, and their classes generate the qth homology group Hq(K[O]).
Taking the filtration associated to each cell of B, we obtain a set of g2 cycles⋃

τ∈B{xτ,1, . . . , xτ,g}. Assuming that computing persistent homology has cubic
complexity, the running time of this step is in O(g · n3), where n is the number
of cells in K[O].
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Step 3: Sort and annotate. We sort the g2 cycles by size and put them in a list
(x1, . . . , xg2) in O(g2n + g2 log(g2)). Next, we need to annotate these cycles to
obtain a list of elements in the homology group Hq(K[O]).

Busaryev et al. introduced in [5] an algorithm for computing an annotation
in matrix multiplication time. This algorithm uses a LSP decomposition, which
is difficult to implement [6]. We present here a simpler algorithm based on the
notion of homological discrete vector field [17] with cubic complexity.

Let us fix an arbitrary filtration f over the cubical complex K[O] and call
M =

⋃
i∈I{(σi, τi)} the matching of cells produced by the persistent homology

computation of f . By fixing the dimension q, we define two subsets of cells,
P = {σ : (σ, τ) ∈ M,dim(σ) = q} and S = {τ : (σ, τ) ∈ M,dim(τ) = q + 1}. Let
iS be the inclusion map from the chain group generated by the cells of S, Z2[S],
to Cq+1 and jP be the projection map from Cq to the chain group generated by
the cells of P , Z2[P ]. One can prove that the map jP ◦ ∂q+1 ◦ iS is a bijection
from Z2[S] to Z2[P ] and that the map

a = (jC ◦ ∂q+1 ◦ iS) ◦ (jP ◦ ∂q+1 ◦ iS)−1 ◦ jP + jC

is an annotation, where C is the set of the unmatched q-cells of M . To com-
pute this annotation, we only need the extract two submatrices of the boundary
matrix ∂q+1, A = (jC ◦∂q+1 ◦ iS) and B = (jP ◦∂q+1 ◦ iS), and compute A ·B−1,
which requires O(n3) time.

Then, we apply the annotation map a to the g2 sorted cycles and obtain a
g × g2 matrix with columns yi = a(xi). We compute each column of this matrix
in O(g · n).

Altogether, this step takes O(g2n+g2 log(g2)+n3+n3+g2 ·g ·n) = O(g ·n3)
time.

Step 4: Earliest basis. Let Y be a m × n matrix with rank r, the set of columns
{cj1 , . . . , cjr} is an earliest basis if the indices {j1, . . . , jr} are the first (with
respect to the lexicographical order) index set such that the corresponding
columns of Y have full rank. Busaryev et al. introduced in [5] an algorithm in
matrix multiplication time for computing an earliest basis using a LSP decompo-
sition. However, its implementation is complex and thus we prefer to transform
the matrix into column echelon form using Gaussian elimination, whose running
time is in O(m2n).

Given the matrix Y with columns a(x1) . . . a(xg2), we perform Gaussian elim-
ination in order to obtain its earliest basis {a(xj1), . . . , a(xjg )}. Then, the output
of our algorithm is the corresponding set of cycles {xj1 , . . . , xjg}. Since the col-
umn vectors are all independent, the homology classes a(xji) are a homology
basis and their corresponding cycles xj are representatives of these homology
classes.

The matrix Y has dimensions g × g2 and thus this step requires O(g4) time.
In all, our algorithm has complexity O(m3 + g · n3), where m is the number

of cells in K[BB].
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5 Results

Our heuristic can be seen as a special case of the algorithm for computing a
minimal radius homology basis of Dey et al. [10], which we will refer to as
MinRadiusBasis. This algorithm also computes filtrations based on the geodesic
distance to a 0-cube and takes all the cycles to choose a minimal basis among
them. The difference is that MinRadiusBasis computes a filtration for each 0-
cube of the complex, which guarantees to find a minimum radius homology basis
at the price of O(nω+1) time complexity.

To do a fair comparison, we adapt MinRadiusBasis to only compute the
filtrations for a random subset of βq(K[O]) 0-cubes.

Our software was developed in C++ using the library DGtal [1] for the dis-
tance transform computation and PHAT [3] for computing persistent homology.
The source code is available under GPL at https://github.com/agonlor/tb-basis.

Our dataset consists of six 3D digital objects with one connected component
and no cavities. These digital objects are available together with our implemen-
tation. For each object, we compute a first homology basis with our algorithm
and with MinRadiusBasis with 10 different random subsets of 0-cubes. Table 1
presents the average total size of the homology bases computed with these two
algorithms.

Table 1. Average sizes of the homology bases produced by our algorithm and
MinRadiusBasis.

Object Us MinRadiusBasis

Amphora 200 930 1068.0

Dancing 200 902 1042.6

Eight 200 356 417.0

Fertility 200 962 999.8

Neptune 200 640 663.0

Pegasus 200 1032 1182.8

Our algorithm produces a shorter homology basis than MinRadiusBasis in
average for all the digital objects, which shows that it is better to choose the
subset of 0-cubes using the breadth balls than simply taking a random sampling.
Surprisingly, the adaptation of MinRadiusBasis produces quite short homology
basis for this dataset, and some executions of MinRadiusBasis succeed at finding
a shorter basis than our algorithm.

We illustrate the homology bases computed by our algorithm in Fig. 1. Note
that in a cubical complex, a minimal cycle is not necessarily tight around a hole.

https://github.com/agonlor/tb-basis
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Fig. 1. Homology bases computed by our algorithm on the dataset. We have removed
some cycles for the sake of clarity.
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6 Conclusion

We have introduced a new algorithm for computing a short homology basis for
digital objects which is based on the notion of breadth balls. We have made
an experimental comparison between our algorithm and an adaptation of the
state-of-the-art algorithm for computing minimum radius homology bases and
displayed its output.

There is still room for improving these results. First, it seems possible to
combine our algorithm with the linear programming approach in [15] for post-
processing the cycles to further reduce their size. Also, if one wants to use the
homology basis as a visualization tool, it would be convenient to transform the
cycles to reduce their length estimation [9] without increasing their size, so that
the cycles are tight around the holes.

The relation between the homology basis and the thickness-breadth balls can
be exploited further. It may be possible to choose a subset of the breadth balls
of an object and compute their corresponding short cycles. In this way, we can
filter the holes of the object and compute a partial short homology basis faster.

Let us conclude by noting that our algorithm can be adapted to compute a
short cohomology basis using the thickness balls. To the best of our knowledge,
the problem of finding a minimum cohomology basis has not been studied even
though a cohomology basis provides a useful visualization tool for the holes in
an object.
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Abstract. We investigate ramifications, which are simplicial complexes
constructed with a very simple inductive property: if two complexes are
ramifications, then their union is a ramification whenever their intersec-
tion is a ramification. We show that the collection of all ramifications
properly contains the collection of all collapsible complexes and that
it is properly contained in the collection of all contractible complexes.
We introduce the notion of a ramification pair, which is a couple of
complexes satisfying also an inductive property. We establish a strong
relation between ramification pairs and ramifications. In particular, the
collection of ramification pairs is uniquely determined by the collection of
ramifications. Also we provide some relationships between ramification
pairs, collapsible pairs, and contractible pairs.

Keywords: Combinatorial topology · Ramifications · Contractibility ·
Collapse · Completions

1 Introduction

Simple homotopy, introduced by J. H. C. Whitehead in the early 1930’s, may be
seen as a refinement of the concept of homotopy [1]. Two simplicial complexes
are simple homotopy equivalent if one of them may be obtained from the other
by a sequence of elementary collapses and expansions.

Simple homotopy plays a fundamental role in combinatorial topology [1–3].
Also, many notions relative to homotopy in the context of computer imagery
rely on the collapse operation. In particular, this is the case for the notion of
a simple point, which is crucial for all image transformations that preserve the
topology of the objects [4–6].

In this paper, we investigate ramifications, which are simplicial complexes
constructed with a very simple inductive property: if two complexes are ram-
ifications, then their union is a ramification whenever their intersection is a
ramification.

It could be seen that the collection of all trees satisfies the above property.
Also, any complex of arbitrary dimension is a ramification whenever it is col-
lapsible, i.e., whenever it reduces to a single vertex with a sequence composed
solely of collapses.

Our main results include the following:

– We show that the collection R of all ramifications properly contains the collec-
tion E of all collapsible complexes. Also we show that R is properly contained
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in the collection H of all contractible complexes, i.e., all complexes that are
homotopy equivalent to a single vertex.

– We introduce the notion of a ramification pair, which is a couple of com-
plexes satisfying also an inductive property. We show there is a strong rela-
tion between the collection of all ramification pairs R̈ and R. In particular, R̈

is uniquely determined by R.
– We show that R̈ properly contains the collection of all collapsible pairs, and

that R̈ is properly contained in the collection of all contractible pairs.

The paper is organized as follows. First, we give some basic definitions for
simplicial complexes (Sect. 2) and simple homotopy (Sect. 3). Then, we recall
some facts relative to completions, which allow us to formulate inductive prop-
erties (Sect. 4). We investigate the containment relations between the collections
E, R, and H in Sect. 5. Then, we introduce the collection R̈ of ramification pairs
and give the fundamental relation between R̈ and R (Sect. 6). In Sect. 7, we make
clear the relations between R̈, collapsible pairs, and contractible pairs. Note that
the paper is self contained. Nevertheless, for the sake of place, several proofs are
not included, these proofs may be found in an online archive [11].

2 Basic Definitions for Simplicial Complexes

Let X be a finite family composed of finite sets. The simplicial closure of X is
the complex X− = {y ⊆ x | x ∈ X}. The family X is a (simplicial) complex if
X = X−. We write S for the collection of all finite simplicial complexes. Note
that ∅ ∈ S and {∅} ∈ S, ∅ is the void complex, and {∅} is the empty complex.

Let X ∈ S. An element of X is a simplex of X or a face of X. A facet
of X is a simplex of X that is maximal for inclusion. For example, the family
X = {∅, {a}, {b}, {a, b}} is a simplicial complex with four faces and one facet.
Note that the empty set is necessarily a face of X whenever X �= ∅.

A simplicial subcomplex of X ∈ S is any subset Y of X that is a simplicial
complex. If Y is a subcomplex of X, we write Y � X.

Let X ∈ S. The dimension of x ∈ X, written dim(x), is the number of
its elements minus one. The dimension of X, written dim(X), is the largest
dimension of its simplices, the dimension of ∅, the void complex, being defined
to be −1. Observe that the dimension of the empty complex {∅} is also −1.

A complex A ∈ S is a cell if A = ∅ or if A has precisely one non-empty
facet x. We set A◦ = A \ {x} and ∅◦ = ∅. We write C for the collection of all
cells. A cell α ∈ C is a vertex if dim(α) = 0.

The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. Thus, if
A ∈ C, with A �= ∅, then A is precisely the unique facet of A. In particular, if α
is a vertex, we have α = {∅, α}.
We say that X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if
X ∩Y = ∅. Thus, X and Y are disjoint if and only if X ∩Y = ∅ or X ∩Y = {∅}.

If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simplicial complex
XY such that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and
XY = X if Y = {∅}. The join αX of a vertex α and a complex X ∈ S is a cone.
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3 Simple Homotopy

We recall some basic definitions related to the collapse operator [1].
Let X ∈ S and let x, y be two distinct faces of X. The couple (x, y) is a

free pair for X if y is the only face of X that contains x. Thus, the face y is
necessarily a facet of X. If (x, y) is a free pair for X, then Y = X \ {x, y} is
an elementary collapse of X, and X is an elementary expansion of Y . We say
that X collapses onto Y , or that Y expands onto X, if there exists a sequence
〈X0, ...,Xk〉 such that X0 = X, Xk = Y , and Xi is an elementary collapse of
Xi−1, i ∈ [1, k]. The complex X is collapsible if X collapses onto ∅. We say
that X is (simply) homotopic to Y , or that X and Y are (simply) homotopic, if
there exists a sequence 〈X0, ...,Xk〉 such that X0 = X, Xk = Y , and Xi is an
elementary collapse or an elementary expansion of Xi−1, i ∈ [1, k]. The complex
X is (simply) contractible if X is simply homotopic to ∅.

Let α = {∅, α} be an arbitrary vertex. We observe that (∅, α) is a free face
for α. Thus α collapses onto ∅, that is, the void complex. It follows that a complex
is contractible if and only if it is homotopic to a single vertex. Also a non-void
complex is collapsible if and only if it collapses onto a single vertex.

Remark 1. We observe that a complex X ∈ S, X �= ∅, is an elementary collapse
of a complex Z, if and only if we have Z = X ∪ γD and X ∩ γD = γD◦, where
D, D �= ∅, is a cell, and γ is a vertex disjoint from D. See also [1], p. 247.

Let X,Y ∈ S, and α be a vertex disjoint from X ∪ Y . We can check that:

1) If x, y ∈ X \Y , then (x, y) is a free pair for X iff (x, y) is a free pair for X ∪Y .
2) If x ∈ X \ Y is a facet of X, then (x, α ∪ x) is a free pair for αX ∪ Y .
3) If x, y ∈ X, then the couple (x, y) is a free pair for X if and only if (α∪x, α∪y)

is a free pair for αX ∪ Y .

By induction, we have the following results which will be used in this paper.

Proposition 1. Let X,Y ∈ S. The complex X collapses onto X ∩Y if and only
if X ∪ Y collapses onto Y .

Proposition 2. Let X,Y ∈ S, and let α be a vertex disjoint from X ∪ Y .
The complex αX ∪ Y collapses onto α(X ∩ Y ) ∪ Y .
In particular, the complex αX collapses onto ∅. Thus any cone is collapsible.

Proposition 3. Let X,Y ∈ S, Z � X, let α be a vertex disjoint from X ∪ Y .
The complex X collapses onto Z if and only if αX∪Y collapses onto αZ∪X∪Y .
In particular, if X is collapsible, then αX ∪ Y collapses onto X ∪ Y .

4 Completions

We give some basic definitions for completions. A completion may be seen as a
rewriting rule that permits to derive collections of sets. See [7] for more details.
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Let S be a given collection and let K be an arbitrary subcollection of S.
Thus, we have K ⊆ S. In the sequel of the paper, the symbol K, with possible
superscripts, will be a dedicated symbol (a kind of variable).

Let K be a binary relation on 2S, thus K ⊆ 2S×2S. We say that K is finitary,
if F is finite whenever (F,G) ∈ K.
Let 〈K〉 be a property that depends on K. We say that 〈K〉 is a completion (on
S) if 〈K〉 may be expressed as the following property:

−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉
where K is a finitary binary relation on 2S.
If 〈K〉 is a property that depends on K, we say that a given collection X ⊆ S
satisfies 〈K〉 if the property 〈K〉 is true for K = X.

Theorem 1 (from [7]). Let 〈K〉 be a completion on S and let X ⊆ S. There
exists, under the subset ordering, a unique minimal collection that contains X
and that satisfies 〈K〉.

If 〈K〉 is a completion on S and if X ⊆ S, we write 〈X; K〉 for the unique
minimal collection that contains X and that satisfies 〈K〉. We say that 〈X; K〉 is
a completion system and that X is the starting collection of 〈X; K〉.

Let 〈K1〉, 〈K2〉, ..., 〈Kk〉 be completions on S. We write ∧ for the logical “and”.
It may be seen that 〈K〉 = 〈K1〉∧〈K2〉...∧〈Kk〉 is a completion. In the sequel, we
write 〈K1,K2, ...,Kk〉 for 〈K〉. Thus, if X ⊆ S, the notation 〈X; K1,K2, ...,Kk〉
stands for the smallest collection that contains X and that satisfies each of the
properties 〈K1〉, 〈K2〉, ..., 〈Kk〉. We observe that, if 〈K〉 and 〈Q〉 are two comple-
tions on S, then we have 〈X; K〉 ⊆ 〈X; K,Q〉 whenever X ⊆ S.

5 Ramifications

5.1 Definition

The notion of a dendrite was introduced in [7] as a way for defining a collection
made of acyclic complexes. Let us consider the collection S = S, and let K denote
an arbitrary collection of simplicial complexes.

We define the two completions 〈R〉 and 〈D〉 on S: For any S, T ∈ S,
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈R〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D〉

Let D = 〈C;R,D〉. Each element of D is a dendrite or an acyclic complex.
We have the general result [7]:

A non-void complex is a dendrite iff it is acyclic in the sense of homology.
We set R = 〈C;R〉. Each element of R is a ramification. Thus, the collection

R is the unique minimal collection that contains C and that satisfies the prop-
erty 〈R〉. Also, the collection R is the very collection that may be obtained by
starting from K = C, and by iteratively adding to K all the sets S ∪T such that
S, T ∈ K and S ∩ T ∈ K.

Note that the notion of a ramification corresponds to the buildable complexes
introduced by J. Jonsson [3]. Here, we have a formulation in terms of completions.
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The collection of all cones provides a basic example of ramifications. If a cone
αZ has more than one facet, then it may be split in two distinct cones αX and
αY such that αZ = αX∪αY . Since αX∩αY is a cone, and αZ is a cell whenever
αZ has a single facet, it follows by induction that any cone is a ramification.

5.2 Ramifications and Collapsible Complexes

Let us denote by E the collection of all complexes X such that ∅ expands onto X,
i.e., such that X is collapsible. This collection may be described by completions.
See Sec. 6 of [7] and Sec. 8 of [10]. Now let us consider the alternative definition
of an elementary collapse given in Remark 1. If X ∈ S, X �= ∅, is an elementary
collapse of Z, then we have Z = X ∪ Y , where Y and X ∩ Y are cones. Since
cones are ramifications, and since the void complex is a ramification, we can
again prove by induction that any collapsible complex is a ramification. Thus,
we have E ⊆ R. See [7] and [10] (Sec. 8). See also [3] (Def. 3.14 and Prop. 5.17)
where a slightly different definition of a collapsible complex is used.

The Bing’s house [13] is a classical example of an object that is contractible
but not collapsible, see Fig. 1(a). This two dimensional object is made of two
rooms. Two tunnels allow to enter to the upper room by the lower face, and to
the lower room by the upper face. Two small walls are attached to the tunnels
in order to make this object acyclic.

In [7], it was noticed that the Bing’s house B is a ramification. Let us consider
the two complexes B1 and B2 of Fig. 1(b) and (c). We have B = B1 ∪ B2. If
B is correctly triangulated, then we can see that B1, B2, and B1 ∩ B2 are all
collapsible. Since E ⊆ R, these three complexes are ramifications. Thus, the
Bing’s house B is a ramification. But the Bing’s house is not collapsible, in fact
there is nowhere we can start a collapse sequence. In consequence, the inclusion
E ⊆ R is strict.

5.3 Ramifications and Contractible Complexes

Now, let us consider the collection H made of all contractible complexes. We
have H ⊆ D, this inclusion is strict (see [10]).

It was shown (Prop. 5.17 of [3]) that any buildable complex (or any ram-
ification) is contractible. The arguments given for the proof are based on the

Fig. 1. (a): A Bing’s house B with two rooms, (b): An object B1 ⊆ B, (c): An object
B2 ⊆ B. We have B = B1 ∪ B2, the object B1 ∩ B2 is outlined in (b) and (c).
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Hurewicz theorem (Th. 4.32 of [15]). It follows that these arguments do not
allow to build an effective sequence of collapses and expansions that transform
any ramification into the void complex. In fact, it is undecidable to determine
whether a finite simplicial complex is contractible or not (for example see [16],
Appendix). Thus, such an effective sequence cannot, in general, be given.

In the extension of this paper (Appendix A of [11]), we provide a direct proof
that permits to build such a sequence. We illustrate an aspect of this proof with
the decomposition B = B1 ∪ B2 of the Bing’s house given Fig. 1.

Let α be a vertex disjoint from B. Since B1 is collapsible, B expands onto the
complex C = αB1 ∪ B2 (Proposition 3, by replacing collapses by expansions).
Now, we can collapse C onto the complex D = α(B1 ∩B2)∪B2 (Proposition 2).
Since B1 ∩ B2 is collapsible, the complex D collapses onto B2 (Proposition 3),
which is collapsible.

Thus, the sequence B ↗ αB1 ∪ B2 ↘ α(B1 ∩ B2) ∪ B2 ↘ B2 ↘ ∅ gives an
homotopic deformation between B and ∅; the symbol ↗ stands for expansions
and the symbol ↘ for collapses. Now, let us consider a complex B′ = B′

1 ∪ B′
2

where B′
1 and B′

2 are two copies of B such that B′
1 ∩ B′

2 is a ramification.
The complex B′ is a ramification but, since B′

1 and B′
2 are not collapsible, the

above sequence is no longer valid. Furthermore, this process may be iterated by
considering two copies of B′, and so on. In the extension [11], we handle this
problem by proposing an inductive construction which, at each step, allows us
to perform the above sequence.

Thus, we have R ⊆ H. Are there contractible complexes that are not ramifi-
cation? This question corresponds to a conjecture formulated by J. Jonsson [3]
(Problem 5.21). We give a positive answer to this question in the Appendix B
of the extension of this paper [11]. The counter-example is given by the dunce
hat [14] which is another classical example of an object that is contractible but
not collapsible, see Fig. 2(a). See also Appendix A of this paper where the con-
tractibility of this object is shown. Note that we only proved that a specific
triangulation of the dunce hat is not a ramification. This leaves open the ques-
tion for any triangulation of this complex.

The following proposition summarizes the facts given in this section.

Proposition 4. We have E � R � H � D.

Fig. 2. (a): The dunce hat, the three edges of the triangle have to be identified with
the arrows, (b): a triangulation D of the dunce hat, (c): a subcomplex of D.
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6 Ramification Pairs

In the last section, we mentioned some previously published results related to
ramifications. As far as we know these are the only ones that may be found in the
literature. By providing counter-examples, and by giving an appropriate homo-
topic deformation, we also clarified the link between ramifications, collapsible
and contractible complexes. Now, in order to achieve a better understanding of
these objects, we will extend the collection R to a collection R̈, which is com-
posed of couples of complexes. It should be noted that the following completion
〈˜R〉 has already been introduced in a previous paper [8]. Nevertheless, it was
always associated with another completion (its dual), so that all the following
results are new. Note that all the proofs of the results given in this section may
be found in the extension [11].

We set S̈ = {(X,Y ) | X,Y ∈ S,X � Y } and C̈ = {(A,B) ∈ S̈ | A,B ∈ C}.
The notation K̈ stands for an arbitrary subcollection of S̈.
We define the completion 〈˜R〉 on S̈: For any (S, T ), (S′, T ′) in S̈,
−> If (S, T ), (S′, T ′), (S ∩ S′, T ∩ T ′) ∈ K̈, then (S ∪ S′, T ∪ T ′) ∈ K̈. 〈˜R〉
We set R̈ = 〈C̈ ∪ Ï; ˜R〉, where Ï = {(X,X) | X ∈ S}.
Each couple of R̈ is a ramification pair.

In fact, the collection R̈ may be generated with a smaller starting collection.
We have R̈ = 〈C̈#; ˜R〉, where C̈

# = C̈ ∪ {({∅}, {∅})}, see the extension [11].
The four couples given in Fig. 3 correspond to the four couples appearing

in the definition of the completion 〈˜R〉. In this specific illustration, we observe
that, if (X,Y ) is one of these four couples, then Y collapses onto X (under an
appropriate triangulation).

We introduce the notion of a Δ-form, the symbol Δ corresponds to a binary
relation over S̈ and S.

Let (X,Y ) ∈ S̈ and Z ∈ S. We write Δ(X,Y,Z) if there exists a vertex α,
disjoint from Y , such that Z = αX ∪ Y . In this case, we write α(X,Y ) for the
complex Z, and we say that α(X,Y ) is a Δ-form. We also say that α(X,Y ) is
a Δ-form of (X,Y ) or a Δ-form of Z.

Fig. 3. Four couples (S, T ), (S′, T ′), (S∩S′, T∩T ′), (S∪S′, T∪T ′), that are ramification
pairs; S and S′ are two simple open curves, S ∩ S′ is made of two vertices.
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If Z ∈ S and α is an arbitrary vertex, it may be seen that there exists a
unique couple (X,Y ) ∈ S̈ such that Z = α(X,Y ). We have:

X = {x ∈ Z | x ∩ α = ∅ and x ∪ α ∈ Z} and Y = {x ∈ Z | x ∩ α = ∅}.
The complex X is the so-called link of the face α in Z, and Y is the so-called
deletion of α from Z, see [3]. Thus, we have:

α(X,Y ) = α(X ′, Y ′) if and only if (X,Y ) = (X ′, Y ′).
Note that we have X = ∅ and Y = Z whenever α is disjoint from Z.

We now clarify the correspondence between R̈ and R induced by Δ-forms:

1) If (X,Y ) ∈ S̈, then, up to a renaming of the vertex α, the couple (X,Y ) has
a unique Δ-form Z = α(X,Y ). Thus, up to this renaming, there is a unique
complex in S which is the Δ-form of a couple in S̈.

2) If Z ∈ S, and for a given α, there is a unique couple (X,Y ) such that Z =
α(X,Y ). Now, for all possible choices of α, we observe that there are precisely
k + 1 different such couples, where k is the number of vertices included in Z
(we have to consider the case where α is disjoint from Z). Thus, in general,
there are several different couples in S̈ which are the Δ-forms of a complex in
S.

Proposition 5. Let α(X ′, Y ′) and α(X ′′, Y ′′) be two Δ-forms.

1) We have α(X ′ ∪ X ′′, Y ′ ∪ Y ′′) = α(X ′, Y ′) ∪ α(X ′′, Y ′′).
2) We have α(X ′ ∩ X ′′, Y ′ ∩ Y ′′) = α(X ′, Y ′) ∩ α(X ′′, Y ′′).

By induction on R and R̈, Proposition 5 leads to the following relation
between these two collections.

Theorem 2. Let (X,Y ) ∈ S̈ and let Z ∈ S such that Δ(X,Y,Z).
We have (X,Y ) ∈ R̈ if and only if Z ∈ R.

Replacing X by ∅ in the previous theorem, we obtain the corollary:

Corollary 1. We have R = {X ∈ S | (∅,X) ∈ R̈}.
Let us consider an arbitrary collection K̈ ⊆ S̈. We define the kernel of K̈ as

the collection K = {X ∈ S | (∅,X) ∈ K̈}. We consider the two properties:

– If (X,Y ) ∈ K̈, then we have Z ∈ K whenever Δ(X,Y,Z). (∇)
– If Z ∈ K, then we have (X,Y ) ∈ K̈ whenever Δ(X,Y,Z). (Δ)

We say that K̈ is a ∇-structure if K̈ satisfies (∇).
We say that K̈ is a Δ-structure if K̈ satisfies both (∇) and (Δ).

Now, let us start from an arbitrary collection K ⊆ S.
We define K̈

+ = {(X,Y ) ∈ S̈ | α(X,Y ) ∈ K for some vertex α}.
By construction, the kernel of K̈

+ is precisely K and K̈
+ is a Δ-structure.

If K̈ ⊆ S̈ and the kernel of K̈ is K, then we have K̈ = K̈
+ whenever K̈ is a

Δ-structure. Thus, a Δ-structure is uniquely determined by its kernel.
Returning to the case of ramifications pairs, Theorem 2 shows that we have

R̈ = R̈
+. Thus, the kernel of R̈ is precisely the collection R, and the collection

R̈ is a Δ-structure.
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Informally, since R̈ is a Δ-structure, we recover a property that is satisfied
by the neighborhood (the link) of each vertex of an arbitrary ramification. If we
pick any vertex α in a ramification Z (for example a Bing’s house), then the
couple (X,Y ) such that Z = α(X,Y ) may be recursively decomposed by 〈˜R〉,
until an elementary couple.

7 Ramifications and the Five Completions

In previous works, we tried to build a framework, based on completions, for
unifying certain notions of combinatorial topology. It turns out that five com-
pletions, acting on S̈, appear to be particularly relevant for this purpose. In this
section, we wish to relate ramifications to these completions.

We recall the five completions (the symbols ˜T, ˜U, ˜L stand respectively for
“transitivity”, “upper confluence”, and “lower confluence”):
For any S, T ∈ S,
−> If (S ∩ T, T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈. 〈˜X〉
−> If (S, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈˜Y〉
For any (R,S), (S, T ), (R, T ) ∈ S̈,
−> If (R,S) ∈ K̈ and (S, T ) ∈ K̈, then (R, T ) ∈ K̈. 〈˜T〉
−> If (R,S) ∈ K̈ and (R, T ) ∈ K̈, then (S, T ) ∈ K̈. 〈˜U〉
−> If (R, T ) ∈ K̈ and (S, T ) ∈ K̈, then (R,S) ∈ K̈. 〈˜L〉

The largest collection is obtained by considering all the five completions.
Let D̈ = 〈C̈; ˜X, ˜Y, ˜T, ˜U, ˜L〉. Each couple of D̈ is a dyad or an acyclic pair.
In [8], we proved that D̈ is a Δ-structure and that the kernel of D̈ is precisely
the collection D of dendrites.

In this section, we focus our attention on collections based on a subset of
the five above completions. These completions are chosen because the kernel
of D̈ is D, which corresponds to the remarkable collection made of all acyclic
complexes. In particular, it includes all contractible complexes. We will use the
following fact.

Proposition 6. Let K̈ be a ∇-structure and L̈ be a Δ-structure. Let K and L

be the kernels of K̈ and L̈, respectively. If K ⊆ L, then we have K̈ ⊆ L̈.
Furthermore, if K � L, then K̈ � L̈.

Proof. Suppose K ⊆ L. Let (X,Y ) ∈ K̈. Since K̈ is a ∇-structure, α(X,Y ) ∈ K.
Thus α(X,Y ) ∈ L. But since L̈ be a Δ-structure, we have (X,Y ) ∈ L̈.
By the very definition of a kernel, if K̈ = L̈, then we must have K = L. ��

7.1 Ramification Pairs and Collapsibility

We denote by Ë the collection of all couples (X,Y ) ∈ S̈ such that the complex Y
collapses onto X. Thus, the kernel of Ë is precisely the collection E made of all
collapsible complexes. It has been shown [10] that Ë has an exact characterization
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with a subset of the five above completions. We have Ë = 〈�̈; ˜X, ˜T〉, where �̈ is
the collection composed of all all couples of cones (αX,αY ), with (X,Y ) ∈ S̈.

Let (X,Y ) ∈ Ë. Let Z = α(X,Y ). Since Y collapses onto X, the complex Z =
αX ∪ Y collapses onto the cone αX, which is collapsible. Thus Z is collapsible,
i.e., Z ∈ E. It means that Ë is a ∇-structure. Since E � R (Proposition 4) then,
by Proposition 6, we have Ë � R̈.

Now, we consider the collection Ë
+, which is a Δ-structure. By definition of

a collection K̈
+, a couple (X,Y ) is in Ë

+ if and only if α(X,Y ) = αX ∪ Y is
collapsible. Thus, the kernel of Ë

+ is also the collection E and, by Proposition 6,
we have Ë ⊆ Ë

+. One may ask whether we have Ë = Ë
+. A positive answer

would imply that Ë is a Δ-structure. In fact this equality does not hold.
We have the following counter-example. Let Y be the complex depicted

Fig. 2(c), and let X be the closed curve that is outlined. It may be seen that Y
collapses onto X. The first steps of a possible sequence of elementary collapses
are depicted by arrows. Let X ′ = X ∪ {{1}, {1, 3}}, let α be a new vertex, and
let Z = αX ′ ∪ Y . We observe that ({α, 1}, {α, 1, 3}) is a free pair for Z. Thus Z
collapses onto Z ′ = αX ∪ Y . But, since Y collapses onto X, Z ′ collapses onto
αX, thus Z collapses onto αX. Since the cone αX is collapsible, the complex Z
is collapsible. Thus α(X ′, Y ) ∈ E, it means that (X ′, Y ) ∈ Ë

+. But Y does not
collapse onto X ′ since there is nowhere to start the collapse. Thus (X ′, Y ) �∈ Ë.

In consequence the inclusion Ë ⊆ Ë
+ is strict. The collection Ë is a ∇-

structure but not a Δ-structure.
Again, since the kernel of Ë

+ is a proper subset of the kernel of R̈, by Propo-
sition 6, we may assert that Ë

+ ⊆ R̈ and that this inclusion is strict. Thus,
starting from Ë, we have build a new collection Ë

+ which allows us to be closer
to R̈.

7.2 Ramification Pairs and Contractibility

We consider the collection Ẅ such that a couple (X,Y ) is in Ẅ if and only if
α(X,Y ) = αX∪Y is contractible. By construction Ẅ is a Δ-structure, the kernel
of Ẅ is precisely the collection H made of all contractible complexes. Again, it
has been shown (Theorem 5 of [10]) that Ẅ admits an exact characterization
with a subset of the five above completions. We have Ẅ = 〈C̈; ˜X, ˜Y, ˜T, ˜U〉.

We see that Ẅ ⊆ D̈, this inclusion is strict [10].
Since R is a proper subset of H, by Proposition 6, we have R̈ ⊆ Ẅ, and this

inclusion is strict.

7.3 Properties Related to the Five Completions

The following theorem summarizes the results given above.

Theorem 3. We have Ë � Ë
+

� R̈ � Ẅ � D̈.

We emphasize that the collections Ë, Ẅ, D̈, have an exact characterization
based on the five completions. It means that these collections are fully described
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by global properties. The collections Ë and Ë
+ are closely related since they have

the same kernel E which is made of all collapsible complexes. Also it is worth
pointing out that each couple in the collections Ë, Ë

+, Ẅ, may be obtained
by a sequence of local operations. Collapses/expansions and perforations/fillings
(introduced in [10]) are sufficient for that purpose.

In the above sections, completions appeared as components of certain com-
pletion systems 〈X; K〉. Here, we consider a completion as a property by itself.

Proposition 7. The collection R̈ satisfies the properties 〈˜X〉 and 〈˜U〉.
Proof

1) Let S, T ∈ S such that (S∩T, T ) ∈ R̈. Since Ï ⊆ R̈, we have (S∩T, T ), (S, S),
(S ∩ T, S ∩ T ) ∈ R̈. Thus, by 〈˜R〉, we obtain (S, S ∪ T ) ∈ R̈; the collection R̈

satisfies 〈˜X〉.
2) Let (R,S), (S, T ), (R, T ) ∈ S̈ such that (R,S) ∈ R̈ and (R, T ) ∈ R̈. Since

Ï ⊆ R̈, we have (R, T ), (S, S), (R ∩ S = R, T ∩ S = S) ∈ R̈. Thus, by 〈˜R〉, we
obtain (S, T ) ∈ R̈; the collection R̈ satisfies 〈˜U〉. ��
Now we give two counter-examples which show that the collection R̈ does

not satisfy the properties 〈˜L〉 and 〈˜T〉.
The complex D represents the triangulation of the dunce hat given Fig. 2(b).

1) The complex D is contractible. By Theorem 5 of [1] (and also by Proposition
6 of [9]), there exists Y such that Y collapses onto D and Y is collapsible. It
follows that (D,Y ) ∈ R̈ and (∅, Y ) ∈ R̈. But, since D is not a ramification,
we have (∅,D) �∈ R̈. Thus R̈ does not satisfy 〈˜L〉.

2) Let Y be the complex depicted Fig. 2(c), and let X be the closed curve that
is outlined. We have pointed out, in Sect. 7.1, that Y collapses onto X. Let
X ′ = X ∪ {{1}, {1, 3}}. We see that X ′ collapses onto X. Thus, (X,Y ) ∈ R̈,
(X,X ′) ∈ R̈. Since R̈ satisfies 〈˜U〉, we have (X ′, Y ) ∈ R̈. Let γ be the vertex
corresponding to the label “1”. We have γX ∩ Y = X ′. Since R̈ satisfies 〈˜X〉,
we obtain (γX, γX ∪ Y ) ∈ R̈. But D = γX ∪ Y . We obtain (γX,D) ∈ R̈.
Since γX is a cone, we have (∅, γX) ∈ R̈. But we have not (∅,D) ∈ R̈. Thus
R̈ does not satisfy 〈˜T〉.
Thus, we proved the following. Note that the question remains open for the

property 〈˜Y〉.
Proposition 8. The collection R̈ satisfies none of the properties 〈˜L〉 and 〈˜T〉.

8 Conclusion

In this paper, we extended the collection R of ramifications to a collection R̈ of
ramification pairs. We followed an approach developed in earlier papers, where
we make a relation between a collection K̈ of couple of complexes and a collec-
tion K of complexes; K is the kernel of K̈ and K̈ is a structure on K.
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It’s turn out that R̈ has a noticeable property with respect to its kernel R.
In particular R̈ is uniquely determined by R.

We made a comparison between R̈ and two others collection Ë and Ẅ. The
kernel E of Ë corresponds to collapsible complexes and the kernel H of Ẅ consists
of all contractible complexes. We showed that Ë � R̈ � Ẅ.

The collection Ë is not uniquely determined by E. Thus, from E, we built
an extension Ë

+ of Ë. We showed that Ë � Ë
+

� R̈. Thus, starting from Ë, we
obtained a new collection Ë

+ which allows us to be closer to R̈.

A Appendix

In this appendix, we present a sequence of expansions and collapses which shows
the contractibility of the dunce hat. We give this sequence for the reader who
wants to better understand this object which is used several times in this paper
for crucial counter-examples.

Let D be the triangulation of the dunce hat of Fig. 2(b). Let X be the cell
whose facet is the set {3, 5, 6}, thus X ∩D is the closed curve that is highlighted
in (c). Let γ be the vertex corresponding to the label “1”, and let E = γX ∪ D.
The pair ({3, 5, 6}, {γ, 3, 5, 6}) is a free pair for E, thus D is an elementary
collapse of E. Let F be the complex given Fig. 2(c) and let G = F ∪ X. It may
be seen that E collapses onto G. First we remove the pair ({1, 3, 5}, {1, 3, 5, 6}),
then the pair ({1, 5}, {1, 5, 6}), then the pair ({1, 6}, {1, 6, 3}. Now we observe
that the complex G collapses onto the cell X, the first steps of a collapse sequence
are represented Fig. 2(c). Since X is collapsible, the following sequence shows the
contractibility of D:

D ↗ E ↘ G ↘ X ↘ ∅
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conjecture. Lect. Mod. Math. 2, 93–128 (1964)
14. Zeeman, E.C.: On the dunce hat. Topology 2, 341–358 (1964)
15. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)
16. Tancer, M.: Recognition of collapsible complexes is NP-complete. arXiv:1211.6254

(2012)

https://doi.org/10.1007/978-3-319-09955-2_6
https://doi.org/10.1007/978-3-030-76657-3_9
http://arxiv.org/abs/1211.6254


Algorithms for Pixelwise Shape
Deformations Preserving Digital

Convexity

Lama Tarsissi1,2, Yukiko Kenmochi3(B), Hadjer Djerroumi1,
David Coeurjolly4, Pascal Romon5, and Jean-Pierre Borel6

1 Univ Gustave Eiffel, ESIEE Paris, CNRS, LIGM, Champs-sur-Marne, France
2 Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates

3 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France
yukiko.kenmochi@unicaen.fr

4 Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, Villeurbanne, France
5 Univ Gustave Eiffel, CNRS, LAMA, Champs-sur-Marne, France

6 Univ Limoges, CNRS, XLIM, Limoges, France

Abstract. In this article, we propose algorithms for pixelwise deforma-
tions of digital convex sets preserving their convexity using the com-
binatorics on words to identify digital convex sets via their boundary
words, namely Lyndon and Christoffel words. The notion of removable
and insertable points are used with a geometric strategy for choosing one
of those pixels for each deformation step. The worst-case time complex-
ity of each deflation and inflation step, which is the atomic deformation,
is also analysed.

1 Introduction

Convexity is an elementary geometric property of digital sets in digital image
processing. There are various applications which require deforming digital con-
vex sets while preserving their convexity. Various definitions of digital convex
sets exist, among which we choose the one based on the convex hull [15]. Indeed,
Brleck et al. have characterized such digital convex sets via the boundary words,
which are encoded by the Freeman chain code [14]; for short, a 4-connected dig-
ital set is digital convex if and only if the Lyndon factorization of its boundary
word is made of Christoffel words [7]. Thanks to this approach based on combi-
natorics on words, we recently considered the following question: given a finite
4-connected, digital convex set C, how can one find a point x of C (resp. its
complement C) such that C \ {x} (resp. C ∪ {x}) is still 4-connected and dig-
itally convex? In order to answer this question, we characterized the two types
of points; they are called removable and insertable points [21,22].

In this article, following the approach based on combinatorics on words, we
propose algorithms for pixelwise deformations of digital convex sets that preserve
their convexity using the characterizations of removable and insertable points.
The main contribution of this article is factorizing the inflation and deflation
c© Springer Nature Switzerland AG 2022
É. Baudrier et al. (Eds.): DGMM 2022, LNCS 13493, pp. 84–97, 2022.
https://doi.org/10.1007/978-3-031-19897-7_8
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Fig. 1. Digitally convex sets with and without 4-connectivity (left and center) and
digitally non-convex set (right). The sequence of border points is also illustrated by a
thick black polygonal line for each 4-connected set (left and right).

algorithms, whose time complexities are analysed, in order to propose the general
deformation algorithm. A geometric strategy based on distance map is also used
for choosing one of removal and insertable pixels for each deformation step.
Given a pair of digital convex sets, we show that the proposed algorithms create
a sequence of digital convex sets, which is such a deformation between them.
Some experimental results are illustrated.

2 Basic Notions

2.1 Digital Convex Set

In R
2, a subset S is convex if for any pair of points x, y ∈ S, every point on

the straight line segment joining x and y is also within S. This notion, how-
ever, cannot be straightforwardly applied to subsets in Z

2; various notions of
convexity of a subset X of Z

2 have been proposed. In this article, we focus on
the following one [15] based on the convex hull, denoted by conv(X) and also
called H-convexity [13].

Definition 1 ([15]). A subset X of Z
2 is digitally convex if X = conv(X)∩Z

2.

Figure 1 illustrates examples of digital convex and non-convex sets, based on
this notion. The following remark warns us to pay attention to the connectivity
separately from the convexity in Z

2 (see Fig. 1 (center)).

Remark 1. Digital convexity does not imply connectivity in Z
2.

Concerning the connectivity of a digital convex set, there exists a homeomor-
phism that makes the set almost 4-connected [10] while an alternative definition
for digital convexity, called full convexity, that encompasses arithmetic lines and
naturally entails connectivity has been proposed [17].

Let us call convex polygons with vertices in Z
2, digital convex polygons. The

following property [1,3] will help us to analyse the complexity of our deformation
algorithms later.

Property 1 ([1,3]). Given a digital convex polygon of diameter N , the number
of its vertices is bounded by O(N

2
3 ).
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Fig. 2. The boundary word of a digital convex 4-connected set decomposed into four
parts such that each part consists of a binary word (left), and the Lyndon points (black
points) of the boundary word drawn as the black thick polygonal line (right). (Color
figure online)

2.2 Boundary Words and Some Basic Notions of Words

Let C ⊂ Z
2 be a finite, 4-connected digitally convex set. The border points of C

can be tracked by classical border following algorithms (for example, see [2] for
“left-hand-on-wall” border following), which generate a 4-connected sequence
of the border points of C. Note that the sequence can include dead-ends and
thus sometimes turnaround sub-sequences if the set contains thin parts of one
pixel width. Here, we encode the sequence with Freeman code [14], called the
boundary word of C, denoted by Bd(C), in the clockwise order of border points.
Boundary words are thus defined over an alphabet of four letters 0, 1, 0̄, 1̄, which
are associated to the right, up, left and down directions, respectively. The bound-
ary word of a digital convex 4-connected set C is decomposed into four parts
such that each part consists of two letters, as seen in Fig. 2 (left): WN , NE, ES
and SW .

Let us present some basic notions of words (see [18] for more complete
overview): a nonempty finite set of letters is called an alphabet A; in this article,
we have the four letters 0, 1, 0̄, 1̄ as mentioned above. A word w is a sequence
of concatenated letters from A. The empty word ε is a sequence of zero letter.
A∗ denotes the set of all finite words over A. The length of w is denoted by |w|
while |w|a represents the number of occurrences of a in w. The n-times concate-
nation of w is written by wn. A word is said primitive if it is not the power of a
nonempty word. A word w is conjugate of a word w′ if w′ can be obtained from
w by cyclically shifting the letters.

2.3 Lyndon Words and Lyndon Factorization

We give the definition of Lyndon words, which is a necessary notion for the
sequel.

Definition 2 ([19]). A word w over a totally ordered alphabet is a Lyndon word
if it is the smallest among all its conjugates.

For example, w = 00101 where 0 < 1 is a Lyndon word as w is the smallest
among all its conjugates. The following proposition will play a leading role in
our algorithms.



Algorithms for Pixelwise Shape Deformations Preserving Digital Convexity 87

Proposition 1 ([8]). Every non-empty word w over a totally ordered alphabet
can be written uniquely as w = �n1

1 �n2
2 . . . �nk

k such that every factor �i is a Lyndon
word and {�i}i is a lexicographically decreasing sequence.

This decomposition of w into �i is called Lyndon factorization. Given a word
w of length N , the Lyndon factorization of w is calculated in O(N) time with
a constant space [12]. The points on a word w that separate different Lyndon
factors are called Lyndon points. Note that the two extremities of w are also
Lyndon points. Let us consider a finite, 4-connected digitally convex set C ⊂ Z

2

and its boundary word w. Then, the Lyndon points of w correspond to the
vertices of the convex hull of C geometrically (see Fig. 2 (right)).

2.4 Christoffel Words

Christoffel words are another important notion in this article. Their geometrical
definition can be formulated as:

Definition 3 ([4]). The lower Christoffel word of slope b
a is determined by

encoding with Freeman chain code the Christoffel path, which is the discrete
path from the origin O to the point P (a, b) such that:

– the path lies below the line segment OP ;
– the integer points in the region enclosed by the path and the line segment OP

are exactly those of the path.

Any Christoffel word with gcd(a, b) = 1 is called primitive. Some properties of
Christoffel words are presented as follows:

– A Christoffel word describes a shortest discrete path, so that it is always
composed from two letters.

– Let c1, c2 be two Christoffel words over the alphabet {0, 1}. Then lexicograph-
ically c1 < c2 iff slope(c1) < slope(c2) [6].

– Every primitive Christoffel word is a Lyndon word [5].

The converse of the last one is not true; for example, 0011 is a Lyndon word but
not a Christoffel word.

In this article, we need the following specific points, called furthest points
of Christoffel words: Fig. 3 (left) illustrates an example of the lower Christoffel
word of slope 4

7 with its furthest point.

Fig. 3. The lower Christoffel word of slope 4
7

with the furthest point (left) and its split
(right).
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Definition 4. Given a primitive Christoffel word of slope b
a , the furthest point

is uniquely defined on the path as the point whose vertical distance to the line
segment joining (0, 0) and (a, b) is maximum.

We will also need the diagonally opposite point of a furthest point, which is
above the line segment OP (see Fig. 3), called the closest upper point.

2.5 Digital Convex Sets with Combinatorics on Words

By using Lyndon and Christoffel words, digital convex sets are characterized.

Proposition 2 ([7]). A 4-connected set C ⊂ Z
2 is digitally convex iff its bound-

ary word is decomposed into four binary subwords and each subword has the
unique Lyndon factorization �n1

1 �n2
2 . . . �nk

k such that all �i are primitive Christof-
fel words.

The geometric interpretation of this proposition is that C is digitally convex
iff the Lyndon factorization of Bd(C) exactly corresponds to the segments of the
convex hull of C (see Fig. 1 (left and right) for positive and negative examples).
This characterization will be used in the rest of this article.

3 Removable and Insertable Points

In this section, we consider the following problem: given a finite 4-connected
digitally convex set C, how can one find a point x of C (resp. the complement
C) such that C \ {x} (resp. C ∪ {x}) is still digitally convex and 4-connected?
The former points are called removable points while the latter ones are called
insertable points (see Fig. 4 for examples). Their characterizations have been
studied previously [21,22]. We recall them in this section.

Fig. 4. Removable and insertable points, depicted in green and red respectively, for
the boundary path of a digitally convex set, drawn as the blue polygonal line. (Color
figure online)



Algorithms for Pixelwise Shape Deformations Preserving Digital Convexity 89

Fig. 5. Procedure of insertability verification on the left with propagation: the closest
upper point (19, 15) of �i (�i in brown) is inserted (left); as �i−1 ≤ L0 (�i−1 in blue and
L0 = �+ in red) is not satisfied but we have �i−1 = �iL0, we obtain L1 = �i−1L0 (L1 in
green (=red+blue)) (center); as �i−2 ≤ L1 (�i−2 in pink) is not satisfied but we have
�i−2 = �i−1L

2
1, we obtain L2 = �i−2L1 (L2 in green (=red+blue+pink)) (right).

3.1 Removable Points

Let us consider that the boundary word w of a digitally convex 4-connected
set C and its Lyndon factorization L(w) are given. Then we have the following
theorem.

Theorem 1 ([21]). A point x of C is removable iff x is a Lyndon point of L(w)
and a simple point with respect to C.

As the digital convexity does not imply the connectivity, as mentioned above,
we need to add the simpleness condition that is also locally characterized [16].
Thanks to this theorem, we can find a position k where we can apply the fol-
lowing switch operator, which corresponds to removing the point at k. The
switch operator on a word w = a1 . . . an at position k < n is defined by
switchk(w) = a1 . . . ak−1ak+1akak+2 . . . an where each ai is a letter. If akak+1

consists of consecutive reverse letters, namely 00̄, 0̄0, 11̄, 1̄1, this operator will
simply remove both of them, instead of the substitution.

Once a chosen removable point is removed by the switch operator, the follow-
ing proposition tells us that updating the Lyndon factorization, namely updating
the list of Lyndon points, can be made locally.

Proposition 3 ([21]). Let u and v be two consecutive Christoffel words of the
Lyndon factorization of a boundary word such that u > v. After applying the
switch operator at |u| on the binary word uv, if we obtain its Lyndon factorization
L(switch|u|(uv)) = �n1

1 . . . �nm
m , then u > �1 and �1 > . . . > �m.

3.2 Insertable Points

Let us consider that the boundary word w of a digitally convex 4-connected
set C and its Lyndon factorization L(w) are given. Then we have the following
proposition.

Proposition 4 ([22]). If a point x of C is insertable, then x is a closest upper
point of L(w).
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It should be mentioned that the converse is not always true. Indeed, an
insertable point is geometrically a point such that its convex hull with C does
not contain any other integer point, and the proposition indicates that the union
of C and a closest upper point is not always digitally convex.

Instead of the switch operator for removable points, here we use the split
operator that is defined for a primitive Christoffel word c, |c| > 1, such that
split(c) = switchk(c) where k is the furthest point of c (see [22] for the definition
in the case of |c| = 1). In order to insert a closest upper point of C, the following
standard factorization is used.

Definition 5 ([5]). Any Christoffel word c with |c| > 1 can be written in a
unique way as a product c = uv such that u and v are both primitive Christoffel
words. The couple (u, v) is called the standard factorization of c.

Note that the standard factorization of c can be computed in O(log |c|) due to
its geometric interpretation [20].

The proposition below implies that the standard factorization gives the result
of the split operator without knowing the position of the furthest point (see Fig. 3
(right) for an example of application of this split operator).

Proposition 5 [11]. Let c be a primitive Christoffel word, |c| > 1, such that its
standard factorization is given by c = c−c+. Then, we have split(c) = c+c− with
c+ > c−.

The following is the characterization of the insertability of such a closest
upper point x ∈ C .

Proposition 6 ([22]). Given the boundary word w of a digitally convex 4-
connected set C and its Lyndon factorization L(w) = �n1

1 . . . �nm
m , let x be the

closest upper point in C of the j-th Lyndon factor of �ni
i in L(w) such that

split(�i) = �+i �−
i where �i = �−

i �+i . Let us say that:

1. x is insertable on the left if ∃k ∈ Z
∗, �i−k−1 ≥ Lk such that for every h ≤ k,

Lh is recursively defined by

Lh =
{

�j−1
i �+i for h = 0

�
ni−h

i−h Lh−1 for h ≥ 1 if ∃mh−1 ∈ Z
+, �i−h = �i−h−1L

mh−1
h−1

2. similarly, x is insertable on the right if ∃k ∈ Z
∗, �i+k+1 ≤ Rk such that for

every h ≤ k, Rh is recursively defined by

Rh =
{

�−
i �ni−j

i for h = 0
Rh−1�

ni+h

i+h for h ≥ 1 if ∃mh−1 ∈ Z
+, �i+h = R

mh−1
h−1 �i+h−1

Then, x is insertable if x is insertable on both sides.

This proposition indicates that the insertability cannot always be verified
locally; see Fig. 5 for an example with propagation. On the other hand, Lyndon
re-factorization is not necessarily applied after adding an insertable point as a
simple concatenation of Christoffel words provides new Lyndon factors, multi-
plicities and points.
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Algorithm 1: Deflation
input : digitally convex 4-connected sets A, B such that A ⊃ B
output: a sequence T� of points to remove from A to obtain B

1 w ← the boundary word of A, L ← Lyndon Factorization of w;

2 calculate dB
A(x) for all x ∈ A \ B;

3 set the current deflated set C ← A, T� ← ∅;

4 Q� ← UpdateRemovable(Q�, L, ∅, (1, . . . , |L|), dB
A, C);

5 while Q� �= ∅ do
6 i ← find max(Q�) ;
7 (�, n, p) ← L[i], push p to T�, C ← C \ {p} ;
8 Iold ← (i − 1, i);
9 (L, i′) ← UpdateLyndonFactorizationDueToSwitch(L, i);

10 Inew ← (i − 1, i, . . . , i′) ;

11 Q� ← UpdateRemovable(Q�, L, Iold, Inew, dB
A, C) ;

12 end
13 return T�

Function 2: UpdateLyndonFactorizationDueToSwitch
input : Lyndon factorization L and switch operator position k
output: updated Lyndon factorization L and last new factor index h

1 (�1, n1, p1) ← L[k − 1], (�2, n2, p2) ← L[k];
2 w ← switch|�1|�1�2;
3 Lnew ← the Lyndon factorization of w;
4 remove L[k − 1], L[k];
5 h = k − 1;
6 if n1 > 1 then insert (�1, n1 − 1, p1) at L[h], h ← h + 1 ;
7 insert Lnew at L[h], h ← h + |Lnew|;
8 if n2 > 1 then insert (�2, n2 − 1, p2 − |�2|0e1 − |�2|1e2) at L[h] ;
9 else h ← h − 1;

10 return L, h

4 Deformation Preserving Digital Convexity

We now achieve our purpose of this article: given a pair of 4-connected digital
convex sets, A,B ⊂ Z

2, such that A∩B 	= ∅, we would like to make a sequence of
4-connected digital convex sets, which represents a pixelwise deformation from
A to B. For each step, we remove or add a point of Z

2 thanks to the notions
of removable and insertable points. In order to choose a point among all the
removable and insertable points, we use the following geometric information
based on the distance map.

4.1 Priority Distance for Pixel Choices

Let d(x,A) be the Euclidean distance between a point x ∈ Z
2 and A. Then

we define the relative distance for x ∈ A \ B from A to B such that dB
A(x) =
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Function 3: UpdateRemovable
input : removable point set Q�, Lyndon factorization L, old and new factor

lists Iold and Inew, priority d, digital set C
output: updated removable point set Q�

1 i ← pop(Iold), j ← pop(Inew);
2 replace the Lyndon point of L[i] by that of L[j] in Q�;
3 while Iold �= ∅ do i ← pop(Iold), remove the Lyndon point of L[i] from Q� ;
4 while Inew �= ∅ do
5 i ← pop(Inew), x ← the Lyndon point of L[i];
6 if x is simple with respect to C then
7 push x in Q�;
8 foreach x′ ∈ N8(x) \ {x} do
9 if ∃j ∈ Q�, x′ is the Lyndon point of L[j] and not simple to C then

10 remove x′ from Q�
11 end

12 end

13 end
14 return Q�

d(x,B)

d(x,B)+d(x,A)
. We can observe that dB

A(x) is close to 0 when x is close to B, dB
A(x)

is close to 1 when x is close to A, and all the distances are between 0 and 1.
Note that discrete points in A\B will be removed during the deformation while
those in B \ A will be added. For the points in B \ A, we use dA

B .

4.2 Deflation Algorithm

Let us first consider the easiest case such that A ⊃ B. Let L be the Lyndon
factorization of the boundary word of A. During deflation, L is updated for each
step of removing a point, which is chosen by the priority dB

A. The priority dB
A

is in descending order; the highest priority is given to pixels of largest dB
A. The

following data structures are used in the deflation algorithm:

– L: Lyndon factorization of a boundary word whose i-th element is (�i, ni, pi);
�i is the Lyndon factor, ni is the multiplicity, and pi is the (left) Lyndon
point,

– Q�: set of removable points represented by Lyndon factor indices i,
– T�: sequence of removed points.

In the following, N represents the length of the boundary word of A (or B) so
that the number of the Lyndon points of the Lyndon factorization L is bounded
by O(N

2
3 ) according to Property 1.

Algorithm 1 shows the procedure of deflation from A to B, which call the two
functions, UpdateLyndonFactorizationDueToSwitch (Function 2) and UpdateR-
emovable (Function 3). All the information of Lyndon factorization is stored in
L. The kernel of the algorithm is updating L efficiently for each removal step,
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Algorithm 4: Inflation
input : digitally convex 4-connected sets A, B such that A ⊂ B
output: a sequence T⊕ of points to add

1 w ← the boundary word of A, L ← Lyndon Factorization of w;

2 calculate dA
B (x) for all x ∈ B \ A;

3 set the current inflated set C ← A, T⊕ ← ∅;

4 Q⊕ ← AddInsertable(Q⊕, L, (1, . . . , |L|), dA
B );

5 while Q⊕ �= ∅ do
6 (i, j, left, right) ← find max(Q⊕) ;
7 (�, n, p) ← L[i];
8 (�+, �−) ← split(�);
9 x ← the closed upper point of the j-th �, push x to T⊕, C ← C ∪ {x};

10 Iold ← (i − left, i − left + 1, . . . , i + right);
11 remove L[i − left, . . . , i + right];

12 insert �
ni−left

i−left . . . �
ni−1
i−1 �− at L[i − left];

13 insert �+�
ni+1
i+1 . . . �

ni+right

i+right at L[i − left + 1];

14 Inew ← (i − left, i − left + 1) ;
15 Q⊕ ← DelInsertable(Q⊕, Iold);

16 Q⊕ ← AddInsertable(Q⊕, L, Inew, dA
B )

17 end
18 return T⊕

which is described in Function 2: only the two Lyndon factors adjacent to a cho-
sen removable point are modified by the Lyndon factorization after the switch
operation. In other words, we can observe that the update is made locally. As
the length of each Lyndon factor is O(N) in worst case, the time complexity
of Function 2 is O(N). Finding the maximum element of Q� (Line 6) and its
update (Line 11) need O(log N) for each removal step, if we store the sorted
removable points of Q� in a tree structure such as a heap [9], as the size of Q�
is bounded by O(N

2
3 ), which is the same size of L. Note that simplicity can be

verified efficiently by using its local characterization [16] (see Function 3). Thus,
the overall complexity of each deflation step of Algorithm 1 is O(N).

4.3 Inflation Algorithm

Let us consider the case such that A ⊂ B. Here we add points one-by-one to
A until obtaining B with the priority dA

B . The inflation algorithm requires the
following data structures with the Lyndon factorization L presented for the
deflation algorithm.

– Q⊕: set of insertable points, each of which is represented by a pair of a Lyndon
factor and a multiplicity index (i, j), and their propagation ranges for left and
right, (left, right)

– T⊕: sequence of inserted points.
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Function 5: AddInsertable
input : insertable point set Q⊕, Lyndon factorization L, indext set I to verify
output: updated Q⊕

1 while I �= ∅ do
2 i ← pop(I), (�, n, p) ← L[i];
3 foreach j = 1, . . . , n do
4 (insertable−, k−) ← InsertableLeft(i, j, L);
5 (insertable+, k+) ← InsertableRight(i, j, L);
6 if insertable− ∧ insertable+ then push (i, j, k−, k+) to Q⊕ ;

7 end

8 end
9 return Q⊕

Function 6: DelInsertable
input : insertable point set Q⊕, Lyndon factorization L, index set I to delete
output: updated Q⊕

1 while I �= ∅ do
2 i ← pop(I), (�, n, p) ← L[i];
3 foreach j = 1, . . . , n do
4 remove the element associated to the point index (i, j) from Q⊕
5 end

6 end
7 return Q⊕

Note that any insertable point is a closest upper point (Proposition 4), which
exists uniquely for each j-th Lyndon factor �i. Thus, keeping L in the same
way as the deflation is also enough for the inflation. When we add a point in
the boundary of a digital convex set, the simplicity is obviously satisfied; no
simplicity verification is necessary.

Algorithm 4 shows the inflation procedure from A to B guided by the priority
dA

B . Similarly to the deflation, the kernel of the inflation algorithm is also updat-
ing L efficiently for each point insertion. However, this update may affect left
and right neighbors in the left and right propagations where left, right can be
more than 1, contrary to the deflation case, in which left = right = 1. Instead,
those affected neighboring Lyndon factors are always replaced by exactly two
Lyndon factors (see Lines 12 and 13 in Algorithm 4). In other words, no Lyn-
don re-factorization is needed for the insertion. These left and right neighboring
ranges, left and right, are respectively calculated in the functions, InsertableLeft
and InsertableRight, both of which are called in Function 5 (see Function 7 for
the InsertableLeft; InsertableRight is omitted here due to its similarity). In fact,
those functions verify the instability of the point corresponding to the given
factor and multiplicity indecencies, i and j, in left and right sides with the
propagation verification. This part is based on Proposition 6. As this propaga-
tion cannot be theoretically bounded, the complexity of Function 5 is in O(N).
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Function 7: InsertableLeft
input : insertion factor index i, multiplicity index j, Lyndon factorization L
output: boolean insertable, left propagation range r

1 (�, n, p) ← L[i], (�−, �+) ← standard factorization of �;

2 w ← �j−1�+;
3 propag ← true, insertable ← false, r ← 0;
4 while propag = true do
5 (�prev, nprev, pprev) ← L[i − r − 1];
6 if � > w then insertable ← true, propag ← false ;
7 else if �prev = w then insertable ← true, propag ← false, r ← r + 1 ;
8 else if ∃n ∈ Z

+, �prev = �wn then w ← �
nprev
prev w, r ← r + 1 ;

9 else propag ← false ;

10 end
11 return (insertable, r)

Fig. 6. Deformation from a digitized disk to a digitized ellipse, both of which are
digitally convex.

In other words, if there is no propagation, this complexity can be reduced to
O(log N). This can be done if we strengthen the insertability condition such
that �i−1 ≥ �j−1

i �+i and �−
i �

nj−1
i ≥ �i+1 instead of those of Proposition 6.

Note that the size of Q⊕ is almost equal to the number of furthest points,
which can be given by

∑
i mi where mi is the multiplicity for the i-th factor �i of

the Lyndon factorization of the boundary word of the current deformed shape.
If we set M = maxi mi, then we can also say that the size of Q⊕ is in O(MN

2
3 ).

Thus the time complexity of updating Q⊕ (Functions 6 and 5) are in O(log N)
as M ≤ N . Then the overall complexity of each inflation step of Algorithm 4 is
O(N) due to the propagation in the insertability verification. We remind that
Lyndon re-factorization is not necessary for the inflation case, so that this O(N)
comes only from the insertability verification propagation.

4.4 General Deformation Algorithm

Now let us consider more general case such that A ∩ B 	= ∅. We start from
an initial digitally convex set A and obtain B by adding points of B \ A and
removing points of A \ B. The algorithm is given by Algorithm 8, which is a
simple fusion of Algorithms 1 and 4. Figure 6 shows an experimental result for a
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Algorithm 8: Digital convexity preserving deformation
input : overlapped digitally convex 4-connected sets A, B
output: a sequence T of pixels to remove (with −) and to add (with +)

1 w ← the boundary word of A, L ← Lyndon Factorization of w;

2 calculate dB
A(x) for x ∈ A \ B and dA

B (x) for all x ∈ B \ A;
3 set the current deflated set C ← A, T ← ∅;

4 Q� ← UpdateRemovable(Q�, L, ∅, (1, . . . , |L|), dB
A, C);

5 Q⊕ ← AddInsertable(Q⊕, L, (1, . . . , |L|), dA
B );

6 while Q� ∪ Q⊕ �= ∅ do
7 x ← the Lyndon point corresponding to find max(Q�);
8 y ← the closest upper point corresponding to find max(Q⊕);

9 if dB
A(x) ≤ dA

B (y) then
10 push (x, −) to T ;
11 . . . // Deflation (Lines 6-10 of Algorithm 1)

12 else
13 push (y, +) to T ;
14 . . . // Inflation (Lines 6-14 of Algorithm 4)

15 end

16 Q� ← UpdateRemovable(Q�, L, Iold, Inew, dB
A, C);

17 Q⊕ ← DelInsertable(Q⊕, Iold), Q⊕ ← AddInsertable(Q⊕, L, Inew, dA
B );

18 end
19 return T

deformation from a digitized disk of 2821 points (most left) to a digitized ellipse
(most right).

5 Conclusion

In this article, using the combinatorics on words to identify digital convex sets via
their boundary words, we proposed algorithms for pixelwise inflation, deflation
and more general deformation of digital convex sets preserving their convexity.
Given a pair of digital convex sets, we showed that each proposed algorithm
creates a sequence of digital convex sets, namely a deformation between them.
The worst-case time complexity for each inflation and deflation iteration step
was analyzed: O(N) for both where N is the length of the boundary word of a
given digital convex.
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Abstract. In a recent work, full convexity has been proposed as an alter-
native definition of digital convexity. It solves many problems related to
its usual definitions, for instance: fully convex sets are digitally convex in
the usual sense, but are also connected and simply connected. However,
full convexity is not a monotone property hence intersections of fully con-
vex sets may be neither fully convex nor connected. This defect might
forbid digital polyhedral models with fully convex faces and edges. This
can be detrimental since classical standard and naive planes are fully
convex. We propose in this paper an envelope operator which solves in
arbitrary dimension the problem of extending a digital set into a fully
convex set. This extension naturally leads to digital polyhedra whose
cells are fully convex. We present first a generic envelope operator which
add points in required directions in parallel and prove that it builds a
fully convex set. Then a relative envelope operator is proposed, which can
be used to force digital planarity of fully convex sets. We provide exper-
iments showing that our method produces coherent polyhedral models
for any polyhedron in arbitrary dimension.

Keywords: Digital geometry · Digital convexity · Polyhedral model

1 Introduction

Convexity is a classical property in various domains of mathematics and com-
puter science. It allows for instance guarantees for optimization, containment
property via its separability with hyperplanes, and many convergence results in
real or discrete analysis need convexity assumptions. While it has been primarily
developed in R

d, several extensions have been proposed in the past. Two main
paths are possible for extending convexity: either going more abstract to adapt
convexity to generic spaces or building more specialized versions for dedicated
spaces like the digital space Z

d for instance. Most general extensions of convexity
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rely on hull systems [Lau06], K-convexity and simplicial convexity [Lli02] or clo-
sure (hull) operators [And06]. Those general extensions do not necessarily embed
a geometric vision of convexity, so convex sets do not have a geometric structure
in the same veins as in R

d. More resembling extensions rely on anti-matroids
notably with the anti-exchange property [RS03] or cellular extensions based on
discrete hyperplanes [Web01,RS03]. They induce spaces of convex sets with more
geometric interpretations, but also fail to be connected in some situations. Sev-
eral extensions have also been proposed in the optimization community using
convexity and digital convexity as certificates of optimality [MS01]. For digital
spaces Z

d, digital convexity was first defined as the intersection of real convex
sets of R

d with Z
d (e.g. see survey [Ron89]). Many works have then tried to

enforce the connectedness of such sets, for instance by relying on digital lines
[KR82b,Eck01] or extensions of digital functions [Kis04]. Most works are limited
to 2D, and 3D extensions do not solve all geometric issues [KR82a].

This paper considers the recently introduced notion of full convexity [Lac21,
Lac22]. It extends digital convex sets while enforcing connectedness of fully con-
vex sets. This notion is also computational in the sense that verifying full con-
vexity is an easy task. Furthermore classical standard and naive planes are fully
convex, so this convexity is appealing for building polyhedral models in any
dimensions. However, since intersections of fully convex sets are not always fully
convex, full convexity cannot be used directly for building faces and edges of
polyhedra. Indeed the full convexity does not verify the monotonicity property
of classical hull operators and thus fully convex hull is not a properly defined hull
operator. This is a problem if we wish to build digital polyhedra in arbitrary
dimension. In 3D, graceful lines and planes have been proposed in [BB02] to
define edges consistent with triangular faces. It permits to fix varying arithmeti-
cal thickness between interior and boundary of digital triangles by construction
but it is limited to 3D.

Our objective is to define polyhedral models in digital space Z
d which are

based on full convexity. Our proposal lets us freely choose the thickness of digital
faces, is canonic in arbitrary dimension, and benefits from the nice properties of
fully convex sets. Indeed, naive, standard or even thicker pieces of arithmetical
planes can be reconstructed in the proposed unified framework.

We start by defining the fully convex envelope, that is a pre-hull operator
without the monotonicity property, which builds a fully convex set containing the
input digital set. Our process is iterative, fully parallel at each iteration and ends
after a finite number of iterations. It uses solely classical operators in the cubical
complex C d associated to Z

d. We then adapt it to define a fully convex enveloppe
relative to another fully convex set. Since thick enough digital planes are known
to be fully convex, we can define fully convex subsets of digital planes in arbitrary
dimension. The simultaneous use of those two operators builds edges and faces
for meshes with planar faces or meshes with non planar faces. Experiments
show that the induced polyhedral models are visually appealing and preserve the
connectivity graphs between faces and edges of original models.
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2 Full Convexity and Fully Convex Envelope

2.1 Definitions

Cubical Cell Complex. We consider the (cubical) cell complex C d induced by
the lattice Z

d, such that its 0-cells are the points of Z
d, its 1-cells are the open

unit segments joining two 0-cells at distance 1, its 2-cells are the open unit
squares formed by these segments, . . . , and its d-cells are the d-dimensional
unit hypercubes with vertices in Z

d. We denote C d
k the set of its k-cells. We call

complex/subcomplex any subset of cells of C d, e.g. any single cell is a subcomplex.
A digital set is a subset of Z

d.
The (topological) boundary ∂Y of a subset Y of R

d is the set of points in its
closure but not in its interior. The star of a cell σ in C d, denoted by Star (σ), is
the set of cells of C d whose boundary contains σ and it contains the cell σ itself.
The closure Cl (σ) of σ contains σ and all the cells in its boundary. We extend
these definitions to any subcomplex K of C d by taking unions:

Star (K) :=
⋃

σ∈K

{Star (σ)},

Cl (K) :=
⋃

σ∈K

{Cl (σ)}.

In combinatorial topology, a subcomplex K with Star (K) = K is open, while
being closed when Cl (K) = K. The body of a subcomplex K, i.e. the union of
its cells in R

d, is written ‖K‖. We denote by Extr (K) = Cl (K) ∩ Z
d.

Intersection Complex. If Y is any subset of the Euclidean space R
d, we denote

by C d
k [Y ] the set of k-cells whose topological closure intersects Y , i.e.

C d
k [Y ] := {c ∈ C d

k , c ∩ Y �= ∅}. (1)

The complex that is the union of all, C d
k [Y ], 0 � k � d, is called the intersection

(cubical) complex of Y and is denoted by C d[Y ].
It is worth to note that, for any complex K, Star (K) = C d[‖K‖]. Hence, for

any subset Y ⊂ R
d, it is natural to define Star (Y ) := C d[Y ], which coincides

with the standard definition of star on subsets of C d or Z
d.

Skeleton. We define a kind of converse operation to the star. For any complex
K ⊂ C d, the skeleton of K is (with K ′ any subset of K)

Skel (K) :=
⋂

K′⊂K⊂Star(K′)

K ′. (2)

Lemma 1. For any complex K, K ⊂ Star (Skel (K)).

Lemma 2. For any digital set X we have Skel (Star (X)) = X using lemma (1).
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Lemma 3. For any open complex K, Star (Skel (K)) = K.

Proof. (⊃) K ⊂ Star (Skel (K)) by lemma (1).
(⊂) Skel (K) ⊂ K because Skel (K) is the intersection of subsets of K. Star ()
being increasing, Star (Skel (K)) ⊂ Star (K) = K since K is open.

2.2 Full Convexity

For a set A ⊂ R
d, its convex hull CvxH (A) is the intersection of all convex sets

that contains A.

Definition 1 (Full convexity). A digital set X ⊂ Z
d is digitally k-convex for

0 � k � d whenever

C d
k [X] = C d

k [CvxH (X)]. (3)

Subset X is fully (digitally) convex if it is digitally k-convex for all k, 0 � k � d.

The following characterization will be useful:

Lemma 4 A digital set X is fully convex iff Star (X) = Star (CvxH (X)).

2.3 Fully Convex Envelope

Convex hull is one of the most fundamental tool in continuous geometry. We
wish to design a digital analogue to convex hull. The question is then how to
build a fully convex set from an arbitrary digital subset of Z

d. For instance can
we build this fully convex envelope with intersections of fully convex set ? We
do have this rather straightforward property:

Lemma 5 If A and B are digitally 0-convex, then A ∩ B is digitally 0-convex.

Proof

CvxH (A ∩ B) ∩ Z
d ⊂ CvxH (A) ∩ CvxH (B) ∩ Z

d (CvxH (·) is increasing)
= A ∩ B (A and B are digitally 0-convex)

	


A B A ∩ B

However, intersections of fully convex sets are
generally not fully convex. As a very simple exam-
ple, just pick A = {(0, 0), (1, 1), (2, 1)} and B =
{(0, 0), (1, 0), (2, 1)}, which are both fully convex.
Then the set A∩B = {(0, 0), (2, 1)} is not fully convex,
not even connected.

Therefore, we propose another way to build a fully convex set from an arbi-
trary digital set, which uses the cells intersected by the convex hull of this set,
and which is defined through an iterative process.



102 F. Feschet and J.-O. Lachaud

input X, Y := CvxH (X) Star (Y ), Skel (Star (Y )) X ′ = FC(X)

input X ′, Y ′ := CvxH (X ′) Star (Y ′), Skel (Star (Y ′)) X ′′ = FC(X ′) = FC2(X)

Fig. 1. Illustration of FC operation and fully convex envelope construction. Left: input
digital set X and its convex hull, middle: Star (CvxH (X)) (gray and thick black) and
its skeleton (thick black), right: extremal points of the skeleton, i.e. FC(X). Here X
is digitally 0-convex but not fully convex. FC(X) is not even digitally 0-convex, while
FC(FC(X)) is fully convex and is therefore the fully convex envelope to X

Each iteration composes these operations, for X ⊂ R
d:

FC(X) := Extr (Skel (Star (CvxH (X))))

First the Euclidean convex hull of the set is computed, letting Y = CvxH (X),
then its covering Star (Y ) by cells of the cellular grid is determined. The skeleton
of these cells is their smallest subset such that Star (Skel (Star (Y ))) = Y . Finally
FC(X) is composed of the grid vertices of the skeleton cells. The last operation
implies that FC(X) ⊂ Z

d. Refer to Fig. 1 for an illustration of FC operation and
fully convex envelope computation.

Definition 2 (Fully convex envelope). For any integer n � 0, the n-th con-
vex envelope of X ⊂ R

d is the n times composition of operation FC.

FCn(X) := FC ◦ · · · ◦ FC︸ ︷︷ ︸
n times

(X).

The fully convex envelope of X is the limit of FCn(X) when n → ∞:

FC∗(X) := lim
n→∞ FCn(X).

We have to show that this process has a limit for every subset X.

Theorem 1. For any finite digital set X ⊂ Z
d, there exists a finite n such

that FCn(X) = FCn+1(X), which implies that FC∗(X) exists and is equal to
FCn(X).
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It is the immediate consequence of Lemma 6 and Lemma 7 below: the first
one tells that FC is increasing, the second that X and FC(X) have the same
bounding box.

Lemma 6. For any X ⊂ Z
d,X ⊂ FC(X).

Proof. Let x ∈ X ⊂ Z
d = C d

0 . Obviously x ∈ CvxH (X). It follows that x ∈
Star (CvxH (X)) and, since Star (·) is idempotent, Star (x) ⊂ Star (CvxH (X)).
The whole star of x belonging to the subcomplex K := Star (CvxH (X)), the 0-
cell x belongs to the skeleton of K. Since all 0-cells of a subcomplex are extremal
points, it is an extremal point of Skel (K), which concludes. 	

Lemma 7. For any finite X ⊂ Z

d, X and FC(X) have the same bounding box.

Proof. Let p ∈ Z
d be the lowest point of the axis-aligned bounding box of X, i.e.

∀i, 1 � i � d, pi = minz∈X zi. Obviously, it is also the lowest point of the bound-
ing box of CvxH (X). Let K := Star (CvxH (X)). Since ∀x ∈ CvxH (X) , pi � xi,
any cell c of K that lie below point q along some coordinate axis j has a twin
cell e ∈ K in its boundary, such that e is closed along coordinate j and ej = pj .
Continuing the argument along every coordinate axis k where e is below point p,
we know that there is a digital point z ∈ K in the boundary of c, such that z is
not below p. Point z being a 0-cell it follows that z ∈ Skel (K) while all m-cells
incident to z, m > 0, are not in Skel (K). We have just shown that no cells
of Skel (K) can be lower than p. The reasoning is the same for the uppermost
point. 	


A first observation is that operation FC does not modify fully convex sets,
so the fully convex envelope of a fully convex set X is X itself.

Lemma 8. If X ⊂ Z
d is fully convex, then FC(X) = X. So FC∗(X) = X.

Proof. Indeed we have

FC(X) = Extr (Skel (Star (CvxH (X))))
= Extr (Skel (Star (X))) (Lemma 4)
= Extr (X) (Lemma 2)

= X (X ⊂ Z
d)

	

Reciprocally, non fully convex sets are modified through operation FC.

Lemma 9. If X ⊂ Z
d is not fully convex, then X � FC(X)

Proof. By Lemma 6 we already know that X ⊂ FC(X). Let us show that there
is a digital point z ∈ FC(X) that is not in X. Since X is not fully convex, there
exists some cell c ∈ Star (CvxH (X)) such that c �∈ Star (X). It is possible that
there are other cells c′ in c such that c′ ∈ Star (CvxH (X)) and c′ �∈ Star (X). In
this case we pick one, say b, with lowest dimension.
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Let z ∈ b ∩ Z
d be a grid vertex of this cell (which may be b itself). Then

z �∈ X. Otherwise, Star (z) ⊂ Star (X), hence the cell b, which belongs to Star (z)
(through the equivalence z ⊂ b ⇔ b ∈ Star (z)), would thus belong to Star (X),
a contradiction with the hypothesis.

Let us show now that z ∈ FC(X). Recall that

FC(X) = Extr (Skel (Star (CvxH (X)))) .

We have b ∈ Star (CvxH (X)). Furthermore b belongs to the skeleton of
Star (CvxH (X)), since it is a cell of Star (CvxH (X)) with lowest dimension
in the closure of c. Finally grid vertex z is an extremal point of b, so belongs to
FC(X). We conclude since z �∈ X holds. 	

Note that the Lemma also indicates where operation FC add digital points.
Indeed, they are the vertices of the cells touched by the convex hull but not by
the digital set itself. Lemmas 8 and 9 lead immediately to a characterization of
fully convex sets:

Theorem 2. X ⊂ Z
d is fully convex iff X = FC(X).

It also induces the most important property of the fully convex envelope
operation: it always outputs fully convex sets.

Theorem 3. For any finite X ⊂ Z
d,FC∗(X) is fully convex.

Proof. By Theorem 1, FC∗(X) exists and there exists some n such that
FC∗(X) = FCn(X). Hence, FC(FCn(X)) = FCn(X). By Theorem 2, FCn(X) is
fully convex, and so is FC∗(X). 	


The operator FC∗(.) is thus increasing and idempotent. It however fails to be
monotone because Skel (.) is not a monotone operator with respect to inclusion.
So, it is not a hull operator [And06]. Nevertheless, it induces a preorder relation
RFC∗ on digital sets using

XRFC∗Y ⇐⇒ FC∗(X) = FC∗(Y ).

It induces equivalent classes among the set of digital sets. It has its own topology
through its associated Alexandrov topology.

2.4 Algorithmic Aspects

We now look at the algorithmic aspects of computing FC∗. Since the computation
of FC∗ is done in a loop, we compute the complexity for each iteration. At the
beginning of iteration k the points set is FCk−1(X). Using Quickhull, the convex
hull can be computed in O(nfr/r) [BDH96] with n the number of input points,
r the number of processed points and fr the maximum number of facets of r
vertices (fr = O(r	d/2
/�d/2�!)). Obviously r � n, such that the complexity is
bounded by O(fn) with fn = O(n	d/2
/�d/2�!). Here, n is the number of points
in FCk−1(X). As described in [Lac21], Star (CvxH (.)) can be computed using 2d
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Y

X

Y Y

Naive lines intersection Skel (Star (CvxH (X ∩ Y ))) FC(X) ∩ Y = FC∗
|Y (X)

Fig. 2. Relative fully convex envelope for naive lines having disconnected intersection.

Quickhull calls with the morphological characterizations of full convexity. It is
the most intensive part of the computation. Then, Skel and Extr are extracted by
simple traversal over the volume of Star (CvxH (.)). It is thus linear in the volume
of Star (CvxH (.)) which is bounded above by the volume of the bounding box
of FCk−1(X). Hence the complexity of one iteration is bounded by O(n	d/2
).
A precise bound on the number of iterations is still under study. In practice 1–4
iterations are generally observed in 3D, but we have come along examples with
depth about ten.

3 Relative Fully Convex Envelope

We now specialize operator FC in order to stay into a given fully convex set.
This creates fully convex sets relative to a given fully convex set. Given Y ⊂ Z

d

a fully convex set and X ⊂ Y , the FC operator relative to Y is defined as

FC|Y (X) := FC(X) ∩ Y.

As previously, FCn
|Y (X) := FC|Y ◦ · · · ◦ FC|Y (X), composed n times. The fully

convex envelope of X relative to Y is obtained at the limit:

FC∗
|Y (X) := lim

n→∞ FCn
|Y (X) .

We thus have FC∗(X) = FC∗
|Zd (X). In practice, for X not included in Y , we

compute FC∗
|Y (X ∩ Y ) to get the fully convex envelope of X ∩ Y .

As seen on Figure (2), the relative fully convex envelope extends sets only
using points of the fully convex set Y . So when considering two naive lines
X and Y having disconnected intersection, both subsets FC∗

|Y (X ∩ Y ) and
FC∗

|X (X ∩ Y ) are fully convex, hence are connected intersections.

Theorem 4. For any finite X ⊂ Z
d and any fully convex set Y ⊂ Z

d, the digital
set FC∗

|Y (X ∩ Y ) is fully convex and is included in Y .

Proof. Let X ′ = X ∩ Y . To see that FC∗
|Y (X ′) is well defined, we rely on

previous properties of FC∗(). By construction, since FC() is increasing, so is
FC|Y (). Moreover Lemma (7) readily extends to say that X ′ and FC|Y (X ′)
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have the same bounding box. It is also true that if X ′ is fully convex then
FC|Y (X ′) = X ′ ∩ Y and so FC∗

|Y (X ′) = X ′. Let us now see why Lemma (9)
also extends to this situation. We hence suppose that X ′ is not fully convex. Let
us then consider any cell b such that b ∈ Star (CvxH (X ′)) but b /∈ Star (X ′).
Since CvxH (X ′) ⊂ CvxH (Y ), we deduce that b ∈ Star (CvxH (Y )) = Star (Y )
since Y is fully convex. Moreover as in Lemma (9), we have b∩Z

d ∩X ′ = ∅. But
since Y ⊂ Z

d and b ∈ Star (Y ), we deduce that b ∩ Z
d ∩ Y �= ∅. Hence at least

one point in Y is added by FC|Y (). This implies that X ′
� FC|Y (X ′). We can

thus mimic Theorem 1 and Theorem 2 to get that FC∗
|Y (X ′) exists and is fully

convex. It is included in Y by construction. 	

Arithmetical planes with thickness at least as thick as naive planes are fully

convex [Lac21, Theorem 7]. Hence the set Y can be chosen to be either a naive or
a standard plane. Then the fully convex hull of X relative to Y is a fully convex
subset of Y containing X ∩Y . Hence, FC∗

|X∩Y (X) is a simply connected piece of
the arithmetical plane Y . To compute FC∗

|Y (.), we only have to incorporate the
intersection with Y at each iteration. This is directly linked to the complexity
of deciding if a point p is in Y . If Y is a digital plane then this complexity is
constant but in general it can be up to the order of O(log(�Y )).

4 Digital Polyhedron

We now present digital models for Euclidean polyhedra based on envelopes. A
polyhedron P is a collection of finite convex sets called cells, such that each
cell σ is characterized by a finite number of points V (σ) called vertices. Cell σ
is a face of cell σ′ if V (σ) ⊂ V (σ′). The vertices V of the polyhedron are the
union of the vertices of all cells. Generally an abstract dimension is attached to
cells, 0 for vertices, 1 for edges, 2 for faces, etc., and must be consistent with
the face relation. We take an interest here in polyhedra with maximal dimension
d − 1, i.e. surfaces, whose (d − 1)-cells are called facets. Figure 3, left, shows two
polyhedra in 3D space: a quadrangulated surface Q with non planar facets and
a triangulated surface T with planar facets.

Assuming each vertex of P is a point of Z
d, the (generic) digital polyhedron

P∗ associated to P is the collection of digital cells that are subsets of Z
d, such

that: if σ is a cell of P, then σ∗ is a cell of P∗ with σ∗ := FC∗(V (σ)). Such a
digital polyhedron is illustrated on Fig. 3, top row.

When vertices of facets are coplanar, we can build a digital polyhedron whose
facets are pieces of arithmetic planes. Pure simplicial complexes of dimension
d − 1 are important examples of such polyhedron. For T ⊂ Z

d made of coplanar
points, let us denote by P1(T ) the median standard plane (resp. P∞(T ) the
median naive plane) defined by T .

The standard (resp. naive) digital polyhedron P∗
1 (resp. P∗

∞) is the collection
of digital cells subsets of Z

d, defined as follows. For p ∈ {1,∞}, if σ is a facet
of P, then σ∗

p is a cell of P∗
p with σ∗

p := FC∗
|Pp(V (σ)) (V (σ)). For any cell τ that

is not a facet, then it has as many geometric realizations as incident facets σ



Full Convexity for Polyhedral Models in Digital Spaces 107

G
en

er
ic

po
ly
he

dr
on

Quad-mesh Q, non planar faces �Q∗ = 81044 �Q∗ = 373225
St
an

da
rd

po
ly
he

dr
on

Tri-mesh T , planar faces �T ∗
1 = 68603 �T ∗

1 = 275931

N
ai
ve

po
ly
he

dr
on

Tri-mesh T , planar faces �T ∗
∞ = 46639 �T ∗

∞ = 182451

Fig. 3. Discretization of Euclidean polyhedral models without or with planar facets
(left), at gridstep h = 1 (middle) and h = 0.5 (right).

and each pair (τ, σ) is digitized as (τ, σ)∗
p := FC∗

|σ∗
p
(V (τ)). Cell pairs have the

same role as half-edges in winged-edge data structures and more generally darts
in combinatorial maps. Note that other thicknesses could be chosen for digital
polyhedron but naive and standard are the most common ones. A standard
(resp. naive) digital polyhedron associated to a triangulated mesh is illustrated
on Fig. 3, middle row (resp. bottom row). They require less digital points than
the generic digital points, while keeping their separation properties.

To better understand the three defined polyhedra, let us consider a single
triangle and its edges and vertices: its three digital models are displayed on
Fig. 4. All induced cells are fully convex, but we notice that standard cells are
thinner while naive cells are even thinner. What might be surprising is that
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generic faces �T ∗ = 1193 standard faces �T ∗
1 = 985 naive faces �T ∗

∞ = 567

Fig. 4. A generic digital triangle T ∗ with its darker edges and black vertices (p, q, r)
(left); corresponding standard digital triangle T ∗

1 which lies in the median standard
plane P1(p, q, r) (middle); corresponding naive digital triangle T ∗

∞ which lies in the
median naive plane P∞(p, q, r) (right).

relative fully convex enveloppe may create larger subset than expected, especially
for the naive triangle example. One should keep in mind that expanding a set
inside a naive plane to become fully convex is a very restrictive transform: edges
have to expand more within naive plane P∞ than within standard plane P1. Of
course, this is quite an extreme example and edges are narrower in most cases.

The following properties are quite straightforward, but show that every dig-
ital polyhedron covers well the cells of its associated Euclidean polyhedron, and
that the inclusion/face property between cells is satisfied in the digital domain.
Digitizing a polyhedron at different gridstep h is just a matter of embedding
every real vertex point q as a digital vertex q∗ = round(q/h) (see Fig. 3).

Proposition 1. Let σ∗ be a digital cell of a generic, standard or naive digital
polyhedron. Then it is fully convex, hence digitally connected and simply con-
nected. We have Star (CvxH (V (σ))) ⊂ Star (σ∗). For any cell τ such that σ is
a face of τ , Star (τ∗) cover Star (CvxH (V (σ))).

5 Conclusion and Perspectives

We provide in this paper an envelope operator for full convexity FC∗(.). For any
digital set X, FC∗(X) is proved to be fully convex and X ⊂ FC∗(X). Further-
more this operator leaves fully convex sets unchanged. Moreover, the operator is
well defined in arbitrary dimension as well as computable. This operator can be
restricted to stay within a fully convex set Y , leading to the relative enveloppe
operator FC∗

|Y (X). It builds fully convex sets within Y . Since classical naive and
standard planes are fully convex, this leads to a straightforward computation of
digital analogues to polyhedral models of R

d. The obtained results are quite
appealing: we can control the incidence relationship between cells, while their
full convexity guarantees their topological and geometrical properties. These
digital polyhedral models embrace both meshes with planar or non planar faces.
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In future works, we would like to study more precisely the iterative process
of FC∗(.), in order to localize where full convexity defects reside. This could
accelerate the operator and give more practical bounds on the number of itera-
tions. Incremental quickhull should also be considered. A more general goal is to
extend the enveloppe process to a true convex hull operator. The difficulty is to
ensure the monotone property, but if we succeed, the full convexity would then
be a digital analogue to convexity for digital spaces.
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Abstract. This paper aims to present a new method of translating
labeled 3D scans of biological tissues into Generalized Maps (nGmaps).
Creating such nGmaps from labeled images is a solved problem in 2D
and 3D using incremental algorithms. We present a new approach that
works in arbitrary dimensions. To achieve this in an effective manner,
we perform the necessary operations implicitly using theory rather than
explicitly in memory. First we define implicit nGmaps. We then present
a scheme to construct said nGmap representing an nD pixel/voxel-grid
implicitly. Thirdly we give a description of the process needed to reduce
such implicit nGmap. We demonstrate that our implicit approach is able
to reduce nGmaps in a fraction of otherwise necessary memory.

Keywords: Generalized Maps · nGmaps · Implicit representation ·
Memory savings

1 Introduction

For analysing CT scans of biological tissues, methods are needed to process the
images. Assume that we have a microscopic 3D raster image of tissue and want
to run a simulation of physiological processes within, for example leaf tissue and
its inherent osmotic movements, respiration and further aspects of biological
interest. Assume furthermore that the image is already segmented, meaning
each pixel1 is labeled. This means we know the specific cell or air-pocket a pixel
belongs to.

1.1 Problem Statement

For such a simulation we need a data structure where cells and the connec-
tions between them are the primary objects. A data structure that meets these
requirements and we therefore choose to use, is the n-dimensional Generalized
Map (or nGmap for short) [3]. Thus we are faced with the problem of converting
the labeled image into an nGmap.
1 In this paper we use pixel as generic term for any dimension, i.e. including voxels in

3D and hypervoxels in 4D.
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1.2 Prior Work

For 2D-images an algorithm already exists [3]. For 3D-images there is an algo-
rithm for Combinatorial Maps [1]. While this algorithm could be adapted for
3Gmaps, we present a new method that generalizes to arbitrary dimensions.

1.3 Content

To coherently present our approach we first need to explain nGmaps and their
specifics. In the following section we give a recap on nGmaps as well as new
definitions.

In later sections we will present a new algorithm to translate labeled images
into nGmaps. This includes two steps:

1. The implicit construction of the pixel-grid.
2. The contraction of the pixel-grid to adequately represent the labeled regions.

2 Basic Definitions

2.1 nGmap - The Intuitive Definition

An nGmap is a data structure similar to a graph or a mesh. It encodes topological
information of a subdivision of an n-dimensional manifold. It consists of so-called
i-cells for i from 0 to n. The number i describes the dimension of the i-cell. A
0-cell is a point, a 1-cell is a line bound by two points, i.e. two 0-cells. A 2-cell is
a surface patch bound by 1-cells and so on. In general, a (i + 1)-cell is bounded
by i-cells.

For i �= j we call an i-cell A incident to a j-cell B, if A is in the boundary of
B or vice-versa.

d

Fig. 1. Left: A 2Gmap consisting of five 0-cells, six 1-cells and three 2-cells (including
the outside one). Right: The same 2Gmap depicted via its darts, which are drawn as
arrows.

These i-cells, however, are not the primary elements used to encode the
nGmap, instead so called darts are. A dart can be thought of as the intersection
of incident i-cells, one for each dimension, i.e. for i ∈ {0, . . . , n}. For example, the
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marked dart d in Fig. 1 corresponds to the middle-right 0-cell, the top-horizontal
1-cell and the square 2-cell. This interpretation of a dart as an intersection of
i-cells is quite important for the intuitive understanding of nGmaps.

For a given i if two darts share the same j-cells for j �= i, but have a different
i-cell, we call them i-linked. It turns out that a dart is only ever i-linked to a
maximum of one other dart. Therefore we can define the involution αi as the
function that maps a dart to its i-linked partner or itself if it has none.

It turns out that the set of darts and the involutions α0, . . . , αn fully describe
the structure of the nGmap. Therefore we define an nGmap in the formal defi-
nition by its darts and subsequently also define i-cells in terms of darts.

2.2 The Formal Definition

Definition 1. Involution: A function f : X → X is called an involution if

∀x ∈ X : f(f(x)) = x

Definition 2. nGmap: For n ∈ N0 an nGmap or n-dimensional Generalized
Map is a tuple (D,α0, . . . , αn), where:

– D is a finite set of darts.
– For i ∈ {0, . . . , n} the function αi : D → D is an involution.
– For i, j ∈ {0, . . . , n}, |i − j| ≥ 2 the composition αi ◦ αj is an involution.

To define i-cells we first need to define the term orbit:

Definition 3. Orbit: Let A be a set, B ⊂ A and f1, . . . , fn : A → A be func-
tions. Then the orbit of B under f1, . . . , fn:

〈f1, . . . , fn〉(B)

is the smallest super-set of B closed under f1, . . . , fn, i.e.:

– B ⊂ 〈f1, . . . , fn〉(B) ⊂ A
– ∀i ∈ {1, . . . , n},∀x ∈ 〈f1, . . . , fn〉(B) : fi(x) ∈ 〈f1, . . . , fn〉(B)
– These are all.

For x ∈ A the orbit is defined as the orbit of the singleton set {x}.
For example, the orbit of a single element under a single function is

〈f〉(x) = {x, f(x), f(f(x)), f(f(f(x))), . . .}
In formal definition i-cells are sets of darts. To a given dart we can find the

corresponding i-cell for given i as follows:

Definition 4. i-cell: Let (D,α0, . . . , αn) be an nGmap, d ∈ D a dart and i ∈
{0, . . . , n}. The i-cell containing d is defined as the set of darts:

ci(d) := 〈α0, . . . , αi−1, αi+1, . . . , αn〉(d)



Implicit Encoding and Simplification/Reduction of nGmaps 113

This definition is motivated by the intuitive understanding that αi changes
i-cell and in turn αj (for j �= i) remains with the same i-cell. Therefore by
traversing the orbit of d under αj for j �= i we never leave the i-cell and because
we consider all αj , we find every dart of the i-cell.

3 Motivation

3.1 The Naive Algorithm

Let us consider a naive algorithm for the problem:

– Generate a 3Gmap with one cubic 3-cell for every pixel.
– To merge all adjacent pixels with the same label, remove in-between 2-cells.
– Form membranes by merging adjacent 2-cells that border the same 3-cells.
– Form membrane edges by removing every 0-cell that has less than three inci-

dent 1-cells.

We now have created a 3Gmap from a labeled image, effectively solving the
problem in theory. However, let us estimate the memory requirements: Assuming
that a dart is a class consisting of four pointers, one for each involution. A pointer
takes up eight bytes in a 64-bit system. A cube in a 3Gmap consists of 48 darts.
The 3D-images of the plant scans that motivated this work have a resolution of
about 20003 pixels. So in total we have

20003 × 48 × 4 × 8 bytes ∼= 12 terabytes

Clearly the memory requirements for creating the pixel-grid mentioned in
step one render the naive algorithm infeasible for such a scan. Our solution to
circumvent the huge memory requirements is to represent the pixel-grid implic-
itly, instead of explicitly representing it in memory. Furthermore the reduction
as in step 2 onward of the naive algorithm, can be represented implicitly. These
two processes will be topic of Sects. 4 and 5 respectively. However one more tool
needs to be defined as groundwork before.

3.2 Implicit nGmaps

Definition 5. Implicit nGmap: For n ∈ N0 an implicit nGmap is a tuple
(D,D′, α0, . . . , αn), where:

– D is a (not necessarily finite) set of darts.
– D′ ⊂ D is a finite set of seed-darts.
– ∀i : αi : D → D is a function. (Not necessarily an involution.)
– (〈α0, . . . , αn〉(D′), α0, . . . , αn) is an nGmap, which is called the Construction.
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The idea here is that not all elements of D are darts in the nGmap we want
to define. The darts in D′ are called seed-darts because from them the orbits
grow.

To distinguish, we will also call nGmaps as of Definition 2 explicit nGmaps.
One major difference between the two types is less of theoretical nature and
more related to actual implementations in code:

– Explicit nGmaps can be thought of as being stored in memory, with the α-
involutions being implemented via lookup-table or memory pointers. They
are mutable.

– Implicit nGmaps however can be thought of as being computed on the fly.
Their α-involutions are procedures without state. Therefore they do not
occupy much memory, but as a downside they are immutable.

4 Implicit Encoding of the Pixel-Grid

In this section we define an nGmap representing an infinite nD grid. By defining
an infinite rather than a finite grid corresponding to the size of the image, we
can avoid special cases related to the boundary.

4.1 Darts

As the set of darts we use2:

D := Z
n × N<2n·n!

A dart is a tuple d = (p, s) ∈ D. The first component p ∈ Z
n is called

the pixel-position. The second component s ∈ N<2n·n! is called the subpixel-
position. Note that there are 2n · n! darts in an nGmap representing a bounded
nD-hypercube.

The following is a scheme to enumerate all darts in the interior of an nD
cube. Recall that a dart represents the intersection of one i-cell for each i from
0 to n. Thus we describe a dart first by its position via those i-cells and then
transform that description into an integer.

4.2 Positional Dart Descriptions

We construct our Positional Dart Description by answering a series of questions.
First: In which n-cell is the dart? We only have one n-cell, so the answer is

trivial.

2 Because the grid is infinite, the construction technically is not an nGmap. One can
modify D := Z

n
k × N<2n·n! using the cyclic group Zk for some sufficiently large

number k. The nGmap then represents a grid on a large torus and D is finite. When
implementing D in code using for example 32-bit ints, this automatically happens
with k = 232.
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Fig. 2. Representation of one pixel and its neighbors in 2D. (s is attached to each dart,
while p = (i, j) is written in the center of each pixel instead of duplicated 8 times.)
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Fig. 3. 3Gmap of a cube, with one dart d marked as an example. Note the orientation
and direction of the coordinate axes.

Next: In which (n − 1)-cell is the dart? There are two (n − 1)-cells for each
coordinate axis, so we can describe the (n − 1)-cell by the coordinate axis it is
perpendicular to and whether it is facing the positive or the negative direction,
here called the “top” or the “bottom” respectively. The example dart d in Fig. 3
is in a 2-cell perpendicular to the (1) coordinate axis and on the “top”. The
descriptions thus begins with:

1 ↑ . . .

The identified (n−1)-cell now itself consists of (n−2)-cells, so our description
continues recursively. In which one does it lie?

The example dart d is on the 1-cell perpendicular to the (0) axis and on the
“top”. Finally, d is on the “bottom” side of the (2) axis. The full description
therefore is:

1 ↑ 0 ↑ 2 ↓
In general, a description is a list of length 2n, a permutation of {0, . . . , n −

1} interleaved with arrows ↓ or ↑. As a sanity check, lets calculate the total
possibilities: each of the n arrows can be up or down, so we have 2n possibilities
here. The axis numbers can be permuted in n! ways. These are independent, so
in total we have 2n · n! possibilities. This exactly matches the number of darts
in the nD hypercube.
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4.3 Mixed Radix Numbers

To transform a Positional Dart Description into a number, we use a mixed radix
numbering system with the signature (. . . 5, 2, 4, 2, 3, 2, 2, 2, 1, 2) as explained
below.

Table 1. Mixed radix system for our dart numbering system

Radix . . . n 2 . . . 5 2 4 2 3 2 2 2 1 2

Digit worth . . . 2nn! 2n−1n! . . . 768 384 96 48 16 8 4 2 2 1

In a usual numbering system with base b, each digit is worth b times the one
on the right. In a mixed radix system, the relative worth of a digit is different
for each digit according to its signature. The most common mixed radix system
is used to measure time with the signature (7, 24, 60, 60). Each week has 7 d,
each day has 24 h, each hour has 60 min, each minute has 60 s.

Table 2. Mixed radix system for time

Name Weeks Days Hours Minutes Seconds

Radix − 7 24 60 60

Digit worth 604800 86400 3600 60 1

To transform a dart description, we translate each part into a digit of the
mixed radix. For the arrows we can simply put 0 for ↓ and 1 for ↑.

The axis numbers are not translated directly, i.e. are not the translated digits
themselves. Instead, the translation of an axis is its index on the list of not-yet-
used axes. This is best explained by example. Let us translate the 4D dart
description 0 ↑ 3 ↓ 1 ↑ 2 ↑. At first, no axes were used, so the list is [0, 1, 2, 3]. 0
has index 0. Our number thus starts as

(01??????)b

The remaining list is now [1, 2, 3] and 3 has index 2 on that list, so the number
continues as

(0120????)b

The remaining list is now [1,2]. 1 has index 0, and afterward 2 has index 0 so
the complete number is

(01200101)b

Finally lets translate the number into the decimal system using the ’Digit worth’
entries from Table 1.

(01200101)b = 0 · 96 + 1 · 48 + 2 · 16 + 0 · 8 + 0 · 4 + 1 · 2 + 0 · 2 + 1 · 1 = 83
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Notice how we have for every digit exactly as many choices as is the radix
for this digit. Therefore the dart numbers lie flush without gaps.

4.4 Involutions

We define the involutions by lookup-tables (LUT). The LUT maps a subpixel-
position to another subpixel-position as well as an offset to the pixel-position.
Because only αn leaves the n-cell i.e. the pixel, the offset is actually only required
for this single involution.

We thus define:

αi((p, s)) :=

{
(p, α∗

i (s)) i < n

(p + Δp(s), α∗
i (s)) i = n

where α∗
i and Δp are called lookup-tables.

Table 3. Lookup-tables for the 2D case corresponding to Fig. 2 as well as an imple-
mentation using bit-flipping magic on the binary representation. (The hat means bit
negation.)

s α∗
0(s) α∗

1(s) α∗
2(s) Δp(s)

0 1 4 2 (−1, 0)

1 0 6 3 (−1, 0)

2 3 5 0 (1, 0)

3 2 7 1 (1, 0)

4 5 0 6 (0, −1)

5 4 2 7 (0, −1)

6 7 1 4 (0, 1)

7 6 3 5 (0, 1)

abc abĉ âcb ab̂c N/A

But how can we define these lookup tables? Let us again turn to the Positional
Dart Description. First, notation: For i ∈ {0, . . . , n − 1}, let xi ∈ {0, . . . , n − 1}
be the axis that the i-cell is perpendicular to and Ii ∈ {↓, ↑} be the bottom-top-
indicator. Îi shall denote the opposite arrow of Ii itself. A general description
then looks like this:

xn−1In−1 . . . x1I1x0I0

– α∗
0: The involution α0 changes 0-cell while staying in the same i-cell for i > 0.

Thus the start of the description stays the same and only in the last part we
swap which side we are on. Thus:

α∗
0(xn−1In−1 . . . x1I1x0I0) = xn−1In−1 . . . x1I1x0Î0
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– α∗
i for 0 < i < n: The involution αi changes i-cell while staying in the same

j-cell for j �= i. Therefore the description before xiIi stays the same. The i-
cell changes, therefore xi must change. The original i-cell and the image i-cell
intersect in an (i−1)-cell. This (i−1)-cell is perpendicular to both axes xi and
xi−1. Therefore the image i cell is perpendicular to xi−1. This intersecting
(i − 1)-cell is now on the xi side of the image i-cell. xi and xi−1 therefore
swap places in the description. The arrows swap with them. Afterwards, we
are in the same (i−2)-cell and so on, so the suffix of the description does not
change as well.

α∗
i (. . . xiIixi−1Ii−1 . . .) = . . . xi−1Ii−1xiIi . . .

– α∗
n and Δp: The involution αn moves us from one n-cell to another, in par-

ticular the one that shares the same (n− 1)-cell. The orientation in regard to
the other axes does not change. The direction we move is dependent on In−1.
Therefore we find that:

α∗
n(xn−1In−1 . . . x1I1x0I0) = xn−1În−1 . . . x1I1x0I0

Δp(xn−1In−1 . . . x1I1x0I0) =

{
exn−1 In−1 =↑
−exn−1 In−1 =↓

where ek is the k-th unit vector.

Note that these definitions elegantly fulfil condition 2 and 3 of Definition 2.
Table 3 is generated with these definitions.

4.5 Labels

With the structure of the grid fully defined, we finally need to associate every
dart with a label. For a dart d = (p, s) we associate:

– If the pixel-position p is within the image, we associate the label from that
pixel in the image.

– Otherwise we associate an additionally created label not occurring in the
image called the Out-Of-Bounds-Label. By treating the OOBL as just another
label, we can avoid having to consider special cases on the boundary of the
image.

Going forward, we denote the set of labels including the OOBL as L and the
association between darts and labels as the function L : D → L.

5 Implicit Reductions and Contractions

Given an nGmap (D,α0, . . . , αn) and a label function L : D → L we want
to define new involutions βi and the set D′ such that (D,D′, β0, . . . , βn) is an
implicit nGmap. Note that the original nGmap doesn’t have to be the pixel-grid
from the previous section. All that is required is that the label function L is
consistent, meaning all darts from a n-cell map to the same label. We define the
β-functions iteratively from the highest dimension to the lowest and then discuss
finding an appropriate set of seed-darts D′.
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5.1 Defining βn

Recall the intuitive understanding of αn. It changes n-cell while staying in the
same i-cell for i < n. Since we don’t want to remove n-cells, but only merge
them later on, we can just define βn := αn.

5.2 Defining βn−1

L1L1

L3L2

dβ1(d)

Fig. 4. 2D Example: The grey 1-cell ought to be removed, as it has the same label
on both sides. The relevant involutions α1 and β2 are illustrated in blue and pink
respectively. (Color figure online)

Intuitively the involution αn−1 changes to a different (n − 1)-cell, but such
an (n−1)-cell may ought to be removed, if the labels on both sides are equal. In
this case, illustrated in Fig. 4, we would have to move past that (n− 1)-cell onto
the next one via αn−1 ◦ βn ◦ αn−1. Of course, it has to be checked if this next
(n − 1)-cell ought to be removed as well. We define the condition that describes
if the (n − 1)-cell cn−1(d) of a given dart d is removable:

Rn−1(d) :⇔ L(d) = L(βn(d))

With this, we can define the new involution:

βn−1 (d) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αn−1 (d)
if ¬Rn−1 (αn−1 (d))

αn−1 ◦ βn ◦ αn−1 (d)
elif ¬Rn−1 (αn−1 ◦ βn ◦ αn−1 (d))

αn−1 ◦ βn ◦ αn−1 ◦ βn ◦ αn−1 (d)
elif ¬Rn−1 (αn−1 ◦ βn ◦ αn−1 ◦ βn ◦ αn−1 (d))

. . .

(αn−1 ◦ βn)k ◦ αn−1 (d)

elif ¬Rn−1

(
(αn−1 ◦ βn)k ◦ αn−1 (d)

)
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The implicit nGmap (D,D′, α0, . . . , αn−2, βn−1, βn) represents an nGmap where
the pixels are merged into bigger n-cells according to their labels, but the (n − 1)-
cells are still the sides of a pixel. They can be simplified further.

5.3 Defining βi for i ≤ n − 2

d
d

Fig. 5. 2D Example: The left 0-cell is not removable, while the right 0-cell is removable.
On the right β1 ◦ β2 ◦ β1 ◦ β2 (d) loops back, which is not the case on the left.

For the next step, we need to simplify the (n − 2)-cells, which is accomplished
by an appropriate definition of βn−2. Further we also need to simplify the (n − 3)-
cells via βn−3 and so on. All of these steps are alike and follow the same definition.
For this we need to define when an i-cell is removable. This is only fulfilled if
the i-cell has two incident (i + 1)- cells. [4]

Ri (d) :⇔ ∀d′ ∈ 〈βi+2, . . . βn〉 (d) : d′ = βi+1 ◦ βi+2 ◦ βi+1 ◦ βi+2 (d′)

With this removability criterion illustrated in Fig. 5 we can define:

βi (d) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αi (d) if ¬Ri (αi (d))
αi ◦ βi+1 ◦ αi (d) elif ¬Ri (αi ◦ βi+1 ◦ αi (d))
αi ◦ βi+1 ◦ αi ◦ βi+1 ◦ αi (d) elif ¬Ri (αi ◦ βi+1 ◦ αi ◦ βi+1 ◦ αi (d))
. . .

(αi ◦ βi+1)
k ◦ αi (d) elif ¬Ri

(
(αi ◦ βi+1)

k ◦ αi (d)
)

The implicit nGmap (D,D′, α0, . . . , αn−3, βn−2, βn−1, βn) has simplified n-
cells and (n − 1)-cells, but still has non-simplified i-cells for i < n − 1. This
pattern continues until finally the implicit nGmap (D,D′, β0, . . . , βn) represents
the complete reduction of the image.

5.4 Finding Seed-Darts

To build the Construction of (D,D′, β0, . . . , βn) we need one seed-dart for each
connected component, since the orbit 〈β0, . . . , βn〉 of one dart in a connected
component cannot reach another connected component. If we know, like in our
example-case, the image shows only one connected component, a single seed-dart
suffices to create the nGmap for the whole image.

To find a suitable seed-dart we look for a dart d that is not removable at all:

∀i ∈ {0, . . . , n − 1} : ¬Ri (d)



Implicit Encoding and Simplification/Reduction of nGmaps 121

5.5 Construction

During the Construction, i.e. the traversal of the orbit of the seed darts, we
create an explicit nGmap. Every encountered implicit dart is associated with
an explicit dart. As explicit nGmap we used nGmaps from the CGAL [2]. This
explicit nGmap can now be used for further processing, simulations etc.

Optionally, if a bounded nGmap is demanded, the n-cell of the OOBL can
be removed. Notice how thanks to the OOBL there were no special cases dealing
with the border of the image.

5.6 Limitations

In certain cases the algorithm fails to detect every i-cell. In 3D we found two
such cases:

– If a region of one label is completely surrounded by another region, then the
2-cell separating them will erroneously get removed fully. However, this does
not occur in plant tissue, as biological cells neither float nor contain each
other.

– If two regions are touching and the 2-cell between them is surrounded by a
ring-shaped third region, the 2-cell does not get recognized and the first two
regions appear disconnected in the resulting 3Gmap. Sadly, this configuration
is common in our CT scans.

6 Results

Since the reduction happens implicitly, only the final nGmap needs to be explic-
itly processed. This means memory is only used for the Construction of the final
nGmap. This minimizes the necessary memory.

Furthermore, processing only the required minimum of darts allows the algo-
rithm to be fast. For example, a 5123 labeled image of a leaf cross-section takes
about 5 min to be processed on VSC4 (without multi-threading). A 4003 syn-
thetic image (203 checkerboard pattern) takes about 4 min.

In future work, the algorithm needs further refinement to mitigate limitations
mentioned in Sect. 5.6. Furthermore, the process could be parallelized to further
speed up computations. Finally, in-depth performance profiling and comparison
to other approaches should be conducted.

Acknowledgments. This project was supported by the Vienna Science and Technol-
ogy Fund (WWTF), project LS19-013. The computational results presented have been
achieved in part using the Vienna Scientific Cluster (VSC).
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Abstract. In this paper, we propose a geometry-aware topological anal-
ysis of a segmentation of an image into regions which might correspond,
for example, to a geographical map or to segmented cells in a micro-
scopic image of a biological packed tissue. The regions must satisfy that
the centroid of each one lies inside the region itself. We propose a novel
simplicial complex modeling such data, for persistent homology compu-
tation, that better respects the geometry of the regions than existing
techniques. More specifically, our approach joins benefits from previous
models by encoding both neighbouring relations between the regions, as
well as spatial distribution of the set of centroids. In addition, we intro-
duce geometric information regarding distances between centroids and
boundaries delimiting each region.

Keywords: Persistent homology · Segmentation map · Shape
descriptor of regions · Topological organization of regions

1 Introduction

A segmentation map is a partition of an image into different regions, each one
representing an object or a specific area on the image. In this paper, we are
inspired by the problem of analysing the organization of cells in a biological
packed tissue. The process of segmentation of a microscopic image of a packed
tissue into cells is usually based on edge detection that partitions the plane
into different regions. A well-founded idea in cellular biology is using Voronoi
diagrams built on the set of centroids of cells for estimating their morphology.
In [10], the authors evaluated the suitability of approximating the cells by such
a mathematical construction. More generally, the approximation of regions on a
map by Voronoi regions is a classical problem. In [13], a measure of the error of
the approximation was given.

There have been several works in the literature [1,2,9,14] analysing the orga-
nization of the cells using Topological Data Analysis (TDA) tools. In [9,14], the
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authors used a contact graph representing neighbouring relations between the
cells as ground for the analysis. In [1], they used, instead, alpha complexes, which
are constructed out of the set of centroids of the regions, to model the inner struc-
ture of the cells. By doing this, they were implicitly approximating the regions
of the cells by Voronoi regions of their centroids (see Fig. 1). In a more recent
work, [2], they use two different approaches: (1) topological analysis of the con-
tact graph constructed from neighbouring regions; (2) topological analysis of the
point cloud of centroids of the regions. Once persistent homology is computed
out of the generated complexes in each case, different topological features sum-
marising the corresponding outputs can be computed. We are concerned with
the design of a simplicial complex that models the regions in a segmentation
of the plane, capturing both neighbouring information and spatial distribution
of the centroids, while at the same time, saving geometric information related
to the shape of the regions. An effective construction will be described over a
labelled image representing a segmentation into regions of a subset of the plane
Ω = [0,M − 1] × [0, N − 1], with some constraints.

The paper is organized as follows: in Sect. 2, we introduce some fundamentals
of TDA; we define a new simplicial complex associated to a specific type of
segmentation into regions of a subset of the plane in Sect. 3; Sect. 4 will describe
the specific input labelled images to be processed, as well as the algorithm to
get the new complex out of them; some application examples will be shown in
Sect. 5; finally, some conclusions and future research lines are drawn in Sect. 6.

Fig. 1. Image of a cell tissue: cells are delimited in black; centroids of each region are
depicted in red; Voronoi region corresponding to the set of centrois in blue. (Color
figure online)

2 Tools from TDA

In this section, we recall the tools from Topological Data Analysis (TDA) used
in this paper. Main theoretical concepts may be consulted in [5].

Simplicial Complex and Filtration. An (abstract) simplicial complex K is formed
by a finite set V (whose elements are called vertices) together with a collection of
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subsets of V , called simplices of K, such that for all σ ∈ K and for all non-empty
σ′ ⊂ σ, σ′ ∈ K.

σ = {v0, . . . , vk} ∈ K is called a k-simplex or simplex of dimension k. Each
�-simplex contained in σ with � < k is called a face of σ. The dimension of a
simplicial complex is the maximum of the dimensions of its simplices.

A filtration over a simplicial complex K is a finite increasing sequence of
simplicial complexes

K1 ⊂ K2 ⊂ . . . ⊂ Kn = K.

This way, a partial ordering of all the simplices in a simplicial complex K pro-
duces a filtration over K whenever σ ⊂ μ implies that the order index of σ is
less or equal than the one of μ.

Sometimes, a filtration is defined using a monotonic function f : K → R such
that, for any two simplices σ, μ ∈ K, if σ is a face of μ, then f(σ) ≤ f(μ). That
way, if a1 ≤ . . . ≤ an are the function values of all the simplices in K, then the
subcomplexes Ki = f−1(−∞, ai], for i = 1 . . . n define a filtration over K.

Clique Complex. Given an undirected graph G with set of vertives V , the clique
complex X(G) is an abstract simplicial complex formed by the sets of vertices
in the cliques (complete subgraphs) of G. This way, each clique of k vertices of
G corresponds to a simplex of dimension k − 1 of X(G).

Vietoris-Rips Complex. Given a metric space (X, d), the Vietoris-Rips complex
for X associated to a parameter ε ∈ (0,+∞), VR(X, d, ε), is the simplicial
complex with vertex set X and k-simplices spanned by {x0, . . . , xk} whenever
d(xi, xj) ≤ ε for all 0 ≤ i, j ≤ k. Then, the Vietoris-Rips filtration is defined by
increasing the filter value ε.

Alpha Complex. Given a finite collection F of sets, the nerve of F [5], consists of
all non-empty subcollections whose sets have a non-empty common intersection,
that is,

Nrv F = {X ⊆ F :
⋂

X �= ∅}.
Notice that Nrv F is always an abstract simplicial complex.

The Nerve Theorem [3] states that if F is a finite collection of closed, convex
sets in Euclidean space, then Nrv F has the same homotopy type than

⋃ F .
Such a theoretical result provides the ground for the construction of the alpha
complex (see [5]).

A Voronoi diagram is a partitioning of the plane depending on a set of vertices
V = {v1, . . . , vn}: for each vertex vi, the Voronoi region Vi associated to vi is
given by

Vi = {x | d(vi, x) ≤ d(vj , x), ∀j = 1, · · · n, j �= i}.

That is, each region Vi is formed by points of the plane for which that vertex is
the closest point (see the first row of images in Fig. 3).
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Fixed a value α, consider Bi
α as the ball of center vi and radius α and

consider the region U i
α = Bi

α ∩ Vi. An alpha complex Kα is a simplicial complex
such that a k-simplex {v0 . . . vk} belongs to Kα when the intersection of the
regions U i

α = Bi
α ∩ Vi, ∀i = 0, · · · k, is not empty. If the vertices are in general

position in the plane, no k-simplex will arise with k greater than 2 and the final
simplicial complex is known as the Delaunay triangulation [5, p. 63]. See Fig. 3,
first row. Varying α, the simplicial complexes Kα induce a filtration over the
Delaunay triangulation called alpha filtration.

Persistent Homology and Barcodes. The concept of homology class, from alge-
braic topology, defines n-dimensional holes rigorously and computes them using
linear algebra (see [8] for rigorous definitions). Intuitively, 0-dimensional holes
are connected components, 1-dimensional holes are tunnels and 2-dimensional
holes are cavities. Persistent homology [6,15] is the main tool in TDA defined
for tracking the persistence or the lifetime (encoding birth and death moments)
of holes along a filtration. For example, in the case of an alpha complex con-
structed from a point cloud on the plane, 0-dimensional and 1-dimensional per-
sistent homology describe, respectively, the evolution of connected components
and holes of the collection of regions (intersection of Voronoi diagrams and balls)
as the balls radii increase. The persistence of each n-dimensional hole can be rep-
resented using an interval of the form [b, d], where b is the birth time, that is,
the index for which Kb is the simplicial complex (in the filtration) where the
hole first appears, and d is the death time, if Kd is the first simplicial complex
(in the filtration) where the hole disappears. If the hole remains until the final
simplicial complex, we write d = ∞. This codification in terms of intervals (or
bars) [b, d] is called the n-dimensional persistence barcode, n-barcode for short,
(see Fig. 2). A formal definition of homology and persistent homology together
with algorithms for computing it can be found in [5].

Fig. 2. Left: example of a filtration over a complex K = K4. Rigth: 0 and 1-barcodes
representing connected components and holes (in red and blue, respectively). (Color
figure online)

Notice that small perturbations on the boundary between regions would lead
to small perturbations on the positions of the centroids and the stability results
for persistent homology (see [4]) would imply small changes in the barcodes.
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Fig. 3. An example of simplicial complexes (in red) associated to a partition into
regions, each one, from left to right, corresponding to a higher value of the radius α.
Top row: alpha complexes (forgetting the real boundaries of the regions). Bottom row:
complexes associated to the regions. (Color figure online)

3 Simple Segmentation Complex

We set the definition of simple segmentation map on the plane and a filtration
that is inspired by the one of alpha complex. However, in this case, we cannot
guarantee that the Nerve Theorem is satisfied, so we have to prove that the
filtration is correctly built.

Definition 1. Consider Ω = [0, N − 1] × [0,M − 1] ⊂ R
2. We say that R =

{Rj}j=1,···n is a simple segmentation map of Ω if Ω =
⋃

j=1,···n Rj such that:

– each region Rj is homeomorphic to a disk, delimited by a boundary curve,
which is a Jordan curve, whose points are considered to be part of that region
as well;

– the centroids {c1, . . . , cn} lie inside each region;
– two regions have either empty intersection or they share a set of curve seg-

ments on the boundary of both regions (and we say then that they are neigh-
bour regions).

Notice that the regions may not be convex and that the intersection between
two regions may be formed by several disjoint curve segments.

Filtration Associated to a Simple Segmentation Map. We define now a filtered
simplicial complex associated to a simple segmentation map R.

Definition 2. Given a simple segmentation map, R, whose set of centroids is
{c1, . . . , cn}, consider Bα(ci) as the ball of center ci and radius α. For each α,
consider the region UR

α (ci) = Bα(ci) ∩ Ri and define the simplicial complex KR
α

with simplices {c1 . . . ck} ∈ KR
α when

⋂
i=1...k

UR
α (ci) �= ∅.



128 M.-J. Jimenez and B. Medrano

In other words, a simplex lies in KR
α when the intersection of balls with radius α

and centers its vertices with their corresponding regions (of which those vertices
are centroids) is not empty (see Fig. 3, bottom row).

Given a simple segmentation map R, the contact graph of R is a graph
whose vertices are the centroids of the regions of R and whose edges represent
neighbouring relations between regions. No multiple edges are allowed, even if
the intersection of two regions are two (or more) disjoint curve segments.

Proposition 1. Given a simple segmentation map, R, {KR
α }α is a filtration

over the simplicial complex generated as the clique complex of the contact graph
of the regions.

Proof. In order to prove that the filtration is well constructed, we only must
check that the minimum value α for which a simplex σ belongs to KR

α is always
greater than the minimum value β for which any of its proper faces μ belongs to
KR

β . Notice first, that all the vertices of the complex (the centroids) lie in KR
0 .

Assume that σ is a 2-simplex (associated to three regions R1, R2, R3) and μ a
1-simplex. Then α is the maximum distance from the three centroids c1, c2, c3 to
their intersection point P123. If μ represents, the neighbouring relation between
R1 and R2, then β is the minimum of the maxima values of the pairs of distances
of each point of the boundary curve to both centroids c1 and c2. Then, if α ≤ β,
since α > d(c1, P123) and α > d(c2, P123), that would mean that β > d(c1, P123)
and β > d(c2, P123), what is a contradiction (since P123 also belongs to the
boundary curve between R1 and R2). Since all the neighbouring relations of
more than 3 regions also occur due to one intersection point and the value of the
filter is given by the maximum distance to each centroid, then the statement is
true in all the cases. �

4 Labelled Images Representing Simple Segmentation
Maps and Associated Simplicial Complex

In order to put into practice the model that we propose, we constrain to the
setting of labelled images representing a simple segmentation map. In this section
we introduce first, the input images that we are going to process and later, we
set the algorithm that produces the filtered complex that will be the object of
study. For basic concepts of digital topology, see [12].

By labelled image we refer to a digital image L : D → {0, 1, 2, . . . ,m}, where
D = ([0,M − 1] × [0, N − 1]) ∩ Z

2, for given M and N , and the labels �i ∈
{0, 1, 2, . . . ,m}, have a specific meaning, such as the result of a segmentation
process.

Our input images are labelled images, as in Fig. 4 representing regions that
are bounded by boundary pixels. Notice that the regions “touching” first/last
row/column might correspond to regions that are not fully represented, so we will
consider them as non-valid regions. We are interested in computing a simplicial
complex representing the structure of valid regions.
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Fig. 4. Left: a labelled image. Each label has been assigned a gray level. Boundary
pixels have been drawn in white. Right: a portion of the labelled image containing,
partially, three different regions. Color is used only for visualization purposes. (Color
figure online)

We will assume that each region is bounded by a 4−connected curve with
no simple point [11]. Recall that a 4–connected curve is a closed path of pixels
that are 4−adjacent; a pixel is a simple point if the change of its value does not
change the topology of the image, that is, removing it from the boundary curve
(by changing its value to the label of the neighbour region), the boundary is
still a 4-connected curve. Hence, the deletion of a simple point of a 4–connected
curve still produces a 4–connected curve bounding the same region. If the set
of boundary pixels has simple points, then, a morphological thinning can be
accomplished to remove them (see, for example, [7], Ch. 9, p.660). We assume
that the regions are big enough so that their boundary pixels do not disconnect
them (there is no Jordan paradox).

Sometimes, a segmentation process provides a labelled image that partitions
the image in 4-connected regions with no holes, whose centroids lie inside each
region, but with no boundary pixels. Then, the set of boundary pixels could be
defined by: 1) taking those pixels having a 4-adjacent pixel with a different label;
2) thinning that set of pixels, so that it has no simple points for 4–connectivity.
We put all the constraints together to define our simplesegmentation image.

Definition 3. Let L : ([0,M − 1] × [0, N − 1]) ∩ Z
2 → {0, 1, 2, . . . ,m} be an

M × N labelled image. We will say that L is a simple segmentation image if it
is a union of sets of 4-connected pixels with the same label such that:

– labels {1, 2, . . . ,m} are assigned, each one, to a 4–connected component with
no holes, whose centroid lies inside the region;

– label 0 is assigned to a 4–connected component of pixels with no simple points,
called boundary pixels, with as many holes as regions with labels from 1 to
m and such that each region is bounded by a 4−connected curve of boundary
pixels.
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Taking into account that the boundary pixels delimiting each region are formed
by 4–connected paths, it is easy to check that in the intersection of exactly 3
regions (and not 4), there will be only one pixel whose 3 × 3 neighbourhood
contains pixels from the 3 regions, as in Fig. 4. In the case of 4 incident regions,
two cases may arise: (1) a 3 × 3 cross, where there would be 4 incident regions
(Fig. 5, left); (2) the configuration in Fig. 5, right, with 4 incident regions too.

Fig. 5. Left: A 3 × 3 cross configuration of boundary pixels (in grey) delimiting 4
different regions. Right: Configuration of pixels on the boundary (grey) containing a
2 × 2 block of boundary pixels. Pixels with a cross can lie either on the boundary or
not. (Color figure online)

Lemma 1. If there is a configuration of 2 × 2 pixels on the boundary, then, the
4×4 neighbourhood around those 2×2 pixels, will have the configuration of pixels
given in Fig. 5, on the right, and, hence, will contain 4 incident regions.

Proof. A thorough check of all cases shows that, first, any other configuration
in the 4 × 4 neighbourhood would contain a simple point in the set of boundary
pixels and also that if there were three (or fewer) incident regions, then, there
would be a simple point. �

See Fig. 5. The 3 × 3 neighbourhood of each pixel in the 2 × 2 configuration
will contain pixels with labels of, at most, two different regions. Thus, the 4
incident regions will be adjacent two by two. However, in this case, it seems
natural to consider that the four regions appearing in the 4 × 4 neighbourhood,
should be mutually adjacent. That way, we provide the following definition for
adjacency of regions (or neighbour regions):

Definition 4. Let L be a simple segmentation image. Then, we will say that
two regions with labels �1 and �2, are neighbour regions if either there is a 3 × 3
neighbourhood centered on a boundary pixel that contains pixels with labels �1
and �2 or there is a 2 × 2 configuration of boundary pixels such that the 4 × 4
neighbourhood centered on it contains pixels with labels �1 and �2.

Simplicial Complex Associated to a Simple Segmentation Image. We will use the
concept of neighbour regions defined above to construct a simplicial complex
out of the input labelled image, together with a filtration. Hence, each region is
represented by its centroid (as a vertex), pairs of adjacent regions will produce



Topological Analysis of Simple Segmentation Maps 131

Fig. 6. Illustration of Algorithm 1: {cmi}i=21,22,25 are centroids of regions of labels
i = 21, 22, 25 and {pi}i=1,...,4 sample boundary pixels. All the pixels {pi} belong to the
boundary between regions with labels 21 and 22. Their distances to the corresponding
centroids are: d(p1, cm21) = 31.18 and d(p1, cm22) = 18.39; d(p2, cm21) = 25.29 and
d(p2, cm22) = 17.87; d(p3, cm21) = 29.19 and d(p3, cm22) = 14.15; d(p4, cm21) = 30.67
and d(p4, cm22) = 14.28. Then, the filter value for the edge {21, 22} is 25.29, whenever
there is no other pixel on the boundary whose greater distance to one of both centroids
is lower than that amount. Finally, the pixel p4 lies on the boundary of regions 21,
22 and 25 and d(p4, cm25) = 24.01, so the triangle {21, 22, 25} is assigned filter value
30.67.

edges between them, triples of neighbour regions, triangles and configurations of
Fig. 5 will lead to tetrahedra in the simplicial complex. For that aim, we follow
the steps in Algorithm 1 to build a complex as well as a filtration (stored in F ):
roughly, run over all the boundary pixels and consider the centroids of labels
arising in the 3 × 3 neighbourhood E3(i, j) of each boundary pixel (i, j). When
there are two labels, consider the pair of distances to both centroids and take the
minimum between the greater distance of each pair of distances; when there are
3 or 4 labels, simply take the maximum distance for the filter value. See Fig. 6
for an illustration of the process. The 4×4 neighbourhood E4(i, j) is considered
only in exceptional cases of configuration as in Fig. 5 right.

Proposition 2. The list F of Algorithm1 produces a filtration over the simpli-
cial complex representing all the neighbouring relations as in Definition 4.

Proof. The proof follows the same argument as in Proposition 1. Notice that
now, the maximum number of incident regions is 4 by construction.

5 Discussion

Our method can be considered as an improvement of the alpha complex in the
case where the points in a point cloud on the plane have an associated region to
which the increasing balls have to be restricted.

In Fig. 7, top row, we can see that the 1-simplices of the simple segmentation
complex coincides with the contact graph, while in the case of the alpha complex



132 M.-J. Jimenez and B. Medrano

Algorithm 1. Computation of the Simple Segmentation complex
Input: A simple segmentation image L;

{�1, �2, . . . , �m} ← labels of valid regions;
{c1, c2, . . . , cm} ← centroids of valid regions;

Output: F ← a filtration over the simplicial complex representing neighbour regions
in L.

1: F ← { (ci, �i, 0)}i=1,...n

2: L ← { }
3: for each pixel (i, j) on the boundary do
4: L(i, j) ← {�1, �2, . . .} labels of regions in E3(i, j)
5: for each pair of labels {�k1, �k2} in L(i, j) do
6: dk1 ← d((i, j), ck1)
7: dk2 ← d((i, j), ck2)
8: if there is no other element in F containing {�k1, �k2} then
9: F ← F ∪ ((i, j), {�k1, �k2}, max{dk1, dk2})

10: else
11: if ((i′, j′), {�k1, �k2}, d′) ∈ F then
12: if d′ > max{dk1, dk2} then
13: Replace (i′, j′) by (i, j)
14: Replace d′ by max {dk1, dk2}
15: end if
16: end if
17: end if
18: end for
19: for each subset of three labels {�k1, �k2, �k3} in L(i, j) do
20: dkl ← d((i, j), ckl), for l = 1, 2, 3
21: if there is no other element in F containing {�k1, �k2, �k3} then
22: F ← F ∪ ((i, j), {�k1, �k2, �k3}, maxl{dkl})
23: else
24: if ((i′, j′), {�k1, �k2, �k3}, d′) ∈ F then
25: if d′ > maxl{dkl} then
26: Replace (i′, j′) by (i, j)
27: Replace d′ by maxl {dkl}
28: end if
29: end if
30: end if
31: end for
32: for each subset of four labels {�k1, �k2, �k3, �k4} in L(i, j) do
33: dkl ← d((i, j), ckl)
34: F ← F ∪ ((i, j), {�k1, �k2, �k3, �k4}, maxl{dkl})
35: end for
36: if the pixels (i + 1, j), (i, j + 1) and (i + 1, j + 1) are all boundary pixels too,

37: none of them from the zero padding, then
38: L(i, j) ← {�k1, �k2, �k3, �k4} labels of regions in E4(i, j)
39: dkl ← d((i + 1

2
, j + 1

2
), ckl)

40: F ← F ∪ ((i, j), {�k1, �k2, �k3, �k4}, maxl{dkl})
41: for all the combinations of three labels of L(i, j) (denoted by L3(i, j)) do
42: F ← F ∪ ((i, j), {�kl}kl∈L3(i,j), maxkl∈L3(i,j){dkl})
43: end for
44: end if
45: end for
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Fig. 7. Top left: contact graph representing neighbour regions. Top right: Delaunay
triangulation of the corresponding set of centroids. Bottom: 0 and 1-barcodes (in red
and blue, respectively) corresponding to the simple segmentation complex (left) and
alpha complex (right), built upon the graphs above. (Color figure online)

can include edges relating no neighbouring regions. Besides, the two holes that
are formed due to the presence of the biggest cells, which correspond to the
two longest blue bars in both barcodes, are more obvious in the barcode of our
complex (left).

Besides, in order to illustrate the fact that our method captures more infor-
mation about the geometry of the regions, we have applied it to different seg-
mentation images provided by some geometric tessellations (see Fig. 8). They
satisfy that: (1) each valid region has always the same number of neighbours;
(2) the spatial distribution of their centroids are also the same. Therefore, first,
the barcodes computed from the contact graph with a filtration given by the
number of neighbour regions will be the same; second, the three barcodes com-
puted from the Vietoris-Rips complexes upon the set of centroids, as well as the
ones obtained by the alpha complexes, are also exactly the same (middle row of
Fig. 8). However, as shown in Fig. 8, bottom row, our method provides barcodes
that can be considered as geometric and topological signatures that characterise
the tessellations. Some observations on Fig. 8: in the barcode from Vietoris-Rips
filtration, there are no holes since the moment at which the balls touch each other
two by two, the triangles are also added; in the case of the alpha complex, small
holes (blue bars) are born when the balls on the centroids touch each other two by
two and die when each three of them meet; when considering the intersection of
balls with the regions themselves (bottom row), the way in which they intersect
are different in each of the three tessellations, what is reflected in both 0 and 1-
barcodes. Supplementary material can be found in https://github.com/belenmg/
Simple-segmentation-maps/tree/main/Illustrations to illustrate the evolution of
the complexes.

https://github.com/belenmg/Simple-segmentation-maps/tree/main/Illustrations
https://github.com/belenmg/Simple-segmentation-maps/tree/main/Illustrations
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Fig. 8. Top row: three different tessellations of the plane with 18 valid regions. The
set of centroids of the 18 regions are identical in the three pictures. Middle row: 0 and
1-dimensional barcodes (in red and blue, respectively) computed from Vietoris-Rips
filtration (left) and alpha complex (right) of the set of centroids. Bottom row: from left
to right, 0 and 1-dimensional barcodes (in red and blue, respectively) computed from
the simple segmentation complex of each tessellation (from left to right). (Color figure
online)

6 Conclusions and Future Work

In this paper, we have introduced a novel filtered simplicial complex to model
the organization and shapes of regions in a simple segmentation image. This
complex is more geometric-aware than the ones used previously in the topo-
logical study of cells organization in packed tissues and its topological analysis
reveals a great potential to capture geometric properties of the regions. More
specifically, the persistence barcode that produces can detect regularity patterns
that are not captured by classical simplicial complexes. The authors intend to
explore applications in different fields like cellular biology, materials science or
crystallographic image processing.
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Abstract. A binary planar configuration A associates to each point in
Z
2 an element in {0, 1}. Provided a finite window probe P , we locally

inspect A by moving P in all its possible positions and counting the 1s
elements that fit inside it. In case all the computed values have the same
value k, then we say that A is k-homogeneous w.r.t. P . A recent con-
jecture states that a binary planar configuration is k-homogeneous with
respect to an exact polyomino P , i.e., a polyomino that tiles the plane
by translation, if and only if it can be decomposed into k configurations
that are 1-homogeneous with respect to P . In this paper we define a
class of exact polyominoes called perfect pseudo-squares (PPS) and we
investigate the periodicity behaviors of the homogeneous configurations
that are related to them. Then, we show that some elements in PPS
allow 2-homogeneous or 3-homogeneous non-decomposable planar con-
figurations, so providing evidence that the conjecture does not hold for
the whole class of exact polyominoes.

Keywords: Discrete tomography · Discrete geometry · Tiling · Exact
tile
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1 Introduction

The study of structural properties of binary planar configurations of Z
2 by

inspecting them through a finite size window is a longstanding problem both in
Combinatorics and Discrete Geometry. In particular, it is strictly related with
the notion of planar periodicity, as an example in terms of different configura-
tions that appear in the window, as stated by the Morse-Hedlund theorem in
[10] and in [12] and successive studies, and with the notion of patterns detec-
tion and reconstruction [7,8], so intersecting the main topics of the wide area of
Computerized and Discrete Tomography and with the notion of planar tilings.

Our researches focus on this last connection and base on the studies by M.
Nivat and co-authors in [2,7,12] about homogeneous configurations that may be
revealed inspecting a binary planar configuration according to a chosen window
probe, later deepened and generalized in [1,3,4].
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More specifically, provided a binary planar configuration A of Z2 and a win-
dow probe P , usually a finite 4-connected set of points called polyomino, we
move P in all possible positions of A and count the sum of the visible points,
i.e., the number of elements 1s that fit inside the probe. If the obtained values
have a constant value k, with k ranging from 0 to the area of P , then the configu-
ration A is said to be k-homogeneous w.r.t. P , and its elements show interesting
periodical behaviors. In [2], it is also observed that only exact polyominoes, i.e.,
polyominoes that tile the plane by translation, allow 1-homogeneous configura-
tions. Details on the characterization and geometrical properties of exact sets
are in [2].

Furthermore, in case of specific exact polyominoes, called decomposable, a
decomposition theorem also holds, which allows us to split each k-homogeneous
configuration A into k sub-configurations that are 1-homogeneous. In particu-
lar, in [7,11], the authors obtain the result for rectangular polyominoes. Later,
in [1], the class is extended including diamonds and all those exact polyominoes
that are balls in a generalized norm L1 of Z2. The authors of [7] finally conjec-
tured that a binary planar configuration is k-homogeneous with respect to an
exact polyomino P if and only if it can be decomposed into k disjoint configura-
tions that are 1-homogeneous. Moving from that, we define the class of perfect
pseudo-squares polyominoes, PPS, and we investigate the periodical behavior
of the homogeneous planar configurations induced by their tilings. Then, we
detect some elements of PPS that allow 2-homogeneous or 3-homogeneous non-
decomposable planar configurations. So, we provide evidence that the conjec-
ture in [7] does not hold, in general, for the whole class of exact polyominoes.
A remarkable fact is that the computed non-decomposable configurations still
show a periodical behaviour, which is different from that one characteristic of
the tilings of the related exact polyominoes. Finally, some new research lines
that come out from our investigation are pointed out.

2 Definitions and Previous Results

In this section we provide basic notions concerning exact polyominoes and tilings,
and recall some previous results useful in the sequel.

A polyomino is a finite subset of the square-lattice Z
2 whose points are 4-

connected. Furthermore, we consider polyominoes that have no holes, i.e., whose
boundary is a single (closed) non intersecting path. The length n of the bound-
ary path defines the perimeter of the polyomino, and is always even since the
boundary is closed. The boundary of a polyomino P can be coded through the
Freeman chain code [5,6] as a word on the 4-letters alphabet Σ = {N, S,E,W},
so that each letter represents a step in the directions North, South, East and
West, respectively. We decide to consider the boundary word wP obtained by
travelling the polyomino P clockwise, and up to circular shifts of its letters. To
avoid ambiguities, we consider the word wP to start in the lower-left point of
the polyomino boundary. Figure 1 shows three polyominoes with the standard
representation as a set of cells on a squared surface, and their Freeman coding
(the starting point of the coding is also highlighted).
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Σ∗ is the set of all the finite words defined on the alphabet Σ, with ε ∈ Σ∗

the empty word, and let us indicate the opposite directions N and S (E and W,
respectively) as conjugate letters.

We define three operators on a word w = w1w2 . . . wn ∈ Σ∗:

1. the conjugate of w, w̄, is the word obtained by replacing each letter of w with
its conjugate;

2. the reversal of w, Rev(w), defined as Rev(w) = wnwn−1 . . . w1;
3. the composition of the previous operations, ŵ = Rev(w̄).

We further introduce the notation |w|x to point out the occurrences of the
letter x in the word w. We finally remind that a word w ∈ Σ∗ is periodic if there
exist a non-empty word u ∈ Σ∗ and k ≥ 2 such that w = uk, where uk stays for
the concatenation of k copies of the word itself, uk = uu . . . u.

We will focus on the so called exact polyominoes, or tiles, defined in [2] as
those polyominoes that tile the plane by translation. A tiling of the plane by a
polyomino P is defined as a set of non-overlapping translated copies of P that
covers all the plane; we indicate a tiling of the plane with P by TP . An example
of tiling is provided in Fig. 2. We highlight the following

Property 1. A polyomino P tiles the plane by translation if and only if it can
be surrounded with copies of itself.

Beauquier and Nivat characterized exact polyominoes in relation to their
boundary word, providing the following result.

Theorem 1 ([2]). A polyomino P is exact if and only if there exist x1, x2, x3 ∈
Σ∗ such that

wP = x1x2x3x̂1x̂2x̂3,

where at most one of the words is empty. This factorization may be not unique.

We will refer to this decomposition as a BN-factorization. The terms xi

and x̂i, for i = 1, 2, 3, define the translations of the polyomino P in Z
2. These

translations completely define the tiling we obtain.
Starting from their BN-factorization, exact polyominoes can be further

divided in two classes: pseudo-hexagons, if x1, x2 and x3 are all non-empty words,
and pseudo-squares, if one of the words is empty. The name is due to the fact that
the polyomino can be surrounded with six (respectively, four) copies of itself, in
reference to the respective regular polygons.

Remark 1. Since the BN-factorization of wP is not unique, then a polyomino
can tile the plane both as a pseudo-square and as a pseudo-hexagon. For exam-
ple, the polyomino depicted in Fig. 1c, wP = NWNWNEESESESWW, is both a
pseudo-square and a pseudo-hexagon, w.r.t. the BN-factorizations

wP = (NWNWN)(EE)(SESES)(WW),
wP = (NWNWN)(E)(E)(SESES)(W)(W).
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(a) (b) (c)

Fig. 1. Three examples of exact polyominoes, with the corresponding BN-
factorizations. The factors xi are highlighted on the boundary of the polyomino with
small dots. Different colors of dots refer to different factorizations (if any).

By Property 1, we can observe that the configuration TP is periodic, i.e., there
exist one or two linearly independent vectors vi such that the tiling is invariant by
translation along their directions (see [2])1. We define the set DTP

= {vi} as the
set of the directions of periodicity of the tiling TP . The directions of periodicity
of TP can be deduced from the BN-factorization of the polyomino that induces
that tiling (see Proposition 4). We remind again that different factorizations of
the word wP induce different tilings, and consequently different sets of directions
of periodicity. In particular,

Theorem 2 ([3]). An exact polyomino tiles the plane as pseudo-square in at
most two distinct ways.

3 The Class of Perfect Pseudo-squares and Their
Properties

In this section we will focus our attention on the different classes of exact poly-
ominoes.

Exact polyominoes can be characterized in subclasses, w.r.t. some properties
of their boundary word. These properties reflect in some geometrical features
and in the tilings induced by the polyomino. We define at first the class of the
perfect pseudo-squares, PPS, as the set of the exact polyominoes that are pseudo-
squares but are not pseudo-hexagons. As arises from their BN-factorizations, the
polyominoes depicted in Fig. 1(a) and Fig. 1(b) are examples of perfect pseudo-
squares.

Proposition 1. Given a pseudo-square wP = x1x2x̂1x̂2, if x1 or x2 is periodic,
then P /∈ PPS.
1 In this study, we include in the class of periodic tilings also those called half-periodic

in [2].
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Proof. By contradiction. Let us suppose without loss of generality that x1 is
periodic. Then x1 = uk for some non-empty word u and k ≥ 2. Consequently,
x̂1 = ûk by definition of the operator. We can decompose x1 as x1 = uuk−1,
getting the following BN-factorization of the boundary word of P ,

wP = uuk−1x2ûûk−1x̂2.

We obtained a BN-factorization of wP in three non-empty factors, i.e., P is
also a pseudo-hexagon, in contradiction with the definition of perfect pseudo-
square. ��

The condition stated in Proposition 1 does not allow to characterize the
class of perfect pseudo-squares. Indeed, if we consider the BN-factorization of a
pseudo-square P , the periodicity of one of its factors is sufficient to state that
P is not perfect, but is not necessary as shown below.

Example 1. The pseudo-square wP = (NNWNN)(ENENE)(SSESS)(WSWSW)

is not perfect, since it admits a second BN-factorization as a pseudo-hexagon,

wP = (N)(NENEN)(ESSE)(S)(SWSWS)(WNNW).

Nevertheless, in its BN-factorization as a pseudo-square, none of the factors
is periodic.

We will focus on the properties of the tilings obtained with perfect pseudo-
squares. A first property directly follows from Theorem 2.

Proposition 2. A perfect pseudo-square tiles the plane in at most two distinct
ways.

Fig. 2. A double square with its possible tilings. The directions of periodicity are
{(1, 2), (2,−1)} (on the left) and {(−1, 2), (2, 1)} (on the right).

Figure 2 shows an example of double tiling of the plane induced by two dif-
ferent BN-factorizations of the same perfect pseudo-square.

As a consequence, the boundary word of a perfect pseudo-square admits at
most two distinct BN-factorizations. We indicate the tiles that admit a double
factorization as double squares. This definition is motivated by the following
result, stating that the BN-factorizations of a double square must alternate.
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Lemma 1 ([4]). If the boundary word of an exact polyomino satisfies
x1x2x̂1x̂2 ≡d y1y2ŷ1ŷ2, with 0 ≤ d ≤ |x1| and {x1, x2, x̂1, x̂2} �= {y1, y2, ŷ1, ŷ2},
then the factorization must alternate, i.e., 0 < d < |x1| < d + |y1|.

The notation x ≡d y means that the word x equals the circular shift of the
word y of d letters, while | · | stands for the length of the word. The above result
leads to the following.

Proposition 3. Let P be a perfect pseudo-square. Each possible tiling TP has
two directions of periodicity.

Proof. By contradiction. Let us suppose that there exists a tile TP with one only
direction of periodicity. Since a tiling obtained by the same BN-factorization
of all its tiles has two directions of periodicity (indicated as regular tiling in
[2]), then there exists at least one tile in TP whose border is factorized with
factors from both its two (according to Theorem 2) possible pseudo-square
BN-factorizations. Lemma 1 states that the two BN-factorizations of a per-
fect pseudo-square are shifted and arranged so that there do not exist common
starting or ending points in their factors, so they can not occur in the same tile
factorization, reaching a contradiction. ��

So, in case of perfect pseudo-squares, we will use the term couple(s) of direc-
tions of periodicity.

Example 2. The polyomino depicted in Fig. 1(b) is a double square. Its couples
of directions of periodicity are {(−1, 2), (3, 2)} and {(2,−1), (−2, 3)}. On the
other hand, the perfect pseudo-square in Fig. 1(a) is not double, and admits only
one couple of directions of periodicity, {(−1, 4), (2, 1)}.

The couple(s) of directions of periodicity of P can be computed starting from
wP and its BN-factorization(s). Indeed, we remind that the factors x1 and x2

uniquely identify the translations of the polyomino that define the tiling, thus
allowing to determine the couple of directions of periodicity of the tiling itself.

Proposition 4. Let us consider P a perfect pseudo-square and wP = x1x2x̂1x̂2

a BN-factorization. Each factor xi, with i = 1, 2, defines a direction of periodicity
in the related tiling, vi = (|xi|E − |xi|W, |xi|N − |xi|S).
Proof. Let us consider the factor x2. We remind that it defines a side of the
boundary of P that matches with the corresponding side x̂2 for one copy of P
in the tiling, i.e., it identifies a translation of the polyomino in Z

2. The direction
of translation is provided by the steps along the side x1 of the polyomino, i.e.
the steps of one path leading from x2 to x̂2 in the BN-decomposition of the
tile boundary. So, the horizontal component of the direction of periodicity can
be computed as the difference between E and W steps in x1, i.e. |x1|E − |x1|W.
Analogously, the vertical component of the direction of periodicity can be com-
puted as the difference between N and S steps in x1, i.e. |x1|N − |x1|S. The same
reasoning can be used to obtain the direction v2 from the factor x2. ��
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The result can be extended to compute the directions of periodicity of each
tiling, regardless the class of the exact polyomino that induces it.

BN-factorizations of tiles that are both pseudo-square and pseudo-hexagon

For sake of completeness we provide the mutual position of BN-factorizations
of those tiles that are both pseudo-square and pseudo-hexagon. The following
propositions hold.

Proposition 5 [9]. Let x and z be two non-empty words and y be a word such
that xy = yz. Then there exist unique words u and v and a unique integer i ≥ 0
such that x = uv, y = (uv)iu and z = vu.

Proposition 6. Let P be an exact polyomino that admits two different BN-
factorizations, as pseudo-square, say wP = x1x2x̂1x̂2, and as pseudo-hexagon,
say w′

P = y1y2y3ŷ1ŷ2ŷ3, such that wP ≡d w′
P , with 0 ≤ d ≤ |x1|. The following

cases only arise:

i) the two factorizations are such that

x1x2x̂1x̂2 = y1y2x2ŷ1ŷ2x̂2,

and so d = 0. In this case the word x1 is periodic.
ii) the two factorizations are such that

x1x2x̂1x̂2 ≡d y1y2y3ŷ1ŷ2ŷ3

with d �= 0, and no two factors in wP and w′
P start in the same point.

Proof. Regarding case i), an example is the polyomino in Remark 1. The peri-
odicity of x1 directly follows from Proposition 5.

An example of the configuration of case ii) is the polyomino provided in
Example 1.

One further possible arrangement of the two factorizations is left, i.e.,
x1x2x̂1x̂2 = y1y2y3ŷ1ŷ2ŷ3, again with d = 0, and such that x1 �= y1y2. From
Proposition 5, we get the periodicity of x1x2. So the boundary of the polyomino
degenerates into a single line, and the case never occurs. ��

Cases i) and ii) of Proposition 6 also differ in the number of directions of
periodicity generated by the tilings. As a matter of fact, if the tiling is obtained
as a pseudo-square, there always exist two directions of periodicity (see Propo-
sition 3). On the other hand, when the tiling is obtained as a pseudo-hexagon,
it holds that

1. in case i) of Proposition 6 there exists only one direction of periodicity, i.e.,
the direction computed from x2. A second direction of periodicity is prevented
by the possible non-regularity of the tiling in the sense of [2];

2. in case ii) of Proposition 6 there exists two directions of periodicity, that can
be computed from the factors yi of the BN-factorization. This follows after
observing that the generated tiling is always regular (see [2]).
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We conclude this section with the following

Theorem 3. The class of pseudo-hexagons, PH, and the class of double
squares, DS, are such that PH ∩ DS = ∅, i.e. DS ⊂ PPS.

The method used in Theorem 1 of [3] can be adapted to obtain the proof, as
observed by the authors.

4 Homogeneous Non-decomposable Configurations

In this section we introduce the notion of configuration of the plane and a related
conjecture expressed in [7]. We further recall some previous results that support
this conjecture in some specific cases, and finally provide counterexamples to
prove that it does not hold in general.

We define a configuration of the plane as a subset A of points of the dis-
crete plane Z

2. We will consider the plane as a binary configuration in which
the element 1 indicates the presence of a point of the subset A, while 0 indicates
its absence. We adopt, for the binary planar configurations, a definition of peri-
odicity similar to that on tilings: a configuration A is called periodic w.r.t. the
vector v if it holds that a ∈ A if and only if a + v ∈ A, where a + v stands for
a translation of the point a along the direction v. We underline that if a config-
uration is periodic, then the subset A is infinite. We want to study the planar
configurations by progressively inspecting them through a polyomino W , called
window, that, moving by translation, allows to reveal from place to place a finite
number of points of the binary configuration, in accordance to its dimension.

We point out that the scan of the plane with a window is a generalization
of the concept of linear projection on a finite set of points: in this case, we
do not collect quantitative data of the set along a direction, but we scan the
configuration through a two-dimensional object. We highlight that the value of
these scans can only vary from 0 to w, with w the area of the window, i.e. the
number of discrete points that constitute the polyomino W .

Given a configuration A and a window W , we say that A is k-homogeneous
w.r.t. W if each scan has value k, in other words, the window W reveals exactly
k elements of the configuration A for each possible position in the plane. In [11]
it was proved that there exists a 1-homogeneous configuration w.r.t. W if and
only if W is an exact polyomino. Moreover, in this case the configuration turns
out to be periodic w.r.t. the directions of periodicity of W .

The k-homogeneous configurations raise interest when k ≥ 2. In [11] it is
proved that if the window W is a rectangle, then each k-homogeneous configura-
tion can be split into k disjoint 1-homogeneous (periodic) ones. In [7], the authors
conjectured that this decomposition result can be extended to each window W
that is an exact polyomino.

Conjecture 1: if W is an exact polyomino and the configuration A is k-
homogeneous w.r.t. the window W , then there exist k disjoint configurations
A1, . . . , Ak such that Ai is 1-homogeneous for each i, and A =

⋃k
i=1 Ai.
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Finally, in [1], the authors extended the decomposition to the diamond poly-
ominoes, and then to all the exact polyominoes that are open sets in a generalized
norm L1 of Z2. With the aim of providing experimental evidence to the conjec-
ture, we define the algorithm Exh-Dec that takes as input a perfect pseudo-square
polyomino W and an integer k, and checks the possibility of decomposing all
the possible k-homogeneous configurations w.r.t. W .

Exh-Dec is a simple brute force algorithm that acts in two phases: first, it
recursively generates all the possible k-homogeneous configurations w.r.t. W ,
and then it proceeds in the decomposition of each of them into k disjoint 1-
homogeneous configurations. Since W is a perfect pseudo-square polyomino,
then, by [2] and Proposition 4, each 1-homogeneous configuration can be iden-
tified by means of a couple of directions of periodicity computed from its BN-
factorizations.

We sketch below the main steps of the two phases of Exh-Dec.

Generation of k-homogeneous configurations

Input: a perfect pseudo-square W of area w and a homogeneity value k ∈
{1, 2, . . . , w}.

Step 1: Create a void matrix A, whose dimensions include the input tile and
four surrounding copies of itself, that provide the pattern of the planar tiling.
This matrix will simulate the configuration in the discrete plane Z

2;
Step 2: place the window W in the center of A and insert in W all the possible

binary configurations having k elements 1. For each configuration start a
different line of computation;

Step 3: move W in A of a single (discrete) step at a time, reaching all the
non already visited positions. For each new position, change the non already
assigned elements of W in all possible ways in order to obtain a configuration
with k elements 1. If no such assignment is allowed, then prune the line of
computation. For each remaining different configuration start a new line of
computation;

Step 4: for each line of computation, repeat Step 3 until reaching the border of
A;

Output: provide as output the remaining k-homogeneous configurations A.

Some remarks:

1. Usually most of the lines of computation are pruned. The reason lies in the fact
that, after the first few steps, each k-homogeneous configuration has a well
defined placement of the elements in order to keep the required homogeneity;

2. Since A is finite, the k-homogeneity may be lost while approaching to its
borders. This will not impact the following phase, since A can be chosen huge
enough to ignore border phenomena.

Decomposition
In this second phase, we use the periodicity of a tiling by W to decompose each
computed k-homogeneous configuration. Since W is perfect pseudo-square, then
Proposition 3 assures that its tilings by translation have one or two couples of
directions of periodicity.
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Input: a perfect pseudo-square W and a configuration A that is k-homogeneous
w.r.t. W .

Step 1: compute the couple(s) of directions of periodicity u and v of W ;
Step 2: starting from a randomly chosen element x = 1 of A, detect the elements

of A that form with x a periodical configuration either w.r.t. u or to v. Update
A by removing the obtained configuration;

Step 3: repeat Step 2 for k times and check that all the elements are removed
from A. If so, then A has been decomposed into k disjoint 1-homogeneous
configurations. Otherwise, the configuration is non-decomposable;

Output: flag for the success or failure of the decomposition process.

If Exh-Dec successfully performs the decomposition of all the computed k-
homogeneous configurations for each possible k = 1, . . . , w, then we have the
experimental evidence that the decomposition theorem holds for the chosen tile
W of area w.

On the other hand, if we find a k-homogeneous configuration that is not
periodic w.r.t. W , then the decomposition fails. In this case, we say that the tile
W is k-non-decomposable or simply non-decomposable.

We underline that the procedure Exh-Dec deeply relies on the fact that W
is a perfect pseudo-square in the detection of the periodical 1-homogeneous con-
figurations that decompose A. A generalized version of the algorithm can be
defined keeping in mind that the couples of directions of periodicity may reduce
to one single direction in case of non-regular tilings, as observed in [2].

Experimental Results

Hereafter we briefly report the results obtained after the exhaustive generation
of all the perfect pseudo-squares with perimeter n ranging from 10 to 22, and
the performances of Exh-Dec on them. Then, we highlight four polyominoes
that are non-decomposable, and we provide one of the related homogeneous
configurations.

The results of the exhaustive computation up to perimeter n = 16 are
shown in Table 1, together with their BN-factorization as a square and the
related couple of directions of periodicity. In case of double square, both the
BN-factorizations and the two couples of directions of periodicity are provided.

We point out that there exists one single double square of perimeter n = 12,
i.e., the polyomino in Fig. 2, and one single of perimeter n = 16, while no double
squares exist of perimeter n = 14.

Moving to greater perimeter, the following statistics hold (up to rotations
and symmetry):

n = 18: there exist 90 perfect pseudo-squares and one double square;
n = 20: there exist 273 perfect pseudo-squares and 3 double squares;
n = 22: there exist 836 perfect pseudo-squares, none of which is a double square.

Concerning the decomposability of the computed perfect pseudo-square poly-
ominoes, Exh-Dec decomposes all of them up to perimeter n = 18 and homo-
geneity value k = 2. This result partially supports Conjecture 1.
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Table 1. List of all the perfect pseudo-squares with perimeter 12 ≤ n ≤ 16
(exhaustively generated), and their couples of directions of periodicity. The two BN-
factorizations of the double square polyominoes are grouped.

Boundary word Perimeter Directions of periodicity

NWN|ENE|SES|WSW 12 {(−1, 2), (2, 1)} {(1, 2), (2,−1)}
NEN|ESE|SWS|WNW

NNWN|ENE|SESS|WSW 14 {(−1, 3), (2, 1)} //

NNNWN|ENE|SESSS|WSW 16 {(−1, 4), (2, 1)} //

NNWN|ENNE|SESS|WSSW 16 {(−1, 3), (2, 2)} //

NNEN|ENEE|SWSS|WWSW 16 {(1, 3), (3, 1)} //

NNWN|ENEE|SESS|WWSW 16 {(−1, 3), (3, 1)} //

NWN|ENNEE|SES|WWSSW 16 {(−1, 2), (3, 2)} //

NWN|ENENE|SES|WSWSW 16 {(−1, 2), (3, 2)} {(2,−1), (−2,−3)}
ESE|SWSWS|WNW|NENEN

NWWN|ENNE|SEES|WSSW 16 {(−2, 2), (2, 2)} //

Increasing the perimeter of perfect pseudo-squares to n = 20, we unexpect-
edly found a counterexample to Conjecture 1. More precisely, we found a per-
fect pseudo-square W ′, and a specific configuration of the plane A′, that is
2-homogeneous w.r.t. W ′ and it does not allow a decomposition into two 1-
homogeneous configurations (see Fig. 3). We also observe that A′ shows a peri-
odical pattern different from that one obtained from the couples of periodicity
related to W ′. Figure 3 shows the polyomino W ′ and the configuration A′.

It is easy to check that the configuration depicted in Fig. 3 is 2-homogeneous
w.r.t. W ′. To check the failure of the decomposition procedure, let us consider
two disjoint configurations, A1 (circled elements) and A2 (squared elements).
We start by labelling the elements in the scan in Fig. 3(a). Then we move the
polyomino step by step as shown in the scans of Fig. 3 from (b) to (d), labelling
the internal elements so that no two elements of the same configuration lie in the
scan. We point out that each scan from (b) to (d) has one single possible label
for the inside elements. Finally, in Fig. 3(e), we obtain a scan with two elements
belonging to the same configuration A2, so preventing its 1-homogeneity.

As already pointed out, A′ is also periodic w.r.t. a couple of directions that
does not correspond to the directions related to W ′.

As a matter of fact, there exist three other perfect pseudo-squares of perime-
ter n = 20 that are 2-non-decomposable. These polyominoes are depicted in
Fig. 4 (for brevity sake we omit the related configurations). It is interesting to
note that the four perfect pseudo-square polyominoes have different shapes, sug-
gesting that there could be several different classes of exact polyominoes where
the decomposition theorem does not hold. This remark opens a new, interesting
research line.

We end the report of our experimental results by showing another surprising
example of the exact polyomino W ′′, of perimeter n = 24, that is 2-decomposable
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Fig. 3. The steps of the decomposition procedure of the configuration A′ that is
2-homogeneous w.r.t. the polyomino W ′. In (e) the scan that provides the non-
decomposability is shown.

and 3-non-decomposable (see Fig. 5). This last example rises interest in finding
a connection between the shape of an exact polyomino and the allowed values
of k for its decomposability.

5 Discussion and Open Problems

In this work we consider exact polyominoes and the tilings they allow on the
discrete plane Z

2, with the aim of investigating a related conjecture, here Con-
jecture 1, stated in [7] and concerning the existence of a decomposition theorem
for homogeneous configurations related to exact polyominoes.

In the first part of the paper, we recall the main definitions about exact poly-
ominoes, we define the class PPS of perfect pseudo-squares and we prove some
useful properties. We underline that the boundary word identifies the charac-
teristics of an exact polyomino and the properties of the related tilings. So, we
restrict the study of Conjecture 1 to the class PPS, and we perform experimental
tests on them.

We found unexpected results that give evidence that Conjecture 1 does not
hold in general. In particular, we stress that a decomposition theorem can not
be obtained for some elements of PPS from perimeter n = 20 on, since for the
first value k = 2 of homogeneity. As a matter of fact, k = 2 can be regarded as
the simplest instance of the conjectured decomposition theorem.
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Fig. 4. The smallest (w.r.t. the perimeter) four perfect pseudo-squares that allow a
2-homogeneous non-decomposable configuration.

Fig. 5. A 3-homogeneous configuration w.r.t. the perfect pseudo-square W ′′ =
(NNEN)(EENEESEE)(SWSS)(WWNWWSWW), of perimeter n = 24. The decom-
position procedure fails in the circled elements on the right scan.

Going forward, we found the exact polyomino W ′′ of greater perimeter that
shows a different behavior: it is decomposable w.r.t. all its 2-homogeneous con-
figurations, while there exists a 3-homogeneous configuration that turns out
to be non-decomposable. This result outcomes to be relevant in defining some
sub-classes of PPS where the decomposability is related to the index k of the
k-homogeneous configurations.

Several new problems arise from our researches. Among them:

i) it could be interesting to extend the study of the non-decomposability of
homogeneous configurations to a generic exact polyomino. Obviously, this
investigation has to consider that a tile can generate non-regular tilings,
preventing, in that cases, the presence of a couple of directions of periodicity
in the homogeneous configurations;

ii) the characterization of the perfect pseudo-square polyominoes that are non-
decomposable is also left as open problem. At a first sight, the few small
ones detected seem to have no common characteristics both in their shapes,
in their BN-factorizations, and in the index k of k-homogeneity of the non-
decomposable configurations. This fact may imply that more than one class
of non-decomposable polyominoes could be defined;

iii) it could be suitable to deepen the study of the periodicity of the homoge-
neous configurations related to non-decomposable perfect pseudo-squares.
In fact, it is observed that those configurations show a couple of directions
of periodicity that are different from those ones that can be computed from
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the considered tile. It is also curious that quite often one among the hori-
zontal and vertical directions (sometimes both) is present.
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Abstract. One of the most interesting and challenging problems in Dis-
crete Tomography concerns the faithful reconstruction of an unknown
finite discrete set from its horizontal and vertical projections. The com-
putational complexity of this problem has been considered and solved in
case of horizontal and vertical convex polyominoes, by coding the possi-
ble solutions through a 2-SAT formula. On the other hand, the problem
is still open in case of (full) convex polyominoes. As a matter of fact,
the previous polynomial-time reconstruction strategy does not naturally
generalize to them. In particular, it has been observed that the convex-
ity constraint on polyominoes involves, in general, a k-SAT formula ϕ,
preventing, up to now, the polynomiality of the entire process, assuming
that P �= NP . Our studies focus on the clauses of ϕ. We show that they
can be reduced to 2-SAT or 3-SAT only and that a subset of the vari-
ables involved in the reconstruction may appear in the 3-SAT clauses of
ϕ, thus detecting some situations that lead to a polynomial time recon-
struction. Some examples of situations where 3-SAT formulas arise are
also provided.

Keywords: Discrete tomography · Reconstruction · SAT formulas

1 Introduction

Discrete Tomography concerns the retrieval of geometrical information about the
internal (and so sometime inaccessible) structure of combinatorial objects from
quantitative measurements of their primary constituents along linear (or multidi-
mensional, in general) subspaces. These measurements are usually addressed as
projections. The involved combinatorial objects may vary from generic discrete
sets to constrained ones as graphs or hypergraphs [12,14]. Among the studied
problems in discrete tomography, we find the retrieval of necessary and sufficient
conditions for a pair of vectors to be the horizontal and vertical projections of an
m×n binary matrix. Since, in general, the number of matrices sharing the same
projections grows exponentially with their dimension, in most applications some
further information are needed to obtain a solution as close as possible to the
original object. Research tackle the algorithmic challenges of limiting the class of
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possible solutions in different ways, e.g. increasing the number of projections or
adding geometrical information. Among connected (finite) sets a dominant role
deserved polyominoes, that are 4−connected sets of points of the integer lattice,
considered up to translation.

In [1] the authors present an algorithm (called, from now on, HV Rec) to recon-
struct hv-convex set in polynomial time starting from their horizontal and vertical
projections. Note that the term polynomial is here referred to as a deterministic
polynomial computation. This algorithm consists of two separate parts: it first
reconstructs an internal hv−convex kernel of points which is common to all the
convex polyominoes having the input projections. Then, it expands the kernel to
reach the desired projections maintaining the hv−convexity by means of a 2−SAT
formula ϕ, one of whose valuations can be computed in polynomial time.

On the other hand, the computational complexity of the reconstruction of
(full) convex polyominoes is still an open problem, but it may benefit from
the strategy described above. Note that different definitions of convexity and
different approaches are studied from the community [13,15].

In particular, in our study, we define a generalization of HV Rec, called CRec,
that leads in this direction: starting from the couple of horizontal and verti-
cal projections our algorithm executes the kernel reconstruction performed by
HV Rec with the further inclusion of the points in its convex hull, so obtaining
a convex kernel.

The last part of the algorithm expands the kernel reaching the desired projec-
tions by using, in general, a formula whose valuations represent all the possible
solutions to the reconstruction problem. Unfortunately, shifting to full convex-
ity, this formula, say ϕConv, becomes a generic SAT one, sliding its computa-
tional complexity to the non polynomiality, assuming that P �= NP . Our studies
deepen the characteristics of ϕConv and offer a perspective to decrease its com-
putational complexity.

In [8,11], the authors stressed that, differently from the hv-convex polyomi-
noes reconstruction, the formula ϕConv imposes convexity on a specific region of
the border of the kernel without, in general, providing the global convexity of the
whole border. This observation turns out to be the main reason that prevents
the extension of HV Rec to the case of convex polyominoes and the motivation
of our study.

In Sect. 2, we provide the basic notions of Discrete Tomography and combina-
torics on words that lead to the formulation of the reconstruction problem. Some
useful known results are also highlighted. Section 3 is devoted to the definition of
the strategy for the reconstruction of convex polyominoes from horizontal and
vertical projections. Some properties that simplify the SAT formulas ϕ char-
acterizing the convex constraint are shown, according to the positions of the
elements that have to be included in the kernel to reach the desired projections.
Since, from experimental computations, it’s not easy to detect cases in which
general SAT formula are needed, we provide an example where a 3 − SAT for-
mula is required. The last Sect. 4 contains final comments and hints for future
researches.
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2 Definitions and Preliminary Results

A planar discrete set S is a finite subspace of points of the integer lattice Z
2,

considered up to translation. The dimension of S are those of its minimal bound-
ing rectangle. The set S can be naturally represented as a set of unitary cells
centered on the points of S (see Fig. 1, (a)).

A row (resp. column) of S is its intersection with an infinite strip of cells
whose centers lie on horizontal (resp. vertical) lines.

To each discrete set of dimension m × n we can associate two integer vectors
H = (h1, . . . , hm) and V = (v1, . . . , vn) such that for each 1 ≤ i ≤ m, 1 ≤ j ≤ n,
hi and vj are the number of cells of S which lie on row i and column j, respec-
tively. We call H and V horizontal and vertical projections of S, respectively.

A wide literature links the geometrical and topological characteristics of dis-
crete sets with their projections. A special focus is on the properties of connect-
edeness and convexity, providing several results on the related sub-classes.

So, we define polyomino P a 4−connected (i.e. connected on horizontal and
vertical directions) planar discrete set. A P is h−convex (resp. v−convex) if
each rows (resp. columns) is connected (see Fig 1, (b)). If P is both h-convex
and v−convex then we say that P is hv−convex.

Concerning the convexity along all the possible (discrete) directions, several
definitions take care of pathological situations that may arise when continuous
convex shapes are discretized into convex discrete sets. In case of polyominoes,
the notion of convexity turns in the natural simple form of the equivalence
between the polyomino and its convex hull (see Fig 1, (c) and (d)).

(b) (c) (d)(a)

Fig. 1. (a) a generic discrete set of points in Z
2 and its representation as a set of cells

on a squared surface; (b) a vertically convex polyomino; (c) a hv-convex polyomino. Its
convex hull and the cell that prevents it to be full convex are dashed and highlighted;
(d) a (full) convex polyomino and its convex hull.

Coding the boundary of a convex polyomino
We recall that the Freeman code [9] associates to each polyomino its boundary
word, i.e., the word on four letter alphabet A′ = {0, 0̄, 1, 1̄} obtained by coding
the path that clockwise follows the boundary of the cell representation of the
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polyomino starting from a specific point. The letters 0̄ and 1̄ represent the hor-
izontal step and the vertical step when travelled in the opposite directions with
respect to 0 and 1, respectively. If the polyomino is hv-convex, we can identify
four points W,N,E and S as the points where the polyomino’s boundary first
touches the west, north, east and south sides of its minimal bounding rectangle,
respectively, when moving clockwise along it.

These four points determine four paths, according to the starting and ending
points, i.e., WN , NE, ES and SW -paths, as depicted in Fig. 2. A path is WN -
convex (resp. NE, ES and SW -convex) if it is the WN -path (resp. NE, ES
and SW -path) of a convex polyomino. Each of the four paths is monotone, i.e.,
it uses only two of the four Freeman coding steps.
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Fig. 2. The boundary of an hv-convex polyomino and its decomposition into four
monotone paths.

In the following, we consider the WN -paths only, reminding that all the
results can be extended to the other three paths.

Christoffel words
Let a, b be two co-prime numbers, the lower Christoffel path of slope a

b is defined
as the connected path in the discrete plane joining the origin O(0, 0) to the point
(b, a) such that it is the nearest path strictly below the Euclidean line segment
joining these two points. Analogously, the upper Christoffel path is defined as
the nearest path that lies above the line segment.

To both Christoffel path one can associate so-called Christoffel word on the
binary alphabet A = {0, 1}, such that the letter 0 represents a horizontal step
and the letter 1 a vertical step. The Christoffel word commonly indicates the
word w related to its lower Christoffel path and whose slope ρ(w) equals a

b .
Since the upper and the lower Christoffel paths of the same slope are the mirror
images of each other, the two related words w̃ and w are the mirror images of
each other, i.e., w(i) = w̃(|w| − i + 1), where s(i) denotes the ith character of
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the string s. By definition, |w| = |w̃| = a + b. We indicate by |w|α the number
of occurrences of the letter α in w. Figure 3 represents the situation.

Fig. 3. (a) the lower Christoffel path of the segment with slope 5
8

and the related
Christoffel word w; (b) the upper Christoffel path of the same segment and the word
w̃ associated to it. The points min(w) and c(w̃) are also highlighted.

It is well known that each Christoffel word w different from 0 or 1 can be
uniquely split as concatenation of two smaller Christoffel words w1 and w2, pro-
viding the so called standard factorization introduced in [3]. Such factorization
involves the closest point c(w) from the line segment of slope ρ(w) = a

b . So, it
holds that w = w1w2, where w1 is the word leading from (0, 0) to c(w), and w2

is the word leading from c(w) to (a, b). By abuse of notation we indicate with
c(w) also its index position in w. Moreover, we indicate as min(w) the (index of
the) furthest point from the same line (see Fig. 3). Note that min(w) is also (the
index of) the closest point in the upper Christoffel word w̃, i.e., min(w) = c(w̃).

It is worthwhile noticing the following property of Christoffel words.

Proposition 1. The WN -path of a convex polyomino can be decomposed into
a sequence of Christoffel words having decreasing slope.

In [4] it has been proved that such a decomposition is unique and it can be
obtained by the Lyndon factorization of the WN -path.

3 A Strategy to Reconstruct Convex Polyominoes

The retrieval of geometrical or structural properties of an unknown discrete
object, modeled as a discrete set of points at a certain resolution, from projec-
tions, and, at best, its full reconstruction, is one of the main topic in Discrete
Tomography. In general, there exist point sets sharing the same projections, so
it is important to consider some a priori information, if available, about the
unknown object that may lead to its faithful reconstruction.
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3.1 The Reconstruction of hv-convex Polyominoes from Horizontal
and Vertical Projections

In [1] the authors defined the algorithm HV Rec that reconstructs (in polynomial
time w.r.t. its size) a hv-convex polyomino compatible with an input couple of
horizontal and vertical projections H and V , if it exists. In [5], it has been
proved that hv-convex polyominoes does not guarantee the uniqueness of the
reconstruction. This is due to the presence of specific configurations of points
called switching components (see [12] for a survey in the topic and [6,7,11] for the
characterization and related results). The strategy of the algorithm concerns the
detection of two hv-convex subsets of cells: the kernel whose cells belong to all
the solutions, if any, and the shell whose cells are outside from all the solutions.
Finally, the cells not yet assigned will be included in the final solutions according
to the valuation of a 2-SAT formula.

In more details, HV Rec gets as input two vectors H and V and performs
the two following steps:

Step 1 (kernel and shell computation): according to each possible positions of
the elements that lie in first and last rows and columns (rows 1 and
m and columns 1 and n) of the minimal bounding rectangle including
the solution, it detects the cells that are common to all the hv−convex
polyominoes having H and V as horizontal and vertical projections, say
the kernel. At the same time, it also detects the cells that are external to
the polyomino and that constitute the shell of the polyomino. Both the
detection tasks are iteratively performed by using a sequence of filling
operations that take advantage from the convexity constraints and from
the knowledge of the vectors H and V .
So, HV Rec converges to the final kernel by approximating it both from
inside and from outside. The process ends when the filling operations
either fail, meaning that no solution exists, or leave the kernel and the
shell unchanged. In the latter case, the cells that remain unidentified, so
not belonging to the kernel or to the shell, are grouped in an ambiguous
set X . If X = ∅, then the polyomino has been successfully reconstructed.
Otherwise, it contains the elements of the switching components of the
polyomino and Step 2 is required.

Step 2 (2-SAT formula definition and valuation): each switching component in
X is detected and its cells alternatively labelled associating them to a
new boolean variable x or x. Recall that x stands for not x. Finally, a
2 − SAT formula involving all the variables is defined. It imposes on the
cells of X both the hv-convexity of the kernel and of the shell, preserving
the coherence with the vectors H and V . Each valuation of the 2-SAT
formula (obtained in polynomial time) leads to a feasible solution of
the reconstruction problem in the sense that a cell of X belongs to the
polyomino if and only it is labelled with a variable whose valuation is
true. The computed polyomino is then provided as output.
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Example 1. Figure 4, (a) depicts a part of the NW path of a polyomino recon-
structed after performing Step 1 of HV Rec. Assume that the cells labelled
x1, . . . , x7 belong to the set X . Step 2 requires to define a sequence of 2-SAT
formulas coding the hv-constraint on them both related to the kernel and to the
shell. More precisely, the h-convexity of the kernel imposes the formulas x2 → x3,
and x6 → x7, while the v-convexity imposes x6 → x5. Note that the h-convexity
of the shell imposes their equivalent clauses. These clauses (by abuse of notation
we indicate the implication (x → y) as a clause due to its logical equivalence to
the clause (¬x ∧ y)) that guarantee a valuation that preserves the hv-convex of
the final solution, as desired.

3.2 A Strategy to Reconstruct Convex Polyominoes from Horizontal
and Vertical Projections

The authors of [8,11], underline that there is no natural generalization of HVRec
when hv-convexity constraint changes into full convexity. In particular it is
proved that the 2-SAT formula imposing the hv-convexity defined in Step 2
may change into a k-SAT formula, with k ≥ 2.

Relying on HVRec, we approach a reconstruction strategy, say CRec (Convex
Reconstruction), by defining a slightly modified version of Step 1 indicated with
StepConv 1, where the computation of the kernel includes the constraint of its
convexity. This action is performed by including in the kernel, after each iteration
of the filling operations, the cells of its convex hull. The shell computation is left
unchanged.

Concerning the modifications required in Step 2, indicated with StepConv 2,
our aim is to provide a set of clauses that impose the convexity of the set X . Some
properties of these clauses are hereafter provided, leaving open the computational
complexity of their valuation. As an example, a similar way forward is used in [10]
where the reconstruction of a sub-class of hv-convex polyominoes is performed
by means 3-SAT Horn clauses whose valuation requires polynomial time.

So, let us consider the points of X that lie above the WN -path of the convex
kernel identified in StepConv 1 (for the points related to the three remaining
NE, ES and SW convex paths we proceed analogously). We recall that the
membership of these points to one of the convex polyominoes consistent with the
input horizontal and vertical projections H and V , if any, has to be determined.

The clauses of the formula we are going to define in StepConv 2 consider how
the inclusion of each point in X reflects on the others, in order to preserve the
convexity of the structure.

Convexity preserved by 2-SAT clauses
As a first result, we show that a single point inclusion in the kernel can be
performed if the point is minimal w.r.t. the Christoffel word where it lies on. In
particular, from [3], Theorem 1 and its corollaries, it follows

Proposition 2. Let w be the Christoffel word of slope a
b and denote by w(i :

j) the substring of w between indeces i and j. Then, it exists only one index
1 < i < a + b in which w(i, i + 1) = 01, such that w1 = w(1 : i − 1) 1 and
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w2 = 0 w(i + 2 : a + b) (we consider the substring w(i + 2 : a + b) = w(a + b) if
i = a+ b− 1) are both Christoffel words. Furthermore, it holds that i = min(w).

Relying on Proposition 2, we obtain the following result stating that the
inclusion in a NW Christoffel word w of a point different from min(w) does not
preserve the convexity of w and so of the whole NW path.

Proposition 3. Let w be the Christoffel word of slope a
b and min(w) < i <

a + b. The Christoffel path of slope |w(1:i−1)|1+1
|w(1:i−1)|0 includes the point c(w̃). On the

other hand, if 1 < i < min(w), then the Christoffel path of slope |w(i+1:a+b)|1
|w(i+1:a+b)|0+1

includes the point c(w̃).

Proof. Recall that the two indeces c(w̃) and min(w) are equal in the upper and
lower Christoffel paths, respectively. Let us proceed by contradiction assuming
that the Christoffel path of slope |w(1:i−1)|1+1

|w(1:i−1)|0 does not include the point c(w̃),
when min(w) < i < a + b. We consider the integer points O = (0, 0), B = (b, a)
and C = (|w(1 : i − 1)|0, |w(1 : i − 1)|1 + 1). By the proof of Theorem 3.3
in [2], it holds that the triangle OCB contains at least one integer point. Let
D be the point of OBC closest to the line segment of slope a

b . It follows that
the triangle ODB contains no integer points and furthermore, by assumption,
D is different from c(w̃), reaching a contradiction. A similar argument holds if
0 < i < min(w). �	
We can rephrase this proposition in a more algorithmic fashion.

Corollary 1. Let w be a Christoffel word in the WN -path of the kernel obtained
after StepConv 1. If the point c(w̃) belongs to the shell, then all the points of X
that lie on w also belong to the shell.

Corollary 2. Let w be a Christoffel word in the WN -path of the kernel obtained
after StepConv 1. If we include in the final convex solution a point of X lying
above its WN -path, then also the point c(w̃) has to be included in order to pre-
serve the convexity.

Example 2. Let us assume that StepConv 1 provided the WN -path depicted
Fig. 4 and that the cells x1, . . . x7 belong to X . The WN−path is the Christoffel
word of slope m = 6

11 , w = 0010010010010 01 01, where the boldface entries
indicate its minimal point. If we require to add the point x3, then the computa-
tion of the related convex hull (straight line in Fig. 4, (b)) imposes the inclusion
of the points x4 and x5. So the two new clauses x3 → x4 and x3 → x5 has to
be added to the clauses already defined in Example 1. Note that x5 is c(w̃) as
expected by Proposition 3. Note that the inclusion of the points x3, x4 and x5

in the kernel produces the Christoffel words w1 = 00100101 and w2 = (001)3

(that is not primitive) whose slopes preserve the decreasing order.

Furthermore, we underline that, if the word w of Example 2 is followed
by a Christoffel word of slope m, with 1

2 < m < 6
11 , then the slope of the
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(a) (b)
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kernel

shell
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x2 x3
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x5

x6 x7

kernel

shell

Fig. 4. The WN -path of the kernel computed by StepConv 1 and the points belonging
to X . In (a) the situation is depicted, while in (b) it is shown the convex hull computed
after the inclusion in the kernel of x3. To preserve convexity, it is also required the
inclusion of x4 and x5.

WN -path is not preserved after the splitting, and some more points may need
to be included. This situation may also arise if we include in the WN -path of
the kernel in Fig. 4 the point c(w̃) = x5 only. The following example shows the
situation for a different WN -path.

Example 3. Let w1 and w2 be two Christoffel words of a WN -path of a convex
kernel, with ρ(w1) = 3

5 > ρ(w2) = 11
20 as in Fig. 5. Including in the kernel

the point x = c(w̃1) changes w1 into two new Christoffel words u1v1, with
ρ(u1) = 2

3 and ρ(v1) = 1
2 . Now, the sequence of slopes ρ(u1), ρ(v1) and ρ(w2) is

not decreasing. Furthermore, (v1 w2) = 001 0010010010010010100100100100101
is not a Christoffel word, so the corresponding path is not WN−convex. To get
back convexity, we need to include a second point in the polyomino, i.e., the
point y = c(w̃2) that belongs to the convex hull Hx depicted in Fig. 5, on the
right, obtaining the word w3 = 0010010010010010 10 0100100100100101, where
the included point is in boldface (see Fig. 5 for a visual representation).

Fig. 5. The inclusion of one single point (on the left) prevent the WN -convexity of the
path. A second point (on the right) has to be added to keep it back.

The WN−convexity is so imposed by the clause x → y that, in terms of
Christoffel words, produces v1 w2 changes into w3.
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In [8], the authors consider all possible cases that arise when a single point is
included in a WN -path, and determine when further points need to be included
to preserve global convexity. In the sequel, we characterize these situations
through logical implications.

So, following the strategy of HV Rec, Step 2, and keeping in mind the sit-
uations in Examples 2 and 3, we define in StepConv 2 a new set of clauses
ϕConv2SAT that includes both those clauses ϕhv of Step 2 and, for each point
x ∈ X , the clauses ϕx = (x → x1) ∧ · · · ∧ (x → xn), with x1, . . . , xn being the
points belonging to the convex hull Hx computed after the inclusion of x in the
kernel.

We underline that, if the convex hull Hx related to a point x ∈ X includes
points of the shell, since their values can be considered 0, then the same value
is transferred to x.

So, a new reconstruction algorithm for a subclass of convex polyominoes, say
CRec2SAT , can be defined considering the modifications of Step 1 and Step 2
above described and involving 2-SAT clauses only.

Example 4. Consider the Christoffel word w = 00101001010010101 of slope ρ =
7
10 that is in the NW−path of a kernel. Let x1, . . . x6 be points of X (see Fig. 6
(a)). Let us include x2 to the kernel, i.e. x2 = 1. Then, we must also include
x1, x3 and x5 obtaining ϕx2 = (x2 → x1) ∧ (x2 → x3) ∧ (x2 → x5) (see Fig. 6
(b)). On the other hand, if x6 is included, then x3 and x5 must be also included
in the kernel obtaining ϕx6 = (x6 → x3) ∧ (x6 → x5) (see Fig. 6 (c)). Finally,
if we include both x2 and x6 and we compute again the convex hull, then we
realize that that also the points x1, x3, x4, and x5 have to be included, with x4

being a new one (see Fig. 6 (d)). So, a new clause has to be added to ϕx2 ∧ ϕx6 ,
i.e. (x2 ∧ x6) → x4. This provides an example of a situation where a 3 − SAT
formula is required.

Relying on the above example, it may happen, in general, that an inclusion of
a subset of k points of X leads to a (k+1)-SAT formula. In the sequel, we define
some properties that allow to simplify the SAT clauses leading to a normal form
involving only 3-SAT clauses. Up to now, no polynomial time valuation is known
for this class of formulas.

3.3 Properties of the k-SAT Formulas to Impose Global Convexity

In [11], the author proved that in case of a specific class of convex polyominoes,
adding points of X to the convex kernel can be performed in polynomial time.
This result is related to some specific switching components of the elements of the
class. For an extensive analysis of hv-convex switching components see [6,7]. Note
that the class studied in [11] has non-empty intersection with that characterized
by the formula ϕConv2SAT already know, however being distinct classes. So,
the general versions of the algorithm to reconstruct convex polyominoes from
projections may benefit from the following results about the SAT formula ϕConv

that has to be defined in StepConv 2 to express the global convexity. Given two
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Fig. 6. An example of 3 − SAT in the convex reconstruction problem.

points x and y in X , we define the partial order x <o y if and only if x precedes
y while moving clockwise along the WN -path of the kernel.

Proposition 4. Let c = (x1 ∧ x2) → x be a clause included ϕConv. Then x1 <o

x <o x2.

Proof. Let us assume, w.l.o.g., that x <o x1 <o x2. This implies that either the
segment [x1;x2] is one of the sides of the convex hull computed after the kernel
inclusion of x1 and x2 or it lies behind it. In the first case it holds x1 → x, while
in the second case either x1 → x or x2 → x according to which among x1 or x2

is a vertex of the convex hull. So, c is equivalent to one of the two above clauses
and it has not to be included in ϕConv. �	
Proposition 5. Let c = (x1∧x2∧x3) → x be a clause included in ϕConv. There
exists a 3-SAT clause that is equivalent to c.

Proof. Let us assume w.l.o.g. that x1 < x < x2 < x3, where xi < xj means
that the point xi precedes xj while moving clockwise along the WN -path of
the kernel. Then that the convex hull computed after the kernel inclusion of the
three points x1, x2, and x3 includes also x. Two cases arise:

i) the segment [x2;x3] lies inside the convex hull. In this case either the segment
[x1;x3] or [x1;x2] is a side of the convex hull. In the first case the point x2

lies below it, see Fig. 7, (a). Then (x1 ∧ x3) → x2, and c turns out to be
equivalent to c1 = (x1 ∧ x3) → x. Analogously, in the second case x3 lies
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inside the convex hull, see Fig. 7, (b). Then x2 → x3, and c turns out to be
equivalent to c1 = (x1 ∧ x2) → x.

ii) the segment [x2;x3] is a side of the convex hull. A reasoning similar to i)
holds. Two cases arise: either [x1;x2] is also a side of the convex hull or it is
internal to the convex hull. In the first case c is equivalent to c1 = (x1∧x2) →
x, see Fig. 7, (c). In the latter case, the clauses x2 → x1 and x2 → x are
equivalent to c, see Fig. 7, (d).

�	

Fig. 7. The different configurations of points related to the clause c in the proof of
Proposition 5. Internal segments are dashed while a full line indicates the convex hull.

A similar reasoning on a generic SAT clause leads to

Corollary 3. Let c = (x1 ∧ · · · ∧ xk) → x be a clause in ϕConv, with k ≥ 2.
There exists a set of clauses in 3-SAT that are equivalent to c.

Proposition 6. If a clause c of ϕConv includes both x and x̄, then c can be
reduced to 2−SAT.

Proof. The proof directly follows from the definitions of the logical operators.
Two cases arise: if c = (x1 ∧ x̄1) → x, then the implication is a tautology.
Otherwise, if c = (x1 ∧ x) → x̄1, then only three valuations of x1 and x are
admissible to have c = 1: either x1 = 1 and x = 0 (so being x̄1 = 0) or x1 = 0
and x is either 0 or 1. These valuations are equivalent to the 2-SAT clause
x1 → x̄. �	
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Experimental evidence allows us to conjecture the following statement:

Conjecture 1. Consider two consecutive Christoffel words w1 and w2 such that
adding c(w̃1) or c(w̃2) separately does not cause the addition of anything else
in the convex hull. Then, if (xi ∧ xj) → xk is a clause of ϕConv, then xi and xj

cannot be both minimum of the two consecutive Christoffel words.

From the above conjecture it follows that, in case StepConv 1 detects a set
X whose elements are minimum of the Christoffel words of the kernel border,
then the reconstruction procedure can be performed in polynomial time.

4 Conclusions and Final Remarks

In this paper we propose a generalization of the reconstruction algorithm for
hv-convex polyominoes from the horizontal and vertical projections in [1] to the
class of full convex polyominoes. The algorithm that we define, called CRec, uses
in its last step a boolean formula ϕConv to encode both the convexity constraint
of the solution and its consistence with the given projections. Unfortunately, the
formula turns out to be in SAT , leaving open the computational complexity of
the whole process.

We show some examples where a simplest 2-SAT formula is required to
achieve the final solution. On the other hand, some cases are provided where
a 3-SAT formula is needed to encode the possibility of inclusion in the solution
of some points in specific positions. Furthermore, we provide some properties of
the SAT formula ϕConv involved in the reconstruction in order to simplify its
valuation.

A deeper investigation could be addressed to define the characteristics related
to the switching components that may be present in a convex polyominoes in
order to find a possible physical distance between groups of positive and negative
variables. Such a result may lead to a further simplification of ϕConv with the
final aim of defining a polynomial time reconstruction strategy for the whole
class of convex polyominoes or for some sub-classes of interest.
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Abstract. Morphological semigroups and corresponding Partial Differ-
ential Equations are equivalent respectively to Hopf-Lax semigroups and
the Cauchy problem of a family of first-order Hamilton–Jacobi equations.
They are related to Maslov idempotent analysis too.

The Ornstein–Uhlenbeck operator and Ornstein–Uhlenbeck semi-
group play the role of the Laplacian and the heat kernel semigroup if
the Lebesgue measure is replaced by the standard Gaussian measure.

In this paper we revisit some contributions on the idempotent ana-
logue of the semigroups associated with the Ornstein–Uhlenbeck semi-
group, which are based on a Maslov measure, as well as the associ-
ated first-order Hamilton–Jacobi equation. We study the relevance of the
corresponding semigroups in the context of morphological erosions and
dilations.

Keywords: Ornstein–Uhlenbeck operator · Hamilton–Jacobi pde ·
Mathematical morphology · Morphological semigroups

1 Introduction

Morphological semigroups and corresponding Partial Differential Equations
(PDEs) are equivalent respectively to Hopf-Lax semigroups and the Cauchy
problem of a family of first-order Hamilton-Jacobi equations. More precisely, the
following canonic morphological PDE plays a central role in continuous mathe-
matical morphology [2,7,13,18]:{

∂u
∂t = ± 1

2‖∇u‖2, x ∈ R
n, t > 0

u(x, 0) = f(x), x ∈ R
n (1)

such that the corresponding viscosity solutions are given by

u(x, t) = sup
y∈Rn

{
f(y) − ‖x − y‖2

2t

}
(for + sign), (2)

u(x, t) = inf
y∈Rn

{
f(y) +

‖x − y‖2
2t

}
(for − sign), (3)

c© Springer Nature Switzerland AG 2022
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which correspond to a dilation (f ⊕ pt) and an erosion (f � pt) of function f(x)
defined as

(f ⊕ pt)(x) = sup
y∈Rn

{f(y) + pt(y − x)} , (4)

(f � pt)(x) = inf
y∈Rn

{f(y) − pt(y − x)} , (5)

using as structuring function pt(x) the so-called multiscale quadratic (or
parabolic) structuring function:

pt(x) = −‖x‖2
2t

. (6)

Due to its properties of semigroup, dimension separability and invariance to
transform domain [12,16,17], the structuring function pt(x) can be considered
as the canonic one in morphology, playing a similar role to the Gaussian kernel
in linear filtering [14]. An alternative interpretation of the quadratic structuring
function as the equivalent of the Gaussian kernel is based on Maslov’s idempotent
analysis [21,22].

Other variations of that family of Hamilton–Jacobi models cover the flat mor-
phology by disks [18]; i.e., ut = ±‖∇u‖, as well as operators with more general
P -power concave structuring functions, i.e., ut = ±‖∇u‖P , P > 1. For the appli-
cation of the latter model to adaptive morphology, see [15]. In the most general
case, this family of morphological PDEs and semigroups are formulated in the
framework of length spaces [5] and a similar counterpart in ultrametric spaces [6].
A general theory of morphological counterparts of linear shift-invariant scale-
spaces based on the Cramér-Fourier transform has been proposed [24]. We note
that the case considered here is not shift-invariant and therefore it is outside of
the scope of that theory.

The Ornstein–Uhlenbeck operator and Ornstein–Uhlenbeck semigroup play
the role of the Laplacian and the heat kernel semigroup if the Lebesgue measure
is replaced by the standard Gaussian measure. In this paper we revisit a series
of contributions by Avantaggiati and Loreti [8–11], where the idempotent ana-
logue of the semigroups associated with the Ornstein–Uhlenbeck semigroup has
a simple Maslov measure equivalent of the Gaussian measure, and they are the
viscosity solution of a first-order Hamilton–Jacobi equation.

Aim and Organisation of the Paper. In the paper we study and formalise the
relevance of the corresponding semigroups in the context of morphological multi-
scale erosions and dilations for nonlinear signal and image processing. The rest of
the paper is organized as follows. Section 2 provides a background on Ornstein–
Uhlenbeck semigroups and its stochastic interpretation. In Sect. 3, we introduce
Ornstein–Uhlenbeck morphological operators and study their properties, in par-
ticular the corresponding semigroups. The Ornstein–Uhlenbeck morphological
PDE is considered in Sect. 4. Section 5 presents some preliminary experiment
on the application of these semigroups. Conclusions and perspectives close the
paper in Sect. 6.
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2 Background: Ornstein–Uhlenbeck Operator
and Semigroups

Ornstein–Uhlenbeck (O–U) semigroups can be introduced from either a func-
tional analysis viewpoint or a stochastic differential equation viewpoint. We
briefly revisit the main elements of both theories, see classical references [19,20].

Working on X = L2(Rn), the Laplacian of a function f ∈ X, Δf(x) =
(div ◦ ∇f) (x), is the infinitesimal generator of the heat semigroup Pt. Namely,
given any function f , there exists the limit lim

t→0+

Ptf−f
t = Δf . We recall that the

heat semigroup is just given by the convolution of f with a Gaussian kernel, i.e.,
Pt(f)(x) = 1

(4πt)n/2

∫
R

f(y)e−‖x−y‖2/4tdy, t > 0.
The O–U operator and semigroup play the role of the Laplacian and the

heat kernel semigroup if the Lebesgue measure dμ is replaced by the standard
Gaussian measure dγα, with parameter α > 0:

dγα(y) = (2π)−n/2 exp(−(α‖y‖2)/2)dy.

Let us consider that we are working on the space of the bounded and continuous
functions Cb(X). The O–U semigroup is defined by the family of scale operators

Nα
t f(x) =

∫
X

f
(
e−αtx +

√
1 − e−2αty

)
dγα(y), t ≥ 0, α > 0.

The O–U semigroup {Nα
t }t≥0 is a linear operator satisfying the following prop-

erties: For any function f ∈ Cb(X) and any α > 0, t, s ≥ 0,

1. (Preservation of positivity) Nα
0 = Id.

2. (Conservative) Nα
t 1 = 1 and Nα

t f ≥ 0 if f ≥ 0.
3. (Contractive) ‖Nα

t f‖∞ ≤ ‖f‖∞.
4. (Additive semigroup) Nα

t ◦ Nα
s = Nα

t+s.
5. (Continuity and convergence) The map t → Nα

t f is continuous from R
+ to

L2(Rn,dγα) and lim
t→0+

Nα
t f(x) = f(x), ∀x ∈ X.

6. (Invariant measure) The Gaussian measure is the unique invariant probability
measure, i.e.,

∫
X

Nα
t fdγα =

∫
X

fdγα. More generally, for f, g ∈ Cb(X), one
has

∫
X

g(x)Nα
t f(x)dγα(x) =

∫
X

f(x)Nα
t g(x)dγα(x).

The O–U differential operator is a generalization of the Laplace operator Δ:

Lαf(x) := Δf(x) − αx · ∇f(x), α > 0.

This operator is the infinitesimal generator of the O–U semigroup. Namely,
∂
∂tN

α
t f(x) = Lα (Nα

t f) (x) = Nα
t (Lαf) (x) = ΔNα

t f(x) − αx · ∇Nα
t f(x), with

∂
∂tN

α
t f(x)|t=0 = Δf(x) − αx · ∇f(x).
Let us now consider the stochastic viewpoint. The O–U process is a stochastic

Markov process viewed as a modification of the random walk which tends to drift
back towards its long-term mean (mean reverting), with a greater attraction
when the process is further from the central location. It can be physically viewed
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as the model of the velocity of a massive Brownian particle under the influence
of friction. More precisely, an O–U process Xt satisfies the following SDE:

dXt = θ (μ − Xt) dt + σdBt,

where the parameters are θ > 0, μ and σ > 0 and Bt is a Brownian process.
There is also a relationship with the Fokker–Planck equation representation,

which provides the linear parabolic PDE for the probability density function
p(x, t) of the random variable described by a SDE. In the particular case of the
O–U SDE, the Fokker–Planck equation is

∂p

∂t
= θ

∂p

∂x
[(x − μ)p] +

σ2

2
∂2p

∂x2
.

Its Green function for an initial condition consisting of a unit point mass at
location x0 is given by a Gaussian distribution with mean: μ + (x0 − μ)e−θt =
x0e

−θt +
(
1 − e−θt

)
μ and variance: σ2

2θ

(
1 − e−2θt

)
.

The stationary solution of this equation is the limit for t → +∞, which is
the Gaussian distribution with mean μ and variance σ2/(2θ).

3 Ornstein–Uhlenbeck Erosion and Dilation Semigroups

Theoretical foundations of Maslov idempotent measure theory [1,23] are based
on replacing in the structural axioms of probability theory the role of the classical
semiring S(+,×) = (R+,+,×, 0, 1,≤) of positive real numbers by the idempotent
semiring: S(max,+) = (R̄,max,+,−∞, 0,≤). In this context, a change of the
measure involves a consistent counterpart to the standard probability theory.

Indeed, we can start by considering that the counterpart of the Gaussian
measure dγα(x) in standard (+,×)-analysis is the quadratic one in (max,+)-
analysis:

dγα(x) = (2π)−n/2 exp(−(α‖x‖2)/2)dx
analogy−−−−−−−→

idempotent
dmα(x) = α‖x‖2, α > 0

3.1 O–U Erosion, Adjoint Dilation and Complement Dilation

It seems natural to conjecture that the multiscale O–U erosion for any f : X → R̄

is given by

Eα
t f(x) = inf

z∈X

{
f

(
e−αtx +

√
1 − e−2αtz

)
+ dmα(z)

}

= inf
z∈X

{
f

(
e−αtx +

√
1 − e−2αtz

)
+ α‖z‖2

}

= inf
y∈X

{
f(y) +

α

1 − e−2αt
‖e−αtx − y‖2

}
. (7)

The last step is just based on the change of variable

y = e−αtx +
√

1 − e−2αtz ⇐⇒ z =
(
1 − e−2αt

)−1/2 (
y − e−αtx

)
.
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The erosion Eα
t can be seen as a generalization of the quadratic canonic operators

when α → 0, i.e., e−2αt ≈ 1 − 2αt, then α
1−e−2αt → 1

2t .
From an algebraic viewpoint, one can say that Eα

t , t ≥ 0, α > 0, is an erosion
since the following two properties hold:

1. (Increaseness) If f(x) ≤ g(x), ∀x ∈ X, then

Eα
t f(x) ≤ Eα

t g(x), ∀x ∈ X.

2. (Commutation with infimum) For any f, g : X → R̄,

Eα
t (f ∧ g) (x) = Eα

t f(x) ∧ Eα
t g(x), ∀x ∈ X.

The proof is obvious from the property of the infimum. The second one is a
particular case of the linearity in the sense of the (min,+) of semiring of Rmin =
R ∪ {+∞}: ∀λ ∈ Rmin, Eα

t (λ + (f ∧ g)) = λ + [Eα
t f ∧ Eα

t g].
We can now introduce the corresponding multi-scale dilation by means of the

adjunction property.

Proposition 1. For every function f : X → R̄, and for any t ≥ 0 and α > 0,
the adjoint O–U dilation to Eα

t is given by

Dα
t f(x) = sup

y∈X

{
f(y) − α

1 − e−2αt
‖e−αty − x‖2

}
, (8)

Therefore, the duality by adjunction is satisfied, i.e., for any two functions f
and g, the pair (Dα

t , Eα
t ) provides the relationship

Dα
t f(x) ≤ g(x) ⇐⇒ f(x) ≤ Eα

t g(x), ∀x ∈ X. (9)

It is easy to prove that the operator Dα
t is increasing; i.e., if f(x) ≤ g(x),

∀x ∈ X, then Dα
t f(x) ≤ Dα

t g(x) and commutates with the supremum; i.e., for
any f and g, Dα

t (f ∨ g) (x) = Dα
t f(x) ∨ Dα

t g(x). Therefore we state that it is
dilation.

The composition of the adjoint pair (Dα
t , Eα

t ) provides morphological multi-
scale opening and closing. The study of the corresponding O–U morphological
filters is out of the scope of this paper.

There is another dilation associated to Eα
t which can be introduced by the

duality associated to the complement (involution by negative, i.e., f �→ −f),
named here O–U complement dilation D̄α

t and given by

D̄α
t f(x) = −Eα

t (−f) (x) = − inf
y∈X

{
−f(y) +

α

1 − e−2αt
‖e−αtx − y‖2

}

= sup
y∈X

{
f(y) − α

1 − e−2αt
‖e−αtx − y‖2

}
. (10)
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3.2 Semigroup Property

The property of additive semigroup of the O–U erosion and the complement O–
U dilation gives us the basics to use these operators in the context of scale-space
signal and image processing.

Proposition 2. For any function f : X → R̄, and for any pair of scale parame-
ters t, s ≥ 0, we have a semigroup for the O–U erosion and the O–U complement
dilation:

Eα
t Eα

s f(x) = Eα
t+sf(x) (11)

D̄α
t D̄α

s f(x) = D̄α
t+sf(x) (12)

A proof for the semigroups associated to more general Hamiltonians is provided
in [8]. For the sake of understanding of their behaviour, we provide here a proof
for the one-dimensional case.

Proof. Let’s consider X ⊆ R. For any t and s and given α, starting from

Eα
s f(x) = inf

w∈X

{
f

(
e−αsx +

√
1 − e−2αsw

)
+ αw2

}
,

one has that Eα
t Eα

s f(x) =

inf
z∈X

{
inf

w∈X

[
f

(
e−αs

(
xe−αt +

√
1 − e−2αtz

)
+

√
1 − e−2αsw

)
+ αw2

]
+ αz2

}
=

inf
z∈X

{
inf

w∈X

[
f

(
e−α(s+t)x + e−αs

√
1 − e−2αtz +

√
1 − e−2αsw

)
+ αw2

]
+ αz2

}
.

The following change of variable (z, w) → (u, v) is considered{
e−αs

√
1 − e−2αtz +

√
1 − e−2αsw =

√
1 − e−2α(s+t)u

−√
1 − e−2αsz + e−αs

√
1 − e−2αtw = v

Squaring and adding gives(
1 − e−2α(t+s)

)
(z2 + w2) = (1 − e−2α(t+s))u2 + v2,

and thus
z2 + w2 = u2 +

1
1 − e−2α(t+s)

v2.

Introducing the new variables, one has

inf
z∈X

{
inf

w∈X

[
f

(
e−α(s+t)x + e−αs

√
1 − e−2αtz +

√
1 − e−2αsw

)
+ αw2

]
+ αz2

}
=

inf
u∈X

{
inf

v∈X

[
f

(
e−α(s+t)x +

√
1 − e−2α(s+t)u

)
+ αu2

]
+

α

1 − e−2α(t+s)
v2

}
.

We note that the sum of the first two terms does not depend on v and the
minimum with respect to v will correspond to v = 0. So in conclusion we obtain:

inf
u∈X

{
f

(
e−α(t+s)x +

√
1 − e−2α(t+s)u

)
+ αu2

}
= Eα

t+sf(u).

Similarly for D̄α
t just using its definition by complement. ��
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3.3 Other Properties

Coming back to the link with Maslov’s measures, we have the following result.

Proposition 3. (Avantaggiati and Loreti, 2009). The Maslov measure
dmα(x) = α‖x‖2 is (min,+) idempotent invariant with respect to the O–U ero-
sion in the sense that for any f, g : X → Rmin we have

inf
x∈X

{g(x) + Eα
t f(x) + dmα(x)} = inf

x∈X
{f(x) + Eα

t g(x) + dmα(x)} , (13)

with the particular case g(x) = +∞, ∀x ∈ X, which yields

inf
x∈X

{
Eα

t f(x) + α‖x‖2} = inf
x∈X

{
f(x) + α‖x‖2} . (14)

The invariance of the idempotent measure with respect to the erosion semigroup
consistently provides an additional feature of the major role played by dmα(x) =
α‖x‖2 as counterpart of the Gaussian measure in morphological operators.

Finally, let us consider a property of regularization for Lipschitz functions
which is another fundamental aspect of morphological semigroups [4].

Proposition 4. Let f : K → R̄ be a Lipschitz function of constant L defined
on a compact set K. Then there exists a constant K such that for any t > 0 and
α > 0 one has

|Eα
t f(x) − f(x)| ≤ K

(
1 − e−αt

)
(15)

where K depends on L, α, t and the diameter of the set K. A similar result is
obtained for the O–U dilation semigroup.

The proof is provided in [8] as part of other results.

4 Ornstein–Uhlenbeck Morphological PDE

The Ornstein–Uhlenbeck morphological PDE with parameter α > 0 as a Cauchy
problem is given by

{
∂u
∂t = − 1

2‖∇u‖2 − αx · ∇u, x ∈ R
n, t > 0

u(x, 0) = f(x), x ∈ R
n (16)

such that the corresponding viscosity solutions are given by

u(x, t) = inf
y∈X

{
f(y) +

α

1 − e−2αt
‖e−αtx − y‖2

}
,

which thus corresponds to the O–U erosion Eα
t ; i.e., u(x, t) = Eα

t f(x). We note
that α = 0 provides the canonic morphological PDE (1).
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4.1 Heuristic Derivation Using the Semigroup Property

Without providing a rigorous proof of the viscosity solution, let us sketch a
heuristic derivation. First, we note that

u(x, t + s) = inf
y∈X

{
u(y, t) +

α

1 − e−2αs
‖e−αsx − y‖2

}
.

Thus, using the same semigroup property, one has for 0 ≤ s < t and for all
y ∈ R

n

u(x, t) ≤ u(y, s) +
α

1 − e−2α(t−s)
‖y − e−α(t−s)x‖2

u(x, t) − u(y, s) ≤ α

1 − e−2α(t−s)
‖y − e−α(t−s)x‖2.

We set now
h = 1 − e−α(t−s); y − e−α(t−s)x = −hz

which implies

s = t − 1
α

log
1

1 − h
; y = x − h(x + z).

Using that change of variable, we have

u(x, t) − u

(
x − h(x + z), t − 1

α
log

1
1 − h

)
≤ α

1 − (1 − h)2
‖hz‖2

u(x, t) − u
(
x − h(x + z), t − 1

α log 1
1−h

)
h

≤ αh

1 − (1 − h)2
‖z‖2

Noticing that

lim
h→0+

h

1 − (1 − h)2
=

1
2

we can consider the limit when h → 0 and to introduce the gradient and get

∇u(x, t)(x + z) +
1
α

∂u

∂t
(x, t) ≤ α

2
‖z‖2.

For any z ∈ R
n,

z · ∇u(x, t) − α
1
2
‖z‖2 =

1
α

(
αz · ∇u(x, t) − 1

2
‖αz‖2

)
.

Finally, using the Legendre–Fenchel transform of the quadratic norm 1
2‖ · ‖2, it

is obtained
∂u

∂t
(x, t) + αx · ∇u(x, t) +

1
2
‖∇u‖2 ≤ 0.
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4.2 General Hamiltonian

The previous O–U morphological PDE is just a particular case of a family of
Cauchy problems for that class of Hamilton–Jacobi equations, with a Hamil-
tonian which will depend on a parameter p > 1, such that p = 2 corresponds
to (16). This PDE has been formulated and studied for initial data fulfilling the
Lipschitz condition in [8] and for initial data being lower semicontinuous in [10].
We provide their main original result.

Theorem 1. (Avantaggiati and Loreti, 2008). Let us assume a Lipschitz
continuous function f : R

n → R, which will be the initial condition for the
following initial-value Hamilton–Jacobi first-order partial differential equation

{
ut(x, t) + H (Du(x, t)) + αx · Du(x, t) = 0, in R

n × (0,+∞),
u(x, 0) = f(x), in R

n,
(17)

Let us assume that the Hamiltonian H : Rn → R is an even, non-negative, convex
function and positively homogenous of degree p, with p > 1. Then the viscosity
solution of the Cauchy problem (17) is given by the following Hopf–Lax–Oleinik
semigroup:

u(x, t) = inf
z∈Rn

[
f

(
e−αtx +

(
1 − e−αpt

αp

)1/p

z

)
+ L(z)

]
(18)

= inf
y∈Rn

[
f(y) +

(
αp

1 − e−αpt

)q−1

L
(
y − e−αtx

)]
, (19)

where the Lagrangian L(q) is the one-dimensional Legendre–Fenchel transform
of the function H(p), i.e.,

L(q) = H∗(q) = sup
p∈R+

{p q − H(p)} , q ∈ R+. (20)

We note that, by standard results on the Legendre–Fenchel transform, L is also
an even, non-negative, convex function and positively homogenous of degree q,
with 1

p + 1
q = 1.

The corresponding semigroups have therefore a more general form which
depends on the shape parameter p.

5 Preliminary Experiments

For the preliminary experiments of this paper, we are illustrating the effects of
the morphological semigroups on 1D signals; i.e., X ⊂ R. Let us first consider the
shape of the multiscale structuring functions of the O–U erosion and associated
dilations. We define the O–U structuring function as

qα
t (x, y) = − α

1 − e−2αs
‖e−αsx − y‖2, x, y ∈ X, (21)
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such that Eα
t f(x) = infy∈X {f(y) − qα

t (x, y)} and D̄α
t f(x) = supy∈X

{
f(y) +

qα
t (x, y)

}
. We remind from (6) that lim

α→0
qα
t (x, y) = pt(x − y).

In Fig. 1, the structuring functions qα
t (x, y) and pt(x − y) are compared with

respect to variations on α, with fixed scale t = 1. In the plots, we fix the
point x where the structuring function is centered. As expected for α close to
zero, Fig. 1(a), one has just parabolic structuring functions which are translated.
When α increases, Fig. 1(b)–(c), the structuring function is attracted to the ori-
gin which involves that the maximum of the concave function is not located at
x and therefore the O–U erosion is not anti-extensive. For large α, Fig. 1(d),
structuring functions are deformed and introduced a significantly higher effect
of penalization for the same t.

)b()a(

)d()c(

Fig. 1. O–U structuring function qα
t (x, y) compared with respect to variations on α,

with fixed scale t = 1: (a) α = 0.01, (b) α = 1, (c) α = 1.5, (d) α = 2. We fix the point
x where the structuring function is centered.

A comparison of the effect of O–U erosions Eα
t and complement dilations

D̄α
t on two signals is provided in Fig. 2. For the periodic f(x), Fig. 2(a) depicts

the erosions at scale t = 0.1 and three values of α. We note that the effect of
drift back towards the origin by increasing α involves a delay of the location of
the minima with respect to their position in the signal f . The case Fig. 2(b) of



Morphological Counterpart of Ornstein–Uhlenbeck Semigroups and PDEs 179

α = 1 and three values of t shows the typical multiscale effect of semigroups. In
Fig. 2(c) and (d) provides multiscale operators for α = 0.01 (equivalent to shift
invariant parabolic ones) and α = 5.

)b()a(

)d()c(

Fig. 2. O–U erosion Eα
t and complement dilation D̄α

t on two signals f(x), compared
with respect to variations on α and t: (a) t = 0.1 and three values of α, (b) α = 1 and
three values of t, (c) α = 0.01 and three values of t, (d) α = 5 and three values of t.

6 Conclusions and Perspectives

The O–U morphological semigroups satisfy the dimensionality separability prop-
erty on the space, with potentially different parameters α1, · · · , αn for each
dimension of X. Using this property, we will explore the formulation of spatio-
temporal morphological semigroups with appropiate α for space and time.

We will consider the stochastic viewpoint of O–U semigroups to formalize
the morphological counterpart. Our starting viewpoint will be similar to that of
Bellman–Maslov random walks that was proposed in [3].

Finally, the evolution of shape of the generalized O–U structuring functions
including a power parameter p with respect to α should be studied.
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Abstract. The fundamental operations of mathematical morphology
are dilation and erosion. They are often implemented using a sliding
window with the purpose to compute maximum respectively minimum
of pixel values within the corresponding mask.

We reformulate the problem of morphological dilation respectively
erosion of an image with a non-flat filter as a convolution of their umbras.
To this end, we propose to make use of the number theoretic transform
to compute the convolution in this setting. In contrast to other possible
schemes, this transform represents a completely discrete computational
approach. It allows exact convolution of sequences made up of integers.
Therefore we propose by the combination of umbra framework and num-
ber theoretic transform a well-engineered combination.

There is no restriction on size or shape of the structuring element,
and also flat and non-flat filters can be realised.

Keywords: Morphological dilation · Morphological erosion · Number
theoretic transform

1 Introduction

Mathematical morphology is a highly successful field in image processing that
is concerned with the analysis of shapes and structures in images, see for
instance [7–9] for an account of theory and applications. The basic building
blocks of many of its processes are dilation and erosion. Since these operations
are dual, it is convenient to focus on dilation for the construction of algorithms,
as we do in the following. In dilation, a pixel value is set to the maximum of the
grey values within a filter mask centred upon it. This mask is called structuring
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element (SE), and it can be either flat or non-flat [15]. A flat SE describes the
shape of the mask over which the dilation is performed, whereas a non-flat SE
also contains additive offsets.

A remarkable property of morphological filters is the high efficiency that can
be gained in their implementations. Many of these methods may be classified as
follows, cf. [18]. A first family of schemes aims to reduce the size of the SE or
to decompose it, thus reducing the number of comparison operations that needs
to be performed over the SE. In a second family of methods a given image is
analysed so that redundant operations that may arise in some image parts could
be reduced. However, most of these methods are limited in terms of shape, size
or flatness of SE, or specific hardware that is needed, cf. [9,11–14,16].

There are just few fast methods that allow SE of arbitrary shape and size.
A very popular example is the classic scheme from [17] that relies on histogram
updates. However, as also for [17], the algorithmic complexity of most meth-
ods relies inherently on size (and often also shape) of the SE. Since the SE is
moved over an image in implementations relying on sliding window technique,
the computational effort also relates to image size.

An alternative construction of fast algorithms relies on the possibility to
formulate operations over an SE as convolutions, which may be realized via a fast
transform. In a first work [3], binary dilation respectively erosion are represented
by convolution of characteristic functions of underlying sets. In [10] this approach
was extended in a straightforward way to grey scale images. This was done by
decomposing an image into its level sets, and each level set was processed like a
binary image. By construction, the method is limited to flat filters of particular
shape. A different extension of [3] has been proposed in [4], making use of an
analytical approximation of morphological operations. The resulting method is
suitable for flat and non-flat SE, without restriction on shape or size. However, as
analyzed in [4,5], this comes at the expense of a shift and smoothing effect in the
tonal histogram. In order to address this issue, it has recently been proposed [21]
to consider the umbra of image and filter as the computational setting for the
convolution. However, in all these works the Fast Fourier Transform (FFT) has
been used, while it is evident that a computational method should be considered
where the integer based nature of the tonal domain is taken into account.

The main contribution of this work is to propose the Number Theoretic
Transform (NTT) as the conceptually adequate method for computing discrete
convolutions in the umbra setting. In doing this, we extend and refine results of
previous work as sketched above, especially of [21]. Let us also note, that by this
work we also identify a well-engineered combination of domain and proper tool
in terms of umbra setting and NTT, with no limitation with respect to size or
shape of structuring elements.

The NTT is a specialized version of the discrete Fourier transform with simi-
lar computational scaling properties as the FFT, with the specific property that
it enables exact convolution of integer sequences. While standard discrete Fourier
transform can also be used to perform such a convolution, it is susceptible to
round-off errors due to use of float arithmetic. In contrast, the NTT deals purely
with integers that can be exactly represented and processed. As another point
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of potential interest that could be explored, FFT makes use of 32 bit float data
type, whereas NTT may employ just 16 bit integer arithmetic.

2 Basic Definitions

In this section we recall some basic notions of mathematical morphology and
discrete convolutions. Upon the latter we also state some observations that help
in constructing the proposed method.

Morphological Operations. We consider an N -dimensional grey-value image
as a function f : F → L. In accordance, F ⊆ Z

N is the set of (N -dimensional)
indices in the image, which is the domain of the image. By L we denote the
tonal range of the image, so that in case of 8-bit grey-value imagery, L is the set
of integers in the range [0, 255]. A grey-value SE, flat or non-flat, can be defined
as b : B → L, B ⊆ Z

N . Then the dilation of image f by filter b is denoted by
f ⊕ b and is computed for each x ∈ F as

(f ⊕ b)(x) =

{
0 if � ∃y ∈ B : x − y ∈ F

max{f(x − y) + b(y)|x − y ∈ F and y ∈ B}, otherwise
(1)

See Fig. 1 for a visual account of dilation and its dual operation erosion.

Discrete Linear Convolution. We begin by describing discrete linear convo-
lution in one dimension (1D), as the multidimensional case is a straightforward
extension. Consider two 1D discrete signals f : F → R and g : G → R, where
F,G ⊆ Z. Their f � g results in a 1D discrete signal h : Z → R as by:

h[k] = (f � g)[k] = (g � f)[k] =
∞∑

i=−∞
f [i]g[k − i] , ∀k ∈ Z (2)

Thereby, f and g are sufficiently padded with 0s, i.e., f [i] = 0, if i �∈ F , and
g[i] = 0, if i �∈ G.

Fig. 1. Left: One sample image of size 101 × 101. Centre: Dilation. Right: Erosion.
Dilation and erosion are realised each with a 5 × 5 flat filter.
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If F and G are finite subsets of Z, we might be interested in h = (f � g)
only over a finite subset H ⊆ Z. This subset is determined by the mode of
convolution [6]. We say that in full mode of convolution, the output hfull =
(f �full g) omits all the elements whose computation only involves padded parts
of the inputs:

hfull[k] = (f �full g)[k] =
∑

i : i∈F∧(k−i)∈G

f [i]g[k − i] (3)

Furthermore, in same mode of convolution, hsame = (f �same g) is the same size
as f and is centred with respect to the output of the full mode of convolution.

For describing the multidimensional linear discrete convolution, let f̃ : F̃ →
R and g̃ : G̃ → R be now N -dimensional discrete signals, i.e. F̃ , G̃ ⊆ Z

N . The
convolution (f̃ � g̃) = h̃ : ZN → R is defined as:

h̃[k1, k2, . . . , kN ] = (f̃ � g̃)[k1, k2, . . . , kN ]

=
∞∑

i1=−∞

∞∑
i2=−∞

. . .
∞∑

iN=−∞
f̃ [i1, i2, . . . , iN ]g̃[k1 − i1, k2 − i2, . . . , kN − iN ]

(4)

valid for all k1, k2, . . . kN ∈ Z, and where f̃ and g̃ are again sufficiently padded.
If F̃ and G̃ are finite and N -dimensional rectangles, i.e. F̃ = F1×F2× . . . FN ,

G̃ = G1 × G2 × . . . GN , where all the F1, . . . , FN , G1, . . . , GN ⊆ Z
N , the finite

domain of interest of output H̃ ⊆ Z
N is specified by the mode of convolution

along each dimension, similar to 1-dimensional case.

Important Observations. We now recall some observations on discrete con-
volution that are important for computations in the umbra setting, see [21] for
some more details.

1. Let f and g be 1-dimensional signals defined on [0, n]. Then,

highest non-zero index of (f �full g) =highest non-zero index of f+
highest non-zero index of g

2. Let f0, f1 . . . , fm be non-negative 1-dimensional signals defined on [0, n], i.e.
fj [k] ≥ 0 ∀k ∈ [0, n],∀j ∈ {0, 1, . . . ,m}. Then

highest non-zero index of
m∑
j=0

fj = max
i∈{0,1,...,m}

{highest non-zero index of fi}

3. Consider f̃ : F̃ → R and g̃ : G̃ → R, with F̃ , G̃ ⊆ Z
N . Let F and G be finite.

Then

h̃[k1, k2, . . . , kN ] = (f̃ � g̃)[k1, k2, . . . , kN ]

=
∞∑

i1=−∞

{
f̃ [i1, :, :, . . . :] � g̃[k1 − i1, :, :, . . . :]

}
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Here, f̃ [i1, :, :, . . . :] and g̃[k1 − i1, :, :, . . . :] are N − 1 dimensional signals,
obtained by fixing the index of the first dimension. Similarly, one can derive

h̃[k1, k2, . . . , kN ] = (f̃ � g̃)[k1, k2, . . . , kN ]

=
∞∑

i1=−∞
. . .

∞∑
iN−1=−∞

{f̃ [i1, . . . , iN1 , :] � g̃[k1 − i1, . . . , kN−1 − iN−1, :]}

Here, f̃ [i1, . . . , iN1 , :] and g̃[k1 − i1, . . . , kN−1 − iN−1, :] are 1-dimensional sig-
nals, with index of every dimension except the last fixed.

The above observations allows us to relate dilation of scalars to convolution of
polynomials. Products of polynomials are essentially full convolutions of coef-
ficient vectors. Thus, we have reduced N -dimensional dilations to (N + 1)-
dimensional convolutions. We can use one of the many available transform with
convolution property to speed up the computations.

2.1 Number Theoretic Transform

Transforms on a finite integer ring with interesting computational properties for
realizing convolutions were first constructed in [22]. Especially, finite transforms
in rings of integers modulo Fermat numbers, may be of interest for application
in digital signal processing, see e.g. [24]. We briefly recall the Fermat Number
Transform [23], which is the version of NTT we consider in this work, in a
single dimension. Similar to FFT, multi-dimensional NTT can be obtained by
successively taking NTT along each dimension.

Fermat Numbers are prime numbers of form pf = 22
m

+ 1, for some m ∈ N.
There are only five known Fermat primes, i.e., 3, 5, 17, 257 and 65537. We can
see that 2 is a primitive root of integer rings modulo a Fermat prime. Thus, we
have, 2(pf−1) ≡ 1 (mod pf ) and moreover, pf − 1 = 22

m

. This allows defining
the Radix-2 algorithm for Fermat Number Transform (FNT), similar to Cooley-
Tukey FFT.

Let x[n], n = 0, 1, 2, . . . n0 − 1 be a 1-dimensional discrete signal of length n0

(n0 < pf ). Then the FNT of x[n], in integer ring modulo Fermat prime pf and
the inverse of FNT is given by Algorithm 1.

Clearly, like any Radix-2 algorithm, we require the signal length be a power
of 2. This is in practice achieved by padding. We also require the overall length
of the signal to be less than pf , see [22].

In FNT, the input is a discrete signal x of length n0. As indicated, the signal
is padded with 0s so that n0 = 2q, for some q ∈ N. Since we are operating in
integer ring modulo pf , the number n0 must be less than pf and x[n] < pf ,
x[n] ∈ N, ∀n ∈ {0, 1, . . . , n0 − 1}.

The Fermat number transform of x is obtained by calling the recursive func-
tion FNT(x, n0, 2, pf ). The base case, for n0 = 1, and the recursive calls are
similar to Radix-2 FFT. The difference arises in how the two sub-parts, y0 and
y1, are combined to give the result, i.e. the transformed signal y.
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Algorithm 1. Radix-2 Fermat Number Transform
/* Inputs are the signal x[.], the signal length n0, the primitive

root ω and the Fermat prime pf */

/* To obtain FNT of x, we call, FNT (x,x.length, 2, pf). */

1 Function FNT(x, n0, ω , pf):
2 if n0 == 1 then
3 return x

4 x0 = {x[0], x[2], . . . x[n − 2]}
5 x1 = {x[1], x[3], . . . x[n − 1]}
6 y0 = FNT(x0, n0/2, ω2, pf)

7 y1 = FNT(x1, n0/2, ω2, pf)

8 α = 1
9 for k = 0 to n0/2 − 1 do

/* all calculations are in integer ring modulo pf */

10 y[k] = y0[k] + y1[k]
11 y[k + n/2] = y0[k] − αy1[k]
12 α = αω

13 return y
// y is a signal of length n0

/* To obtain inverse FNT of x, we call,

inv FNT (x,x.length, 2, pf). */

14 Function inv FNT(x, n0, ω , pf):
15 inv ω ← multiplicative inverse of ω modulo pf

16 inv n0 ← multiplicative inverse of n0 modulo pf

17 y = FNT(x0, n0, inv ω, pf)

18 return inv n0 y
// multiplying, modulo pf, each element of signal y by inv n0

In line 9 to 12 of Algorithm 1, all the computations are performed in the
integer ring. The computations are exact, since there is no use of floating point
data types or approximations as in FFT. We only require bit-shifts, addition
and subtractions modulo pf for the computations. We do not require multiplica-
tion [20]. The number 2 is a primitive root of integer ring modulo pf . Therefore,
for any element γ in the ring, we can write γ ≡ 2m (mod pf ), for some m
∈ {0, 1, . . . pf −1}. Therefore, products of two elements of integer ring are essen-
tially products of two powers of 2, modulo pf . This can be achieved with the
bit-shifts and modulo operations.

The computation of inverse of Fermat Number Transform is then supposed
to be self-explanatory, as given in Algorithm 1.

For experiments in this paper, we do all the computation, for FNT, in integer
ring modulo 65537. For a discrete signal of length n0, the time complexity of
FNT, similar to FFT, is O(n0 log n0).

Let us note that, an extension of FNT without limitation on the length of
the signals is proposed in [20]. But, we do not require it here.
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3 Proposed Method

Let us first briefly outline the proposed method. The method takes into account
the finite nature of tonal range of image and filter. The novel approach may be
sketched as follows. First the N -dimensional image (N = 2 for standard imagery)
is cast to (N + 1) dimensions adding the tonal range, exploring thus the umbra
of the image; see [15] for more details on the latter notion. There we employ the
NTT [1] to compute discrete linear convolution, and afterwards we take back
the projection to N -D. This procedure induces no restrictions on flatness, shape
or size of the filter. By the properties of the NTT as a dedicated variant of the
discrete Fourier transform, it is also asymptotically faster than the classic fast
method from [17].

Let us introduce appropriate notations. For this we largely follow the notation
employed in [21]. We consider an N -dimensional grey-value image f : F →
L and SE (flat or non-flat) b : B → L, F,B ⊆ Z

N . We construct (N + 1)-
dimensional arrays, fUm and bUm, for f and b respectively, in a way that we
have a 1-dimensional vector corresponding to each pixel, and the highest non-
zero index of the vector equals the pixel value. Then as pointed out, convolution
in the umbra setting follows, and the dilated image (f ⊕ b) can be obtained
by appropriately projecting the (N + 1)-dimensional array (f ⊕ b)Um on N -
dimensions. A description of the steps one needs to perform in our method is
given below, see [21] for presentation of a detailed example for an analogous
construction of the umbra domain.

Step 1. Let lR = maxx∈F {f(x)}+maxx∈B{b(x)}. First construct two (N +1)-
dimensional arrays fUm and bUm. The first N dimensions, referred to as the
domain dimensions, of fUm and bUm consists of all (N -dimensional) indices of
F and B respectively. The last dimension, referred to as the range dimension,
consists of indices {0, 1, . . . lR}. The arrays fUm and bUm are determined by the
following two equations:

fUm(x, y) =

{
1 if x ∈ F and f(x) = y

0 otherwise.
(5)

bUm(x, y) =

{
1 if x ∈ B and b(x) = y

0 otherwise.
(6)

Note that the above construction makes it possible to have image and filter of
any shape in the domain. The constructed arrays fUm and bUm will always be
in the format of an (N +1)-dimensional hyper-rectangle, regardless the shape of
image domain F and filter domain B.

Step 2. We compute (f ⊕ b)Um by taking the linear convolution of fUm and
bUm by using same mode on the domain dimensions and full mode on the range
dimension. This step is realised by the NTT algorithm.
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Fig. 2. Left: Base of the non-flat filter. Right: Umbra of the non-flat filter.

Step 3. (f ⊕ b) is determined from (f ⊕ b)Um for each x ∈ F by making use of:

(f ⊕ b)(x) =

{
max{y|(f ⊕ b)Um(x, y) ≥ 1} if x ∈ F ⊕ B

0 otherwise.
(7)

where x �∈ F ⊕B = {x|x−xb ∈ F for some xb ∈ B} ⇔ � ∃y : (f ⊕b)Um(x, y) ≥ 1.
Thus (f ⊕ b) computed by (7) is the same as in (1).

4 Experiments

To demonstrate the viability of the proposed method, we perform dilation on
the Cameraman image of size 490×487, by a non-flat filtering SE of size 19×19.
The filter is generated using random.randint() of NumPy package [2], with range
of values from 0 to 255. The base of the SE and its umbra are given in Fig. 2.
We assume that all the pixels outside the image boundary are at −∞, so that
they do not contribute to the max evaluation.

We compare classical dilation with the method proposed in this paper. The
classical dilation is computed pixel by pixel by using the Formula (1).

The workings of the proposed method is as explained in Sect. 3. We imple-
ment 1-dimensional FNT and inv FNT, modulo the Fermat prime 65537, as
described in algorithm 1. To compute the 3-dimensional FNT, we consecutively
take 1-dimensional FNT along each dimension. The 3-dimensional inv FNT is
implemented by taking 3-dimensional inv FNT along each dimension in the
reverse order.

The proposed method gives exact result in our experiment and this can be
verified from comparing the Figs. 3 Centre and Right in top row. We also
see that the histogram of classical dilation exactly coincides with that of the
proposed method, see Fig. 4, as expected.
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Fig. 3. Top row. Left: Cameraman of size 490×487. Centre: Classical Dilation with
non-flat filter. Right: Proposed method using NTT. Second row. Umbras of original
image and dilated image.

Fig. 4. Histogram of images.
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5 Conclusion

We have proposed by combining umbra domain and number theoretic trans-
form NTT a well-engineered framework and method to compute morphological
dilation and erosion. By the algorithmic properties of the NTT, we have thus
proposed a method to compute these elementary morphological processes over an
image of size ni, with any arbitrary non-flat filter of size nf ≤ ni, in O(ni log ni)
operations.

This article represents from our point of view an important step in our work
on fast transform methods for mathematical morphology. The general framework
of number theoretic transforms, which appears to match the natural require-
ments on fast transforms in this field, may be explored with further benefit for
defining dedicated implementations in future work. Let us note in this context,
that number theoretic transforms represent by themselves a highly developing
field, with many advances still possible.
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Abstract. For multivariate data there exist several concepts generalis-
ing the median, which differ by their equivariance properties w.r.t. trans-
formations of the data space (e.g. Euclidean, affine). In earlier work on
the asymptotic analysis of multivariate image filters built upon these
concepts, it was observed that several affine equivariant median filters
approximate the same system of partial differential equations (PDEs). In
this paper we discuss the equivariance properties of multivariate medi-
ans and their associated PDEs in more detail. We discuss what equivari-
ance concept is the preferable generalisation of the very strong equivari-
ance of the scalar-valued median (sometimes also denoted as morpholog-
ical equivariance) w.r.t. arbitrary monotone transformations. Moreover,
we derive multivariate PDE evolutions systematically from equivariance
properties. It turns out that the approximation of the same PDE system
by different affine equivariant medians is no coincidence but a necessary
implication of their equivariance properties. As a by-product, a more gen-
eral class of multivariate PDE evolutions with favourable equivariance
properties arises.

Keywords: Multivariate images · Partial differential equations ·
Multivariate median · Affine equivariance · Morphological filters

1 Introduction

Curvature motion can be described in numerous ways. First of all, it is a curve
evolution that can be used for contours or shapes, and which can be stated e.g.
by a partial differential equation (PDE) for parametrised curves, and which is
a gradient descent for the curve length functional [1]. In a grey-value image, its
simultaneous application to all level lines gives rise to an image evolution which
can be described by a PDE acting directly on the intensities [9]. As such, it
can be used for structure-preserving image simplification. Moreover, it is closely
related to median filtering: As proven in [4], space-continuous median filtering
with a disc-shaped structuring element of radius � asymptotically approximates
c© Springer Nature Switzerland AG 2022
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curvature motion up to evolution time �2/6. Remarkably, both curvature motion
and the median filter are equivariant under arbitrary monotone intensity rescal-
ings, i.e. their application commutes with such rescalings. As they share this
strong property with a larger set of fundamental morphological operations, this
property is also often called morphological equivariance (or invariance).

In earlier work, several steps have been undertaken to generalise this frame-
work to multivariate (such as colour) images. Regarding median filtering, this
requires a generalisation of the median concept to multivariate data for which
different proposals have been made in literature since the beginnings of the 20th
century, see e.g. [3,7,8,10,13] and the overview in [11]. Among the differences
between these definitions, equivariance properties with regard to transformations
of the data space play an important role as they are decisive for the applicabil-
ity of the concepts to particular categories of data. Applications for the median
filtering of multivariate images can be found e.g. in [6,12,19–21].

Asymptotic PDE approximation results for bivariate and multivariate median
filtering have been presented in [14,16,17], see also extensions to adaptive median
filtering with morphological amoebas as structuring elements [15]. A remarkable
observation was that affine equivariant multivariate medians, despite not coin-
ciding as such, consistently led to the same PDE evolutions, which suggests that
common underlying principles of the PDE evolutions themselves related to equiv-
ariance can be worth considering. This is the purpose of the present contribution.

Our Contribution. We start by discussing the equivariance properties of multivari-
ate medians and their associated PDEs. Referring to the morphological equivari-
ance of the scalar-valued median and curvature motion PDE, we also address the
question what is the best multivariate generalisation of that concept.

We then turn to derive multivariate PDE evolutions in a principled way
from equivariance properties modelled after multivariate median concepts. In
fact, the asymptotic approximation of the same PDE evolution by an entire
class of affine equivariant multivariate median filters turns out to be necessary
rather than just coincidential. For Euclidean equivariance, partial results are
obtained. Considering slightly relaxed requirements, we find a more general class
of multivariate PDE evolutions which deserve further study.

Structure of the Paper. The remainder of the paper is organised as follows. In
Sect. 2 we recall multivariate median concepts from literature. We collect known
facts about their equivariance properties. At the end of the section, we discuss
what is the proper counterpart of morphological equivariance in the case of mul-
tivariate data. Section 3 lists existing results on the asymptotic approximation of
PDEs by multivariate median filters, emphasising the role of equivariance prop-
erties in their derivation. In Sect. 4 we present the systematic direct derivation
of bivariate image filtering PDEs from equivariance properties, culminating in a
re-derivation of the PDE system associated with affine equivariant multivariate
medians. Section 5 illustrates the theoretical findings by numerical examples of
PDE evolutions. A short summary in Sect. 6 ends the paper.
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2 Medians and Equivariance

In the following we shortly recall some definitions of multivariate medians and
discuss their equivariance properties. Throughout this section we assume that
X is a finite multiset of values x ∈ R

d, d ≥ 2.

2.1 Multivariate Medians

The L1 median of X is defined as the point μ ∈ R
d that minimises the sum of

Euclidean distances |μ − x| to all given points x ∈ X . Having been introduced
in 1909 [13], this is the most widespread concept of multivariate median which
has been intensively studied since and has also been used in image processing [6,
12,19–21]. We remark that in exceptional situations (namely, if all data points
are collinear, and X has even cardinality), the L1 median is non-unique (set-
valued) but do not detail this further as it is generally not relevant for our
further investigation. Also the following multivariate medians can be set-valued
in certain configurations which we will not detail further.

Oja’s simplex median [7] instead defines the median as the μ ∈ R
d that

minimises the sum of simplex volumes |[μ,x1, . . . ,xd]| for all d-tuples of data
points x1, . . . ,xd ∈ X . Especially in the bivariate case d = 2 this means to
minimise a sum of triangle areas. Note that we denote by [. . .] the oriented
simplex volume.

To avoid the high computational expense of the Oja median caused by the
combinatorial complexity of its definition, [8] proposed the transformation-
retransformation L1 median (TR-L1 median), see also [5]. This median is
computed by first applying an affine transform T to X to normalise the data
points such that their covariance matrix becomes the d×d identity matrix, then
applying the L1 median and then using the inverse transform T−1 to yield the
final median μ ∈ R

d. If all x ∈ X lie in a common affine subspace of R
d, special

consideration is needed such as applying the procedure in the subspace only.
The half-space median [10] is the point μ ∈ X of maximal half-space

depth w.r.t. X . Here, the half-space depth is the minimum over all hyperplanes
H � μ of the number of points x ∈ X that lie on one side of H. Parametrising
hyperplanes with unit normal vectors n ⊥ H this can be expressed as μ =
argmax

μ∈R
d

min
n∈Rd,|n |=1

∑
x∈X sgn〈x−μ,n〉. Clearly, for a given multiset X the half-

space depth cannot exceed �(#X − 1)/2	 where # symbolises cardinality but
this value is not always realised.

As the last multivariate median concept, we mention the convex-hull-
stripping median [3]. It is obtained by an iterative process: Starting with
X0 := X , one obtains Xi+1 from Xi, i = 0, 1, 2, . . ., by removing all points x
that lie on the boundary of the convex hull of Xi. This is repeated until one
finds i with Xi 
= ∅ = Xi+1. Each point μ in the convex hull of Xi then is a
convex-hull-stripping median of the initial X .
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2.2 Equivariance

Equivariance essentially describes commutativity between some operator acting
in a suitable space and transformations of this space. In the following we will
distinguish whether the set of admissible transformations is independent of the
actual data set or not, and speak of absolute or relative equivariance, respectively.

Basic Definitions. Denote by S a suitable data space (e.g. R
d). An operator

ϕ mapping multisets X of values x ∈ S to single values ϕ(X ) ∈ S is called
absolutely equivariant w.r.t. a set T of transformations T : S → S if for any
multiset X ⊂ S and any transformation T ∈ T one has ϕ(TX ) = Tϕ(X ). Note
that TX here denotes simultaneous application of T to all elements of X .

An operator ϕ as stated before is called relatively equivariant w.r.t. T
if T is a set-valued operator that assigns to each multiset X ⊂ S a set T (X )
of transformations T : S ′ → S where X ∪ {ϕ(X )} ⊆ S ′ ⊆ S such that for any
T ∈ T (X ) one has ϕ(TX ) = Tϕ(X ).

Equivariance is in fact a decisive feature when it comes to the application of
filtering operators to given data. For example, application of an operator that
possesses only Euclidean equivariance to data which do not have a meaningful
Euclidean structure is dangerous as it implicitely imposes a random Euclidean
structure on these data, and uses it to draw conclusions. This difficulty has in
fact been a driving force behind the development of different multivariate median
concepts in statistical literature.

The following equivariance properties of univariate and multivariate medians
are largely known from the literature, see in particular [11] and the references
therein.

Univariate Median. The classic median possesses two strong equivariance
properties that together form the essence of its outstanding role as a robust
central position measure. First, it is equivariant under (the set of all) strictly
monotonically increasing functions T : R → R. This is the morphological
equivariance mentioned in Sect. 1, which is obviously an absolute equivariance
property. Second, there is the radial scaling equivariance: Given a finite mul-
tiset X ⊂ R with median μ, the median is unchanged if each x ∈ X is replaced
with some μ + c(x − μ) where the factors c > 0 can even be chosen indepen-
dently for each x. As the set of admissible transformations obviously depends
on X , namely, of its median, this is a relative equivariance. Finally, the univari-
ate median is equivariant under reflections. Formally, this is also an absolute
equivariance property which we will shortly refer to as centrality.

Centrality, understood as equivariance under reflections at arbitrary hyper-
planes, is shared by all multivariate medians under discussion (intuitively, it is
crucial for calling an operator a median, or more generally a mean). Regarding
other equivariances, the multivariate medians vary, so we will shortly discuss
each of them.

L1 Median. This median is much more restrictive in terms of absolute equiv-
ariance. It is equivariant under similarity transforms, i.e. under Euclidean
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transformations and global rescalings. On the other hand, it fully implements
radial scaling equivariance as a relative equivariance property.

Oja and TR-L1 medians. Both medians are absolutely equivariant under arbi-
trary affine transformations of the data space. Radial scaling equivariance holds
for the Oja median in configurations where it is uniquely defined. Unfortunately,
radial scaling equivariance is not preserved for the TR-L1 median. We remark
instead the following asymptotic property: Let a data multiset X = {x1, . . . ,xN}
be given. If radial rescaling weights ci for the data xi are chosen as ci = 1 + εCi

with fixed Ci for the individual points and a global variable parameter ε, then
for ε → 0 the TR-L1 median of the multiset X ′ = {c1x1, . . . , cNxN} deviates
from that of X by O(ε).

Half-Space Median. The half-space median shares with the previously men-
tioned two concepts the absolute equivariance under affine transformations.
Moreover, as it depends only on the situation of points relative to straight lines,
i.e. whether some point is located on the one or other side of that straight line,
one can establish equivariance w.r.t. a somewhat larger set of global transfor-
mations, namely all projective transforms of the projective space Pd ⊃ R

d that
do not take any point from the convex hull of the data multiset X to infin-
ity. As the set of admissible transformations depends on X , this is a relative
equivariance; we will refer to it as restricted projective equivariance. Note
that for sequences (X1,X2, . . .) increasing beyond limits, i.e. with convex hulls

conv(Xi) that fulfil
∞⋃

i=1

conv(Xi) = R
d, the corresponding sets Ti of admissible

projective transforms converge to the set T ∗ of affine transforms, T1 ⊃ T2 ⊃ . . .
with

⋂∞
i=1 Ti = T ∗ because affine transforms are the only projective transforms

that take no finite point to infinity.
Radial scaling equivariance does in general not hold for the half-space median;

however, it is valid for those data multisets X for which the half-space median
attains the maximum possible half-space depth �(#X − 1)/2	.
Convex-Hull-Stripping Median. The equivariance properties of the convex-
hull-stripping median resemble those of the half-space median as it possesses the
same absolute affine equivariance and relative restricted projective equivariance.
Radial scaling equivariance does not hold.

Generalisation of Morphological Equivariance. Looking back at the equiv-
ariance of the univariate median (and many morphological operators) under
arbitrary monotone transformations of R, the question arises what is the best
counterpart one can establish for this in the multivariate case. For a tentative
answer to this question, one can interpret increasing monotone transformations
of R as orientation-preserving maps: they do not change the orientation of inter-
vals, i.e. one-dimensional simplices [x, y]. Generalising this to the multivariate
case, one is naturally led to consider transformations T of R

d that preserve the
orientation of d-dimensional simplices [x0, . . . ,xd]. This boils down to requiring
that the situation of any point in R

d relative to any hyperplane must not change.
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Postulating this for all points in R
d, one obtains affine equivariance. Alterna-

tively, restricting the requirement to the convex hull of a given data multiset,
one obtains again the restricted projective equivariance.

We suggest therefore to consider restricted projective equivariance as multi-
variate morphological equivariance.

3 Space-Continuous Analysis

All definitions from Subsect. 2.1 can be directly applied within median filtering
procedures for discrete multivariate images. To study PDE limits, however, they
need to be transferred to space-continuous multivariate images represented by
smooth functions u : R

2 → R
d. The selection of values around a given location

x ∈ R
2 is then accomplished using a compact neighbourhood of x as structuring

element, and yields a density of intensities γ : R
d → R

+
0 where R

+
0 denotes the

set of nonnegative real numbers. Given the smoothness of u, γ has compact
support and is absolutely integrable; it may be normalised to total weight 1.

Medians of Multivariate Densities. With the exception of the convex-hull-
stripping median, the multivariate median concepts can easily be transferred
to the case of compactly supported absolutely integrable densities γ, essentially
by replacing sums with integrals, see [17]. The convex-hull-stripping median is
more difficult to transfer; as shown in [18] the iterative process turns into a
shape evolution process similar to the affine morphological scale space [2]. As
an asymptotic analysis of the final point of this shape evolution has not been
accomplished so far, we leave this median concept aside for the further discussion
in this subsection.

Limiting Process. Modelled after [4], we consider disc-shaped structuring ele-
ments D�(x) of radius � centered at x for the filtering of multivariate images
u as specified above. The multivariate median of the density γ of image values
within D�(x) then is the value of the median-filtered image M�u. Similar to [4],
one obtains results of the type lim

�→0

M �u(x)−u(x)
�2/6 = Lu with some (spatial) dif-

ferential operator L which justify to consider the time evolution PDE ut = Lu
as the asymptotic evolution for the respective multivariate median filter.

Equivariant Normalisation. In [14,16] asymptotic evolutions of multivariate
median filters were derived. In doing so, it was helpful to exploit the Euclidean
and affine equivariance, respectively, of the underlying median operators in the
data space as well as the Euclidean equivariance in the image plane contributed
by the structuring element D� to normalise the function u around the location x.

In the bivariate case (d = 2) this is done as follows: First, translations in the
image plane and data space are used to shift x and u(x) to 0. Next, rotations
around 0 in the image plane and data space are applied to make the Jacobian
Du(0) diagonal and positive semidefinite (at generic locations: positive definite).
We call the normalisation up to this step Euclidean normalisation. Further-
more, if the median under consideration admits affine equivariance, an affine
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transform in the data space can be used to rescale the data (at non-degenerate
locations) such that the Jacobian becomes the unit matrix. We refer to this
as affine normalisation. Note that this is the continuous counterpart of the
normalisation by the covariance matrix in the definition of the TR-L1 median.

In the case d > 2, essentially the same kind of normalisation can be applied;
however, the Jacobian is now a d × 2-matrix and will be transformed in a way
that its third and further rows are zero, and the 2×2-submatrix consisting of the
first two rows satisfies the requirements (diagonal, positive semidefinite, positive
definite, unit matrix) as specified before.

In the following we state the approximation results from [14,16] for the nor-
malised cases; the general equations are obtained from these by applying the
respective inverse transforms to the PDE ut = Lu. For brevity we focus on the
bivariate case (d = 2).

Normalised PDE Approximations of Multivariate Median Filtering.
In [14] it was shown that bivariate L1 median filtering of an image u : R

2 → R
2,

(x, y)T �→ (u, v)T in Euclidean normalisation approximates the PDE system

ut = Q(ux/vy)uxx + (1 − Q(ux/vy))uyy − 2(ux/vy)Q(ux/vy)vxy

vt = (1 − Q(vy/ux))vxx + Q(vy/ux)vyy − 2(vy/ux)Q(vy/ux)uxy

(1)

with a coefficient function Q that can be stated in terms of elliptic integrals.
Specialising to the affine normalised situation, one has Q(1) = 1/4, thus

ut = 1
4uxx + 3

4uyy − 1
2vxy , vt = 3

4vxx + 1
4vyy − 1

2uxy , (2)

which is the PDE system for the Oja and TR-L1 median filters in affine normal-
isation. In [16] it was proven that bivariate half-space median filtering approx-
imates the same PDE system. For the L1, Oja and TR-L1 median filters also
trivariate versions of these PDE systems are found in [14].

Equivariance. The definitions of absolute and relative equivariance translate
straightforward to the case of PDEs evolutions. As can be expected, the PDE
evolutions for L1 median filtering such as (1) are equivariant under similarity
transformations of the data space; the PDE evolutions such as (2) for the other
medians are affine equivariant. Moreover, the fact that (2) also corresponds to
the half-space median lets expect restricted projective equivariance which indeed
holds. Remarkably, the just affine equivariance of the Oja and TR-L1 medians
is upgraded to restricted projective equivariance in the asymptotic limit.

4 Derivation of PDE Evolutions by Equivariance

In this section we turn around to derive bivariate image filtering PDEs from
equivariance properties modelled after median filters. We start by assuming that
u is a smooth bivariate image evolution which is described by some PDE system
ut = Lu. To restrict the PDE system, we impose conditions one by one, modelled
after the properties of median operators.
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(I) Translation Equivariance. This allows us to shift the location of interest
to 0 with u(0) = 0. We write down the spatial Taylor expansion up to second
order at a non-degenerate location 0. Suppressing for the moment the time
parameter, and considering only x = (x, y)T ∈ D�(0), we have

u(x, y) = α1x + α2y + 1
2βx2 + γxy + 1

2δy2 + O(�3) ,

v(x, y) = α′
1x + α′

2y + 1
2β′x2 + γ′xy + 1

2δ′y2 + O(�3)
(3)

where we have replaced first and second order derivatives of u at 0 with variables.
Noting that medians of u within D� are O(�2), we seek a PDE evolution

that is approximated by some filtering process in the limit � → 0 with step size
O(�2). This implies that the PDE evolution is described by a bivariate function
p = (p, q)T of the first and second order derivatives of u as

ut = p(α1, α2, β, γ, δ, α′
1, α

′
2, β

′, γ′, δ′) . (4)

(II) Centrality. We impose first centrality in its weakest form, w.r.t. the reflec-
tion on the origin, which implies

p(α1, α2, 0, 0, 0, α′
1, α

′
2, 0, 0, 0) = 0 . (5)

(III) Scaling Equivariance. With this requirement it follows that p is homo-
geneous of degree 0 in α1, α2, α′

1 and α′
2 and of degree 1 in the remaining

parameters,

p(λα1, λα2, μβ, μγ, μδ, λα′
1, λα′

2, μβ′, μγ′, μδ′) = μp(α, β, γ, δ, α′, β′, γ′, δ′) (6)

for λ > 0, μ > 0.

(IV) Euclidean Equivariance. Now we can apply Euclidean normalisation.
In the normalised setting, we have α2 = α′

1 = 0. By homogeneity, p in fact only
depends on the ratio α1/α′

2 instead of the two individual variables.

(V) Affine Equivariance. By affine normalisation we achieve α′
1 = α2 =

1, thus only the second order derivatives are left as parameters for p =
p(β, γ, δ, β′, γ′, δ′).

We notice that in the affine normalised setting, there is a further degree of
freedom: Simultaneous rotations and reflections in the image (x-y) and data (u-v)
plane leave α1 = α′

2 = 1 untouched but transform the second order derivatives.
Thus, p must be equivariant under these operations.

In particular, reflections on the y and v axes and similarly on the x and u
axes imply

p(0, γ, 0, β′, 0, δ′) = 0 , q(β, 0, δ, 0, γ′, 0) = 0 (7)

as well as p(−β,−γ,−δ,−β′,−γ′,−δ′) = −p(β, γ, δ, β′, γ′, δ′). By reflection on
the diagonal x = y, we find q(β, γ, δ, β′, γ′, δ′) = p(δ′, γ′, β′, δ, γ, β), thus reducing
the problem to finding a single univariate function p. Using general rotations
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with rotation matrix R =
(

cos ϕ sin ϕ
− sin ϕ cos ϕ

)

simultaneously in the x-y and u-v

planes and taking first-order derivatives w.r.t. the rotation angle ϕ yields the
differential equations

pβ − pδ − pγ′ = 0 , pβ′ − pδ′ − pγ = 0 (8)

for p. Furthermore, second derivatives w.r.t. ϕ yield the additional conditions
pγ = pβ′ = pδ′ = 0, from which together with (7) we see that p is a 1-
homogeneous function of only β, δ and γ′. According to Euler’s Homogeneous
Function Theorem p can be represented in the form

p(β, δ, γ′) = βpβ + δpδ + γ′pγ′ . (9)

Simplifying (9) with (8) we obtain the following intermediate result.

Proposition 1. A bivariate PDE evolution in affine normalisation which is
associated to a local filtering operator with centrality property and affine equiv-
ariance can only be of the form

ut = p(uxx, uyy, vxy) , vt = p(vyy, vxx, uxy) (10)

with a 1-homogeneous function p that satisfies

p(β, δ, γ′) = (β + γ′)pβ + (δ − γ′)pδ . (11)

(VI) Relative Equivariances. For further specification we need an additional
requirement that can be derived from several relative equivariances. If we assume
radial scaling equivariance, we can in particular replace (in the normalised setting
under consideration) u(x) for each x ∈ D� with the scalar multiple (1+εx)u(x)
for some small ε and require that ut remains unchanged. This implies

p(β + 2ε, δ, γ′ + ε) = p(β, δ, γ′) . (12)

Unfortunately, as discussed earlier, radial scaling equivariance does not hold for
all multivariate median concepts in our investigation. Among the affine equivari-
ant medians, it holds only for the Oja median (where the restriction to unique
cases is no problem in the space-continuous case at generic locations). However,
(12) can be derived alternatively from restricted projective equivariance (as it
holds for the half-space median). Moreover, it can be shown that also the asymp-
totic radial scaling equivariance which holds for the TR-L1 median is sufficient
to ensure (12) since the effect of the radial rescaling with (1 + εx) for x ∈ D�

on p is of order O(�ε) and thereby vanishes in the limit � → 0.
Inserting (11) into (12) we obtain (β + γ′ + 3ε)pβ + (δ − γ′ − ε)pδ = (β +

γ′)pβ + (δ − γ′)pδ and finally
pδ = 3pβ . (13)

Together with (11) this yields p(β, δ, γ′) = (β + 3δ − 2γ′)pβ which implies that
pβ is constant and p a linear function. The single degree of freedom is the choice
of pβ which amounts to a time rescaling. The consequence is our second result,
summarised in the following proposition.
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Proposition 2. A bivariate PDE evolution in affine normalisation as in Propo-
sition 1 which additionally satisfies asymptotic radial scaling equivariance or
restricted projective equivariance is necessarily of the form (2).

We remark that Proposition 2 explains the coincidence of the PDE asymp-
totics of Oja, TR-L1 and half-space median in the bivariate case. Generalisations
on one hand to trivariate and generally multivariate evolutions, and on the other
hand to Euclidean equivariance are part of ongoing work.

The result of Proposition 1 states a more general class of affine equivariant
PDE evolutions that are in a sense close to median-associated ones but without
the last requirement of relative equivariances. Functions p that satisfy (11) for
real β, δ, γ′ with β + γ′ > 0 and δ − γ′ > 0 are e.g. given by

p(β, δ, γ′) =
(
(β + γ′)s + ϑ(δ − γ′)s

)1/s (14)

with arbitrary parameters ϑ > 0, s > 0, which includes the linear case for s = 1.
To be usable for the PDE image filter, however, p needs to be defined on the
entire parameter space (β, δ, γ′) ∈ R

3. Such an extension is obviously possible
for some values of s, particularly s = m or s = 1/m for odd natural numbers m.
We believe that this larger class of PDE evolution deserves further study, and
include some numerical examples in the next section.

5 Experiments

While the emphasis of this paper is largely on theory, we want to give an impres-
sion of the effect of the filters under consideration by a numerical example.
Although practical relevance is expected rather for multivariate images with
at least three channels such as RGB colour images or diffusion tensor images,
it appears appropriate to stay in the bivariate setting in accordance with the
analysis presented. As an example of a bivariate image we therefore present a
colour image where the RGB colour space has been reduced to a yellow-blue
(YB) colour space by averaging the red and green channels. All algorithms were
implemented in C++.

Numerical Aspects. Whereas the PDE system (10), (14) is stated in affine
normalisation, practical computation by a finite-difference scheme is best done
by applying only Euclidean normalisation to a 3 × 3 patch and evaluating the
PDE system therefore in the form

ut = p(uxx, uyy, vxy/vy) , vt = p(vyy, vxx, uxy/ux) . (15)

Still, as already noted in [14], a straightforward discretisation by central differ-
ences is unstable. In [14, App. 6] a stable numerical scheme was devised that uses
in particular min-mod stabilised upwind discretisations for the terms involving
uxy/ux, vxy/vy. We use this scheme with minor adaptations to suit the more
general function p from (14).
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a b c d

e f g h

Fig. 1. Filtering of a bivariate colour image (512×512 pixels). a Colour image sailboat
reduced to yellow-blue colour space. b Result of half-space median filtering with a
discrete disc of radius 2 as structuring element, 15 iterations. c Corresponding evolution
by the PDE system (10), (14), s = 1, ϑ = 3, up to time T = 2.5 (60 time steps of size
0.041665); same evolution as (2) except for speed-up by a factor 4. d Same as c but
with heuristic anti-diffusion to reduce numerical dissipation; see text. e PDE evolution
(10), (14), s = 3, ϑ = 3, T = 2.5 (same time steps as c, d). f Same as e but with
heuristic anti-diffusion. g PDE evolution (10), (14), s = 1/3, ϑ = 3, T = 0.8333 (1000
time steps of size 0.0008333). h Same as g but with heuristic anti-diffusion. (Colour
figure online)

As finite difference discretisations of PDEs tend to add undesired blur to the
results, it was proposed in [14] to modify the coefficients of the PDE evolutions by
an anti-diffusion term which can be safely done just by reducing the coefficients
of uxx, uyy, vxx, vyy by a uniform amount. We follow this recommendation and
include exemplary results with this compensation.

Exemplary Results. Based on the original image shown in Fig. 1a, we show
first a result of iterated half-space median filtering, Fig. 1b, using the implemen-
tation from [16]. Frame c shows the result of the corresponding PDE system (10),
(14) with s = 1 at the appropriate evolution time, whereas frame d represents
the same with the anti-diffusion compensation. Frames e–f show visually similar
results obtained with s = 3 instead of s = 1. In frames g–h we used s = 1/3.
To achieve a visually comparable degree of image smoothing, adjustments were
required both for the total evolution time (reduced by a factor of 3) but also for
the time step size (reduced by a factor of 50, necessitating dramatically more
iterations).

Still, the computation time for all of the PDE evolutions is much less than that
for the half-space median computation. With our C++ implementations that were
in no way optimised for performance, computation times for single-core compu-
tation on an AMD Phenom(tm) II X6 1100T processor (manufactured around
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2011) running at 3.2 GHz under Ubuntu Linux 20.04 ranged from seconds to min-
utes for the PDE evolutions whereas more than two hours were necessary for the
half-space median filtering. We believe that significant speedups are possible by
more efficient implementations.

6 Summary and Conclusions

In this paper we have re-visited previous results on multivariate image filter-
ing PDE systems associated with median filters with special emphasis on their
equivariance properties. We have presented a systematic derivation of such PDE
systems on the basis of equivariance properties, for the time being in the bivari-
ate case. As a result, we showed that the approximation of the same PDE system
by several affine equivariant median filtering processes is no coincidence, but a
necessity. As a by-product we have identified a more general class of PDE evolu-
tions with homogeneous functions of second derivatives as right-hand sides that
appear to be worth further study.

Ongoing work is directed at generalising the result of this paper to the general
multivariate situation including practically meaningful cases like RGB colour
images and diffusion tensor images. We also aim at extending the analysis to
the case of Euclidean equivariance where part of our present line of argument
cannot be transferred straightforwardly. As mentioned before, the larger class of
homogeneous evolutions described above is of interest for further investigation,
too.

Another direction for future research is the adequate interpretation of the
PDE systems in question. The clear geometric intuition of curvature flow in
the univariate case is so far not reflected in an appropriate understanding of the
multivariate PDE evolution. A geometric interpretation will definitely strengthen
the theoretical framework and promote applicability.

References

1. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equa-
tions in image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993). https://
doi.org/10.1007/BF00375127

2. Alvarez, L., Morales, F.: Affine morphological multiscale analysis of corners and
multiple junctions. Int. J. Comput. Vis. 25, 95–107 (1994)

3. Green, P.J.: Peeling bivariate data. In: Barnett, V. (ed.) Interpreting Multivariate
Data, pp. 3–20. Wiley, Chichester (1981)

4. Guichard, F., Morel, J.M.: Partial differential equations and image iterative filter-
ing. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analy-
sis, pp. 525–562, No. 63 in IMA Conference Series (New Series), Clarendon Press,
Oxford (1997)

5. Hettmansperger, T.P., Randles, R.H.: A practical affine equivariant multivariate
median. Biometrika 89(4), 851–860 (2002)

https://doi.org/10.1007/BF00375127
https://doi.org/10.1007/BF00375127


Equivariance-Based PDE Analysis 205

6. Kleefeld, A., Breuß, M., Welk, M., Burgeth, B.: Adaptive filters for color images:
median filtering and its extensions. In: Trémeau, A., Schettini, R., Tominaga, S.
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Abstract. In discrete signal and image processing, many dilations and
erosions can be written as the max-plus and min-plus product of a
matrix on a vector. Previous studies considered operators on symmetri-
cal, unbounded complete lattices, such as Cartesian powers of the com-
pleted real line. This paper focuses on adjunctions on closed hypercubes,
which are the complete lattices used in practice to represent digital sig-
nals and images. We show that this constrains the representing matrices
to be doubly-0-astic and we characterise the adjunctions that can be
represented by them. A graph interpretation of the defined operators
naturally arises from the adjacency relationship encoded by the matri-
ces, as well as a max-plus spectral interpretation.

Keywords: Morphological operators · Max-plus algebra · Graph
theory

1 Introduction

Like linear filters can be represented by matrices in discrete image and signal
processing, many morphological dilations and erosions can be seen as applying
a matrix product to a vector, but in the minimax algebra. This is in particular
the case for those defined with structuring functions, either flat or not, local or
non-local [13,14], translation invariant or spatially variant [4,7,10,16]. They are
commonly known to be the vertical-shift-invariant dilations and erosions [9,11].
While the matrix point of view is not the most appropriate for the implemen-
tation of these operators, especially translation-invariant ones, it is a valuable
insight for their theoretical understanding. In particular, it can help predict
and control complex behaviours such as those of iterated operators based on
adjunctions with non-flat, spatially variant and input-adapted structuring func-
tions [2,3]. Indeed, it is a flexible and general framework which embraces a very
broad part of morphological literature, and it is supported by the rich theory of
Minimax algebra [1,6].
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In the abundant literature on spatially-variant morphological image process-
ing, only a few approaches explicitly used the matrix formulation [2,3,13,14],
whereas most contributions were limited to flat structuring elements and focused
on the local effects of the adaptive strategy. On the theoretical side, the repre-
sentation of morphological adjunctions by matrices was studied in a setting that
does not directly apply to digital signal and image processing, as the co-domain is
usually an unbounded lattice, stable under any vertical translation [11]. Although
a method was proposed to convert these adjunctions to new ones on bounded
lattices [12], it is not practical and does not allow for the interpretations that
are exposed here.

In the present paper, we focus on complete lattices of the type [a, b]n, where
a and b represent the minimal and maximal possible signal values (typically
a = 0 and b = 255 for 8-bits images), and n is an integer representing the size
of the signal (typically, the number of pixels of an image, reshaped as a column
vector). This is a theoretical contribution that can be viewed as a companion
paper to previous studies where this framework has been successfully applied
to adaptive anisotropic filtering [2,3]1. In Sect. 2 we introduce the matrix-based
morphological setting and prove simple but fundamental results: in particular,
we characterise the adjunctions that can be represented by matrices and show
that these matrices need to be doubly-0-astic. By viewing matrices as encoding
adjacency, we provide in Sect. 3 a graph interpretation of iterated operators and
their associated granulometries. In Sect. 4 we draw a link between these operators
and some results on the spectrum of matrices in the max-plus algebra, before
concluding in Sect. 5.

2 Matrix-Based Morphological Adjunctions

2.1 Notations

In this paper matrices will be denoted by capital letters, such as W , and their i-th
row and j-th column coefficients by corresponding indexed lowercase letters wij .
Similarly, vectors are written as boldface lowercase letters, such as x, and their
i-th component as xi. Let 0 ≤ a < b ∈ R

+ be two non-negative real numbers,
n ∈ N

∗ a positive integer. The set {1, . . . , n} will be denoted by �1, n�. Let
L = ([a, b]n,≤) be the complete lattice equipped with the usual product partial
ordering (Pareto ordering): x ≤ y ⇐⇒ xi ≤ yi, ∀i ∈ �1, n�. The supremum
and infimum on L are induced by the Pareto ordering: for a family (x(k))k∈K of
L,

∨
k∈K x(k) is the vector y defined by yi =

∨
k∈K x

(k)
i , where K is any index

set. Therefore a = (a, . . . , a)T and b = (b, . . . , b)T are respectively the smallest
and largest elements in L. For x ∈ L, we note xc =̇ b − x + a, and for any
i ∈ {1, . . . , n}, e(i) is the “impulse” vector in L such that e

(i)
i = b and e

(i)
j = a

for j �= i.
We note Rmax =̇ R ∪ {−∞}, Rmin =̇ R ∪ {+∞} and Mn the set of n × n

square matrices with coefficients in Rmax. Like (Rmax,∨,+), (Mn,∨,⊗) is an
1 An online demo for [3] is available: https://bit.ly/anisop demo.

https://bit.ly/anisop_demo
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idempotent semiring, with the addition ∨ and product ⊗ defined as follows.
For A,B ∈ Mn, A ⊗ B and A ∨ B are the n × n matrices defined respectively
by (A ⊗ B)ij =

∨n
k=1 aik + bkj and (A ∨ B)ij = aij ∨ bij = max(aij , bij), for

1 ≤ i, j ≤ n. Similarly, for x ∈ R
n
max, A ⊗ x is the vector such that (A ⊗ x)i =∨n

j=1 aij + xj . Note that ∨ and ⊗ are associative and ⊗ is distributive over ∨.
Finally, the product of a scalar λ ∈ Rmax by a vector x ∈ R

n
max is λ⊗x =̇ λ+x,

the vector in Rmax such that (λ⊗x)i = λ+xi. In [6] and [14], special subsets of
Mn are introduced, that we will show to be essential to represent morphological
adjunctions on L.

Definition 1 (0-asticity [6]). A matrix W ∈ Mn is said row-0-astic if for
any 1 ≤ i ≤ n,

∨n
j=1 wij = 0. Similarly, it is said column-0-astic if the

supremum of each column is 0, and doubly-0-astic if the matrix is both row-0-
astic and column-0-astic. Finally, W is simply said 0-astic if

∨
1≤i,j≤n wij = 0.

A special kind of doubly-0-astic matrices are those with zeros on the diagonal
and non-positive coefficients elsewhere.

Definition 2 (CMW matrices [14]). A matrix W ∈ Mn is called a Con-
servative Morphological Weights (CMW) matrix if ∀i, j ∈ �1, n�, wij ≤ 0 and
wii = 0.

We now introduce the morphological framework on L, based on the max-plus
algebra product between matrices and vectors.

2.2 Dilations

For W ∈ Mn, we consider the function δW from L to R
n
max such that

∀x ∈ L, δW (x) = W ⊗ x =

⎛

⎝
∨

1≤j≤n

{wij + xj}
⎞

⎠

1≤i≤n

. (1)

In the processing of digital data such as images we usually want the input to be
comparable with the output. Hence, we will constrain W such that δW (L) ⊆ L.
This has the following consequences:

δW (b) ≤ b ⇒ ∀i ∈ �1, n�, b + (
n∨

j=1

wij) ≤ b ⇒ ∀i ∈ �1, n�,

n∨

j=1

wij ≤ 0

since b > −∞. Similarly, δW (a) ≥ a ⇒ ∀i ∈ �1, n�,
∨n

j=1 wij ≥ 0. Hence a
necessary condition to have δW (L) ⊆ L is that W be row-0-astic (Definition 1).
Conversely, the row-0-asticity for W implies that δW (a) = a and δW (b) = b, and
therefore that δW (L) ⊆ L by increasingness of δW . This leads to the following
result.

Proposition 1. Let W ∈ Mn and δW be the function defined by (1). Then δW

is a dilation mapping L to L if and only if W is row-0-astic.
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Proof. If δW is a dilation mapping L to L, then δW (L) ⊆ L which, as we showed,
implies that W is row-0-astic. Conversely, we saw that a row-0-astic W implies
δW (L) ⊆ L. Therefore, we only have to verify that δW is a dilation, or equiv-
alently that it commutes with the supremum. This is straightforward from the
definition of W ⊗ x. ��

2.3 Erosions and Adjunctions

Now we suppose that W ∈ Mn is row-0-astic, hence δW is a dilation from L
to L, and we are interested in its adjoint erosion αW defined for any y ∈ L by
αW (y) =

∨
Ey where Ey = {x ∈ L, δW (x) ≤ y}. Let us denote by εW the

function from L to R
n
min such that for any y ∈ L

εW (y) =
(
δWT (yc)

)c =
(
WT ⊗ yc

)c =

⎛

⎝
∧

1≤j≤n

{yj − wji}
⎞

⎠

1≤i≤n

. (2)

Then we can check that ∀y ∈ L, αW (y) = εW (y) ∧ b. Indeed, from (1) we
see that for any x,y ∈ L, δW (x) ≤ y ⇐⇒ x ≤ εW (y). Therefore, since
δW (a) = a ≤ y we get a ≤ εW (y), which implies εW (y) ∧ b ∈ L; furthermore,
εW (y) ∧b ≤ εW (y) so εW (y) ∧b ∈ Ey; finally, as both εW (y) and b are upper-
bounds of Ey, so is εW (y)∧b. Hence, εW (y)∧b =

∨
Ey = αW (y). By a similar

reasoning as in Sect. 2.2, we get the following result.

Proposition 2. Let W ∈ Mn and εW be the function defined by (2). Then εW

is an erosion mapping L to L if and only if W is column-0-astic.

If W is also row-0-astic, then εW = αW is the adjoint of δW , as stated next.

Proposition 3. Let W ∈ Mn and δW and εW be the functions defined by (1)
and (2), respectively. Then (εW , δW ) is an adjunction on L if and only if W is
doubly-0-astic. Furthermore, (εW , δW ) is an adjunction on L with δW extensive
(and εW anti-extensive) if and only if W is a CMW matrix.

Proof. Most of the points have already been addressed above or are straightfor-
ward from Proposition 1. To see that δW extensive implies wii = 0 for all i, just
remark that wii < 0 would imply δW (e(i))i < b = e

(i)
i . ��

2.4 Generality of (εW , δW )

The dilation δW , already introduced in [2,11,15], can be viewed as a generalisa-
tion of the non-local and adaptive mathematical morphology [13,14] on signals
and images. Each column W:,j of W represents the structuring function corre-
sponding to pixel (or instant) j.

As pointed out in [9,11], the dilations that can be written as matrix-based
max-plus products like Eq. (1) are the shift (or vertical-translation) invariant
ones. However the result stated in [9,11] does not directly apply to our setting
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where the lattice L is different from the lattice of scalars which define vertical
translation of signal values, usually R ∪ {−∞,+∞}. Still, the same idea holds
here with some adaptation, as stated in the next proposition.

Proposition 4. Let δ : L → L be a dilation. Then there exists W ∈ Mn such
that δ = δW if and only if

∀λ ≤ 0,∀x ∈ L, δ
(
(λ + x) ∨ a

)
=

(
λ + δ(x)

) ∨ a. (3)

In that case, the matrix W whose j-th column is W:,j = δ(e(j))−b for 1 ≤ j ≤ n,
is such a representing matrix.

We see that this class of dilations is very broad and covers the most commonly
used in morphological image and signal processing: dilations based on structuring
functions, possibly non-local, varying in space and non-flat.

Proof (Proposition 4). If δ = δW for some W ∈ Mn, then it is straightforward
to check that δ verifies Eq. (3).

Conversely, suppose δ verifies Eq. (3). Then we first remark that δ(b) = b.
Indeed, on the one hand, δ(a) = a as a =

∧ L and δ is a dilation mapping L to
L. On the other hand, δ(a) = δ

(
(a − b) + b

)
= (a − b) + δ(b) by Eq. (3). Hence

a = (a − b) + δ(b) which means that δ(b) = b.
As a consequence: for any i ∈ �1, n�, there is a ji ∈ �1, n� such that

δ(e(ji))i = b. This is simply because b =
∨

1≤j≤n e(j) so b = δ
( ∨

1≤j≤n e(j)
)

=
∨

1≤j≤n δ(e(j)), which means that, for any i, b =
∨

1≤j≤n δ(e(j))i and finally that
δ(e(ji))i = b for some ji, as the supremum is reached here.

Now, let x ∈ L. Then it can be decomposed as x =
∨

1≤j≤n

[
(λj + e(j)) ∨ a

]

with λj = xj − b ≤ 0. Hence, as δ is a dilation verifying Eq. (3), we get δ(x) =∨
1≤j≤n

[(
λj + δ(e(j))

) ∨ a
]
. We now use the result stated just above: for any

i ∈ �1, n� there is a ji ∈ �1, n� such that λji + δ(e(ji))i = xji − b + b = xji ≥ a.
Therefore,

∨
1≤j≤n

[(
λj + δ(e(j))

) ∨ a
]

=
∨

1≤j≤n λj + δ(e(j)) from which we
finally get

δ(x) =
∨

1≤j≤n

λj +δ(e(j)) =
∨

1≤j≤n

(xj −b)+δ(e(j)) =
∨

1≤j≤n

xj +[δ(e(j))−b] (4)

which is exactly W ⊗ x for W the matrix with columns W:,j = δ(e(j)) − b for
1 ≤ j ≤ n. ��
Note that the dual of Proposition 4 obviously holds: the erosions ε : L → L
which can be written as εW for some W ∈ Mn are those for which

∀λ ≥ 0, ∀x ∈ L, ε
(
(λ + x) ∧ b

)
=

(
λ + ε(x)

) ∧ b. (5)

To show this it is sufficient to see that ε verifies (5) if and only if the dilation
δ = ε(·c)c verifies (3), and recall that δW (·c)c = εWT (·).
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2.5 Equivalent Dilations and Erosions

In Proposition 4 we exhibited one possible matrix W ∈ Mn that represents a
dilation, but this matrix is not unique. In this section we characterise the set of
such matrices and show that it is a complete lattice.

Since we are interested in adjunctions (εW , δW ), following Proposition 3 we
focus on the set of matrices in Mn that are doubly-0-astic, which we denote by
D0(n). Let the equivalence relation defined for any two matrices A,B ∈ D0(n)
by

A ∼ B ⇐⇒ δA = δB ⇐⇒ ∀x ∈ L, δA(x) = δB(x) (6)

and note CW = {M ∈ D0(n), M ∼ W} the equivalence class of any W ∈ D0(n).
We provide an easy characterisation of CW that will show useful in numerical
computations of the morphological operators defined earlier. For any u ∈ Rmax

let Iu denote the matrix in Mn whose coefficients are all equal to u. Then two
equivalent matrices are characterised as follows.

Proposition 5. Let M,W ∈ D0(n). Then

M ∈ CW ⇐⇒ M ∨ Ia−b = W ∨ Ia−b ⇐⇒
{

mij = wij if wij > a − b
mij ≤ a − b otherwise. (7)

This means that if W has coefficients not larger than a − b, these can be set to
any value not larger than a − b, including −∞, and can therefore be ignored in
the computation of δW (x).

Proof (Proposition 5). The second equivalence is just a matter of writing, so
we prove the first one. Let us first notice that for any x ∈ L, I(a−b) ⊗ x ≤ a.
Therefore ∀x ∈ L, (W ∨ I(a−b)) ⊗ x = (W ⊗ x) ∨ (I(a−b) ⊗ x) = W ⊗ x, since
W ⊗ x ≥ a, and this holds for M too. Hence, if M ∨ Ia−b = W ∨ Ia−b, then for
any x ∈ L, W ⊗ x = (W ∨ Ia−b) ⊗ x = (M ∨ Ia−b) ⊗ x = M ⊗ x, which means
M ∈ CW .

Conversely, suppose that M ∼ W and that wi0j0 > a − b for some i0, j0 ∈
�1, n�. Let x = e(j0) ∈ L, i.e. xj0 = b and xj = a ∀j �= j0. The 0-asticity
of W and M implies (W ⊗ x)i0 = b + wi0j0 and (M ⊗ x)i0 = b + mi0j0 , hence
mi0j0 = wi0j0 . We have just shown that ∀i, j ∈ �1, n�, (wij > a − b ⇒ wij = mij)
and by symmetry of the equivalence relation (mij > a − b ⇒ wij = mij), which
combined yields max(mij , a − b) = max(wij , a − b). So finally M ∼ W ⇒
M ∨ Ia−b = W ∨ Ia−b. ��
While it is clear that if A,B ∈ CW then A ∨ B ∈ CW , the characterisation in
Proposition 5 shows that CW is also closed under infimum, that is: A ∧ B ∈ CW .
This has the following straightforward consequence.

Proposition 6. Let W ∈ D0(n) and ≤ the partial ordering on CW defined by
A ≤ B ⇐⇒ A ∨ B = B ⇐⇒ aij ≤ bij ∀i, j ∈ �1, n�. Then

– (CW ,≤) is a complete lattice (with coefficient-wise supremum and infimum);
– Its greatest element is W = W ∨ Ia−b;

– Its smallest element is W , defined by wij =
{

wij if wij > a − b
−∞ otherwise.
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2.6 Iterated Operators and Granulometries

In this section, given W ∈ D0(n) and p ∈ N
∗, we focus on the iterated dilations

and erosions δp
W and εp

W , as well as their sup and inf integrations, that we note
respectively D

[p]
W =̇

∨p
k=1 δk

W and E
[p]
W =̇

∧p
k=1 εk

W . One can easily check that
both (εp

W , δp
W ) and (E[p]

W ,D
[p]
W ) are adjunctions. We note respectively γ

[p]
W =̇δp

W εp
W

and G
[p]
W =̇D

[p]
W E

[p]
W their corresponding openings.

Note that if δW is extensive, or equivalently if W is a CMW matrix (Propo-
sition 3), then these adjunctions are equal: (εp

W , δp
W ) = (E[p]

W ,D
[p]
W ). As this is

not true in general, both adjunctions are worth studying. In particular, we shall
examine whether (γ[p]

W )p∈N∗ and (G[p]
W )p∈N∗ define granulometries, that is to say

families of openings that are decreasing with p. The answer is yes and it is a
general result that does not depend on the representation of the adjunction.

Proposition 7. Let (ε, δ) be an adjunction on a complete lattice. For any inte-
ger p ∈ N

∗, let us note γp = δpεp and Gp = DpEp the openings associated to

the adjunctions (εp, δp) and
(
Ep =

∧
1≤k≤p εk,Dp =

∨
1≤k≤p δk

)
, respectively.

Then (γp)p∈N∗ and (Gp)p∈N∗ are granulometries.

Proof. We first show that the family of openings (γp)p≥1 decreases with p, hence
a granulometry. This is straightforward by writing γp+1 = δp+1εp+1 = δpγ1ε

p ≤
δpεp = γp. Secondly, regarding (Gp)p≥1, we show Gp+1 ≤ Gp by proving that
GpGp+1 = Gp+1. We obtain this by remarking that Dp+1 = Dp(id

∨
δ), which

makes it an invariant of Gp: GpDp+1 = DpEpDp(id
∨

δ) = Dp(id
∨

δ) = Dp+1.
Then we can conclude GpGp+1 = GpDp+1Ep+1 = Dp+1Ep+1 = Gp+1. ��

To conclude this section, let us write δp
W , εp

W , D
[p]
W and E

[p]
W as dilations and

erosions represented by one suitable doubly-0-astic matrix. This will help in
their graph interpretation of the next section. The associativity of ⊗ yields
∀x ∈ L, δp

W (x) = W ⊗ . . . ⊗ W ⊗ x = W p ⊗ x, therefore δp
W = δWp . We

obtain similarly εp
W = εWp . The distributivity of ⊗ over ∨ yields D

[p]
W (x) =

∨p
k=1 δk

W (x) =
∨p

k=1(W
k ⊗ x) = (

∨p
k=1 W k) ⊗ x therefore D

[p]
W = δSp(W ), with

Sp(W ) =̇
∨p

k=1 W k. Similarly, E
[p]
W = εSp(W ). Note that by the same arguments

and Proposition 3, we get that D0(n) is closed under ⊗ and ∨.

3 Graph Interpretations

3.1 Weighted Graphs

Let W ∈ Mn and G(W ) = (V,E) be a weighted and directed graph containing n
vertices whose n×n adjacency matrix is W , with the convention that wij > −∞
if and only if (i, j) ∈ E. We now recall that a path from vertex i to vertex j
in G(W ) is a tuple π = (k1, . . . , kl) of vertices such that k1 = i, kl = j, and
(kp, kp+1) ∈ E for 1 ≤ p ≤ l−1. The length of the path, denoted by �(π), is l−1
(the number of its edges). For p ≥ 1, Γ

(p)
ij (W ) denotes the set of paths from i to
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j in G(W ) of length p and Γ
(∞)
ij (W ) the set of all paths from i to j. The weight

of a path π = (k1, . . . , kl), denoted by ω(π), is the sum ω(π) =
∑l−1

p=1 wkpkp+1 .

3.2 Iterated Operators

Recall that for W ∈ Mn and p ∈ N
∗, W p is the p-th power of W in the ⊗ sense,

and Sp(W ) is the matrix defined in Sect. 2.6, denoted by Sp here for simplicity.
We note respectively w

(p)
ij and s

[p]
ij their coefficients. The following result is well

known in tropical algebra and graph theory [5,6], and will help interpret the
operators defined earlier. It can be proved by induction.

Proposition 8. Let W ∈ Mn and p ∈ N
∗. Then for any 1 ≤ i, j ≤ n,

w
(p)
ij = max

{
ω(π), π ∈ Γ

(p)
ij (W )

}
and s

[p]
ij = max

⎧⎨
⎩ω(π), π ∈

⋃
1≤k≤p

Γ
(k)
ij (W )

⎫⎬
⎭
(8)

with the convention max(∅) = −∞.

The equations in (8) are equivalent to saying that

1. w
(p)
ij > −∞ (resp. s

[p]
ij > −∞) if and only if there is at least a path in G(W )

from vertex i to vertex j of length exactly (resp. at most) p;
2. w

(p)
ij (resp. s

[p]
ij ) is the maximal weight over the set of paths from vertex i to

vertex j of length exactly (resp. at most) p.

Therefore the graphs G(W p) and G(Sp) have the same set of vertices as the
original graph G(W ), but an edge exists between vertices i and j in G(W p)
(resp. G(Sp)) whenever there is a path of length exactly (resp. at most) p from
i to j in G(W ). The weights associated with this new edge are the maximal
weights over the corresponding set of paths.

Now if W ∈ D0(n), following Sect. 2.6 we get, for x ∈ L and i ∈ �1, n�:

δp
W (x)i =

∨
j∈Np

i
{xj + w

(p)
ij } , εp

W (x)i =
∧

j∈Ňp
i
{xj − w

(p)
ji } (9)

and
D

[p]
W (x)i =

∨
j∈Np

i
{xj + s

[p]
ij } , E

[p]
W (x)i =

∧
j∈Ňk

i
{xj − s

[p]
ji } (10)

where N p
i is the set of neighbours of vertex i in G(W p) or, equivalently, the

set of vertices in G(W ) that can be reached from i through a path of length
p; Ň p

i =
{

j ∈ {1, . . . , n}, i ∈ N p
j

}
; Np

i = ∪1≤k≤pN k
i and Ňp

i = ∪1≤k≤pŇ k
i .

Hence these dilations and erosions are suprema and infima of “penalised” values
over extended neighbourhoods induced by the original graph. The penalization is
given by the strength of the connection between vertices: the closer the penalising
weight to zero, the more the neighbours’ value contributes to the result. The fact
that we can restrict the supremum and infimum over graph neighbourhoods in (9)
and (10) is due to the weight values being −∞ outside these neighbourhoods,
hence not contributing to the supremum and infimum.
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3.3 Path Interpretation of the Opening G
[p]
W

The goal of this section is to show that G
[p]
W can be interpreted similarly to a

path opening [8], in the sense that it preserves bright values that are connected
to other bright values forming long enough paths in a graph. We can first remark
that for any x ∈ L, i ∈ �1, n� and t ∈ [a, b]:

G
[p]
W (x)i ≥ t ⇐⇒ ∃j ∈ Np

i , such that ∀l ∈ Ňp
j xl ≥ t − s

[p]
ij + s

[p]
lj , (11)

which is straightforward from the expressions in (10), as G
[p]
W = D

[p]
W E

[p]
W . This

directly yields

G
[p]
W (x)i =

∨ {
t ∈ [a, b],∃j ∈ Np

i , ∀l ∈ Ňp
j , xl ≥ t − s

[p]
ij + s

[p]
lj

}
. (12)

In the case of binary weights, i.e. wij = 0 if vertex j is neighbour of i in G
and wij = −∞ otherwise, which corresponds to a non-weighted graph, then
s
[p]
ij = s

[p]
lj = 0 in (11) and (12). Therefore, if G

[p]
W (x)i ≥ t, then there is a vertex

j which is at most p steps away from i, such that all paths of length at most
p and ending in j, including those of length exactly p and passing through i (if
they exist), show values larger than t. In the general case, the additional term
−s

[p]
ij +s

[p]
lj modulates this constraint in function of the strength of the connection

of i and the other vertices of Ňj , to j.

4 Links to the Max-Plus Spectral Theory

Now we present the consequences and interpretations of some results from the
spectral theory in max-plus algebra. We first report definitions from [6] necessary
to Theorem 1 (also from [6]). Then we draw the links to our setting and more
particularly in the case of a symmetric matrix, corresponding to a non-directed
graph. In all this section, W ∈ Mn.

4.1 General Definitions and Results

Definition 3 (Eigenvector, eigenvalue [6]). Let x ∈ R
n
max and λ ∈ Rmax.

Then x is an eigenvector of W with λ as corresponding eigenvalue if W ⊗ x =
λ ⊗ x = λ + x. If there exists finite x and λ solutions to this equation, we say
that the eigenproblem is finitely soluble.

In the graph G(W ), a path (k1, . . . , kl) is called a circuit if k1 = kl. We
will note C(W ) the set of all circuits of G(W ). Circuits allow us to distinguish
another class of matrices in Mn, called definite matrices. They are important
to the present framework as they include the doubly-0-astic matrices.

Definition 4 (Definite matrix [6]). W is said definite if maxc∈C(W ) ω(c) = 0.
In other words, all the circuits of G(W ) have non positive weights, and at least
one circuit c∗, called a zero-weight circuit, achieves ω(c∗) = 0.
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To see that if W is row or column-0-astic, then it is definite, it is sufficient to
build an increasing path with zero-weight, until one vertex repeats. The path
can be initialized with any vertex j1. Then given the current path (j1, . . . , jm),
we extend it by adding a vertex jm+1 such that wjmjm+1 = 0. This is always
possible thanks to the row or column-0-asticity of W . Since there are n distinct
vertices in G(W ), an index will repeat after at most n iterations.

Definition 5 (Eigen-node, equivalent eigen-nodes [6]). Let W be a definite
matrix. An eigen-node is any vertex in G(W ) belonging to a zero-weight circuit.
Two eigen-nodes are said equivalent if there is a zero-weight circuit passing
through both of them.

In [6], Sn(W ) =
∨

1≤k≤n W k is denoted by Δ(W ) and called the metric matrix.
Recall that for i, j ∈ �1, n�, Δ(W )ij is the maximal weight over the set of paths
from vertex i to vertex j of length at most n, in G(W ) (Proposition 8). If W
is definite, circuits have non-positive weights in G(W ) and therefore any path
longer than n can be reduced to a shorter path with non larger weight. Hence,
Δ(W )ij is actually the maximal weight over the set of all paths from i to j.
This provides an easy characterisation of eigen-nodes for W definite: j is an
eigen-node of G(W ) if and only if Δ(W )jj = 0. Furthermore, the j-th column
ξj of Δ(W ) is a map of the ancestors of j in G(W ). It tells which vertices can
reach j and at which cost.

Definition 6 (Fundamental eigenvectors, eigenspace [6]). Let W be a def-
inite matrix. Then a fundamental eigenvector of W is any j-th column ξj of
Δ(W ), where j is an eigen-node. Two fundamental eigenvectors are said equiv-
alent if their associated eigen-nodes are equivalent (see Definition 5).

Let E = {ξi1 , ξi2 , . . . , ξik} be a set of k ≥ 1 fundamental eigenvectors of
W , all pairwise non-equivalent. The set E is said to be a maximal set of non-
equivalent fundamental eigenvectors if any other fundamental eigenvector of W
is equivalent to one of the eigenvectors in E.

In this case the set {∨k
j=1 xj + ξij ,x ∈ R

k
max} is called the eigenspace of W

and does not depend on E (see [6], Lemma 24-1).

Theorem 1 ([6]). Let W be a doubly-0-astic matrix. Then the following state-
ments are valid:

– For any fundamental eigenvector ξj of W (finite or not), W ⊗ ξj = ξj.
– The eigenproblem is finitely soluble.
– If two fundamental eigenvectors (finite or not) are equivalent, then they are

equal.
– Any finite eigenvector is associated to the eigenvalue λ = 0, and lies in the

eigenspace of W .

4.2 Consequences and Interpretations

In general. As said, the results of the previous section apply to our setting
since we consider adjunctions represented by doubly-0-astic matrices which are
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both definite and 0-astic. For W ∈ D0(n), Δ(W ) is also in D0(n) and the cor-
responding opening δΔ(W )εΔ(W ) is G

[n]
W . By definition, G

[n]
W (x) projects x ∈ L

onto δΔ(W )(L), which is the set {∨n
j=1 yj + ξj ,y ∈ L} of max-plus combinations

of columns of Δ(W ). Theorem 1 tells that this decomposition can be split as
G

[n]
W (x) = u ∨ v, where u lies in the eigenspace of W and v is a max-plus com-

bination of the ξj which are not fundamental eigenvectors. This decomposition
may be sparser than the original one, as the dimension of the eigenspace of W ,
i.e. Card(E), can be lower than the number of fundamental eigenvectors.

The case of symmetric W ∈ D0(n). This case corresponds to considering a non-
directed graph supporting the signal x. As the adjacency relationship is often
based on a symmetrical function on pairs of vertex values, this assumption covers
many practical cases (e.g. [2,3]). The main consequence of W ∈ D0(n) symmetric
is that every vertex j is an eigen-node: for any j ∈ �1, n� there is i such that
wij = 0 = wji and therefore (j, i, j) is a zero-weight circuit. This entails three
other consequences.

First, Δ(W )jj = 0 for every j ∈ �1, n�, following the characterisation of
eigen-nodes described earlier, which implies that δΔ(W ) = D

[n]
W is extensive and

εΔ(W ) = E
[n]
W anti-extensive (Proposition 3). Secondly, W ⊗ ξj = ξj for every

column ξj of Δ(W ), which implies W k⊗ξj = ξj for 1 ≤ k ≤ n, hence Δ(W )⊗ξj =
ξj and finally Δ(W )⊗Δ(W ) = Δ(W ). This means D

[n]
W and E

[n]
W are idempotent.

They are therefore a closing and an opening respectively and E
[n]
W = G

[n]
W , since

an adjunction (ε, δ) for which ε is an opening and δ a closing verifies ε = δε
(and δ = εδ). The third consequence is the following.

Corollary 1. If W ∈ D0(n) is symmetric, then the set of invariants of G
[n]
W is

exactly the eigenspace of W .

When W is symmetric, a maximal set of k non-equivalent fundamental eigen-
vectors {ξi1 , ξi2 , . . . , ξik}, k ≤ n, can be seen as negative distance maps to the
k corresponding eigen-nodes G(W ), as they contain the optimal cost (maxi-
mal weight) between any vertex and the eigen-nodes2. Hence we can picture
the aspect of G

[n]
W (x), for x ∈ L: it is the upper-envelope of the largest vertical

translations of these distance maps that are dominated by x. Therefore, adapting
G(W ) to x by well connecting vertices within relevant structures preserves these
structures under the filter G

[n]
W , as shown in [2,3]. In practice, n might be large,

such as the number of pixels of an image. Since (G[p]
W )1≤p≤n is a granulometry,

we know that G
[n]
W can be approximated by G

[p]
W with increasing p.

2 Note that Δ(W ) is a metric, not exactly between vertices, but between their equiv-
alence classes induced by Definition 5, as all vertices are eigen-nodes when W is
symmetric.
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5 Conclusion

In this paper we consolidated the basis of the representation of adjunctions
by matrices in max-plus algebra. We showed that it is a very flexible frame-
work that generalises many types of morphological adjunctions. In particular, it
allows describing precisely the behaviour of iterated operators based on spatially-
variant, non-flat structuring functions. This is made possible by their graph inter-
pretation and spectral results in max-plus algebra. Future works shall investigate
further the insights that max-plus algebra can bring to mathematical morphol-
ogy through this framework.
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Abstract. In this article, we enrich the framework of morphological
hierarchies with new acyclic graphs and trees. These structures lie at the
convergence of hierarchical models and topological descriptors. We define
them in the context of digital grey-level imaging. We discuss their links
with component-trees, trees of shapes and adjacency trees. This analysis
leads to new notions, including a notion of topological tree of shapes.

1 Introduction

Many hierarchical, graph-based structures have been defined in the framework
of mathematical morphology, especially for designing connected operators [25].
The most popular are trees (i.e. rooted, connected, acyclic graphs). They model
finite sets of partitions organized with respect to the refinement order relation.
These partitions can be partial. This is the case of the component-tree and its
variants [9,24], the level-line tree (a.k.a. tree of shapes) and its variants [3,11].
These partitions can also be total. This is the case of the binary partition tree and
its variants [19,23,27] and the hierarchical watershed [13,26]. Other hierarchical
structures are directed acyclic graphs (DAGs), e.g. the component-hypertree [15],
the component-graph [17], the braid of partitions [8] and the directed component
hierarchy [18].

The partitions modeled by these hierarchical structures are composed of con-
nected sets defined with respect to a topology defined on a given space which is
generally discrete (e.g. a part of Zn [22], a complex on/tesselation of Rn). Hier-
archical structures carry intrinsic, topological information. However, these infor-
mation are often limited and generally not sufficient to perform high-level topo-
logical analysis of the modeled images/data. In particular, hierarchical structures
are generally less informative than high-level topological invariants/descriptors,
e.g. the homology groups/homology persistence [6] or the homotopy type.

In this article, we introduce a new family of hierarchical structures—DAGs and
trees, including a new notion of topological tree of shapes—dedicated to the model-
ing of grey-level images. They aim to gather (i) connectedness/intensity informa-
tion carried by component- (min- and max-) trees [24] and (ii) topological infor-
mation carried by the adjacency tree, a classical topological invariant [21]. Basi-
cally, we will first build a DAG that is composed by the min-tree and max-tree

c© Springer Nature Switzerland AG 2022
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of a grey-level image, and we will enrich the nodes of these two trees by the adja-
cency tree structure at each grey-level, leading to the notion of a graph of valued
shapes. Then, we will establish that this graph of valued shape can be simplified
in a lossless fashion as a tree structure by discarding some transitive, redundant
edges. This will lead to a simpler tree structure called tree of valued shapes. By
factorizing some spatially equivalent nodes, we will then define a more compact
structure, called the complete tree of shapes. We will establish that this complete
tree of shapes can be reduced (in a lossy fashion) in two different ways, leading
on the one hand to the usual notion of a tree of shapes and on the other hand to
the new notion of a topological tree of shapes. (The chosen terminology of topo-
logical trees of shapes is justified by the way it is defined; however it will be shown
to be different from another homonymous notion previously introduced in the lit-
erature.) We will finally evoke the links between these new structures (graph and
tree of valued shapes, complete tree of shapes, topological tree of shapes) and usual
morphological trees (component-tree, tree of shapes, adjacency tree).

This article is organized as follows. Section 2 provides definitions related to
hierarchies and grey-level images. We introduce the notions of graph of valued
shapes and tree of valued shapes in Sects. 3 and 4, respectively. Section 5 derives
from the tree of valued shapes the two essential notions of this work, namely the
complete tree of shapes (that generalizes the tree of shapes) and the topologi-
cal tree of shapes. In Sect. 6, we discuss on the links that exist between these
new notions and well-known morphological hierarchies. We provide concluding
remarks in Sect. 7.

2 Basics: Hierarchies and Images

Definition 1 (Hierarchical order). Let X be a set and ≤ be an order on X.
We say that ≤ is a hierarchical order if ∀x ∈ X the subset x↑ = {y ∈ X | x < y}
is totally ordered.

Definition 2 (Hierarchical function). Let X be a set and ≤ a hierarchical
order on X. The hierarchical function ζ≤ : X → X is defined by ζ≤(x) =

∧
≤ x↑.

This function is defined everywhere on X except for the greatest elements of
(X,≤).

Remark 3. Let � be the Hasse relation obtained from ≤ by reflexive-transitive
reduction. ∀x ∈ X we have

x � ζ≤(x) (1)

This formula induces an isomorphism between (X,�) and (X, ζ≤).
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Definition 4 (Tree). Let X be a set and ≤ a hierarchical order on X such that
(X,≤) admits a maximum. The Hasse diagram (X,�) is called a tree.

Let U be a discrete set endowed with a topological structure which provides
the notions of adjacency and connectedness, and where the separation theorem
(Jordan-Brouwer) holds.

Remark 5. In this article we choose U = Z
n (n ≥ 2) and we consider the usual

framework of digital topology on binary images [22], with the standard couples
of (2n, 3n − 1) and (3n − 1, 2n)-adjacencies for the foreground and background.

Let K be a set of values endowed with a total order �K. Let F : U → K be
an application. We assume that there exist a finite, nonempty subset S ⊂ U and
two values ⊥ <K 	 ∈ K such that for all x ∈ U

{F(x) = ⊥ if x /∈ S

⊥ <K F(x) <K 	 if x ∈ S
(2)

We set V = F(S) ∪ {⊥,	}. It is a finite set that we equip with the total order
�V induced by �K.

Remark 6. The application F is isomorphic to a grey-level image taking its
values in an interval of Z of size |V|, e.g. [[0, |V| − 1]]. See Fig. 1(a).

3 Graph of Valued Shapes

3.1 (Valued) Connected Components

We set �◦ = �V and �• = �V. Let v ∈ V. We define the threshold sets of F at
value v ∈ V (see Fig. 1(b–i)) as

Λ◦
v(F) = {x ∈ U | v �◦ F(x)}

Λ•
v(F) = {x ∈ U | v <• F(x)} (3)

Let X ⊆ U. When X is nonempty, we note Π[X] ⊂ 2U the partition gathering
all the connected components of X. If X is empty, we set Π[X] = ∅.

Let v ∈ V. We set

Ξ◦
v = Θ◦

v × {v}
Ξ•

v = Θ•
v × {v}

Ξv = Θv × {v}
with

Θ◦
v = Π[Λ◦

v(F)]
Θ•

v = Π[Λ•
v(F)]

Θv = Θ◦
v ∪ Θ•

v

(4)
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Remark 7. We have Ξ◦
� = Ξ•

⊥ = ∅. For any v ∈ V \ {⊥,	}, we have Ξ◦
v = ∅

and Ξ•
v = ∅. In the sequel, (U,⊥) and (U,	) are considered as a unique element

noted ∞. Then, we have Ξ◦
⊥ = {(U,⊥)} = {∞} = {(U,	)} = Ξ•

� and Ξ⊥ =
Ξ� = {∞}.

We set

Ξ◦ =
⋃

v∈V
Ξ◦

v

Ξ• =
⋃

v∈V
Ξ•

v

Ξ = Ξ◦ ∪ Ξ• =
⋃

v∈V
Ξv

and
Θ◦ =

⋃
v∈V

Θ◦
v

Θ• =
⋃

v∈V
Θ•

v

Θ = Θ◦ ∪ Θ• =
⋃

v∈V
Θv

(5)

3.2 Orders on Valued Connected Components

We define the partial orders �◦ on Ξ◦ and �• on Ξ• as

((X, v) �◦ (Y,w)) ⇔ (X ⊆ Y ∧ w �◦ v)
((X, v) �• (Y,w)) ⇔ (X ⊆ Y ∧ w �• v) (6)

We define the order �ϕ as the union of �◦ and �•, i.e. P �ϕ Q iff P �◦ Q or
P �• Q.

Remark 8. �ϕ, �◦ and �• are hierarchical orders. They admit ∞ as maxi-
mum.

Let v ∈ V. We define the order �v on Ξv as

((X, v) �v (Y, v)) ⇔ τ(X) ⊆ τ(Y ) (7)

where τ : 2U → 2U is the hole closing application defined by τ(X) = X ∪ ⋃
Z

where Z ⊆ Π[X] is composed by the finite connected components of X = U\X.
We define the order �ψ on Ξ as �ψ =

⋃
v∈V

�v, i.e. P �ψ Q iff ∃v ∈ V such
that P �v Q.

Remark 9. �ψ, and �v (v ∈ V) are hierarchical orders. Each ordered set
(Ξv,�v) (v ∈ V) admits a maximum (Uv, v) where Uv ⊆ U is the unique element
of Θv which is infinite.

We note �ϕ (resp. �◦, �•) and �ψ (resp. �v) the Hasse relations associated
to �ϕ (resp. �◦, �•) and �ψ (resp. �v). The graph (Ξ,�ϕ) is “similar” to the
union of the max- and min-trees, whereas (Ξ,�ψ) is “similar” to the union of the
adjacency trees of each threshold set of F . This will be more formally discussed
in Sect. 6.
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Remark 10. Let P = (X, v), Q = (Y,w) ∈ Ξ such that P �ϕ Q. We have
P,Q ∈ Ξ� with � = either ◦ or •. In addition, we have X ⊆ Y and v = ζ��(w).

Remark 11. Let P = (X, v), Q = (Y,w) ∈ Ξ such that P �ψ Q. We have
(P ∈ Ξ• and Q ∈ Ξ◦) or (P ∈ Ξ◦ and Q ∈ Ξ•). In addition, we have v = w
and τ(X) ∈ Π[Y ].

We note ϕ = ζ	ϕ , ϕ◦ = ζ	◦ , ϕ• = ζ	• , ψ = ζ	ψ and ψv = ζ	v (v ∈ V).

3.3 Definition of the Graph of Valued Shapes

Let �Ξ be the relation defined as the union of �ϕ and �ψ.

Definition 12 (Graph of valued shapes). The graph of valued shapes (or
VS-graph, for brief) is the couple GVS = (Ξ,�Ξ).

Remark 13. The intersection between �ϕ and �ψ is empty. We can then con-
sider GVS as (Ξ,�Ξ) or as (Ξ,�ϕ,�ψ) and equivalently as (Ξ,ϕ, ψ).

Property 14. GVS = (Ξ,�Ξ) is a directed acyclic graph.

We define �Ξ as the reflexive-transitive closure of �Ξ .

Remark 15. (Ξ,�Ξ) is an ordered set that admits ∞ as maximum.

4 Tree of Valued Shapes

4.1 Transitive Reduction of the Graph of Valued Shapes

Let �Ξ be the relation on Ξ defined as the transitive reduction of �Ξ .
Let P ∈ Ξ. Let us consider the following three equalities

ψ(P ) = [ϕ ◦ ψ ◦ ϕ](P ) (8)
ϕ(P ) = [ϕ ◦ ψ ◦ ψ](P ) (9)

ϕ(P ) = [ϕ|V|−2 ◦ ψ](P ) (10)

Remark 16. If P satisfies Eq. (8), then we have P �Ξ ψ(P ) and P �Ξ ψ(P ).
If P satisfies Eq. (9) or (10), then we have P �Ξ ϕ(P ) and P �Ξ ϕ(P ).

Proposition 17. Let P ∈ Ξ be such that ϕ(P ) and ψ(P ) exist. One of Eqs. (8–
10) is satisfied.
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Fig. 1. (a) A grey-level image F : U → V (U = Z
2 and V = [[0, 7]]). (b–i) The threshold

sets Λ�
v(F) (Λ◦

v(F) in white; Λ•
v(F) in black), for v = 0 (b) to 7 (i).

Fig. 2. Tree of valued shapes of the image F (Fig. 1(a)). The valued connected com-
ponents are depicted by squares (Ξ◦ on the left side; Ξ• on the right side) and are
positioned with respect to the threshold value v (see on left), from 0 (top) to 7 (bot-
tom). Red and green arrows correspond to the �Ξ relation. Green and black dotted
arrows correspond to the �ϕ relation. Red arrows are a subset of the �ψ relation, not
fully depicted for the sake of readibility. (Color figure online)
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Proof. Let P = (X, v) ∈ Ξ be such that ϕ(P ) and ψ(P ) exist. Case 1: ϕ(P ) =
(U,⊥) = ∞ and ψ(P ) = (Uv, v) (the unique element of Π[Λ•

v(F)] which is
infinite). It is plain that ϕ|V|−2((Uv, v)) = (U,	) = ∞ = ϕ(P ), and Eq. (10) then
holds. Case 2: ϕ(P ) = (U,⊥) and ψ(P ) = (Uv, v). It is plain that ψ2(P ) exists
and ϕ(ψ2(P )) = (U,⊥) = ϕ(P ), thus Eq. (9) holds. Case 3: ϕ(P ) = (U,	).
Since ψ(P ) exists (and is finite), it is plain that ψ2(P ) also exists. But then
ϕ(ψ2(P )) = (U,	) = ϕ(P ), thus Eq. (9) holds. Case 4: ϕ(P ) = ∞. If ψ(P ) =
(Uv, v), it is plain that ψ(ϕ(P )) = (Uw, w) with (Uv, v) = ϕ((Uw, w)) and Eq. (8)
then holds. Let us now suppose that ψ(P ) = (Uv, v) and that Eq. (8) does not
hold, i.e. [ϕ ◦ ψ ◦ ϕ](P ) = ψ(P ). Then we have P �ψ ψ2(P ) �ψ [ϕ ◦ ψ ◦ ϕ](P ).
Now, let us suppose that ϕ(ψ2(P )) = ϕ(P ). Then we have ϕ(P ) �ψ ϕ(ψ2(P ))
and it comes ϕ(P ) �ψ ψ(ϕ(P )) �ψ ϕ(ψ2(P )) in contradiction with the Jordan
theorem. Thus Eq. (9) holds. �

If follows from Proposition 17 that for any P ∈ Ξ such that both ψ(P ) and
ϕ(P ) exist we have P �Ξ ψ(P ) or P �Ξ ϕ(P ). Since (Ξ,�Ξ) admits a maximum
(namely ∞), for each P ∈ Ξ, P = ∞, we have either P �Ξ ψ(P ) or P �Ξ ϕ(P ).
The following property derives from these facts.

Property 18. Let P ∈ Ξ.

– If ϕ(P ) is defined and ψ(P ) is not, then P �Ξ ϕ(P ).
– If ψ(P ) is defined and ϕ(P ) is not, then P �Ξ ψ(P ).
– If ϕ(P ) and ψ(P ) are defined, then either P �Ξ ϕ(P ) or P �Ξ ψ(P ).

Remark 19. The transitive reduction from GVS = (Ξ,�Ξ) to (Ξ,�Ξ) is a loss-
less compression. The graph GVS = (Ξ,�Ξ) can be reconstructed from (Ξ,�Ξ).

4.2 Definition of the Tree of Valued Shapes

Property 20. (Ξ,�Ξ) is a tree. Equivalently, �Ξ is a hierarchical order on Ξ.

Definition 21 (Tree of valued shapes). The tree of valued shapes (or VS-
tree, for brief) is the couple TVS = (Ξ,�Ξ). See Fig. 2.

5 Complete Tree of Shapes and Topological Tree
of Shapes

5.1 Spatial Compression: From the Tree of Valued Shapes
to the Complete Tree of Shapes

Let πΘ : Ξ → Θ be the function defined by πΘ((X, v)) = X. Let ∼Θ be the
equivalence relation on Ξ defined by

P ∼Θ Q ⇔ πΘ(P ) = πΘ(Q) (11)

Property 22. The function π̃Θ : Ξ/∼Θ → Θ defined by π̃Θ([P ]∼Θ
) = πΘ(P )

is a bijection.
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Remark 23. Based on the above property, we identify Ξ/∼Θ and Θ. More pre-
cisely, for any P = (X, v) ∈ Ξ, we identify [P ]∼Θ

and X. In particular, we have
[∞]∼Θ

= {∞} ∈ Ξ/∼Θ and it is identified to U ∈ Θ.

Property 24. Let K ∈ Ξ/∼Θ. Let �K be the order induced by �Ξ on K. Then
(K,�K) is a totally ordered set.

For any K ∈ Ξ/∼Θ, we note 〈K〉Θ =
∧

	Ξ
K and 〈〈K〉〉Θ =

∨
	Ξ

K. We note
ρΞ = ζ	Ξ

.

Remark 25. From Property 24, it follows that ∀p ∈ [[1, |K| − 1]] we have
ρp

Ξ(〈K〉Θ) ∈ K. In particular, we have ρ
|K|−1
Ξ (〈K〉Θ) = 〈〈K〉〉Θ whereas

ρ
|K|
Ξ (〈K〉Θ) /∈ K.

Proposition 26. Let K ∈ Ξ/∼Θ, K = {∞}. Let P = ρ
|K|
Ξ (〈K〉Θ). We have

P = 〈[P ]∼Θ
〉Θ.

Proof. Let P = ρ
|K|
Ξ (〈K〉Θ) = ρΞ(〈〈K〉〉Θ), with 〈〈K〉〉Θ = (X, v) and P =

(Y,w). In particular, we have 〈〈K〉〉Θ �Ξ P and thus 〈〈K〉〉Θ �Ξ P . Let Q =
(Y, u) = 〈[P ]∼Θ

〉Θ. Case 1: 〈〈K〉〉Θ �ϕ P . This implies X ⊆ Y and w �� v
(with � = either ◦ or •). As P /∈ K, we have X ⊂ Y , and it follows that
w <� v. We have w �� u. If u = w, then we have w <� u and it follows that
〈〈K〉〉Θ �ϕ Q �ϕ P , and thus 〈〈K〉〉Θ �ϕ P : a contradiction. Then, we have
u = w, and it follows that P = 〈[P ]∼Θ

〉Θ. Case 2: 〈〈K〉〉Θ �ψ P . We have
X ∈ either Θ◦

v or Θ•
v (for instance, Θ◦

v ; the same reasoning holds with Θ•
v) and

ϕ(〈〈K〉〉Θ) exists. Let R = (Z, t) = ϕ(〈〈K〉〉Θ). We have X ⊆ Z, and since R /∈ K,
it comes X ⊂ Z. Let us suppose that P = Q. Then, we have S = (Y, t) ∈ [P ]∼Θ

.
It follows that τ(X) = τ(Z). Consequently, we have R �ψ S. But then, we
obtain 〈〈K〉〉Θ �ϕ R �ψ S �ϕ P , in contradiction with 〈〈K〉〉Θ �Ξ P . Then, we
have P = 〈[P ]∼Θ

〉Θ. �

For any K ∈ Ξ/∼Θ, we consider 〈K〉Θ ∈ Ξ as canonical element, and we
identify 〈K〉Θ = (X, v) with X ∈ Θ.

Let �Θ be the order on {〈K〉Θ | K ∈ Ξ/∼Θ} ⊆ Ξ—and equivalently on Θ—
induced by �Ξ .

We note κΘ = π̃−1
Θ . Let ρΘ : Θ → Θ be the function defined by

ρΘ(X) = πΘ(ρ|K|
Ξ (〈K〉)) (12)

with K = κΘ(X).

Remark 27. From the above property, we have ρΘ = ζ	Θ
. We note �Θ the

relation on Θ associated to ρΘ, namely the Hasse relation of �Θ.

Definition 28 (Complete tree of shapes). The complete tree of shapes (or
CS-tree, for brief) is the couple TCS = (Θ,�Θ). See Fig. 3 (left).

The following proposition directly derives from the above results.
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Proposition 29. The equivalence relation ∼Θ induces a decreasing homeomor-
phism from TVS = (Ξ,�Ξ) to TCS = (Θ,�Θ).

Remark 30. The homeomorphism from TVS = (Ξ,�Ξ) to TCS = (Θ,�Θ) is
a lossless compression. The tree TVS = (Ξ,�Ξ) can be fully reconstructed from
TCS = (Θ,�Θ).

Fig. 3. From left to right: (1) the complete tree of shapes; (2) the topological tree of
shapes; (3) the tree of shapes of the image F of Fig. 1. The complete tree of shapes
(1) derives from the reduction of the tree of valued shapes of Fig. 2. Green arrows
are originated from the �ϕ relation. Red arrows are originated from the �ψ relation.
(Color figure online)
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5.2 Topological Compression: From the Tree of Valued Shapes
to the Topological Tree of Shapes

Let X,Y ∈ U, with Y ⊂ X. We aim to characterize the preservation of topologi-
cal properties by a decreasing transformation from X to Y . A frequent strategy
is to consider the notion of homotopic transformation. In particular, if there
exists a (decreasing) homotopic transformation from X to Y , then X and Y
have the same homotopy type. However, this is hardly tractable in 3D [10] and
in higher dimensions. Then we consider a weaker topological invariant induced
by the notion of strongly deletable set [20]. More precisely, if X \ Y is strongly
deletable, then the inclusion relation induces a bijection between the (foreground
and background) connected components of X and those of Y .

Remark 31. If U = Z
2, the notion of strongly deletable set is equivalent to the

notion of simple set [14]. This implies that if X \Y is strongly deletable, then X
and Y have the same homotopy type and Y is obtained from X by a decreasing
homotopic transformation defined as the iterative removal of a sequence of simple
points [4].

Let P,Q ∈ Ξ be such that ρΞ(P ) = Q. If ρ−1
Ξ ({Q}) = {P} and πΘ(Q)\πΘ(P )

is a strongly deletable set, then we note Q ↘ P .

Remark 32. If Q ↘ P , then we have ρΞ(P ) = ϕ(P ).

Proposition 33. Let P ∈ Ξ. Let A = ϕ−1({ϕ(P )}) ∪ ψ−1({ϕ(P )}). Let B =
{ϕ(P )} ∪ ψ−1({P}). We have ϕ(P ) ↘ P iff the restriction ϕ|A : A → B is a
bijection.

Proof. Let X = πΘ(P ). By definition, X is connected, i.e. Π[X] = {X}. The
set Π[X] is composed by one infinite set X0 = U \ τ(X) and k ≥ 0 sets Xi

(1 ≤ i ≤ k) such that {Xi}k
i=1 = τ(πΘ(ψ−1({P}))). Let Y = πΘ(ϕ(P )). By

definition, Y is connected, i.e. Π[Y ] = {Y }. The set Π[Y ] is composed by one
infinite set Y0 = U \ τ(Y ) and l ≥ 0 sets Yj (1 ≤ j ≤ l) such that {Yj}l

j=1 =
τ(πΘ(ψ−1({ϕ(P )}))). Let D = Y \ X. Let us suppose that ϕ(P ) ↘ P . Then,
we have ϕ−1({ϕ(P )}) = {P}, i.e. ϕ is bijective between ϕ−1({ϕ(P )}) and {P}.
Since D is deletable we have k = l and (up to reindexing), for any i ∈ [[0, k]],
Yi ⊆ Xi. For each i ∈ [[0, k]], there exist P̂i = (X̂i, v) ∈ ψ−1({P}) such that Xi =
τ(X̂i) and Q̂i = (Ŷi, w) ∈ ψ−1({ϕ({P})}) such that Yi = τ(Ŷi). We have Yi ⊆ Xi

and then τ(Ŷi) ⊆ τ(X̂i). We set Di = D∩X̂i. We have τ(X̂i \Di) = τ(X̂i)\Di =
τ(Ŷi). It follows that Ŷi ⊆ X̂i, and ϕ is then bijective between ψ−1({ϕ(P )}) and
ψ−1({P}). Let us suppose that ϕ is bijective between ϕ−1({ϕ(P )}) and {ϕ(P )}.
Then both P = ϕ(P )\D and ϕ(P ) are connected and P ⊂ ϕ(P ). Let us suppose
that ϕ is bijective between ψ−1({ϕ(P )}) and ψ−1({P}). The function τ ◦πΘ is a
bijection between ψ−1({P}) (resp. ψ−1({ϕ(P )})) and {Xi}k

i=1 (resp. {Yj}l
j=1).

It follows that ϕ(P ) ↘ P . �

Let ∼H be the equivalence relation on Ξ defined as the reflexive-transitive-
symmetric closure of ↘.
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Remark 34. We have [∞]∼H
= {∞} ∈ Ξ/∼H .

Property 35. Let K ∈ Ξ/∼H . Let �K be the order induced by �Ξ on K.
(K,�K) is a totally ordered set.

For any K ∈ Ξ/∼H , we note 〈K〉H =
∧

	Ξ
K and 〈〈K〉〉H =

∨
	Ξ

K.

Remark 36. From these results, it follows that ∀p ∈ [[1, |K| − 1]] we have
ρp

Ξ(〈K〉H) ∈ K. In particular, we have ρ
|K|−1
Ξ (〈K〉H) = 〈〈K〉〉H whereas

ρ
|K|
Ξ (〈K〉H) /∈ K.

Property 37. Let K ∈ Ξ/∼H , K = {∞}. Let P = ρ
|K|
Ξ (〈K〉H). We have

P = 〈[P ]∼H
〉H .

For any K ∈ Ξ/∼H , we consider 〈K〉H ∈ Ξ as canonical element, and we
identify 〈K〉H = (X, v) with X ∈ Θ. We set H = Ξ/∼H .

Let �H be the order on {〈K〉H | K ∈ H} ⊆ Ξ—and equivalently on H—
induced by �Ξ .

Let ρH : H → H be the function defined by

ρH(K) = [ρ|K|
Ξ (〈K〉)]∼H

(13)

We define the relation �H on H, induced by the relation �Ξ on Ξ by K �H

ρH(K).

Definition 38 (Topological tree of shapes). The topological tree of shapes
(or TS-tree, for brief) is the couple TTS = (H,�H). See Fig. 3 (centre).

The following proposition directly derives from the two above properties.

Proposition 39. The equivalence relation ∼H induces a decreasing homeomor-
phism from TVS = (Ξ,�Ξ) to TTS = (H,�H).

Remark 40. The homeomorphism from TVS = (Ξ,�Ξ) to TTS = (H,�H) is a
topologically lossless but a geometrically lossy compression. The structure of the
tree TVS = (Ξ,�Ξ) can be fully reconstructed from TTS = (Θ,�Θ), but not the
shapes of its nodes.

6 Links with Other Trees

The graph of valued shapes GVS presents a DAG structure, similarly to other
morphological hierarchies, e.g. the component-graph [17], the directed compo-
nent hierarchy [18] or the braid of partitions [8]. GVS is also organized via two
kinds of relations, similarly to the component-hypertree [15] and the directed
component hierarchy [18] (where the initial order can be split into two distinct
orders).
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But, contrary to these morphological hierarchies, GVS can be modeled as
a tree structure, namely TVS. This should open the way to efficient construc-
tion strategies, compared, e.g. to the component-hypertree [12], the component-
graph [16] or the braid of partitions [29], whose construction remains complex
and/or costly.

Beyond these considerations, the graph of valued shapes and the induced
trees (trees of valued shapes, complete tree of shapes) also allow to unify various
morphological trees.

With the notations introduced in Sect. 3, the max-tree (resp. min-tree) [24] of
F is defined as Tmax = (Θmax,�max) (resp. Tmin = (Θmin,�min)) with Θmax =
Θ◦ (resp. Θmin = Θ•) and �max (resp. �min) is the Hasse relation induced by
the restriction of ⊆ on Θmax (resp. Θmin).

Proposition 41. There is a decreasing homeomorphism from the subgraph
(Ξ◦,�◦) (resp. (Ξ•,�•)) of GVS to the max-tree Tmax = (Θmax,�max) (resp.
the min-tree Tmin = (Θmin,�min)).

Proof. The proof is similar to that of Proposition 29 (Properties 22, 24, 26) by
considering Ξ◦ and Θ◦ (resp. Ξ• and Θ•) instead of Ξ and Θ. �

The adjacency tree [21] of a binary set X ⊂ U is defined as Tadj =
(Θadj(X),�adj) where Θadj(X) = Π[X] ∪ Π[X] and �adj is the Hasse relation
induced by the “surrounding” order relation on Θadj(X).

Proposition 42. Let v ∈ V. The subgraph (Θv,�v) of GVS is isomorphic to
the adjacency-tree Tadj = (Θadj(Λ◦

v(F)),�adj).

Proof. This proposition directly derives from the equivalence of the definitions.
�

The tree of shapes [11] of F is defined as Tshape = (Θshape,�shape) where
Θshape = τ(Θ) and �shape is the Hasse relation induced by ⊆ on Θshape. See
Fig. 3 (right).

Proposition 43. There is a decreasing homeomorphism from the tree (Θ,�Θ)
to the tree of shapes Tshape = (Θshape,�shape).

Proof. The proof is similar to that of Proposition 29 (Properties 22, 24 and
Proposition 26) by considering Θ instead of Ξ and the equivalence relation on
Θ defined by X ∼S Y ⇔ τ(X) = τ(Y ). �

Remark 44. In [28], the notion of a topological monotonic tree was introduced,
where “monotonic tree” has the same meaning as “tree of shapes”. However, the
topological monotonic tree of [28] is indeed different from our topological tree of
shapes. Unformally, the difference between both structures lies in the fact that
our topological tree of shapes relies on a topological equivalence relation between
the nodes of the complete tree of shapes, whereas the topological monotonic as
defined in [28] relies on a similar equivalence relation between the external border



A Topological Tree of Shapes 233

of the nodes. From [28], there is a decreasing homeomorphism from the tree of
shapes to the topological monotonic tree. It can be proved that there is also a
decreasing homeomorphism from our topological tree of shapes to the topological
monotonic tree. These links are not formalized here by lack of room; they will be
more deeply investigated in our further works.

The following result derives from the above propositions and properties.

Property 45. We have

|H| ≤ |Θ| ≤ |Ξ| ≤ (|S| + 1).|V| (14)
|Θshape| ≤ |Θ| = |Θmax| + |Θmin| − 1 ≤ 2.|S| (15)

7 Concluding Remarks and Perspectives

This article gathers some preliminary results about the notions of graph/tree
of valued shapes and complete/topological tree of shapes. These notions shed
a new light on well known morphological hierarchies, namely the component-
tree and the tree of shapes. In particular they allow to unifiy and extend these
notions and to link them to topological invariants related to the adjacency tree,
the deletable sets and—under favourable hypotheses—the homotopy type. We
believe that these structures constitute a promising subject of research in the
framework of morphological hierarchies. At this stage, our introductive study
focused only on the structural side of these notions.

Our perspective works will also consider the algorithmic aspects, in partic-
ular the way to build these structures efficiently. Due to their strong links with
the component-tree, it is possible to propose first, naive strategies to build the
graph and then the tree of valued shapes from the min- and max-trees [2], and
then to derive the complete and topological trees of shapes. It is also possi-
ble to start from the construction of the tree of shapes [7] to derive the same
structures. However, such approaches, although tractable, are not optimal, and
seeking dedicated construction algorithms makes sense.

We initially designed the graph of valued shapes by “mixing” the min-/max-
trees and adjacency trees with a precise idea in mind. Our purpose was to develop
conceptual tools that would allow one to carry out the topological analysis of
objects in non-binary paradigms (e.g. for grey-level images or fuzzy modeling).
In this regard, our next step will be to investigate the links that exist between
these new structures and frameworks developed in topological analysis, especially
with respect to grey-scale topology [5] and to homology persistence and Morse
theory [1].

More generally, we also believe that these new structures could be useful
for developing approaches dedicated e.g. to homotopic morphology, topological
compression or topological comparison.
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Abstract. Tree-based hierarchical image representations are commonly
used in connected morphological image filtering, segmentation and multi-
scale analysis. In the case of component trees, filtering is generally based
on thresholding single attributes computed for all the nodes in the tree.
Alternatively, so-called shapings are used, which rely on building a com-
ponent tree of a component tree to filter the image. Neither method is
practical when using vector attributes. In this case, more complicated
machine learning methods are required, including clustering methods. In
this paper I present a simple, fast hierarchical clustering algorithm based
on cuts of α-trees to simplify and filter component trees.

Keywords: Connected filters · Component trees · α-trees ·
Clustering · Algorithms

1 Introduction

Connected filters [1–3] have found many uses in image processing and analysis,
and many different types of filters and multi-scale tools have been developed
since the introduction of the first connected filters in the form of openings by
reconstruction [4], and area openings [5,6]. Many methods are built using hier-
archical image representations in the form of tree structures [7–10], for a recent
review see [11]. In the grey-scale case, much work has been done on attribute
filters [12], in particular using tree structures variously known as component
trees [9], min-trees and max-trees [7]. They have also found use for multi-scale
analysis, e.g. through pattern spectra [13] or morphological profiles [14].

This paper will focus on component trees, which are trees containing the
connected components of threshold sets of a grey-scale image. Each node repre-
sents a single connected component, and usually contains some scalar attribute
value like area or elongation to characterise the component. Filtering is done
by applying some threshold to the attributes, and removing nodes that have
attribute values lower than the threshold.

Selecting the “right” threshold for attribute filtering is not an easy task.
Apart from simple trial and error, only a few papers address this issue systemat-
ically. Jones [9] notes that threshold on attributes could be chosen automatically
c© Springer Nature Switzerland AG 2022
É. Baudrier et al. (Eds.): DGMM 2022, LNCS 13493, pp. 236–247, 2022.
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by traversing the tree from leaf to root, and choosing thresholds at points where
the attribute value changes abruptly. Thresholds could be chosen per branch, or
globally in the tree. In [15], various automatic grey-scale thresholding methods
are studied, but these do not always take the topology of the tree into account.

In the case of increasing attributes like area, filtering essentially boils down
to pruning the tree such that the remaining leaves have an area larger than some
threshold. For non-increasing attributes, such as elongation or perimeter, several
other filtering strategies have been proposed [7,13]. Xu et al. [16] introduced the
idea of tackling non-increasing scalar attributes in max-trees by computing a
max-tree of a max-tree. Because a max-tree of an image with scalar attributes
on the nodes is just a node-weighted graph, it is fairly trivial to compute a
secondary max-tree of this primary max-tree. The idea is to filter this secondary
max-tree, reconstituting the primary max-tree based on the filtering results,
and then generating a filtered image from the filtered primary max-tree. The
resulting filters were dubbed “shapings”. Though interesting new results were
obtained, it remains hard to envisage the precise effect of filtering a max-tree
based on a secondary max-tree in this way.

None of the above approaches are suitable for so-called vector-attribute fil-
tering [17], in which each connected component has a feature vector instead of
a single scalar value. In this paper we will extend the idea of Xu et al. [16] to
the vector-attribute case. Rather than building a max-tree of a max-tree, which
requires a total order on the attributes, I construct an α-tree [10] of the max-tree.
For α-trees, which derive from partition hierarchies described in [18], no total
order is needed, which is why they are suitable for graphs with vectorial weights.
The aim is to create a hierarchy of simplifications of the input component tree,
each of which contains only the nodes at which large transitions in attribute
vectors occur. These ideally contain the most essential information in the tree.

In the rest of the paper, I will focus on max-trees, although the method
described will work on other tree structures as well. I will first discuss attribute
filters and max-trees, and hierarchical clustering using α-trees, and the principles
behind the method. I will then present a fast algorithm to generate simplified
max-trees at any level of the α-trees, by cutting at a particular dissimilarity
threshold α, and where necessary correct the attribute values in the case of
attributes that depend on grey-scale content. An algorithm for pattern spectra
based on α-cuts is also presented, along with a discussion of the computational
complexity. A simple experiment showing the effect of applying α-cuts to pattern
spectra is presented, followed by a discussion future and plans for future work
are given in the final section.

2 Attribute Filters and Component Trees

Breen and Jones [12] introduced attribute filters, which are attribute thinnings
in the non-increasing, anti-extensive case we will focus on here. In the binary
case they remove connected foreground components that do not meet some non-
increasing criterion T .
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Definition 1. The binary attribute thinning ΦT of set X with criterion T is
given by

ΦT (X) = {x ∈ X| T (Γx(X))} (1)

where ΦT is the trivial thinning with non-increasing criterion T , and Γx is the
connectivity opening at point x. The latter returns the connected component to
which x belongs if x ∈ X and ∅ otherwise. As can be seen, only those points x
that are members of a connected component that meets criterion T are retained.

Vector-attribute filtering [17] was introduced as an extension to attribute
filtering. Rather than computing a single attribute, a vector of attributes is
computed for each node. As it would be impractical to set thresholds for each
vector, Urbach et al. [17] proposed using thresholds to distances to some col-
lection of prototypes to detect objects in images. Later Naegel et al. [19] used
Mahalanobis distances to a set of prototypes for segmentation of dermatological
images. Formally, vector-attribute thinnings can be defined as follow:

Definition 2. The vector-attribute thinning Φ�τ
�r,ε of X with respect to a reference

vector �r and using vector-attribute �τ and scalar value ε is given by

Φ�τ
�r,ε(X) = {x ∈ X| T �τ

�r,ε(Γx(X))}. (2)

The criterion T �τ
�r,ε is defined as

T �τ
�r,ε(C) = ρ(�τ(C), �r) > ε. (3)

with ρ some metric or dissimilarity function.
The above definitions can be generalised to grey scale by the usual thresh-

old superposition method [21], and implemented using max-trees in the anti-
extensive case [7]. Max-tree nodes represent the connected foreground compo-
nents of threshold sets at all threshold levels in the image. The connected com-
ponents of the threshold levels are referred to as peak components. A simple
example is shown in Fig. 1. Each node may be assigned one or more attributes,

Fig. 1. A simple grey-scale image, the foreground components of each threshold set,
also know as peak components, and the resulting component tree, which is referred to
as a max-tree in this case. Figure from [20].
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and filtering the image applies the attribute criterion to all of the nodes, and
reconstituting the image based on which nodes are preserved and which removed.
In the case of an increasing criterion T , i.e. if C ⊆ D then T (C) ≤ T (D), filter-
ing corresponds to pruning the tree. In the non-increasing case, more complex
strategies are used [7,13,16].

3 Hierarchical Clustering of Max-Trees

Previously, the use of cluster analysis on max-tree nodes has been explored in
[22]. In that case, nodes were clustered purely based on the attribute vectors,
completely disregarding the tree structure. Here I propose to use hierarchical
clustering of nodes taking the tree structure into account explicitly, through the
use of α-trees [10] of max-trees.

Ouzounis and Soille [10] introduced term α-tree as a way of representing
hierarchies of α-connected components (α-CCs) of images, suitable for vector
images such as colour and hyperspectral images. The α-CCs of an edge-weighted
graph are connected subgraphs of maximal extent such that there exists a path
within the α-CCs between each pair elements, such that the edge weights in the
path are all smaller than or equal to some threshold α [18]. An α-tree can be
created on any graph with vector weights on the vertices by assigning weights
to the edges between any two vertices, based on some dissimilarity measure.
This allows α-trees to be built on any image, whereas max-trees are restricted
to those cases where a total order can be imposed upon the pixel values. It has
been shown that α-trees are equivalent to min-trees of an edge-weighted graph
[23], and the computational complexity of building one is therefore equivalent
to that of building a max-tree.

If we have a max-tree of an image, with vector attributes on the nodes,
we cannot readily compute a max-tree of this max-tree to compute a shaping
[16]. However, we can obviously compute an α-tree, using any of the existing
algorithms. This does not make use of the fact that the max-tree is a tree, not a
general graph, which means that there is just a single shortest path connecting
any two nodes, and any longer path (taking detours to the root) must traverse
the edges in the shortest path. This in turn means that the dissimilarity δ of the
edge linking a node to its parent forms a boundary between two α-CCs for any
α < δ. In the following I will discuss the special case of α-trees, and in particular
α-cuts of max-trees.

Let us assign a weight δ on the edge between current node and its par-
ent. I will refer to these edges and weights as parent edges and parent weights
respectively. The weights can be computed using some dissimilarity measure
ρ : R

n × R
n → R, assuming n-dimensional attribute vectors on each of the

nodes.

Definition 3. An α-connected component of any tree with weights δ on the edges
is a subtree of maximal extent containing no edges with δ > α.
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Fig. 2. Hierarchical clustering of a max-tree (top left) using increasing α-cuts. At
α = 15 the tree would become a single connected component

It can readily be seen that the root element of any α-connected component
must have a parent weight δ > α on its parent-edge. Furthermore, these root
nodes uniquely identify the α-connected components of the tree. Indeed, to deter-
mine which α-connected component any node with parent weight δ ≤ α belongs
to we simply need to find its α-parent.

Definition 4. The α-parent of a node with parent weight δ ≤ α is the nearest
ancestor with parent weight δ > α.

Thus, the nodes with parent weights δ > α can be seen as the canonical
elements of the nodes at level α in the α-tree of the max-tree. An example of
a series of α-cuts of a simple max-tree is shown in Fig. 2. The assignment of
α-parents and reduction to a simplified max-tree is shown in Fig. 3.
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4 Algorithm

We assume that we have a max-tree built using any one of many available algo-
rithms [24]. Without loss of generality, we can assume the nodes are stored in
an array node. For the moment we assume each node has a vector of attributes
attr which do not depend on grey level, like area or various moment invariants
used previously [13,25]. Each node also contains an index par to its parent, and
a field delta containing the dissimilarity measure between its attribute vector
and that of its parent in the max-tree. Finally, we add a field alpha par to each
node, which is initialized to be equal to that of the par field. To simplify the
algorithm, the root node is initialized to have a maximal value of its delta field
and both its par and alpha par point to root node itself.

The algorithm to compute an α-cut of a max-tree now boils down to the
following steps:

1. Create an index array Index of max-tree nodes, sorted in increasing order of
their delta field.

2. For all nodes in the max-tree set the alpha par field to its α-parent.

The first step ensures we can easily select all the roots of the α-CCs for a given
value of α, simply by using e.g. binary search in the index array to find the first
node in which node[index[i]].delta > α.

The latter step ensures the α-parents of the tree are properly set. This can be
achieved in linear time by calling function find alpha par shown in Algorithm1
for each node of the tree. Each call to this function follows the root path until
the α-parent has been found, and sets all the alpha par field along the root
path. This means that subsequent calls that explore the same root path will
essentially yield a shortcut to the correct α-parent. Note that before the initial
construction of the α-cut, each alpha par was set to the value of the par field,
which is the correct value for α = 0. Therefore, the algorithm follows the usual
root paths in the max-tree initially, and should process at most all the nodes
in the max-tree once. Once a particular α-cut has been computed, and we wish
to compute a new cut with α′ > α, we need only call find alpha par for the
nodes with node[index[i]].delta > α′, and these calls would only traverse
those nodes with node[index[i]].delta > α.

The result of calling the above algorithm for α = 4 on the max-tree from
Fig. 2 is shown in Fig. 3. It also shows how limiting the tree to only the nodes
with node[index[i]].delta > α yields a simplified version of the max-tree.

4.1 Attributes of α-CCs of Max-Trees

Until now, we have only considered the structure of the simplified trees, but not
the attributes. If we consider all “flat” attributes, i.e. those that only depend
of the shape of the peak component, but not the grey-levels within it, nothing
needs to be done, as each node contains all the information pertaining to that
shape. In the case of non-flat attributes, i.e. those that depend on the grey-level
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Fig. 3. The result of the find alpha par function for α = 4: (left) alpha par pointers
of max-tree, (right) Simplified max-tree.

content of the node, not just its shape, some extra post-processing needs to be
done, if we want to represent the properties of each partition of the max-tree
from the computed attributes. Here I will restrict myself to the attributes based
on the first and second moments of the grey level distribution, although the
method can be extended to higher orders, and in principle also to certain other
attributes.

We assume that each node stores the sum of grey levels and sum of squared
grey levels of all the pixels within the peak component in fields SumGrey and
SumGreySquare respectively. A field Gval stores the grey value of each node.

The process traverses the tree in increasing grey level order. Whenever it finds
a node such that node[i].delta > α it calls function correct alpha par on
that node. This looks up the α-parent, and subtracts the sum of (squared) grey
levels of the current node from the sum of (squared) grey levels of the α-parent.

Algorithm 1. The find alpha par function. Note that MTnode is a max-tree
node struct type, and *node is the array representing the max-tree.

index find_alpha_par(float alpha, MTnode *node, index current){

index alpha_par = node[current].alpha_par;

if (node[alpha_par].delta <= alpha)

node[current].alpha_par = find_alpha_par( alpha, node, alpha_par );

return node[current].alpha_par;

}
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It then adds the product of the area of the current node and the (squared) grey
level of the α-parent to the sum of the (squared) grey levels of the α-parent.
This effectively clips off the contribution of the current node to these sums in
its α-parent at the level of the latter’s grey level. The algorithm is shown in
Algorithm 2.

Algorithm 2. The correct alpha par function
Precondition: node[current].delta> alpha

void correct_alpha_par ( MTnode *node, index current ){

index alpha_par = node[current].alpha_par;

node[alpha_par].SumGrey =

node[alpha_par].SumGrey - node[current].SumGrey

+ node[current].area]*node[alpha_par].Gval;

node[alpha_par].SumGreySquare =

node[alpha_par].SumGreySquare - node[current].SumGreySquare

+ node[current].area * node[alpha_par].Gval * node[alpha_par].Gval;

}

After application of this algorithm, attributes like power [26] and volume (or
flux) [27] can be computed in the usual way from these corrected sums. Once the
attributes have been computed, we can in principle filter the original max-tree
based on only the simplified α-cut version of the tree, by only applying a criterion
T to the nodes with δ > α, and for all other nodes copy the decision made for
their α-parent. Likewise, granulometries based on α-cuts might also reveal more
structure, as single objects are not smeared out over a range of attributes.

4.2 Pattern Spectra

Computation of pattern spectra using alpha-cuts of max-trees can be done with
a very minor adaptation of the original code from [13], as shown in Algorithm 3.
After α-parents have been assigned, and the array containing the pattern spec-
trum has been set to zero, we compute each node’s contribution to the total
sum of grey levels in the image, add it to the appropriate bin of the pattern
spectrum. The only difference with the original algorithm is the if-statement in
Algorithm 3. If δ > α the node is also a node in the simplified tree, and we add
the flux to its bin in the spectrum in the usual way. If not, we add it to its
α-parent.
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Algorithm 3. The alpha cut pattern spectrum function
Precondition: find alpha par has been applied to all nodes in the max-tree array node.
BinFunc computes the bin in the spectrum to which a node should be assigned.

void alpha_cut_pattern_spectrum ( MTnode *node,

greyval *Spectrum

float alpha){

Set all elements of Spectrum to zero

for all node[i] except root {

par = node[i].parent;

flux = (node[i].Gval - node[par].Gval) * node[i].area;

if (node[i].delta <= alpha)

bin = BinFunc(node, node[i].alpha_par );

else

bin = BinFunc(node, i);

Spectrum[bin] = Spectrum[bin] + flux;

}

}

4.3 Computational Complexity

Assuming the computation of the dissimilarities δ between node and parent is
independent of the number of node N , the initial step of computing the dissim-
ilarities is O(N), as each node need only inspect its own parent, and compute
a single value. Sorting the edges by δ is simply O(N log N). Note, however that
this sorting is not necessary in all cases. It is useful if we want to choose α
as a percentile of the distribution of δ values. The find alpha par function of
Algorithm 1 is essentially the same as the restitution stage of regular max-tree
filtering, which is also linear in N [7]. Indeed, the entire process (without sorting)
is essentially the same as that of the entire filtering phase of a max-tree, which
in practise is between 1 and 5% of the total compute time. The building phase
is the costly phase. By contrast, if we explicitly built an α-tree of the max-tree
this is equivalent to building a min-tree of N items [23] which is evidently more
costly, both computationally and in terms of memory use.

The complexity of correct alpha par in Algorithm 2 is independent of N ,
so applying it in grey-level order to the entire tree is O(N log N) if the nodes
are not sorted in grey level order by the max-tree building algorithm, and O(N)
if they are. This too is quite similar to the compute load of filtering an existing
max-tree. Likewise, the complexity of Algorithm 3 is O(N), assuming BinFunc
is independent of N (which is usually the case).
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5 Some Initial Results

Algorithm 1 and 3 were implemented in C, within the code base for 2D pattern
spectra of [13], and applied to a 621 × 501 image of a diatom from the ADIAC
data set [28]. The δ value was computed as

δ(C) =
area(parent(C)) − area(C)

area(parent(C))
(4)

Timings revealed small differences in timings between computation of pattern
spectra with and without α-cuts, using a desktop PC with an Intel R© CoreTM

i7-6700 CPU at 3.40 GHz. Running 100 iterations of the code with and without
α-cuts resulted in a difference of 58 ms on average (or 0.58 ms for a single
iteration), out of a total compute time of 929 ms. Thus, roughly 6% of compute
time is spent on the computation of δ values, α-parents, and the modifications
needed for the α-cut pattern spectra. There seems to be a slight decreasing
trend as a function of α, with 64 ms required at α = 0, and 52 ms at α = 0.8.
The average compute time of 0.58 ms is much smaller than building an α-tree of
the same image (not its max-tree), which took around 110 ms. Given that the
image has 311,121 pixels, vs the max-tree having 70,296 nodes, we can roughly
estimate the required time for computing an α-tree of the max-tree as around
24 ms, or some 40× slower than computing a single α-cut.

Figure 4 shows the resulting spectra for α = 0, 0.2, and 0.4. These show a
pattern reminiscent of a skewed butterfly, in particular at α = 0. The left-hand
“wing” mainly represents the structures within the diatom, whereas the right-
hand side, with larger areas, mainly shows the structure in the background. By
increasing α, the flux in these background structures almost all become focused in
the top right corner of the spectrum. Changes on the left are subtler, suggesting
the detail in the diatom cell is preserved. Much more extensive tests are needed
to draw any further conclusions.

Fig. 4. Pattern spectra of a diatom image for α-cuts at 0, 0.2, and 0.4

6 Conclusions

I have presented a simple algorithm to compute α-cuts of component trees, which
are horizontal cuts through α-trees of component trees. These provide an easily
tunable simplification of the component trees. Apart from selecting a value of α
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and searching for the appropriate location in the index array, we could simply
just use the top 10% of the nodes in term of their δ value. A simple slider in an
interactive tool would readily allow finding the appropriate level of simplification.
Tree simplification could also simplify the analysis and visualization of these
trees. Besides, it is hoped that this will allow better selection of meaningful nodes
and their attribute vectors for training of machine learning methods. This in turn
could lead to better integration of machine learning methods with morphological
connected filtering.

Obviously, α-trees and level-line trees can be simplified in the same way, as
the presented algorithm for α-cuts carries over without modification to these
tree structure, although some modifications would be needed for the grey-scale
attribute correction. In principle binary partition trees could be processed this
way, if you allow for the fact that the resulting simplified tree might no longer
be binary. It should even be possible to extend the technique to the distributed
component graph used for distributed computing of attribute filters [20,29], as
each local modified component tree contains all the data necessary to compute
any filtering or analysis step.

In the near future we will apply this method to detection of important struc-
tures in CT, MRI and PET scans, and to detection and analysis of astronomical
objects. Given the speed of the simplification method, we aim at building inter-
active tools for adaptation of the α values to the task at hand.
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Abstract. In this article, we propose a method for designing loss func-
tions based on component trees that can be optimized by gradient
descent algorithms and are therefore usable in conjunction with recent
machine learning approaches such as neural networks. The nodes of this
tree are the connected components of the upper level sets of an image and
the leaves represent the regional maxima (or regional minima if the dual
tree is considered) of the image, i.e., connected sets of bright pixels sur-
rounded by darker pixels. The proposed loss function is thus defined at
the level of connected components rather than at the level of individual
pixels, which allows for the optimization of higher semantic level quan-
tities such as topological features. We show how the altitudes associated
with the nodes of such hierarchical image representations can be differ-
entiated with respect to the values of the image pixels. This property is
used to design a generic loss function that can select or discard image
maxima based on various attributes, such as extinction values based on
the contrast or the size of the maxima. The possibilities of the proposed
method are demonstrated on simulated and real image filtering.

Keywords: Max-tree · Connected filters · Topological loss ·
Continuous optimization · Mathematical morphology

1 Introduction

Component-trees are hierarchical image representations that are used to per-
form connected image analysis and filtering [13,19]. In such methods, an image
is seen as the collection of the connected components of its level sets, thus offering
a representation based on elements of higher semantic level, connected compo-
nents instead of pixels, to design new image analysis methods. These approaches
provide efficient solutions to many image analysis problems such as feature detec-
tion [8,23], segmentation [7,13,18,19,22], or object detection [11,20].

However, those methods, based on topological decompositions, do not play
well with recent machine learning approaches such as neural networks as their
combinatorial nature is, at first sight, not well suited to optimization strategies
based on gradient descent. In this context, some authors have recently proposed
topological loss functions [4,5,9,12] that enable to enforce topological constraints
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in continuous optimization frameworks using notions coming from the persistent
homology theory. It has also been shown that hierarchies of segmentations can
also be used in such context with the introduction of an ultrametric layer [3].

In this article, we propose a novel approach to use component trees, and more
specifically max-trees, within continuous optimization methods. This approach
is based on the observation that, in such trees, the altitude of a node (the level of
the level-set where it first appears) is directly linked to the value of some pixels
of the image. Hence, we study how we can back-propagate any slight modifica-
tion of the altitude of a node of the tree to a slight modification of the initial
image. We then design a component tree loss function that enforces the presence
of a prescribed number of maxima in the image based on maxima measures. We
study how extinction values [21], maxima measures notably used in mathemat-
ical morphology to define hierarchical watersheds [6,17], can be used to modify
the behavior of the proposed loss function. Finally, the method has been imple-
mented in Pytorch with the hierarchical graph processing library Higra [16] and
we provide preliminary results demonstrating the use of the proposed approach
on simulated and real images.

This article is organized as follows. The definition of max-trees is recalled in
Sect. 2. Then, Sect. 3 presents how max-trees can be used in gradient descent
algorithms and formalizes the optimization problem which we address. In Sect. 4,
we define a component tree loss function used for maxima selection in the max-
trees and we introduce different maxima measures. The experiments are pre-
sented in Sect. 5. Finally, Sect. 6 concludes the work and gives some perspec-
tives.

2 Max-Trees

In this section, we recall the definition of max-trees [13,19] which is based on the
decomposition of every upper thresholds of an image into connected components.

In the following, the image domain is represented by a finite nonempty set
V = {vi}i∈[[1,n]] of cardinality n. The elements of V are called pixels. Given any
vector v of Rm with m ∈ N

+, the i-th component of v is denoted vi. An image
is represented by a vector f ∈ R

n and, for any i ∈ [[1, n]], fi is called the value of
the pixel vi. Note that any image can be represented as a vector by choosing an
arbitrary ordering of the pixels (e.g., a raster scan for 2d images) and that this
choice does not change the results of the proposed method. In order to simplify
notations, when we have a vector f ∈ R

n and an element x of a family {xi}i∈[[1,n]]

indexed from 1 to n, there exists a single integer k ∈ [[1, n]] such that x = xk and
we will write fx instead of fk.

Let X be a subset of V , the set of connected components of X is denoted by
CC(X) where connected components may be defined by any appropriate mean:
e.g., by path connectivity in a graph. In this article, all the examples involving
2d images are based on a classical 8-adjacency relation on a regular square grid
of pixels. Let f ∈ R

n be an image, the set of connected components of f , denoted
by CC(f), is defined by CC(f) =

⋃
λ∈R

{CC([f ]λ)} where, for any λ ∈ R, [f ]λ is the
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upper level set of f of level λ: [f ]λ = {vi ∈ V | fi ≥ λ}. Note that the set CC(f)
is finite and can thus be indexed by integers: CC(f) = {Ci}i∈[[1,m]], where m is
the number of connected components of f . Let Ci in CC(f), the altitude of Ci is
defined as the largest level λ in R such that Ci is a connected component of the
upper level set of f at level λ: i.e., max

{
λ ∈ R | Ci ∈ CC([f ]λ)

}
.

Let f ∈ R
n be an image. The max-tree MT(f) of f is the pair ({Ci}i∈[[1,m]] ,a)

where {Ci} is the set of connected components of f and where a is a vector of
R

m such that ai is equal to the altitude of Ci. The first element of the pair,
denoted by MT1(f), is called the hierarchy of MT(f). The second element of the
pair, denoted by MT2(f), is called the altitude vector of MT(f). An example is
given in Fig. 1. An element of the hierarchy H of MT(f) is called a node of H.
The node V includes every node of H and is called the root. Let Ci and Cj be
two distinct nodes of H. We say that Ci is an ancestor of Cj if Cj is included in
Ci. Furthermore, if Ci is an ancestor of Cj , we say that Ci is a parent of Cj and
that Cj is a child of Ci if any ancestor Ck �= Ci of Cj is also an ancestor of Ci.
Any non-root node Ci of H has a unique parent which is denoted by par(Ci).
The set of children of a node Ci of H is denoted by Ch(Ci). A node Ci of H
is called a leaf if it has no child. There is a bijection between the leaf nodes of
the hierarchy of MT(f) and the (regional) maxima of f . For any node Ci of H,
a pixel v in Ci that is not contained in any child of Ci is called a proper pixel
of Ci. Any element v of V is a proper pixel of a unique node Ci denoted par(v).

va
lu
e

0
1
2
3

Fig. 1. Max-tree example. The left figure shows a 1d image f ∈ R
6 defined on the

domain v1, . . . , v6. Each of the four level sets at levels 0, 1, 2, and 3, has a sin-
gle connected component C1, . . . , C4. Those components are the nodes of hierarchy
MT1(f) (circles) shown on the right image. The plain lines represent the parent rela-
tions between nodes. The proper elements of each node are depicted by squares and
the dashed lines show the parent relation between those proper elements and their
respective nodes, for example we have par(v4) = C3. The altitude vector a = MT2(f)
of the max-tree of f is equal to [0, 1, 2, 3], meaning for example that the altitude of the
node C2 is equal to 1. The two maxima of f correspond to the leaf nodes C3 and C4 of
the hierarchy MT1(f).
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3 Optimization with Differentiable Max-Trees

In this section, we first study how the altitude vector of a max-tree can be
sub-differentiated with respect to the pixel values, then we state the general
formulation of the optimization problem which is addressed.

Differentiable Max-Trees. Trees, as combinatorial structures, are generally
not suited to gradient-based optimization. However, in max-trees, the altitude of
a component is mapped to the value of some pixels of the base image: its proper
pixels. Then, intuitively, a small modification of the values of those proper pixels
will not change the hierarchy associated with the max-tree of the image and will
produce the exact same modification of the altitude of the corresponding node
of the hierarchy.

Property 1. Let f ∈ R
n be an image. Let ε ∈ R

n such that MT1(f) = MT1(f +
ε). Then, for any node Ci of MT1(f), the altitude of Ci in MT(f + ε) is equal to
ai + εj where ai is the altitude of Ci and where vj is any proper pixel of Ci.

This property indicates that the Jacobian of the function MT2 can be written
as the matrix composed of the indicator column vectors giving the index of the
node associated with any pixel of V by the parent mapping (its proper elements):

∂MT2(f)
∂f

=
[
1par(v1), . . . ,1par(vn)

]
, (1)

where 1Ck
is the column vector of Rm equals to 1 in position k, and 0 elsewhere.

In a back-propagation algorithm, this means that if we have an error measure e
and we have already computed ∂e

∂a , i.e., how the altitude vector a = MT2(f) of
the max-tree of f should be modified in order to minimize e, we can then back-
propagate through MT with the chain rule ∂e

∂f = ∂a
∂f

∂e
∂a leading to the simple

formula
(

∂e
∂f

)
i
=

(
∂e
∂a

)
par(i)

telling how f should be modified to minimize e.
For example, the transpose of the Jacobian of the altitude vector MT2(f) of

the max-tree shown in Fig. 1 is equal to

⎛

⎜
⎜
⎝

f1 f2 f3 f4 f5 f6
a1 1 1 0 0 0 0
a2 0 0 0 0 1 0
a3 0 0 1 1 0 0
a4 0 0 0 0 0 1

⎞

⎟
⎟
⎠.

This matrix indicates, how the image f should be modified in order to reflect
a modification of the altitude vector a of the nodes of the max-tree of f . For
example, in order to increase the altitude a3 of the component C3 by a small
value ε, one must increase the value of f3 and f4 by this same value ε.

Optimization Problem. We now state a general formulation of the optimiza-
tion problem that we want to solve. Let y ∈ R

n be an image representing an
observation. We are interested in solving the following optimization problem:

minimize
f∈Rn

J(f ;y), s.t. 0 ≤ f ≤ 1, (2)
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where J is a differentiable cost function involving the altitude vector MT2(f). As
this altitude vector MT2(f) is differentiable with respect to the image f , a local
optimum of the above problem can be found by gradient descent algorithm. The
constraint to keep the image between the values 0 and 1 will prevent it to shrink
(resp. grow) towards −∞ (resp. ∞) when we try to remove (resp. increase) some
image features. A similar effect could be achieved by imposing margins on how
much a feature can shrink or grow.

4 Maxima Loss

In the following, we study how to define a component tree loss imposing a topo-
logical criterion, by prescribing how many maxima should be present in the
result. The proposed approach relies on two features characterizing the maxima:

– a measure of saliency : increasing this measure should reinforce the maximum
and decreasing it should make it disappear; and

– a measure of (relative) importance: which provides a ranking of the maximum
to identify those that should be reinforced and those which should disappear.

We first introduce a loss function to select a given number of maxima and
to discard the others according to these two measures. Then, we present several
measures to assess the importance and the saliency of maxima.

4.1 Ranked Selection Loss

Assume that the hierarchy H of MT(f) contains k maxima {Mi}i=[[1,k]] (its

leave nodes). Let � ∈ N
+ be a target number of maxima. Let sm ∈ R

+k

and im ∈ R
+k represent respectively a saliency and an importance measure

on the maxima {Mi}. Let p ∈ R
+∗ and q ∈ R

+∗ be 2 strictly positive num-
bers controlling the growth/shrink pressure applied on the maxima. The ranked
selection function will seek to maximize the saliency of the � maxima with the
largest importance values and decrease the saliency of the others:

Jp,q(sm, im; �) = −
i≤�∑

i=1

smp
ri +

i≤k∑

i=�+1

smq
ri with r = argsort(im), (3)

where argsort is the function that associates any vector v of Rk with a permu-
tation vector r ∈ [[1, n]]k sorting the elements of v in decreasing order, i.e., such
that for any i, j in [[1, n]], we have i < j ⇒ vri ≥ vrj .

4.2 Maxima Measures

We now define maxima measures that will be used as saliency and/or importance
measures in the previous loss function. Recall that the leaves of the max-tree
of an image f corresponds to the maxima of this image and assume that the
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Dynamics Volume

Fig. 2. Illustration of the dynamics and the volume associated with the maxima of a 1d
function. The dynamics of a maximum is equal to the difference of altitude between the
top of the maximum and the closest level that contains another maximum of greater
altitude. Similarly, the volume of the maximum is equal to the surface between the
top of the maximum and the closest level that contains another maximum of greater
volume. With the dynamics, the most important maximum is the sharp peak on the
left while, with the volume, the most important maximum is the large mount in the
middle.

hierarchy H of MT(f) contains k maxima {Mi}i=[[1,k]]; a measure on {Mi} is
then a positive vector of Rk.

Maxima Altitude: A simple way to measure the importance and the saliency
of a maximum is to look at its altitude, i.e., to the altitude aM of the maximum
M of H. The altitude of the maxima of f is denoted alt(f).

Extinction Values: Extinction values are classical maxima measures known
for their robustness [21]. Given a family of image filters {σk}k whose activity
increases with k (for any k1 ≤ k2, we have σk1 ≥ σk2). The extinction value of a
maximum M of f is equal to the smallest k such that M is not contained in any
maximum of σk(f). Typical examples of extinction values are the dynamics and
the volume. The dynamics and volume associated with the maxima of a function
are illustrated in Fig. 2. In the following, we will show how extinction values can
be defined and computed based on the max-tree representation.

Any extinction value relies on an increasing attribute measuring the impor-
tance of regional maxima. Such attribute will be represented by a vector v ∈ R

m

associating a value to each node of the max-tree such that for any two nodes
Ci and Cj , Ci ⊆ Cj ⇒ vi ≤ vj . The idea to compute the extinction value of a
maximum for the attribute v is then to find, for any maximum M , the closest
ancestor of M that contains another maximum whose attribute value is greater
than the one of M : this node is called the saddle node associated with M for v.

Formally, let N be a node of H and let A be an ancestor of N . There exists
a single branch rooted in A that contains the node N , the child of A in this
branch is denoted by ch(A)→N ; in other words ch(A)→N is the only child C
of A that contains N . The saddle node associated with the node N for the
attribute v, denoted by saddlev(N), is the closest ancestor A of N such that
there exists a child C of A with vch(A)→N

< vC . If no such ancestor exists,
then the saddle node of N for v is defined as the empty-set ∅. The base node



254 B. Perret and J. Cousty

associated with the node N for the attribute v, denoted by basev(N), is then
equal to ch(saddlev(N))→N if saddlev(N) �= ∅ and the root of the max-tree
otherwise.

Fig. 3. Regional maximum associated with each maximum for the dynamics and the
volume. We consider a 1d image on the left with 3 maxima. The second (resp. third)
figure shows how the 1d image is decomposed into 3 regional maxima according to the
dynamics (resp. the extinction by volume). In those two images, we see the max-tree
of the 1d image where the nodes are depicted by circles, squares and hexagons. The
label of each node corresponds to its index, and the blue value beside it corresponds
to its attribute value: its depth for the dynamics and its volume for the extinction by
volume. The hexagons are the maxima, i.e., the leaves of the tree. Each maximum is
associated with a branch of the tree, circled in red (dotted line), green (dashed line)
and orange (dot-dash line) whose base node is depicted by a square. For example, for
the dynamics (resp. the extinction by volume), the maximum of index 5 extends to its
base node 0 (reps. 1); its dynamics (resp. extinction by volume) is thus equal to 5, i.e.,
the attribute value of this base node. (Color figure online)

Thus, each regional maximum extends from its top node M to its base node
basev(M), and the saddle node saddlev(M) is the first ancestor of M that
belongs to another maximum according to the attribute v. The extinction value
of the maximum M for the attribute v is then defined as the attribute value
of its base node vbasev(M), see Fig. 3. Note that the definition of the extinction
value for the attribute v is just a value selection process in a vector, as in a
max-pooling layer, and it can thus be used in the definition of a loss function
suitable for gradient descent optimization.

In the following, we consider two different attributes: the depth, whose asso-
ciated extinction value is usually called the dynamics, and the volume. Both
attributes will be defined as a function of the max-tree altitudes, so that any
error on the extinction value can be translated as an error on those altitudes.

Let N be a node of H, the depth of N , denoted by depth(N), is defined by:

depth(N) = max {aC , C ∈ H | C ⊂ N} − apar(N). (4)

The depth of N is thus equal to the difference between the largest altitude in the
subtree rooted in N and the altitude of the parent of N . The extinction values
of the maxima of H for the attribute depth is called the dynamics and will be
denoted by dyn, see Fig. 3.
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Let N be a node of H, the volume of N , denoted by vol(N), is defined
recursively by:

vol(N) = |N | · (aN − apar(N)

)
+

∑

C∈Ch(N)

vol(C), (5)

where |N | denotes the cardinal of N , i.e., the number of pixels in the node N .
The volume of N is thus equal to the volume of the cylinder defined by the
node N and its parent, plus the volume of its children. The extinction values of
the maxima of H for the attribute vol is called the extinction value by volume
and will be denoted by vol, see Fig. 3.

Effect of Modifying the Saliency: The ranked selection loss (3) will try to
increase the saliency measure of the selected maxima and decrease the one of the
others. In order to better understand how this will affect the result, we propose
to study how a single maximum is modified when we try to increase/decrease
its saliency according to one of the proposed saliency measures.

In the case of the saliency based on the maxima altitudes, this effect is
simple, as increasing (resp. decreasing) the altitude of a maximum simply means
increasing (resp. decreasing) the altitude of the leaf node that corresponds to
this maximum in the max-tree.

With the dynamics, the saliency of a maximum is determined by the altitude
of the leaf node that corresponds to this maximum in the max-tree and by the
altitude of the saddle node associated with this leaf for the depth attribute.
In this case, increasing (resp. decreasing) the dynamics of a maximum means
increasing (resp. decreasing) the altitude of its leaf node and decreasing (resp.
increasing) the altitude of the saddle node (see Fig. 4). Note that the altitudes
of all the nodes between the leaf node and the saddle node are not modified.

Fig. 4. Effect of increasing or decreasing the saliency measure of a maximum based
on the dynamics dyn. The first figure shows a 1d image and a regional maximum for
the dynamics (see Fig. 2). The second (resp third) figure shows the effect of increasing
(resp decreasing) the measure for this maximum.

Finally, with the extinction value by volume, the saliency of a maximum is
determined by the altitudes of all the nodes in the branch going from the leaf
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node that corresponds to this maximum in the max-tree to the saddle node
associated with this leaf for the volume attribute. In this case, increasing (resp.
decreasing) the extinction value by volume of a maximum means increasing
(resp. decreasing) the altitudes of all the nodes in the branch going from the
leaf node to the base node and decreasing (resp. increasing) the altitude of the
saddle node (see Fig. 5).

Fig. 5. Effect of increasing or decreasing the saliency measure of a maximum based on
the extinction value by volume vol. The first figure shows a 1d image and a regional
maximum for the volume extinction value (see Fig. 2). The second (resp third) figure
shows the effect of increasing (resp decreasing) the measure for this maximum.

Note that in both cases, modifying the saliency of a single maximum usually
preserves the ordering of the nodes in the tree; an inversion between the top
node and the base node may still happen when a maximum collapses. However,
when the saliency of several maxima is modified at the same time, it becomes
more probable that the ordering of the nodes in the tree changes, leading to
more complex topological modifications in the image domain.

5 Experiments

We demonstrate the behavior of the proposed method and the various maxima
measures on a simulated image, and we show how it can be combined with clas-
sical loss functions to process real images. The method is implemented using the
library Higra [16] for hierarchical graph analysis in combination with the con-
tinuous optimization framework Pytorch [15]. In all the experiments, an Adam
optimizer [14] is used and the input image y is used as the initial solution. A
Jupyter notebook containing the presented experiments is available online1.

Simulated Image Filtering: The effect of the optimization of the component
tree loss J1,2(sm, im; 2) with the proposed importance and saliency maxima
measures is demonstrated on a simulated image in Fig. 6. The test image con-
tains four maxima with different altitudes, contrast, and volumes. We can see

1 https://www.esiee.fr/∼perretb/notebooks/Component Tree Loss.zip.

https://www.esiee.fr/~perretb/notebooks/Component_Tree_Loss.zip
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Fig. 6. Optimization of the component tree loss J1,2(sm, im; 2) on a simulated image
with the objective of selecting 2 maxima for various combinations of saliency measures
(sm) and importance measures (im).

that the altitude measure is not robust to noise and fails to select perceptu-
ally significant maxima: both are located in the bottom left blob. On the other
hand, the two measures based on extinction values, the dynamics and the vol-
ume, both manage to select significant maxima: with the dynamics, the two
brightest maxima are selected (bottom left and the top right blobs) while with
the volume, the two largest maxima are selected (top left and bottom right
blobs). Regarding saliency measures, we can see that the optimization of the
saliency based on maxima altitudes leads to increasing the altitudes of the top
node of the selected maxima and to raising discarded maxima. The optimization
of the dynamics saliency measure is more complex, as increasing/decreasing the
dynamics of the maxima involves increasing/decreasing the altitude of its top
node and decreasing/increasing the altitudes of its saddle node: this leads to
the creation of “bridges” between some maxima. Finally, the optimization of the
volume saliency has a more global effect on the maxima as, contrarily to the
dynamics, its definition involves the altitudes of all the nodes between the base
and the top nodes of a maximum.

In order to work with the saliency measure based on volume, we have observed
that raising the power q to 2 inside the loss function can help to erase the
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unwanted maxima whose contribution to the loss value and hence to the gradient
tends to be smaller than the one of the largest maxima.

Note that optimizing J with the dynamics used both as the saliency and the
importance measure of maxima is similar [2] to optimizing the barcode length
of the connected components used in the “topological loss” based on persistent
homology [4,5,9,12]. However, as our approach does not require computing the
full persistence diagram associated with the image at each iteration of the opti-
mization algorithm, we observe that it is faster than a classical implementation
of the topological loss2.

Real Image Filtering: Finally, in Fig. 7, we show how the proposed loss func-
tion can be combined with classical loss functions used in image analysis: here
we optimize the term

||f − y||22 + λ1J1,1(dyn(f),dyn(f), 1) + λ2||∇f ||22, (6)

which combines our loss based on the max-tree to enforce the presence of a single
maximum with a L2 data attachment term and a total variation regularization
term. We can see that we are able to successfully reconnect the different branches
of the neurite.

tluseRegamI

Fig. 7. Reconnection of a neurite image with a combination of the proposed loss Jr to
enforce a single maximum, a L2 data attachment term and a TV2 regularization term.

6 Conclusion

We have proposed a continuous optimization framework based on the hierarchical
image representation called the max-tree. We showed how it can be used to
2 https://github.com/bruel-gabrielsson/TopologyLayer.

https://github.com/bruel-gabrielsson/TopologyLayer
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design a component tree loss, i.e., a regularization term, enabling to select or
discard maxima in an image based on various measures. This approach can
be generalized immediately to other hierarchical representations, such as the
min-tree or the tree-of-shapes [1,10]. In future works, we plan to explore more
general component tree loss functions based on such hierarchical representations
and their use in supervised learning methods involving deep networks.

Acknowledgements. This work was supported by the French ANR grant ANR-20-
CE23-0019.
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22. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using
tree-based shape spaces. IEEE TPAMI 39(3), 457–469 (2016)
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Abstract. Superpixels through Iterative CLEarcutting (SICLE) is a
recently proposed framework for superpixel segmentation. SICLE con-
sists of three steps: (i) seed oversampling; (ii) superpixel generation; and
(iii) seed removal; such that, after step (i), steps (ii) and (iii) are repeated
until a desired number of superpixels is obtained. Such pipeline showed
effective and efficient multiscale superpixel segmentation. Furthermore,
if an object is desired, it is possible to improve delineation by provid-
ing its probable location, often called saliency. While classical meth-
ods estimate object saliency by contrast-based criteria, recent ones use
deep-learning strategies for accurate estimation. SICLE shows robustness
for low-quality saliency estimations, but it struggles to effectively take
advantage of the high-quality ones. In this work, we propose a general-
ization of its path-cost function and seed removal criterion (steps (ii) and
(iii), respectively), adapting SICLE to a given saliency map. By choice of
a binary parameter, SICLE can take advantage of low- and high-quality
saliency maps for better segmentation. Results show that, by exploiting
the accurate information of the saliency map, our improved SICLE ver-
sion surpasses state-of-the-art methods in traditional delineation metrics
while requiring only two iterations for segmentation, being significantly
faster than its predecessor and SLIC.
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foresting transform
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1 Introduction

Superpixels represent homogeneous regions that contain a perceptual meaning
and provide more information than pixels. Although some authors raise com-
pactness and regularity as indicators of high-quality superpixel segmentation,
boundary adherence, efficiency, and controllable quantity of superpixels, are
indispensable for any method [23,25]. From that, several applications such as
object tracking [10], semantic segmentation [32], and image classification [21]
exploit their properties.

Classical approaches differ in their strategy for superpixel generation and gen-
erally consider only color and spatial position to measure superpixel similarity,
without any prior information. We may cite Simple Linear Iterative Clustering
(SLIC) [1] as an example of a clustering-based method given its adapted K-means
strategy in a 5-dimensional feature space. Conversely, graph-based approaches,
such as Entropy Rate Superpixels (ERS) [16], have higher boundary adherence
but they are often slow. Also, Superpixel Hierarchy (SH) [26] and Waterpix-
els [17] are effective hierarchical graph-based examples whose drawback is error
propagation to coarser scales. Finally, Dynamic and Iterative Spanning Forest
(DISF) [6] is a path-based method that applies oversampling and iteratively
generates superpixels on refined seed sets.

Using local information without any prior or high-level knowledge may be
insufficient to obtain a good delineation in images with complex characteris-
tics, such as textured or noisy images [27]. More recent approaches circumvent
this drawback with Deep Learning architectures [14,28] or by including high-
level information, such as texture [30] and gradient mask [27]. However, they
present moderate delineation, and their constraints are the regular grid shape
on standard convolution operations for deep-learning-based methods, high com-
putational time, and the lack of superpixel groundtruth [28].

Although using saliency in segmentation is not a novel strategy [12], it has
not been thoroughly exploited for generating superpixels until recently. In [31],
the authors proposed a SLIC-based algorithm that uses a saliency map based on
the Fourier Transform for generating more superpixels in textured regions. The
Object-based DISF (ODISF) [3] method is another example that extends DISF
for incorporating object saliency maps. However, since the map’s influence is
not controllable in both, higher-quality saliency may not promote higher-quality
delineation. Conversely, Object-based ISF (OISF) [4,5] overcomes this issue by
allowing user control over the saliency influence during delineation, but it is slow
and highly sensitive to incorrect estimations.

A recent proposal named Superpixels through Iterative CLEarcutting
(SICLE) [8] generalizes ODISF for allowing user control over the number of
iterations for segmentation, being more efficient than SLIC at generating super-
pixels in different experiments. The SICLE pipeline is composed of three steps: (i)
seed oversampling; (ii) superpixel generation by the Image Foresting Transform
(IFT) [11]; and (iii) object-based seed removal. After step (i), steps (ii) and (iii)
are performed until obtaining a desired number of superpixels. By using object
information only in the last step, SICLE delineation performance is robust to
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Original

Saliency Map [20]

SICLE [8]

Our proposal

Fig. 1. Comparison between SICLE and our improved version for accurate maps con-
sidering 25 superpixels. Red lines indicate object boundaries, whereas cyan ones, super-
pixel borders. Yellow rectangles indicate delineation errors that our approach overcame.
(Color figure online)

incorrect estimations, contrasting with OISF. However, similarly to ODISF, it
cannot improve its delineation performance for higher-quality saliency maps.

One may argue that an object-based method should exploit the prior object
location information with respect to its quality. For high-quality information,
the approximation to the object boundaries can assist its delineation. Con-
versely, although low-quality information poorly estimates the object bound-
aries, it presents valuable information on its location. Therefore, in this work,
we propose a generalization of SICLE’s path-cost function and object-based
seed removal criteria (i.e., steps (ii) and (iii), respectively) for exploiting low-
and high-quality saliency maps to improve segmentation results by choice of a
binary parameter. Experimental results show that our proposal, named SICLEα,
is robust to low-quality maps and improves delineation in the case of high-quality
ones, as exemplified in Fig. 1. Moreover, by exploiting the accurate estimation
of the object boundaries, SICLEα achieves higher precision in step (iii), thus
requiring only two iterations for effective object delineation. Given both, our
method surpasses state-of-the-art methods in terms of efficiency and effective-
ness, considering classical evaluation metrics.

This paper is organized as follows. The related definitions are presented
in Sect. 2 and our proposal is described in Sect. 3. Section 4 presents the
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experiments, with an ablation study, and qualitative and quantitative evalua-
tion. Finally, the conclusion and future work are presented in Sect. 5.

2 Theoretical Background

In this section, we present the theoretical background for our work. In Sect. 2.1,
we discuss basic concepts in image and graphs and, subsequently, in Sect. 2.2,
we present the Image Foresting Framework (IFT) [11].

2.1 Image and Graphs

An image I is a pair 〈P,F〉 in which F(p) ∈ R
m maps the features of every

picture element (i.e., pixel) p ∈ P ⊂ Z
2, given m ∈ N

∗. I is either colored
or grayscale whenever m > 1 or m = 1, respectively. An object saliency map
O = 〈P,O〉 is an instance of the latter in which O(p) ∈ [0, 1] maps p to its
probability of belonging to an object of interest (i.e., saliency). Finally, for a set
of pixels X ⊆ P, we may compute its mean feature F(X) =

∑
x∈X F(x)/|X|

and mean saliency O(X) =
∑

x∈X O(x)/|X|.
From I, we may build a directed graph (i.e., digraph) G = 〈V,A〉 so that

V ⊆ P contains its vertices and A ⊂ V2 its arcs. The existence of an arc
〈x, y〉 ∈ A indicates that x is adjacent to y. Often, A is defined by the 8-
adjacents of every pixel x ∈ P, such that A =

{〈x, y〉 : ‖x − y‖2 ≤ √
2
}
. In this

work, A holds no self-loops nor parallel edges (i.e., G is a simple graph).
A (directed) path ρ = 〈v1, . . . , vk〉 is a sequence of k ∈ N

∗ distinct adjacent
vertices (i.e., 〈vi, vi + 1〉 ∈ A for i < k). If k = 1, ρ is said to be trivial, and non-
trivial otherwise. In ρ, we term vi as the predecessor of vi+1 and the successor
vi−1 given 1 < i < k. Moreover, we may exhibit the root v1 and the terminus
vk of ρ either by ρv1�vk

or by ρvk
whenever v1 is irrelevant for the context. For

instance, ρy = ρx 
 〈x, y〉 denotes the path ρy resultant from concatenating ρx

with 〈x, y〉.

2.2 Image Foresting Transform

The Image Foresting Transform (IFT) [11] is a framework whose effectiveness
in object delineation has been reported in several works [3,6,9,13]. When a set
of representative vertices (i.e., seeds) S ⊂ V is provided, the algorithm builds
trees with optimum path-cost from their seed s ∈ S to any p ∈ V \ S through
path concatenation.

We can estimate the cost of an arc 〈x, y〉 ∈ A by an arc-cost function
w∗(x, y) ∈ R and, likewise, the cost of any path ρx can be computed by an
path-cost function f∗(ρx) ∈ R+. As an example, the fmax (Eq. 1) is commonly
used in IFT-based methods due to its effectiveness [3,6] in delineating objects:

fmax(〈x〉) =
{

0, ifx ∈ S
+∞, otherwise

fmax(ρx 
 〈x, y〉) = max {fmax(ρx),w∗(x, y)}
(1)
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If f∗(ρx) ≤ f∗(τx), considering τx ∈ P to be any other path reaching x within
the set P of all possible paths in G, then ρx is optimum.

The IFT minimizes a cost map C(x) = minρx∈P {f∗(ρx)} by assigning an
optimum path ρx from a seed to x ∈ V \ S. Simply put, the method builds trees
whose paths to non-seed vertices are more closely connected to its seed than to
any other using a generalization of the Dijkstra’s shortest-path algorithm. Even
if f∗ is not smooth, it still exhibits properties suitable for segmentation [18].
While minimizes C, the algorithm builds an acyclic map P (i.e., predecessor
map) which assigns x either to its predecessor defined in ρx or to a distinctive
marker � �∈ V, whenever x is the root of ρx and, thus, of P. As one may see, it is
possible to map x to its root R(x) ∈ S recursively through P. Furthermore, by
assuming s = R(x), we can map every vertex to its optimum-path tree T(s) ⊂ V
by T(s) = {t : R(t) = s}. In this work, every superpixel is an optimum-path tree
rooted in a seed.

3 Methodology

In this section, we review Superpixels through Iterative CLEarcutting (SICLE) [8]
alongside our proposed evolutions to better take advantage of high quality
saliency estimations. Briefly, each section refers to a specific SICLE step, given
that our contributions reside on the last ones: (i) seed oversampling; (ii) super-
pixel generation; and (iii) object-based seed removal (i.e., Sects. 3.1, 3.2 and 3.3,
respectively).

3.1 Seed Oversampling

Being a seed-based method, the first SICLE step consists in selecting a set
S ⊂ V of N0 initial seeds for generating Nf superpixels, given N0, Nf ∈ N

∗.
However, differently from most approaches, it oversamples (i.e., N0  Nf ) for
improving the probability of selecting the seeds that promote accurate object
delineation (i.e., relevant). In this strategy, the aim is to remove the irrelevant
ones until reaching Nf seeds in the final iteration (see Sect. 3.3). In this work, we
argue no need for seed selection improvement given the reported loss of efficiency
when object saliency maps are considered [7] and the seed relevance redundancy
premise [8]. Consequently, the central strategy for delineation improvement relies
on maintaining the relevant seeds throughout the iterations.

3.2 Superpixel Generation

For generating superpixels, SICLE uses the seed-restricted IFT version. Fur-
thermore, although several path-cost and arc-cost functions have been pro-
posed [6,9,24], it opts for the fmax and a root-based arc-cost estimation
wroot(x, y) = ‖F(R(x)) − F(y))‖2 due to its reported effectiveness in superpixel
delineation [8].
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As one may note, such arc-cost function does not consider any object infor-
mation. The authors in [8] justify such option in SICLE mainly on the existence
of incorrect estimations in the map, deteriorating the object delineation. And
although it resulted in a more robust performance for any map, it also led to
the inability to improve its delineation for state-of-the-art estimators. First, let
α ∈ {0, 1} be a user-defined “trustiness” switch of the saliency map’s object
boundary approximation. When α = 1, the user judges that the map’s borders are
sufficiently accurate for assisting in delineation, due to its closeness to the object’s
boundaries. Otherwise, it may set α = 0 for avoiding incorrect estimations within
the map, preventing segmentation degradation, while still exploiting the object
location information for improving the SICLE performance. For both cases, it is
expected that the object is known beforehand and it was properly located by the
saliency estimator. Then, to achieve each property when desired, we propose a
generalization wα

∗ (x, y) = (w∗(x, y))1+α·‖O(R(x))−O(y)‖1 . Note that, aside from
not requiring optimization, wα

∗ = w∗ when α = 0 since it discards the influence
of the saliency difference. Finally, in contrast to the arc-cost function proposed
in [4], the magnitude of the saliency influence in wα

∗ is significantly smaller, lead-
ing to a lighter impact by eventual incorrect estimations.

3.3 Seed Removal

In SICLE, Nf superpixels are obtained after successively removing N0−Nf seeds
from S, requiring at most Ω ∈ N

∗ > 1 iterations. At each iteration i ∈ N < Ω,
M(i) = max{(N0)1−ω·i, Nf}, given ω = 1/ (Ω − 1), most irrelevant seeds are
removed, while the remaining ones are perpetuated for testing their relevance in
the next iteration i + 1.

For each seed s ∈ S, its relevance V∗(s) ∈ R+ is estimated based on the
characteristics of its superpixel T(s) resultant from the last IFT execution. As
an example, one may opt for a size- and contrast-based criterion Vsc(s) for
accurate selection of relevant seeds irrespective of whether a map is provided [8].
First, we define the color gradient between two superpixels rooted in s, t ∈ S by
GF(s, t) =

∥
∥F(T(s)) − F(T(t))

∥
∥
2
. Moreover, it is possible to define the adjacents

of s by A(s) = {t : ∃ 〈x, y〉 ∈ A} considering t ∈ S, x ∈ T(s), y ∈ T(t) and
s �= t. Finally, from both, we can compute the relevance of s by Vsc(s) =
|T(s)|

|V| · min∀ t∈A(s) {GF(s, t)} using the aforementioned criterion.
However, when a saliency map is given, the seed relevance is linked to its

object proximity: the farther the superpixel, the more irrelevant it is, even though
it is considered relevant by its non-object-based criterion [8]. Thus, in SICLE,
every criterion is subjected to an object-based weighting factor. Similarly to
GF(s, t), we define GO(s, t) =

∥
∥O(T(s)) − O(T(t))

∥
∥
2

as the saliency gradient
between the superpixels of s and t. Then, the object-based relevance of s is
measured by Vobj(s) = V∗(s) · max{O(T(s)),max∀ t∈A(s) {GO(s, t)}}.

One can see that such function favors seeds near the object border depicted
on the map, promoting competition in crucial regions for delineation. Moreover,
by favoring those within it, SICLE populates the regions incorrectly estimated as
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object parts, diminishing the influence of such error through competition. How-
ever, when a high-quality map is provided, not only are its borders more accurate
but promoting competition in internal object borders minimally impacts its exte-
rior boundaries. In such case, one may favor the seeds nearby the object rather
than those within it. Thus, and similarly to wα

∗ , we generalize SICLE’s object-
based seed relevance function for assessing such properties whenever one of them
is requested: Vα

obj = V∗(s)·max{(1−α)·O(T(s)),max∀ t∈A(s) {GO(s, t)}}. Sim-
ilarly to wα

obj , when α = 0, the tree’s saliency is also considered as a relevant
feature, resulting in Vα

obj = Vobj . Otherwise, only the trees near the saliency
borders are favored in the computation.

4 Experimental Results

In this section, we present the experimental framework for analyzing and evalu-
ating the proposed method. We first describe the experimental setup in Sect. 4.1
and subsequently perform an ablation study in Sect. 4.2. Lastly, we present a
quantitative and qualitative analysis in Sect. 4.3.

4.1 Experimental Setup

We selected three datasets for assessing the performance of all methods. Given
that the most used segmentation evaluation dataset [2] is contour-driven, it is
not applicable when a single object is desired. Conversely, our selection tries
to assess different delineation difficulties for distinct objects, while offering a
broad perspective on the methods’ performance in their primary goal: generating
superpixels. For handling different objects, we opt for the popular Extended
Complex Saliency Scene Dataset (ECSSD) [22], which contains 1000 natural
images with complex objects and backgrounds. On the other hand, the thin
object legs in Insects [18] (130 images) offers a proper delineation challenge.
Similarly, the Liver [24] dataset contains 40 CT slices of the human liver whose
smooth boundaries are difficult to detect. We selected, by random, 30% and 70%
of each dataset for optimization and testing, respectively. Finally, we considered
the U2-Net [20], fine-tuned with its default parameters, for generating the object
saliency maps.

As baselines, we chose the following state-of-the-art methods based on their
speed and accuracy: (i) SLIC [1]1; (ii) SH [26]2; (iii) ERS [16]3; (iv) OISF [5]4.
By selecting such baselines, we assess the major properties for superpixel seg-
mentation: speed and object delineation. Thus, although deep-learning-based
methods with promising results have been proposed, more research is required
for surpassing the performance of classical algorithms [8,15,27,29,33]. As initial

1 https://www.epfl.ch/labs/ivrl/research/slic-superpixels/.
2 https://github.com/semiquark1/boruvka-superpixel.
3 https://github.com/mingyuliutw/EntropyRateSuperpixel.
4 https://github.com/LIDS-UNICAMP/OISF.

https://www.epfl.ch/labs/ivrl/research/slic-superpixels/
https://github.com/semiquark1/boruvka-superpixel
https://github.com/mingyuliutw/EntropyRateSuperpixel
https://github.com/LIDS-UNICAMP/OISF
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Fig. 2. Impacts of object saliency map quality on SICLEα.

setting for SICLEα, we used the default recommendation [8]:(i) random over-
sampling with N0 = 3000; (ii) fmax; (iii) V∗ = Vsc; and (iv) Ω = 5. Our code is
publicly available online5. For measuring their performances, we used the Bound-
ary Recall (BR) [23] and the Under-segmentation Error (UE) [19] due to their
expressiveness [23]. While the former measures the ratio between object bound-
aries and superpixel borders (i.e., higher is better), the latter estimates errors
from superpixel “leakings” (i.e., lower is better).

4.2 Ablation Study

We first analyzed the impacts of the saliency map quality on SICLEα, as shown
in Fig. 2. In this experiment, we considered a representative of a poor, a state-
of-the-art, and an ideal estimator: (i) object’s minimum bounding box (BB); (ii)
U2-Net (U); and (iii) ground-truth (GT); respectively. We highlight that the GT
is only considered in this experiment. By setting α = 1, our improved SICLE
improves its segmentation proportionally to the saliency map quality (i.e., the
better the map, the better the delineation). Note that SICLEα performance
deteriorates when changing from GT to U maps, indicating that although highly
accurate, the latter is not ideal. Still, by improving the saliency incorporation,
our approach significantly improves when α = 1, especially considering UE.
Finally, by simply setting α = 0 when a poor quality map is provided, SICLEα

becomes robust against saliency errors.

5 https://github.com/LIDS-UNICAMP/SICLE.

https://github.com/LIDS-UNICAMP/SICLE
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Fig. 3. Impacts of the maximum number of iterations on SICLEα considering α = 1
and the U2-Net estimator.

Our second experiment analyses if the proposed method assists in reducing
the number of iterations for segmentation. From the curves in Fig. 3, we see that
SICLEα manages to achieve its top performance requiring only two iterations
and increasing Ω does not lead to improvements when α = 1. We argue that
our improved seed relevance criteria accurately select Nf relevant seeds in only
one iteration, requiring one more for promoting effective object delineation. For
that, we set Ω = 2 whenever α = 1.

4.3 Quantitative and Qualitative Analysis

Our last experiment (Fig. 4) compared our improved SICLEα against the base-
lines. In terms of BR, SICLEα managed to surpass all methods significantly,
especially for Nf = 200 superpixels. Given its discrepant performance compared
to OISF, we can argue that our approach best exploits the saliency information
for segmentation. Moreover, SICLEα presented better delineations in Insects
than ERS, the best method known in such dataset. Regarding UE, our improve-
ments reduced the superpixel leaking significantly, leading to on par results with
OISF, which often presents the lowest values in several works [3–5].

Table 1 shows the average speed performance of all methods in the ECSSD
dataset on a 64-bit Intel(R) Core(TM) i7-4790S PC with CPU speed of 3.20 GHz.
As one can see, even though SICLEα is O (|V| log |V|), it is the fastest method
amongst all. For instance, SLIC and SH are O (|V|), but they perform burden-
some operations for obtaining a single segmentation. While the former executes
a strict number of iterations (e.g., 10), the latter computes the whole hierarchy.
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Fig. 4. Performance comparison between our approach, considering α = 1 against
state-of-the-art methods.

Table 1. Average speed performance (in seconds) on the ECSSD dataset considering
α = 1 for SICLEα. The best value for each Nf is depicted in bold.

N0 SLIC ERS SH OISF SICLEα

25 0.537± 0.028 0.913± 0.085 0.758± 0.028 1.987± 0.367 0.279±0.037

100 0.540± 0.029 0.952± 0.093 0.756± 0.026 1.252± 0.236 0.279±0.030

750 0.541± 0.029 1.027± 0.109 0.756± 0.027 0.849± 0.163 0.296±0.037

In contrast, SICLEα surpasses both speed and delineation by benefitting from
our improvements, leading to only two iterations. Lastly, it is straightforward to
obtain an object-based multiscale segmentation on the fly from SICLEα [8].

Finally, the superior performance of SICLEα can be exemplified by Fig. 5.
Note that, by setting α = 1, our improved method can correct the errors for
α = 0, achieving top object delineation and surpassing all baselines. As indicated
by the yellow rectangles, SICLEα best exploits the saliency information and best
approximates the object borders, especially when compared to other object-
based methods like OISF.
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Original

Saliency Map SICLEα=0 SICLEα=1 OISF

ERS SH SLIC

Fig. 5. Comparison between SICLEα and state-of-the-art methods considering 100
superpixels. Red lines indicate object boundaries, whereas cyan ones, superpixel bor-
ders. Yellow rectangles indicate delineation errors that our approach overcame. (Color
figure online)

5 Conclusion and Future Work

This work proposes SICLEα, an improved version of the state-of-the-art object-
based method Superpixels through Iterative CLEarcutting (SICLE) by general-
izing its path-cost function and seed removal criterion. Our proposal may pro-
mote robustness for low-quality saliency maps or may improve its effectiveness
and efficiency in delineation for high-quality ones through a single and intu-
itive parameter. Results show that SICLEα surpasses state-of-the-art methods
regarding popular metrics while being the fastest one in all datasets considered.
For future work, we intend to extend SICLEα for video supervoxel segmentation
and study its performance for interactive image segmentation.
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7. Belém, F., Melo, L., Guimarães, S., Falcão, A.: The importance of object-based seed
sampling for superpixel segmentation. In: 32nd Conference on Graphics, Patterns
and Images (SIBGRAPI), pp. 108–115 (2019)

8. Belém, F., Perret, B., Cousty, J., Guimarães, S., Falcão, A.: Efficient multiscale
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Abstract. Binary Partition Hierarchies (BPH) and minimum spanning
trees are fundamental data structures involved in hierarchical analysis
such as quasi-flat zones or watershed. However, classical BPH construc-
tion algorithms require to have the whole data in memory, which prevent
the processing of large images that cannot fit entirely in the main mem-
ory of the computer. To cope with this problem, an algebraic framework
leading to a high level calculus was introduced allowing an out-of-core
computation of BPHs. This calculus relies on three operations: select,
join, and insert. In this article, we introduce three efficient algorithms to
perform these operations providing pseudo-code and complexity analysis.

1 Introduction

Hierarchies of partitions are versatile representations that have proven useful
in many image analysis and processing problems. In this context, binary parti-
tion hierarchies [14] (BPH) built from altitude ordering and associated minimum
spanning trees are key structures for several (hierarchical) segmentation meth-
ods: in particular it has been shown [2,11] that such hierarchies can be used
to efficiently compute quasi-flat zone (also referred as α-trees) hierarchies [2,10]
and watershed hierarchies [2,9]. Efficient algorithms for building BPHs on stan-
dard size images are well established, but, with the constant improvement of
acquisition systems comes a dramatic increase in image resolutions, which can
reach several terabytes in size. In such case, it becomes impossible to put a single
image in the main memory of a standard workstation and classical algorithms for
BPHs stop working. This creates the need for scalable algorithms to construct
BPHs in an out-of-core manner to handle images that cannot fit in memory.

In [4,6,8], the authors investigate distributed memory algorithms to com-
pute min and max trees for terabytes images. In [5], computation of minimum
spanning trees of streaming images is considered. A parallel algorithm for the
computation of quasi-flat zones hierarchies has been proposed in [7]. Finally, the
authors of [1] recently proposed massively parallel algorithms for the computa-
tion of max-trees on GPUs. All these work rely on a common idea which is to
c© Springer Nature Switzerland AG 2022
É. Baudrier et al. (Eds.): DGMM 2022, LNCS 13493, pp. 274–286, 2022.
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work independently on small pieces of the space, “join” the information found
on adjacent pieces, and “insert” this joint information into other pieces.

In a previous work [3], the authors specifically addressed the problem of
computing a BPH under the out-of-core constraint, i.e., when the objective is
to minimize the amount of memory required by the algorithms. To do so, they
introduced an algebraic framework formalizing the distribution of a hierarchy
over a partition of the space together with three algebraic operations acting on
BPHs: select, join, and insert. They showed that, when a causal partition of the
space is considered, it is possible to compute the distribution of a BPH using
these three operations by browsing the different regions of the partition only
twice (once in a forward pass and once in a backward pass) and by requiring to
have only the information about two adjacent regions in the main memory at
any step of the algorithm. However, no efficient algorithm has been proposed for
the three operations select, join, and insert.

In this work, we propose efficient implementations for these operations. The
proposed algorithms rely on a particular data structure to represent local hierar-
chies which is designed to efficiently search and browse the nodes of the hierarchy
and to store only the necessary and sufficient information required locally to com-
pute the distribution of the BPH. We give algorithms, with their pseudo-code,
for the three operations whose time complexity is either linear or linearithmic.
In order to ease the presentation, we consider the particular case of 2d images,
modelled as 4-adjacency graphs, but the method can be easily extended to any
regular graph. The implementation of the method in C++ and Python based on
the hierarchical graph processing library Higra [12] is available online https://
github.com/PerretB/Higra-distributed.

This article is organized as follows. Section 2 gives the definition of BPH.
Section 3 recalls the notion of the distribution of a hierarchy and the calculus
method that can be used to compute such distribution over a causal partition
of the space. Section 4 explains the proposed data structures. Section 5 presents
the algorithms for the three operations select, join, and insert. Finally, Sect. 6
concludes the work and gives some perspectives.

2 Binary Partition Hierarchy by Altitude Ordering

In this section, we first remind the definitions of hierarchy of partitions. Then
we define the binary partition hierarchy by altitude ordering using the edge-
addition operator [3] and we recall the bijection existing between the regions of
this hierarchy and the edges of a minimum spanning tree of the graph.

Let V be a set. A partition of V is a set of pairwise disjoint subsets of V .
Any element of a partition is called a region of this partition. The ground of a
partition P, denoted by gr(P), is the union of the regions of P. A partition whose
ground is V is called a complete partition of V . Let P and Q be two partitions
of V . We say that Q is a refinement of P if any region of Q is included in
a region of P. A hierarchy on V is a sequence (P0, . . . ,P�) of partitions of V
such that, for any λ in {0, . . . , � − 1}, the partition Pλ is a refinement of Pλ+1.

https://github.com/PerretB/Higra-distributed
https://github.com/PerretB/Higra-distributed
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Let H = (P0, . . . ,P�) be a hierarchy. The integer � is called the depth of H
and, for any λ in {0, . . . , �}, the partition Pλ is called the λ-scale of H. In the
following, if λ is an integer in {0, . . . , �}, we denote by H[λ] the λ-scale of H. For
any λ in {0, . . . , �}, any region of the λ-scale of H is also called a region of H.
The hierarchy H is complete if H[0] = {{x} | x ∈ V } and if H[�] = {V }. We
denote by H�(V ) the set of all hierarchies on V of depth �, by P(V ) the set of
all partitions on V , and by 2|V | the set of all subsets of V .

In the following, the symbol � stands for any strictly positive integer.
We define a graph as a pair G = (V,E) where V is a finite set and E

is composed of unordered pairs of distinct elements in V . Each element of V
is called a vertex of G, and each element of E is called an edge of G. The
Binary Partition Hierarchy (BPH) by altitude ordering relies on a total order
on E, denoted by ≺. Let k in {1, . . . , �}, we denote by u≺

k the k-th element
of E for the order ≺. Let u be an edge in E, the rank of u for ≺, denoted
by r≺(u), is the unique integer k such that u = u≺

k . We then define the update of a
hierarchy H with respect to an edge {x, y}, denoted by H⊕{x, y}: with k the rank
of {x, y}, H ⊕ {x, y}[λ] remains unchanged for any λ in{0, k − 1} while, for any
λ in {k, . . . , �}, we have (H⊕{x, y})[λ] = H[λ]\{Rx, Ry}∪{Rx ∪Ry} where Rx

(resp. Ry) denotes the region of H[λ] containing x (resp. y). Let E′ ⊆ E and let H
be a hierarchy. We set H �E′ = H ⊕u1 ⊕ . . .⊕u|E′| where E′ = {u1, . . . , u|E′|}.
The binary operation � is called the edge-addition. Thanks to this operation,
we can define formally the BPH for ≺. Let X be a set, we denote by ⊥X the
hierarchy defined by ⊥X [λ] = {{x} | x ∈ X}, for any λ in {0, . . . �}. The BPH
for ≺, denoted by B≺ is the hierarchy ⊥X �E.

Let B≺ be a binary partition by altitude ordering, R be a region of B≺

and R� be the set of non-leaf regions of B≺. The rank of R, denoted by r(R),
is the lowest integer λ such that R is a region of B≺[λ]. We consider the map μ
from R� in E such that, for any non-leaf region R of B≺, we have μ≺(R) = u≺

r(R).
We say that μ≺(R) is the building edge of R. Building edges of the binary
partitions hierarchy defines a minimum spanning tree of an edge-weighted graph.
In Fig. 1, Y is the BPH built on the 4-adjacency graph B. Non-leaf nodes of Y
correspond to the edges of the minimum spanning tree of B (dashed edges).

3 Distributed Hierarchies of Partitions on Causal
Partition

In this section, we recall the definition of the distribution of a BPH on a sliced
graph and the principle of its calculus in an out-of-core manner. Intuitively,
distributing a hierarchy consists in splitting it into a set of smaller trees such that:
1) each smaller tree corresponds to a selection of a sub part of whole tree that
intersects a slice of the graph and 2) the initial hierarchy can be reconstructed
by “gluing” those smaller trees.

Let V be a set. The operation sel is the map from 2|V | ×P(V ) to P(V ) which
associates to any subset X of V and to any partition P of V the subset sel(X,P)
of P which contains every region of P that contains an element of X. The
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Fig. 1. G a 4-adjacency graph divided into two slices A and B (respectively blue and
green). Each edge of G is associated with a pair (index, weight). The two slices are sep-
arated by their common neighborhood i.e. edges 8 and 2. Hierarchy X (respectively Y)
is the BPH built on A (respectively B). Indices associated with non-leaf nodes of the
BPHs correspond to the indices of their corresponding building edges represented by
dashed edges in G. We can note that MSTs built on slices (dashed edges) are not
sub-trees of the complete MST (shown as shadow). In consequence, edge 3 is part of
the hierarchy X when it should not be.

operation select is the map from 2|V | × H�(V ) in H�(V ) which associates to
any subset X of V and to any hierarchy H on V the hierarchy select (X,H) =
(sel(X,H[0]), . . . , sel(X,H[�])).

We are then able to define the distribution of a hierarchy thanks to select.
Let V a set, let P be a complete partition on V and let H be a hierarchy on V .
The distribution of H over P is the set {select (R,H) | R ∈ P} and for any
region R of P, select (R,H) is called a local hierarchy (of H on R).

The calculus introduced in [3] aims to compute the distribution of a BPH
over a partition of the space. In this article, we consider the special case of a
4 adjacency graph representing a 2d image that can be divided into slices, and
we are interested in computing a distribution of the BPH over those slices. It
should be noted that this is not a limiting factor, and the method can easily be
adapted to any regular grid graph.

Let h and w be two integers representing the height and the width of an
image. In the following, the set V is the Cartesian product of {0, · · · , h − 1} ×
{0, · · · , w − 1}. Thus, any element x of V is a pair x = (xi, xj) such that xi

and xj are the coordinates of x. In the 4-adjacency grid, the set of all edges
E is equal to {{x, y} ∈ V | |xi − yi| + |xj − yj | ≤ 1}. Let k be a positive
integer, the causal partition of V is the sequence (S0, . . . , Sk) such that for any t
in {0, · · · , k}, St = {(i, j) ∈ V | t × w

k ≤ i < (t + 1) × w
k }. Each element of

this partition is called a slice. The set of vertices at the interface between two
neighbor slices A and B and belonging to A is noted γ•

B(A). The major advantage
of considering this partition over a regular graph is that each subset of V or E
can be computed on the fly efficiently from a computational and memory point
of view.
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Algorithm 1: Out-of-core binary partition hierarchy [3].
Data: A graph (V, E), a total order ≺ on E, and a causal partition (S0, . . . , Sk)

of V

Result: {B↓
0 , . . . , B↓

k}: the distribution of the BPH B≺
V over {S0, . . . , Sk}.

1 B↑
0 := B≺

S0
// call PlayingWithKruskal algorithm

2 foreach i from 1 to k do // Causal traversal of the slices

3 Call PlayingWithKruskal algorithm to compute B≺
Si

4 M↑
i := join

(
select

(
γ•

Si
(Si−1), B↑

i−1

)
, select

(
γ•

Si−1
(Si), B≺

Si

))

5 B↑
i := insert(select

(
γ•

Si−1
(Si), M↑

i

)
, B≺

Si
)

6 B↓
k := B↑

k; M↓
k := M↑

k

7 foreach i from k − 1 to 0 do // Anticausal traversal of the slices

8 B↓
i := insert(select

(
γ•

Si+1
(Si), M↓

i+1

)
, B↑

i )

9 if i > 0 then M↓
i := insert(select

(
γ•

Si−1
(Si), B↓

i

)
, M↑

i )

Given this causal partition, Algorithm 1 allows computing the local hier-
archies of the BPH of the complete graph on each slice. This algorithm can
be divided in two parts: causal and anti-causal traversal of the slices. Each of
these parts relies on the same idea. First, start with the causal traversal. Given
a causal partition of V into k + 1 slices, for any i in {1, · · · , k} compute the
BPH on Si with a call to the algorithm presented in [11] hereafter called Play-
ingWithKruskal (line 3). Then, select the part of this hierarchy containing the
vertices adjacent to the previous slice and join it with the part of the hierarchy
associated to the previous slice containing the vertices adjacent to the current
slice, leading to the “merged” hierarchy denoted by M↑

i (line 4). The merged
hierarchy is then inserted in the BPH which gives B↑

i (line 5). The hierarchies B↑
i

associated to slice i misses the information located in slices of higher indices, and
consequently only the last local hierarchy B↑

k is correct i.e. B↑
k = select (Sk,H).

In order to compute the valid distribution, and after having spread information
in the causal direction, information must be back propagated in the reverse anti-
causal direction so that each local hierarchy is enriched with the global context
(lines 7 to 9).

4 Data Structures

In this section, we present the data structures used in the algorithms defined in
the following sections. These data structures are designed to contain only the
necessary and sufficient information so that we never need to have all the data
in the main memory at once. The data structure representing a local hierarchy
assumes that the nodes of the hierarchy are indexed in a particular order and
relies on three “attributes”: 1) a mapping of the indices from the local context
(a given slice) to the global one (the whole graph) noted H.map, 2) the parent
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array denoted by H.par encoding the parent relation between the tree nodes,
and 3) an array H.weights giving, for each non-leaf-node of the tree, the weight
of its corresponding building edge.

More precisely, given a binary partition hierarchy H with n regions, every
integer between 0 and n−1 is associated to a unique region of H. Moreover, this
indexing of the regions of H follows a topological order such that: 1) any leaf
region is indexed before any non-leaf region; 2) two leaf regions {x} and {y} are
sorted with respect to an arbitrary order on the element V , called the raster scan
order of V . Thus {x} has an index lower than {y} if x is before y with respect to
the raster scan order; and 3) two non-leaf regions are sorted according to their
rank, i.e., the order of their building edges for ≺. This order can be seen as an
extension of the order ≺ on E to the set V ∪ E that enables 1) to efficiently
browse the nodes of a hierarchy according to their scale of appearance in the
hierarchy and 2) to efficiently match regions of V with the leaves of the hierarchy.
By abuse of notation, this extended order is also denoted by ≺ in the following.

To keep track of the global context, a link between the indices in the local
tree and the global indices in the whole graph is stored in the form of an array
map which associates: 1) to the index i of any leaf region R, the vertex x of the
graph G such that R = {x}, i.e. map[i]=x; and 2) to the index i of any non-leaf
region R, its building edge, i.e. map[i]=μ≺(R).

The parent relation of the hierarchy is stored thanks to an array par such
that par[i]=j if the region of index j is the parent of the region of index i.

The binary partition hierarchy is built for a particular ordering ≺ of the
edges of G. In practice, this ordering is induced by weights computed over the
edges of G. To this end, we store an array weights of |R�(H)|, i.e. the number
of non-leaf regions, elements such that, for every region R in R�(H) of index i,
weights[i] is the weight of the building edge μ≺(R) of region R. The edges can
then be compared according to the following total order induced by the weights:
we set u ≺ v if the weight of u is less than the one of v or if u and v have equal
weights but u comes before v with respect to the raster scan order.

5 Algorithms

Select. In this part, we give an algorithm to compute the result of the select
operation. This operation consists in “selecting” the part of a given hierarchy
intersecting a subset of the space. In Algorithm 1, select takes as input a set of
vertices located at the “border” of a slice and a hierarchy in order to obtain a
smaller “border hierarchy”.

Select algorithm proceeds in 3 steps:

1. Lines 3–7. Mark any leaf-node of H that corresponds to an element of X, i.e.
any leaf-region {x} with x ∈ X;

2. Lines 8–9. Traverse the hierarchy from leaves to root and mark any node that
is a parent of a marked node;

3. Lines 11–17. Build the hierarchy S whose nodes are only marked nodes of H.
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Algorithm 2: select
Data: H: a hierarchy, X: set of selected nodes st. X ⊂ gr(H)
Result: S: the hierarchy select (X, H)

1 Initialize an array mark to false for every region of H
2 i := 0; j := 0 // i iterates over X and j over the leaves of H
3 while i < |X| and j < |H.leaves| do
4 if X[i] = H.map[j] then
5 mark[j] := true
6 i := i + 1

7 j := j + 1

8 foreach n from 0 to |H| − 1 do
9 if mark[n] = true then mark[H.par[n]] := true

10 nS := 0
11 foreach n from 0 to |H| − 1 do
12 if mark[n] = true then
13 S.par[nS ] := H.par[n]
14 S.map[nS ] := H.map[n]
15 if n ∈ R�(H) then
16 S.weight[nS − |X|] := H.weight[nS − |H.leaves|]
17 nS := nS + 1

18 return S

In Algorithm 2 we assume that X is sorted and that X ⊂ gr(H), which is
always the case in Algorithm 1. For each element X[i] of X, we search for the
index j of a leaf of H mapped to X[i], i.e. such that H.map[j] = X[i]. To this
end, it is necessary to make a traversal of the leaves of H. As mentioned before,
the leaves correspond to the first indices by construction. The first step can then
be performed in linear time with respect to the number of leaf-regions of H. The
second step consist in traversing the whole hierarchy from leaves to root in order
to mark every region of H which belongs to select (X,H) i.e. regions parent
of a marked one. The complexity of this step is therefore linear with respect
to the number of regions of H. Finally, the last step boils down to extracting
the hierarchy select (X,H) from the marked nodes. For this a new hierarchy is
created by traversing H again. As the traversal is done by increasing order of
index, the properties relating to the weights of the building edges and order of
appearance of regions are preserved. The complexity of this last step is linear
with respect to the number of regions of H. Thus, Algorithm 2 has a linear O(n)
complexity, where n is the number of regions of H.

Join. Formally the join of X and Y, denoted by join(X ,Y), is the hierarchy
defined by join(X ,Y) = (X 
 Y) � F , where F is the common neighborhood
of the grounds of X and of Y, and 
 denotes the supremum on hierarchies
(see [13]). Intuitively, this operation merges two hierarchies according to their
common neighborhood, that is the set of edges linking their grounds. In [7], the
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authors proposed an algorithm that can be used to successively add edges of
the common neighborhood. Intuitively, to add an edge, the hierarchy is updated
while climbing the branches associated with the edge extremities. The worst-case
complexity is then linear with respect to the size of the hierarchy for adding a
single edge. Thus the overall complexity of such join procedure would be O(k×n)
where n is the size of the hierarchies and k is the number of edges in the common
neighborhood. In this section, we drop the multiplicative dependency in the size
of the neighborhood at the cost of introducing a sorting of F and we present
an algorithm whose complexity is quasi-linear with respect to the size n of the
hierarchies and linearithmic with respect to the number k of edges in F .

Algorithm 3: Join
Data: Xand Y: two hierarchies, F common neighborhood of gr(X ) and gr(Y).
Result: A collection QD = join (X , Y)

1 foreach node ni of X do QD.MakeSet(i)
2 foreach node ni of Y do QD.MakeSet(i + |X .leaves|)
3 aDescendent(X , 0)
4 aDescendent(Y, |X .leaves|)
5 F :=sort(F )
6 i1 := |X .leaves|; i2 := |Y.leaves|; i3 := 0
7 while i1 < |X | or i2 < |Y| or i3 < |F | do
8 if F [i3] ≺ X .map[i1] and F [i3] ≺ Y.map[i2] then
9 (x, y) := F [i3]; m := F [i3]; w := weight(F [i3]); i3 += 1

10 else if X .map[i1] ≺ Y.map[i2] then
11 (x, y) := X .desc[i1]; m := X .map[i1]; w := X .weight[i1]; i1 += 1

12 else
13 (x, y) := Y.desc[i2]; m := Y.map[i2]; w := Y.weight[i2]; i2 += 1

14 cx := QD.FindCanonical(x); cy := QD.FindCanonical(y)
15 if cx! = cy then
16 n := QD.Union(cx, cy); QD.map[n] := m
17 QD.weight[n − (|X .leaves| + |Y.leaves|)] := w

A detailed presentation of the proposed algorithm is given in Algorithm 3
which calls auxiliary functions presented in Algorithm 4. Intuitively, in order to
compute the join of two hierarchies X and Y, Algorithm 3 consists in “emulat-
ing” PlayingWithKruskal algorithm on the graph obtained from (i) the edges
associated to the non-leaf nodes of X and of Y and (ii) the edges in the common
neighborhood F of X and Y. Therefore, all these edges are considered in increas-
ing order with respect to ≺ and, for each edge, it is decided if this edge must be
considered or not in the creation process of the join hierarchy. The decision is
made based on the potential creation of a cycle if this edge were added during the
minimum spanning tree creation process. We can thus see on the Fig. 2 that the
node 3 has been added to X by construction but that it is then discarded during
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the construction of the joined hierarchy. Potential-cycles creation is efficiently
checked with Tarjan Union-Find data structures as in Kruskal’s algorithm. A
main observation can be made to highlight the difference between the situation
encountered in the contexts of join algorithm and PlayingWithKruskal algo-
rithms: in the context of join, some edges, which are associated to the nodes of
the hierarchies X and Y, are made of vertices that do not belong to the under-
lying space (i.e., the common neighborhood of the slices supporting the grounds
of X and Y). When such edge is found, the standard algorithm can be shortcut
leading to a modified version of the PlayingWithKruskal auxiliary functions pre-
sented in Algorithm 4. Compared to original functions, the only change is the
insertion of the if test at line 9. This test detects the edges for which a shortcut
must occur based on an attribute called desc. This attribute is pre-computed
for every node of X and of Y by the auxiliary function aDescendent. Overall,
the following steps are performed in Algorithm 3:

– Lines 1–2. Initialize the Union-find data structures;
– Lines 3–4. Compute the attribute desc for both X and Y;
– Lines 5 to 13. Browse the edges in increasing order. Observe that it implies

sorting the edges in the common neighborhood F of X and Y in increasing
order for ≺ (non-leaf-nodes of X and Y are already sorted by construction);

– Lines 15–17 Apply PlayingWithKruskal steps, calling the modified version of
the auxiliary functions.

Fig. 2. The hierarchy J is build by computing the join over X ′ = select ({c, h}, X )
and Y ′ = select ({d, i}, Y) (border trees computed from BPHs of Fig. 1). We can see that
the node 3 of X ′ not longer appear in the joint tree in the favor of nodes corresponding to
the common neighborhood of the grounds of X and Y i.e. nodes 2 and 8. That is to say,
that by taking into account the topological order on the edges of the MSTs associated
with the border trees and the common neighborhood, 3 does not belongs to the BPH.
I is then build by inserting the hierarchy J ′ = select ({c, g}, J ) into the hierarchy Y.
Given the Definition 16 of 1, I is a “correct” local hierarchy for the tile B.

The first step complexity is linear with respect to the number of elements
of gr(X ) ∪ gr(Y). The second step uses the auxiliary function aDescendent
to compute attributes desc for both X and Y. It should be noted that this
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Algorithm 4: Auxiliary functions for join algorithm
// The functions called hereafter on QT and QBT are those described in [11]

1 Procedure QD.MakeSet(q)
2 QD.Root[q] := q; QBT .MakeSet(q); QT .MakeSet(q)
3

4 Function QD.F indCanonical(q)
5 return QT .F indCanonical(q)
6

7 Function QD.Union(cx, cy)
8 tu := QD.Root[cx]; QBT .par[tu] := QBT.size
9 if cy = −1 then QD.Root[cx] := QBT .size

10 else
11 tv := QD.Root[cy]; QBT .par[tv] := QD.size
12 c := QT .Union(cx, cy); QD.Root[c] := QBT .size

13 end
14 QBT .MakeSet(QBT .size)
15 return QD.size − 1

16

17 Function aDescendent(H: a hierarchy, s: shift)
// set the attribute H.desc: an array that maps to each node n of H two leaves

that are descendants of the two children of n.

18 foreach node n of H do H.desc[n]:= (−1, −1)
19 foreach leaf node n of H do H.desc[n].first:= n + s
20 foreach non-root non-leaf node n of H in increasing order for ≺ do
21 p := H.par[n]
22 if H.desc[p].first= −1 then H.desc[p].first:= H.desc[n].first
23 else H.desc[p].second:= H.desc[n].first

24 end

last function takes a parameter shift which allows to index the leaves of the
second hierarchy after those of the first. For each node of the two hierarchies,
an attribute is computed during a leaves to root traversal which gives a linear
complexity with respect to the number of regions of each hierarchy. Third step
requires to sort the edges of F with respect to ≺ before browsing the edges
which implies a complexity of O(k × log(k) + |X | + |Y|) with k the number of
edges in F . The fourth step is equivalent to PlayingWithKruskal algorithm in
terms of complexity. Then, its complexity is O(m×α(n)) where m is sum of the
number of edges in F and the number of non-leaf nodes of X and Y, where n is
the number of leaf nodes in X and Y and where α() is the inverse Ackermann
function which grows sub-logarithmically.

Insert. In this part, we present an algorithm to compute the hierarchy Z =
insert(X ,Y). We assume that X is insertable in Y i.e. for any λ in {0, . . . , �}, for
any region Y of Y[λ], Y is either included in a region of X [λ] or is included in V \
gr(X [λ]). This assumption holds true at each call to insert in Algorithm 1. The
insertion of X into Y is the hierarchy Z, such that, for any λ in {0, . . . , �}, Z[λ] =
X [λ]∪{R ∈ Y[λ] | R∩gr(X [λ]) = ∅}. Algorithm 5, presented hereafter, computes
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the insertion Z of X into Y. From a high level point of view, it proceeds in two
main steps:

Algorithm 5: Insert
Data: X and Y: two hierarchies such that X insertable in Y.
Result: Z: the hierarchy insert(X ,Y)

1 x := 0; y := 0; z := 0; // indices for the nodes/regions of X, Y, and Z
2 Initialize an array InZ of |Y| Booleans to true (resp. to false) for every

leaf (resp. non-leaf) region of Y
3 while x < |X | or y < |Y| do
4 if x < |X | and y < |Y| and X .map[x] = Y.map[y] then

// Duplicate region (x, y) found in X and Y, keep (and renumber) it in Z
5 CX→Z [x] := z; CY→Z [y] := z; CZ→X ,Y [z] := (x, y)
6 x += 1; y += 1; z += 1

7 else if Y.map[y] ≺ X .map[x] then
8 if InZ[y] = true then // Keep (en renumber) region y in Z
9 InZ[Y.par[y]] := true

10 CY→Z [y] := z; CZ→X ,Y [z] := (−1, y)
11 y += 1; z += 1

12 else y += 1 // Discard region y from Z

13 else // Keep (and renumber) region x in Z
14 CX→Z [x] := z; CZ→X ,Y [z] := (x,−1)
15 x += 1; z += 1

16 Z := initialize a tree structure with nZ = z nodes
17 foreach z from 0 to nZ do
18 (x, y) := CZ→X ,Y [r]
19 if x = −1 then
20 Z.map[z] := X .map[x]
21 if [x] = X .root then Z.par[z] := x
22 else Z.par[z] := CX→Z [X .par[x]]
23 if z ≥ |X .leaves| then

Z.weight[z − |X .leaves|] := X .weight[x − |X .leaves|]
24 else
25 Z.map[z] := Y.map[y]
26 if y = Y.root then Z.par[z] := y
27 else Z.par[z] := CY→Z [Y.par[y]]
28 if z ≥ |Y.leaves| then

Z.weight[z − |Y.leaves|] := Y.weight[x − |Y.leaves|]

1. Lines 3–15. Identify and renumber the regions of X and Y that belong to Z
and store the correspondences between the new number of the regions in Z
and the indices of the initial regions in X and Y. It can be observed that
this step is necessary since a region of Z can be duplicated in both X and Y
and that some regions of Y are discarded from Z. In order to perform this
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step, the regions of X and Y are simultaneously browsed in increasing order
for ≺. The correspondences between the regions of the hierarchies are stored
in three arrays: CX→Z , CY→Z , and CZ→X ,Y ;

2. Lines 17–28. Build the parenthood relation (par) of the hierarchy Z using
the parenthood relation of the hierarchies X and Y and the correspondences
between the regions of the hierarchies. At the same time, we also build the
attributes map and weight associated to Z.

During the first step, each region of the two hierarchies X and Y is considered
once and processed with a limited number of constant-time instructions. Thus,
the overall time complexity of Lines 3–15 is linear with respect to the number
of nodes of X and Y. The worst-case complexity of the second step is also linear
with respect to the number of nodes of X and Y since Z contains at most
all regions of each of hierarchy. Thus, the overall complexity of Algorithm 5
is O(|X | + |Y|).

6 Conclusion

In this article, we proposed efficient and easily implementable algorithms for
the three algebraic operations on hierarchies select, join, and insert. These algo-
rithms rely on a particular data structure to represent local hierarchies in order
to achieve linear or linearithmic time complexity while limiting the amount of
information required in the main memory. Thanks to these contributions it is
now possible to efficiently implement the calculus scheme proposed in [3] for the
out-of-core computation of BPHs. In future works, we plan to study the time
and memory consumption of the proposed algorithms in practice and to develop
efficient algorithms to process the distribution of a BPH in order to obtain a
completely out-of-core pipeline for seeded watershed segmentation.

Acknowledgements. This work was supported by the French ANR grant ANR-20-
CE23-0019.
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Abstract. In this work, we describe an efficient algorithm, with proof of
correctness, for finding an optimal binary segmentation of an image such
that the indicated object satisfies a novel high-level prior, called the Band
constraint (B), which is the extension of a recent shape prior, called Local
Band constraint (LB), to its limiting case with radius tending to infin-
ity. Unlike the LB constraint, the new algorithm can be applied directly
to the original image graph saving memory. In our theoretical investi-
gations, we discuss the theoretical relationship of the new B constraint
with the Boundary Band (BB) constraint, formerly known as Geodesic
Band constraint. Finally, we experimentally conduct a template rotation
invariance study of the B constraint within the Oriented Image Forest-
ing Transform framework in region adjacency graphs, when applied to
natural images with templates by Gielis geometric equation.

Keywords: Band constraint · Shape constraints · Oriented Image
Foresting Transform

1 Introduction

Image segmentation can be interpreted as a graph partition problem subject to
hard constraints, such as seed pixels selected in the image for object recogni-
tion, by modelling neighborhood relations of picture elements. In this work, we
are interested in fast seed-based methods in graphs to efficiently deal with large
amounts of data, but which must also be versatile enough to support the inclu-
sion of high-level constraints from prior object knowledge. We intend to develop
new methods, where shape constraints are used as a priori knowledge to cir-
cumvent problems due to weak edges and the presence of multiple objects with
similar color/intensity profiles. The proposed methods, developed in the strong
formalism of graphs, could also be used as an additional layer in a segmentation
pipeline, guaranteeing the theoretical establishment of the formal properties of
the generated objects, increasing the robustness of the obtained results.
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By restricting our scope of shape constraints to optimization methods on
graphs aiming at globally optimal results, we have the following early works.
In [4,12], for each execution of the min-cut/max-flow algorithm, the shape prior
is considered as a soft constraint, only penalizing segmentations that differ from a
given binary template of the expected object. Soft constraints are also considered
in [8], but the template is estimated as a fuzzy map from a training set of aligned
binary shapes using kernel PCA. In [4], the shape prior is embedded in the edge
weights of neighboring pixels in the graph (pairwise term), being the penalty
value proportional to a distance function from the boundary of the template,
while in [8,12] the shape prior is embedded in the weights of arcs interconnecting
pixels with terminal nodes (unary term). Increasing the penalty value in order to
obtain a hard shape constraint in these methods from [4,12] is not useful, as it
would lead to a segmentation practically identical to the given binary template,
disregarding all image information. Hedgehog Shape Prior [6,7] is closer to the
objectives of our work, since it corresponds to the definition of a genuine hard
shape constraint. Compact Shape Prior [3] also defines a class of shapes by a hard
constraint, but it is very restrictive and does not generalize to highly variable
shapes, having a very limited scope of applications. The star convexity [5] is
another example, which can be interpreted as a visibility constraint. That is, an
object is star convex in relation to a center point c, if for every point p in the
object, p is visible to c via the line segment connecting them, which must also
be part of the object (the background is an obstruction to the “light” emitted
by p to the observer c). Some shape constraints demand more sophisticated
algorithms or more sophisticated graph constructions, such as the Boundary
Band (BB) constraint [1] and Local Band (LB) constraint [10], respectively. The
solution subject to BB constraint from [1] allows the segmentation to follow a
pre-established template of shapes, with variances within a range of permitted
deformations around an arbitrary scale. On the other hand, LB is less sensitive
to the seed/template positioning as it is more flexible to adapt locally to image
characteristics.

In this work, we present an efficient algorithm to compute an optimal segmen-
tation, with proof of correctness, which can be applied directly to the original
image graph, to handle the limiting case of LB with infinite radius, denoted as
the Band (B) constraint. The solution from [10] via the usage of an expanded
graph would not be feasible in this case, due to the excessive number of arcs. We
also discuss how to create shape templates by Gielis equation, which can simulate
many natural shapes, such as, diatoms, eggs, cross sections of plants, snowflakes
and starfish [11] and present experiments to handle rotation variations.

2 Background

An image can be interpreted as a directed graph G = 〈N ,A〉 whose nodes in
N are the image pixels in its image domain I ⊂ Zn, and whose arcs, elements
of A, are the ordered pixel pairs 〈s, t〉 of vertices that are adjacent, that is,
spatially close (e.g., 4-neighborhood, or 8-neighborhood, in case of 2D images).
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We use t ∈ A(s) and 〈s, t〉 ∈ A to indicate that t is adjacent to s. We will
usually assume also that our image graph G is arc-weighted, that is, that each
arc 〈s, t〉 ∈ A has a fixed weight ω(s, t) ∈ [−∞,∞] (e.g., ω(s, t) = |I(t) − I(s)|
for a single channel image with values given by I(t)). An arc-weighted digraph
will be denoted as G = 〈N ,A, ω〉. A digraph G is symmetric if, for all 〈s, t〉 ∈ A,
the pair 〈t, s〉 is also an arc of G. Note that in the symmetric graphs we can
still have ω(s, t) �= ω(t, s). In this work, all considered graphs are symmetric and
connected.

2.1 Oriented Image Foresting Transform (OIFT)

In the case of binary segmentation (object/background), we consider two non-
empty disjoint seed sets, S1 and S0 (S1 ∩ S0 = ∅), containing pixels selected
inside the object O and in its exterior, respectively. A label, L(t) = 1 for all
t ∈ S1 and L(t) = 0 for all t ∈ S0, is propagated to all unlabeled pixels during
the OIFT algorithm [9]. For a label map L : N → {0, 1} the object O identified
with it is defined as the set L−1(1), where L−1(i) := {t ∈ N : L(t) = i}.

There are two important classes of energy formulations within the General-
ized Graph Cut framework, the Max-Min1 and Min-Sum optimizers [2]. OIFT
and ORFC algorithms are Max-Min optimizers while the min-cut/max-flow algo-
rithm is a Min-Sum optimizer. The segmentation by OIFT gives a global opti-
mum solution by maximizing the graph-cut measure εmin (Eq. 1) subject to the
seed constraints [9], among all segmentations satisfying these constraints.

εmin(L) = min
〈s,t〉∈A|L(s)>L(t)

ω(s, t) (1)

2.2 Closely Related Shape Constraints

Let C : N → [0,∞) be a fixed vertex cost function associated with an image
digraph G = 〈N ,A〉. The values C(t) can be based on templates of shapes as
discussed in Sect. 4.1, which will also be considered for evaluation in Sect. 5. The
boundary of object O is defined as bd(O) = {t ∈ O : ∃s ∈ A(t)such thats /∈ O}.

Definition 1 (Boundary Band constraint (BB)). For Δ > 0, an object O
is BBΔ (satisfies Boundary Band constraint with band size Δ) provided C(t) <
C(s) + Δ for all t ∈ O and s ∈ bd(O).

As a consequence of Definition 1, we have that bd(O) is contained in the
band {s ∈ N : C(s) ∈ (m−Δ,m]}, where m = max{C(t) : t ∈ O}. In particular,
we have |C(s) − C(t)| < Δ for all s, t ∈ bd(O). Consequently, this regularizes
the shape of bd(O), see [1]. Therefore, the idea of BB is to establish a maximum
possible variation of the cost C between the boundary points bd(O) of the object
O to be segmented. This is expected to prevent the generated segmentation to
be irregular in relation to the C-level sets [1].
1 Min-Max optimizer is a dual equivalent problem.



290 C. de M. Braz et al.

Definition 2 (Local Band constraint (LB)). For Δ,R > 0 and a cost map
C : N → [0,∞), a pixel t ∈ O is LBR

Δ (satisfies Local Band constraint with band
size Δ and parameter R) provided C(t) < C(s) + Δ for all s ∈ N \ O such that
‖s − t‖ ≤ R. An object O is LBR

Δ provided every t ∈ O is LBR
Δ.

In this definition, the symbol ‖ · ‖ denotes the standard Euclidean L2 norm on
N ⊂ Z

2. In other words, if O is LBR
Δ, then for any pair of pixels s and t such

that ‖s − t‖ ≤ R and C(t) − C(s) ≥ Δ, we have that t ∈ O implies s ∈ O. The
set of arcs {〈p, q〉 ∈ N × N : ‖p − q‖ ≤ R & C(p) ≥ C(q) + Δ} representing
the LB constraint forms a Directed Acyclic Graph (DAG). Several of these arcs
that represent the LB constraint may actually be redundant and we can apply
a transitive reduction to eliminate them from this DAG (Fig. 1).

Fig. 1. (a-b) The LB arcs for LBR
Δ (with Δ = 1) for increasing radius values. The

values C(t) are indicated inside the nodes. (c) The transitive reduction of (b).

3 Theoretical Relationships Between Shape Constraints

To relate Local Band constraint to Boundary Band constraint from [1], the fol-
lowing notion of Local Boundary Band constraint (LBB) was introduced in [10]:

Definition 3 (Local Boundary Band (LBB)). For Δ,R > 0 and a cost
map C : N → [0,∞), a pixel t ∈ O is LBBR

Δ (satisfies Local Boundary Band
Constraint with band size Δ and parameter R) provided C(t) < C(s)+Δ for all
s ∈ bd(O) such that ‖s − t‖ ≤ R. An object O is LBBR

Δ provided every t ∈ O is
LBBR

Δ.

The following properties can be established for these shape constraints.

Properties. For Δ, δ,R, r > 0, we have:

(P1) If δ ≤ Δ, then O is LBBR
δ =⇒ O is LBBR

Δ,
(P2) If r ≤ R, then O is LBBR

Δ =⇒ O is LBBr
Δ,
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(P3) If δ ≤ Δ, then O is LBR
δ =⇒ O is LBR

Δ,
(P4) If r ≤ R, then O is LBR

Δ =⇒ O is LBr
Δ.

Proof. These properties follow immediately from Definitions 2 and 3.

Note that neither of the statements “O is LBR
Δ” and “O is LBBR

Δ” implies
the other. Nevertheless, they are closely related, for small/appropriate values of
r and δ according to the following proposition from [10].

Proposition 1. Let r = max〈s,t〉∈A‖s − t‖ and δ = max〈s,t〉∈A|C(t) − C(s)|. If
Δ,R > 0 and O is LBR+r

Δ , then O is LBBR
Δ+δ.

Note however that the converse of this statement may not be true. The
relationship in the opposite direction normally requires extra assumptions on
map C and O, as exemplified in the proposed proposition below.

Proposition 2. Let O be a star-convex object with respect to center c and
C(t) = ‖t − c‖ be the Euclidean distance from c. If Δ,R > 0 and O is LBBR

Δ,
then O is LBR

Δ.

Proof. Let B(t) = {s ∈ N : ‖t − s‖ ≤ R} be the closed ball centered at t with
radius R. Consider a boundary pixel b ∈ bd(O) inside B(t), such that C(b) =
‖b − c‖ = dmin, where dmin = minx∈bd(O)∩B(t) C(x), as indicated in Fig. 2a.
Since O is LBBR

Δ, we know that C(t) < C(b) +Δ = dmin +Δ. To prove that O
is LBR

Δ, we must show that the following condition holds:

(∗) C(u) ≥ dmin for all u ∈ (N \ O) ∩ B(t).

Note that this condition given by (∗) implies that C(t) < dmin +Δ ≤ C(u)+Δ.
For each u ∈ (N \ O) ∩ B(t), we have two cases to consider:

1. The line segment uc with endpoints u and c intercepts a pixel p ∈ bd(O)∩B(t)
(Fig. 2a). In this case, we have C(p) < C(u). By the definition of dmin, we
know that dmin ≤ C(p). Hence we have that dmin ≤ C(p) < C(u).

2. The line segment uc with endpoints u and c intercepts a pixel p ∈ bd(B(t))
and p /∈ O (Fig. 2b). In this case, moving from p through the circular arc

�
pr

towards the point r, which is the ball’s pixel closest to c, there will always
be a point q ∈ bd(O) and C(q) ≤ C(p) ≤ C(u). Note that this is true since
O is assumed to be a star-convex object with respect to center c, so that the
segment tc is always contained within the object and r ∈ O. By the definition
of dmin, we know that dmin ≤ C(q). Hence we have that dmin ≤ C(q) ≤ C(u).

Although Proposition 2 requires a star-convex object with respect to center
c and C(t) = ‖t − c‖, in practice, we have close results by similar arguments
when we consider the Geodesic Star Convexity [5] and the cost map C is the
geodesic length (i.e., ψsum(〈v0, . . . , v�〉) :=

∑
1≤j≤�‖vj−1 − vj‖), from a compact

and connected set of seeds S1 in G = 〈N ,A〉.
Similar to establishing BBΔ as the limiting case of LBBR

Δ, as R → ∞, we can
also take the limit of LBR

Δ as R → ∞, which results in the following definition.
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Fig. 2. Schematic illustration of Proposition 2. (a) The line segment uc with endpoints
u and c intercepts a pixel p ∈ bd(O)∩ B(t). (b) The line segment uc with endpoints u
and c intercepts a pixel p ∈ bd(B(t)) and p /∈ O.

Definition 4 (Band constraint (B)). For Δ > 0, an object O is BΔ (satisfies
Band constraint with band size Δ) provided it is LB∞

Δ , that is, when C(t) <
C(s) + Δ for all t ∈ O and s ∈ N \ O.

Now let’s consider the limiting cases of Propositions 1 and 2, as R → ∞. For
Proposition 1, we have that if Δ > 0 and O is BΔ, then O is BBΔ+δ. Under
the assumptions of Proposition 2, we have that O is BBΔ =⇒ O is BΔ. Note
also that the limiting case of Property (P1), as R → ∞, implies that O is BBΔ

=⇒ O is BBΔ+δ. Therefore the Boundary Band constraint (BB) and the Band
constraint (B) are strongly correlated.

4 The Band Constraint Algorithm

Now let’s consider the limit case of the segmentation by OIFT subject to the
LB constraint, as R → ∞. In this case, the algorithm from [10] would become
unfeasible due to the excessive amount of arcs created for the expanded graph,
even considering the transitive reduction. Here we present an alternative and
efficient algorithm (Algorithm 1) for solving this particular case. Algorithm 1
corresponds to a modified OIFT algorithm, to ensure the B constraint through-
out its iterations, being more elegant and simpler than the solution of BB [1],
as it uses a single auxiliary procedure.

Algorithm 1 – Segmentation by OIFT subject to the B constraint

Input: Symmetric edge-weighted image digraph G = 〈N , A, ω〉 and non-
empty disjoint seed sets S0 and S1, cost map C : N → [0, ∞), and
Δ > 0.

Output: The label map L : N → {0, 1}.
Auxiliary: Initially empty sets Q0,Q1,Qx and Q, and an array of status S : N →

{0, 1}, where S(t) = 1 for processed nodes and S(t) = 0 for unpro-
cessed nodes. The value V (t) represents a potential penalty that a
change of L(t) would contribute to εmin(L).

1. For each t ∈ N , do
2. Set S(t) ← 0 and V (t) ← ∞;
3. Insert t in Qx;
4. If t ∈ S0, then
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5. V (t) ← −∞, L(t) ← 0, and insert t in Q;
6. If t ∈ S1, then
7. V (t) ← −∞, L(t) ← 1, and insert t in Q.
8. While Q 	= ∅ do
9. Remove s from Q such that V (s) is minimum;
10. Set S(s) ← 1;
11. Propagate(s,G,Q,V ,L,S) by Algorithm 2;
12. Remove s from Qx;
13. If L(s) = 0, then
14. Insert s in Q0;
15. While Qx 	= ∅ ∧ (maxa∈Qx C(a) − minb∈Q0 C(b) ≥ Δ) do
16. Remove t from Qx such that C(t) is maximum;
17. Insert t in Q0 and set L(t) ← 0;
18. Set S(t) ← 1;
19. If t ∈ Q, then remove t from Q.
20. Propagate(t,G,Q,V ,L,S) by Algorithm 2.
21. Else If L(s) = 1, then
22. Insert s in Q1;
23. While Qx 	= ∅ ∧ (maxa∈Q1 C(a) − minb∈Qx C(b) ≥ Δ) do
24. Remove t from Qx such that C(t) is minimum;
25. Insert t in Q1 and set L(t) ← 1;
26. Set S(t) ← 1;
27. If t ∈ Q, then remove t from Q.
28. Propagate(t,G,Q,V ,L,S) by Algorithm 2.
29. Return L.

Algorithm 2 – Propagate

Input: Pixel s ∈ N , graph G = 〈N , A, ω〉, set Q, cost map V , label map
L : N → {0, 1}, and the array of status S : N → {0, 1}, where S(t) = 1
for processed nodes and S(t) = 0 for unprocessed nodes.

Output: The updated priority queue Q and the updated maps V and L.
Auxiliary: Variable tmp.

1. For each 〈s, t〉 ∈ A such that S(t) = 0 do
2. If L(s) = 1, then tmp ← ω(s, t).
3. Else tmp ← ω(t, s);
4. If tmp < V (t), then
5. Set V (t) ← tmp and L(t) ← L(s).
6. If t /∈ Q, then insert t in Q.

Theorem 1. Let G = 〈N ,A, ω〉 be a symmetric edge-weighted image digraph
with ω : A → R. Let L be a segmentation returned by Algorithm 1 applied to G,
non-empty disjoint seed sets S1 and S0, cost map C : N → [0,∞), and parameter
Δ > 0. Assume that S1 and S0 are BΔ-consistent, that is, that

(�) there exists a labeling satisfying seeds and BΔ constraints.

Then L satisfies seeds and BΔ constraints and maximizes the energy εmin, given
by (1) w.r.t. G, among all segmentations satisfying these constraints.
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Proof. During the computation of Algorithm 1, three sets of pixels are indirectly
defined, a growing object O′ = {t ∈ N : S(t) = 1 ∧ L(t) = 1}, a growing
background B′ = {t ∈ N : S(t) = 1 ∧ L(t) = 0} and an unprocessed zone
U ′ = {t ∈ N : S(t) = 0}, initially given by N , which is constantly reducing in size.
From these sets, two candidate objects O1 = O′ and O2 = N \ B′ are defined.

At each iteration of the main loop at Lines 9–10, Algorithm 1 always modifies
the candidate object (O1 or O2) that has the lowest energy (given by V (s) at
Line 9), through the arc with the worst cost at its cut boundary. This is an
event that should not be undone, since it is the only change of a pixel that
can improve the candidate object with the worst energy. Changing other pixels
will not improve it. However, this change may lead to a violation of the Band
constraint for the corresponding candidate object (O1 or O2).

(V1) Violations for O1: The candidate object O1 is modified by the acquisition
of s at Lines 9–10. Violations can only occur when C(s) ≥ C(t) + Δ for some
t ∈ N \ O1. Since s cannot be modified, the only way to correct this violation is
by adding t to O1 (Lines 25–26). This new insertion of t cannot in turn generate
other unforeseen violations in a chain of events since C(s) > C(t). However,
there may be multiple pixels in a condition similar to that of node t with respect
to s. They are handled in a similar way through the loop of Lines 23–28.

(V2) Violations for O2: The candidate object O2 is modified by the removal
of s at Lines 9–10. Violations can only occur when C(t) ≥ C(s) + Δ for some
t ∈ O2. Since s cannot be modified, the only way to correct this violation is by
removing t from O2 (Lines 17–18). This new removal of t cannot in turn generate
other unforeseen violations in a chain of events since C(t) > C(s). However, there
may be multiple pixels in a condition similar to that of node t with respect to s.
They are handled in a similar way through the loop of Lines 15–20.

Algorithm 1 has the following invariant:

Proposition 3. At the end of each iteration of the main loop (Lines 8–28), we
have that O1 and O2 satisfy the Band constraint (i.e., O1 is BΔ and O2 is BΔ)
and O1 ⊆ O2.

Condition O1 ⊆ O2 is guaranteed by construction of Algorithm 12.
O1 and O2 satisfying the Band constraint can be proved by induction. The

base case is assured by the fact that S1 and S0 are assumed to be BΔ-consistent.
Therefore, in the first iterations of the main loop, the seeds will be processed

2 Note that, in Lines 9–10, since s was removed from set Q on Line 9, we can conclude
that it previously had S(s) = 0. Therefore, prior to the execution of Lines 9–10, we
had s /∈ O1 and s ∈ O2. During the execution of Lines 9–10, if L(s) = 1 then s is
inserted into O1, but it was already in O2. On the other hand, if L(s) = 0 then s
is removed from O2, but s /∈ O1. A pixel t can also be removed from O2 on Lines
17–18, but according to Line 16, this pixel t was previously in the set Qx, which
stores unprocessed pixels, so t was not in O1. A pixel t can also be inserted into O1

on Lines 25–26, but according to Line 24, this pixel t was previously in the set Qx,
which stores unprocessed pixels, so t ∈ O2 since t /∈ B′.
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and the handling of violations V1 and V2, as explained previously, will establish
the base case, being the processing order of seeds irrelevant. For the induction
step, we assume that O1 is BΔ and O2 is BΔ before executing the body of the
main loop and we prove that they still satisfy the Band constraint at the end
of the loop. The induction step is guaranteed by the handling of violations V1
and V2, as explained previously, in Lines 23–28 and Lines 15–20 of Algorithm 1
respectively. However, there are two important issues that need to be discussed.

(i) Lines 23–28 only consider pixels t from the set Qx = U ′, whereas from the
discussion of V1 we should actually consider t ∈ N \ O1 = U ′ ∪ B′.

(ii) Lines 15–20 only consider pixels t from the set Qx = U ′, whereas from the
discussion of V2 we should actually consider t ∈ O2 = U ′ ∪ O1.

For case (i), we must prove that there are no violations of the B constraint
of O1 for t ∈ B′ during Lines 23–28, and therefore, there is no need to test pixels
from this set B′. We can carry out a proof by contradiction, assume that there
is t ∈ B′ such that C(s) ≥ C(t) +Δ. Note that t ∈ B′ implies that t /∈ O2. Since
s corresponds to a pixel removed from Q in Line 9, before computing Line 10, it
previously had S(s) = 0 and therefore we have s ∈ O2. However, t /∈ O2, s ∈ O2

and C(s) ≥ C(t) + Δ indicate a violation of the B constraint for O2, leading to
a contradiction, since O2 is BΔ by the induction hypothesis.

For case (ii), we must prove that there are no violations of the B constraint of
O2 for t ∈ O1 during the computation of Lines 15–20, and therefore, there is no
need to test pixels from this set O1. We can carry out a proof by contradiction,
assume that there is t ∈ O1 such that C(t) ≥ C(s) + Δ. Since s corresponds
to a pixel removed from Q in Line 9, before computing Line 10, it previously
had S(s) = 0 and therefore we have s /∈ O1. However, t ∈ O1, s /∈ O1 and
C(t) ≥ C(s) + Δ indicate a violation of the B constraint for O1, leading to a
contradiction, since O1 is BΔ by the induction hypothesis.

Following the invariant of Proposition 3 and the fact that the set Qx = U ′

is always decreasing in size, in the end, all pixels will have been removed from
set Q and objects O1 and O2 will have converged to the same set of pixels that
satisfy the B constraint. A global maximum of the energy function εmin (Eq. 1)
subject to the B constraint is guaranteed by the energy competition between
the two candidate objects O1 and O2 throughout the process, always carrying
out operations strictly necessary to improve the object with lower energy and
conserving the one with higher energy.

For implementation purposes, the sets Q0,Q1,Qx and Q must be implemented
using appropriate priority queue data structures in order to support the efficient
removal of their extreme value elements (maximum or minimum). The queues
Q0,Q1 and Qx represent the sets B′, O′ and U ′, respectively. Regarding the com-
putational complexity, if a binary heap is used for the queues, then Algorithm 1
can be implemented in O((m + n) log n), where n = |N | and m = |A|.

4.1 Shape Templates

In [4,13], the shape prior is constructed from a fixed instance of the target object
taken as a reference, by calculating the Euclidean Distance Transform (EDT)
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in relation to its contour. In order to adapt this scheme for use as the cost map
C, we must consider a signed distance function (assuming negative values for
distances within the object as in [13]) and then subtract its most negative value
from it to shift the brightness range to consider only positive values. However,
level curves farther from the initial contour suffer deformations, with their salient
parts becoming rounded on larger scales. Therefore, this is only viable when we
have a good a priori idea of an appropriate scale for the object of interest.

To create a cost template invariant to scale changes of a given predefined
shape, it is necessary that its scale variations relative to a fixed reference point
keep the smaller scale shapes entirely contained within the upscaled shapes. Star-
convex shapes meet this constraint with respect to their star centers. Many natu-
ral shapes can be described by the Gielis equation and its generalizations, includ-
ing shapes of diatoms, eggs, cross sections of plants, snowflakes and starfish [11].
Gielis equation in polar coordinates can be written as a function r : [0, 2π) → R,
given by Eq. 2, where r(ϕ) and ϕ are the polar radius and the angle between the
straight line where the polar radius lies and the x-axis, respectively.

r(ϕ) =
(∣

∣
∣
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1
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4
ϕ
)∣
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∣
∣
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+
∣
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∣
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1
B

sin
(m

4
ϕ
)∣
∣
∣
∣

n3
)−1/n1

(2)

where n1, n2 and n3 are real constants, and m is a positive integer. Given that
r(ϕ) > 0 and we have a single point on the curve for each angle ϕ in the interval
[0, 2π), we can conclude that all shapes described by Eq. 2 are star convex that
can be used immediately to create scale invariant templates for the B constraint.
Algorithm 3 computes a template C of shapes given by Gielis equation that is
appropriate for the B constraint.

Algorithm 3 – Template by Gielis Equation

Input: The parameters of the Gielis equation (A, B, n1, n2, n3, and m), the
coordinates (cx, cy) of the model center, and dimensions Tx and Ty.

Output: The template (cost map) C : N → [0, ∞), where N ⊂ Z
2 and for

(x, y) ∈ N we have 0 ≤ x < Tx and 0 ≤ y < Ty.

1. Set smin ← ∞ and dmin ← ∞;
2. For each (x, y) ∈ N such that x = 0 ∨ x = Tx − 1 ∨ y = 0 ∨ y = Ty − 1, do
3. Set dx ← x − cx and dy ← y − cy;
4. Compute ϕ ← arctan2 (dy, dx); If ϕ < 0, then ϕ ← ϕ + 2π.
5. Compute r ← GielisEquation (ϕ, A, B, n1, n2, n3, m);
6. Set d ← √

d2
x + d2

y and s ← d/r;
7. If s < smin ∨ (s = smin ∧ d < dmin) then
8. Set smin ← s and dmin ← d.
9. For each p = (x, y) ∈ N , do
10. Set dx ← x − cx and dy ← y − cy;
11. Compute ϕ ← arctan2 (dy, dx); If ϕ < 0, then ϕ ← ϕ + 2π.
12. Compute r ← GielisEquation (ϕ, A, B, n1, n2, n3, m);
13. Set d ← √

d2
x + d2

y and s ← d/r;
14. Set C(p) ← Round ((s/smin) · dmin).
15. Return C.
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In Lines 4 and 11 of Algorithm 3, arctan2 (dy, dx) is used to compute ϕ by the
two-argument arctangent with a range of (−π, π]. Gielis function r(ϕ) by Eq. 2
is then computed on Lines 5 and 12. The d/r ratios in s from Lines 6 and 13 are
used to indicate different scale values for the template, which must be normalized
and quantized into an appropriate range as done on Line 14 for the digital cost
map C. To this end, the first loop is used to find an appropriate normalization
scale value smin by inspecting the directions along the image border.

We still need to find the proper translation and rotation of the template
in relation to the desired object in the image. In [4], they are estimated based
on the given object markers. However, accurately estimating rotation based on
object markers requires a reasonable amount of markers preferably distributed
close to the object boundary. In [12], a sequence of intermediate segmentations is
produced, starting with a segmentation free of shape constraints and the penal-
ties for shape constraints are gradually increased, with translation and rotation
being estimated between iterations based on the previous segmentation of the
sequence. This strategy, however, will only work in easier cases, when a reason-
able approximation of the object can be obtained for the first segmentations
of the sequence. In this work, we focus on the more formal aspects of shape
constraints, avoiding the usage of such heuristic procedures as much as possible.

5 Experimental Results

We tested the method for a fixed translation of the template, by aligning the zero-
valued pixel of C with the center of mass of the object seeds, and rotations were
handled by exhaustive search with angle increments of 5◦. In order for this search
to become viable, we used a graph of superpixels with an average area of 20 pixels
for each superpixel and ω(s, t) = ‖I(t)− I(s)‖, where I(t) is the mean CIELAB
color of superpixel t. We used a template C by Algorithm 3 of a leaf modeled
via Eq. 2 to segment plant leaves (Fig. 3a). To study the proposed treatment of
rotations, we repeated the experiments for dozens of images (with 640 × 480
pixels) in different orientations achieving similar results (see the accuracy by the
Dice coefficient in Figs. 3b-d). The execution time was 487.31 ms per image on
an Intel Core i5-10210U CPU 1.60GHz × 8 laptop.

(a) (b) Dice: 98.92% (c) Dice: 98.48% (d) Dice: 98.31%

Fig. 3. (a) Shape template by Gielis equation with A = 105, B = 104, n1 = 2, n2 = 1,
n3 = 1, and m = 2. (b-d) Results by Algorithm 1 with Δ = 100 and rotation handling.
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6 Conclusion

As pointed out in [10], in applications where you want to obtain a good segmen-
tation result even in the presence of uncertainties in the template positioning,
LB constraint is the recommended method. However, our experimental results
indicate that if the objective is to execute the method several times varying
the position of the template, as we did for the rotation, in order to identify
its best positioning, B (Algorithm 1) becomes a more interesting option, as its
sensitivity can help us to isolate the best position, without the need to recreate
the graph for each new position of the template as required by LB. As future
work we intend to test the developed shape constraints in the segmentation of
three-dimensional magnetic resonance imaging and computed tomography.
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Abstract. The Image Foresting Transform (IFT) is a graph-based
framework to develop image operators based on optimum connectivity
between a root set and the remaining nodes, according to a given path-
cost function. Oriented Image Foresting Transform (OIFT) was proposed
as an extension of some IFT-based segmentation methods to directed
graphs, enabling them to support the processing of global object prop-
erties, such as connectedness, shape constraints, boundary polarity, and
hierarchical constraints, allowing their customization to a given target
object. OIFT lies in the intersection of the Generalized Graph Cut and
the General Fuzzy Connectedness frameworks, inheriting their proper-
ties. Its returned segmentation is optimal, with respect to an appro-
priate graph cut measure, among all segmentations satisfying the given
constraints. In this work, we propose the Differential Oriented Image
Foresting Transform (DOIFT), which allows multiple OIFT executions
for different root sets, making the processing time proportional to the
number of modified nodes. Experimental results show considerable effi-
ciency gains over the sequential flow of OIFTs in image segmentation,
while maintaining a good treatment of tie zones. We also demonstrate
that the differential flow makes it feasible to incorporate area constraints
in OIFT segmentation of multi-dimensional images.

Keywords: Oriented Image Foresting Transform · Image segmentation
in directed graphs · Generalized Graph Cut · Differential algorithms

1 Introduction

In graph-based methods, image segmentation can be seen as a graph par-
tition problem between sets of seed pixels. Oriented Image Foresting Trans-
form (OIFT) [14] and Oriented Relative Fuzzy Connectedness (ORFC) [1] are
extensions to directed weighted graphs of some methods from the Generalized
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Graph Cut (GGC) framework [3], including Fuzzy Connectedness [4] and Water-
sheds [7]. OIFT generates an optimal cut in the graph according to an appropri-
ate graph cut measure, while having a lower computational complexity compared
to the min-cut/max-flow algorithm [2].

OIFT’s energy formulation on digraphs makes it a very versatile method,
supporting several high-level priors for object segmentation, including global
properties such as connectedness [12], shape constraints [15], boundary polar-
ity [13,14], and hierarchical constraints [11], which allow the customization of
the segmentation to a given target object.

In interactive region-based segmentation from markers (i.e., set of seeds),
the user can add markers to and/or remove markers from previous interactions
in order to improve the results. In the context of Image Foresting Transform
(IFT) [9], which is based on propagating paths from seeds, instead of starting
over the segmentation for each new set of seeds, Differential Image Foresting
Transform (DIFT) algorithm [8] can be employed to update the segmentation
in a differential manner, by correcting only the wrongly labeled parts of the
optimum-path forest in time proportional to the size of the modified regions
in the image (i.e., in sublinear time). This greatly increases efficiency, which is
crucial to obtain interactive response times in the segmentation of large 3D vol-
umes. However, DIFT [8] requires that the path-cost function be monotonically
incremental (MI), consequently not supporting the OIFT path-cost functions.

More recently, a novel differential IFT algorithm, named Generalized DIFT
(GDIFT) [6], has been proposed, which extends the original DIFT algorithm
to handle connectivity functions with root-based increases (which can be non-
monotonically incremental), avoiding segmentation inconsistencies (e.g., discon-
nected regions) in applications to superpixel segmentation [10,16]. However,
there are still no studies of the differential computation for the case of the OIFT
path-cost functions. This work aims to close this gap by testing three alternatives
for Differential Oriented Image Foresting Transform (DOIFT). Our experimental
results show considerable efficiency gains of the differential flow of DOIFTs over
the sequential flow of OIFTs in image segmentation of medical images, while
maintaining a good treatment of tie zones for two of the presented solutions. We
also demonstrate that the differential flow makes it feasible to incorporate area
constraints in OIFT segmentation of multi-dimensional images, which is useful
for getting regions of interest in the image with less user interaction.

2 Background

A multi-dimensional and multi-spectral image Î is a pair 〈I, I〉, where I ⊂ Z
n

is the image domain and I(t) assigns a set of m scalars Ii(t), i = 1, 2, . . . ,m, to
each pixel t ∈ I. The subindex i is removed when m = 1.

An image can be interpreted as a weighted digraph G = 〈V,A, ω〉, whose
nodes V are the image pixels in its image domain I ⊂ Z

n, and whose arcs are
the ordered pixel pairs 〈s, t〉 ∈ A. (e.g., 4-neighborhood or 8-neighborhood, in
case of 2D images). The digraph G is symmetric if for any of its arcs 〈s, t〉 ∈ A,
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the pair 〈t, s〉 is also an arc of G. Each arc 〈s, t〉 ∈ A has a weight ω(s, t), such
as a dissimilarity measure between pixels s and t (e.g., ω(s, t) = |I(t) − I(s)|).

For a given image graph G = 〈V,A, ω〉, a path π = 〈t1, t2, . . . , tn〉 is a
sequence of adjacent pixels (i.e., 〈ti, ti+1〉 ∈ A, i = 1, 2, . . . , n − 1) with no
repeated vertices (ti �= tj for i �= j). Other greek letters, such as τ , can also
be used to denote different paths. A path πt = 〈t1, t2, . . . , tn = t〉 is a path with
terminus at a pixel t. When we want to explicitly indicate the origin of the path,
the notation πs�t = 〈t1 = s, t2, . . . , tn = t〉 may also be used, where s stands for
the origin and t for the destination node. A path is trivial when πt = 〈t〉. A path
πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc 〈s, t〉.

A predecessor map is a function P : V → V ∪ {nil} that assigns to each pixel
t in V either some other adjacent pixel in V, or a distinctive marker nil not in V,
in which case t is said to be a root of the map. A spanning forest is a predecessor
map which contains no cycles, i.e., one which takes every pixel to nil in a finite
number of iterations. For any pixel t ∈ V, a spanning forest P defines a path πP

t

recursively as 〈t〉 if P (t) = nil, and πP
s · 〈s, t〉 if P (t) = s �= nil.

2.1 Image Foresting Transform (IFT)

The Image Foresting Transform (IFT) algorithm (Algorithm 1) is a generaliza-
tion of Dijkstra’s algorithm for multiple sources (root sets) and more general
connectivity functions [5,9]. A connectivity function computes a value f(πt) for
any path πt, usually based on arc weights. A path πt is optimum if f(πt) ≤ f(τt)
for any other path τt in G. By taking to each pixel t ∈ V one optimum path
with terminus at t, we obtain the optimum-path value V f

opt(t), which is uniquely
defined by V f

opt(t) = min∀πt in G{f(πt)}. The image foresting transform (IFT) [9]
takes an image graph G = 〈V,A, ω〉, and a path-cost function f ; and assigns
one optimum path to every pixel t ∈ V such that an optimum-path forest P
is obtained, i.e., a spanning forest where all paths πP

t for t ∈ V are optimum.
However, f must satisfy the conditions indicated in [5], otherwise, the paths πP

t

of the returned spanning forest may not be optimum.
The cost of a trivial path πt = 〈t〉 is usually given by a handicap value H(t).

For example, H(t) = 0 for all t ∈ S and H(t) = ∞ otherwise, where S is a seed
set. The costs for non-trivial paths follow a path-extension rule. For example:

fmax(πs · 〈s, t〉) = max{fmax(πs), ω(s, t)} (1)

In Algorithm 1, the root map R stores the origin of the paths and the path-
cost map V converges to V f

opt, when f satisfies the conditions indicated in [5].

Algorithm 1 – IFT Algorithm

Input: Image graph 〈V, A, ω〉, path-cost function f and an initial labeling
function λ : V → {0, . . . , l}.

Output: The label map L : V → {0, . . . , l}, root map R : V → V, path-cost
map V : V → R and the spanning forest P : V → V ∪ {nil}.

Auxiliary: Priority queue Q, variable tmp and an array of status S : V → {0, 1},
where S(t) = 1 for processed nodes and S(t) = 0 for unprocessed
nodes.
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1. For each t ∈ V, do
2. Set S(t) ← 0.
3. Set P (t) ← nil, V (t) ← f(〈t〉), R(t) ← t and L(t) ← λ(t).
4. If V (t) �= +∞, then
5. insert t in Q.
6. While Q �= ∅, do
7. Remove s from Q such that V (s) = min∀t∈Q{V (t)}.
8. Set S(s) ← 1.
9. For each node t such that 〈s, t〉 ∈ A, do
10. If S(t) �= 1, then
11. Compute tmp ← f(πP

s · 〈s, t〉).
12. If tmp < V (t), then
13. If t ∈ Q, then remove t from Q.
14. Set P (t) ← s and V (t) ← tmp.
15. Set R(t) ← R(s) and L(t) ← L(s).
16. Insert t in Q.

2.2 Oriented Image Foresting Transform (OIFT)

In its first version [14], OIFT was built on the IFT framework by considering
the following path-cost function in a symmetric digraph with integer weights:

f♂
1 (〈t〉) =

{−1 if t ∈ S1 ∪ S0

+∞ otherwise

f♂
1 (πr�s · 〈s, t〉) =

{
max{f♂

1 (πr�s), 2 × w(s, t) + 1} if r ∈ S1

max{f♂
1 (πr�s), 2 × w(t, s)} if r ∈ S0

(2)

Later, a second version [13] with a better handling of ties was proposed based
on the following path-cost function:

f♂
2 (〈t〉) = f♂

1 (〈t〉)
f♂
2 (πr�s · 〈s, t〉) =

{
ω(s, t) if r ∈ S1

ω(t, s) otherwise (3)

The segmented object OP by OIFT is defined from the forest P computed
by Algorithm 1, with f♂

2 (or f♂
1 ), by taking as object pixels the set of pixels

that were conquered by paths rooted in S1 (i.e., t ∈ OP if and only if R(t) ∈ S1).
The functions f♂

1 and f♂
2 are non-monotonically incremental connectivity

functions, as described in [13,14]. The optimality of OP by OIFT is supported
by an energy criterion of cut in graphs involving arcs from object to background
pixels C(OP ) (outer-cut boundary), according to Theorem 1 from [13,14].

C(O) = {〈s, t〉 ∈ A | s ∈ O and t /∈ O} (4)
E(O) = min

〈s,t〉∈C(O)
ω(s, t) (5)
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Theorem 1 (Outer-cut optimality by OIFT). For two given sets of seeds
S1 and S0, let U(S1,S0) = {O ⊆ V | S1 ⊆ O ⊆ V \ S0} denote the universe of
all possible objects satisfying the seed constraints. Any spanning forest P com-
puted by Algorithm 1 for function f♂

1 (or f♂
2 ) defines a segmented object OP

that maximizes E (Eq. 5) among all possible segmentation results in U . That is,
E(OP ) = maxO∈U(S1,S0) E(O).

2.3 Differential Image Foresting Transform (DIFT)

Let a sequence of IFTs be represented as 〈IFT(S1), IFT(S2), . . . , IFT(Sn)〉, where
n is the total number of IFT executions on the image. At each execution, the
seed set Si is modified by adding and/or removing seeds to obtain a new set
Si+1. We define a scene Gi as the set of maps Gi = {P i, V i, Li, Ri}, resulting
from the ith iteration in a sequence of IFTs.

The DIFT algorithm [6,8] allows to efficiently compute a scene Gi from
the previous scene Gi−1, a set Δ+

Si = Si \ Si−1 of new seeds for addi-
tion, and a set Δ−

Si = Si−1 \ Si of seeds marked for removal. In the exe-
cution flow by DIFT, after the first execution of IFT(S1), we have that
the scenes Gi for i ≥ 2 are calculated based on the scene Gi−1, taking
advantage of the trees that were computed in the previous iteration, thus
reducing the processing time. Hence, we have the following differential flow:
〈IFT(S1),DIFT(Δ+

S2 ,Δ−
S2 ,G1),DIFT(Δ+

S3 ,Δ−
S3 ,G2), . . . , DIFT(Δ+

Sn ,Δ−
Sn ,Gn−1)〉.

3 Differential OIFT (DOIFT)

Figure 1 shows that the Generalized DIFT (GDIFT) algorithm [6] with f♂
2 , to

differentially compute the sequence 〈IFT(S1), IFT(S2)〉, where S1 = S1
1 ∪ S1

0 =
{a} ∪ {i, l} and S2 = S2

1 ∪ S2
0 = {a} ∪ {i}, may generate a result not predicted

by IFT(S2) via Algorithm 1. The problem occurs because nodes b and g are
initially processed in a given order during the first run of the IFT (Fig. 1b), but
later become frontier nodes, i.e., neighboring nodes of removed trees/subtrees
(Fig. 1c) that can be reprocessed in a different order than the original (Fig. 1d).
Due to the strictly minor inequality of Line 12 of Algorithm 1, in the case of
ties in offered costs, we have that the node that first sees its contested neighbor
will win the dispute. Therefore, multiple processing orders affect the conquest
of neighboring nodes (such as nodes c and f in Fig. 1).

The DIFT algorithms [6,8] do not attempt to address this issue, as they
assume that the usage of the “≤” comparison on Line 12 of Algorithm 1 would
also be perfectly valid. However, in the case of functions such as f♂

2 , in which
the cost along the path is not a non-decreasing function, these problems in
the processing order of frontier nodes are severely aggravated and can generate
solutions that would never be obtained in the sequential flow. To resolve these
issues, it would be necessary to explicitly store the processing order of the nodes,
to ensure that later, the frontier nodes would be reprocessed in the same previous
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order. However, in addition to spending more memory, it would be complex
to ensure the consistency in maintaining this new map of order over several
iterations.

In order to address these issues without compromising the execution time of
the algorithms, we chose to develop solutions for the differential OIFT focused
only on the issue of generating segmentation labels that are consistent with the
sequential flow labeling (consequently ensuring an optimal cut as in Theorem 1),
without worrying about minor topology details of the resulting forest, that are
irrelevant to the segmentation task.

The first proposed solution is simply to consider the usage of the Generalized
DIFT (GDIFT) algorithm from [6] with the f♂

1 path-cost function. Note that
f♂
1 is a function with non-decreasing costs along the path, with cost variations

depending only on the root label and the arc weights ω(s, t) and ω(t, s), which
perfectly fits the conditions required in [6]. Note that problems like the one
reported in Fig. 1 do not occur with f♂

1 , since there are no cost ties between
object and background in this formulation, as they are treated as odd and even
numbers, respectively, and the background is always favored.

The second proposed solution is to use Algorithm 2, which considers
for each path πt a lexicographical path-cost function with two components
〈F♂

2 (πt), T (πt)〉, where F♂
2 (π = 〈t1, . . . , tn〉) = maxi=1,2,...,n{f♂

2 (〈t1, . . . , ti〉)}
and T (πt) is related to the number of maximum valued arcs crossed along the
path, aiming at a better handling of tie zones, but we use odd numbers in T (πt)
for paths from the background seeds and even numbers for the object, so that
there are no ties in the second component between object and background.

Algorithm 2 – Algorithm DOIFT

Input: Image graph G = 〈V, A, ω〉, the set Δ+
S of seeds for addition, set Δ−

S of
seeds for removal, the maps L, V and P initialized with the result from
the previous OIFT/DOIFT execution, and an initial labeling function
λ : Δ+

S → {0, 1} for the new seeds. We consider V (t) = 〈V1(t), V2(t)〉
as we work with lexicographical costs.

Output: The updated maps L, V and P .
Auxiliary: Priority queue Q, and variables tmp1 and tmp2.

1. Set Q ← ∅.
2. If Δ−

S �= ∅, then
3. (L, V, P, Q) ← DOIFT-RemoveSubTrees(G, L, V, P, Q, Δ−

S )
4. For each s ∈ Δ+

S , do
5. Set L(s) ← λ(s), P (s) ← nil, V (s) ← 〈−1, L(s) + 1〉
6. If s /∈ Q, then insert s in Q.
7. While Q �= ∅, do

8. Remove s from Q such that V (s)
lex≤ V (r) for all r ∈ Q.

9. For each node t such that 〈s, t〉 ∈ A, do

10. Compute tmp1 ← F♂
2 (πP

s · 〈s, t〉).
11. If tmp1 �= f♂

2 (πP
s · 〈s, t〉), then

12. Set tmp2 ← V2(s).
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Fig. 1. (a) Input graph with marked seeds S1
1 = {a} and S1

0 = {i, l}. (b) Initial

computed forest by OIFT with f♂
2 , assuming node b was processed first than node

g. The values within the nodes indicate the costs of the paths and the arrows point
to the predecessor of each node. (c) The tree of node l is marked for removal and its
nodes are made available for a new dispute between the frontier nodes of neighboring
trees (marked with a pink background). (d) A possible result of the differential flow,
where the frontier node g was processed first than b, thus gaining c, but leading to a
result that cannot be generated by the sequential flow via Algorithm 1. (e–f) The two

possible outcomes of sequential flow for f♂
2 with S2

1 = {a} and S2
0 = {i}.

13. Else If V1(s) = tmp1, then
14. Set tmp2 ← V2(s) + 2.
15. Else , then
16. Set tmp2 ← L(s) + 1.

17. If 〈tmp1, tmp2〉 lex
< V (t), then

18. Set P (t) ← s, V (t) ← 〈tmp1, tmp2〉, L(t) ← L(s).
19. If t /∈ Q, then insert t in Q.
20. Else If s = P (t), then
21. If tmp1 �= V1(t) or tmp2 > V2(t) or L(t) �= L(s), then
22. (L, V, P, Q) ← DOIFT-RemoveSubTrees(G, L, V, P, Q, {t})
23. Break; #GOTO LINE 8

Procedure DOIFT-RemoveSubTrees in Algorithm 3, releases the entire sub-
trees, converting its pixels to trivial trees of infinite cost, and transforms all of
its neighboring pixels into frontier pixels, inserting them in Q, assuming that
the graph is symmetric. It plays the role of both DIFT-RemoveSubTree and
DIFT-TreeRemoval from [6], but has been modified to not rely on the use of a
root map to save memory.
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Algorithm 3 – Procedure DOIFT-RemoveSubTrees

Input: Image graph G, the maps L, V and P , the priority queue Q, and a set
R of roots of the subtrees to be removed.

Output: The updated maps L, V and P , and the updated priority queue Q.
Auxiliary: Queue J and a set F .

1. Set J ← ∅, F ← ∅.
2. For each t ∈ R, do
3. If t ∈ Q, then remove t from Q.
4. Set V (t) ← 〈∞, ∞〉, P (t) ← nil.
5. Insert t in J .
6. While J �= ∅, do
7. Remove s from J .
8. For each node t such that 〈s, t〉 ∈ A, do
9. If s = P (t), then
10. Insert t in J .
11. If t ∈ Q, then remove t from Q.
12. Set V (t) ← 〈∞, ∞〉, P (t) ← nil.
13. Else If V (t) �= 〈∞, ∞〉 and t /∈ Q, then
14. Insert t in F .
15. While F �= ∅, do
16. Remove t from F .
17. If V (t) �= 〈∞, ∞〉 and t /∈ Q, then
18. Insert t in Q.

Other differences of Algorithm 2 in relation to GDIFT [6], are the absence of
the state map used in [6], which proved to be unnecessary for functions with non-
decreasing costs along the paths, as for the lexicographical cost 〈F♂

2 (πt), T (πt)〉,
and modifications to avoid using the root map to save memory. Another differ-
ence is the inclusion of Line 23 in Algorithm 2, to immediately break the inner-
most loop, thus avoiding the repeated processing of part of the neighborhood.

Fig. 2. (a) Input graph. (b) Initial forest by OIFT with f♂
2 for S1 = {f}. (c) The

updated result by Algorithm 2, as a new object seed j is inserted, so that S2 = {f, j}.

The values within nodes reflect the costs of f♂
2 . (d) The correct result by Proposition 1.
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The third proposed version of DOIFT is a variant of the second, modified so
that disputed nodes with the same cost are given to the first processed neighbor,
so as to respect Proposition 1, that will be defined next.

For any function f(π), let F (π) denote the maximum cost along the path:

F (π = 〈t1, . . . , tn〉) = max
i=1,2,...,n

{f(〈t1, . . . , ti〉)} (6)

Consider the following lemma:

Lemma 1. Let P be a predecessor map computed by Algorithm 1. For any two
paths δP

t = 〈t1, t2, . . . , tn = t〉 and τP
s = 〈s1, s2, . . . , sm = s〉, defined by P , if

F (δP
t ) < F (τP

s ), then we have that node t was removed before s from Q on Line
7 of Algorithm 1.

Proof. Let sk be a node in τP
s , such that f(〈s1, . . . , sk〉) = F (τP

s ). From Eq. 6,
we have that f(〈t1, . . . , ti〉) ≤ F (δP

t ), i = 1, 2, . . . , n. From the assumptions of
Lemma 1, we may conclude that F (δP

t ) < f(〈s1, . . . , sk〉). Thus, f(〈t1, . . . , ti〉) <
f(〈s1, . . . , sk〉), i = 1, 2, . . . , n.

From the dynamic of execution of Algorithm 1, we know that paths δP
t and

τP
s stored in the map P are gradually computed by the removal from Q of nodes

with minimum cost (Line 7). After sk gets inserted in Q with cost V (sk) =
f(〈s1, . . . , sk〉), it won’t be removed from Q before all nodes ti, i = 1, 2, . . . , n, are
consecutively processed in Q, with lower costs V (ti) = f(〈t1, . . . , ti〉). Therefore,
we have that t = tn is removed prior to s from Q.

From Lemma 1, we can also conclude the following proposition:

Proposition 1. Let P be a predecessor map computed by Algorithm 1. For any
two paths δP

s and τP
s′ , s �= s′, defined in P , if F (τP

s′ ) < F (δP
s ) and f(δP

s · 〈s, t〉) =
f(τP

s′ · 〈s′, t〉), then we have that πP
t �= δP

s · 〈s, t〉.
Proof. Algorithm 1 will assign t to the first optimum path that reaches it,
because of the strict inequality in Line 12. According to Lemma 1, we have
that s′ leaves Q before s. Consequently, the path τP

s′ · 〈s′, t〉 is evaluated before
δP
s · 〈s, t〉, offering the same cost (i.e., f(δP

s · 〈s, t〉) = f(τP
s′ · 〈s′, t〉)). Therefore,

we have that πP
t cannot be δP

s · 〈s, t〉.
Figure 2 discusses the consequences of Proposition 1 in the differential execu-

tion of OIFT. Note that Algorithm 2 does not satisfy Proposition 1. To correct
this issue, the condition of Line 17 of Algorithm 2 must be changed to a much
more complex condition:

tmp1 < V1(t) or (tmp1 = V1(t) and ((tmp2 < V2(t) and notH2) or H1))

where X, H1 and H2 are boolean variables defined as:

X ← V1(t) = f♂
2 (πP

s · 〈s, t〉) > V1(s) and V1(t) > V1(P (t))

H1 ← P (t) �= nil and X and V (s)
lex
< V (P (t))

H2 ← P (t) �= nil and X and V (s)
lex
> V (P (t)) (7)

With these modifications, we have the third version of the DOIFT algorithm.
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4 OIFT with Area/volume Constraint

Let EA = maxO∈U(A,S0) E(O) denote the optimum energy value by Eq. 5 of a
segmentation by OIFT using set A as internal seeds in Theorem 1. In order to
introduce the idea of the incorporation of a size constraint in OIFT, we need
first to establish some supporting propositions.

Proposition 2. The optimum energy EA∪B among all objects in U(A∪B,S0),
satisfies EA∪B = min{EA, EB}.
Proposition 3. For a given strongly connected and symmetric digraph G, and
sets of seeds S1 and S0, such that S1 = {t} we have that E{t} = V

f∗
max

opt (t), where
f∗
max is the path-cost function from Eq. 1, but being computed in the transpose
graph and only from the external seeds in S0.

The proofs of Proposition 2 and 3 are given in [12].
Suppose we want to define an optimal object of maximum energy via OIFT

but having area/volume below a given threshold. Let’s assume that the defined
background must be connected to the originally selected background seeds. If the
object has an area above the threshold, we can reduce its size by inserting new
background seeds in its boundary. In order to apply Propositions 2 and 3, we can
temporarily invert the object and background labels, in order to take advantage
of the analogous and symmetrical problem. In this complementary problem, the
energies of background nodes could be computed by the IFT with fmax from the
object seeds S1 in the original graph. In order to get an optimal object, at each
iteration we must then select a new background seed at the highest energy node
of the object’s boundary. We can then repeat this procedure until the area of the
resulting object falls below the given threshold. We therefore have a sequence of
OIFTs for each new seed inserted that can be calculated faster by DOIFT.

5 Experimental Results

Figure 3 shows the experimental curves for the segmentation of the talus bone
using 40 slices from MR images of the foot using a robot user. In the first row,
the arc weights were defined as ω(s, t) = |I(t)−I(s)| and with boundary polarity
parameter defined as -50% (see [14]). In the second row, we repeat the experiment
but with the arc weights quantized in a smaller range of values, corresponding
to a quarter of the original range. DOIFT1 and OIFT (with f♂

2 and a heap
priority queue) had a performance drop in the second case, due to their worse
handling of tie zones. DOIFT2 and DOIFT3 had an accuracy performance
consistent with the OIFT with FIFO tie-breaking policy using f♂

2 . In case of
OIFT (FIFO), we considered a bucket sorting for Q and a binary heap was
used for all other cases. Even using a slower queue Q, differential approaches
were faster than OIFT (FIFO) with the exception of the first iteration.

We also carried out experiments in a 3D MR image. We consider the accu-
mulated time over the iterations of the automatic seed selection via the area
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Fig. 3. The mean curves of accuracy, time, and accumulated time.

Fig. 4. Brain segmentation in MR images. Only three markers were selected in the
indicated coronal slice.

procedure described in Sect. 4 to segment the brain. We considered a region
adjacency graph of supervoxels by [16] with an average of 100 voxels per region.
Figure 4 shows the results obtained for different values of the maximum volume
threshold Ta, which is expressed in number of supervoxels. Regarding the exe-
cution time, for Ta = 9, 000 we had 1 s for the differential flow by DOIFT2 and
75 s for the sequential flow by OIFT with heap. For Ta = 10, 000, we had 0.86 s
for DOIFT2 and 64 s for OIFT.

6 Conclusion

We have successfully tested different approaches to implement the differential
OIFT and its use in implementing an area/volume constraint in OIFT. The use
of area constraints can help to improve segmentation considerably, without the
need to select multiple markers. As future works we intend to evaluate other
applications for DOIFT and to create a hierarchy of OIFT segmentations by
varying the area threshold.
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Abstract. This paper presents a discrete structure, named adaptive tan-
gential cover (ATC), for studying 3D noisy digital curves. The structure
relies mainly on the primitive of blurred segment of width ν and on the
local noise estimator of meaningful thickness. More precisely, ATC is
composed of maximal blurred segments of different widths deduced from
the local noise values estimated at each point of the curve. Two appli-
cations of ATC for geometric estimators of 3D noisy digital curves are
also presented in the paper. The experimental results demonstrate the
efficiency of ATC for analyzing 3D irregular noisy curves.

Keywords: 3D digital curves · Noise estimator · Tangent and
curvature estimators

1 Introduction

3D digital curves are often involved in many applications of 3D image processing
and computer graphics. For instance, in [12], a system has been designed to
model surfaces with collections of 3D curves. In [20], a sketch-based modeling
method is proposed to reconstruct 3D curves and to reveal 3D shape information
from typical design sketches. In applications of medical image processing [17], 3D
digital curves are used for the analysis and can be obtained from a 3D curvilinear
skeletonisation [4]. In those applications, the geometric characteristics of the
curves play an important role for numerous purposes. In real context, the data
present generally noise due to the acquisition process.

In digital geometry, new mathematical definitions of basic geometric objects
are introduced to better fit the discrete/digital nature of data to process. In the
context of 3D digital curve analysis, the notion of 3D maximal digital straight
segment [2] has been used to describe the geometric properties of the curves. In
particular, the sequence of all maximal segments along a digital curve C, called
the tangential cover, has been shown to be an efficient tool to study digital
curves. Indeed, it is involved in numerous geometric estimators of digital curves:
length [2], tangent [18], curvature [3] . . .

However, the tangential covers based on maximal segments are not adapted to
noisy or disconnected curves. For this, the notion of blurred segment of width ν [5,
16] was proposed to deal with 3D digital curves containing noise or other sources
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of imperfections from real data via the parameter ν. The sequence of maximal
blurred segments of width ν along a digital curve is called a ν-tangential cover.
This structure has been used in different contexts to study and to analyze the
geometrical characteristics of noisy curves (e.g. [5,15,16]). Nevertheless, in these
applications, the width ν needs to be manually adjusted to take into account
the noise present on the curves. Furthermore, the structure is not well suited for
noise which appears irregularly on the 3D curves.

Based on the works [13,14], the present paper studies a discrete framework
for 3D digital curves containing irregular noise, and proposes improvements for
the 3D approach. More precisely, we present a discrete structure, called adaptive
tangential cover (ATC), which relies on primitive of blurred segment of width ν.
The particularity of ATC is that it contains a sequence of blurred segments with
different widths varying in function of noise present along the digital curve. Such
adaptive widths are computed thanks to the local noise estimator of meaningful
thickness [9]. In particular, the ATC can be computed in quasi-linear time and
the method is parameter-free. We then show two applications of ATC to geomet-
ric estimators: tangent based on λ-MST [18] and curvature based on osculating
circle [3] of 3D digital noisy curves. The experimental results show that the pro-
posed method, based on the structure of ATC, is an efficient tool for studying
noisy digital curves.

2 Background Notions

In the following, we define a digital curve C = (Ci ∈ Z
d)i=1..n, for d = {2, 3}, as

a sequence of discrete points. We then denote Ci,j , with 1 ≤ i ≤ j ≤ n, the set
of consecutive points from Ci to Cj of C.

Let us first recall some definitions in 2D and then the extensions to 3D since,
in this work, the definitions in 3D are computed from the 2D projections.

2.1 2D Blurred Segment of Width ν and Noise Detector

Definition 1 ([19]). A 2D digital line, with direction vector (b, a) ∈ Z
2,

gcd(a, b) = 1, shift μ ∈ Z and thickness ω ∈ Z+ is defined as the set of points
(x, y) ∈ Z

2 verifying
μ ≤ ax − by < μ + ω (1)

Such a line is denoted by D2(a, b, μ, ω).

A 2D digital segment is a finite and bounded subset of a 2D digital line (see
Fig. 1(a)). From the primitive of digital segment, the notion of 2D blurred seg-
ment of width ν is proposed and allows for more flexibility in handling noisy
data via the width parameter.

Let us consider S2 a sequence of discrete points of Z
2.

Definition 2 ([6]). A digital line D2(a, b, μ, ω) is said to be bounding for S2 if
all points of S2 belong to D2.
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Fig. 1. Examples of (a) 2D digital line D2(2, 3, −3, 5) and (b) 2D blurred segment of
width ν = 1.5 belongs to the optimal digital line D2(2, 3, −3, 5).

Definition 3 ([6]). A bounding digital line D2(a, b, μ, ω) of S2 is said to be
optimal if the value ω−1

max(|a|,|b|) is minimal, i.e. if its vertical (or horizontal)
distance is equal to the vertical (or horizontal) thickness of the convex hull of
S2.

This definition is illustrated in Fig. 1(b), it leads to the definition of 2D blurred
segment.

Definition 4 ([6]). A sequence S2 is a 2D blurred segment of width ν if
its optimal bounding line has vertical/horizontal distance less than or equal to ν,
i.e. ω−1

max(|a|,|b|) ≤ ν.

From this definition, a linear algorithm of blurred segment recognition is pro-
posed in [16]. The method is based on an incremental growth of convex hull of
the points sequentially added to the segment, and the calculation of its vertical
and horizontal thickness.

From the primitive of digital straight segment, the noise detector of mean-
ingful scale (MS) [7,8] is designed to locally estimate the best scale to analyze a
digital curve. This detector is based on the study of the asymptotic properties
of the discrete length L of maximal segments. In particular, it has been shown
in [11] that the lengths of maximal segments covering a point p located on the
boundary of a C3 real object should be between Ω(1/h1/3) and O(1/h1/2) if p is
located on a strictly concave or convex part and near O(1/h) elsewhere (where
h represents the grid size). This theoretical property, defined on finer and finer
grid sizes, was used by taking the opposite approach with the computation of
the maximal segment lengths obtained with coarser and coarser grid sizes (from
a subsampling process). From the graph of the maximal segment mean lengths
L, obtained at different scales, the noise estimator consists of recognizing the
maximal scale for which the lengths follow the previous theoretical behavior.

The method has been extended to the detector of meaningful thickness (MT)
[9] by using the blurred segment primitive with the scale definition given by the
width of the blurred segment. Such a strategy presents the first advantage to be
easier to implement without needing to apply different subsamplings and can be
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Fig. 2. Examples of (a) 3D digital segment of D3(20, −25, 8, −10, −6, 8, 6) and (b) 3D
blurred segment of width ν = 2.5 belongs to the optimal digital line D3(10, −15, 3,
−10, −6, 22, 20).

used for non-integer coordinate curves. In this work, we use the MT estimator
since it allows to process disconnected curves which is suitable for our framework
of studying digital noisy curves.

2.2 3D Blurred Segment of Width ν

Definition 5 ([2]). A 3D digital line, with main vector (a, b, c) ∈ Z
3 such

that a ≥ b ≥ c > 0 and gcd(a, b, c) = 1, with shifts μ, μ′ ∈ Z, and thicknesses
ω, ω′ ∈ Z+ is defined as the set of points (x, y, z) ∈ Z

3 verifying
{

μ ≤ cx − az < μ + ω
μ′ ≤ bx − ay < μ′ + ω′ (2)

Such a line is denoted by D3(a, b, c, μ, μ′, ω, ω′).

For the 3D digital lines of coefficients ordered different from a ≥ b ≥ c > 0,
they can be obtained by permuting x, y, z as well as their coefficients. From
Definition 5, a 3D digital line is bijectively projected into two projection planes
as two 2D digital lines. A 3D digital segment is a finite, bounded and connected
subset of a 3D digital line (see Fig. 2(a)).

Definition 6 ([16]). Let S3 be a sequence of points of Z
3. S3 is a 3D blurred

segment of width ν, with main vector (a, b, c) ∈ Z
3 and a ≥ b ≥ c > 0, if it

has an optimal digital line D3(a, b, c, μ, μ′, ω, ω′) such that

– D2(a, b, μ′, ω′) is optimal for the sequence of projections of points S3 in the
plane Oxy and ω′−1

max(|a|,|b|) ≤ ν ;
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Fig. 3. Example of ν-tangential cover on a noisy digital curve: ν = 2 (left) and ν = 4
(right).

– D2(a, c, μ, ω) is optimal for the sequence of projections of points S3 in the
plane Oxz and ω−1

max(|a|,|c|) ≤ ν.

An illustration of 3D blurred segment is given in Fig. 2(b).
Let C ⊂ Z

3 be a 3D digital curve. Let BS(i, j, ν) denote the predicate “Ci,j

is a blurred segment of width ν”.

Definition 7 ([16]). Ci,j ⊂ C is called a maximal blurred segment of width
ν, noted MBS(i, j, ν), iff BS(i, j, ν), ¬BS(i, j + 1, ν) and ¬BS(i − 1, j, ν).

In [16], an incremental and linear algorithm is proposed to recognize a 3D
maximal blurred segment (MBS) of width ν for a sequence of points. The main
idea of the algorithm is to add simultaneously the 2D points in the projection
planes as far as two of them are valid i.e., we can add more point to the 2D MBS.
Then, the 3D MBS is computed from the two corresponding 2D MBS of width
ν projected onto the two basic planes. An algorithm for decomposing a digital
curve C into 3D MBS of width ν is also presented in [16] with a complexity of
O(n log2 n) for n the number of points in C. The obtained structure is called
(3D) ν-tangential cover. Some examples are given in Fig. 3.

Let MBSν(C) = {MBSi(Bi, Ei, ν)i=1..m} denote the ν-tangential cover of
C. By construction, we obtain the following property.

Property 1 ([16]). Let MBSν(C) be the ν-tangential cover of C. Then, we have
MBSν(C) = {MBS(B1, E1, ν), MBS(B2, E2, ν),. . . , MBS(Bm, Em, ν)} such
that B1 < B2 < . . . < Bm and E1 < E2 < . . . < Em.

3 Adaptive Tangential Cover

The notion of ν-tangential cover has been proved to be an efficient tool to study
digital noisy curves [5,15,16]. However, the parameter ν needs to be manually
adjusted by the user. In this section, we present a 3D discrete structure, named
adaptive tangential cover (ATC). It is composed of 3D MBS of different widths
according to the amount of noise present in the curve. Before detailing the 3D
ATC and its construction, let us first describe the blurred segment recognition
algorithm used for building the 3D ATC.
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(a) (b) (c)

Fig. 4. Recognition of 3D blurred segment of width ν = 2. (a) Result obtained when
considering the bijectivity of the functional planes. (b) Result obtained when consid-
ering the two of the three projections are 2D blurred segments of width ν = 2. (c)
Result obtained when considering the three projections are 2D blurred segments of
width ν = 2 and relaxing the bijective condition.

3.1 Blurred Segment Recognition

It must be recalled that, by definition, a 3D digital segment is bijectively pro-
jected into two projection planes as two 2D digital segments. From this property,
the algorithm for 3D straight segment recognition [2] is performed by considering
the projections in the basic planes, namely Oxy, Oxz and Oyz. In particular, a
3D digital segment is said valid if at least two of its projections are 2D digital
segments and the points bijectively projected on the two planes, these planes
are called functional planes. An algorithm for decomposing a digital curve into
3D straight segments is as well proposed. We refer the readers to [2,5] for more
details of the algorithm.

The recognition algorithm has been extended in [16] for the 3D blurred seg-
ment primitive by using the 2D blurred segment recognition in the projection
planes. Similarly, a 3D blurred segment must be valid for at least two of its pro-
jections in the three basic planes together with the condition of two functional
planes.

In this work, we are interested in 3D noisy digital curves, and in particular,
the notion of 3D blurred segments of width ν for studying such curves. Although
the 3D blurred segment recognition algorithm proposed in [16] works well for
3D noisy curves and its decomposition, we remarked various degeneracies that
require us to modify the recognition algorithm. Firstly for the two functional
planes, in case the amount of noise is important, this condition often fails, the
algorithm therefore provides the short segments as illustrated in Fig. 4(a). This
can bias the results of the geometric estimators on the curves. Secondly, a 3D
blurred segment must have at least two of its projections being verified as 2D
blurred segments. An example is given in Fig. 4(b) for 3D blurred segment of
width ν = 2. One can observe that the 3D segment has its two projections on
the planes Oxy and Oxz being two valid 2D blurred segments. However, the
obtained 3D blurred segment is far to what we would like to have as a segment.
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(a) 2D ATC (b) 3D ATC

Fig. 5. Examples of ATC on 2D et 3D noisy digital curves.

More regular segments as in Fig. 4(c) would be more preferable and relevant for
analyzing this sequence of points. It must be mentioned that these issues are
generally due to the nature of noisy data which makes discrete points irregularly
distributed along the curve.

To overcome these limitations of the method, we propose some modifications
in the recognition algorithm of 3D blurred segment. In particular, we relax
the constraints of valid and functional planes. More precisely, for a given
digital curve C ⊂ Z

3, a sequence Ci,j of C is a 3D blurred segment of width ν iff
the three projections of Ci,j on the basic planes are all 2D blurred segments of
width ν. The characteristics of the optimal 3D digital line D3(a, b, c, μ, μ′, ω, ω′)
of Ci,j is then computed from the two projections of 2D blurred segments having
the longest lengths (in term of Euclidean distance). The rest of the algorithm
stays the same as in [16].

3.2 Adaptive Tangential Cover Construction

As previously mentioned, in the ν-tangential cover, the width parameter ν needs
to be manually adjusted. Furthermore, the width ν is globally set for all MBS
composing the ν-tangential cover. This approach works generally well when noise
is uniformly distributed on the curve, but it is less relevant to local and irregular
noisy curves.

In 2D, to overcome this issue of appropriate width ν, the structure of adaptive
tangential cover (ATC) is introduced in [13,14]. Such a structure is designed to
capture the local noise on a digital curve by adjusting the width of 2D MBS in
accordance with the amount of irregular noise present along the curve. In other
words, the ATC is composed of MBS with different widths varying in function
of detected noise present in the curve. In particular, the MBS has bigger widths
at noisy zones, and smaller widths in zones with less or no noise (see Fig. 5(a)).

Definition 8 ([13]). Let C = (Ci)1≤i≤n be a digital curve. Let η = (ηi)1≤i≤n be
the vector of noise level associated to each Ci of C. Let MBS(C) = {MBSνk

(C)}
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be the set of νk-tangential covers for νk ∈ η. An adaptive tangential cover
of C, noted ATC(C), is the sequence of maximal blurred segments: ATC(C) ={
MBSj = MBS(Bj , Ej , ν) ∈ MBS(C) | ν = max{ηt | t ∈ [[Bj , Ej ]]}

}
such that

MBSj � MBSi for i �= j, where [[a, b]] is the integer interval between a and b,
including both.

Still in [13], an algorithm is proposed to build the ATC of a 2D digital curve
C. The algorithm is composed of two steps: (1) labeling the points with the noise
level vector η and (2) building the ATC(C) with MBS of width from the obtained
labels.

It should be mentioned that the definition of ATC is given in 2D, but still
valid for 3D. A primary extension in 3D of ATC is also presented in [13]. The
method is however restricted to noisy curves C ⊂ Z

3 having two functional
planes.

Regarding the noise vector η for each point of C, the method in [13] per-
forms separately the noise detection – with MT estimator – on the projected 2D
curves in the two functional planes, and then chooses the maximum noise level
to assign to each corresponding 3D point. Although this strategy works well for
3D noisy curves containing few noise (see Fig. 5(b)), it becomes less performance
for important noisy cases. One common problem is that the high noise level is
quickly propagated along the constructed ATC. As a consequence, it creates the
segments of big widths encompassing the significant details of the input curve
(see Fig. 6(a)). Furthermore, in general, the 3D curves do not always have only
two functional planes. We refer the reader to [13] for more details. In this work,
we keep the idea of the ATC algorithm in [13]. We will, however, make some
changes in the method for a more efficient construction of 3D ATC, and allow
to handle general curves – without the constraint of two functional planes. More
precisely, the noise estimator is performed on the three projected curves in the
basic planes. For a better local fitting of the input curve C, the median value
is used, instead of the maximum as in [13], for the noise associated to each
3D point of C. Indeed, it allows to prevent the strong increment of the width
of blurred segments when the noise becomes important. A comparison of the
two strategies on a noisy curve is given in Fig. 6. We can observe that the 3D
ATC with maximal values contains the segments of big widths where the noise
is important. It causes the lost of the curve characteristic at certain places and
may bias the geometric estimators of the curve. On the other hand, the 3D ATC
with median allows a closer approximation of the curve.

In the following, we use the blurred segment recognition described in Sect. 3.1.
The 3D ATC construction is given in Algorithm 1 with modifications explained
previously. Examples of 3D ATC with the method are given in Fig. 7. Note
that, by definition (Definition 8) and construction, the 3D ATC satisfies also
Property 1.

In [16], it is shown that the ν-TC of a 3D digital curve C can be computed in
O(n log2 n) for n the number of points in C. The construction of ATC is based
on the ν-TC for different widths ν obtained for the MT estimator. The number
ν-TC to be computed is equal to the size of ϑ – the number of noise levels present
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Fig. 6. Illustration of 3D ATC with the max (left) and median (right) value for combing
noise.

Algorithm 1: Calculation of 3D adaptive tangential cover.
Input : C = (Ci)i=1...n input 3D digital curve,

η = (ηi)i=1...n noise level of each Ci with median MT of the
projected planes

ϑ = {νk | νk ∈ η} ordered set of η, and
MBS(C) = {MBSνk(C)}k=1...m sets of MBS of C for each width

value νk ∈ ϑ
Output : ATC(C) the 3D adaptive tangential cover of C
Variable : γ = (γ)i=1...n vector of labels to each Ci

1 begin
2 ATC(C) = ∅ ; γi = ηi for i ∈ [[0, n − 1]]

// Step 1: Label each point Ci of C
3 foreach νk ∈ ϑ do
4 foreach MBS(Bi, Ei, νk) ∈ MBSνk(C) do
5 α = max{ηi | i ∈ [[Bi, Ei]]}
6 if α = νk then γi = νk for i ∈ [[Bi, Ei]]

// Step 2: Calculate the ATC of C with MBS of width from γ
7 foreach νk ∈ ϑ do
8 foreach MBS(Bi, Ei, νk) ∈ MBSνk(C) do
9 if ∃γi, for i ∈ [[Bi, Ei]], such that γi = νk then

10 ATC(C) = ATC(C) ∪ {MBS(Bi, Ei, νk)}

in C – and |ϑ| � n. In other words, the complexity of Algorithm 1 for computing
a 3D ATC is also O(n log2 n).

4 Applications: Tangent and Curvature Estimators

Geometric properties of curves are important characteristics to be exploited in
geometry processing. In particular, tangent and curvature are among the impor-
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tant properties to describe a curve. In this section, we present two applications
of ATC for geometric estimators at each point of 3D noisy digital curves. The
ATC can be used to improve the precision of existing tangent and curvature
estimators for irregular noisy curves.

To evaluate the proposed estimators, we consider two following curves: Flower
and Astroid. The first curve is a smooth curve with nearly the same mean-error
along the curve, while the second is a sharp 4-pointed curve. These two curves
are defined, respectively, by the following parametric equations:

⎧⎪⎨
⎪⎩

x = 2 cos(t) cos(5t)
y = 2 sin(t) cos(5t)

z = cos2(5t)

(3) and

⎧⎪⎨
⎪⎩

x = cos3(t)

y = sin3(t)
z = t

(4)

These curves are discretized using the class NaiveParametricCurve
Digitizer3D of DGtal [1] to obtain 3D connected curve C. To generate noise
for C, a random process with a uniform distribution is considered to change
one coordinate of points of C one unit, ±1. Thirty curves with random noise are
generated for the error measurements between the theoretical tangent/curvature
and the estimated ones on these curves.

4.1 Discrete Tangent

In [18], a discrete tangent estimator, called λ-maximal segment tangent (λ-MST),
has been proposed for regular digital curves. It is based on the tangential cover
with maximal straight segments. The method is an extension of the algorithm
presented in [11] for 2D curves. In particular, the estimator is a simple parameter-
free method and has multi-grid convergent properties [10,11].

The λ-MST can be easily applied to ATC with blurred segment primitive,
and thus allows to handle noise. More precisely, the tangent at Ck ∈ C is obtained
via the definition of a pencil of maximal blurred segments P(Ck) = {MBSi =
MBS(Bi, Ei, .),with Bi ≤ k ≤ Ei}. From this, a notion of eccentricity was
introduced in order to distribute weights on all the segments covering Ck. More
formally, the eccentricity is defined as

ei(Ck) =
{ ||Ck − CEi

||22/Li if MBSi ∈ P(Ck)
0 otherwise , with Li = ||CEi

− CBi
||22 (5)

Then, the tangent direction t(Ck) at Ck is computed as a weighted combination
of the direction vectors ti of the maximal blurred segments MBSi ∈ P(Ck)
covering Ck by

t(Ck) =

∑
MBSi∈P(Ck)

λ(ei(Ck)) ti
||ti||22∑

MBSi∈P(Ck)
λ(ei(Ck))

(6)

where λ is a mapping function defined from [0, 1] to R
+ such that λ(0) = λ(1) = 0

and λ > 0 elsewhere and λ needs to satisfy convexity/concavity property [11]. In
this paper, the C2 function λ(x) = 64(−x6+3x5−3x4+x3) is used. Furthemore,
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thanks to Property 1, the pencil P(Ck), for Ck ∈ C, can be easily computed from
ATC(C).

Figure 7 shows a visual result of the tangent estimator λ-MST with ATC on
two noisy curves. Further results are shown in Table 1 in which we compare the
λ-MST estimator using ATC and ν-tangential covers with ν = 1...5 (as there are
5 noise levels detected in the thirty input curves). Different error measures are
considered: mean and maximal error and standard deviation. The result shows
that the combination of λ-MST with ATC improves globally tangent estimation
on digital noisy curves; it has the best mean error measures, and the other
measures are every closed to the best ones as well.

Table 1. Error measures of tangent estimator λ-MST on the digitized curves of Flower
(Eq. 3) and Astroid (Eq. 4) with random noise added.

Curves Error of estimated tangents

ATCMT 1-TC 2-TC 3-TC 4-TC 5-TC

Flower Mean error 0.220012 0.369261 0.222374 0.283572 0.320565 0.343145

Std. dev. 0.214158 0.250986 0.193687 0.211761 0.225935 0.23631

Max error 1.26362 1.26657 1.25397 1.29662 1.29617 1.30408

Astroid Mean error 0.293318 0.379116 0.295132 0.302137 0.309408 0.344594

Std. dev. 0.216065 0.285028 0.234184 0.222423 0.231388 0.24023

Max error 1.06834 1.22489 1.13035 1.06979 1.04051 1.05925

4.2 Discrete Curvature

In the study of geometric characteristics of 3D digital curves, Coeurjolly and
Svensson have proposed in [3] the calculation of discrete curvature based on the
osculating circle with maximal straight segments. Inspired by this idea, Nguyen
and Debled-Rennesson have presented in [15] the discrete curvature estimator
using 3D maximal blurred segments. The proposed method can be naturally
applied to the structure of 3D ATC. More precisely, from the 3D ATC of an input
curve C = (Ci)i=1...n, we compute the pencil P(Ck) for each point Ck ∈ C. Let Cl

(resp. Cr) be the left (resp. right) end point of P(Ck). The discrete curvature at
Ck is estimated using the radius Rν(Ck) of the osculating circle of the triangle
formed by three points Cl, Ck and Cr

Rν(Ck) =
s1s2s3√

(s1 + s2 + s3)(s1 + s2 − s3)(s1 − s2 + s3)(s2 + s3 − s1)
(7)

with s1 = ‖−−→CkCr‖, s2 = ‖−−→CkCl‖ et s3 = ‖−−→ClCr‖. The curvature of Ck is then
calculated by

cν(Ck) =
s

Rν(Ck)
(8)
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(a) Noisy digital Flower curve (Eq. 3)

(b) Noisy digital Astroid curve (Eq. 4)

Fig. 7. Tangent estimator λ-MST with ATC on noisy digital curves. In each figure (a)
and (b), the ATC of the input curve is on the left, the result of estimated tangents
is on the right: red segments are expected theoretical tangents and blue segments are
estimated tangents. (Color figure online)
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where s = signe(det(
−−→CkCr,

−−→CkCl)) indicating the concavity or convexity of C at
Ck.

Table 2 presents the results of the proposed curvature estimator using 3D
ATC and ν-tangential covers with ν = 1...5 on the error measures of mean and
maximal error and standard deviation. The estimator with ATC does not always
give the best result but we obtain fairly accurate curvature estimation comparing
to the ν-tangential covers.

Table 2. Error measures of curvature estimator on the digitized curves of Flower
(Eq. 3) and Astroid (Eq 4) with random noise added.

Curves Error of estimated curvatures

ATCMT 1-TC 2-TC 3-TC 4-TC 5-TC

Flower Mean error 0.042239 0.192657 0.043795 0.041935 0.045646 0.048014

Std. dev. 0.118326 0.173881 0.108671 0.125055 0.130469 0.131886

Max error 1.05404 1.906708 0.977172 1.08214 1.11167 1.11805

Astroid Mean error 0.026844 0.202735 0.043616 0.024496 0.024548 0.028414

Std. dev. 0.015149 0.176366 0.058435 0.016437 0.016609 0.017491

Max error 0.439742 0.828724 0.349773 0.08767 0.078456 0.078618

5 Conclusion

From the studies in [13,14], this paper presents different improvements of the
structure of adaptive tangential cover (ATC) for 3D noisy digital curves. ATC
is a discrete structure composed of a sequence of maximal blurred segment of
width ν adjusted according to the amount of noise present on the curve. Due
to the nature of noisy data, 3D blurred segment recognition is also modified by
considering all three projection planes. From this, a parameter-free and quasi-
linear algorithm is proposed to compute the structure of ATC.

Two applications of ATC are also presented for tangent and curvature esti-
mators of noisy curves. The proposed structure opens numerous perspectives
for studying and analyzing 3D noisy curves such as 3D curve segmentation or
approximation, convex and concave detection, dominant point detection in 3D
. . . The source code of the proposed method for constructing 3D ATC, based
on DGtal library [1], is available at the GitHub repository: https://github.com/
ngophuc/ATC 3D.

In further works, we also would like to study the aspect of multi-grid con-
vergent estimators of 3D noisy digital curves using the proposed structure of
ATC. Furthermore, we would like to elaborate a more efficient computation of
ATC without calculation of all ν-tangential covers. Other perspective consists of
studying a 3D noise estimator for ATC instead of using the combination of MT
estimators on the three projection planes.

https://github.com/ngophuc/ATC_3D
https://github.com/ngophuc/ATC_3D
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Abstract. The persistent interest in applications for Legendre arrays is motivated
by their delta-like periodic autocorrelation property and their therefore perfectly
flat-magnitude Fourier spectrum. Applying discrete affine transforms scrambles
such perfect arrays by a random shuffling of their element locations, whilst pre-
serving their original delta-like autocorrelation. We show here that certain slightly
different, but new Legendre arrays, under quite general affine rotations, always
map exactly back onto themselves, with a sign change of ±1. These arrays,
here called Lp, have 4-fold symmetry and are invariant to discrete rotations. We
prove this invariance property is general for Lp arrays of prime size p× p, where
p = 4N−1 for integer N. However, rotational invariance in Lp where p = 4N+1
occurs for a restricted range of discrete angles. These arrays are also equal to
their own discrete Fourier transform, for a standard Fourier normalisation. Each
invariant rotation ‘randomly’ stirs the locations of all the array elements, whilst
never mixing the positions of those elements of Lp with opposite sign.

Keywords: Rotational invariance · Prime sized perfect autocorrelation arrays ·
Discrete Radon projection

1 Constructing Rotation Invariant Legendre Arrays

In cryptographic or communication applications [1–4], the use of affine transforms
to ‘randomise’ a seed array may be used to improve its security to avoid unwanted
intrusion, whilst preserving the favourable array correlation metrics [5]. Otherwise,
affine mappings can be used to extend a family of arrays where each array has equally
strong autocorrelation and where all members have equally low cross-correlation [4].

A classic Legendre sequence [6], with elements L(i), of prime length p, assigns the
value 0 to its first element, at i = 0. Then, for 1 ≤ i ≤ (p − 1), L(i) assigns + 1 to
the (p − 1)/2 element locations i that are quadratic residues modulo p, and –1 to the
(p − 1)/2 element locations i that are not quadratic residues modulo p.

The new p × p Legendre arrays Lp, for prime p, presented here are (up to a change
of sign), invariant to any affine rotation r : s, for any p = 4N − 1, where r,s and N
are positive integers. For p = 4N + 1, the invariance applies only for rotations r : s
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where (r2 + s2)modp is not zero. Methods are given here to construct these transpose-
symmetric and perfect p × p Legendre arrays in real space, via their Fourier phase in
the frequency domain, or directly through the periodic discrete Finite Radon Transform
(FRT) projections of Lp. The invariance of the Lp arrays here under discrete Fourier
transformation (FFT) mirrors that of the constituent Legendre sequences, as has been
observed in prior 2D perfect array constructions [7]. An example for p = 11 is shown
in Fig. 1.

Fig. 1. L11 displayed as a matrix (left). The 2D FFT of L11 is exactly the same as the array L11.
The delta-like periodic autocorrelation is shown on the right.

This paper is laid out as follows: Sect. 1.1 describes Legendre sequences in terms
of quadratic residues, as necessary background for the construction of 2D Legendre
arrays in Sect. 1.2, including their affine rotations and projections. Section 1.3 defines
discrete rotations through an affine transform, with the rotation invariance detailed in
Sect. 1.4. Alternative FRT and Fourier constructions of 2DLegendre arrays are described
in Sect. 1.5. Section 2.1 presents examples of the new arrays constructed here and
Sect. 2.2 shows how the invariant affine rotations shuffle signed elements without mixing
them. The Appendix shows that the FRT construction method can be used to make
pairs or sets of arrays that have close-to-perfect autocorrelation but have exactly zero
cross-correlation.

1.1 Legendre Sequences and Quadratic Residues

Quadratic residues provide a simple way to build Legendre sequences of length p. Sets
of quadratic residues, Qp, are defined as

Qp =
{
qp(i)

}
, where qp(i) = i2 mod p, {0 ≤ i ≤ p−1}. (1)

Clearly i = 0 is a special case. By definition, qp(p − i) = qp(i). For odd primes p,
there are (p+ 1)/2 unique elements in Qp, including 0, with symmetric values for i and
(p−i). This symmetry ensures the remaining (p−1)/2 integers q

p
(i) are not members of

the set Qp, but instead form the complementary set Q
p
of non-quadratic residue integers

over the interval 1 to (p− 1); then Qp + Q
p

= {0 : p− 1}. The sum over all p Legendre

sequence element values is then 0. The Legendre symbol, (i\p) ∈ {0, 1,−1} is often
used as shorthand for qp(i) and q

p
(i).
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The periodic autocorrelation of L, written here as L⊗L, is delta-like, with peak value
(p− 1), all (p− 1) off-peak values being constant, at −1, and zero mean. One measure
to quantify the delta-correlation of a sequence is by the ‘merit factor’ [5], defined as the
square of the correlation peak over the sum of all squared off-peak correlation elements
(infinite for perfect arrays but finite for L). The symmetry of the element assignments
in Qp, and hence L, mirrors the periodic structure of the Fourier frequencies, fk. The
sequence L is Nyquist bandwidth limited over fk = 0 to (p − 1)/2, with complex con-
jugate symmetry, where F(k) = F(p − k)∗ for real valued sequences. The (normalised)
Fourier transform magnitudes, |Fk|, of any prime length Legendre sequence are then
F0 = 0, and |Fk| = √

p for 1 ≤ k ≤ (p − 1)/2. Their flat Fourier spectrum, |Fk|, being
constant for k > 0, is commensurate with the delta-like autocorrelation, and endows
L with the epithet as being one member of a diverse class known as ‘perfect’ periodic
sequences [8] (with zero or constant off-peak periodic correlation elements).

It is peripheral, but noteworthy, that theaperiodic autocorrelation ofL is not ‘perfect’,
having non-uniformoff-peak values that vary in size for sequences that are cyclic shifts of
the original sequence. The closest-to-perfect aperiodic autocorrelation metrics for (zero-
padded) Legendre sequences occur when the original sequence of length p is cyclically
shifted by round (p/4) elements [6]. In contrast, Huffman sequences [9] have the optimal
delta-like autocorrelation metrics under aperiodic conditions, and are as flat spectrally
as is possible for any finite length sequences [10].

1.2 2D Legendre Arrays

A 2D Legendre array of prime size p × p can be constructed by forming the outer
product (Kronecker tensor product) of a 1D Legendre sequence L with the transpose
of the same sequence. The leading zero of Legendre sequences results in the first row
and column of the tensor product consisting only of zeroes. The array value at location
(0, 0) is left as zero. To maintain the zero sum of L, each of the resulting zero-valued
elements from (1 : p− 1) along the first row need to be set to +1 and the same elements
in the first column need to be set to −1 (or vice-versa). Given the symmetry of the
quadratic residues between points (i, j) and (p − i, p − j), all 2D Legendre arrays have
180° rotational symmetry.

An alternative, slightly different, but new Legendre array, termed Lp in this paper,
of size p × p, can be constructed by assigning +1 to element locations (i, j) where
(i2 + j2)modp is a quadratic residue (qp(i) ∈ Qp), and assigned value −1 if not (qp(i) ∈
Q
p
). The location (0, 0) retains the value 0. The elements 1 : (p − 1) along the first

row and first column are now all assigned the value + 1 (as i2 + 02 is always qp(i)).
This slightly different array Lp is transpose symmetric. Arrays made this way using
p = 4N−1 (for any positive integer N) have zero sum and now possess 4-fold rotational
symmetry. The exact 4-fold symmetry of Lp becomes geometrically evident when the
array is circularly shifted to locate the sole 0-valued entry at the centre of the p×p array.

For primes p = 4N+1, to construct zero-sum ‘perfect’ arrays using the lattermethod,
all of the elements from 1 : (p − 1) on either the first column or the first row must be
reset to−1 (as done for the outer product method). Those arrays then lose their transpose
symmetry. The transpose symmetry can be re-imposed by applying a discrete rotation
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of 45° (through an affine rotation by 1 : 1, as reviewed in Sect. 1.3). However, those
arrays no longer possess 4-fold symmetry. Section 1.5 shows that the 4-fold symmetry
of the perfect arrays for p = 4N + 1 can be retained by the compromise of relaxing the
zero-sum requirement.

1.3 Discrete Affine Rotations

An affine transform, R, applied to image pixels or data A(x, y), reversibly maps the
homogeneous coordinates v = (x, y, 0) of A to new locations v′ = (x′, y′, 0) in A′ via
the matrix product v

′ = R[ v],
⎛
⎝

x′
y′
0

⎞
⎠ =

⎛
⎝
a b x0
c d y0
0 0 1

⎞
⎠

⎛
⎝

x
y
0

⎞
⎠. (2)

For a prime-sized 2D array, the six ‘free’ transform values a, b, c, d and the (cyclic shift)
displacements x0, y0 that together make up the transform matrix R, contain integers
modulo p. Applying the mapping R−1, the inverse of matrix R, (again, with values
modulo p), reverses (exactly) the initial transform, so that each location in A′(x′, y′)
maps back to A(x, y) in its original place.

For ‘pure’ affine rotations by discrete (integer-based) directions r : s, then R has
a = s, b = −r, c = r and d = s, with x0 = y0 = 0. Then the determinant of the
matrix R, is det(R) = r2 + s2. When det(R) = 0, modulo p, the mapping is null and the
transformed array is void.

As p is an odd integer, for any pair of integers r and s such that r2 + s2 = αp, then p
must satisfy p = 4N + 1, for positive integers α and N. Importantly, when p = 4N − 1,
det(R) modulo p cannot be zero for any affine rotation r : s of a p×p array. The rotation
integers r : s need not be relatively prime;±αr : αs for integer α, produces the same axis
of rotation as ±r : s, with adjacent image locations being separated by vector distance
α2(r2 + s2).

In creating an affine-transformed array, A′(x′, y′) = R[A(x, y)], themodulo p part of
the transformmatrix operatorR (usually) ‘randomly’ shuffles the element locations along
both length p rows and columns of A. The periodic autocorrelations, A

′ ⊗A
′ = A ⊗A

are identical and remain perfectly delta-like. However, the periodic cross-correlation
A

′ ⊗ A will, in general, be very low because of the relative randomisation of array
element locations that arises from the affine mapping.

The next section shows that, for the Legendre arrays Lp, the reversible but apparently
random shuffling that is produced by any affine rotationR(r : s) nevermixes the locations
of elements from the set of +1 quadratic residue points (Qp) with the locations of the −
1 elements from the set of non-residue points (Q

p
).

1.4 Affine Rotation of Legendre Arrays Lp

We consider affine rotations, as defined in Eq. 2, applied to a transpose symmetric p× p
Legendre array Lp for p = 4N−1. Here all values at the p×p array locations are defined
by quadratic residues (the single 0 and the +1 points by Qp, the −1 points by Q

p
). For
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any general p × p discrete affine rotation by vector r : s, any location (x, y) is mapped
to a new, unique location (x′, y′), where

x′ = xs − yr, y′ = xr + ys. (3)

The Legendre array element at location (0, 0) is assigned value 0. This point will
not be moved by any affine transform R, provided that the cyclic shifts x0 = y0 = 0.
If array location (x, y) is a quadratic residue, we can check if the location of the point
(x, y) rotated to point (x′, y′) is also a quadratic residue. It is useful to rephrase Eq. 3 as

(
x′2 + y′2) =

(
r2 + s2

)(
x2 + y2

)
(4)

For any discrete rotation r : s, the new location (x′, y′)will remain as a quadratic residue
location iff

(
r2 + s2

)
Qp is qp(i), an element of Qp.

Scaling any set Qp by any of its quadratic residue elements qp(i), modulo p, produces
the same set (by definition). Scaling the set Qp by a non-quadratic residue, qp (i) produces

the complement of the residue set, Q
p

qp(i)Qp = Qp, q
p
(i)Qp = Q

p
. (5)

Each and every location (x′, y′) in the four-fold symmetric array Lp is fixed by Qp or
Q
p
. The rotation R(r : s) then maps, via the integer scaling factor

(
r2 + s2

)
, each array

quadratic residue location to another location fixed by Qp (when
(
r2 + s2

) ∈ Qp), or
else they all map to one of the locations valued −1 (when

(
r2 + s2

) ∈ Q
p
).

Hence we have now established the curious rotation invariance, R(r : s)[Lp] =
±Lp, as the Legendre array remains unchanged up to a sign. This key result shall be
demonstrated through numerical examples in Sect. 2. The periodic cross-correlation of
the original array Lp with the affine rotated array L′

p = R(r : s)[Lp], is Lp
′ ⊗ Lp =

±Lp ⊗ Lp, which has peak value (p − 1) and all off-peak values −1, or peak −(p − 1)
with all off-peak values +1. These affine rotations perform a remarkable, rather curious
and decidedly non-random shuffling of the array elements.

1.5 Alternative Methods to Construct 2D Legendre Arrays

Using the Finite Radon Transform. There is a direct ‘tomographic’ link between
affine transforms of an array and sets of periodic discrete projections of the same array,
such as obtained through the Finite Radon Transform of a matrix A(x, y) [8, 11, 12]:

FRT(A(x, y)) = R(t,m) =
{∑p−1

y=0 A({t + my} mod p, y) for 0 ≤ m ≤ p − 1∑p−1
y=0 A(x, t) for m = p

(6)

FRT−1(R(t,m)) =
(∑p−1

m=0
R({x − my}mod p,m) − Asum

)
/p + O(x, y). (7)
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Within the inverse Finite Radon Transform, FRT−1 of Eq. 7, Asum is the sum of all
values in the array A(x, y) (which is also the constant sum of each row in the FRT) and
the offset O(x, y) has value R(y, p)/pwhen x = 0; R(0, p)/pwhen y = 0; andR(x, p)/p
otherwise. An aperiodic discrete projection of any sized array A(x, y), at angle r : s, can
be obtained by applying the ‘cousin’ of the periodic FRT, the Mojette transform [13].

The FRT has size p × (p + 1). Each point t × m of the FRT is the sum of p values
sampled from a p × p array A(x,y). The mth FRT projection, for 0 ≤ m < p, sums
data from p cyclically wrapped points, each shifted from initial point A(t, 0) by m
steps in x for each unit increment in y. These points are located along discrete lines
[(km + t)modp, k] for 0 ≤ k ≤ p − 1. The pth projection is formed from the p sums
taken along rows 0 to (p − 1) of A(x, y).

The p × p arrays Lp, as presented above, can also be constructed using the discrete
projections of the FRT. A synthesized set of (p + 1) identical, zero-sum delta-like FRT
projections is prepared, each having length p. The first projection element (t = 0) is set
to value (p−1), with all the remaining (p−1) elements being set to−1. FRT projection
m is scaled by +1 if (m2 − 1) is a quadratic residue, modulo p, and by −1 if not. FRT
projection m wraps (m − 1 times) around the p × p array for angle m : 1.

Each projection at angle m : 1 maps to a set of ‘nearest neighbour’ projected rays
that follow a discrete line with an angle i : j that is unique for each m. The i : j angles can
be used in place of the geometric ray angle m : 1, by scaling the assigned projections
by ±1 where (i2 + j2) is or is not a quadratic residue modulo p. The symmetry of both
sets of ray angles m : 1 and i : j makes the sign for the kth projection the same as for
the (p + 1 − k)th projection. The perfect array Lp is recovered by applying the inverse
FRT transform to the set of sign-adjusted FRT projections. The (exact) FRT inverse
is obtained after normalising the p × p image obtained from back-projecting the FRT
forward-projected sums at the complemented discrete angles, m

′ = p − (i2 + j2).
The array locations that get summed for each discrete FRT projection m at angle

m : 1 or for the equivalent unique shortest neighbour ray angle i : j, are the same set of
points, as the spatial array coordinates used to assign Lp(i, j) belong to either Qp or Qp

via
(
i2 + j2

)
modp.

Using the FRT-based method with p = 4N− 1 produces the identical transpose and
4-fold symmetric perfect p × p arrays Lp as presented above. Note that here p + 1 =
4N − 1 + 1 = 4N.

For p = 4N + 1, the FRT method also produces transpose symmetric and perfect
p × p arrays. However, the resulting 4N + 1 array Lp now has value 2 at location (0,0)
and the array sums to 2p rather than zero. The signs of the p + 1 = 4N + 2 projections
have 2 more +1 entries than −1 entries. The array autocorrelation is then shifted by 4,
having peak p2+3with all off-peak values 3. The peak-to-sidelobe ratio for these 4N+1
Lp arrays is then changed to p2/3+ 1, with the merit factor ≈ (p2 + 2)/9 (both metrics
being p2 − 1 for p = 4N − 1). The 4N + 1 FRT-built versions of these perfect arrays
do not exhibit invariance to all affine rotations, as observed for the previous methods of
construction.

Using the Fast Fourier Transform. The quadratic residue approach to construct Lp
also works when applied in the Fourier domain, F(u, v). This is expected, as A(x, y),
FRT[A(x, y)] and F[A(x, y)] provide 1 : 1 mappings of each other, for p × p data. We
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set all of the p × p Fourier magnitudes, |F(u, v)| to value p, apart from (0, 0), which
is initialised to 0, as for a zero-sum array. We then set the p × p Fourier phases at
frequencies (fu, fv) to value 0 when

(
f2u + f2v

)
modp is in Qp and set the phase to πwhen

in Q
p
. We then apply the inverse Fourier Transform to recover the 2D Legendre array.

For p = 4N−1 we get exactly the same rotationally invariant zero-sum perfect arrays as
for the FRT-based method, here (p2 + 1)/2 phases are set to zero and (p2 − 1)/2 phases
are set to π.

For the 4N + 1 case, the FFT-built arrays are also transpose and 4-fold symmetric,
with sum 2p, as for the FRT method. Of the p2 Fourier phases, there is an imbalance
of 2p − 1 in the number that are set to zero over those set to π, hence the value of the
Fourier magnitude at F = (0, 0) gets reset to 2p.

It should be noted that for size p = 4N−1, Lp is invariant under the discrete Fourier
transform such that F(Lp) = Lp (for a certain Fourier normalisation convention). The
equality of these 2D arrays may be understood from the choice of Fourier phases (0
and π) that encode signs governed by the same quadratic residue construction described
in Sect. 1.2. It is perhaps less obvious that also F(Lp) = Lp (using the same Fourier
convention) for the p = 4N + 1 sized Lp arrays built from the FRT.

Invariant rotations for p = 4N + 1 Lp arrays. There are some affine rotations r : s
for which the transpose and 4-fold symmetric versions of the 4N + 1 Legendre p × p
arrays domap back exactly onto themselves. These correspond to discrete rotation angles
r : s where (r2 + s2) ∈ Qp, except for the case when det(R) = (r2 + s2) = 0. The non-
invariant affine rotations, where (r2 + s2) ∈ Q

p
, result in a close but partial match with

the original array, yielding a difference image of mostly zeros, with 2p− 1 values being
2 and one location with value 4.

If the array Lp is shifted (cyclically) by the applied affine rotation matrix R (when x0
or y0 are not both zero), the resulting array will match the original after re-aligning the
result. This can be done by co-registering the single (0, 0) points of both arrays. If the
affine transform R is not a pure rotation, for example if R includes a skew component,
then det(R) = ac− bd, the transpose and 4-fold symmetry of the mapping via Qp is lost
and the array is unlikely to be affine invariant.

2 2D Legendre Array Results

2.1 Examples for p = 4N+ 1 and p = 4N− 1

We next provide some examples. The array L11, for p = 11 (here p = 4N − 1) is
given in Fig. 1, Q11 = {0, 1, 4, 9, 5, 3}. The Fourier phase for F(u, v) of L11 is zero
everywhere

(
f2u + f2v

)
mod11 is in Q11, or, equivalently, where L11 has the value +1. It

has value π where
(
f2u + f2v

)
mod11 is in Q

11
, where L11 is −1. The FRT-built array is

initially assigned 12 identical projections, [10, −1, −1, −1, −1, −1, −1, −1, −1, −1,
−1], one for eachm. We compute a sign for each projection, according to (m2 + 1) or
(i2 + j2) ∈ Q11 or Q11

. The number of ± sign changes is equal, as indicated in Fig. 2.
L11 is invariant to all discrete rotations r : s.
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Fig. 2. Angles, residues modulo 11 and projection signs for the 2D Legendre array.

The array L13, for p = 13 (here p = 4N + 1) is shown in Fig. 3, Q13 =
{0, 1, 4, 9, 3, 12, 10}. The Fourier phase for F(u, v) of L13 is zero everywhere

(
f2u + f2v

)
is in Q13, where L13 has the value + 1. It has value π where

(
f2u + f2v

)
is in Q

13
, where

L13 is−1. The FRT-built array is initially assigned 14 identical projections [12,−1,−1,
−1,−1,−1,−1,−1,−1,−1,−1,−1,−1], one for each m.We compute a sign for each
projection, according to (m2 + 1) or (i2 + j2) ∈ Q13 or Q13

. There are now an unequal
number of ±1 sign changes, as indicated in Fig. 4; here 8 projection signs are +1 but
6 are −1, resulting in the value 2 at (0, 0) in L13 after applying the FRT inverse. Affine
rotation of L13 by 1:3 is invariant as 12 + 32 = 10 is in Q13, whilst rotation by 1:2 is not
invariant. Affine rotation by 2:3 is not possible here, as R has zero determinant for 13 ×
13 arrays.

Fig. 3. L13 displayed as a matrix (left). The 2D FFT of L13 is exactly the same as the array L13.
The delta-like periodic autocorrelation is shown on the right.

Fig. 4. Angles, residues modulo 13 and projection signs for the 2D Legendre array.

The value 2 at location (0, 0) in p = 4N + 1 sized arrays built using the FRT or
FFT method can be arbitrarily reset to 0 (or any other value) without changing the
rotational invariance properties, however the perfect periodic correlation metrics of the
array decline, falling further as the value set at (0, 0) is more distant from +2.
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2.2 Invariance Demonstrated as Stirring Without Mixing

In Sect. 1.4 it was shown that the 2D Legendre arrays of interest here are invariant to
rotation, up to a change of sign. The numerical results of Sect. 2.1 attest to this but it is
insightful to visually portray this curious result, as shall be demonstrated in this section.

For affine rotations of arrays Lp, the locations of the class of +1 points always
remains distinct from those of the class of −1 points. Imagine a stack of three p × p
arrays as coloured (RGB) pixels, perhaps where the +1 points of a Legendre array Lp
were encoded using different shades of red, and the −1 points were depicted in shades
of green. Then applying any affine rotation shuffles the distribution of red and green
intensities, but never blends the positions of the red pixels with the green pixels; this is
stirring without mixing, as depicted in Fig. 5. Note the internal shuffling of the +1 and
−1point locations in Lp for rotation r : s is not the same as for αr : αs, however the ±1
classes still never mix.

Fig. 5. Three colour-coded 31 × 31 Legendre arrays, Lp. In the original image on the left, the
+1 entries of Lp appear shaded in red with an intensity at each pixel that increases from the top
centre to the bottom centre. The −1 entries are shown uniformly green. The centre image shows
the original Lp array after applying a periodic affine rotation of r : s = 1 : 2 which maps the array
back exactly onto itself (12 + 22 = 5, 5 is a quadratic residue = 62 modulo 31). The image on
the right shows the original Lp array after applying a periodic affine rotation of r : s = 2 : 3 (22

+ 32 = 13, 13 is not a quadratic residue modulo 31). (Color figure online)

In Fig. 5 the red pixels are shuffled amongst themselves, but never to locations that
were and still are occupied by all of the green pixels. Here all of the red pixels have been
shuffled to locations that were previously occupied by the green pixels. Both classes of
+ 1 pixels and −1 pixels are stirred but never mix.

3 Conclusion

The new p×p Legendre arrays Lp presented here are (up to a change of sign), invariant to
any affine rotation r : s, for any p = 4N−1. For p = 4N+1, the invariance applies only
for rotations r : s where (r2+s2)modp is not zero but is in Qp. The effect of more general
affine mappings, such as skew operations, remains a topic for further investigation.

The property of invariance to discrete rotations makes these Lp arrays less secure
in communication applications. It may also prohibit or restrict the ability to generate
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families of transpose symmetric arrays based on Lp that retain uniformly low-cross-
correlations (a subject of ongoing work). The current Lp arrays may, however, be benefi-
cial in practical circumstances where this rotation invariance provides greater robustness
to orientation-based changes or for symmetrical detector design. For example, Gottes-
man and Fenimore’s modified uniformly redundant arrays [14], based upon quadratic
residues, possessed useful two-fold or six-fold symmetry suited for square and hexag-
onal unimodular arrays, respectively. However, the constraints of periodicity and the
accompanying upscale or downscale array size changes that arise from affine rotations
(by a factor of (r2 + s2) for rotations r : s) would both need to be accommodated.

Appendix

The 1D autocorrelation of each projected view at angle r : s for any 2D array A, mirrors
exactly the 1D projected view, at the same angle r : s, of the 2D autocorrelation A ⊗ A
[13]. The FRT of any p × p array A produces B, an exactly invertible set of (p + 1)
discrete projections of length p. The set B of FRT projections of A can be applied in
several interesting ways.

When A is a Legendre array, each 1D projection in its FRT set B looks like a delta
function (as used here in Sect. 1.5). We can select a partial set Bk of the full FRT set B,
that contains k of the (p+1) projections, with otherwise empty data. Applying the inverse
FRT to Bk reconstructs an array Ak that has almost-perfect autocorrelation, whilst the
projected views of Ak at the ‘missing’ projection angles are exactly zero. Then sets of
partial projections, for example a pair B1 and B2, for which B = B1 + B2, are disjoint.
The arrays A1 = FRT−1(B1) and A2 = FRT−1(B2)will have both A1⊗A1 andA1⊗A2
being delta-like, yet A1 ⊗ A2 = 0, yielding an exactly zero cross-correlation, [15].

The full set of projections in the FRT of a Legendre array can also be cyclically
shifted (in either or both angle variable m and projection translate t). Applying the
inverse operation to these shifted FRTs makes new, exactly perfect Legendre arrays (at
the cost of losing the transpose symmetry of the Lp arrays presented here). Specific
patterns of shifts in m can produce large families of distinct Legendre arrays where
the periodic cross-correlation between all family members is not zero, but as low as is
possible [16]. Changes in the t variable of the FRT produce ‘grey’ Legendre arrays with
a range of integer values beyond −1, 0, and +1. The extended alphabet of array values
permits the construction of even larger families of arrays with low cross-correlation
[4, 17].
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Abstract. Computing differential quantities or solving partial deriva-
tive equations on discrete surfaces is at the core of many geometry pro-
cessing and simulation tasks. For digital surfaces in Z

3 (boundary of
voxels), several challenges arise when trying to define a discrete calculus
framework on such surfaces mimicking the continuous one: the vertex
positions and the geometry of faces do not capture well the geometry of
the underlying smooth Euclidean object, even when refined asymptoti-
cally. Furthermore, the surface may not be a combinatorial 2-manifold
even for discretizations of smooth regular shape. In this paper, we adapt
a discrete differential calculus defined on polygonal meshes to the specific
case of digital surfaces. We show that this discrete differential calculus
accurately mimics the continuous calculus operating on the underlying
smooth object, through several experiments: convergence of gradient and
weak Laplace operators, spectral analysis and geodesic computations,
mean curvature approximation and tolerance to non-manifold locii.

Keywords: Discrete calculus · Differential operators · Digital surface

1 Introduction

In many geometry processing and simulation applications, solving variational
problems or simulating partial differential equations on the object boundary can
be a critical step. Involved shapes are generally represented as discrete meshes. It
is thus necessary to have a calculus that operates consistently and accurately on
these discrete objects. For embedded graphs or triangular manifold meshes, finite
element methods [1,2] or discrete exterior calculus (DEC) [7,8] have played a
crucial role in many applied mathematics and geometry processing applications.
From a broad perspective, such models provide consistent differential operators
to process scalar, vector or tensor functions on meshes or embedded graphs
(consistency given by satisfying Stokes’ theorem for all discrete elements). These
frameworks induce several convergence results for PDE solutions, but with strong
hypotheses on the discrete-continuous mapping [10]. On generic non-triangular
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meshes, Virtual Element Methods [20], or ad hoc operators exist [6]. However,
these models assume a Euclidean embedding interpolating the smooth manifold.

Digital objects and surfaces corresponds to discrete approximation of con-
tinuous objects through a discretization process [11], or to partitions in images.
In terms of perturbation and stability, digital surfaces, made of isothetic unit
squares in Z

3, are very specific: vertices do not interpolate the continuous object,
and geometric normals poorly approximate the continuous normal bundle. Even
worse, the primal quad surface may not be a combinatorial 2-manifold. To design
stable geometric estimators, a key ingredient is the digitization grid step h used
to represent objects. Hence, a multigrid process, as a function of h, can be
designed to relate a digital surface to the underlying smooth surface [14]. Stable
geometric estimators with convergence properties can then be obtained (i.e. the
estimation converges to the expected one on the smooth manifold as h tends
to zero) for various quantities: surface area [14], curvature tensor [12], or even
higher order functional such as the Laplace-Beltrami operator [3].

A combinatorial DEC can be constructed on digital surfaces, but their spe-
cific geometry makes it poorly reflects the continuous calculus. This article
presents a new discrete calculus framework dedicated to digital surfaces, which
relies on two ingredients: (i) a convergent normal vector field u (e.g. the inte-
gral invariant normal estimator [12]), which is used to correct the embedding
of (ii) a polygonal differential calculus model of de Goes et al. [6]. Several meth-
ods exploits this idea of correcting the embedding with a normal vector field
[3,13,14]. Mercat [16] follows this idea with a theory of conformal parametriza-
tion and differential operators for digital surfaces restricted to combinatorial
2-manifolds. Our proposal shares some ideas with these works and defines a
calculus on generic digital surfaces with a simple per-face construction of the
operators.

The paper is organized as follows. We first describe the operator construction
from [6] (Sect. 2). Section 3 describes how to correct the geometrical embedding
of the surface elements. Finally, we evaluate the performance of the framework
on various variational problems (Sect. 4).

2 Polygonal Differential Calculus

We focus here on the formulation proposed by de Goes et al. for polygonal
surfaces embedded in R

3 [6]. It defines differential operators per face without
assumption on the face geometry, which could be non-convex or even non-planar.

Let M be a mesh with vertices X and faces F. For a given face f with nf

vertices, we denote by Xf , the vertex positions encoded as a nf × 3 matrix (the
i-th row corresponds to the position of the vertex i of the face f). In this calculus,
we consider scalar functions φ defined on vertices of M (see Fig. 1−(a − b)). For
the face f , we denote by φf the restriction of φ to the face vertices, represented
as a vector of size nf . As all discrete differential estimators will be linear in the
vertex positions and the scalar function values defined at vertices, the matrix
representation will easily combine operators with matrix products. For instance,
the centroid of a face is given by cf := 1

nf
Xt

f1f , with 1f = (1 . . . 1)t of size nf .
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First per face local operators are constructed, starting from the gradient.
To cope with (non-planar) polygonal faces, the weak form of the gradient is
sought (i.e.

∫
f

∇φ(x)dx in the continuous setting) leading to a constant gradient
integrated per face. Solving the integral on the discrete structure would require
an interpolation scheme on the non-planar face. The key ingredient is to focus
on the co-gradient ∇φ⊥ that leads to a simpler expression of its weak form using
Stoke’s theorem: ∫

f

∇φ⊥(x)dx =
∮

∂f

φ(x)t(x)dx ,

t(x) being the unit tangent vector at x ∈ ∂f . When discretizing this form for a
polygonal face f , t(x) corresponds to the (normalized) edge vectors. Now, let us
consider a linear function φf = Xfs+1fr with s ∈ R

s and r ∈ R, integrating φf

on an edge correspond to averaging the function value at the endpoints. Hence,
the discrete operator for the (integrated) co-gradient is the 3 × nf matrix

G⊥
f := Et

fAf ,

Ef being the matrix encoding the face edges, and Af the operator that averages
two consecutive vertex values. To be explicit, Af is the nf × nf matrix with
Ai,i = 1/2,Ai,i+1 = 1/2 (zero otherwise), and Df denotes the nf ×nf derivative
matrix with Di,i = −1,Di,i+1 = 1 (zero otherwise). So Ef = DfXf .

Given a vector φf , Et
fAfφf is a vector of size 3 corresponding to the

Euclidean embedding of the integrated co-gradient of φf on f . For a polygo-
nal face f , the vector area af can be defined as [17]: af := 1

2

∑
vi∈f xvi

× xvi+1 .
The normal vector to f is simply nf := af/af , with af := ‖af‖2. Now, we

can finally get the expression of the gradient as ∇φ⊥ = [n(x)]∇φ, where [n] is
the π/2 rotation matrix such that [n]q = n × q for any 3d vector q:

Gf :=
1
af

[nf ]Et
fAf .

The gradient operator is a 3 × nf matrix outputting a 3d vector in 3d when
applied to a scalar vector φf (see Fig. 1-(c)). Following such per-face construc-
tion, de Goes et al. define several differential operators listed in Table 1 and
represented as matrices acting on scalar functions, vectors, or discrete differen-
tial forms (see [7,8] for an introduction). We do not discuss the rationale and
the construction of each operator, please refer to [6] for details.

We conclude with the presentation of the Laplace-Beltrami operator Δ, a
fundamental tool in many geometry processing applications [15]. To solve global
PDE involving this operator (e.g. for instance solving a Laplace or Poisson prob-
lem Δu = f), it is interesting to aggregate the per-face operators into a global
operator L. We simply sum up the Lf matrices with a global indexing of the
vertices. As every Lf matrix is negative semi-definite, so is the global Laplace-
Beltrami operator. Furthermore, the global operator is very sparse. In opposition
with [6], we define it with a negative sign, since usually both the Laplacian and
the Laplace-Beltrami are negative operators (with negative eigenvalues).
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Fig. 1. Illustration of a non-planar face f (a) equipped with a vertex valued scalar
function φf (b), and the co-gradient and gradient vectors of φf (c) (Color figure online)

We do not go further into the details of this approach, several results are given
in [6] to justify the construction of these operators. For short, they match with
classical discrete exterior calculus or finite element ones for triangular meshes
[7], and for the polygonal case, they resemble to Virtuel Element Methods oper-
ators for 2d structures embedded in R

3 [19]. However, all these relationships
between discrete calculus operators and their continuous counterpart on the
smooth object only make sense when the discrete structure interpolates the
smooth object, with a close normal vector field. Applying this calculus as is on
digital surfaces provide poor results. We need to adapt the surface embedding
to correct it.

Table 1. Summary of local per-face operators of polygonal calculus [6].

Operator Size Description

Vf := Ef (I3×3 − nfn
t
f ) nf × 3 Flat operator that maps a vector to a 1-form

Uf := 1
af

[nf ](B
t
f − cf1

t
f ) 3× nf Sharp operator that maps a 1-form to a 3d vector

Pf := Inf×nf −VfUf nf × nf Projection operator acting on a 1-form

M0
f :=

af

nf
Inf×nf nf × nf Inner product for discrete 0-forms (functions)

M1
f := afU

t
fUf + λPt

fPf nf × nf Inner product for discrete 1-forms (for some λ > 0)

Divf := −Dt
fM1

f nf × nf Integrated divergence operator from a 1-form

Lf := −Dt
fM

1
fDf nf × nf Weak Laplace-Beltrami operator

3 Projected Digital Surface Embedding

As discussed in the introduction, the classical approach is to relate a digital
object to its continuous counterpart through the Gauss digitization process [11].
In this setting, many multigrid convergence results have been obtained for var-
ious integral and differential quantities such as the length in 2d [4], the surface
area in 3d [14], the curvature tensor [12], or the Laplace-Beltrami operator [3].
Among these techniques, the convergent estimation of the normal vector bundle
is the cornerstone of many followup results (e.g. [3,14]).
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Fig. 2. Input digital surface (left), its estimated normal vectors using [12] (middle),
projections of the face vertices onto their respective estimated tangent plane (right).

In the polygonal calculus described above, a key ingredient is that operators
are first defined per-face, and later summed up globally with the vertex index-
ing. This suggests that correcting the embedding of the face vertices during the
local construction of the operators would lead to globally corrected operators.
As a first-order approximation, we propose to define our projected polygonal cal-
culus by relying on an external estimation of the face tangent space, and by
(implicitly) projecting each face vertex onto this tangent plane when construct-
ing the operators. The idea of incorporating external normal vectors to correct
the embedding of a discrete structure follows the idea of Lachaud et al. [13]. Let
{uf} be a normal vector field estimated on the digital surface, for instance using
the multigrid convergent approach of [12].

Definition 1 (Embedding operator). The per-face f projection operator
onto the tangent plane orthogonal to uf passing through the origin is the 3 × 3
matrix Πf := (I3×3 − ufut

f ). Recalling that Xf is the nf × 3 matrix of the
vertices position of the face f , the new positions are given by X∗

f := XfΠf .

Note that the intercept does not need to be specified as all differential oper-
ators are invariant by translation. For illustration purpose, projected faces have
been translated to keep their centroid invariant in Fig. 2, but this is meaning-
less in the calculus. Another observation is that for a given vertex v in M, its
embedding generally differs for its adjacent faces. This follows from the per-face
construction of the operators. The global continuity of scalar functions, or their
processing (i.e. their Laplacian) comes from the global indexing of vertices, and
global operators as defined above.

4 Experiments

We demonstrate the interest of the projected calculus model for the processing
of scalar functions on digital surfaces. More precisely, we first evaluate the rele-
vance of the new embedding for the gradient computation of a scalar function.
Next, we study the Laplace-Beltrami operator and more advanced processing.
All operators are implemented in C++ and available in DGtal [18].
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Gradient of Scalar Functions. To evaluate the relevance of including exter-
nal tangent information in the calculus, let us consider the simple case of the
gradient evaluation on a quadratic scalar field defined on a tilted digital plane
(with normal vector 1/3 · (√3,

√
3,

√
3)t, Fig. 3). In a multigrid setting, we com-

pute the per-face gradient of the scalar function (Euclidean distance in ambient
space with respect to the plane center, Fig. 3-(a)), and we compare the expected
gradient vector direction (Fig. 3-(b)), to the estimated gradient using the classi-
cal polygonal calculus (Fig. 3-(c)), and the projected one (Fig. 3-(d)). Gradient
vectors are illustrated from their projection onto the Euclidean plane. The error
metric used here is the l2 norm of the difference between estimated and expected
normalized gradient vectors. Figures 3-(e) and (f) detail relative errors. In Fig. 3-
(g), we have considered a decreasing grid step h from 1 to 1.5 × 10−2 (3 748 021
faces), demonstrating multigrid convergence of the gradient direction for the
projected calculus.

(a) (b) (c) (d)

(e) (f)
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Fig. 3. Convergence of the gradient operator: Input scalar function on a tilted plane
(a), expected normalized gradient projected onto the Euclidean plane (b), gradient
vectors using the original polygonal calculus with many aliasing artifacts (c), gradient
vectors using the projected calculus (d). Figures (e) and (f) details relative errors of
gradient estimations (values respectively in [0, 0.28] and [0, 0.62]), and (g) illustrates l2
norm of the error when decreasing the grid step h (from right to left).

Laplacian of a Function. First, let us consider an evaluation of the output
of the Laplace-Beltrami function on analytical functions on a domain for which
we already know the expected Laplacian of that function. Following the setting
in [3], we evaluate L on a digital sphere with the simple quadratic function
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φ(x) := x2
x on its boundary, and expect Δφ(x) = 2 − 6 cos2(ψ)2(1 − cos(θ)2) in

spherical coordinates. Note that Caissard et al. [3] achieve strong consistency of
the operator (i.e. pointwise convergence of the Laplacian values) at the price of
a convolution process on the surface elements, leading to a quadratic algorithm
for the operator construction, and a non-sparse operator. Clearly it is unlikely
that the purely local construction of our projected polygonal calculus provides
pointwise convergence. We observe nevertheless that the projection process offers
reasonable estimations while being purely local (see Fig. 4).
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(f)
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Fig. 4. Given a function φ(x) in (a) and its analytical Laplacian (b), we illustrate the
result of the pointwise convergence heat kernel based Laplace-Beltrami operator [3] in
(c). In (d) we have the results of the original local polygonal calculus operator, and in
(e) the result of our projected one. In (f) we have performed a multigrid convergence
test with decreasing gridstep h. Dashed lines correspond to the maximum absolute
error when estimating Δf , the solid ones correspond to mean absolute errors.

Spectral Analysis. We evaluate the stability of the spectrum of the pointwise
Laplace-Beltrami operator (M0)−1L. Eigenvalues and eigenvectors have a fun-
damental role in many geometry processing applications [15] as they define a
(spectral) basis to represent scalar functions on surfaces. Figure 5 compares the
first eigenvectors (corresponding to the largest eigenvalues) of the original polyg-
onal calculus Laplace-Beltrami operator, to the ones we propose. Our embedding
operator has a clear positive impact on the smoothness of basis functions.
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Fig. 5. First ten eigenvectors of the Laplace-Betrami operator on a digital sphere (and
their projection onto the Euclidean sphere): top two rows correspond to the original
polygonal calculus, bottom two rows correspond to the projected polygonal calculus we
propose (note that due to proximity of eigenvalues and numerical issues, eigenvectors
may not appear in the exact same order).

Mean Curvature Estimation. A well-known result related to the Laplace-
Beltrami operator is that, if x is the function associating to any point of M
its coordinates, then Δx = 2H(x)n(x) with H(x) the mean curvature at x and
n(x) the normal to M. We check this method for computing the mean curvature
with our calculus. We compute the pointwise Laplace-Beltrami of coordinates
functions (X,Y,Z) = x and deduce the mean curvature H by scalar product
with the estimated normal u. Otherwise said, the estimated curvature Ĥ is

Ĥ =
1
2
(M0)−1

[
LX LY LZ

]
ut,

where u is a nf × 3 matrix storing per row the corrected normal to the vertex.
To account for the fact that the Laplace-Beltrami is only weakly convergent, we
can diffuse for a short time the result to simulate a local integration. Figure 6
illustrates this method for approximating the mean curvature, and also confirms
that the calculus must be corrected to get meaningful result.

Geodesic Distance Estimation. To evaluate the proposed calculus on a more
complex example, let us consider the geodesic distance estimation problem on
digital surfaces. We consider the PDE approach of Crane et al. [5] that uses
heat diffusion to estimate the geodesic distance function from sources. Sources
are defined via a characteristic function u0 in the domain. The heat method
consists in three steps: (i) integrate the heat flow u̇ = Δu for some fixed time
t with initial condition u(x, 0) = u0(x), (ii) normalize the gradient vector field
d := −∇ut/‖∇ut‖2, and (iii) solve the Poisson equation Δφ = ∇ · d (∇· denotes
the divergence operator on vector fields). The scalar function φ − minx(φ) is a
good approximation of the geodesic distance from the sources to any point [5].
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Fig. 6. Approximation of mean curvature H with Laplace-Beltrami operator. For the
computation of the diffused approximation Ĥ, the diffusion time t is set to 0.04 < 1

6
h,

so very short. The projected calculus uses integral invariant normal estimator (default
parameter r = 3h1/2). Projected calculus results are more accurate and stable.

In our discrete calculus framework, the heat diffusion step (i) is obtained
with a single backward Euler step for timestep t solving

(ut − u0)/t = (M0)−1Lut or more simply (M0 − tL)ut = M0u0 ,

which involves the global mass matrix M0 and the weak Laplace-Beltrami L.
Then, denoting w the solution ut, step (ii) computes per-face the normalized

opposite gradient df of wf for face f as df := −Gfwf/‖Gfwf‖2. Bringing back
this vector to a one-form with flat operator Vf , the per-face weak divergence
is then δf := DivfVfdf . Vector δf is a nf × 1 vector associated to face f ,
assigning values to each vertex of f . The global divergence map δ simply consists
in summing up per vertex the divergence contribution of each face.

Finally, step (iii) computes the geodesic distance function φ by solving the
Poisson linear system Lφ = δ, which must be shifted by −minx(φ) so that the
result starts from distance 0.

Figure 7 illustrates geodesic distance computations on a digitized sphere, both
with naive calculus and projected calculus (we use integral invariant normal
estimations with default parameters). As shown by projecting back distances on
the true smooth surface, the projected calculus builds more isotropic isodistance
lines while being much more numerically accurate.

Distances on Surfaces with Boundaries. If the digital surface has bound-
aries, then the heat diffusion as it is written follows Neumann boundary condi-
tions: the Laplace-Beltrami operator L is built per-face and ignores boundaries.
Isodistance lines will tend to be orthogonal to boundaries (see Fig. 8 for an
example on a half-sphere). As suggested in [5], we compute a second diffusion in
step (i) that assumes Dirichlet zero boundary conditions on the digital surface
boundaries. This is done by restricting the linear system (M0−tL)ut = M0u0 to
non-boundary vertices, simply by assuming value 0 for u on boundary vertices.
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Fig. 7. Distance computation to a source point with geodesic in heat method on a
digital sphere. Scale is deep blue (0) to red (max distance) with black isolines every 0.1
and red isolines every 1. The expected max distance is π. Top row displays distances
computed with naive polygonal calculus. Bottom row displays distances computed
with projected calculus with normals u estimated with integral invariant method. All
computations made with parameter λ = 0.25 and heat diffusion time t = h2.

Fig. 8. Distance computation to a source point with geodesic in heat method on a
digital surface with boundaries (here a half-sphere). Results are more accurate when
mixing two heat diffusion solutions, one with Neumann boundary conditions, one with
Dirichlet boundary conditions.

We then average the two solutions to define the vector w that is given to step
(ii) of the heat method. Figure 8 confirms the soundness of this approach.

Processing on Non-manifold Surfaces. Since every calculus operator is
defined per-face, they are quite oblivious to non-manifold edges and vertices
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Fig. 9. Geodesic distance computation on non-manifold surfaces: the projected calculus
is quite oblivious to non-manifold parts of the surface, as illustrated on this triple
junction surface, digitized coarsely at h = 1 (left) and finely at h = 0.125 (right).

Fig. 10. Various computations on a more complex voxel object: (from left to right) the
gradients of a scalar function, mean curvature and geodesic distances.

of the digital surface. We illustrate this fact on Fig. 9 by computing the geodesic
distance to a source point on a digital surface approximating the triple junction
of three planes (exact same code as for Fig. 7 and 8).

5 Conclusion

Our contribution is a simple and easily implementable discrete differential calcu-
lus for the processing of scalar functions on digital surfaces (see Fig. 10). It relies
on changing the natural embedding of the digital surface when constructing per
face differential operators, with the use of an external, multigrid convergent,
normal vector estimation. Many experiments back up the effectiveness of this
new calculus.

Although we demonstrate its interest to solve integrated problems such as
Poisson problem (and the geodesic distance estimation is a perfect example of
this class), the proposed local construction does not achieve pointwise conver-
gence for second order operators like the Laplace-Beltrami one. Interesting chal-
lenges include the design of nonlocal operators, similarly to [3] or [9], or the use
of higher order embeddings for the digital surface.
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Abstract. Centerline (curve skeleton) is a frequently used skeleton-
like shape descriptor for 3D tubular objects. This paper proposes an
endpoint-based sequential curve-thinning algorithm (i.e., an iterative
object reduction technique to obtain the centerline) for binary objects
sampled on the face-centered cubic (FCC) grid. In order to ensure the
centeredness of the resulting centerline, the thinning process is driven
by distance transform. The introduced method is evaluated on dis-
tance maps computed with various distance definitions (i.e., chamfer or
Euclidean distance). To the best of our knowledge, the reported algo-
rithm is the very first curve-thinning method for the FCC grid.

Keywords: FCC grid · Distance transform · Skeletonization ·
Thinning

1 Introduction

Skeletonization provides region-based shape descriptors which represent the gen-
eral shape of (segmented) digital binary objects [16]. In 3D, there are three
types of skeleton-like features: the medial surface (surface skeleton), the cen-
terline (curve skeleton), and the topological kernel. The medial surface provides
an approximation of the continuous 3D skeleton, since it can contain 2D sur-
face patches. The centerline is a line-like 1D representation of objects. In many
applications [15], it is a concise representation of tubular 3D objects. The topo-
logical kernel is a minimal set of points that is topologically equivalent [11] to
the original object.

Distance transform (DT ) converts a binary picture consisting of feature and
nonfeature elements to a picture, where the value of each element gives the
distance to the nearest feature element [3]. Distance-based skeletonization relies
on a distance transform where nonfeature elements form the objects in the input
picture to be represented. Thinning is another strategy for skeletonization, which
is an iterative object reduction in a topology preserving way [12]. Distance-based
methods are frequently combined with thinning [1,4,17,24].

Most of the existing 3D skeletonization algorithms act on the cubic grid, in
which each point is associated with an element of Z

3. According to our best
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knowledge, no one proposed curve-skeletonization methods on the face-centered
cubic (FCC) grid. This non-conventional grid tessellates the 3D Euclidean space
into rhombic dodecahedra [9,20]. The importance of the FCC grid shows an
upward tendency due to its advantages of geometrical and topological proper-
ties [2,5,6,22,23]. In this paper, the very first curve-thinning algorithm acting
on the FCC grid is presented.

The rest of this work is organized as follows: Sect. 2 reviews the basic notions
of 3D digital topology and distance transform. In Sect. 3, our curve-thinning
algorithm is introduced. Some experimental results are shown in Sect. 4, where
we compare the algorithm’s computation times with different arguments and
evaluate the reconstructibility of the original objects. Finally, we round off this
work with some concluding remarks in Sect. 5.

2 Basic Notions and Results

The FCC grid is usually denoted by F, whose elements are called points. The
FCC grid is defined as the following subset of Z3:

F = {(x, y, z) ∈ Z
3 | x + y + z ≡ 0 (mod 2)}. (1)

We make a distinction among the following three types of neighborhood of a
point p = (px, py, pz) ∈ F:

N12(p) = {(qx, qy, qz) ∈ F | (px − qx)2 + (py − qy)2 + (pz − qz)2 = 2}
N6(p) = {(qx, qy, qz) ∈ F | (px − qx)2 + (py − qy)2 + (pz − qz)2 = 4}
N18(p) = N12(p) ∪ N6(p)

(2)

Two points p, q ∈ F are i-adjacent if q ∈ Ni(p) (i ∈ {6, 12, 18}), see Fig. 1.

Fig. 1. The 18-neighborhood of point p (N18(p)) in F (left) and its voxel representation
(right). N12(p) contains the points marked “•” (lightgray voxels), N6(p) contains the
points marked “�” (darkgray voxels). Note that unmarked elements of Z3 are not in F.

Next, we apply the fundamental concepts of digital topology as reviewed by
Kong and Rosenfeld [11]. An (m,n) binary digital picture on the FCC grid is a
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quadruple P = (F,m, n,B), where each element in B ⊆ F is called a black point ,
and each point in F \ B is called a white point . Furthermore, m and n are the
assigned neighborhood relations to all black and white points, respectively. A
black point p is called a border point if Nn(p) \B �= ∅, otherwise p is an interior
point. Picture P is finite if B contains finitely many black points. In this paper,
our attention is focused on (18, 12) pictures.

Since all studied relations are symmetric, their reflexive and transitive clo-
sures generate equivalence relations, and their equivalence classes are called com-
ponents . A black component or an object is an m-component of B, while a white
component is an n-component of F \ B. In a finite picture, there is a unique
white component called background . A finite white component is called a cavity .

A reduction transforms a binary picture only by changing some black points
to white ones (which is referred to as deletion). Topology preservation is a major
concern in skeletonization. A 3D reduction does not preserve topology [10] if

• any object in the input picture is split or is completely deleted,
• any cavity in the input picture is merged with the background or another

cavity,
• a cavity is created where there was none in the input picture, or
• a hole (that e.g. donuts have) is eliminated, merged with other holes or cre-

ated.

A simple point is a black point whose deletion is a topology preserving reduc-
tion [11]. Sequential thinning algorithms traverse the border points of a picture,
and focus on the actually visited single point for possible deletion, hence for such
algorithms, the deletion of only simple points ensures topology preservation. The-
orem 1 states that simpleness is a local property in F which can be determined
by investigating the 18-neighborhood of a point. Figure 2 shows examples for
simple and non-simple points.

Theorem 1 [8]. Let p be a black point in a (F, 18, 12, B) picture. Then p is a
simple point if and only if the following conditions hold:

1. Point p is 18-adjacent to exactly one 18-component of N18(p) ∩ B.
2. Point p is 12-adjacent to exactly one 12-component of N12(p) \ B.

The most frequently used distance functions for two points p = (px, py, pz)
and q = (qx, qy, qz) are neighborhood distances [13], and the Euclidean distance,
de(p, q) =

√
(px − qx)2 + (py − qy)2 + (pz − qz)2. In F, neighborhood distances

d12(p, q) and d18(p, q) are taken into consideration. For better approximations of
the exact Euclidean distance, the length of the moves from a point to its neigh-
bors can be weighted according to some criteria, and the path of the minimal
sum of weights called as chamfer distances are used [3,25]. Let 〈a, b, c〉 denote
the general chamfer mask for the FCC grid, where a and b are the weights
assigned to all points in N12(p) and N6(p), respectively, weight c is assigned to
all points which are

√
6 far from the central point 0 (see Fig. 3). For practical

usage, we prefer integer weights. Some examples are presented in [7,21], e.g.,
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Fig. 2. Examples for simple and non-simple points in (18, 12)-pictures. Notice that
central black point p is simple only in the left configuration because there are two
and zero 12-connected white components in N12(p) in the middle and right situation,
respectively. Hence, Condition 2 of Theorem 1 is violated in both cases.

Fig. 3. Chamfer mask for distance transform on F, in which the three weights 0 < a ≤
b < c are taken into consideration. There are 42 examined positions in total, and they
all fit into the 5 × 5 × 5 local environment. Note that points depicted “�” are unused
grid positions (according to the center point 0), and the unmarked elements of Z3 are
not points in F. Neighbors labeled letters with white and lightgray background are
investigated in the forward and backward scan during distance transform, respectively.
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the recommended 〈11, 16, 19〉, which was taken under detailed testing in Sect. 4.
Note that distances d12 and d18 are equivalent to the 〈1,∞,∞〉 and 〈1, 1,∞〉
chamfer distances, respectively. Computation of the chamfer DT requires two
raster scans [7,21] (see Fig. 3), while the (non-errorfree) Euclidean DT takes
four scans on the FCC grid [19]. Our testing explained in Sect. 4 is based on
them.

3 The Proposed Thinning Algorithm

In this section, our distance-driven thinning algorithm is presented, see Algo-
rithm 1, in which all border points with the same distance value are visited for
possible deletion. The reported method extracts directly the centerline of the
objects in (18, 12) pictures. In order to preserve line branches, some geometric
constraints must be applied. For this purpose, we retain either of two types of
curve endpoints. Point p ∈ B is an endpoint of type E1, if |N18(p) ∩ B| = 1,
i.e., p has only one black 18-neighbor. A black point is said to be a line point
if there are exactly two black points in its 18-neighborhood such that they are
not 18-adjacent to each other. Point p is called an endpoint of type E2, if p is an
endpoint of type E1 and its only black neighbor is a line point.

Algorithm 1: Distance-driven curve-thinning — DDCT
Input: picture (F, 18, 12, X) with the initial objects in it, distance d, and

endpoint of type ε ∈ {E1, E2}
Output: picture (F, 18, 12, Y ) containing the centerline of objects
// Distance transform

1 DT ← computeDT(X, d)
// Thinning

2 Y ← X
3 for k ← 1 to max(DT) do
4 repeat
5 D ← {p ∈ Y | DT (p) ≤ k, p is simple for Y and not an endpoint of type

ε}
6 changed any ← false
7 repeat
8 changed ← false
9 foreach p ∈ D do

10 if p is simple for Y and not an endpoint of type ε then
11 Y ← Y \ {p}
12 D ← D \ {p}
13 changed ← true
14 changed any ← true

15 until changed = false

16 until changed any = false



Distance-Driven Curve-Thinning on the FCC Grid 359

For the implementation, we use a computationally efficient scheme for thin-
ning algorithms, which was introduced by Palágyi [14]. This method utilizes the
fact that all thinning algorithms may delete only border points. Hence, we do
not have to evaluate the deletion rules for interior points. All border points are
stored in a list in the current picture. Thus, the repeated scans/traverses of the
entire array (that stores the actual picture) can be avoided.

To ensure distance-driven thinning, all distinct distance values are collected
into a set right after the distance transform. The for loop (see lines 3–16) iter-
ates through this set in ascending order. As a consequence, the total number
of iterations is equal to the number of (positive) unique distance values, which
depends on the shape of objects and the chosen distance function.

4 Results

The reported algorithm was tested on several objects of different shapes. Five
of them are shown in Fig. 4. We examined the reconstructibility of objects from
their centerline (see Fig. 5, 6, 7, 8 and 9) by performing reverse distance trans-
form [4,18].

Fig. 4. The selected five test objects.
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To make the difference between the applied parameters more visible, the
produced centerlines with distinct line endpoint criteria are fusioned, where red,
green and gray voxels belong to the E1, E2 and both produced centerlines with
the indicated parameters, respectively. Furthermore, the transparent contour of
the original object is displayed in order to verify the centeredness of the resulting
centerlines. We can observe that preserving endpoints of type E2 leaves fewer
branches compared to E1. Thus, the centerline with condition E2 gives a more
concise representation of the object. However, the reconstructed object is usually
less compact because of the loss of details of its shape. We got the worst quality of
reconstruction in the case of the holey cube, because it is the least tubular object
without any curved surface. Hence, centerline is not a suitable shape descriptor
for it. Since sequential thinning algorithms are sensitive to the visiting order of
border points, they may produce asymmetric skeletons, just like criterion E1
from the holey cube or the tube.

Fig. 5. Produced centerlines of the tube by using d18 and Euclidean distance (left) and
the reconstructed objects (middle and right).
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Table 1. Evaluation of Algorithm 1 on objects showed in Fig. 4. The investigated
distance functions are listed in ascending order of their geometric accuracy.

Test
object

Distance
function

Endpoint
type

Running time
(millisec)

Object
reconstruction

(%)

Holey cube

d18
E1 135 48.5

E2 130 47.5

d12
E1 139 40.7

E2 139 32.6

〈11, 16, 19〉 E1 177 57.9

E2 176 51.8

de
E1 299 58.8

E2 289 58.0

Dragon

d18
E1 122 73.3

E2 120 65.7

d12
E1 139 82.6

E2 137 77.1

〈11, 16, 19〉 E1 177 86.4

E2 170 80.8

de
E1 265 88.0

E2 257 82.6

Fertility

d18
E1 111 70.1

E2 110 64.4

d12
E1 123 83.5

E2 122 78.4

〈11, 16, 19〉 E1 163 87.3

E2 159 82.3

de
E1 238 88.5

E2 232 81.1

Gear

d18
E1 130 53.4

E2 127 38.6

d12
E1 142 81.3

E2 141 75.0

〈11, 16, 19〉 E1 164 82.1

E2 159 76.2

de
E1 310 80.3

E2 294 73.0

Tube

d18
E1 209 62.0

E2 204 55.8

d12
E1 230 73.0

E2 223 66.8

〈11, 16, 19〉 E1 305 86.7

E2 296 86.0

de
E1 520 94.2

E2 512 93.6
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Fig. 6. Produced centerlines of the holey cube by using d12 and Euclidean distance
(left) and the reconstructed objects (middle and right).

Fig. 7. Produced centerlines of the dragon by using d12 and a chamfer distance (left)
and the reconstructed objects (middle and right).
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Fig. 8. Produced centerlines of the ‘fertility’ by using d12 and a chamfer distance (left)
and the reconstructed objects (middle and right).

Fig. 9. Produced centerlines of the gear by using d18 and a chamfer distance (left) and
the reconstructed objects (middle and right).
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We also measured the required time for the curve-thinning method to process.
For this purpose, the std::chrono library was applied in the implementation
written in C++ on a usual desktop (HP ProDesk 400 G4; 3.20 GHz Intel Core
i5-6500; Windows 10× 64). A detailed list can be found in Table 1. Note that just
the distance transform and the iterative thinning process were considered here,
file operations were not taken into account. Notice that the better the approx-
imation to the Euclidean distance is, the more time the thinning takes. This
happens due to the growing number of distinct values, which implies that the
number of thinning iterations is increasing as well. Additionally, the Euclidean
DT takes more raster scans than chamfer ones through the picture, which makes
it computationally even more expensive. We can also observe that thinning with
endpoint condition E2 takes less time because it leaves fewer border points to
visit for possible deletion in the remaining iterations.

5 Conclusions

The proposed algorithm DDCT is the first curve-thinning method working on
the FCC grid. Two types of line endpoints are introduced, and we showed that
the obtained centerlines allow recovery of a significant subset of the object,
especially in case of tubular-like models.

Future research will be devoted to adapting the presented results to (12, 12)
and (12, 18) pictures and constructing parallel thinning algorithms on the FCC
grid.

Acknowledgements. Project no. TKP2021-NVA-09 has been implemented with the
support provided by the Ministry of Innovation and Technology of Hungary from the
National Research, Development and Innovation Fund, financed under the TKP2021-
NVA funding scheme.
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5. Čomić, L., Magillo, P.: Repairing 3D binary images using the FCC grid. J. Math.
Imaging Vision 61, 1301–1321 (2019)
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Abstract. Plane-probing algorithms have become fundamental tools to
locally capture arithmetical and geometrical properties of digital surfaces
(boundaries of a connected set of voxels), and especially normal vector
information. On a digital plane, the overall idea is to consider a local
pattern, a triangle, that is expanded starting from a point of interest
using simple probes of the digital plane with a predicate “Is a point x in
the digital plane?”. Challenges in plane-probing methods are to design
an algorithm that terminates on a triangle with several geometrical prop-
erties: its normal vector should match with the expected one for digital
plane (correctness), the triangle should be as compact as possible (acute
or right angles only), and probes should be as close as possible to the
source point (locality property). In addition, we also wish to minimize the
number of iterations or probes during the computations. Existing meth-
ods provide correct outputs but only experimental evidence for these
properties. In this paper, we present a new plane-probing algorithm that
is theoretically correct on digital planes, and with better experimental
compactness and locality than existing solutions. Additional properties
of this new approach also suggest that theoretical proofs of the afore-
mentioned geometrical properties could be achieved.

Keywords: Digital plane recognition · Plane-probing algorithm ·
Lattice reduction

1 Introduction

A digital surface is a quadrangular mesh that corresponds to the boundary of
a union of regularly spaced unit cubes (voxels). We are interested in processing
the geometry of such surfaces, for instance to recognize local elementary struc-
tures such as digital plane segments [1,4,5,14], or to estimate some differential
quantities [2,3]. When performing such local computations, we usually need to
capture local geometric properties of the surface around a given point. This can
be done either by considering a fixed neighborhood, e.g., using a Euclidean ball
with fixed radius, or by adapting such neighborhood to local geometric proper-
ties. Probing algorithms target the latter case by iteratively growing a pattern
with update rules given from probing of the geometry. Plane-probing algorithms
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analyze digital planes [10] without imposing a parameter that controls the size
of the patch [6–9,11]. The key objective of these techniques is to exploit arith-
metical and geometrical properties of the digital plane being explored in order
to retrieve its unknown arithmetical parameters, e.g., its normal vector. When
applied on generic non-planar (implicit or explicit) digital surfaces, outputs of
plane-probing algorithms could be used to locally estimate the normal bundle of
the surface, or could be a key ingredient for surface reconstruction [9].

Plane-probing algorithms can mainly be categorized into two types:
tetrahedra-based plane-probing algorithms [8,9,11] and parallelepiped-based [6].
In this paper, we focus on tetrahedra-based plane-probing algorithms applied on
a digital plane. Those algorithms update the three vertices of the tetrahedron
base until it matches the normal of the digital plane. Meanwhile, the apex of the
tetrahedron remains fixed (see Fig. 1).

Fig. 1. The evolution (from left to right) of a tetrahedra-based plane-probing algorithm
for normal (1, 2, 5).

Among existing approaches to update the tetrahedra vertices, we can mention
the H-algorithm and the R-algorithm [9]. The main advantage of such approaches
is their proximity to the source point. Indeed, the apex of the tetrahedron does
not move, stays right above the starting point and always projects into the oppo-
site face, i.e., the base, in the direction of the starting point (see Fig. 1 and [9,
Lemma 4]). However, we do not have an upper bound of the probed area. A
comparison of H-algorithm and R-algorithm is illustrated in Fig. 2, where only
the triangles corresponding to the bases are drawn. The outputs of the two algo-
rithms are identical, but H-algorithm probes a larger region than R-algorithm
does. We also spot more obtuse triangles in H-algorithm’s evolution. Further-
more, as stated in [12], our new algorithm also leads to additional theoretical
results such as the minimality of the lattice generated by the last triangle. In
this article, we mainly focus on the algorithmic sides of the new approach. The
paper is divided into three parts: in Sect. 2, we recall some notations used in [11]
and describe the general framework of plane-probing algorithms. We precisely
describe and analyze our new algorithm in Sect. 3, whereas Sect. 4 is devoted to
experimental results.

2 Plane-Probing Algorithm Variants

A standard and rational digital plane is an infinite digital set defined by a normal
N ∈ Z

3 \ {0} and a shift value μ ∈ Z as follows [10]:

Pμ,N := {x ∈ Z
3 | μ ≤ x · N < μ + ‖N‖1}.



368 J.-T. Lu et al.

Fig. 2. The evolution for normal (1, 73, 100) with H-algorithm (a) and R-algorithm
(b). Every triangle of the evolution is superimposed. The initial triangle is black. The
next ones are more and more blue while iterating. The last one is red. (Color figure
online)

In this paper, we suppose w.l.o.g. that μ = 0 and that the components of N
are positive, i.e., N ∈ N

3 \ {0}. Given a digital plane P ∈ {P0,N | N ∈ N
3 \

{0}} of unknown normal vector, a plane-probing algorithm computes the normal
vector N of P by sparsely probing it with the predicate “is x in P?” (InPlane(x)
predicate hereafter). We describe below in a uniform way the algorithms H and
R introduced in [9] as well as our new method (see also Algorithm 1).

•p
e0

e1

e2

◦q
•v

(0)
0

•v(0)
1

•
v(0)

2

Initialization. Let (e0, e1, e2) be the canonical basis of
Z

3. We assume that a starting point p satisfies three
conditions: (1) p ∈ P, (2) the apex q := p+(1, 1, 1) /∈
P and (3) the initial triangle T(0) := (v(0)

k )k ∈Z/3Z ⊂
P, where v(0)

k := q − ek for all k ∈ Z/3Z (see inset
figure and Algorithm 1, line 1).

Neighborhood and Update Rule. At every step i ∈ N, the triangle T(i) is defined
from updated vertices {v(i)

k }k ∈Z/3Z and represents the current approximation of
the plane P. All algorithms update one vertex of T(i) per iteration. That vertex
is replaced by a point of P from a candidate set, also called neighborhood in [9].
To properly define distinct neighborhoods, we first define the following sets:

SH := {(α, β) ∈ {(1, 0), (0, 1)}. (1)
SR := {(α, β) ∈ {(1, λ), (λ, 1) | λ ∈ N}. (2)

SL := {(α, β) ∈ N
2 \ (0, 0)}. (3)

Note that SH ⊂ SR ⊂ SL. At every step i and for any S ∈ {SH , SR, SL}, the
neighborhood is now defined as follows:

N (i)
S :=

{
v(i)

k + α(q − v(i)
k+1) + β(q − v(i)

k+2) | k ∈ Z/3Z, (α, β) ∈ S
}

. (4)
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Fig. 3. Illustrations of the neighborhoods: N (i)
SH

(black squares), N (i)
SR

(white squares)
and N (i)

SL
includes every point on the lattices, excepted the triangle vertices.

See Fig. 3 for an illustration of the neighborhoods. The H-algorithm is based
on N (i)

SH
, which looks like an Hexagon, whereas the R-algorithm is based on N (i)

SR
,

which consists of Rays. In this paper, we propose a lattice-based algorithm,
denoted by the letter L, for lattice, and which uses the largest neighborhood
N (i)

SL
.

Let H(i)
+ be the half-space delimited by T(i) and containing N (i)

S . In addition,
let B(T,x) be the closed ball defined by T(i) and a fourth point x not in the
plane passing by T(i). As in [11], for any pair of points x,x′, not in the plane
passing by T(i), we say that x′ is closer to T(i) than x, denoted x′ ≤T(i) x, if
and only if (B(T(i),x′) ∩ H(i)

+ ) ⊆ (B(T(i),x) ∩ H(i)
+ ). As ≤T(i) is reflexive and

transitive, and since all pairs of points in H(i)
+ are comparable [12], it defines a

total preorder.
The algorithms replace a vertex of T(i) with a point of the set N (i)

S

⋂
P that

is a closest one according to ≤T(i) . More precisely, if N (i)
S

⋂
P 	= ∅, there is at

least an index k ∈ Z/3Z and numbers (α, β) ∈ N
2 \ (0, 0) such that

∀x ∈ N (i)
S ∩ P, v(i)

k + α(q − v(i)
k+1) + β(q − v(i)

k+2) ≤T x. (5)

Note that the triple (k, α, β) may not be unique when several points are in a
cospherical position. The update rule is then [9, Lemma 2]:

⎧
⎪⎨
⎪⎩

v(i+1)
k := v(i)

k + α(q − v(i)
k+1) + β(q − v(i)

k+2),
v(i+1)

k+1 := v(i)
k+1,

v(i+1)
k+2 := v(i)

k+2.

(6)

As shown in Algorithm 1, lines 5 to 7, Eqs. (5) and (6) are used to update the
current triangle.

Termination. The algorithms terminate at a step n, when the neighborhood has
an empty intersection with the plane, i.e., when N (n)

S

⋂
P = ∅ (Algorithm 1,
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line 3). The number of steps, n, is less than or equal to ‖N‖1 − 3 [9, Theorem
1], which is a tight bound reached for any normal of components (1, 1, r) with
r ∈ N \ {0}.

If p is one of the least high points in P, i.e., p · N = 0, the vertices of T(n) are
among the highest ones in P, i.e., ∀k ∈ Z/3Z,v(n)

k · N = ‖N‖1 − 1 [9, Theorem
2]. A consequence is that T(n) is aligned with P. In other words, its normal is
equal to N [9, Corollary 4]. In addition, one can deduce from the vertices of T(n)

a basis of the lattice {x | x · N = ‖N‖1 − 1} [9, Corollary 5].
Even if [9] only introduces the neighborhoods H and R, the above-mentionned

results and their proofs are correct for parameters (α, β) ∈ SL in the update rule
and, as a consequence, for the newly introduced neighborhood N (i)

SL
as well.

Our motivation for introducing such a neighborhood is linked to the com-
pactness. Indeed, starting from an identical triangle, a point chosen by the L-
algorithm always lies in the circumscribed sphere that passes the point chosen
by the H- or R-algorithm. Furthermore, it is proven that every circumscribed
sphere of two consecutive triangles provided by the L-algorithm does not include
any other points of the digital plane [12, Theorem 4]. In the next section, we
show how to efficiently find a closest point in the L-neighborhood. The above-
mentionned result will be crucial in Lemma 7.

Algorithm 1: Plane-probing algorithms H, R ([9]) and L (our method)
Input: The predicate InPlane := “Is a point x ∈ P?”, a point p ∈ P and the

type of neighborhood S ∈ {SH , SR, SL} (see equations (1)–(4))
Output: A normal vector N̂ and a basis of the lattice {x | x · N̂ = ‖N‖1 − 1}.

1 q ← p+ (1, 1, 1) ; (v(0)
k )k ∈Z/3Z ← (q − ek)k ∈Z/3Z ; // initialization

2 i ← 0 ;
3 while N (i)

S ∩ {x | InPlane(x)} �= ∅ do
4 Let (k, α, β) be such that, for all y ∈ N (i)

S ∩ {x | InPlane(x)},
5 v

(i)
k + α(q − v

(i)
k+1) + β(q − v

(i)
k+2) ≤T(i) y ; // equation (5)

6 v
(i+1)
k ← v

(i)
k + α(q − v

(i)
k+1) + β(q − v

(i)
k+2) ; // equation (6)

7 ∀l ∈ Z/3Z \ k, v
(i+1)
l ← v

(i)
l ;

8 i ← i + 1 ;

9 B ← {v(i)
0 − v

(i)
1 ,v

(i)
1 − v

(i)
2 ,v

(i)
2 − v

(i)
0 } ;

10 Let b1 and b2 be the shortest and second shortest vectors of B ;
11 return b1 × b2, (b1,b2) ; // × denotes the cross product

3 The L-Algorithm

The most expensive task in Algorithm 1 is computing a point of N (i)
S ∩P, which

is closest according to ≤T(i) (see lines 4 and 5). A brute-force method would be
computing the whole finite set N (i)

S ∩ P and finding a point of that set closer
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than any others, which would require lots of probes. In practice, one does not
need to probe so much, because one can safely discard a large part of N (i)

S ∩ P.
In this section, we focus on a step i ∈ {0, . . . , n} and for the sake of simplicity,

we drop the exponent (i) in the notations. Furthermore, we focus on the 2D
lattice

∀k ∈ Z/3Z, Lk := {vk + αmk+1 + βmk+2 | (α, β) ∈ SL} ,

where mk := q − vk for all k ∈ Z/3Z. We propose an algorithm (Algorithm 2)
that selects a small and sufficient set of candidate points included in Lk.

3.1 A Smaller Candidate Set

We introduce, in the first place, two general geometrical results which will be
useful.

Lemma 1. Let two non-zero vectors u,w ∈ R
3 and a closed ball whose border

passes through the origin o and the point o +u+w. If u ·w ≥ 0, at least one of
the two points o + u and o + w lies in the ball.

Proof. We focus on the plane including o, o + u, o +w (and o + u+w). In this
plane, if u ·w ≥ 0, one half of the disk of diameter [o, o +u+w] contains o +u,
whereas the other contains o + w. Furthermore, any other disk whose border
passes through o and o+u+w must include one of the previous halves, thus one
of the two points. Since any ball whose border passes through o and o + u + w
covers such a disk, the result follows (see Fig. 4-(a)). �

Lemma 2. Let a non-zero vector u ∈ R
3 and a closed ball whose border passes

through the origin o and the point o +u. No point o + δu such that δ > 1 lies in
the ball.

Proof. The intersection between the ball and the ray starting from o in direction
u is the segment [o, o+u], which is equal, by convexity, to the set {o+δ′u}0≤δ′≤1.
The points o + δu such that δ > 1 do not lie in that set and therefore do not lie
in the ball. �

Fig. 4. Illustrations for (a) Lemma 3 and (b) Lemma 2.

An elementary application of the above lemmas is the following result:
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Fig. 5. Angle between mk+1 and mk+2 : (a) when mk+1 ·mk+2 ≥ 0, (b) when mk+1 ·
mk+2 < 0 and mk+2 · (mk+1 + mk+2) < 0. Here, we also have (mk+1 + γmk+2) ·
(mk+1 + (γ + 1)mk+2) < 0 with γ = 1 (see Lemma 4 and the green angle). (Color
figure online)

Lemma 3. For all k ∈ Z/3Z, let Λk be the set {vk + αu + βw | (α, β) ∈ SL},
where u, w are any two non-zero vectors of Z3 such that vk + u,vk +w ∈ H+.
If u · w ≥ 0, we have either vk + u ≤T x for all x ∈ Λk or vk + w ≤T x for all
x ∈ Λk.

Proof. Let us consider the ball B(T,x) for a point x := vk + αu + βw, with
α, β ≥ 1. Since αu·βw ≥ 0, by Lemma 1, we know that either vk+αu or vk+βw
lies in B(T,x). Let us assume w.l.o.g. that vk +αu ∈ B(T,x), which means that
vk +αu ≤T x. By Lemma 2, we then conclude that vk +u ≤T vk +αu ≤T x. �

Thanks to the previous lemma, if mk+1 · mk+2 ≥ 0, one can consider only
two points of Lk (Fig. 5(a)). Otherwise, if both mk+1 · (mk+1 + mk+2) ≥ 0
and (mk+1 + mk+2) · mk+2 ≥ 0, one can again consider as few as three points:
vk +mk+1, vk +mk+2 and vk +mk+1 +mk+2. We now focus on the case where
either mk+1 · (mk+1 +mk+2) or mk+2 · (mk+1 +mk+2) is strictly negative (see
for instance Fig. 5(b)).

Lemma 4. Let u, w be two non-zero vectors in Z
3. If there exists γ ≥ 1 such

that
(u + γw) · (u + (γ + 1)w) < 0, (7)

then γ is the unique integer greater than or equal to 1 that verifies

(u + (γ + 1)w) · w > 0 > (u + γw) · w. (8)

In this case, γ =
⌊

−u·w
‖w‖2

⌋
.

Proof. We refer to Fig. 5(b) for an example where u = mk+1 and w = mk+2. By
rewritting the left-hand side of (7) as (u+γw) · ((u+γw)+w

)
and developing,

we get

‖u + γw‖2 + (u + γw) · w < 0 ⇒ (u + γw) · w < 0 ,

which is the right-hand side of (8). Similarly, by rewritting the left-hand side of
(7) as

(
(u + (γ + 1)w) − w

) · (u + (γ + 1)w) < 0 and developing, we have

‖(u + (γ + 1)w)‖2 − w · (u + (γ + 1)w).
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As this expression is strictly negative by (7), we obtain (u + (γ + 1)w) · w > 0,
which is the left-hand side of (8). To end, by developing (8) and isolating the γ,
we obtain γ + 1 > −u·w

‖w‖2 > γ, thus unicity. �

Lemma 5. Let u, w be two non-zero vectors in Z
3. If there exists γ ≥ 1 veri-

fying (7), then for all c ∈ {0, 1, . . . , γ − 1}, (u + cw) · (u + (c + 1)w) > 0.

Proof. First, observe that for all c ∈ N \ {0},

(u + (c − 1)w) · (u + cw) = (u + cw) · (u + (c + 1)w) − 2w · (u + cw). (9)

To determine the sign of −2w ·(u+cw), note that we obviously have cw2 < γw2

and, from the right-hand side of (8), γw2 < −u · w. As a result,

cw2 < −u · w ⇔ w · (u + cw) < 0.

Since −2w · (u+ cw) > 0, it is enough to show that the statement is true for
c = γ −1 because the result for the smaller values of c then follows by induction.

By (8), we also have w · (u + γw) < 0 < (u + γw)2. Therefore,

2w · (u + γw) < (u + γw)2 + w · (u + γw) = (u + γw) · (u + (γ + 1)w).

From this lower bound and replacing c by γ in (9), we finally obtain (u + (γ −
1)w) · (u + γw) > 0, which concludes the proof. �

The two previous lemmas provide a set of lattice bases whose vectors form
an acute angle. Indeed, with u = mk+1 and w = mk+2 and assuming that
γ exists, we have (mk+1 + (γ + 1)mk+2) · mk+2 > 0 (Lemma 4) and for all
c ∈ {0, 1, . . . , γ − 1}, (mk+1 + cmk+2) · (mk+1 + (c + 1)mk+2) > 0 (Lemma 5).
Then, it straightfowardly follows from Lemma 3 that the closest points in the
set

{vk + mk+2} ∪ {
vk + mk+1 + cmk+2 | c ∈ {0, . . . , γ + 1}}

are closer than any other points in the set

Lk \ {vk + α
(
mk+1 + γmk+2

)
+ β

(
mk+1 + (γ + 1)mk+2

) | α, β ≥ 1}.

One part of Lk cannot be covered because (mk+1 + γmk+2) · (mk+1 + (γ +
1)mk+2) < 0. In order to cope with that problem, we simply recursively apply
the previous results.

Definition 1. For any pair of linearly independent non-zero vectors (u,w) ∈
Z

3 × Z
3, we define a sequence of vector pairs Ωu,w = {(uj ,wj)}j≥0 as follows:

1. u0 = u and w0 = w.
2. For any j ≥ 0, the pair (uj+1,wj+1) exists if and only if there exists γj ≥ 1

such that
(uj + γjwj) · (uj + (γj + 1)wj) < 0, (10)

then
uj+1 = wj , wj+1 = uj + γjwj . (11)
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Definition 2 (Candidate set). For k ∈ Z/3Z and for any pair of vectors
(u,w) in the set {(mk+1,mk+2), (mk+2,mk+1)}, we define

Ck :=
⋃

(uj ,wj)∈Ω(u,w)

{vk + wj} ∪ {
vk + uj + cwj | c ∈ {0, . . . , γj + 1}}.

The finiteness of Ck stems from the finiteness of Ωu,w:

Lemma 6. The sequence Ωu,w = {(uj ,wj)}j≥0 is finite.

Proof. From (11), we have for any j ≥ 0, −uj+1 · wj+1 = −wj · (uj + γjwj).
Developing the last expression, we obtain −uj · wj − γj‖wj‖2, which is strictly
less than −uj · wj . Therefore, the sequence of natural numbers {−uj · wj}j≥0

is strictly decreasing. Since, in addition, −uj · wj ≥ ‖wj‖2, while there exists
γj ≥ 1, the sequence Ωu,w is finite. �

3.2 Even Smaller Candidate Set

The set Ck described in the previous section is a union of subsets of aligned
points. We show below that, for each subset, the last point is always closer than
the other ones:

Lemma 7. For any vectors u,w ∈ Lk such that there exists γ ≥ 1 such that
(u + γw) · (u + (γ + 1)w) < 0, then for any 0 ≤ c ≤ γ − 1, we have u+ γw ≤T

u + cw.

Proof. We assume w.l.o.g. that k = 0 and we use the notation δ0
T(x,y) intro-

duced in [11], where x and y are relative points of Z3 when considering v0 as
origin. We recall that if v0 + x ∈ H+, then v0 + x ≤T v0 + y ⇔ δ0

T(x,y) ≥ 0.
In order to show that for all 0 ≤ c ≤ γ − 1, δ0

T(u + γw,u + cw) ≥ 0, we use
the following identity [11, equation (6)]:

δ0
T(z, z′+z′′) = δ0

T(z, z′)+δ0
T(z, z′′)+

(
2z′ ·z′′)det [m0 − m1,m0 − m2, z]. (12)

Indeed, as c = γ − (γ − c), we obtain (with z = z′ = u + γw and z′′ =
−(γ − c)w):

δ0T(u+ γw,u+ cw) = δ0T(u+ γw,u+ γw)
︸ ︷︷ ︸

=0

+ δ0T(u+ γw, −(γ − c)w)
︸ ︷︷ ︸

≥0, see item 1.

− 2(γ − c) (u+ γw) · w
︸ ︷︷ ︸

≤0 by Lemma 4 (8)

det [m0 − m1,m0 − m2,u+ γw]
︸ ︷︷ ︸

>0, see item 2.

.

1. Let H− be the half-space lying below the plane incident to T. Let us set
x := u+γw and y := −(γ−c)w. By definition, v0+x ∈ H+ and v0+y ∈ H−.
We have to prove that v0+x ≤T v0+y. Let x� be the closest point chosen for
update. By definition, x� ≤T v0+x, which implies that (H−∩B(T,v0+x)) ⊆
(H− ∩ B(T,x�)) (see Lemma 8 in appendix). Due to the above inclusion
relation, since v0 +y is not in the interior of B(T,x�) [12, Theorem 4], v0 +y
is not in the interior of B(T,v0 + x) either, i.e., v0 + x ≤T v0 + y.
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Fig. 6. Roadmap

2. For any (α, β) ∈ SL, det [m0 − m1,m0 − m2, αm1 + βm2] = α +
β > 0, because det [m0,m1,m2] = 1 [9, Lemma 3]. Notably,
det [m0 − m1,m0 − m2,u + γw] > 0. �

Lemma 7 shows that the last point should be the closest. However, in the
case where this last point is not in P, we can resort to a binary search as in [9,
Algorithm 4].

3.3 Algorithm and Complexity

Figure 6 sums up the process of filtering the set Lk. However, we have to discard
the points that are not in P. For this purpose, we use the predicate InPlane in
the whole procedure detailed in Algorithm 2. We set ω := ‖N‖1. The worst-case
number of predicate calls is in O(ω) for the H-algorithm, O(ω log ω) for the R-
algorithm [9] and O(ω) for the R1-algorithm [11]. We give below a upper bound
for the L-algorithm.

Theorem 1. Algorithm 2 requires O(log ω) calls to the predicate InPlane: “is x
in P?”.

Proof. We consider the sequence of vectors (uj ,wj)0≤j≤jmax
. For any j ≥ 2, if

we rewrite the Eq. (11) with only uj−2, uj−1 and uj , we obtain the relation uj =
uj−2 +γjuj−1. We use the bar notation · above any vector x to denote its height
relative to N. Otherwise said, x := x ·N. Then, we have uj = uj−2 + γjuj−1 ≥
uj−2 + uj−1 (because γj ≥ 1 and uj−1 ≥ 0 by recurrence). By induction, we
have for all 2 ≤ j ≤ jmax, uj ≥ 2� j

2 	(u0 + u1), which leads to jmax ∈ O(log ω),
because the last point must be in P, i.e., ujmax

≤ ω. Note that there is only one
call to the predicate at each rank 2 ≤ j ≤ jmax (and at most four calls before),
hence a total of O(log ω) calls at the last rank. It remains to notice that the final
search also requires at most O(log ω) calls with an appropriate procedure such
as [9, Algorithm 4]. �
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Algorithm 2: CreateCandidateList(InPlane, T, q, k)
Input: The predicate InPlane, the triangle T, the point q and an index

k ∈ {0, 1, 2}
Output: A list Candk of candidate points around vertex vk

1 Initialize Candk; (m1,m2) ← (q − vk+1,q − vk+2);
2 Add vk +m1 (resp. vk +m2) to Candk if InPlane(vk +m1) (resp.

InPlane(vk +m2));
3 if InPlane(vk +m1) and InPlane(vk +m2) then
4 (u,w) ← (m1,m2);
5 while u · w < 0 do
6 if u · (u+w) ≤ 0 or w · (u+w) ≤ 0 then
7 if u · (u+w) ≤ 0 then
8 (u,w) ← (w,u);

9 Compute γ =
⌊

−u·w
‖w‖2

⌋

;

10 if (u+ γw) · (u+ (γ + 1)w) < 0) then
11 if InPlane(u+ γw) then
12 Add vk + u+ γw to Candk;
13 (u,w) ← (w,u+ γw);

14 else
15 Find a closest point x� ∈ {vk + u+ cw}0≤c≤γ+1 such that

InPlane(x�) and add it to Candk; break;

16 else
17 Find a closest point x� ∈ {vk + u+ cw}0≤c≤γ−1 such that

InPlane(x�) and add it to Candk; break;

18 else
19 Add vk + u+w to Candk if InPlane(vk + u+w); break;

20 return Candk;

A straightforward corollary is that the total number of predicate calls is in
O(ω log ω) for the L-algorithm, because there are O(ω) steps (see Sect. 2) and
O(log ω) calls to the predicate at every step due to the use of Algorithm 2
(Theorem 1).

4 Experimental Results

Overall Performance. First of all, Fig. 7 compares the number of predicate
calls for different plane-probing algorithms in a simple family of digital planes.
The figure also shows the result of an optimized variant of the L-algorithm,
denoted L-opt, that decreases the number of calls at each step by some values
that are bounded by a constant. The points of the H-neighborhood are included
in the L-neighborhood and are necessarily probed by our method. However,
some of the points remain inside the H-neighborhood after the vertex update.
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Fig. 7. Number of calls to predicate per iteration for N ∈ {(3, 19, r), 1 ≤ r ≤ 500}.

Table 1. Statistics of plane-probing algorithms (on planes whose normal is in χ on the
left or lying between (1, 1, 1) and (80, 80, 80) on the right). N i

call denotes the number
of calls to predicate at a step i and n is the number of steps. CN denotes the number
of points lying both in P and in BT(i),T(i+1) , the closed ball that passes through the
vertices of two consecutive triangles.

n N i
call

∑n−1
i=0 N i

call

alg. avg. avg. max. avg.
H 25.3756 6.00 6 152.25
R 19.2534 17.73 25 271.31
R1 19.2534 9.77 15 131.23
L 19.2529 12.03 21 144.85

N s.t. CN > 0 CN

alg. tot. tot. avg.
H 247457 75235972 471.46
R 90 424 2.44
R1 - - -
L 0 0 0

Therefore, instead of probing all of them repeatedly at each iteration, one can
use a cache so as not to probe twice the same point.

To provide more statistics, we have considered a large collection of implicit
digital planes with normal vectors in a set χ with relatively prime components,
in the range (1, 1, 1) to (200, 200, 200) (|χ| = 6578833). For all variants of plane-
probing algorithms, including our L-algorithm, we compare in Table 1 (left): the
number n of steps, the number N i

call of calls to the predicate per iteration and
the total number of calls

∑n−1
i=0 N i

call. The results are obtained from a C++

implementation using the DGtal Library [13]. The numbers do not perfectly
match with the table shown in [11] due to different implementation choices (e.g.,
the ordering in case of co-spherical points).

In average, the L-algorithm requires a fewer number of steps to obtain the
exact normal vector of the plane. We also remark that it usually examines fewer
points at each step than the R-algorithm. However, it does not beat the R1-
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Fig. 8. The relation between maximum distance and the l2-norm of normal vectors.
Each green dot corresponds to the output of the L-algorithm for a given normal vector
in χ. The theoretical upper bound is in blue. (Color figure online)

algorithm, the optimized version of R-algorithm, in terms of the number of calls
to the predicate.

Locality. We wish to estimate the proximity of the probes to the initial vertex
during the iterations. We define the max distance Distmax of the last triangle
T(n) as maxk{‖m(n)

k ‖}. Since the last triangle obtained by the L-algorithm has
only acute or right angles [12, Corollary 1], one can derive the following upper
bound (see the last section of [12]):

‖Distmax‖ ≤
√

2
3
‖N‖2

2 +
2√
3
‖N‖2 +

1
‖N‖2

2

. (13)

In Fig. 8, we measure the max distance of the last triangle computed by the L-
algorithm for all normals whose l2-norm is less than 200 and compare them with
the above theoretical bound. Both the theoretical bound and the bound given
by experiments shows that the max distance is linear with respect to ‖N‖2 and
the thickness of the digital plane.

Compactness. For all i ∈ {0, · · · , n − 1}, let BT(i),T(i+1) be the closed ball
that passes through the vertices of two consecutive triangles. We tested for
all normals in the set χ, that for the L-algorithm the sequence of radii of{BT(i),T(i+1)

}
0≤i≤n−1

is non-decreasing. This is not the case for H-algorithm
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(a) (b)

Fig. 9. The evolution of the algorithm R(a) and L(b) for the normal vector (2, 5, 156).

(a) (b) (c)

Fig. 10. Various measures for N = (198, 195, 193) per iteration during probings with
the H, the R1 and our L-algorithm: (from left to right) radius of BT(i),T(i+1) , maximal
distance to q, and perimeters of the triangles.

nor R-algorithm. An example is shown in the Fig. 10. We also count the number
of points in P and strictly inside the balls

{BT(i),T(i+1)

}
0≤i≤n−1

for all normals
of coprime coordinates between (1, 1, 1) and (80, 80, 80) (See Table 1, right). No
points are found in any balls for the L-algorithm while 75235972 points are found
for H-algorithm and 424 points for R-algorithm.

In particular, we observe for all vectors in χ that the steps of L-algorithm are
included in the ones of R-algorithm. This implies that L-algorithm always needs
fewer steps than the R-algorithm. For example, for the plane of normal vector
N = (2, 5, 6) (see Fig. 9), the L-algorithm uses 40 steps while the R-algorithm
uses 50 steps to find the exact normal vector. In Fig. 10, we also observe that
the curves of L-algorithm stop earlier than other plane-probing algorithms.

5 Conclusion

In this paper, we present a new plane-probing algorithm, called L-algorithm, that
takes into account more candidate points at each step than its predecessors. We
also observe that the L-algorithm requires fewer steps than the R-algorithm and
H-algorithm. In contrary, at each step, it needs to examine more candidate points
to find the closest point in its neighborhood. Despite this downside, the point
selected by the L-algorithm provides more interesting compactness features at
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every step. The circumspheres of consecutive triangles has non-decreasing radii
and do not include any point in the plane. In other words, the L-algorithm creates
a local 3D delaunay triangulation of the digital plane. We also proposed an
optimization of the plane-probing algorithm to reduce the number of predicate
calls. This improvement could be extended to the cases where we probe on a
digital surface.

In the future, we wish to bound from above the distance of all vertices to
the starting point in order to objectively measure the localness of plane-probing
algorithms. Another perspective is to further optimize the L-algorithm to reduce
its complexity to an amortized linear complexity.

Acknowledgements. We would like to thank the anonymous reviewers for having
devoted their time and effort to their extensive and constructive feedback. It helps us
considerably improve the content of this paper.

A Inclusion Relation in H− Used in Lemma 7

Lemma 8. If y ≤T x, then (B(T,x) ∩ H−) ⊆ (B(T,y) ∩ H−).

Proof. For any pair x,y ∈ H−, we denote y �T x if and only if (B(T,y)∩H−) ⊆
(B(T,x)∩H−). As for ≤T, note that �T is a total preorder. Let us consider now
two points x′ ∈ (∂B(T,x) ∩ H−) and y′ ∈ (∂B(T,y) ∩ H−) (both points lie on
the boundary of either B(T,x) and B(T,y) in H−). Note that, by construction,
B(T,y′) = B(T,y) and B(T,x′) = B(T,x).

Since the relation �T is total, we have either y′ �T x′ or x′ �T y′. As the
second case implies the remark statement by definition, we focus below on the
first case. By definition, y′ �T x′ implies (B(T,y) ∩ H−) ⊆ (B(T,x) ∩ H−).
Since we assume y ≤T x, we also have (B(T,y) ∩ H+) ⊆ (B(T,x) ∩ H+) by
definition. If we take the union of both sides of the inclusion, we have B(T,y) ⊆
B(T,x). If B(T,y) = B(T,x), the overall remark statement is trivially true. If
B(T,y) ⊂ B(T,x), we have a contradiction as both balls are constructed from
the same triangle T. �

References

1. Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm
for digital plane recognition. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont,
F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 346–357. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79126-3_31

2. Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Integral based curvature estimators in
digital geometry. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI
2013. LNCS, vol. 7749, pp. 215–227. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37067-0_19

3. Cuel, L., Lachaud, J.O., Mérigot, Q., Thibert, B.: Robust geometry estimation
using the generalized voronoi covariance measure. SIAM J. Imaging Sci. 8(2), 1293–
1314 (2015)

https://doi.org/10.1007/978-3-540-79126-3_31
https://doi.org/10.1007/978-3-642-37067-0_19
https://doi.org/10.1007/978-3-642-37067-0_19


A New Lattice-Based Plane-Probing Algorithm 381

4. Debled-Rennesson, I., Reveillès, J.: An incremental algorithm for digital plane
recognition. In: Proceedings of Discrete Geometry for Computer Imagery, pp. 194–
205 (1994)

5. Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane
recognition algorithm. Discret. Appl. Math. 151(1), 169–183 (2005)

6. Lachaud, J.O., Meyron, J., Roussillon, T.: An optimized framework for plane-
probing algorithms. J. Math. Imaging Vis. 62, 718–736 (2020)

7. Lachaud, J.O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to
compute the normal vector of a digital plane. J. Theor. Comput. Sci. (TCS) 624,
73–88 (2016)

8. Lachaud, J.O., Provençal, X., Roussillon, T.: Computation of the normal vector
to a digital plane by sampling signicant points. In: 19th IAPR International Con-
ference on Discrete Geometry for Computer Imagery, Nantes, France, April 2016

9. Lachaud, J.O., Provençal, X., Roussillon, T.: Two plane-probing algorithms for the
computation of the normal vector to a digital plane. J. Math. Imaging Vis. 59(1),
23–39 (2017)

10. Reveillès, J.P.: Géométrie Discrète, calculs en nombres entiers et algorithmique.
Thèse d’etat, Université Louis Pasteur (1991)

11. Roussillon, T., Lachaud, J.-O.: Digital plane recognition with fewer probes. In:
Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol.
11414, pp. 380–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
14085-4_30

12. Roussillon, T., Lu, J.T., Lachaud, J.O., Coeurjolly, D.: Delaunay property and
proximity results of the L-algorithm. Research report, Université de Lyon, July
2022. https://hal.archives-ouvertes.fr/hal-03719592

13. The DGtal Project: DGtal (2010). https://dgtal.org
14. Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Trans. Pattern

Anal. Mach. Intell. 16(6), 647–652 (1994)

https://doi.org/10.1007/978-3-030-14085-4_30
https://doi.org/10.1007/978-3-030-14085-4_30
https://hal.archives-ouvertes.fr/hal-03719592
https://dgtal.org


Exact and Optimal Conversion
of a Hole-free 2d Digital Object

into a Union of Balls in Polynomial Time

Isabelle Sivignon(B)

Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France

isabelle.sivignon@gipsa-lab.grenoble-inp.fr

Abstract. This paper addresses the problem of converting a 2d digital
object, i.e. a set S of points in Z2, into a finite union of balls B centered
on R2, such that the digitization of B is exactly S and the cardinality of
B is minimum. We prove that, for the specific case of 2d hole-free digital
objects, there exists a greedy polynomial-time algorithm. The algorithm
is based on the same principle as the simple greedy optimal algorithm for
the interval cover problem. After bringing to light under which conditions
the latter algorithm can be extended to tree-like structures, we show that
such a structure can be defined for any hole-free 2d digital object, so that
the extended algorithm applies.

Keywords: Digital object · Union of balls · Covering · Optimal
algorithm · Arborescence

1 Introduction

Computer representation of shapes is a basic component to digitize, create, visu-
alize or exchange models of physical objects. Different geometric models exist,
either to represent the surface (B-rep, point clouds, triangle meshes) or the
volume (tetrahedral meshes, digital objects, CSG models) of a solid shape. How-
ever, the model used to create or register a shape is not always the one tailored
for subsequent processings or applications. Thus, the problem of converting one
geometric model into another has been widely studied, for a variety of models.
In particular, many provably good conversion algorithms have been designed to
output a finite union of balls from other models, including point clouds, polyg-
onal meshes or digital shapes. Indeed, being composed of very simple geometric
shapes, finite union of balls are useful in a number of applications, for instance
detection of collisions in computer graphics [6], or simulation of physical pro-
cesses [12]. Various metrics can be used to measure the quality of the conversion
such as the number of balls, or the difference in volume between the original
model and the union of balls.

In this article, we consider the following problem:

c© Springer Nature Switzerland AG 2022
É. Baudrier et al. (Eds.): DGMM 2022, LNCS 13493, pp. 382–394, 2022.
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Problem 1. Given a 2d digital object S, compute a finite union of balls B such
that: B covers exactly the points of S (and no point of Z2\S), and the cardinality
of B is minimum.

This problem is closely related to the more constrained problem where the
balls of B must be centered in Z2, which is NP-hard [7]. It is also very close to
the class of well-studied set cover problems that are also NP-hard [8]. The input
of the set cover problem is a pair (X,R), where X is a set of points (generally
in Rn) and R is a family of subsets of X called ranges. The problem is to find
a minimum subset of R that covers all the points of X. In our problem, X = S
is a subset of Z2. However, the set of ranges R is not part of the input, but is
constrained to be a set of balls centered on R2.

We show that, when S is a 4-connected digital object and Z2\S = Sc has
exactly one 8-connected component, the problem can be seen as a variant of the
interval covering problem (1d set cover problem) for which an optimal greedy
algorithm exists. The idea was introduced in [13] in the specific case of (δ, ε)-
ball approximation problem: given a shape S, compute a finite union of balls
included in the δ-dilation of S while covering its ε-erosion. It was shown that,
while the general problem is NP-hard [4], a greedy optimal algorithm exists when
the δ-dilation of S has a cycle-free medial axis [14].

In Sect. 2, we revisit the results of [13,14] in a more general context. We
consider the case where the input is a generic set of ranges and exhibit sufficient
conditions on this set to ensure that the greedy algorithm is optimal in this
setting. Once the good tools and conditions have been defined, the proofs of
termination and optimality unfold as in [13,14]. In Sect. 3, we show how to
implement this algorithm to compute an exact and optimal conversion of a 2d
hole-free digital object into a finite union of balls.

2 General Optimal Greedy Algorithm

2.1 Algorithm Specification

For the sake of simplicity, given a subset of ranges R we denote
⋃

R =
⋃

r∈R r.
We use the same vocabulary as in [13,14] in the broader context of sets of ranges.
A covering of a set of ranges R is a subset of R that covers all the points in

⋃
R.

More formally,

Definition 1 (Covering). Let R be a set of ranges, and R be a subset of R.
We say that R is a covering of R if

⋃
R =

⋃
R.

A covering R is said to be minimal if no range can be removed from R while
keeping the covering property, and minimum if its cardinality is minimum among
all possible coverings. In the following, we assume that R can be endowed with
a partial order � such that the poset (R,�) is anti-arborescent:

Definition 2 (Anti-arborescence [9]). A poset (V,�) is anti-arborescent if:
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– for all v ∈ V , the set of its successors {v′ ∈ V, v ≺ v′} is totally ordered.
– for any two incomparable elements v, v′ ∈ V , the predecessors of v and the

predecessors of v′ are pairwise incomparable.

A range r ∈ R is said to be maximal (resp. minimal) in R ⊆ R if for all
r′ ∈ R, either r′ � r (resp. r′ � r) or r′ and r are incomparable. Given a range
r ∈ R, we define the domain covered by ranges smaller than r : C(R,� r) =
(
⋃

r′∈R,r′≺r r′)\r. Similarly, we define the domain covered by ranges larger than
or incomparable to r : C(R, �r) = (

⋃
r′∈R,r′�r r′)\r. Remark that by definition,

if r1 � r2 then C(R,� r1) ∪ r1 ⊆ C(R,� r2) ∪ r2 and C(R, � r1) ∪ r1 ⊇ C(R, �
r2) ∪ r2. It will also be useful later to extend these definitions to a set of ranges
R ⊆ R: C(R,�R) =

⋃
r∈R C(R,�r) and C(R, �R) =

⋂
r∈R C(R, �r).

Figure 1(c) illustrates these notations in the case of ranges being balls -
R = ℬ: a partial order � on the balls of ℬ is depicted using arrows on the
set of centers of the balls (in red). (ℬ,�) being an anti-arborescence, it has a
root, indicated with a cross. The sets C(ℬ,� 𝒷) and C(ℬ, � 𝒷) are depicted
respectively in green and orange for a specific ball 𝒷 outlined in dashed gray.

Definition 3 (Partial covering). Let R be a set of ranges, and R be a subset
of R. We say that R is a partial covering of R if it is a covering of C(R,�R),
i.e. C(R,�R) ⊆ ⋃

R.

Definition 4 (Candidate range). Let R ⊂ R be a partial covering of R. A
range r /∈ R is candidate to R if R′ = R∪{r} is also a partial covering of R and⋃

R �
⋃

R′.

A candidate range r with respect to R is said to be maximal if it is maximal
in the set of candidate ranges. Algorithm 1 describes a greedy algorithm that
computes a covering given a finite set of ranges R. It uses the fact that, if (R,�)
is anti-arborescent, a topological ordering of the elements of R can be defined.
The idea is pretty natural: considering ranges in topological order, if a range is
critical for the set of uncovered points, then it is added to the covering.

Algorithm 1: GreedyCovering(R,�)
Preconditions: R is finite, (R, �) is an anti-arborescent poset

1 R ← ∅;
2 U ← ⋃

R (points of
⋃

R not in
⋃

R);
3 for r ∈ R, in topological order do
4 if r is a maximal candidate for U then
5 R ← R ∪ {r};
6 U ← U\r

7 return R

By definition of candidate range, and since Algorithm 1 only inserts candidate
ranges to the computed covering, an invariant of Algorithm 1 is that R is always
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a partial covering of R. The next section is dedicated to the proof of the fact
that, provided that R fulfills two extra conditions, candidate ranges to non-empty
subsets always exist (proving that Algorithm 1 terminates with a covering), and
that Algorithm 1 computes a minimum-cardinal covering.

2.2 Correctness, Termination and Optimality of Algorithm 1

In the following, we prove that if the poset (R,�) fulfills the two conditions
below, Algorithm 1 terminates and computes a minimum covering :

Property (1) for any r1, r2 ∈ R such that r1 ∩ r2 �= ∅, for all r1 ≺ r ≺ r2,
r1 ∩ r2 ⊆ r.
Property (2) for x ∈ ⋃

R, let Cov(x,R) = {r ∈ R, x ∈ r} ; then ∀x ∈ ⋃
R,

Cov(x,R) admits a greatest element that is called the critical range of x and is
denoted Crit(x,R).

The proof of optimality requires several technical lemmas. These lemmas
were stated and proven in [13,14] for a specific family of ranges. We show here
that they are still valid when the set of ranges fulfills above properties. The
proofs are in general very similar, and simply call properties (1) or (2) when
necessary. Space being limited, we only provide the most relevant ones.

The first lemma shows that any range r separates the elements of
⋃
R into

three disjoint subsets of elements: those before, those in, and those after.

Lemma 1 (Proposition 4.10 [13]). Let r ∈ R. For any x ∈ ⋃
R, x belongs

to one and only one of the three subsets r, C(R,�r), C(R, �r).

Proof. By definition, r is disjoint from C(R,� r) and C(R, � r). Suppose now
that there exists an element x ∈ ⋃

R such that x ∈ C(R,� r) ∩ C(R, � r). Let
r− ≺ r such that x ∈ r−\r and r+ such that r ≺ r+ or r+ and r are incomparable
and x ∈ r+\r. By definition, x /∈ r but r− and r+ are in Cov(x,R). By property
(2), Cov(x,R) admits a greatest element rM = Crit(x,R), i.e. r− � rM , r+ � rM

and x ∈ rM . If rM = r−, then r+ � r− ≺ r, a contradiction. Thus rM is a strict
successor of r−, as r. By Definition 2, they are comparable. If r ≺ rM , then
by property (1), r− ∩ rM ⊆ r, leading to a contradiction since x ∈ r− ∩ rM . If
rM ≺ r, then r is a successor of rM which is either a successor of r+ or r+ itself.
Then r+ ≺ r which is a contradiction with the fact that either r ≺ r+ or r and
r+ are incomparable. ��

The following two lemmas were not stated as such in [13,14], but used in
the proofs. Lemma 2 shows that, given a partial covering, there always exists a
candidate.

Lemma 2. Let R ⊆ R be a minimal covering of R. Let R− � R be a partial
covering, and R+ = R\R−. Then any range r+ minimal in R+ is candidate to
R−.
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The proof is similar to part of the proof of Lemma 4.27 [13] and calls Lemma
1 to assert that the points of C(R,�r+) are disjoint from r+ ∪ C(R, �r+) and
thus cannot be covered by ranges in R+. Lemma 2 implies in particular that
any range r = minx∈(

⋃
R)\RCrit(x,R) is a candidate to R (there may be several

incomparable candidates). By definition of Crit(x,R), any range r′ � r does not
contain the point p = arg minx∈(

⋃
R)\R Crit(x,R), p ∈ (

⋃
R)\R, so that r is

actually a maximal candidate to R.

Lemma 3. Let R ⊆ R be a minimal covering of R. Let R− � R be a partial
covering, and let r be a candidate to R−. Then any range r′ ∈ R\R− such that
r′ ≺ r is also a candidate to R−.

Proof. Suppose by contradiction that there exists a range r′ ≺ r that is not a
candidate to R−. Then there exists a point x ∈ C(R,�(R− ∪{r′})) which is not
in R− ∪ {r′}. If x were in C(R,�R−), it would be covered by R− since R− is a
partial covering, a contradiction. So x /∈ C(R,�R−), which implies x ∈ C(R,�
r′). By definition of C, there exists a range r′′ ≺ r′ that contains x. If x ∈ r,
then by Property (1), we get x ∈ r′, a contradiction. Thus x /∈ r. By transitivity
of ≺, we have r′′ ≺ r. Using the fact that x /∈ r, and by definition of C, we have
x ∈ C(R,�r). Again by definition of C, we have C(R,�r) ⊆ C(R,�(R− ∪ r)).
r being candidate to R−, C(R,�(R− ∪ r)) ⊆ ⋃

(R− ∪ {r}), a contradiction. ��
Combining the previous lemmas, we can prove that, to complete a partial

covering R−, it is necessary to add a range that is smaller than or equal to a
maximal candidate to R−.

Proposition 1 (Lemma 4.27 [13]). Let R ⊆ R be a minimal covering of R.
Let R− � R be a partial covering, and let r be a maximal candidate to R−. Then
R\R− contains a candidate range that is smaller than or equal to r.

Theorem 1 (Theorem 10 [13]). Let R be a finite set of ranges. Suppose that
R can be endowed with a partial order � such that (R,�) is an anti-arborescent
poset, and fulfills Properties (1) and (2). Then, Algorithm 1 outputs a cardinal
minimum covering of R.

The proofs of the proposition and of the theorem follow exactly the ones of
Lemma 4.27 and Theorem 10 in [13]. The proof of Proposition 1 calls Lemmas 2
and 3, and the proof of Theorem 1 appllies Proposition 1 to replace one by one
the ranges of any optimal covering by the ranges computed by Algorithm 1.

3 From a Digital Set to a Set of Ranges

In this section, we show how Algorithm 1 can be used to solve Problem 1. Here,
ranges are balls. Given a digital object S, a set of balls fulfilling Theorem 1
hypothesis is defined. Moreover, this set is such that the result of Algorithm 1
is indeed a collection of balls of minimum cardinality that covers S exactly.
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Let S ⊂ Z2 be a finite 4-connected digital object such that Sc = Z2\S has
one exactly 8-connected component. A digital ball b is a subset of Z2 for which
there exists a ball 𝒷 such that �̊� ∩ Z2 = b, where �̊� denotes the interior of 𝒷.
Otherwise said, if Dig denotes the Gauss digitization function, we have which
Dig(𝒷) = �̊�∩Z2 = b. In the following, we assume that balls 𝒷 are open, so that
�̊� = 𝒷. The preimage of a digital ball b, denoted Dig−1(b) will be useful later
on. A digital ball b is said to be valid for a digital object S if b ⊆ S. It is said to
be maximal if there is no other valid digital ball containing it.

Given a digital object S, we aim at finding a set of ranges B that are (non
empty) valid digital balls and such that

⋃
B = S. Given a set of ranges as input,

Algorithm 1 computes a minimum covering for this set of ranges. In order to
obtain the minimum covering of a digital object S, the input set of ranges B

must contain all maximal digital balls valid for S. For instance, taking the set
of balls ouput by a distance transform of S is not enough to ensure optimality:
indeed, all the balls of this set have a center in Z2, so that it misses all digital
balls for which Dig−1(b) contains only balls of center not in Z2.

The next sections are dedicated to exhibiting a way to grasp the set of all
valid maximal digital balls and showing that this set can be endowed with an
anti-arborescent poset structure that fulfills sufficient properties (1) and (2).

3.1 Getting a Grip on Valid Maximal Digital Balls

The center of a ball 𝒷 is denoted by c(𝒷). For p ∈ Z2, let pixel(p) be the
unit square centered on p. For any ball 𝒷 such that c(𝒷) ∈ pixel(q), q ∈ Sc,
either Dig(𝒷) = ∅ or Dig(𝒷) ∩ Sc �= ∅. These balls do not contribute to the
set of valid maximal digital balls and can be discarded. Consequently we define
𝒮 =

⋃
p∈S

˚pixel(p) and restrict the study to this set. For x ∈ 𝒮, let 𝒷S(x) be the
maximal ball centered in x such that Dig(𝒷S(x)) ⊆ S. Note that by maximality,
∂𝒷S(x) contains at least one point of Sc. The following Lemma shows that any
valid maximal digital ball has a ball in its preimage with at least two points of
Sc on its boundary.

Lemma 4. Let b be a valid maximal digital ball for S. Then there exists 𝒷 such
that Dig(𝒷) = b and |∂𝒷 ∩ Sc| ≥ 2.

Proof. Let 𝒷′ be a ball such that 𝒷′ ∩ Z2 = b. If ∂𝒷′ ∩ Sc = ∅, then we increase
the radius of 𝒷′ until 𝒷′ = 𝒷S(c(𝒷′)). ∂𝒷′ contains at least one point of Sc. Now
we use a classical projection from a set of balls to the balls of the medial axis
of a shape [10,11]. The shape considered here is the whole space R2 punctured
by the discrete set Sc. In this simple case, the medial axis is simply the set of
edges of the Voronoi diagram of Sc, i.e. ∂Vor(Sc). The projection is illustrated
in Fig. 1: it associates to any ball 𝒷 a ball π(𝒷) centered on ∂Vor(Sc) and such
that 𝒷 ⊆ π(𝒷). This projection is well defined since S is finite (in particular, no
half-space is void of points of Sc). Consider the ball π(𝒷′). If Dig(π(𝒷′)) �= b, we
have a contradiction with the maximality of b, and otherwise, we have found a
ball 𝒷 such that Dig(𝒷) = b and |∂𝒷 ∩ Sc| ≥ 2. ��
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Fig. 1. (a) The projection π(𝒷) of 𝒷 is defined from the center c(𝒷) and its closest
point q in Sc. (b) Projection π is continuous on any continuous path: the continuous
path in green is projected on the bolder dark green continuous subpath of the Voronoi
diagram. Grey arrows represent the projection. (c) Illustration of a partial order (in
red) on ℬ, and of the sets C(ℬ, � 𝒷) and C(ℬ, � 𝒷). (Color figure online)

Consequently, for any valid maximal digital ball b, there exists a ball 𝒷 in
Dig−1(b) with c(𝒷) ∈ ∂Vor(Sc) ∩ 𝒮. Note that: (i) all the balls 𝒷 with c(𝒷) in
this set are such that Dig(𝒷) is valid for S ; (ii) some balls 𝒷 with c(𝒷) in this set
may however be such that Dig(𝒷) is not maximal. In the following, we denote
Vor�(S) = ∂Vor(Sc)∩⋃ ˚pixel(S) (see Fig. 2(a)), and we consider the set of balls
ℬ = {𝒷S(x), x ∈ Vor�(S)}. This set contains all the balls which digitization is
a valid maximal digital ball for S.

3.2 Ordering Balls of ℬ

By construction, Vor�(S) is a collection of segments.

Lemma 5. Vor�(S) is a geometric embedding of a tree in R2.

Proof. Suppose that Vor�(S) contains a cycle. This cycle is a Jordan curve, and
since it is a subset of ∂Vor(Sc) it must contain a point of Sc in its interior.
Moreover, this cycle is included in 𝒮, which is an open polygon containing no
point of Sc since S is 4-connected and Sc is 8-connected. A contradiction. ��

Vor�(S) being a tree, it can be endowed with a partial order by picking any
point on it as a root: indeed, it is enough to orient each edge/segment from the
leaves to the root. This results in an oriented tree, denoted by T, that defines a
partial order ≤T on the set (of centers) of balls ℬ (see Fig. 1(c)). By construction,
(ℬ,≤T) is an anti-arborescent poset. Moreover, for any p ∈ S, the set of centers
of the balls of Cov(p,ℬ) = {𝒷 ∈ ℬ, p ∈ 𝒷} is a connected subset of Vor�(S).

Lemma 6 (Lemma 4.9 [13]). Let p ∈ S. If p ⊆ �̊�1 ∩ �̊�2, then p ⊆ �̊� for
all 𝒷 such that c(𝒷) is on the unique path Γ(𝒷1,𝒷2) between c(𝒷1) and c(𝒷2) in
Vor�(S).

The proof uses projection π defined in the previous section, together with
the fact that Vor�(S) is the geometric embedding of a tree.
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This lemma implies that Property (1) is true for ℬ. It moreover implies that
for all p, Cov(p,ℬ) admits a supremum according to the order T. However, since
the balls of ℬ are open, these sets are open too (see illustration in Fig. 2(b)),
except for points p that belong to the balls that are either the root or leaves of T.
A consequence is that, in general, Cov(p,ℬ) does not admit a greatest element,
and p /∈ Dig(supT Cov(p,ℬ)). This results in the following property:

Lemma 7. For any p ∈ S that does not belong to the root of T, supT Cov(p,ℬ)
either belongs to an open segment of Vor�(S) or, if it is a vertex, the balls of
Cov(p,ℬ) are all in the same subtree of predecessors.

Proof. Suppose that supT Cov(p,ℬ) is a vertex v ∈ Vor�(S), and, by contradic-
tion, pick any ball of Cov(p,ℬ) in a first subtree, and another one in another
subtree. Then the unique path between them goes through v, and the ball cen-
tered on v must contain p by Lemma 6 and thus be in Cov(p,ℬ). It cannot be
the supremum of Cov(p,ℬ). ��

Fig. 2. (a) Cropped Voronoi diagram Vor�(S) for a set of pixels 𝒮 depicted in grey.
(b) Cov(p,ℬ) is an open set. Part of Vor�(S) is depicted in red : the centers of all the
balls of Cov(p,ℬ) are on the blue segment, delimited by c(𝒷1) and c(𝒷2), but 𝒷2 does
not belong to Cov(p,ℬ) since it contains p on its boundary. (Color figure online)

The set of ranges ℬ does not fulfill property (2), which is required for Algo-
rithm 1 to be valid. We turn to the set B = {b ⊆ S,∃𝒷 ∈ ℬDig(𝒷) = b} instead.
Since B is finite, the sets Cov(p,B) = {b ∈ B, p ∈ b} are also finite and are
good candidates to admit a greatest element if equipped with a partial order.
We show hereafter how to do this without explicitly computing the set B.

3.3 Ordering Digital Balls of B

Let the representative of b be Rep(b) = supT {𝒷 ∈ ℬ,𝒷 ∈ Dig−1(b)}. As seen
before, usually, Dig(Rep(b)) �= b. From the partial order T on ℬ, we define a
partial order T on B as follows:
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Definition 5. Given two digital balls b1 and b2 of B, b1 ≤T b2 if:

(1) either b1 = b2
(2) or b1 �= b2 and

(a) either Rep(b1) <T Rep(b2)
(b) or Rep(b1) = Rep(b2) and Dig(Rep(b2)) = b2.

Lemma 8. (B,≤T ) is a poset.

Sketch of proof. Reflexivity follows directly from (1). Antisymmetry is shown
by contradiction considering two cases: either Rep(b1) �= Rep(b2) and we get a
contradiction by Definition 5 and definition of T, or Rep(b1) = Rep(b2) and we
have a contradiction with unicity of Dig(𝒷) using Definition 5 (2)(b). To show
transitivity, the case b1 = b2 or b2 = b3 is trivial. Otherwise, we distinguish the
two cases Rep(b1) �= Rep(b2) �= Rep(b3) and Rep(b1) = Rep(b2) and Rep(b2) �=
Rep(b3) and conclude that Rep(b1) <T Rep(b3) using the fact that T is a partial
order. ��

In order to prove that the poset (B,≤T ) is anti-arborescent, we need two
extra lemmas that express properties of the sets Dig−1(b). The following lemma,
together with Lemma 6, moreover ensures that Property (1) is fulfilled for the
set of ranges B.

Lemma 9. (i) For any b ∈ B, Dig−1(b) is connected. (ii) For any b, b′ ∈ B, b �=
b′, Dig−1(b) ∩ Dig−1(b′) = ∅. As a consequence, we have (iii): let 𝒷 ∈ Dig−1(b)
and 𝒷′ ∈ Dig−1(b′) with b �= b′: if 𝒷 <T 𝒷′, then 𝒷 ≤T Rep(b) ≤T 𝒷′ ≤T Rep(b′).

Proof. (i) follows from Lemma 6 since Dig−1(b) =
⋂

p∈b Cov(p,ℬ). (ii) is
straightforward by unicity of the digitization. To prove (iii), note that Rep(b)
and 𝒷′ are comparable since they are both successors of 𝒷 and T is an anti-
arborescence. Suppose by contradiction that 𝒷′ �T Rep(b). Then 𝒷′ is on the
unique path between 𝒷 and Rep(b), a contradiction with (i) and (ii). ��
Lemma 10. Let b1, b2 ∈ B, b1 �= b2, and 𝒷 = Rep(b1) = Rep(b2) such that
𝒷 /∈ Dig−1(b1) and 𝒷 /∈ Dig−1(b2). Then for all 𝒷1 ∈ Dig−1(b1) and all 𝒷2 ∈
Dig−1(b2), 𝒷1 ans 𝒷2 are incomparable.

Proof. Suppose by contradiction that 𝒷1 <T 𝒷2. Thus 𝒷1 �T Rep(b1). Since
Dig−1(b2) cannot be empty, Rep(b2) /∈ Dig−1(b2) implies that there exists 𝒷2 �=
Rep(b2) such that 𝒷2 ∈ Dig−1(b2). Using Lemma 9, we get 𝒷1 �T Rep(b1) ≤T

𝒷2 �T Rep(b2), which is a contradiction with Rep(b1) = Rep(b2). ��
Theorem 2. The poset (B,≤T ) is anti-arborescent.

Sketch of proof. We first prove by contradiction that the successors of any b ∈ B

are comparable, by considering three cases: Rep(b) = Rep(b1) = Rep(b2), or
Rep(b) = Rep(b1) and Rep(b) <T Rep(b2), or Rep(b) <T Rep(b1) and Rep(b) <T
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Rep(b2). In the first two cases, we have a direct contradiction with Definition 5.
The third case is a little bit trickier and uses Lemma 10.

Next, we prove by contradiction that the predecessors of two incomparable
balls b1 and b2 are also incomparable. Two cases are studied: if b′

1 = b′
2, then

Rep(b′
1) = Rep(b′

2) and we use Lemma 9(iii) and the fact that (ℬ,T) is an
anti-arborescence to get a contradiction; if b′

1 ≤T b′
2 and Rep(b′

1) �T Rep(b′
2),

we use again Lemma 9(iii) to get a contradiction. ��
It remains to prove that Cov(p,B) admits a greatest element for all p ∈ S. To

do so, we remark that the ball supT Cov(p,ℬ) of a point p ∈ S can be written
as the maximum representative ball of Cov(p,B).

supTCov(p,ℬ) = supT{𝒷 ∈ ℬ, p ∈ 𝒷}
= supT{𝒷 ∈ ℬ, p ∈ Dig(𝒷)}
= supT

b∈Cov(p,B)

{𝒷 ∈ ℬ,Dig(𝒷) = b}

= supT
b∈Cov(p,B)

Rep(b) = maxT
b∈Cov(p,B)

Rep(b)

(1)

The digital ball bmax(p) ∈ B that achieves the maximum in Eq. (1) is actually
the critical ball Crit(p,B). In the last subsection, we show how to compute it.

Lemma 11. Let p ∈ S, and bmax(p) ∈ Cov(p,B) be such that Rep(bmax(p)) =
supT Cov(p,ℬ). Then for any b ∈ Cov(p,B), b ≤T bmax(p).

Proof. Let b ∈ Cov(p,B). If Rep(b) <T Rep(bmax(p)), by Definition 5, b <T

bmax(p). The case Rep(b) >T Rep(bmax(p)) is not possible by definition of
bmax(p). The case Rep(b) = Rep(bmax(p)) remains. Since Dig−1(b) are con-
nected and disjoint (Lemma 9), the only way for two balls b1 and b2 to have
the same representative is when it is a vertex of the anti-arborescence. Then
Dig−1(b1) and Dig−1(b2) belong to two different subtrees of this vertex, a con-
tradiction with Lemma 7. ��

3.4 Computing Critical Balls

The first step is to find the edge of Vor�(S) Rep(Crit(p,B)) belongs to. It is
convenient to note that each edge of Vor�(S) corresponds to balls of ℬ that go
through a pair of points of Sc. This edge can then be described as a parabolic
pencil of circles [5,15] defined by two points of Sc and delimited by its two
extremities. Each ball 𝒷λ of the pencil can be expressed as a convex combination
of the two extremities, according to the following relation: ∀p, pow(p,𝒷λ) =
(1 − λ)pow(p,𝒷1) + λpow(p,𝒷2), where pow denotes the power of a point with
respect to a ball 𝒷(c, r) and is equal to pow(p,𝒷) = d(c, p) − r2.

Given a topological order on the edges of Vor�(S), consider the edges
[𝒷1,𝒷2] in increasing order. If p belongs to Dig(𝒷1) but not to Dig(𝒷2),
then Rep(Crit(p,B)) belongs to the edge [𝒷1,𝒷2[. Using the fact that p ∈
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∂Rep(Crit(p,B)), and the relation above, we can compute the value λ such
that 𝒷λ = Rep(Crit(p,B)) on the pencil [𝒷1,𝒷2[, as λ = pow(p,𝒷1)

pow(p,𝒷1)−pow(p,𝒷2)
. For

all 0 ≤ λ′ < λ, Dig(𝒷λ′) contains p (see Fig. 3(a)). We look for a value λcrit < λ
such that Dig(𝒷λ) ⊂ Dig(𝒷λcrit). Such a value exist thanks to Lemma 7. For
all the points q ∈ Dig(𝒷λ)\Dig(𝒷1), let 𝒷λq

be the ball of [𝒷1,𝒷2[ such that
q ∈ ∂𝒷λq

. For all values μ > λq, q ∈ Dig(𝒷μ). By setting μ = maxq{λq}, we have
that ∀μ′ > μ, Dig(𝒷λ) ⊂ Dig(𝒷′

μ).

Fig. 3. (a) Computation of Crit(p,B): 𝒷λ = Rep(Crit(p,B)); any ball between 𝒷μ and
𝒷λ (see for instance the ball in gray) contains p and all the points of Dig(𝒷λ) (circled).
(b) Illustration of the fact that the critical ball is not always maximal.

By setting λcrit to any value strictly between μ and λ, we have Dig(𝒷λcrit) ⊃
{p} ∪ Dig(𝒷λ) as desired. Note that, as mentioned before, Dig(𝒷λcrit) may not
be maximal. Indeed, as illustrated in Fig. 3(b), by definition of 𝒷μ there is no
point of S in the grey region. However, Dig(𝒷μ) may contain points of S other
than p, for instance point q in the figure. Thus, if we consider the two balls
𝒷 and 𝒷′ both between 𝒷μ and 𝒷λ, Dig(𝒷′) ⊂ Dig(𝒷), so that Dig(𝒷′) is not
maximal. As proven in the section before, this is not a problem: in the course
of the algorithm, either q belongs to the subset not covered yet, and then the
critical ball of q, which is equal to Dig(𝒷), is chosen, or q is already covered, and
picking Dig(𝒷′) instead of Dig(𝒷) does not change anything.

4 Results

Algorithm 1 was implemented1 using three open-source libraries: DGtal [2] to
handle digital sets, CGAL [1] to compute Vor�(S), and Boost Graph [3] to com-
pute topological order on trees. A kernel with exact predicates and constructions
was used to avoid rounding errors. As a conclusion, some results are presented
in Fig. 4.

1
https://github.com/isivigno/ConvertDigitalObjectToBalls.git.

https://github.com/isivigno/ConvertDigitalObjectToBalls.git
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 4. (a-c) Three different optimal coverings of the same toy example with 4 balls,
obtained using different roots ; (d-g) Results on images of the database MPEG7 CE
Shape-1 Part B :(d) 9 balls (e) 113 balls (f) 40 balls (g) 36 balls.
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Abstract. This paper contributes to the emergent area of Periodic
Geometry, which studies continuous spaces of solid crystalline materi-
als (crystals) by new methods of metric geometry. Since crystal struc-
tures are determined in a rigid form, their strongest practical equiva-
lence is rigid motion or isometry preserving inter-point distances. The
most fundamental model of any crystal is a periodic set of points at all
atomic centers. The previous work introduced an infinite sequence of den-
sity functions that are continuous isometry invariants of periodic point
sets. These density functions turned out to be highly non-trivial even
in dimension 1 for periodic sequences of points in the line. This paper
fully describes the density functions of any periodic sequence and their
symmetry properties. The explicit description confirms coincidences of
density functions that were previously computed via finite samples.

Keywords: Periodic sequence · Isometry invariant · Density functions

1 Motivations for Density Functions of Periodic Sets

Motivated by applications to solid crystalline materials, the first paper [10] in the
emergent area of Periodic Geometry rigorously stated the problem of designing
continuous invariants and metrics for periodic point sets such as lattices.

The past work [5] introduced such continuous invariants for any periodic sets
of points representing atoms in crystals. This point-set model is most fundamen-
tal for materials because nuclei of atoms are well-defined physical objects, while
chemical bonds are not real sticks or strings but abstractly represent inter-atomic
interactions depending on many thresholds for distances and angles.

Since crystal structures are determined in a rigid form, their most practi-
cal equivalence is rigid motion (a composition of translations and rotations) or
isometry that maintains all inter-point distances and includes reflections [14].

Since atoms always vibrate at any finite temperature above absolute zero,
X-ray diffraction patterns of the same material contain inevitable noise and lead
to slightly different crystal structures determined at variable temperatures.

In the past, crystallography distinguished periodic structures by coarser isom-
etry invariants such as symmetry groups, which are discontinuous under per-
turbations [14, Fig. 1]. To continuously quantify the similarity between near-
duplicates among experimental and simulated structures, we need stronger isom-
etry invariants that continuously change under perturbations [1, Problem 3].
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The past work [5] introduced an infinite sequence of density functions ψk[S](t)
that are continuous isometry invariants of a periodic point set S as defined below.
Let R

n be the n-dimensional Euclidean space, Z be the set of all integers.

Definition 1 (a lattice Λ, a unit cell U , a motif M , a periodic set S = M +Λ).

For a linear basis v1, . . . , vn of Rn, a lattice is Λ = {
n∑

i=1

civi : ci ∈ Z}. The unit

cell U(v1, . . . , vn) =
{

n∑

i=1

civi : ci ∈ [0, 1)
}

is the parallelepiped spanned by the

basis. A motif M ⊂ U is any finite set of points p1, . . . , pm ∈ U . A periodic point
set [14] is the Minkowski sum S = M + Λ = {u + v | u ∈ M,v ∈ Λ}. �

In dimension n = 1, a lattice is defined by any non-zero vector v ∈ R, any
periodic point set S is a periodic sequence {p1, . . . , pm} + |v|Z of the period |v|.

Fig. 1. Illustration of Definition 2 for the square lattice. Left: subregions Uk(t) are
covered by k disks for the radii t = 0.25, 0.55, 0.75, 1. Right: the nine density functions

are above the corresponding densigram of accumulated functions
k∑

i=1

ψi(t) [5, Fig. 2].

Definition 2 (density functions). Let a periodic set S = Λ + M ⊂ R
n have

a unit cell U . For any integer k ≥ 0, let Uk(t) be the region within the cell U
covered by exactly k closed balls with a radius t > 0 and centers at all points
of S. The k-th density function is ψk[S](t) = Vol[Uk(t)]/Vol[U ]. The density
fingerprint is the sequence Ψ [S] = {ψk(t)}+∞

k=0, see [5, section 3] and Fig. 1, 2. �

The implementation [5] computes the density functions ψk(t) at uniform
radii t up to given upper bounds of t and k. This paper explicitly describes all
density functions ψk(t) for any periodic sequence S ⊂ R in Theorems 5 and 7.
Theorem 8 proves the symmetry and periodicity of ψk(t) in the variables t and
k. Corollary 12 concludes that the 1st density function ψ1(t) distinguishes all
non-isometric periodic sequences with distinct distances between motif points.
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Fig. 2. Illustration of Definition 2 for the hexagonal lattice. Left: subregions Uk(t) are
covered by k disks for the radii t = 0.25, 0.55, 0.75, 1. Right: the nine density functions

are above the corresponding densigram of accumulated functions
k∑

i=1

ψi(t) [5, Fig. 2].

2 Past Work on Isometry Invariants of Periodic Sets

The strongest result about the density fingerprint Ψ [S] is [5, Theorem 2] proving
that any non-isometric periodic point sets in R

3 have different sequences ψk(t),
though there was no simple upper bound for k. However, the density fingerprint
turned out to be incomplete [5, section 5] for the periodic sequences below.

Example 3 (periodic sequences S15, Q15 ⊂ R). [14, Appendix B] discusses
homometric periodic sets that can be distinguished by the recent invariant AMD
(Average Minimum Distances) and not by inter-point distance distributions. The
sets S15 = {0, 1, 3, 4, 5, 7, 9, 10, 12} + 15Z, Q15 = {0, 1, 3, 4, 6, 8, 9, 12, 14} + 15Z
have the period 15 and the unit cell [0, 15] shown as a circle in Fig. 3.

These periodic sequences [6] are obtained as Minkowski sums S15 = U +V +
15Z and Q15 = U −V +15Z for U = {0, 4, 9} and V = {0, 1, 3}. The last picture

Fig. 3. Circular versions of the periodic sets S15, Q15. Distances are along round arcs.
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in Fig. 3 shows the periodic set 4 − S15 isometric to S15. Now the difference
between Q15 and 4 − S15 is better visible: points 0, 1, 3, 4, 5, 12, 14 are common,
but points 6, 8, 9 ∈ Q15 are shifted to 7, 9, 10 in the circular set 4 − S15. �

For rational-valued periodic sequences, [6, Theorem 4] proved that r-th order
invariants (combinations of r-factor products) up to r = 6 are enough to dis-
tinguish such sequences up to a shift (a rigid motion of R without reflections).
The AMD invariant was extended to a Pointwise Distance Distribution (PDD),
whose generic completeness [13, Theorem 11] was proved in any dimension n ≥ 1,
but there are finite sets in R

3 with the same PDD [11, Fig. S4]. In addition to
the completeness and continuity under perturbations, applications also need a
computable metric on isometry classes of periodic point sets. Such a metric was
defined on the complete isoset invariant [1, section 7] but has only an approxi-
mate algorithm because of a minimization over infinitely many rotations.

This paper fully elucidates all density functions and their exact computation
for any periodic sequence, leading to new problems at the end of Sect. 4.

3 A Description of Density Functions of Periodic
Sequences

The key results of this section are Theorems 5 and 7 explicitly describing all
density functions ψk[S](t) for any periodic sequence S ⊂ R and k ≥ 0. For con-
venience, scale any periodic sequence to period 1 so that S = {p1, . . . , pm} + Z.
Since the expanding balls in R are growing intervals, volumes of their intersec-
tions linearly change in the variable radius t. Hence any density function ψk(t)
is piecewise linear and uniquely determined by corner points (aj , bj) where the
gradient changes. Examples 4 and 6 explain how the density functions ψk(t) are
computed for the periodic sequence S = {0, 1

3 , 1
2} + Z, see all graphs in Fig. 4.

Example 4 (0-th density ψ0(t) for S = {0, 1
3 , 1

2}+Z). By Definition 2 ψ0(t) is
the fractional length within the period interval [0, 1] not covered by the intervals
of radius t (length 2t), which are the red intervals [0, t] ∪ [1 − t, 1], green dashed
interval [13 − t, 1

3 + t] and blue dotted interval [12 − t, 1
2 + t]. The graph of ψ0(t)

starts from the point (0, 1) at t = 0. Then ψ0(t) linearly drops to the point
( 1
12 , 1

3 ) at t = 1
12 when a half of the interval [0, 1] remains uncovered.

The next linear piece of ψ0(t) continues to the point (16 , 1
6 ) at t = 1

6 when
only [23 , 5

6 ] is uncovered. The graph of ψ0(t) finally returns to the t-axis at the
point (14 , 0) and remains there for t ≥ 1

4 . The piecewise linear behavior of ψ0(t)
can be briefly described via the corner points (0, 1), ( 1

12 , 1
3 ), (16 , 1

6 ), (14 , 0). �

Theorem 5 extends Example 4 to any periodic sequence S and implies that
ψ0(t) is uniquely determined by the ordered distances within a unit cell of S.

Theorem 5 (description of ψ0). For any periodic sequence S = {p1, . . . , pm}+
Z with motif points 0 ≤ p1 < · · · < pm < 1, set di = pi+1 − pi ∈ (0, 1),
where i = 1, . . . ,m and pm+1 = p1 +1. Put the distances in the increasing order
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Fig. 4. Left: the periodic sequence S = {0, 1
3
, 1
2
} + Z with points of three colors. The

growing intervals around the red point 0 ≡ 1 (mod 1), green point 1
3
, blue point 1

2
have

the same color for various radii t. Right: the trapezoid functions η from Example 6.

d[1] ≤ d[2] ≤ · · · ≤ d[m]. Then the 0-th density function ψ0 is piecewise linear with

the following (unordered) corners: (0, 1) and (12d[i], 1 −
i−1∑

j=1

d[j] − (m − i + 1)d[i])

for i = 1, . . . ,m, so the last corner is ( 12d[m], 0). If any corner points are repeated,
e.g. when d[i−1] = d[i], these corners are collapsed into one corner point. �

Proof. The function ψ0(t) measures the total length of subintervals in [0, 1] that
are not covered by growing intervals [pi − t, pi + t], i = 1, . . . , m. Hence ψ0(t)
linearly decreases from the initial value ψ0(0) = 1 except for m critical values of t
where one of the intervals [pi, pi+1] between successive points become completely
covered and can not longer shrink. These critical radii t are ordered according
to the distances d[1] ≤ d[2] ≤ · · · ≤ d[m]. The first critical radius is t = 1

2d[1],
when the shortest interval [pi, pi+1] of the length d[1] is covered by the intervals
centered at pi, pi+1. At this moment, all m intervals cover the subregion of the
length md[1]. Then ψ0(t) has the first corner points (0, 1) and (12d[1], 1 − md[1]).

The second critical radius is t = 1
2d[2], when the covered subregion has the

length d[1] +(m−1)d[2], i.e. the next corner point is (12d[2], 1−d[1] − (m−1)d[2]).
If d[1] = d[2], then both corner points coincide, so ψ0(t) will continue from
the joint corner point. The above pattern generalizes to the i-th critical radius

t = 1
2d[i], when the covered subregion has the length

i−1∑

j=1

d[j] (for the finally

covered intervals) plus (m − i + 1)d[i] (for the still growing intervals). For the
final critical radius t = 1

2d[m], the whole interval [0, 1] is covered by the grown

intervals because
m∑

j=1

d[j] = 1. So the final corner point of ψ0(t) is (12d[m], 0). �

Theorem 5 for the sequence S = {0, 1
3 , 1

2} + Z gives the ordered distances
d[1] = 1

6 < d[2] = 1
3 < d[3] = 1

2 , which determine the corner points (0, 1), ( 1
12 , 1

2 ),
(16 , 1

6 ), (14 , 0) of the density function ψ0(t) in Fig. 4, see Example 4.
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By Theorem 5 any 0th density function ψ0(t) is uniquely determined by
the (unordered) set of lengths of intervals between successive points. Hence we
can re-order these intervals without changing ψ0(t). For instance, the periodic
sequence Q = {0, 1

2 , 2
3}+Z has the same set of interval lengths d[1] = 1

6 , d[2] = 1
3 ,

d[3] = 1
2 as the periodic sequence S = {0, 1

3 , 1
2} + Z in Example 4.

The above sequences S,Q are related by the mirror reflection t �→ 1 − t. One
can easily construct many non-isometric sequences with ψ0[S](t) = ψ0[Q](t). For
any 1 ≤ i ≤ m−3, the sequences Sm,i = {0, 2, 3, . . . , i+2, i+4, i+5, . . . ,m+2}+
(m+2)Z have the same interval lengths d[1] = · · · = d[m−2] = 1, d[m−1] = d[m] =
2 but are not related by isometry (translations and reflections in R) because the
intervals of length 2 are separated by i − 1 intervals of length 1 in Sm,i.

Corollary 12 will prove that the 1st density function ψ1[S](t) uniquely deter-
mines a periodic sequence S ⊂ R in general position up to isometry of R.

Example 6 (functions ψk(t) for S = {0, 1
3 , 1

2} + Z). The 1st density function
ψ1(t) can be obtained as a sum of the three trapezoid functions ηR, ηG, ηB, each
measuring the length of a region covered by a single interval (of one color). The
red intervals [0, t]∪ [1− t, 1] grow until t = 1

6 when they touch the green interval
[16 , 1

2 ]. So the length ηR(t) of this interval linearly grows from the origin (0, 0)
to the corner point (16 , 1

3 ). For t ∈ [16 , 1
4 ], the left red interval is shrinking at

the same rate due to the overlapping green interval, while the right red interval
continues to grow until t = 1

4 , when it touches the blue interval [14 , 3
4 ]. Hence the

graph of ηR(t) remains constant up to the corner point (14 , 1
3 ). After that ηR(t)

linearly returns to the t-axis at t = 5
12 . Hence the trapezoid function ηR has the

piecewise linear graph through the corner points (0, 0), (16 , 1
3 ), (14 , 1

3 ), ( 5
12 , 1

0 ).
The 2nd function ψ2(t) is the sum of the trapezoid functions ηGB , ηRG, ηRB ,

each measuring the length of a double intersection. For the green interval [13 −
t, 1

3 + t] and the blue interval [12 − t, 1
2 + t], the graph of the trapezoid function

ηGB(t) is piecewise linear and starts at the point ( 1
12 , 0), where the intervals

touch. The green-blue intersection interval [12 − t, 1
3 + t] grows until t = 1

4 , when
[14 , 7

12 ] touches the red interval on the left. At the same time ηGB(t) is linearly
growing to the point (14 , 1

3 ). For t ∈ [14 , 1
3 ], the green-blue intersection interval

becomes shorter on the left, but grows at the same rate on the right until [13 , 2
3 ]

touches the red interval [23 , 1]. Then ηGB(t) remains constant up to the point
(13 , 1

3 ). For t ∈ [ 13 , 1
2 ] the green-blue intersection interval is shortening from both

sides. Finally, the graph of ηGB(t) returns to the t-axis at ( 12 , 0), see Fig. 4. �

Theorem 7 extends Example 6 and proves that any ψk(t) is a sum of trapezoid
functions whose corners are explicitly described. We consider any index i =
1, . . . ,m (of a point pi or a distance di) modulo m so that m + 1 ≡ 1 (mod m).

Theorem 7 (description of ψk, k > 0). For any sequence S = {p1, . . . , pm}+Z

with motif points 0 ≤ p1 < · · · < pm < 1, set di = pi+1 − pi ∈ (0, 1), where
i = 1, . . . , m and pm+1 = p1 + 1. Any interval [pi − t, pi + t] is projected to
[0, 1] modulo Z. For 1 ≤ k ≤ m, the density function ψk(t) is the sum of m

trapezoid functions ηk,i with the corner points ( s2 , 0), (di−1+s
2 , d), ( s+di+k−1

2 , d),
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(di−1+s+di+k−1
2 , 0), where d = min{di−1, di+k−1}, s =

i+k−2∑

j=i

dj , i = 2, . . . , m + 1.

If k = 1, then s = 0 is the empty sum. So ψk(t) is determined by the unordered
set of triples (di−1, s, di+k−1) whose first and last entries are swappable. �

Proof. For simplicity, we separately prove the case k = 1. The 1st density func-
tion ψ1(t) measures the total length of subregions covered by a single interval
[pi − t, pi + t]. Hence ψ1(t) is the sum of the functions η1i, each measuring the
length of the subinterval of [pi − t, pi + t] not covered by other such intervals.

Each function η1i starts from η1i(0) = 0 and linearly grows up to η1i( 12d) = d,
where d = min{di−1, di}, when the interval [pi − t, pi + t] of the length 2t = d
touches the growing interval centered at the closest of its neighbors pi±1.

If (say) di−1 < di, then the subinterval covered only by [pi − t, pi + t] is
shrinking on the left and is growing at the same rate on the right until it touches
the growing interval centered at the right neighbor. During this period, when t
is between 1

2di−1 and 1
2di, the trapezoid function η1i(t) = d remains constant.

If di−1 = di, this horizontal piece collapses to one point in the graph of η1i(t).
For t ≥ max{di−1, di}, the subinterval covered only by [pi − t, pi + t] is shrinking
on both sides until the intervals centered at pi±1 meet at a mid-point between
them for t = di−1+di

2 . So the graph of η1i has a trapezoid form with the corner
points (0, 0), (di−1

2 , d), (di

2 , d), (di−1+di

2 , 0).
In Example 6 for S = {0, 1

3 , 1
2}+Z, the distances d1 = 1

3 , d2 = 1
6 , d3 = 1

2 = d0
give η11 = ηR with the corner points (0, 0), (14 , 1

3 ), (16 , 1
3 ), ( 5

12 , 0) as in Fig. 4.
In the case k > 1, the k-th density function ψk(t) measures the total length

of k-fold intersections among m intervals [pi − t, pi + t], i = 1, . . . ,m.
A k-fold intersection appears only when two intervals [pi − t, pi + t] and

[pi+k−1 − t, pi+k−1 + t] overlap because their intersection is covered by the k
intervals centered at k points pi < pi+1 < · · · < pi+k−1. Since only k successive
intervals can contribute to k-fold intersections, ψk(t) becomes the sum of the
functions ηk,i, each equal to the length of the subinterval of [pi − t, pi+k−1 + t]
covered by exactly k intervals of the form [pj − t, pj + t], j = 1, . . . ,m.

The above function ηk,i(t) remains 0 until the radius t = 1
2

i+k−2∑

j=i

dj because

2t is the length between the points pi < pi+k−1. Then ηk,i(t) is linearly growing
until the k-fold intersection touches one of the intervals centered at the points
pi−1, pi+k, which are left and right neighbors of pi, pi+k−1, respectively.

If (say) di−1 < di+k−1, this critical radius is t = 1
2

i+k−2∑

j=i−1

dj = di−1+s
2 . The

function ηk,i(t) measures the length of the k-fold intersection [pi+k−1 − t, pi + t].

ηk,i(t) = (pi + t) − (pi+k−1 − t) = 2t − (pi+k−1 − pi) = (di−1 + s) − s = di−1.

Then the k-fold intersection is shrinking on the left and is growing at the same
rate on the right until it touches the growing interval centered at the right neigh-

bor pi+k. During this time, when t is between 1
2

i+k−2∑

j=i−1

dj and 1
2

i+k−1∑

j=i

dj , the func-
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tion ηk,i(t) remains equal to di−1. If di−1 > di+k−1, the last argument should
include the smaller distance di+k−1 instead of di−1. Hence we will use below the
single value d = min{di−1, di+k−1} to cover both cases. If di−1 = di, this hori-
zontal piece collapses to one point in the graph of ηk,i(t). The k-fold intersection
within [pi, pi+k−1] disappears when the intervals centered at pi−1, pi+k have the

radius t equal to the half-distance 1
2

i+k−1∑

j=i−1

dj between pi−1, pi+k.

Then ηk,i(t) is the trapezoid function with the expected four corner points

expressed as ( s
2 , 0), (di−1+s

2 , d), ( s+di+k−1
2 , d), (di−1+s+di+k−1

2 , 0) for s =
i+k−2∑

j=i

dj

and d = min{di−1, di+k−1}. These corners are uniquely determined by the triple
(di−1, s, di+k−1), where the components di−1, di+k−1 can be swapped. �

In Example 6 for S = {0, 1
3 , 1

2}+Z, we have d1 = 1
3 , d2 = 1

6 , d3 = 1
2 = d0. For

k = 2, i = 2, we get di−1 = d1 = 1
3 , di+k−1 = d3 = 1

2 , i.e. d = min{d1, d3} = 1
3 ,

s = d2 = 1
6 . Then η22 = ηGB has the corner points ( 1

12 , 0), (14 , 1
3 ), (13 , 1

3 ), (12 , 0).

4 Symmetries, Computations, and Generic Completeness

Theorem 8 (symmetries of ψk(t)). For any periodic sequence S ⊂ R with a
unit cell [0, 1], we have the periodicity ψk+m(t+ 1

2 ) = ψk(t) for any k ≥ 0, t ≥ 0,
and the symmetry ψm−k( 12 − t) = ψk(t) for k = 0, . . . , [m2 ], and t ∈ [0, 1

2 ]. �

Proof. To prove ψm−k( 12 − t) = ψk(t) for k = 1, . . . , [m2 ], we establish a bijection
between the triples of parameters that determined ψm−k and ψk in Theorem 7.

Take a triple (di−1, s, di+k−1) of ψk, where s =
i+k−2∑

j=i

dj is the sum of k − 1

distances from di−1 to di+k−1 in the increasing (cyclic) order of distance indices.
Under t �→ 1

2 − t, the corner points of trapezoid function ηk,i map to

(1 − s

2
, 0

)
,

(1 − s − di−1

2
, d

)
,

(1 − s − di+k−1

2
, d

)
,

(1 − di−1 − s − di+k−1

2
, 0

)
.

Notice that s̄ = 1 − di−1 − s − di+k−1 is the sum of the m − k − 1 intermediate
distances from di+k−1 to di−1 in the increasing (cyclic) order of indices.

The four corner points can be re-written with the above notation s̄ as follows:
(

di−1 + s̄ + di+k−1

2
, 0

)

,

(
s̄ + di+k−1

2
, d

)

,

(
s̄ + di−1

2
, d

)

,
( s̄

2
, 0

)
.

These resulting points are re-ordered corners of the trapezoid function ηm−k,i+k.
Hence ηk,i( 12 − t) = ηm−k,i+k(t). Taking the sum over all indices i = 1, . . . , m,
we get ψk( 12 − t) = ψm−k(t). Figure 4 shows the symmetry ψ1(t) = ψ2( 12 − t).

For periodicity, we compare ψk and ψk+m for k ≥ 0. Any (k+m)-fold intersec-
tion should involve intervals centered at k + m successive points of the sequence
S ⊂ R. Then we can find a period interval [t, t+1] covering m of these points. By
collapsing this interval to a single point, the (k + m)-fold intersection becomes
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k-fold, but its fractional length within any period interval of length 1 remains
the same. Since the radius t is twice smaller than the length of the corresponding
interval, this collapse gives us ψk+m(t + 1

2 ) = ψk(t).
The symmetry ψm( 12 − t) = ψ0(t) follows from ψm( 12 − t) = ψm( 12 +

t). Indeed, any trapezoid of ψm has s = 1 − di−1. Since its four corners
(1−di−1

2 , 0), (12 , di−1
2 ), (12 , di−1

2 ), (1+di−1
2 , 0) are symmetric in t = 1

2 , then so is the
sum ψm. �

Corollary 9 (computation of ψk(t)). Let S,Q ⊂ R be periodic sequences with
at most m motif points. For k ≥ 1, one can draw the graph of the k-th density
function ψk[S] in time O(m2). One can check in time O(m3) if Ψ [S] = Ψ [Q]. �

Proof. To draw the graph of ψk[S] or evaluate the k-th density function ψk[S](t)
at any t, we first use the symmetry and periodicity from Theorem 8 to reduce k
to the range 0, 1, . . . , [m2 ]. In time O(m log m) we put the points from a unit cell
U (scaled to [0, 1] for convenience) in the increasing (cyclic) order p1, . . . , pm. In
time O(m) we compute the distances di = pi+1 − p between successive points.

For k = 0, we put the distances in the increasing order d[1] ≤ · · · ≤ d[m] in
time O(m log m). By Theorem 5 in time O(m2), we write down the O(m) corner
points whose horizontal coordinates are the critical radii where ψ0(t) can change
its gradient. We evaluate ψ0 at every critical radius t by summing up the values
of m trapezoid functions at t, which needs O(m2) time. It remains to plot the
points at all O(m) critical radii t and connect the successive points by straight
lines, so the total time is O(m2). For any larger fixed index k = 1, . . . , [m2 ], in
time O(m2) we write down all O(m) corner points from Theorem 7, which leads
to the graph of ψk(t) similarly to the above argument for k = 0.

To decide if the infinite sequences of density functions coincide: Ψ [S] = Ψ [Q],
by Theorem 8 it suffices to check only if O(m) density functions coincide:
ψk[S](t) = ψk[Q](t) for k = 0, 1, . . . , [m2 ]. To check if two piecewise linear func-
tions coincide, it remains to compare their values at all O(m) critical radii t from
the corner points in Theorems 5 and 7. Since these values were found in time
O(m2) above, the total time for k = 0, 1, . . . , [m2 ] is O(m3). �

To illustrate Corollary 9, Example 10 will justify that the periodic sequences
S15 and Q15 in Fig. 3 have identical density fingerprints Ψ [S15] = Ψ [Q15].

Example 10 (S15, Q15 have equal density functions). To avoid fractions, we
keep the unit cell [0, 15] of the sequences S15, Q15 because all quantities in The-
orem 7 can be scaled up by factor 15. To conclude that ψ0[S15] = ψ0[Q15], by
Theorem 5 we check that S15, Q15 have the same set of the ordered distances d[i]
between successive points, which is shown in identical rows 3 of Tables 1 and 2.

To conclude that ψ1[S15] = ψ1[Q15] by Theorem 7, we check that S15, Q15

have the same set of unordered pairs (di−1, di) of distances between successive
points. Indeed, Tables 1 and 2 have identical rows 5, where pairs are lexicograpi-
cally ordered for comparison: (a, b) < (c, d) if a < b or a = b and c < d.

To conclude that ψk[S15] = ψk[Q15] for k = 2, 3, 4, we compare the triples
(di−1, s, di+k−1) from Theorem 7 for S15, Q15. For k = 2 and k = 3, Tables 1
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Table 1. Row 1: points pi from the set S15 in Fig. 3. Row 2: the distances di between
successive points of S15. Row 3: the distances d[i] are in the increasing order. Row 4:
the unordered set of these pairs determines the density function ψ1 by Theorem 7.
Row 5: the pairs are lexicographically ordered for comparison with row 5 in Table 2.
Rows 6, 8, 10: the unordered sets of these triples determine the density functions
ψ2, ψ3, ψ4 by Theorem 7 for k = 2, 3, 4. Rows 7,9,11: the triples from rows 6,8,10 are
ordered for comparison with corresponding rows 7, 9, 11 in Table 1, see Example 10.

pi 0 1 3 4 5 7 9 10 12

di = pi+1 − pi 1 2 1 1 2 2 1 2 3

ordered d[i] 1 1 1 1 2 2 2 2 3

(di−1, di) (3,1) (1,2) (2,1) (1,1) (1,2) (2,2) (2,1) (1,2) (2,3)

order (di−1, di) (1,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,3) (2,2) (2,3)

(di−1,di, di+1) (3,1,2) (1,2,1) (2,1,1) (1,1,2) (1,2,2) (2,2,1) (2,1,2) (1,2,3) (2,3,1)

order (di−1,di, di+1) (1,1,2) (1,1,2) (2,1,2) (2,1,3) (1,2,1) (1,2,2) (1,2,2) (1,2,3) (1,3,2)

(di−1, s, di+2) (3,3,1) (1,3,1) (2,2,2) (1,3,2) (1,4,1) (2,3,2) (2,3,3) (1,5,1) (2,4,2)

order (di−1, s, di+2) (2,2,2) (1,3,1) (1,3,2) (1,3,3) (2,3,2) (2,3,3) (1,4,1) (2,4,2) (1,5,1)

(di−1, s, di+3) (3,4,1) (1,4,2) (2,4,2) (1,5,1) (1,5,2) (2,5,3) (2,6,1) (1,6,2) (2,6,1)

order (di−1, s, di+3) (1,4,2) (1,4,3) (2,4,2) (1,5,1) (1,5,2) (2,5,3) (1,6,2) (1,6,2) (1,6,2)

Table 2. Row 1: points pi from the set Q15 in Fig. 3. Row 2: the distances di between
successive points of Q15. Row 3: the distances d[i] are in the increasing order. Row 4:
the unordered set of these pairs determines the density function ψ1 by Theorem 7b.
Row 5: the pairs are lexicographically ordered for comparison with row 5 in Table 1.
Rows 6, 8, 10: the unordered sets of these triples determine the density functions
ψ2, ψ3, ψ4 by Theorem 7 for k = 2, 3, 4. Rows 7, 9, 11: the triples from rows 6,8,10
are ordered for comparison with corresponding rows 7, 9, 11 in Table 2, see Example 10.

pi 0 1 3 4 6 8 9 12 14

di = pi+1 − pi 1 2 1 2 2 1 3 2 1

ordered d[i] 1 1 1 1 2 2 2 2 3

(di−1, di) (1,1) (1,2) (2,1) (1,2) (2,2) (2,1) (1,3) (3,2) (2,1)

ordered (di−1, di) (1,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,3) (2,2) (2,3)

(di−1,di, di+1) (1,1,2) (1,2,1) (2,1,2) (1,2,2) (2,2,1) (2,1,3) (1,3,2) (3,2,1) (2,1,1)

order (di−1,di, di+1) (1,1,2) (1,1,2) (2,1,2) (2,1,3) (1,2,1) (1,2,2) (1,2,2) (1,2,3) (1,3,2)

(di−1, s, di+2) (1,3,1) (1,3,2) (2,3,2) (1,4,1) (2,3,3) (2,4,2) (1,5,1) (3,3,1) (2,2,2)

order (di−1, s, di+2) (2,2,2) (1,3,1) (1,3,2) (1,3,3) (2,3,2) (2,3,3) (1,4,1) (2,4,2) (1,5,1)

(di−1, s, di+3) (1,4,2) (1,5,2) (2,5,1) (1,5,3) (2,6,2) (2,6,1) (1,6,1) (3,4,2) (2,4,1)

order (di−1, s, di+3) (1,4,2) (1,4,2) (2,4,3) (1,5,2) (1,5,2) (1,5,3) (1,6,1) (1,6,2) (2,6,2)

and 2 have identical rows 7 and 9, where the triples are ordered for easier com-
parison as follows. If needed, we swap di−1, di+k−1 to make sure that the first
entry is not larger than the last. Then we order by the middle bold number s.
Finally, we lexicographically order the triples with the same middle value s.
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Fig. 5. The 4th-density function ψ4[S15] includes the six trapezoid functions on the left,
which are replaced by other six trapezoid functions in ψ4[Q15] on the right, compare
the last rows of Tables 1 and 2. However, the sums of these six functions are equal,
which can be checked at critical radii: both sums of six functions have η(2.5) = 2,
η(3) = 5, η(3.5) = 6, η(4) = 4, η(4.5) = 1. Hence the periodic sequences S15, Q15 in
Fig. 3 have identical density functions ψk for all k ≥ 0, see details in Example 10.

Final rows 11 of Tables 1 and 2 look different for k = 4. More exactly, the rows
share three triples (1,4,2), (1,5,2), (1,6,4), but the remaining six triples differ.
However, the density function ψ4 is the sum of nine trapezoid functions. Figure 5
shows that these sums are equal for S15, Q15. Then the sequences S15, Q15 have
identical density functions ψk for k = 0, 1, 2, 3, 4, hence for all k by the symmetry
and periodicity from Theorem 8. Figure 6 shows ψk, k = 0, 1, . . . , 9. �

Fig. 6. The periodic sequences S15, Q15 in Fig. 3 have identical density functions ψk(t)
for all k ≥ 0. Both axes are scaled by factor 15. Theorem 8 implies the symmetry
ψk(

15
2

− t) = ψ9−k(t), t ∈ [0, 15
2
], and periodicity ψ9(t +

15
2
) = ψ0(t), t ≥ 0.

Recall that all indices i of distances di are considered modulo m.
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Corollary 11 (k-th density ρk). For any periodic sequence S = {p1, . . . , pm}+
Z with inter-point distances di = pi+1−pi, where i = 1, . . . , m and pm+1 = p1+1,

the k-th density ρk[S] =
+∞∫

−∞
ψk(t)dt defined as the area under the graph of ψk(t)

over R equals ρk[S] =
1
2

m∑

i=1

di−1di+k−1 for any k > 0 and ρ0[S] =
1
4

m∑

i=1

d2i . �

Proof. By Theorem 7 for k > 0, each ψk(t) is the sum of m trapezoid func-
tions. Hence ρk[S] equals the sum of the areas under the graphs of these trape-
zoids with corners ( s2 , 0), (di−1+s

2 , d), ( s+di+k−1
2 , d), (di−1+s+di+k−1

2 , 0), where
d = min{di−1, di+k−1}. The area of each trapezoid is Ai = d

2 (di−1+di+k−1
2 +

|di+k−1 − di−1|) = dD
2 , where D = max{di−1, di+k−1}. Then ρk =

m∑

i=1

Ai =

1
2

m∑

i=1

di−1di+k−1. Since ψ0(t) = 0 for t < 0, ρ0 is a half of the area ρm =
1
2

m∑

i=1

d2i

under ψm(t) due to ψm( 12 ± t) = ψ0(t) for t ∈ [0, 1
2 ] by Theorem 8, see Fig. 6. �

For S = {0, 1
3 , 1

2} +Z, Corollary 11 gives ρ0 = 7
72 , ρ1 = ρ2 = 11

122 as in Fig. 4.

Corollary 12 (generic completeness of ψ1). Let S ⊂ R be a sequence with
period 1 and m points 0 ≤ p1 < · · · < pm < 1. The sequence S is called generic
if di = pi+1 − pi are distinct, where i = 1, . . . , m and pm+1 = p1 + 1. Then
any generic S can be reconstructed from the 1st density function ψ1[S](t) up to
isometry in R. Hence ψ1(t) is a complete isometry invariant for all generic S. �

Proof. As always, one can scale a unit cell of S to the standard interval [0, 1] as
in Theorem 7. Hence, up to translation and reflection of R, one can assume that
p1 = 0 < p2 < 1 = pm+1. It suffices to uniquely locate p2, . . . , pm ∈ (0, 1).

The 1st density function ψ1[S](t) is the sum of the trapezoid functions
that have the initial gradient 2 and the corner points (0, 0), (di−1

2 , d), (di

2 , d),
(di−1+di

2 , 0), where d = min{di−1, di}, i = 1, . . . ,m, all indices are modulo m.
Due to a cyclic order of inter-point distances di, one can assume that the

minimum distance is d[1] = d1. For any 0 ≤ t ≤ d1, the function ψ1[S](t)
is linearly increasing with the gradient 2m. This gradient drops to 2m − 2 at
the first critical radius t = d1

2 , which differs from all other larger points di

2

and di−1+di

2 where the gradient of ψ1(t) changes. Then the first corner of ψ1(t)
uniquely determines d1 and the second point p2 = d1 of the sequence S.

At the radius t = d1
2 , subtracting from ψ1(t) the contribution (m−1)d1 from

other still growing m−1 trapezoid functions, we get the value d1+d2
2 . So the first

corner of ψ1(t) also determines the length d2 = p3 − p2 of the second inter-point
interval after [p1, p2] of the length d1, and the third point p3 = d1 + d2.
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Since we know both d1, d2, we can subtract from ψ1(t) the whole trapezoid
function η(t) with the above corners for i = 2 for all t ∈ [0, 1]. The resulting
function ψ̃1(t) is the sum of m−1 trapezoid functions depending on m−1 inter-
point distances d2, . . . , dm. We continue analyzing ψ̃1(t) by looking at the first
corner where its gradient drops from 2m − 2 to 2m − 4, which gives us another
pair (di−1, di) of successive interval lengths, and so on. Since all distances di are
distinct, the above pairs uniquely determine the ordered sequence d1, . . . , dm of
all interval lengths, hence the points p2, . . . , pm ∈ (0, 1) of the sequence S. �

The recent developments in Periodic Geometry include algorithms of metrics
on periodic point sets [2,8], Lattice Isometry Spaces in dimension two [3,9] and
three [4,7], Pointwise Distance Distributions [13], and applications to materi-
als [12,15]. We thank all reviewers for helpful suggestions. This research was
supported by the EPSRC grant Application-driven Topological Data Analysis’,
Royal Academy of Engineering Industrial Fellowship ‘Data Science for Next Gen-
eration Engineering of Solid Crystalline Materials’, and EPSRC New Horizons
grant ‘Inverse design of periodic crystals’
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Approximation of Digital Surfaces
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Abstract. We show that the plane-probing algorithms introduced in
Lachaud et al. (J. Math. Imaging Vis., 59, 1, 23–39, 2017), which com-
pute the normal vector of a digital plane from a starting point and
a set-membership predicate, are closely related to a three-dimensional
generalization of the Euclidean algorithm. In addition, we show how to
associate with the steps of these algorithms generalized substitutions, i.e.,
rules that replace square faces by unions of square faces, to build finite
sets of elements that periodically generate digital planes. This work is a
first step towards the incremental computation of a hierarchy of pieces
of digital plane that locally fit a digital surface.

Keywords: Digital planes · Multi-dimensional continued-fraction
algorithms · Generalized substitutions · Plane-probing algorithms

1 Introduction

Digital geometry mainly deals with sets of discrete elements considered to be
digitized versions of Euclidean objects. A digital surface may be seen as a mesh
of unit square faces whose vertices have integer coordinates. A challenge is to
decompose digital surfaces into patches, such as pieces of digital planes.

A digital plane has been analytically defined as a set of points with integer
coordinates lying between two parallel planes. Given a finite point set, one can
decide whether this set belongs to a digital plane or not in linear time using
linear programming. For a review on digital planarity, see [7]. However, a linear
programming solver does not help so much for the analysis of digital surfaces,
because one does not know which point set should be tested to obtain patches
that approximates the tangent plane of the underlying surface.

In order to cope with this problem, plane-probing algorithms have been devel-
oped [17,18]. Their main feature is to decide on-the-fly how to probe a given point
set and locally align a triangle with it. However, if probing for points in a sparse
way is perfect for digital planes, it is not enough for non-convex parts where
the triangles may jump over holes or stab the digital surface. Therefore, that
approach also requires to associate pieces of digital planes to the triangles and
check whether they fit the digital surface or not.

This work has been funded by PARADIS ANR-18-CE23-0007-01 research grant.
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In this paper, we make a first step towards the incremental generation of
a hierarchy of pieces of digital plane, which can be used during the execution
of a plane-probing algorithm (see Fig. 1). To do that, we take advantage of the
combinatorial properties of digital planes.

Fig. 1. Local approximation of a digital sphere of radius 63 by planar patches (in
green) from two starting points (in blue). The implementation combines the plane-
probing algorithm H [18] with the generation method of Sect. 3. (Color figure online)

The particular case of digital lines has been studied for a long time in different
contexts and has led to many applications. One key result is that digital lines
are hierarchical point sets whose structure is exactly described by the continued
fraction expansion of their slope and strongly relies on the Euclidean algorithm.
For a survey on digital straightness, see [15].

There has been much effort done in order to find similar results in three
dimensions despite the lack of a canonical algorithm and the diversity of existing
generalizations of the Euclidean algorithm. Some combinatorial results, involving
symmetries, piece exchanges and flips, have been stated thanks to an appropriate
representation of digital planes [16]. However, most of other related works depend
on a multi-dimensional generalization of the Euclidean algorithm such as Brun,
e.g., [4], Jacobi-Perron, e.g., [6], Fully substractive, e.g. [3], or a mix of several
of them [13]. Those algorithms have been used to generate digital planes from a
normal vector. There are two different but closely related construction schemes
in the literature. The first one is based on union and translation of point sets
[5,10,13]. It has been used mostly to construct the thinnest digital plane that
is connected [3,5,8,9]. The second one is based on a description of standard
digital planes as unions of square faces and uses rules that replace square faces
by unions of square faces. Since the pioneer work of Arnoux and Ito [2], that
formalism has been used for instance in [4–6,11,12]. Both construction schemes
incrementally generate sets so that the current set will be included in the next
one, but suffer from topological and geometrical limitations. This work is based
on the second scheme that generates few elements in comparison with the first
scheme.

In Sect. 2, we show how one can relate plane-probing algorithms to a three-
dimensional generalization of the Euclidean algorithm. In Sect. 3, we introduce
the generalized substitutions, describe our approach and examine several proper-
ties on the generated sets. Finally, the paper ends with some concluding remarks
and perspectives.
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2 Generalization of the Euclidean Algorithm

Let {e1, . . . , ed} be the canonical basis of Rd. We denote 0 the origin and 1 =
∑d

i=1 ei the vector with all coordinates equal to 1 whatever the dimension d. We
are interested below in vectors with coprime positive integer coordinates, i.e., in
the set Vd := {(v1, . . . , vd) | ∀i, vi ∈ N \ {0} and gcd (v1, . . . , vd) = 1}.

2.1 Three-Dimensional Euclidean Algorithms

In its additive form, the Euclidean algorithm can simply be expressed as: “for a
rational number represented by a pair of integers: subtract the smaller element
to the larger one and repeat”. It can be also expressed as a map Π : V2 → V2

such that Π(1) = 1 and

for any ( a
b ) ∈ V2 \ {1}, Π

(
( a

b )
)

=

{(
1 −1
0 1

)
( a

b ) if a > b,
(

1 0−1 1

)
( a

b ) otherwise.

Note that for all v ∈ V2, there exists a non-negative integer N such that N
successive applications of Π returns 1, i.e., ΠN (v) = 1. In dimension 2, it is
clear to decide which number has to be subtracted to the other, whereas in
dimension 3, i.e., for triplets, it is not the case, hence the diversity of existing
generalizations. Several existing algorithms stick to a convention, which may
lead to ambiguities or to a null coordinate in case of ties:

– Brun consists in subtracting the second largest entry to the largest one;
(1, 2, 2) may lead to either (1, 0, 2) or to (1, 2, 0).

– Farey consists in subtracting the smallest entry to the second largest one;
(1, 1, 2) may lead to either (0, 1, 2) or to (1, 0, 2). In both cases, the numbers
cannot be reduced further.

– Selmer consists in subtracting the smallest entry to the largest one, (1, 2, 2)
may lead to either (1, 1, 2) or to (1, 2, 1). While the numbers are not all equal,
no zero appears.

We generalize below that last algorithm with the following two definitions:

Definition 1. Let T be the set of all permutations over {1, 2, 3}. For a permu-
tation τ ∈ T , let Uτ(1),τ(2),τ(3) be a 3 × 3 matrix having −1 at the intersection
between the τ(1)-th row and the τ(2)-th column and the same entries as I3, i.e.
the 3 × 3 identity matrix, elsewhere. Let U be the set {Uτ(1),τ(2),τ(3) | τ ∈ T }.

U1,2,3 U1,3,2 U2,3,1 U2,1,3 U3,1,2 U3,2,1⎛
⎜⎝

1 −1 0

0 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 −1

0 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 1 −1

0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0

−1 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 1 0

−1 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 1 0

0 −1 1

⎞
⎟⎠

Note that the elements of U are matrices with determinant 1.
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Definition 2. A three-dimensional Euclidean algorithm is a map Π : V3 → V3

such that Π(1) = 1 and for any w ∈ V3 \{1}, there is a matrix U ∈ U satisfying
Π(w) = Uw.

Note that Selmer is a three-dimensional Euclidean algorithm according to
Definition 2.

The following proposition shows that the repeated application of Π always
brings a vector v ∈ V3 to 1, exactly as with the Euclidean algorithm in 2D.

Proposition 1. Let Π be a three-dimensional Euclidean algorithm. For all v ∈
V3, there exists a non-negative integer N such that ΠN (v) = 1 and N ≤ ‖v‖1−3.

Proof. For all n ≥ 0 for which the coordinates of Πn(v) are not all equal, by
definition of Π, there exists a matrix U ∈ U such that Πn+1(v) = UΠn(v) ∈ V3.
Furthermore, we have ‖Πn+1(v)‖1 < ‖Πn(v)‖1 in that case.

If there is N ≥ 1 for which the coordinates of ΠN (v) are all equal, there is a
strictly positive integer h such that ΠN (v) = h1. However, ΠN (v) = Mv, where
M is a product of elementary matrices belonging to U . It follows that M has
determinant 1 and is therefore invertible. We have Mv = h1 ⇔ v = hM−11
and since the coordinates of v are coprime, we obtain h = 1 and ΠN (v) = 1.

As a consequence, (‖Πn(v)‖1)n=0,...,N is a strictly decreasing integer sequence
from ‖v‖1 to ‖ΠN (v)‖1 = 3, which concludes the proof. 	


We focus now on the following finite sequences:

Definition 3. A sequence of matrices (Un)0≤n≤N is valid iff U0 = I3 and
every Un, n ∈ {1, . . . , N}, is in U . In addition, a valid sequence reduces a vector
v ∈ V3 iff for all n ∈ {0, . . . , N −1}, Un · · ·U0v ∈ V3\{1} and UN · · ·U0v = 1.
In that case, we set vn := Un · · ·U0v and an := U−1

0 · · ·U−1
n 1.

Let 〈·, ·〉 stand for the usual scalar product on R3. Note that for all x ∈ R3,
〈x, ei〉 is equal to the i-th coordinate of x. The following proposition shows
several properties of the above-defined sequences:

Proposition 2. We have aN = v0 and for each n ∈ {0, . . . , N}:

(i) for each i ∈ {1, 2, 3}, 〈UT
0 · · ·UT

nei,v0〉 is the i-th coordinate of vn,
(ii) for each i ∈ {1, 2, 3}, 〈UT

0 · · ·UT
nei,an〉 = 1,

(iii) the differences (UT
0 · · ·UT

n (e2 − e1),UT
0 · · ·UT

n (e3 − e2)) form a basis of
the lattice {x ∈ Z3 | 〈x,an〉 = 0}.

Proof. By Definition 3, we have vN = UN · · ·U0v0 = 1, which is equivalent
to v0 = U−1

0 · · ·U−1
N 1 = aN . For (i), 〈UT

0 · · ·UT
nei,v0〉 = 〈ei,Un · · ·U0v0〉 =

〈ei,vn〉. For (ii), 〈UT
0 · · ·UT

nei,an〉 = 〈ei,Un · · ·U0an〉 = 〈ei,1〉 = 1. Finally,
for the last item, note that 〈UT

0 · · ·UT
n (e2 − e1),an〉 = 0 and 〈UT

0 · · ·UT
n (e3 −

e2),an〉 = 0 by (ii). The fact that (UT
0 · · ·UT

n (e2−e1),UT
0 · · ·UT

n (e3−e2)) form
a basis of the lattice {x ∈ Z3 | 〈x,an〉 = 0} comes from the fact that the matrix
UT

0 · · ·UT
n has determinant 1. 	
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Figure 2 illustrates the action of the matrices UN · · ·U0 and U−1
0 · · ·U−1

N

in (a), and UT
0 · · ·UT

N in (b). Note that for each n ∈ {0, . . . , N}, UT
0 · · ·UT

n

transforms the basis {ei | i ∈ {1, 2, 3}} to {UT
0 · · ·UT

nei | i ∈ {1, 2, 3}}. In other
words, it deforms an orthonormal basis to a basis that is more and more aligned
with the plane of normal v = v0 because the quantities {〈UT

0 · · ·UT
nei,v0〉 | i ∈

{1, 2, 3}} are smaller and smaller by Proposition 2, item (i).

Fig. 2. Geometrical interpretation of the matrices (Un)0≤n≤N . In (b), we have implic-
itly represented the scalar projection of the basis vectors in the direction of v with the
help of dotted lines. In the rightmost figure, the scalar products {〈UT

0 · · ·UT
Nei,v〉 | i ∈

{1, 2, 3}} are equal to the coordinates of vN and are thus all equal to 1.

2.2 Relation with Plane-Probing Algorithms

A digital plane is formally defined by a normal v ∈ Z3\{0} and a position μ ∈ Z
as follows:

Pμ,v := {x ∈ Z3 | μ ≤ x · v < μ + ‖v‖1}. (1)

In what follows, we assume w.l.o.g. that v ∈ V3 and μ = 0. Given a digital
plane P ∈ {P0,v | v ∈ V3} of unknown normal vector a plane-probing algorithm
computes the normal vector v of P by sparsely probing it with the predicate “is
x in P?”.

We now describe the plane-probing algorithm H introduced in [18]. The state
of the algorithm is a basis of three vectors, which can be stored in a 3 × 3
matrix, denoted by the letter B, with the index of the step as a subscript. At
initialization, B0 is set to identity. In order to explain how Bn+1 is computed
from Bn at a step n ≥ 0 of the algorithm, let us introduce the following set of
differences (see Fig. 3 for an illustration):

Dn := {Bn(−eτ(1) + eτ(2)) | τ ∈ T }.

If P ∩ {1 + d | d ∈ Dn} = ∅ (see Fig. 3 on the right), the algorithm halts.
Otherwise, there exists a permutation τ ∈ T such that:

1. 1 + Bn(−eτ(1) + eτ(2)) ∈ P (see Fig. 3),
2. the sphere passing by {1+Bnei | i ∈ {1, 2, 3}} and the point 1+Bn(−eτ(1)+

eτ(2)) does not include in its interior any other point of P ∩{1+d | d ∈ Dn}.
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Fig. 3. Execution of the algorithm H on a digital plane of normal vector (1, 2, 4). For
n ∈ {0, 1, 2, 3}, the column vectors of Bn (resp. elements of Dn) are depicted with
blue (resp. red) arrows that points to 1. The end points are depicted with disks (resp.
circles) if they belong (resp. do not belong) to the digital plane. (Color figure online)

From that permutation τ , we set Bn+1 := Bn(Uτ(1),τ(2),τ(3))T . In other words,
the τ(1)-th column of Bn+1, i.e., Bn+1eτ(1), is equal to the difference Bn(eτ(1)−
eτ(2)), while the other columns are identical in Bn+1 and Bn.

Note that there may be as much as three points in P ∩ {1 + d | d ∈ Dn}
because 1 does not belong to P and Dn contains three distinct pairs of vectors
of opposite sign. The in-sphere criterion generally provides a way of selecting
one of those points and thus one elementary matrix. If several points are in a
cospherical position, one can resort to a lexicographic order so that the algorithm
is defined without any ambiguity.

That algorithm is very similar to a three-dimensional Euclidean algorithm,
but does not exactly correspond to Definition 2, because two consecutive steps
are not independent. However, it produces a sequence of matrices (U)0≤n≤N

such that U0 = I3 and BT
n = BT

n−1Un for n ∈ {1, . . . , N}. That sequence is not
only valid by construction, but also reduces the normal vector v (Definition 3):

– ∀n ∈ {0, . . . , N − 1}, Un · · ·U0v ∈ V3 \ {1} by item 1 of [18, Lemma 1],
– UN · · ·U0v = 1 by [18, Theorem 2].

As a consequence, Proposition 2 also applies. For instance, aN = v [18, Corollary
4] means that the algorithm, which computes aN only from a predicate “is x in
P?”, is indeed able to retrieve the normal vector v of P (see also Fig. 3).

What makes the algorithm H very different from the classical three-
dimensional Euclidean algorithms like Selmer is twofold: on one hand, it uses the
past results for each new computation and on the other hand, it uses a geomet-
rical criterion to decide which elementary matrix has to be applied. That is why
less elongated patterns are obtained with that algorithm in the next section and
for instance in Fig. 5. In addition, since it uses only a set-membership predicate,
it can also be applied to arbitrary digital surfaces with slight changes as shown
in Fig. 1 and [18, Section 5].

Lastly, note that an update step in the algorithm R, also introduced in [18],
can be decomposed into elementary steps that are update steps in the algorithm
H [17, Section 3.5]. Therefore, we have the same results for the algorithm R.
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3 Pattern Generation with Generalized Substitutions

The goal of this section is to show how one can use a sequence of matrices that
reduces a vector v ∈ V3 to generate a piece of digital plane of normal v.

The generation method is based on a description of standard digital planes as
union of faces. For x ∈ Z3 and i ∈ {1, 2, 3}, we define the pointed face of type i
and origin x as the following subset of R3: (x, i∗) :=

{
x+

∑
j �=i λjej , λj ∈ [0, 1]

}
.

e2

e3

e1 • shows (0, 1∗) in red, (0, 2∗) in green and (0, 3∗) in blue.

We will use the following notation for translations of faces: if (x, i∗) is a face
and y is a vector, then (x, i∗) +y := (x+y, i∗), which extends in a natural way
to union of faces.

For a vector v ∈ V3, a stepped plane is defined as an infinite set of pointed
faces where each face (x, i∗) verifies 0 ≤ 〈x,v〉 < 〈ei,v〉 (see for instance [14,
Definition 1.2.1]). That way, the points of a digital plane, as defined in the
previous section, are the vertices of the faces of a stepped plane. By abuse of
notation, we will use P0,v or simply P to denote both a digital plane and a
stepped plane in the following.

3.1 Substitutions and Generalized Substitutions

In this subsection, we first recall the definition of generalized substitutions and
then show how to use them to generate a stepped plane of normal v.

We consider a 3-letter alphabet A := {1, 2, 3}. A word is an element of
the free monoid A� generated by A. The empty word is denoted by ε and the
concatenation operation is denoted by · or is left implicit. A substitution σ over
A is a non-erasing endomorphism of A∗, completely defined by its image on the
letters of A by the relation σ(w ·w′) = σ(w) ·σ(w′). The abelianization mapping
l : A∗ → N3 is such that l(w) = (|w|1, |w|2, |w|3), where |w|i denotes the number
of occurrences of the letter i in w. The incidence matrix Mσ of σ is the 3 × 3
matrix whose i-th column is l(σ(i)) for every i ∈ A. We assume that all the
substitutions we work with are unimodular, i.e., such that det (Mσ) = ±1.

Furthermore, we define the following set:

Si
σ := {(s, j) ∈ A∗ × A | j ∈ A, i · s is a suffix of σ(j)}. (2)

To obtain Si
σ, one splits the words {σ(j) | j ∈ A} at each occurrence of the

letter i. For each decomposition, we keep j as well as the suffix s located just after i.

Example 1. For σ: 1 �→ 1, 2 �→ 21, 3 �→ 32, S2
σ = {(1, 2), (ε, 3)}.

The generalized substitution of a pointed face (x, i∗) is [14, Definition 1.2.3]:

E∗
1 (σ)(x, i∗) :=

⋃

(s,j)∈Si
σ

(M−1
σ (x + l(s)), j∗). (3)

Example 2. For σ: 1 �→ 1, 2 �→ 21, 3 �→ 32, E∗
1 (σ)(0, 2∗) =

{(M−1
σ e1, 2∗), (0, 3∗)}.
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We extend this definition to unions of faces: E∗
1 (σ)(F1 ∪ F2) := E∗

1 (σ)(F1) ∪
E∗

1 (σ)(F2).
This setting is just fine for our purpose, but note that generalized substitu-

tions allow a more general setting by considering the free group – instead of the
free monoid – generated by A (see for instance [1,6,12]).

One of the main results about generalized substitutions and stepped planes
is that E∗

1 (σ) preserves stepped planes ([14, Proposition 1.2.4, item (3)] or [11,
Theorem 1] for a proof). Indeed, for any substitution σ whose incidence matrix
Mσ is unimodular,

E∗
1 (σ)(P0,v) = P0,MT

σ v. (4)

We focus now on specific finite sequences of substitutions defined below:

Definition 4. A sequence of substitutions (σn)0≤n≤N is admissible iff the
sequence

(
(MT

σn
)−1

)
0≤n≤N

reduces the vector MT
σ0

. . .MT
σN

1 (See Definition 3 to
recall the notion of reduction). In that case, we also set an := MT

σ0
. . .MT

σn
1 for

all n ∈ {0, . . . , N} in accordance with Definition 3 and the relation U−1
n = MT

σn
.

One can obtain 2N admissible sequences of substitutions from any sequence of
matrices that reduces a given vector. Indeed, since each matrix U of the sequence
belongs to U , there are exactly two substitutions σ such that Mσ = (UT )−1.
For instance, the inverse

(
1 0 0
0 1 0
0 1 1

)
of the matrix

(
1 0 0
0 1 0
0 −1 1

)
is the incidence matrix

of the two substitutions: 1 �→ 1, 2 �→ 23, 3 �→ 3 and 1 �→ 1, 2 �→ 32, 3 �→ 3. This
choice has an impact on the geometry and topology of the generated patterns
(see Sect. 3.3).

For two substitutions σ′, σ′′, we denote by ◦ their composition: (σ′◦σ′′)(w) :=
σ′(σ′′(w)). Note that (Mσ′◦σ′′)T = MT

σ′′MT
σ′ and E∗

1 (σ′) ◦E∗
1 (σ′′) = E∗

1 (σ′′ ◦σ′)
[14, Proposition 1.2.4, item (1)]. To save space, we set σi···0 := σi ◦ · · · ◦ σ0 for
1 ≤ i ≤ N . The following theorem is a direct consequence of (4):

Theorem 1. Let (σn)0≤n≤N be an admissible sequence of substitutions (see Def-
inition 4). For all n ∈ {0, . . . , N}, E∗

1 (σn···0)(P0,1) = P0,an

Proof. Applying (4) and using the definition of an, we get:

E∗
1 (σn···0)(P0,1) = P0,MT

σ0
···MT

σn
1 = P0,an 	


3.2 Generation Method and Properties of the Patterns

In this section, we do not apply generalized substitutions on the whole stepped
plane P0,1 as in Theorem 1. We apply them only on the lower unit cube com-
posed of the three pointed faces (0, 1∗), (0, 2∗) and (0, 3∗) because it periodically
generates P0,1 and is also included in any stepped plane of normal v ∈ V3. The
result is a finite set of pointed faces that we call pattern.

Definition 5 (Pattern). Let (σn)0≤n≤N be an admissible sequence of substitu-
tions (see Definition 4). Let W0 be the lower unit cube ∪i∈A(0, i∗) and for all n ∈
{1, . . . , N}, let Wn be the image of W0 by E∗

1 (σn···0), i.e., Wn := E∗
1 (σn···0)(W0).
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Fortunately, there exists a way to incrementally generate Wn from Wn−1 in
the manner of a union-translation scheme. This is the process we use in practice.

Theorem 2. Let (σn)0≤n≤N be an admissible sequence of substitutions (see Def-
inition 4). We have for all n ∈ {1, . . . , N} and for all i ∈ A,

E∗
1 (σn···0)(0, i∗) =

⋃

(s,j)∈Si
σn

(
M−1

σ0
· · ·M−1

σn
l(s) + E∗

1 (σn−1···0)(0, j∗)
)
.

The proof, based on (2) and (3), is given in appendix.
As shown in Fig. 4, for n ≥ 1, σn describes how the parts of Wn relate to the

ones of Wn−1. As an example, let us consider E∗
1 (σ3···1)(0, 1∗), which is the red

part of W3. It has been obtained as the union of two parts of W2: E∗
1 (σ2···1)(0, 1∗)

(in red) and E∗
1 (σ2···1)(0, 3∗) (in blue), because letter 1 belongs to both σ3(1)

and σ3(3) and is also in the last position, which means with no suffixes and thus
no translations.

Fig. 4. The substitutions σ1, σ2 and σ3 have been obtained from the reduction of
(1, 2, 4) using algorithm H (see also Fig. 3). The images of (0, 1∗), (0, 2∗) and (0, 3∗)
by E∗

1 are displayed respectively in red, green and blue. (Color figure online)

The following theorem gathers several properties of patterns:

Theorem 3. Let (σn)0≤n≤N be an admissible sequence of substitutions (see Def-
inition 4). The following properties hold on the patterns defined in Definition 5:

(i) ∀n ∈ {1, . . . , N}, Wn−1 ⊂ Wn and ∀n ∈ {0, . . . , N}, Wn ⊂ P0,aN
,

(ii) ∀n ∈ {1, . . . , N}, Wn periodically generates P0,an
with period vectors:

M−1
σ0

· · ·M−1
σn

(e2 − e1) and M−1
σ0

· · ·M−1
σn

(e3 − e2),

(iii) ∀n ∈ {0, . . . , N}, ∀i ∈ {1, 2, 3}, Wn has 〈ei,an〉 faces of type i.

Proof. (i) Since W0 ⊂ P0,1, Theorem 1 implies that WN ⊂ P0,aN
. In addition,

we have for all n ∈ {1, . . . , N}:

Wn = ∪i∈A E∗
1 (σn···0)(0, i∗) (Definition 5)

= ∪i∈A ∪(s,j)∈Si
σn

(
M−1

σ0
· · ·M−1

σn
l(s) + E∗

1 (σn−1···0)(0, j∗)
)

(Theorem 2)
⊃ ∪j∈A E∗

1 (σn−1···0)(0, j∗) = Wn−1 (Definition 5),
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where the inclusion comes from the trivial fact that for all j ∈ A, (ε, j) ∈
∪i∈A Si

σn
, i.e., the word σn(j) ends with a letter i ∈ A.

(ii) from (i), we have Wn ∈ P0,an
and from Proposition 2 (iii) (with

the relation UT
n = M−1

σn
), we have 〈M−1

σ0
· · ·M−1

σn
(e2 − e1),an〉 = 0

and 〈M−1
σ0

· · ·M−1
σn

(e3 − e2),an〉 = 0. Hence, for every a, b ∈ Z, Wn +
a
(
M−1

σ0
· · ·M−1

σn
(e2 − e1)

)
+ b

(
M−1

σ0
· · ·M−1

σn
(e3 − e2)

)
⊂ P0,an

.
(iii) According to the definition of E�

1 , Eq. (3), the number of faces of type
j0 in E∗

1 (σ)(0, 1�) is equal to the number of pairs (s, j0) in S1
σ, which is equal to

|σ(j0)|1, i.e., the number of occurrences of 1 in σ(j0). More generally, the number
of faces of type j0 in ∪i∈A E∗

1 (σ)(0, i�) is equal to |σ(j0)|1 + |σ(j0)|2 + |σ(j0)|3,
i.e., the number of letters in σ(j0). Similarly, the number of faces of type i in
Wn is equal to the number of letters in (σn···0)(i) and is equal to

〈l(σn···0),1〉 = 〈Mσn···0ei,1〉 = 〈ei, (Mσn···0)
T1〉 = 〈ei,MT

σ0
· · ·MT

σn
1〉 = 〈ei,an〉.

	

Theorem 3 shows that our method provides a hierarchical set of patterns, all

included in a given stepped plane (i). The pattern of the highest level periodically
generates the underlying stepped plane (ii) and is of minimal size (iii) because
if one sum the normal vector of all its faces, we get exactly aN , i.e., the normal
of the stepped plane, and one cannot expect to find a smaller pattern with the
same normal. We discuss below two additional properties that we would like to
have: shape compactness and connectivity.

3.3 Geometrical and Topological Issues

Our first remark is that the choice of the algorithm has a great impact on the
shape of the pattern (see Fig. 5). In addition, the patterns generated using the
algorithms H and R are much more compact. This is because the basis of the
lattice {x ∈ Z3 | 〈x,aN 〉 = 0} returned by the algorithm R (resp. algorithm H)
is experimentally always (resp. almost always) reduced [18]. A first short-term
perspective is to bound the distance of the pattern boundary to the origin in
order to objectively compare the patterns generated by different algorithms. For
the algorithms H and R, such bound may involve geometrical arguments based
on the empty-circumsphere criterion.

Our second remark is about the connectivity of the patterns. There are no
a priori guarantees that ensure that the patterns are vertex- or edge-connected.
The connectivity of the last pattern is linked to the choice of substitutions,
because one can associate two substitutions to one incidence matrix. Figure 6 and
Fig. 7 show that one can end up with patterns of different topology, depending
on which substitutions are used. We have experimentally noticed that there is
always a sequence of substitutions among the 2N admissible sequences that keep
the pattern edge-connected (see Fig. 6). A second short-term perspective is to
prove that such a connecting sequence indeed always exists and to design an
algorithm that finds it. Even if there is a way of generating edge-connected
patterns from specific sets of substitutions (see for instance [6]), the literature
currently lacks general results we could directly reuse in our setting.
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Fig. 5. Patterns of normal (2,6,15) generated by Brun, Selmer and H from left to right
(same color convention as the one used in Fig. 4). In all cases, every substitution σ
has been chosen so that for all i ∈ {1, 2, 3}, σ(i) starts with i. Even if Brun does not
correspond to Definition 2, we have included it for comparison, but keeping only the
first red set because it ends on (1, 0, 0) instead of (1, 1, 1). (Color figure online)

Fig. 6. The substitutions have been obtained from the reduction of (2, 2, 3) using the
algorithm H (same color convention as the one used in Fig. 4). Using σ′

2 instead of σ2

can make the pattern edge-connected.

Fig. 7. Patterns of normal (2, 5, 17) generated by the algorithm H. From left to right:
connected pattern, not edge-connected, not vertex-connected.

4 Conclusion

We have introduced a three-dimensional version of the Euclidean algorithm that
turns out to be closely related to plane-probing methods appearing in digital
geometry. With the help of generalized substitutions, we have presented a way of
generating hierarchical sets of pieces of digital planes. The patches of highest level
periodically cover the underlying digital planes and are of limited size. We expect
to obtain soon theoretical guarantees regarding the shape and connectivity of the
generated patches. After having achieved this goal, we will use that generation
method to improve the local analysis of digital surfaces using plane-probing.
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A Proofs

Proof (of Theorem 2).

E∗
1 (σn···0)(0, i∗) = E∗

1 (σn−1···0)
(
E∗

1 (σn)(0, i∗)
)

= E∗
1 (σn−1···0)

( ⋃
(s,j)∈Si

σn

(M−1
σn

l(s), j∗)

)

=
⋃

(s,j)∈Si
σn

E∗
1 (σn−1···0)

(
M−1

σn
l(s), j∗)

)

=
⋃

(s,j)∈Si
σn

(
(Mσn−1 · · ·Mσ0)

−1(Mσn)−1l(s) + E∗
1 (σn−1···0)(0, j∗)

)

=
⋃

(s,j)∈Si
σn

(
(Mσn · · ·Mσ0)

−1l(s) + E∗
1 (σn−1···0)(0, j∗)

)
.

The second to last line comes from

E∗
1 (σn−1···0)(x, i∗) = (Mσn−1 · · ·Mσ0)

−1x + E∗
1 (σn−1···0)(0, i∗),

since (Mσn−1 · · ·Mσ0)
−1 does not depend on the union in the definition of E∗

1 ,
Eq. (3) (see also [14, Proposition 1.2.4, item (2)]). 	
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Abstract. In this paper a new class of discrete transforms of discrete
straight segments (DSS), called Discrete Soft Transforms is introduced.
The soft transformation of a segment consists in moving a single discrete
point at each step while keeping the segment property. We propose the
soft rotation and soft translation of a segment and extend these results
to the soft translation of a tree.

Keywords: Discrete straight segment · Discrete tree · Soft
translation · Soft rotation · Discrete soft transform

1 Introduction

Commonly transformations in the discrete domain come in the form of dis-
cretized continuous transformations. The concern with such an approach is that
it is difficult to obtain natural properties such as bijectivity or preservation
geometric features or topology. An alternative approach promoted by the dis-
crete geometry community is to consider transformations directly in the discrete
domain. This led to interesting results on bijectivity or topology preservation for
discrete rigid motions [1,6]. Such results are difficult to obtain and even more
difficult to extend because, as global transformations on the whole domain, local
properties are not easy to guarantee. In this paper we propose to introduce a
new class of discrete transforms called discrete soft transform. The idea is to
decompose a discrete transform into a sequence of atomic steps where only one
discrete point at a time is moved/added/suppressed while maintaining a set of
given properties. The recently, proposed morphing method by Lama Tarsissi and
al. [9] that preserves the convexity of discrete objects by adding/removing one
point at each step can be seen as an example of discrete soft transform.

As a proof of concept, we propose a discrete soft rotation and translation of
discrete straight segments (DSS). The discrete lines have interesting arithmetical
and combinatoric properties studied for a long time (see [3] for an historical
review). The soft transformation of a segment consists in moving a single discrete
point at each step while keeping the segment property. We present shortly the
soft rotation of a DSS, but the focus of the paper is on the soft translation.
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https://doi.org/10.1007/978-3-031-19897-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19897-7_33&domain=pdf
https://doi.org/10.1007/978-3-031-19897-7_33


Introduction to Discrete Soft Transforms 423

The soft translation can be seen as akin to a subpixel translation method when
compared to the discretized continuous translation. After proving a fundamental
result on the movable points in a DSS, we propose an algorithm for the soft
translation of a DSS and the soft translation of tree embeddings where vertices
are embedded as discrete points and edges as DSS. The next step will be to
propose a soft translation for graphs of DSS and thus to the soft translation of
segmented images.

This paper is decomposed into five parts, the first being this introduction.
In section two, we recall basic notions about discrete lines and segments. Then,
in the third section, the discrete soft tranform on a DSS is introduced and a
fundamental result about movable points in a DSS is proved. In section four, we
propose a first simple algorithm for soft rotations of a DSS before focusing on
the soft translation of a DSS. There are in particular an important distinction
that has to be made between the soft translation of a DSS of slope between 0
and 1 and a DSS of slopes greater or equal to 1. An extension to a set of DSS
that embed a tree concludes Sect. 4. In the last section, we conclude and present
perspectives for this work.

2 Preliminaries

Let {e1, e2} denote the canonical basis of the 2-dimensional Euclidean vector
space. In this paper we are dealing with discrete points in Z

2. Two points
p, q ∈ Z

2 are said to be 4-neighbours iff ‖p − q‖1 = 1, and said to be 8-neighbours
iff ‖p − q‖∞ = 1. A Digital Straight Line (DSL for short) D(a, b, μ) of inte-
ger characteristics (a, b, μ) is the set of digital points (x, y) ∈ Z

2 such that
0 � ax − by + μ < ω where ω = max(|a|, |b|) and gcd(a, b) = 1. These DSL are
8-connected and called naive DSL [8]. The slope of the DSL is the fraction a

b
(when b �= 0). The value μ is sometimes called the translation constant or the off-
set. The value R(a, b, μ)(x, y) = ax − by + μ is called the remainder of the DSL.
A DSL can also be defined as the integer points of a strip delimited by the lower
leaning line ax − by + μ = ω − 1 and the upper leaning line ax − by + μ = 0 [2].
Upper (resp. Lower) leaning points are the digital points of the DSL lying on the
upper (resp. lower) leaning lines. A weakly exterior point is a point of a DSL that
verifies ax − by + μ = −1 (in this case we speak also of a weakly upper exterior
point) or ax − by + μ = ω (in this case we speak also of a weakly lower exterior
point) [2]. We note Inf(S) (resp. Sup(S)) the set of lower (resp. Upper) leaning
points of S.

A digital straight line segment (DSS) D(a, b, μ,E0, E1) is a finite 8-connected
subset of the DSL D(a, b, μ) with the end-points E0 and E1. We speak of horizon-
tal (resp. vertical) segments, segments in the first octant (resp. second octant)
with slope 0 � a

b < 1 (resp. a
b ≥ 1). For an horizontal line S, for a given x, there

is one and only one y = �ax+μ
b � such that (x, y) ∈ S. Equivalently, in vertical

lines, for a given y there is only one x.
For a given DSS S = D(a, b, μ,E0, E1), there exists an infinite number of

parameters (a′, b′, μ′) such that S = D (a′, b′, μ′, S0, S1).
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For instance, D(5, 8, 0, (0, 0), (11, 6)) = D(8, 13, 1, (0, 0), (11, 6)). There exists
however only one set of parameters with minimal b, called minimal parame-
ters [2].

3 Soft Transform

Our goal is to apply transforms to discrete structures by maintaining geometric
properties and a form of continuity. If continuity has a topological definition for
classical geometric structures, we must define a notion of continuous transform
in the discrete case, which we call soft transform.

Definition 1. Two DSS S and S′ are said to be neighbours iff they can be
described as X ∪ {p} and X ∪ {q} where X is a set of points and p, q are 4-
neighbours.
We note this relation as S ↔ S′.

Definition 2 (DSS Soft Transformation). Considering a function f : Z2 → Z
2,

and DSS S, a soft transformation of S into f(S) is a sequence of segments
S0...SN such that:

– S0 = S
– SN = f(S)
– ∀i ∈ �0, N − 1�, Si ↔ Si+1

For S ↔ S′, the transform from one to the other DSS is called atomic soft
transform.

This definition can be extended to a set of DSS or more generally to a digital
shape with some caveats: the soft transform of a set of segments can of course
be handled as the independent separate soft transform of each segment, but in
general, this is not what is expected. Segments may share vertices, and thus, for
what follows, we consider graphs formed by digital straight segments and add
an additional constraint which is the preservation of the overall structure of the
graph. As for a digital shape, a shape can always be decomposed into a set of
DSS, but this decomposition is not unique, and therefore the soft transform as
applied on DSS graphs depends on this decomposition.

All our algorithms are implented. See for a couple of examples that go a
beyond the present paper: https://imgur.com/a/j81nI6f.

3.1 Movable Points in a DSS

The goal of this paper is to define a notion of soft translation on a DSS, and
introduce a first notion of soft rotation. The first question that is answered in
this first subsection is the question of which points of a DSS can be moved while
remaining a DSS:

https://imgur.com/a/j81nI6f
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Theorem 3 (Movable points in a DSS). In a DSS S with minimal parameters
of slope between 0 and 1, the points which can move up (resp. down) while keeping
the segment property are exactly the extremal lower (resp. upper) leaning points.
The number of these points can be one or two.

By extremal, we mean the leaning points closests to the end-points of the
DSS.

Proof. Let us concentrate for this proof on points that can move up while pre-
serving the DSS property: the goal is to characterize all the points p such that
S ∪ {p + e2} \ {p} is still a DSS. The proof is similar for points that move down.

Let us consider a segment S with end-points E and E′ and of analytical
equation 0 � ax − by + μ < b (with a, b, μ minimal).

Let I
def= (xI , yI) be a point of S. We denote S′ def= S ∪ {I + e2} \ {I}.

Let us show S′ is a DSS iff I is a lower extremal leaning point. The proof is
similar for upper leaning points.

⇒: Let us reason by contradiction: Two cases are possible.

Case 1: Let us suppose that I is not a lower leaning point. This means that
R(a, b, μ)(I) � b − 2. So R(a, b, μ)(I + e2) � −2. Therefore I + e2 is strongly
exterior to S and S′ is not a DSS [2].

Case 2: Let us now suppose that I is indeed a lower leaning point, but not
extremal. Let us then call A and B the extremal lower leaning points of S.
This means that I is a point of the continuous segment [AB]. Since A,B ∈ S′,
by convexity, I ∈ S′ which is not.

⇐: Let us illustrate the proof of Theorem 3 with Fig. 1. In Fig. 1, the segment
S is represented in blue. Let us extend the segment S upto an upper leaning
point P

def= (xP , yP ) such that ‖P − I‖∞ � b (green part of the segment): we
have then a cover-segment of S denoted S0.

Since P is an upper leaning point and an end-point of S0, by [2], P − e2 is
slightly exterior to S0, therefore S′

0
def= S0 ∪ {P − e2} \ {P} is a DSS.

Moreover, S′
0 admits as lower extremal leaning points I and P − e2.

Let us denote a′, b′, μ′ the parameters of S′
0, and Π (resp. Π ′) the restriction

of S0 (resp. S′
0) to the abscissa interval [xP , xI − 1].

This way Π (in green) and Π ′ (in magenta) form respectively a period of S0

and of S′
0 because their lengths are b′.

One can extend Π ′ upto E′ (in red) by periodicity (since ‖P − I‖∞ � b), in
a segment containing I and who is a cover-segment of S.

In the same way, one can extend Π upto E′ (in yellow) in a segment con-
taining I + e2 and who is a cover segment of S′. Therefore S′ is a segment. ��
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Fig. 1. Upward translation of a lower leaning point I

3.2 Computing the New Parameters of a DSS

In [2], I. Debled-Rennesson explained how to compute the minimal parameters
of a DSS when adding a new point at the end of the DSS. In our case, the
problem is slightly different since we move one point inside a DSS. Let us con-
sider a DSS S with parameters (a, b, μ), of slope smaller than 1 defined on the
interval x ∈ �x0, x1� and let us suppose that m (xm, ym) ∈ S is the lower lean-
ing point closest to x1 (the rightmost movable point), with S′ of parameters
(a′, b′, μ′) the resulting DSS after the move m to m + e2. M is defined as the
upper leaning point in S closest to x1: xm = a−1(b − 1 − μ) + b�x1−a−1(b−1−μ)

b �
and ym = �axm+μ

b �. M is a lower leaning point of S and M + e2 is a upper
leaning point in the new DSS. Let us consider the upper leaning point u (xu, yu)
that lies before with xu = −a−1μ + �x0−1+a−1μ

b � and yu = �axu+μ
b �. The param-

eters of the new DSS S′ are given by (b′, a′) = m + e2 − u and μ = −a′xu + b′yu.
Now, nothing guarantees that these parameters are minimal: this means that if
we want to iterate, we can use the results proposed in [5,7] to determine the min-
imal parameters of the new DSS, which can be made in time O(ln(n)), where n
is the length of the segment.

3.3 A Simple Exemple: The Soft Rotation of a DSS

In this section, we present an exemple of soft transform of a DSS that will be
proved useful in future works: the soft rotation of a DSS. We consider only
rotation in the first octant, the others can be obtained by symmetry. Note that
our notion of rotation does not change the number of points but changes the
length of the continuous segment (from n to n

√
2).

Problem 4. Considering an integer n ∈ N, how can we soft trans-
form the flat segment S0

def
= {(k, 0) | k ∈ �0, n − 1�} into the diagonal segment

SN
def
= {(k, k) | k ∈ �0, n − 1�}?
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Algorithm: Direct Soft Rotation

Input: the length n of the considered flat segment
Output: a sequence of moves from S0 to SN

S ← S0;
while S �= SN do

p ← lower leaning point with greatest abscissa in S;
replace p by p + e2 in S;
compute the new parameters of the DSS;

end

The reverse rotation can be easily obtained in a similar way. With the pre-
vious subsections, we have all we need to make this algorithm work and prove
its correction. The overall complexity of an atomic soft rotation is O(ln(n)). As
there is a quadratic number of points to move, the complexity for the whole
process is O(n2ln(n)).

4 Soft Translations of Discrete Straight Line Segments

The goal is henceforth to deal with the soft translation of segments. Let us first
note that we only consider here the upward translation by one position. Other
translations can be obtained by accumulation and symmetries.

Problem 5. Given a discrete Straight segement S, how to compute the soft
translation from S to S + e2?

By translation and symmetry, we can limit our study to segments of the first
quater with an end-point in (0, 0). We need however to differentiate the cases of
horizontal segments (of slope between 0 and 1) from vertical segments (of slope
greater than 1).

4.1 Horizontal Segments

In this section we are considering horizontal segments, i.e. of slope smaller than
1. The points of the DSS S are (k, yk) for k ∈ �0, n − 1�, where n is the length of
the segment. We propose an algorithm allowing to translate this segment simply
by shifting the offset value μ.

Definition 6 (Primitive of a DSS). A DSS S defined by 0 � ax − by + μ < b is
said to be primitive iff it contains exactly b points.

Proposition 7. Let S be a primitive DSS defined by 0 � ax − by + μ < b, then
S admits a unique lower leaning point p and the segments S ∪ {p + e2} \ {p} is
defined by 0 � ax − by + μ + 1 < b.
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Proof. Since gcd(a, b) = 1 and S is primitive, x �→ ax + μ is bijective over Z/bZ.
Since S is primitive, the segment is of length b, therefore there exists a unique
p = (x, y) ∈ S such that ax − by + μ = b − 1. The point p is a lower leaning point
and all the points of the DSS S ∪ {p + e2} \ {p} verify 0 � ax − by + μ + 1 < ω.

��
Proposition 8 (Cover Segment). For each DSS S of length n, there exists a
primitive cover segment S′ of length � 3n such that S ⊂ S′. In addition, the
parameters of S′ can be effectively computed in O(ln(n)).

Proof. Let us consider a DSS S defined by 0 � ax − by + μ < b with b < n. We
are looking for parameters a′, b′ relative primes such that a′

b′ − a
b = 1

bb′ with
b′ ∈ �2n, 3n�.

Such a couple exists (a′, b′) since a′
b′ − a

b = a′b−ab′
bb′ .

We consider b′ ∈ �2n, 3n� such that ab′ ≡ −1(b) (which exists since
gcd(a, b) = 1), and then a′ such that a′b − ab′ = 1.

And so, a′
b′ − a

b = 1
bb′ .

For the offset, we consider μ′ such that μ
b � μ′

b′ < μ
b + 1

b′ .
We call S′ the DSS defined by 0 � a′x − b′y + μ′ < b′ of length b′.
Let’s consider (x, y) ∈ S. Then y =

⌊
ax+μ

b

⌋
.

a′x+μ′

b′ − ax+μ
b = x

(
a′
b′ − a

b

)
+ μ′

b′ − μ
b .

This quantity is positive and inferior to x
bb′ + 1

b′ � x
2bn + 1

2n < 1
2b + 1

2b = 1
b .

Therefore y � ax+μ
b � a′x+μ′

b′ < ax+μ+1
b � y + 1.

By definition of the integer part, we obtain y =
⌊

a′x+μ′

b′

⌋
therefore (x, y) ∈ S′. ��

We can then apply the soft translation algorithm on the cover segment S′ of
a DSS S, which allows us to perform the soft translation of S.

Algorithm: Horizontal DSS Soft Translation

Input: a segment S
Output: a sequence of moves from S to S + e2

n ← |S|;
S′ ← a primitive cover segment of S of length n′ � 3n;
a′, b′, μ′ ← parameters of S′;
Compute a′−1 in Z/b′

Z;
for j from 0 to n′ − 1 do

k ← −a′−1(μ′ + j + 1) in Z/b′
Z;

if k < n then
replace p of abscissa k by p + e2 in S;

end

end
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Theorem 9. The soft translation of the horizontal DSS S is correct and has a
complexity of O(n) with n the length of S.

Proof. At step j, we consider k = −a′−1(μ′ + j + 1) in Z/b′
Z.

Henceforth, 0 � a′k + μ + j = −1 in Z/b′
Z. Therefore, if k < n, the point

(k, yk) of S verifies a′k − b′yk + μ + j = −1 since k < n′ = b′ because S′ is prim-
itive.

The point of abscissa k can therefore be moved in S′, and thus in S.
As for the complexity, the length of S′ is linearly proportional to the length

of S and constructing S′ requires a simple computation in Z/b′
Z once. The loop

at each iteration has a constant time and thus operates in O(n′) = O(n). ��
The soft translation algorithm simply modifies the offset in the parameters.

The slope of the segment is invariant during the translation.

4.2 Vertical Segments

In this section we are considering vertical segments, i.e. of slope greater or equal
to 1. Let us note that we need here a new operation to handle the upward soft
translation. For instance, in Fig. 2, we have a DSS of length 5 defined by x = 2
and 1 � y � 5. No point can move upward without superposition or deconnec-
tion. To handle such situations, we propose another approach with two new
operations for the soft translation of segments:

– Add a point over the point of highest ordinate (Fig. 2b.)
– Remove the point of lowest ordinate (Fig. 2c.).

Fig. 2. A new operation for vertical segments

We propose a new algorithm that allows to create a soft translation of vertical
segments in the general case by using these two operations.

Definition 10 (Pillar point). Let S be a segment of the second octant admitting
a cover segment S′ defined by the parameters 0 � a′x − b′y + μ′ < a′.
The point (x, y) ∈ S is called a pillar of S iff a′ − b′ � a′x − b′y + μ′ < a′.
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Fig. 3. Soft translation of a vertical segment

It is easy to see that a point (x, y) of a DSS is a pillar iff (x − 1, y − 1) ∈ S
(except for the lower end-point) since a′ − b′ � a′x − b′y + μ′ < a′ means that
0 � a′(x − 1) − b′(y − 1) + μ′ < b′. The idea of the algorithm is to translate to
the left the set of pillar points, by decreasing remainder, and to manage the
end-points via the operations of addition and suppression: indeed, for a pillar
(x, y), (x − 1, y − 1) + e2 = (x, y) − e1. There is a special case that needs to be
considered when the upper end-point is also a pillar point. Figure 3 illustrates
the general idea of the algorithm. The red discrete point is removed. The green
discrete point is added and all the discrete points with arrows are pillars and
they are moved to the left.

Note that our algorithm can change the number of points of the DSS when
we add or remove a discrete point.

Theorem 11. The soft translation algorithm of a vertical segment S is correct
(in the sense that is indeed a discrete soft translation) and has a time complexity
of O(nln(n)) with n the length of S.

Proof. The segment at the end of the algorithm is S + e2 because the only
points that move, beyond the removal/addition of the end-points, are the pil-
lars and the property of a pillar (x, y) is to take the place of the DSS point
(x − 1, y − 1) + e2 as we have already mentioned. A point (x, y) that is neither
pillar nor an end-point means that (x, y − 1) belongs to S, which means that
(x, y − 1) + e2 = (x, y). What we need to show now is that the set of points
remains a DSS when moving pillar points and handling end-points. There are
three cases for a pillar point p in the algorithm:

– p is not an end-point: identical to the horizontal DSS soft translation with a
90◦ rotation. The set of points remains thus a DSS.

– p is the lower end-point: a DSS where you remove an end-point remains a
DSS.

– p is the upper end-point: here, the proof is slightly less direct and is presented
in what follows.

Let us consider that the next pillar p to treat is the upper end-point. Let us call
S1 the current DSS before moving p. The point p may be moved upwards at
position p + e2 or p + e1 + e2.
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However p is a pillar and therefore it has to be moved to the left, with
S2

def= S1 ∪ {p − e1} \ {p} a DSS. This means p + e1 + e2 is not an option any-
more, therefore S2 can only be prolonged with p + e2, and thus S1 ∪ {p + e2} is
a DSS.

As for the complexity, it is easy to see that computing the pillar points is
linear in the length of S and that ordering them in decreasing remainder order
leads to the given complexity. ��

Algorithm: Vertical DSS Soft Translation

Input: a segment S
Output: a sequence of moves from S to S + e2

S′ ← a primitive cover segment of S of size � 3n;
a′, b′, μ′ ← parameters of S′;
P ← set of the pillar points of S in decreasing order of remainder a′x − b′y + μ′;
while P is not empty do

p ← first element of P ;
if p is not an end-point then

replace p by p − e1 in S;
remove p from the set P

end
if p is the lower end-point then

remove p from S;
remove p from the set P

end
if p is the upper end-point then

if the lower end-point hasn’t been removed yet then
remove the lower end-point from S;
remove the lower end-point from the set P if it is a pillar.

end
Add a point p + e2 to S;
replace p by p − e1 in S;
remove p from the set P

end

end
Remove the lower end-point if it hasn’t been done yet;
Add a point over the upper end-point if it hasn’t been done yet.

4.3 Soft Translation of DSS Trees

In imaging, discrete straight line segments come rarely alone, that’s why we
propose here a first extension in the form of a soft DSS tree translation algorithm.
A finite DSS tree Γ can be seen as an embedding ρ of a finite tree (Σ,A) in Z

2,
where vertices of Σ become points in Z

2 and edges of A DSSs. Note that a DSS
tree does not necessarily have to be planar here.
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The idea is to move each DSS of the tree independently, however, contrary to
a single DSS, there are end-points to consider. An end-point can be shared by a
number of segments, and in order to ensure that each set of points corresponding
to a segment remains a DSS during the set of atomic transforms and that the
global structure of the tree is preserved, a shared end-point can only move once.
If we move the end-points independently for each segment, we may loose the
DSS tree structure. This means that the points of a DSS S can move until we
reach the shared end-point E of the DSS (in a tree there is one and only one if
the tree is not composed of only one segment which we can suppose here). The
end-point E, and the remaining points of S, can only move when it is the turn
of E to move in every other DSS Si that shares E as end-point.

Algorithm: Soft DSS Tree Translation

Input: A DSS tree Γ
Output: A sequence of moves from Γ to Γ + e2

Σ, A, ρ ← Tree and embedding of Γ ;
while Γ has not completely moved do

for S ∈ ρ(A) not totally translated do
p ← next point of S to move ;
if p is not an end-point of S then

move p ;
end
else

V (p) ← {S ∈ ρ(A) | p is an end-point of S} ;
if ∀S ∈ V (p), the next point to move in S is p then

move p ;
end

end

end

end

Theorem 12. If Γ is a DSS tree with at least two vertices then the algorithm

terminates, is correct and has a complexity O

(
∑

S∈ρ(A)

|S| ln |S|
)

.

The algorithm is correct for an empty tree but not for a tree with only one
vertex, but then it means translating a structure with just one discrete point. In
case of only one segment, we can use the soft DSS translation algorithms even
if formally the tree algorithm still holds.

Proof. The partial correction of the algorithm follows from the correction of the
soft DSS translation algorithms.

Let us prove the termination by recurrence on |Σ|: if the tree has only two
vertices then Γ is a DSS and we use the DSS translation algorithm which ends.
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Let us suppose that |Σ| � 3. G admits a leaf s attached to G by and edge
a = {s, s′}. We denote q

def= ρ(s) and q′ = ρ(s′). We denote S
def= ρ(A) with end-

points q and q′.
Let us assume that the algorithm does not end and let us consider the state

in which it is blocked. Let p be the next point to move in the DSS S. Since p
can not be moved upwards, p is necessarily an end-point of S. Moreover, p �= q
because V (q) = {S} therefore for all S0 ∈ V (q), p is the next point to move is S0.
Therefore p = q′. This proves that the algorithms does not end on the discrete
tree induced by Σ \ {s}, which contradicts our recurrence hypothesis. ��

An important property of this algorithm is that it preserves the slopes of the
cover segments of the tree. Note that our algorithm can change the number of
points in the tree when we add or remove points in vertical DSS.

Fig. 4. (a) A DSS tree. The numbers represent the atomic movement order. The red
discrete points are the vertices (that have multiple ordre movements, number next to
the vertex). The discrete points in gray do not move. (b) A cyclic DSS graph that does
not terminate with a naive approach (Color figure online)

Figure 4a illustrates the translation of a DSS tree. The numbers give the
theoretical movement inside each DSS. The absolute movement order depends on
the order with which you treat each DSS. If each DSS was treated independently,
each discrete point with 1 would move, then those with value 2, etc. For trees,
if the moving point is a end-point, the DSS is placed on hold until it is its turn
to move for each of the other DSS sharing the end-point.

For example, we can start by translating the DSS [BF ]. So we first consider
the end-point B, however this point can’t move because it has to wait its turn for
segment [AB]. Meanwhile, other points in the segment [AB] may move (because
they are not end-points and are placed before in the order). After these moves
(from 1 to 7 in [AB]), the next point to move in [AB] is now the end-point B.
Now, all the segments which share B as an end-point agree to move B so it
can be done. We can continue the process of [BF ]: the next point to move is F ,
which is an end-point so we have to wait that [FG] agrees also to move F , etc.
The theorem ensure us that the process finishes.
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As we can see, there is no interlocking because there are no cycles in trees.
It is different for DSS graphs. In Fig. 4b we see a polygon and here the proposed
algorithm does not work: A moves before B, B before C, C before D and D before
A. There is an interlocking. There is a way to solve this problem that we will
present in a forthcoming paper.

5 Conclusion

In this paper we introduced Discrete Soft Transforms and showcase the soft rota-
tion and soft translation of discrete straight segments. A discrete soft transform
as a set of atomic transforms where at each step only one discrete point is mod-
ified while preserving some properties. For a discrete straight segment, we show
that at most two points that can be moved in a given direction to stay a segment.
After a brief presentation of soft rotation of a segment, we focused on soft trans-
lation of segments which required distinct algorithm for different slopes. The
results on the soft translation of a segment are extended to a discrete tree formed
of discrete segments. Som examples of soft rotation and translation of DSS can
be seen at the following repositery: https://imgur.com/a/j81nI6f. At the end
of the paper, we show that there may be interlocking when we have cycles. A
solution which involves a new method of soft translation will be presented in a
forthcoming paper. This paper opens up many questions. A first direct question
is how to adapt these methods to standard discrete line segments. This would be
particularly interesting for the soft translation of segmented images by moving
the discrete inter-pixel boundary between the regions [4]. The extension to the
soft translation of 3D/nD planes or hyperplanes is another interesting next step.
Finally, we could develop our work on soft rotations and imagine other type of
transforms such as soft homothety or general continuous transformations.
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Abstract. This paper examines the validity of the two raster sequences
distance transform algorithm, originally given by Rosenfeld and Pfaltz for
the distance d4, then extended to the weighted distances by Montanari
and Borgefors. We show that the convergence in two passes does not hold
for all chamfer masks, and we prove that the chamfer norm condition is
a sufficient condition of validity for the algorithm.

Keywords: Discrete geometry · Distance transforms · Weighted
distances · Chamfer norms

1 Introduction

Given a binary image A composed of shape points and background points, a
Distance Transform (DT) of A is a copy where each shape point is labelled to
its distance from the nearest background point. Both the computation and the
result properties depend on the considered distance function. The computation
of a DT is generally a global operation, which can be quite expensive; however
for some distance functions there are very efficient algorithms based on local
operations, using sequential or parallel approaches.

DTs have been extensively studied and have played an important role in Dis-
crete Geometry and Image Analysis since the late 1960s. In the founding paper
[1], Rosenfeld and Pfaltz introduced the notion of DT, and presented a two raster
sequences DT algorithm in 2D for the direct neighbourhood distance d4. They
also proved that for any given local transformation on an image, the sequen-
tial and parallel approaches are mathematically equivalent. Following that, the
notion of weighted (or chamfer) distances has emerged in [2–4] together with a
rather straightforward extension of the DT algorithm.

We recall some definitions and hypotheses from [6]. A weighting (�v, w) is
a displacement �v �= �0 associated to a weight w > 0. A chamfer mask M is
a non-empty set of weightings, such that the set of displacements contains at
least a basis of the image points (reachability), and such that ∀(�v, w) ∈ M,
(−�v, w) ∈ M (central-symmetry). Two points P and Q are M-adjacent if there
exists (�v, w) ∈ M such that �PQ = �v. Two points P and Q are M-connected
c© Springer Nature Switzerland AG 2022
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if there exists a path of M-adjacent points joining them, that is, a sequence
of distinct points P0 = P, P1, . . . , Pk = Q with Pi a M-neighbour of Pi−1,
1 ≤ i ≤ k. The cost of the path is the sum of the weights of the displacements.
The weighted distance dM(P,Q) is the cost of a path having minimal cost:

dM(P,Q) = min
{ ∑

λiwi :
∑

λi�vi = �PQ, (�vi, wi) ∈ M, λi ∈ Z+

}
. (1)

Equivalently, we can consider the weighted geometric graph (V,G), where
the set of vertices V corresponds to the image points, and the set of edges G is
defined as follows: each vertex P ∈ V is connected to its M-neighbours P + �v
by an edge having the weight w, ∀(�v, w) ∈ M s.t. P + �v ∈ V . The weighted
distance dM is then the intrinsic distance of this weighted graph, and always
has the properties of a metric (positive definite, symmetric and triangular) since
the graph is non oriented and the weights are strictly positive by hypothesis.

Let us go back to the origins. The first weighted distances d4 and d8 were pre-
sented in [1]; their mask correspond respectively to the 4- and 8-neighbourhood
in Z

2, each displacement having the weight 1; they coincide with the norms
�1(�x) = |x1| + . . . + |xn| and �∞(�x) = max(|x1|, . . . , |xn|) in Z

n.
In [2], Montanari introduced a family of weighted distances in Z

2, where
a mask Mk is the set of the displacements �v(x, y) in the (2k + 1) × (2k + 1)
neighbourhood (i.e. −k ≤ x, y ≤ k), such that (x, y) is visible (from the origin),
i.e. gcd(x, y) = 1. The weight of any displacement �v(x, y) is its Euclidean length√

x2 + y2. The distance values obtained dMk
are no longer integers, but can give

a good approximation of the Euclidean distance dE (depending on k). The two
raster sequences DT algorithm is extended to the masks Mk and the convergence
in two passes is shown.

The weighted distances using integer weights, or chamfer distances, have
then been popularized for Z2 and Z

n by Borgefors in [3,4]. The merits of several
masks and weights are discussed so as to approximate dE in an efficient manner,
and some conditions are given to choose the weights in order to establish direct
distances formulas. The two raster sequences DT algorithm is presented in Z

n.
But the problem is that the convergence in two passes is not actually shown;
and if we look closer, it cannot be deduced from the Rosenfeld and Pfaltz or
Montanari proofs for all chamfer masks.

For these reasons, we propose to study the validity of the DT according to the
mask, see some counter-examples, and give a sufficient condition of convergence.

The remainder of the paper is organized as follows: the Sect. 2 first recalls
the principle of the parallel and sequential DT algorithm for d4 and d8; we then
examine in Sect. 3 the original proof of [1], by completing it with a missing
hypothesis; the Sect. 4 presents an adaptation of the sequential DT algorithm
for chamfer masks in Z

n, in order to check the number of passes necessary for
the convergence; in Sect. 5, we study a counter-example which shows that the
convergence does not always hold in two passes; after that in Sect. 6 we show
that the sequential DT algorithm always converges in two passes when using
chamfer norms, and we conclude in Sect. 7 .
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2 Distance Transformations in Z
2 for d4 and d8

Let A = (ai,j) be an input image, where ai,j denotes the value of the point at
row i (1 ≤ i ≤ m) and column j (1 ≤ j ≤ n); the foreground points have value 1
and the background points 0. Given a chamfer mask M, the goal is to compute
the DT D = (di,j) where di,j is the distance dM to the set of 0’s (supposed non-
empty) of A. For any weighting (�v, w) ∈ M we denote by (vi, vj) the coordinates
of �v.

Here is the naive parallel algorithm to compute DT. At step 0, let B0 be a
copy of A, where the 1’s are set to ∞, or a sufficient large value. We compute
for each step k > 0 the image Bk = (bki,j), where

bki,j = min
{

bk−1
i+vi,j+vj

+ w : (�v, w) ∈ M,
1 ≤ i + vi ≤ m,
1 ≤ j + vj ≤ n

}
. (2)

The process is repeated until no point value changes. The number of iterations
is bounded by the maximal number of displacements in a minimal M-path, and
can be quite large.

The same method can be processed in an iterative manner on a single image
B. The order in which we compute the bi,j is arbitrary, and the convergence
rate can be greatly increased by a clever choice of the order. The sequential DT
algorithm of Rosenfeld and Pfaltz takes advantage of this idea, an converges
in only two raster sequences on the image. Here is their original algorithm,
presented in [1] for the distance d4.

The forward scan processes the image row by row in the raster sequence
a1,1, . . . , a1,n, a2,1, . . . , a2,n, . . ., am,1, . . . , am,n; the backward scan processes
the points in the reverse order. During the forward scan the function f1 is applied
on A to obtain the image B, then during the backward scan the function f2 is
applied on B to get the image C. These functions are defined by:

f1 : bi,j = 0 if ai,j = 0,
= min (bi−1,j + 1 , bi,j−1 + 1) if ai,j = 1and (i, j) �= (1, 1),
= μ if ai,j = 1and (i, j) = (1, 1);

f2 : ci,j = min (bi,j , ci+1,j + 1 , ci,j+1 + 1) .

The value μ is chosen to be an unattainable distance value in the image,
e.g. m + n (in the paper) or +∞, and is set as an initialization for the top left
point (1, 1). The min’s are only evaluated on the neighbours inside the image;
an alternative option is to consider the value μ for neighbours who are outside
the image.

The algorithm can be easily adapted to d8 by adding the indirect neighbours
(i − 1, j − 1) and (i − 1, j + 1) in the min for f1, and (i + 1, j − 1), (i + 1, j + 1)
in the min for f2.

Figure 1 shows an example with d4 and Fig. 2 with d8. For simplicity, we have
considered in the min’s that μ + x = μ, ∀x ≥ 0.
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Fig. 1. Two raster sequences DT algorithm for d4 on a 3 × 5 image.

Fig. 2. Two raster sequences DT algorithm for d8 on a 3 × 5 image.

3 Original Proof for the Two Raster Sequences DT

The original proof in [1, Sect. 4.2] is rather compact; we will develop it and show
that there was a missing hypothesis. The proof is constructed by induction for
d4 in Z

2; the goal is to show that after applying f1 and f2, the obtained image
C satisfies C = D (using the notations of Sect. 2).

On the base case it is noted that if ai,j = 1 and a direct neighbour inside the
image is 0, evidently ci,j = 1, and conversely.

The original induction hypothesis is: suppose for a given k > 1 that

ci,j = di,j ∀i, j s.t. di,j < k . (3)

Hence ∀i, j we have
di,j < k ⇒ ci,j = di,j ; (4)

but this does not exclude the existence of cases such as

di,j ≥ k and ci,j < k . (5)

In fact, for the rest of the proof, we will have to exclude these cases in two places.
The (extended) induction hypothesis has thus to be: suppose for a given k > 1
that

ci,j = di,j ∀i, j s.t. di,j < k or ci,j < k . (6)

We therefore further assumed that

ci,j < k ⇒ ci,j = di,j . (7)

Remark. By (4) we have di,j < k ⇒ ci,j < k , thus

ci,j ≥ k ⇒ di,j ≥ k ; (8)

moreover, by (7) we have ci,j < k ⇒ di,j < k , so di,j ≥ k ⇒ ci,j ≥ k ; hence

ci,j ≥ k ⇔ di,j ≥ k . (9)
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We continue the induction by studying the case where ci,j = k. By (8) we
have di,j ≥ k. If di,j = k then ci,j = di,j and the proof is done. Let us suppose
that ci,j = k and di,j > k. By definition of d4, since di,j > k, the four direct
neighbours are ≥ k :

di−1,j ≥ k
di,j−1 ≥ k di,j > k di,j+1 ≥ k

di+1,j ≥ k
. (10)

Thanks to the extended hypothesis, we have by (9)

di,j+1 ≥ k ⇒ ci,j+1 ≥ k ,
di+1,j ≥ k ⇒ ci+1,j ≥ k ,

(11)

hence during the computation of ci,j by f2 in backward sequence we have

ci,j = min

⎧
⎨
⎩

bi,j
ci,j+1 + 1 (≥ k + 1)
ci+1,j + 1 (≥ k + 1)

, (12)

thus ci,j = k ⇒ bi,j = k. However, when calculating bi,j by f1 in forward
sequence we have applied

bi,j = min
{

bi−1,j + 1
bi,j−1 + 1 , (13)

thus bi,j = k ⇒ bi−1,j = k − 1 or bi,j−1 = k − 1. Suppose that the former
holds, that is bi−1,j = k − 1. During the calculation of ci−1,j by f2 we have

ci−1,j = min

⎧
⎨
⎩

bi−1,j (= k − 1)
ci−1,j+1 + 1
ci,j + 1

(14)

therefore ci−1,j ≤ k−1; but di−1,j ≥ k by (10) so di−1,j �= ci−1,j , in contradiction
with the extended hypothesis since ci−1,j < k. 
�

This proof can be easily extended for d8 by adding the four indirect neigh-
bours in the min’s. More generally, the algorithm and the proof can be extended
in Z

n for the distances d1 and d∞ induced by the �1 and �∞ norms.
It should be noted that the algorithm can also be adapted to chamfer masks

in Z
n (see [4]), but we will show further with a counter-example that the con-

vergence in two scans is not always guaranteed for any chamfer mask. At the
proof level, we can see that this proof cannot be extended either, because the
inequations are performed on neighbours of (i, j) only, and they use the fact that
the distance values are consecutive integers.

4 Sequential DTs for Chamfer Masks in Z
n

We present an adaptation of the sequential DT in Z
n which is a bit hardened to

handle counter-examples masks.
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The masks need to be split in two parts for the forward and backward scans.
Using coordinates p = (x1, . . . , xn) ∈ Z

n, let us consider the forward raster
sequence in ascending order by nested loops for xn, for xn−1, . . . , for x1 .

The half-space visited by the loops after the origin in the raster sequence is
Hn = ∪1≤k≤n { p : xn = 0, . . . , xk+1 = 0, xk > 0 }. For instance, the half-space
H3 is { p : x3 = 0, x2 = 0, x1 > 0 } ∪ { p : x3 = 0, x2 > 0 } ∪ { p : x3 > 0 }.
Given a chamfer mask M = { (�v, w) : �v ∈ Z

n }, we define the half-mask Mh =
{ (�v, w) ∈ M : �v ∈ Hn }. During the sequential DT, the forward raster sequence
will then use the half-mask M \ Mh, whereas the backward one will use Mh.

The computation of one sequential DT scan is presented in Fig. 3 , for con-
venience in Python language in Z

2. The source code and examples are online in
[9]. To extend the function in higher dimension it is sufficient to add coordinates
and loops for the additional dimensions.

Fig. 3. Computation of one sequential DT scan in Z
2 with µ = −1.

The input and output image is img. The coordinates are 0 ≤ i < img.m for
x2 (or y) and 0 ≤ j < img.n for x1 (or x); the point values are accessed by
img.mat[i][j]. The method img.is inside(i,j) returns True if the coordi-
nates are inside the image. The parameter half mask stores the Mh weightings
as a list of tuples. The direction of the scan (forward or backward) is deduced
from the scan number scan num line 2. The loop step value is also used line 15
to compute the displacements of the half mask for the current scan direction.
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The function is written with the special value μ = −1. It indicates, as a
forbidden distance value, the non currently propagated distance values in the
image, and needs a test to handle the min’s. Using signed pixel values, we find
it more handy than choosing an arbitrary large integer to simulate +∞.

The computation of the DT in two raster sequences is done by calling
twice the function compute one DT scan with the scan number, see the func-
tion compute sequential DT in two scans in Fig. 4 .

Fig. 4. Sequential DT algorithms in Z
2.

As for the parallel DT computation, the sequential DT can be performed
scan by scan until no point value changes (all paths are propagated and conver-
gence is reached). For this purpose, the function compute one DT scan returns
a boolean value changed, which is used to stop the loop in the function
compute sequential DT multi scans in Fig. 4 .

5 Counter-Example for the Two Raster Sequences DT

We present now a simple counter-example, which shows that the convergence of
the DT in only two raster sequences does not hold for all chamfer masks.

One can imagine any kind of mask, see for instance [6, p. 42] for a gallery. In
the literature, the most common category of studied masks are grid-symmetrical
(8-symmetrical in Z

2, 48- in Z
3, (2nn!)- in Z

n). The weightings are chosen in the
first octant (also called generator) 0 ≤ xn ≤ . . . ≤ x1, then the grid symmetries
are performed to populate the mask. For efficiency, the displacements are usually
chosen among the visible points, because for a weighting (�v, w), each period
O + λ�v is expected to get the distance value λw from O, if the mask has the
good properties (see further), so adding (λ�v, λw) in the mask is useless.

In Z
2, the first visible points in the first octant are denoted by a = (0, 1)

(still using coordinates in the order (x2, x1)), b = (1, 1), c = (1, 2), d = (1, 3),
e = (2, 3), etc. A grid-symmetrical mask constituted by a set of weightings (v, w)
where v is a visible point is denoted by 〈(v, w), . . .〉. For instance, the mask for
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d4 is denoted by 〈(a, 1)〉, the mask for d8 is 〈(a, 1), (b, 1)〉, the mask for the
chamfer distance 5,7,11 [4] is 〈(a, 5), (b, 7), (c, 11)〉, and so on.

To find counter-examples it is sufficient to choose some displacements, loop
on several weights, and compute the DTs on images of several sizes, where
all points have value 1, except one point which has value 0 in the centre of
the image. For each trial we can compare the results for the parallel algo-
rithm and those of compute sequential DT in two scans, or run the function
compute sequential DT multi scans and check if it returns a number of scans
> 3. See the program checkWDT.py in [9].

We have found a very simple counter-example for any image size larger then
3 × 3: this is the mask 〈(c, 1)〉, also known as the Knight distance [5]. The Fig. 5
shows the full mask and the two half masks.

Fig. 5. Mask 〈(c, 1)〉 around the origin O: (a) full, (b) forward, (c) backward mask.

The mask 〈(c, 1)〉 is a chamfer mask because the basis vector (0, 1) can be
obtained using the symmetrical displacements of c, by (−1,−2) + (−1, 2) +
(2, 1) = (0, 1), and the same by symmetry for (1, 0).

The Fig. 6 shows the parallel passes for a 3 × 4 image; 6 passes are necessary
to reach the correct DT values. See the program showWDT.py in [9].

Fig. 6. Parallel DT for 〈(c, 1)〉: (a) original image, (b) initialization, (c–h) passes 1–6.

On Fig. 7 we can see that the raster sequences DT algorithm also needs 6
passes: 5 to converge and the sixth to detect no changes and stop.
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Fig. 7. Sequential DT for 〈(c, 1)〉: (a) original image, (b–g) passes 1–6, (b,d,f) forward
passes, (c,e,g) backward passes.

The following remarks can be made for the mask 〈(c, 1)〉 taken as a counter-
example for the convergence in two passes:

– The two raster sequences DT presented as the Knight Transform (KT) in [5]
therefore does not converge in the general case.

– The necessary sequential passes number depends on the image size, and may
decrease a little bit when the size grows.

– The passes number does not depend on the chosen c weight.
– We can replace c by any visible point (1, 2k), k ≥ 1 and still get a chamfer

mask, since k(−1,−2k) + k(−1, 2k) + (2k, 1) = (−2k, 0) + (2k, 1) = (0, 1).

6 Validity Holds for Chamfer Norms

A metric d in Z
n induces a discrete norm g defined by g(q − p) = d(p, q) if g

satisfies the property of homogeneity over Z [6, Sect. 2.2.3]:

∀�x ∈ Z
n, ∀λ ∈ Z, g(λ�x) = |λ| g(�x) . (15)

A chamfer norm is a discrete norm induced by a chamfer mask.
For instance, the masks 〈(a, 1)〉 for d4, 〈(a, 1), (b, 1)〉 for d8, 〈(a, 3), (b, 4)〉

and 〈(a, 5), (b, 7), (c, 11)〉 all induce chamfer norms, but 〈(c, 1)〉 clearly not (no
homogeneity: let P = (0, 1), then d(O,P ) = 3 and d(O, 2.P ) = 2 �= 2.d(O,P )).

The chamfer norms have remarkable properties: they allow to completely
characterize the geometry of the distance balls, to give direct distance formulas,
and to determine the structure of minimal paths. Given a chamfer mask M, we
call rational ball of M the set

B Q

M = conv
(

�v

w
: (�v, w) ∈ M

)
. (16)

The rational ball is a convex polyhedron, whose geometry is the same as the
distance balls up to a scale factor.

The conditions for being a chamfer norm in Z
n are established in [6,

Sect. 4.3.4] and [7, Sect. 4.3.2]: a chamfer mask M induces a discrete norm if and
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only if it exists a triangulation of B Q

M in unimodular cones of apex O. Now sup-
pose that M induces a discrete norm and let C be such a cone, then C is bounded
by a subset of n weightings of M, denoted by M|C = { (�v ′

i, w
′
i), 1 ≤ i ≤ n };

moreover, for each point P in C, there is a minimal path from O to P which is a
linear combination λ1�v

′
1 + . . . + λn�v ′

n, λi ∈ Z+ of displacements from M|C , and
whose intermediate points are all included in C.

Proposition 1. Let M be a chamfer norm mask, then the two raster sequences
DT algorithm provides the correct DT values for dM.

Proof. Let P be a feature point currently evaluated during a raster sequence, and
Q a closest background point. Consider the unimodular cone C of apex P which
contains a minimal M-path P from P to Q, and the set M|C of weightings which
are bounding C. Then P is a sequence of distinct points P0 = P, P1, . . . , Pk = Q
with Pi a M|C-neighbour of Pi−1, 1 ≤ i ≤ k.

The cone C is either (a) contained in the half-space P − Hn = {P − −−→
OX :

X ∈ Hn } (the points before P in the forward scan), see Fig. 8 ; (b) in the half-
space P + Hn (the points before P in the backward scan); or (c) intersects both
half-spaces.

Fig. 8. Case (a) for the proof of proposition 1 , here in Z
2.

In the case (a) each Pi is contained in the half-space Pi−1 − Hn, 1 ≤ i ≤ k,
so during the forward scan, each Pi is evaluated before Pi−1. As Pk−1 is an
M|C-neighbour of Pk = Q, the min computation will give the correct associated
weight value in the DT for Pk−1, an so on from Pk−1 to P0.

In the case (b), the same reasoning can be made using Pi−1 +Hn during the
backward scan.

In case (c), if Q ∈ P − Hn, then a minimal path can be chosen such that all
the path points are included in C ∩ (P − Hn), so we can revert to case (a); the
same for Q ∈ P + Hn and case (b). 
�
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7 Conclusion and Future Work

In this paper, we have improved the proof of [1] for d1 and d∞, and proposed a
hardened raster sequence DT algorithm for the chamfer masks. We have shown
with a counter-example that the convergence does not always hold in two passes
for all chamfer masks, and we have proved in proposition 1 that the two raster
sequences DT algorithm provides the correct distance values for any chamfer
norm.

It can be pointed out that the norm condition is sufficient but non necessary.
For instance, the algorithm holds for the following non-norm chamfer masks:
〈(a, 1), (b, 1), (c, 1)〉, 〈(a, 1), (b, 3), (c, 2)〉, 〈(a, 2), (b, 3), (c, 4)〉, 〈(a, 1), (c, 1)〉,
〈(a, 2), (c, 3)〉.

In future works, it would be interesting to investigate if necessary conditions
could be established on non-norm chamfer masks, to predict the number of passes
for their convergence, and also to study the convergence for the reverse distance
transform. This work on weighted distances might be extended on semi-regular
grids, or other families of weighted geometric graphs. One could finally relate
this work to ns-weighted distances, of which weighted distances are a special
case [7,8].
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Abstract. This paper analyses both nonlinear activation functions and
spatial max-pooling for Deep Convolutional Neural Networks (DCNNs)
by means of the algebraic basis of mathematical morphology. Addition-
ally, a general family of activation functions is proposed by considering
both max-pooling and nonlinear operators in the context of morpholog-
ical representations. Experimental section validates the goodness of our
approach on classical benchmarks for supervised learning by DCNN.

Keywords: Matheron’s representation theory · Activation function ·
Mathematical morphology · Deep learning

1 Introduction

Artificial neural networks were introduced as mathematical models for biolog-
ical neural networks [24]. The basic component is a linear perceptron which is
a linear combination of weights with biases followed by a nonlinear function
called activation function. Such components (usually called a layer) can then
be concatenated eventually leading to very complex functions named deep arti-
ficial neural networks (DNNs) [7]. Activation function can also be seen as an
attached function between two layers in a neural network. Meanwhile, in order
to get the learning in a DNNs, one needs to update the weights and biases
of the neurons on the basis of the error at the output. This process involves
two steps, a Back-Propagation from prediction error and a Gradient Descent
Optimization to update parameters [7]. The most famous activation function is
the Rectified Linear Unit (ReLU) proposed by [27], which is simply defined as
ReLU(x) = max(x, 0). A clear benefit of ReLU is that both the function itself and
its derivatives are easy to implement and computationally inexpensive. However,
ReLU has a potential loss during optimization because the gradient is zero when
the unit is not active. This could lead to cases where there is a gradient-based
optimization algorithm that will not adjust the weights of a unit that was never
initially activated. An approach purely computational motivated to alleviate
potential problems caused by the hard zero activation of ReLU, proposed a leaky
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ReLU activation [18]: LeakyReLU(x) = max(x, .01x). A simple generalisation is
the Parametric ReLU proposed by [11], defined as PReLUβ(x) = max(x, βx),
where β ∈ R is a learnable parameter. In general, the use of piecewise-linear
functions as activation function has been initially motivated by neurobiological
observations; for instance, the inhibiting effect of the activity of a visual-receptor
unit on the activity of the neighbouring units can be modelled by a line with two
segments [10]. On the other hand, for the particular case of structured data as
images, a translation invariant DNN called Deep Convolutional Neural Networks
(DCNN) is the most used architecture. In the conventional DCNN framework
interspersed convolutional layers and pooling layers to summarise information
in a hierarchical structure. The common choice is the pooling by a maximum
operator called max-pooling, which is particularly well suited to the separation
of features that are very sparse [3].

As far as these authors know, that morphological operators have been used
in the context of DCNNs following the paradigm of replacing lineal convolu-
tions by non-linear morphological filters [13,15,26,31,34], or hybrid variants
between linear and morphological layers [14,30,32,33]. Our contribution is more
in the sense of [5] where the authors show favourable results in quantitative
performance for some applications when seeing the max-pooling operator as a
dilation layer. However, we go further to study both nonlinear activation and
max-pooling operators in the context of morphological representation theory of
nonlinear operators. Finally, in the experimental section, we compare different
propositions in a practical case of training a multilayer CNNs for classification
of images in several databases.

2 ReLU Activation and Max-Pooling are Morphological
Dilations

2.1 Dilation and Erosion

Let us consider a complete lattice (L,≤), where and
∨

and
∧

are respectively
its supremum and infimum. A lattice operator ψ : L → L is called increasing
operator (or isotone) is if it is order-preserving, i.e., ∀X,Y , X ≤ Y =⇒ ψ(X) ≤
ψ(Y ). Dilation δ and erosion ε are lattice operators which are increasing and
satisfy

δ

(
∨

i∈J

Xi

)

=
∨

i∈J

δ (Xi) ; ε

(
∧

i∈J

Xi

)

=
∧

i∈J

ε (Xi) .

Dilation and erosion can be then composed to obtain other operators [12]. In this
paper, we also use morphological operators on the lattice of functions F(Rn, R̄)
with the standard partial order ≤. The sup-convolution and inf-convolution of
function f by structuring function g are given by

(f ⊕ g)(x) = δg(f)(x) := sup
y∈Rn

{f(x − y) + g(y)} , (1)

(f � g)(x) = εg(f)(x) := inf
y∈Rn

{f(x + y) − g(y)} . (2)
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2.2 ReLU and Max-Pooling

Let us now consider the standard framework of one-dimensional1 signals on
DCNNs where any operator is applied on signals f(x) supported on a discrete
grid subset of Z. The ReLU activation function [27] applied on every pixel x of
an image f is defined as

ReLU(f(x)) := max (0, f(x)) . (3)

The Max-pooling operator of pooling size R and strides K, maps an image f
of n pixels onto an image of n′ := 	n−R

K + 1
 by taking the local maxima in a
neighbour of size R, and moving the window K elements at a time, skipping the
intermediate locations:

MaxPoolR(f)(x) = δMaxPoolR (f)(x) :=
∨

y∈WR(x)

{f(K · x − y)}. (4)

where WR(y) = 0 if y belongs to the neighbour of size R centred in x and
−∞ otherwise. There are other operations in DCNN which use the maximum
operation as main ingredient, namely the Maxout layer [8] and the Max-plus
layer (morphological perceptron) [4,37].

From the definition of operators, it is straightforward to prove the following
proposition

Proposition 1. ReLU activation function and max-pooling are dilation opera-
tors on the lattice of functions.

Proof. Using the standard partial ordering ≤, we note that both ReLU and
max-pooling are increasing:

f ≤ g =⇒ ReLU(f) ≤ ReLU(g); δMaxPoolR (f) ≤ δMaxPoolR (g).

They commute with supremum operation

ReLU(f ∨ g) = ReLU(f) ∨ ReLU(g); δMaxPoolR (f ∨ g) = δMaxPoolR (f) ∨ δMaxPoolR (g).

These two operators are both also extensive, i.e., f ≤ δ(f). ReLU is also idempo-
tent, i.e., ReLU(ReLU(f)) = ReLU(f). Then ReLU is both a dilation and a closing.
Remark 1: Factoring activation function and pooling. The composition of
dilations in the same complete lattice can often be factorized into a single oper-
ation. One can for instance define a nonlinear activation function and pooling
dilation as

δActPool
R;α (f)(x) :=

∨

y∈WR(x)

{max (0, f(K · x − y) + α)} ,

where W denotes a local neighbour, usually a square of side R. Note that that
analysis does not bring any new operator, just the interpretation of composed
nonlinearities as a dilation.
1 The extension to d-dimensional functions is straightforward.
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Remark 2: Positive and negative activation function, symmetric pool-
ing. More general ReLU-like activation functions also keep a negative part. Let
us consider the two parameters β+, β− ∈ R, we define (β+, β−)-ReLU as

ReLUβ+,β−(f)(x) :=
{

β+f(x) if f(x) > 0
β−f(x) if f(x) ≤ 0

In the case when β+ ≥ β−, one has

ReLUβ+,β−(f)(x) = max
(
β−f(x), β+f(x)

)
. (5)

Note that the Leaky ReLU [18] corresponds to β+ = 1 and β− = 0.01. The
Parametric ReLU [11] takes β+ = 1 and β− = θ learned along with the other
neural-network parameters. More recently [17] both β+ and β− are learned in
the ACtivateOrNot (ACON) activation function, where a softmax is used to
approximate the maximum operator.

Usually in CNNs, the max-pooling operator is used after activation, i.e.,
δMaxPool
R (ReLUβ+,β−(f)), which is spatially enlarging the positive activation and

removing the negative activation. It does not seem coherent with the goal of
using the pooling to increase spatial equivariance and hierarchical representa-
tion of information. It is easy to ”fix” that issue by using a more symmetric
pooling based on taking the positive and negative parts of a function. Given a
function f , it can be expressed in terms of its positive f+ and negative parts
f−, i.e., f = f+ − f−, with f+(x) = max(0, f(x)) and f−(x) = max(0,−f(x)),
where both f+ and f− are non-negative functions. We can now define a positive
and negative max-pooling. The principle is just to take a max-pooling to each
part and recompose, i.e.,

δ
MaxPool+−
R (f)(x) = δMaxPoolR (f+)(x) − δMaxPoolR (f−)(x) (6)

= δMaxPoolR (max(0, f))(x) + εMinPoolR (min(0, f))(x).

We note that (6) is self-dual and related to the dilation on an inf-semilattice [16].
However, in the general case of (6) by learning both β−, β+,

δ
MaxPool+−
β+,β−,R(f)(x) = δMaxPoolR (max(0, β−f))(x) + εMinPoolR (min(0, β+f))(x) (7)

is not always self-dual.

3 Algebraic Theory of Minimal Representation
for Nonlinear Operators and Functions

In the following section, we present the main results about representation theory
of nonlinear operators from Matheron [23], Maragos [20] and Bannon-Barrera
[1] (MMBB).



MorphoActivation 453

3.1 MMBB Representation Theory on Nonlinear Operators

Let us consider a translation-invariant (TI) increasing operator Ψ. The domain
of the functions considered here is either E = Rn or E = Z

n, with the additional
condition that we consider only closed subsets of E. We consider first the set
operator case applied on P(E) and functions f : E → R ∩ ∞.

Kernel and Basis Representation of TI Increasing Set Operators. The
kernel of the TI operator Ψ is defined as the following collection of input sets [23]:
Ker(Ψ) = {A ⊆ E : 0 ∈ Ψ(A)}, where 0 denotes the origin of E.

Theorem 1 (Matheron (1975) [23]). Consider set operators on P(E). Let
Ψ : P(E) → P(E) be a TI increasing set operator. Then

Ψ(X) =
⋃

A∈Ker(Ψ)

X � A =
⋂

B∈Ker(Ψ̄)

X ⊕ B̌.

where the dual set operator is Ψ̄(X) = [Ψ(Xc)]c and B̌ is the transpose struc-
turing element.

The kernel of Ψ is a partially ordered set under set inclusion which has an
infinity number of elements. In practice, by the property of absorption of erosion,
that means that the erosion by B contains the erosions by any other kernel set
larger than B and it is the only one required when taking the supremum of
erosions. The morphological basis of Ψ is defined as the minimal kernel sets [20]:

Bas(Ψ) = {M ∈ Ker(Ψ) : [A ∈ Ker(Ψ) and A ⊆ M ] =⇒ A = M} .

A sufficient condition for the existence of Bas(Ψ) is for Ψ to be an upper
semi-continuous operator. We also consider closed sets on P(E).

Theorem 2 (Maragos (1989) [20]). Let Ψ : P(E) → P(E) be a TI, increasing
and upper semi-continuous set operator2 . Then

Ψ(X) =
⋃

M∈Bas(Ψ)

X � M =
⋂

N∈Bas(Ψ̄)

X ⊕ Ň .

Kernel and Basis Representation of TI Increasing Operators on Func-
tions. Previous set theory was extended [20] to the case of mappings on functions
Ψ(f) and therefore useful for signal or grey-scale image operators. We focus on
the case of closed functions f , i.e., its epigraph is a closed set. In that case, the

2 Upper semi-continuity meant with respect to the hit-miss topology. Let (Xn) be any
decreasing sequence of sets that converges monotonically to a limit set X,i.e.,Xn+1 ⊆
Xn∀n and X = ∩nXn; that is denoted by Xn ↓ X.
An increasing set operator Φ on F(E) is upper semi-continuous if and only if Xn ↓ X
implies that Φ(Xn) ↓ Φ(X).
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dual operator is Ψ̄(f) = −Ψ(−f) and the transpose function is f̌(x) = f(−x).
Let

Ker(Ψ) := {f : Ψ(f)(0) ≥ 0}
be the kernel of operator Ψ. As for the TI set operators, a basis can be obtained
from the kernel functions as its minimal elements with respect to the partial
order ≤, i.e.,

Bas(Ψ) := {g ∈ Ker(Ψ) : [f ∈ Ker(Ψ) and f ≤ g] =⇒ f = g} .

This collection of functions can uniquely represent the operator.

Theorem 3 (Maragos (1989) [20]). Consider an upper semi-continuous oper-
ator Ψ acting on an upper semi-continuous function3 f . Let Bas(Ψ) = {gi}i∈I

be its basis and Bas(Ψ̄) = {hj}j∈J the basis of the dual operator. If Ψ is a TI
and increasing operator then it can be represented as

Ψ(f)(x) = sup
i∈I

(f � gi)(x) = sup
i∈I

inf
y∈Rn

{f(x + y) − gi(y)} (8)

= inf
j∈J

(f ⊕ ȟj)(x) = inf
j∈J

sup
y∈Rn

{
f(x − y) + ȟj(y)

}
(9)

The converse is true. Given a collection of functions B = {gi}i∈I such that all
elements of it are minimal in (B,≤), the operator Ψ(f) = supi∈I {f � gi} is a
TI increasing operator whose basis is equal to B.

For some operators, the basis can be very large (potentially infinity) and even
if the above theorem represents exactly the operator by using a full expansion
of all erosions, we can obtain an approximation based on smaller collections
or truncated bases B ⊂ Bas(Ψ) and B̄ ⊂ Bas(Ψ̄). Then, from the operators
Ψl(f) = supg∈B{f � g} and Ψu(f) = infh∈B̄{f ⊕ ȟ} the original Ψ is bounded
from below and above, i.e., Ψl(f) ≤ Ψ(f) ≤ Ψu(f). Note also that in the case
of a non minimal representation by a subset of the kernel functions larger than
the basis, one just gets a redundant still satisfactory representation.

The extension to TI non necessarily increasing mappings was presented by
Bannon and Barrera in [1], which involves a supremum of an operator involving
an erosion and an anti-dilation. This part of the Matheron-Maragos-Bannon-
Barrera (MMBB) theory is out of the scope of this paper.

3 A function f : Rn → R̄ is upper semi-continuous (u.s.c) (resp. lower semi-continuous
(l.s.c.)) if and only if, for each x ∈ Rm and t ∈ R̄, f(x) < t (resp. f(x) > t) implies
that f(y) < t (resp. f(y) < t) for all in some neighbourhood of x. Similarly, f is
u.s.c. (resp. l.s.c.) if and only if all its level sets are closed (resp. open) subsets of
Rn. A function is continuous iff is both u.s.c and l.s.c.
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3.2 Max-Min Representation for Piecewise-Linear Functions

Let us also remind the fundamental results from the representation theory by
Ovchinnikov [28,29] which is rooted in a Boolean and lattice framework and
therefore related to the MMBB theorems. Just note that here we focus on a
representation for functions and previously it was a representation of operators
on functions. Let f be a smooth function on a closed domain Ω ⊂ Rn. We are
going to represent it by a family of affine linear functions gt which are tangent
hyperplanes to the graph of f . Namely, for a point t ∈ Ω, one defines

gt(x) = 〈∇f(t), x − t〉 + f(t), x ∈ Ω, (10)

where ∇f(t) is the gradient vector of f at t. We have the following general
result about the representation of piecewise-linear (PL) functions as max-min
polynomial of its linear components.

Theorem 4 ([9] [2] [29]). Let f be a PL function on a closed convex domain
Ω ⊂ Rn and {g1 = β1x + α1, · · · , gd = βdx + αd} be the set of the d linear
components of f , with βi, αi ∈ Rn. There is a family {Ki}i∈I of subsets of set
{1, · · · , d} such that

f(x) =
∨

i∈I

∧

j∈Ki

gj(x), x ∈ Ω. (11)

Conversely, for any family of distinct linear functions {g1, · · · , gd} the above
formula defines a PL function.

The expression is called a max-min (or lattice) polynomial in the variable gi. We
note that a PL function f on Ω is a “selector” of its components gi, i.e., ∀x ∈ Ω
there is an i such that f(x) = gi(x). The converse is also true, with functions
{gi} linearly ordered over Ω [29].

Let us also mention that from this representation we can show that a PL
function is representable as a difference of two concave (equivalently, convex)-PL
functions [29]. More precisely, let note hi(x) = infj∈Ki

gj(x), with hi a concave
function. We are reminded that sums and minimums of concave functions are
concave. One have hi =

∑
k hk −∑k �=i hk, therefore

f =
∨

i∈I

hi =
∑

k

hk −
∧

i∈I

∑

k �=i

hk.

4 Morphological Universal Activation Functions

Using the previous results, we can state the two following results for the activa-
tion function and the pooling by increasing operators. Additionally, a proposed
layer used in the experimental section is formulated.
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4.1 Universal Representation for Activation Function and Pooling

Proposition 2. Any piecewise-linear activation function σ : R → R can be
universally expressed as

σ(x) =
∧

j∈J

[
∨

i∈I

{
βj

i x + αj
i

}
]

=
∧

j∈J

pj(x) (12)

where pj =
∨

i∈I

{
βj

i x + αj
i

}
is a PL convex function.

Proposition 3 (Pooling). Any increasing pooling operator π : Rn → Rn′
can

be universally expressed as

π(f)(x) =
∧

j∈J

[
δbj (f)(K · x)

]
, (13)

where {bj}j∈J is a family of structuring functions defining by transpose the basis
of the dual operator to π.

In both cases, there is of course a dual representation using the maximum
of erosions. The dilation operator of type z �→ ∨

i[βiz + αi] plays a fundamental
role in multiplicative morphology [12].

Remark: Tropical Polynomial Interpretation. The max-affine function
pj =

∨
i∈I

{
βj

i z + αj
i

}
is a tropical4 polynomial such that in that geometry, the

degree of the polynomial corresponds to the number of pieces of the PL convex
function. The set of such polynomials constitutes the semiring Rmax of tropical
polynomials. Tropical geometry in the context of lattice theory and neural net-
works is an active area of research [22] [21] [25], however those previous works
have not considered the use of minimal representation of tropical polynomials
as generalised activation functions.

Remark: Relationships to Other Universal Approximation Theorems.
These results on universal representation of layers in DCNN are related to study
the capacity of neural networks to be universal approximators for smooth func-
tions. For instance, both maxout networks [8] and max-plus networks [37] can
approximate arbitrarily well any continuous function on a compact domain. The
proofs are based on the fact that [35] continuous PL functions can be expressed
as a difference of two convex PL functions, and each convex PL can be seen as
the maximum of affine terms.

Tropical formulation of ReLU networks has shown that a deeper network
is exponentially more expressive than a shallow network [36]. To explore the
expressiveness of networks with our universal activation function and pooling
layer respect to the deepness of DCNN is therefore a fundamental relevant topic
for future research.
4 Tropical geometry is the study of polynomials and their geometric properties when

addition is replaced with a minimum operator and multiplication is replaced with
ordinary addition.
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4.2 MorphoActivation Layer

We have now all the elements to justify why in terms of universal representation
theory of nonlinear operators ReLU and max-pooling can be replaced by a more
general nonlinear operator defined by a morphological combination of activation
function, dilations and downsampling, using a max-plus layer or its dual.

More precisely, we introduce two alternative architectures of the MorphoAc-
tivation layer (Activation and Pooling Morphological Operator) f �→ ΨMorpho :
Rn → Rn′

either by composition [π ◦ σ(f)](x) or [σ ◦ π(f)](x) as follows:

ΨMorpho
1 (f) =

∧

1≤j≤M

⎧
⎨

⎩
δMaxPoolR,bj

⎛

⎝
∨

1≤i≤N

(βj
i f + αj

i )

⎞

⎠

⎫
⎬

⎭
, (14)

ΨMorpho
2 (f) =

∧

1≤i≤N

⎧
⎨

⎩

∨

1≤j≤M

(
βj

i δMaxPoolR,bi (f) + αj
i

)
⎫
⎬

⎭
, (15)

where ⎧
⎨

⎩

δMaxPoolR,bj
(f)(x) = δbj (f)(R · x), with

δbj (f)(x) = (f ⊕ bj)(x) =
∨

y∈W {f(x − y) + bj(y)}
In the context of an end-to-end learning DCNN, the parameters βj , αj and

structuring functions bj are learnt by backpropagation [34]. The learnable struc-
turing functions bj play the same role as the kernel in the convolutions. Note
that one can have R = 1, the pooling does not involve downsampling. We note
that in a DCNN network the output of each layer T k is composed of the affine
function x �→ Wkx + bk, where Wk is the weight matrix (convolution weights
in a CNN layer) and bk the bias, and the activation function σ, i.e., T k =
σ
(
WkT k−1 + bk

)
, where σ is acting elementwise. Using our general activa-

tion (12), we obtain that

T k =
∧

j∈J

[
∨

i∈I

{
βjk

i WkT k−1 + βjk
i bk + αjk

i

}
]

,

and therefore the bias has two terms which are learnt. We propose therefore to
consider in our experiments that bk is set to zero since its role will be replaced
by learning the αjk

i .

5 Experimental Section

Firstly, to illustrate the kind of activation functions that our proposition can
learn, we use the MNIST dataset as a ten class supervised classification prob-
lem and an architecture composed of two convolutional layers and a dense
layer for reducing to the number of classes. The activation functions that we
optimise by stochastic gradient descent have as general form min(max(β0x +
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α0, β1x + α1, α2), α3), which corresponds to (14) and (15) where R = 1, i.e.,
without pooling. We have initialised all the activation functions to be equal to
max(min(ReLU(x), 6),−6) as it is illustrated in Fig. 1(left). The accuracy of this
network without any training is 14%. Surprisingly when one optimises5 only the
parameters of activation functions the network accuracy increases to the accept-
able performance of 92.38% and a large variability of activation functions are
found Fig. 1(center). This is a way to assess the expressive power6 of the parame-
ter of the activation as it has been proposed in [6]. Additionally, an adequate sep-
aration among classes is noted by visualising the projection to two-dimensional
space of the last layer via the t-SNE [19] algorithm. Of course, a much better
accuracy (98, 58%) and inter-class separation is obtained by optimising all the
parameters of the network Fig. 1(right).

Fig. 1. First Row: Left: Random Initialisation with (14%) of accuracy on the test set,
We use a simplified version of proposed activation min(max(β0x+α0, β1x+α1, α2), α3),
with initialisation max(min(ReLU(x), 6), −6) Centre: Training only activation functions
(92.38%), Right: Training Full Network (98,58%). Second Row: t-SNE visualisation of
last layer is the 10-classes MNIST prediction for a CNN.

Secondly, we compare the performance of (6), (7), (14) and (15) following
the common practice and train all the models using a training set and report the
standard top-one error rate on a testing set. We use as architecture a classical
two-layer CNN (without bias for (14) and (15)) with 128 filters of size (3×3) per
layer, and a final dense layer with dropout. After each convolution the different

5 We use ADAM optimizer with a categorical entropy as loss function, a batch size of
256 images and a learning rate of 0.001.

6 The expressive power describes neural networks ability to approximate functions.
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propositions are used to both produce a nonlinear mapping and reduce spatial
dimension via pooling stride of two. As a manner of comparison, we include
the case of a simple ReLU activation followed by a MaxPool with stride two.
The difference in top-one error rate on a testing set is reported in Table 1 for
CIFAR10, CIFAR100 and Fashion-MNIST databases. These quantitative results
shown in propositions (6) and (7) do not seem to improve the performance in
the explored cases. Additionally, (15) performs better than (14), and it improves
the accuracy in comparison with our baseline in all the considered databases.

Table 1. Relative difference with respect to our baseline (ReLU followed by a MaxPool).
Architecture used is a CNN with two layers. ADAM optimiser with an early stopping
with patience of ten iterations. Only Random Horizontal Flip has been used as image
augmentation technique for CIFARs. The results are the average over three repetitions
of the experiments.

Fashion MNIST CIFAR10 CIFAR100

MaxPool(ReLU) 93.11 78.04 47.57

Self-dual Relu in (6) −2.11 −20.12 −31.14

(7) −0.95 −1.75 −4.39

MorphoActivation in (14) N = 2 N = 3 N = 4 N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

M = 2 −0.06 −0.05 −0.1 −0.42 0.02 −0.02 0.44 0.7 0.4

M = 3 −0.14 −0.14 −0.06 −0.57 −0.4 −0.35 0.56 0.49 0.61

M = 4 −0.02 −0.08 −0.01 0.05 −0.62 −0.5 0.41 0.35 0.73

MorphoActivation in (15) N = 2 N = 3 N = 4 N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

M = 2 0.04 −0.16 −0.12 1.84 2.02 1.49 3.31 3.5 3.45

M = 3 0.08 −0.09 0.12 2.39 1.96 1.82 3.48 3.55 3.86

M = 4 −0.02 0.09 −0.03 2.49 2.25 2.13 3.47 3.73 3.58

6 Conclusions and Perspectives

To the best of our knowledge, this is the first work where nonlinear activation
functions in deep learning are formulated and learnt as max-plus affine func-
tions or tropical polynomials. We have also introduced an algebraic framework
inspired from mathematical morphology which provides a general representation
to integrate the nonlinear activation and pooling functions.

Besides more extended experiments on the performance on advanced DCNN
networks, our next step will be to study the expressivity power of the networks
based on our morphological activation functions. The universal approximation
theorems for ReLU networks would just be a particular case. We conjecture that
the number of parameters we are adding on the morphological activation can
provide a benefit to get more efficient approximations of any function with the
same width and depth.
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Abstract. Morphological neural networks allow to learn the weights of
a structuring function knowing the desired output image. However, those
networks are not intrinsically robust to lighting variations in images with
an optical cause, such as a change of light intensity. In this paper, we
introduce a morphological neural network which possesses such a robust-
ness to lighting variations. It is based on the recent framework of Loga-
rithmic Mathematical Morphology (LMM), i.e. Mathematical Morphol-
ogy defined with the Logarithmic Image Processing (LIP) model. This
model has a LIP additive law which simulates in images a variation of the
light intensity. We especially learn the structuring function of a LMM
operator robust to those variations, namely: the map of LIP-additive
Asplund distances. Results in images show that our neural network ver-
ifies the required property.

Keywords: Morphological neural nets · Logarithmic Image
Processing · Logarithmic Mathematical Morphology · Robustness to
lighting variations · Functional Asplund metric

1 Introduction

Deep learning [8] based on convolutional neural networks (CNN) [16] has
emerged as a methodology to learn a model of the data in order to perform
a classification or a regression task [9]. During the training phase, the model
parameters are learnt by minimising a loss between a given truth and the model
prediction. In parallel to CNN, several morphological neural nets have been
defined and studied. First, fully connected morphological neural nets (where the
output depends on all the input pixels) have been defined in [6] and more recently
by Charisopoulos et al. [5], Mondal et al. [21] and Zhang et al. [35]. Second, Bar-
rera et al. defined morphological neural nets in sliding windows [2] (where the
output only depends on the input pixels in the window). Moreover, deep mor-
phological networks have also been defined by using either approximations of the
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morphological operations [1,15,17,18,20,29,31], or exact morphological opera-
tions [7,23]. Deep morphological networks have been used e.g. for classification
in hyperspectral images [23], image de-hazing or de-raining [19], image denoising
[7]. A morphological network has a constant additive invariance [32]. In classical
neural networks, a CNN was designed to have a shift invariance [4] and a neural
net has a contrast invariance based on quaternion local phase [22].

However, morphological neural networks are not intrinsically robust to real
lighting variations. The analysis of images presenting such variations is a chal-
lenging task that can occur in many settings [13,27,34]: industry, traffic control,
underwater vision, face recognition, large public health databases, etc. In this
paper, we propose a morphological neural network which is robust to such light-
ing variations due to a change of light intensity or of camera exposure-time.

Such a neural net is based on a metric, namely the functional Asplund met-
ric [11] which presents this robustness property. This metric is defined with the
Logarithmic Image Processing (LIP) model [12,13] which models those light-
ing variations. As the LIP model is based on a famous optical law, namely the
Transmittance Law, we shall introduce in this way Physics in those neural nets.
In addition, the maps of Asplund distances between an image and a reference
template, the probe, are related to Mathematical Morphology [27]. We shall see
that they are especially related to the newly introduced framework of Logarith-
mic Mathematical Morphology [24,25].

2 Background

2.1 Logarithmic Image Processing

The LIP model is defined for an image f acquired by transmission and, as it is
consistent with the human vision [3,13], it can also be used for images acquired by
reflection. In this model, the light is passing through a semi-transparent medium
and is captured by the sensor. The resulting image f is a function defined on
a domain D ⊂ R

2 with values lying in the interval [0,M [⊂ R. It is important
to note that the LIP greyscale is inverted with respect to the usual grey scale.
0 corresponds to the white extremity, when all the light passes through the
medium. M is the black extremity, when no light is passing. For images digitised
on 8-bits, M is always equal to 28 = 256.

According to the transmittance law, the transmittance Tf�+ g of the superim-
position f �+ g of two media which generate the images f and g, is equal to the
product of the transmittances Tf and Tg of each image: Tf�+ g = Tf ·Tg. The trans-
mittance Tf of any medium generating the image f is equal to Tf = 1 − f/M .
From both previous equations, the LIP-addition law is deduced:

f �+ g = f + g − f · g/M. (1)

As the addition f �+ f may be written as 2 �× f , the LIP-multiplication of an
image f by a real number λ is expressed as:

λ �× f = M − M (1 − f/M)λ
. (2)
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When λ = −1, the LIP-negative function �− f = −1 �× f can be defined, as well
as the LIP-difference f �− g between two images f and g. They are expressed as
follows:

�− f = (−f)/(1 − f/M), (3)

f �− g = (f − g)/(1 − g/M). (4)

It can be noticed that f �− g is an image (i.e. f �− g ≥ 0) if and only if f ≥ g.
The LIP model has a strong mathematical property. Let FM = ]−∞,M [D be

the set of real functions defined on the domain D and whose values are less or
equal than M . Let I = [0,M [D be the set of images. The set (FM ,�+ ,�× ) is a
real vector space and the set (I,�+ ,�× ) is its positive cone.

The LIP model also possesses a strong physical property. The LIP-negative
values �− f , where f ≥ 0, acts as light intensifiers. Those values can therefore
be used to compensate the image attenuation in scenes captured with a low
lighting. In particular, the LIP-addition of a positive constant to an image sim-
ulates the effect of a decrease of the light intensity or a decrease of the camera
exposure-time. The resulting image is therefore darker than the original one. In
an equivalent way, the LIP-subtraction of a positive constant from an image,
simulates an increase and the resulting image becomes brighter.

2.2 Logarithmic Mathematical Morphology

Logarithmic Mathematical Morphology (LMM) was introduced by Noyel in
[24,25]. LMM consists of defining morphological operations [10,30] in the LIP
framework. In LMM, the dilation δ�+

b and the erosion ε�+
b are defined in the lat-

tice (FM ,≤). Let f and b ∈ FM be two functions, where FM = [−∞,M ]D. The
function b : D �→ ]−∞,M [ is chosen as the structuring function, which implies
that outside the domain Db ⊂ D, all its values are equal to −∞: ∀x ∈ D \ Db,
b(x) = −∞. Both mappings δ�+

b and ε�+
b are named logarithmic-dilation and

logarithmic-erosion, respectively. They are defined by:

δ�+
b (f)(x) = ∨{f(x − h) �+ b(h), h ∈ D} (5)

ε�+
b (f)(x) = ∧{f(x + h) �− b(h), h ∈ D} . (6)

In the case of ambiguous expressions, the following conventions will be used:
f(x−h)�+ b(h) = −∞ when f(x−h) = −∞ or b(h) = −∞, and f(x+h)�− b(h) =
M when f(x + h) = M or b(h) = −∞.

Both operations form an adjunction, i.e. for all f, g ∈ FM , δ�+
b (g) ≤ f ⇔

g ≤ ε�+
b (f). As a consequence, the composition γ�+

b = δ�+
b ◦ ε�+

b is an opening and
the composition ϕ�+

b = ε�+
b ◦ δ�+

b is a closing. LMM operations are adaptive to
lighting variations modelled by the LIP-additive law. We shall see that at least
an operation which is robust to those lighting variations can be defined in the
LMM framework.

The logarithmic-dilation δ�+
b and the logarithmic-erosion ε�+

b , which are
defined in the lattice (FM ,≤), are related to the usual functional dilation δb
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(or ⊕) and erosion εb (or �), which are defined in the lattice of real functions
(RD,≤). These usual dilation and erosion are defined, for all x ∈ D, by:

δb(f)(x) = (f ⊕ b)(x) = ∨{f(x − h) + b(h), h ∈ D} (7)
εb(f)(x) = (f � b)(x) = ∧{f(x + h) − b(h), h ∈ D} . (8)

Such relations are based on the isomorphism ξ : FM �→ R
D

and its inverse
ξ−1 : R

D �→ FM , which are expressed by ξ(f) = −M ln (1 − f/M) and ξ−1(f) =
M(1 − exp (−f/M)) [14]. The relations between the logarithmic-operations δ�+

b ,
ε�+
b and the usual functional erosion are the following ones [24,25]:

δ�+
b (f) = ξ−1

(
δξ(b)[ξ(f)]

)
= ξ−1 [ξ(f) ⊕ ξ(b)] (9)

ε�+
b (f) = ξ−1

(
εξ(b)[ξ(f)]

)
= ξ−1 [ξ(f) � ξ(b)] , (10)

where f and b ∈ R
D. These relations are not only important from a theoretical

point of view but also from a practical point of view. Indeed, they facilitate the
programming of the logarithmic operations by using the usual morphological
operations which exist in numerous image analysis software.

In Fig. 1, in an image f , the logarithmic-erosion ε�+
b (f) and dilation δ�+

b (f)
are compared to the usual erosion εb(f) and dilation δb(f). For the logarithmic
operations, the amplitude of the structuring function b varies according to the
amplitude of the image f ; whereas, for the usual morphological operations, the
amplitude of b does not change. In Fig. 1a, when the image intensity is close to
the maximal possible value M = 256, the intensity of the logarithmic-dilation
of f , δ�+

b (f), is less or equal than M , because the structuring function becomes
flat; whereas the intensity of the usual dilation of f , δb(f), is greater than M .

(a) Erosions. (b) Dilations.

Fig. 1. In an image f , comparison between functional MM and LMM for the (a) ero-
sions εb(f), ε�+

b (f) and (b) dilations δb(f), δ�+
b (f). (a) and (b) For both signal peaks, the

structuring function b is represented (after an horizontal translation) for the erosions
εb(f), ε�+

b (f) and the dilations δb(f), δ�+
b (f). (a) Erosions. (b) Dilations.
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2.3 The LIP-Additive Asplund Metric

The LIP-additive Asplund metric was defined by Jourlin [11].

Definition 1 (LIP-additive Asplund metric). Let f and g ∈ FM be two
functions. One of them, e.g. g, is chosen as a probing function. Both following
numbers are then defined by: c1 = inf {c, f ≤ c �+ g} and c2 = sup {c, c �+ g ≤ f},
where c lies within the interval ]−∞,M [. The LIP-additive Asplund metric d�+

asp

is defined by
d�+

asp(f, g) = c1 �− c2. (11)

Property 1 (Robustness to lighting variations [11]). Importantly, this metric is
invariant under lighting changes modelled by a LIP-addition of a constant:

∀k ∈] − ∞,M [, d�+
asp(f, g) = d�+

asp(f �+ k, g) and d�+
asp(f, f �+ k) = 0. (12)

Those changes correspond to a modification of the light intensity or of the
camera exposure-time.

2.4 Learning the Structuring Function in Morphological Operations

For machine learning in Mathematical Morphology (MM), the functions are
defined in discrete grids of Z2 ; f : D �→ R and b : Db �→ R, where Db ⊂ D ⊂ Z

2.
Let the cardinal of the set Db be equal to 2n+1. The bidimensional functions can
always be represented as unidimensional arrays, e.g. by concatenating their rows.
The structuring function are therefore written as follows: b = {b−n, . . . , bn}. The
dilation δb and the erosion εb layers can be expressed by [7,19]:

δb(f)(x) = max
i∈[[−n,n]]

{f(x − i) + bi} (13)

εb(f)(x) = min
i∈[[−n,n]]

{f(x + i) − bi} . (14)

An image f is passed through a dilation layer or an erosion layer that gives an
output equal to ĝ (i.e. ĝ = δb(f) or ĝ = εb(f)). The weights of the structuring
function b are learnt so that the loss L(b) = L(g, ĝ) between the output ĝ of the
neural net layer and the desired output g, is minimised. The loss minimisation
is performed by a stochastic gradient descent algorithm [8], which requires to
compute the derivative of each weight to the loss:

∂L

∂bi
=

∑

x

∂ĝ(x)
∂bi

∂L

∂ĝ(x)
=

∑

x

∇ĝ(x)
∂L

∂ĝ(x)
. (15)

Let us denote ix∗ = arg maxi∈[[−n,n]]{f(x − i) + bi} or ix∗ = arg mini∈[[−n,n]]

{f(x + i) − bi}, the index for which the dilation or the erosion takes its value.
For the dilation, the gradient ∇ĝ is equal to :

∇ĝ(x) =

{
1 if ĝ(x) = f(x − ix∗) + bix∗

0, otherwise
(16)
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and for the erosion to

∇ĝ(x) =

{
−1 if ĝ(x) = f(x + ix∗) − bix∗

0, otherwise.
(17)

The structuring function is therefore updated as : b(x) = b(x) − α∂L/∂b(x).

3 Maps of LIP-additive Asplund Distances

3.1 Definition

Definition 2 (Map of LIP-additive Asplund distances). Let f ∈ FM be
a function and b ∈ ]−∞,M [Db a probe, where Db ⊂ D. The map of Asplund
distances is the mapping Asp�+

b : FM �→ I defined by:

Asp�+
b f(x) = d�+

asp(f|Db(x) , b), (18)

where f|Db(x) is the restriction of f to the neighbourhood Db(x) centred on x ∈
D. The LIP addition �+ makes the map of distances robust to contrast variations
due to exposure-time changes: ∀c ∈ ]−∞,M [ , Asp�+

b (f �+ c) = Asp�+
b (f).

3.2 Link with Logarithmic Mathematical Morphology

The map of Asplund distances is related to Mathematical Morphology (MM)
[26,27]. Noyel as shown in [25] that it is specifically related to LMM as follows.

Proposition 1. Let f ∈ FM be a function and b ∈ FM be a structuring func-
tion, where for all x ∈ Db, Db ⊂ D, b(x) > −∞. The map of Asplund distances
between the function f and the structuring function b is equal to:

Asp�+
b f = δ�+

�− b
(f) �− ε�+

b (f). (19)

In the case of ambiguous expressions, the following conventions will be used:
Asp�+

b f(x) = M when δ�+
�− b

(f)(x) = M or ε�+
b (f)(x) = −∞, and Asp�+

b f(x) = 0
when δ�+

�− b
(f)(x) = ε�+

b (f)(x).

4 Neural Net of Map of Asplund Distances

From Eqs. (19), (9), (10) and knowing that ξ(�− b) = −ξ(b) and ξ(f �− g) =
−ξ(f) − ξ(g), one deduces that:

Asp�+
b f = ξ−1

[
δ−ξ(b)ξ(f) − εξ(b)ξ(f)

]
. (20)

We then create a map of Asplund distance layer Asp�+
b , where we apply this layer

to the input image f in order to give an output ĝ = Asp�+
b (f). The structuring
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function b is learnt so as to minimise a loss L(b) = L(g, ĝ) between ĝ and a
desired output g = Asp�+

br
(f), where br is a reference structuring function. The

goal is to learning b in order to discover br.
In morphological neuron implementations [7], learning b is equivalent to learn

the weight matrix W ∈ R
A×B , where W (x) = b(x), for all x ∈ Db and W (x) =

−∞, otherwise. A × B is the window size in pixels of DW ⊂ D. However, in
Eq. (19), in the term δ�+

�− b
, we also expect that for all x /∈ Db, �− W (x) = −∞,

which is not compatible with the current definition of W .
We therefore introduce a definition of b relying on two learnt kernels: the

height kernel Wh and the mask kernel Wm ∈ R
A×B . First, Wh corresponds to

the height-map of the probe satisfying Wh(x) = b(x), for all x ∈ Db. Second, Wm

characterises the definition domain of the probe Db = {x ∈ DWm
| Wm(x) > 0}.

We then rewrite Eq. (20) as:

Asp�+
b f = ξ−1 [δbdil(ξ(f)) − εbero(ξ(f))] , (21)

where, ∀x ∈ DWm
:

bdil(x) =

{
−ξ(Wh)(x) if Wm(x) > 0
−∞ otherwise

, bero(x) =

{
ξ(Wh)(x) if Wm(x) > 0
−∞ otherwise

.

(22)

In order to ensure that the gradient descent is smooth, a soft-binarisation func-
tion χ : R

A×B �→]0, 1[A×B , such as the sigmoid χ(v) = 1/(1 + exp (−v)), is
applied to the mask kernel Wm instead of a threshold. We therefore define
V = χ(Wm) ∈ ]0, 1[A×B as the soft-mask of the probe in the window of size
A × B. Because V is not a binary mask, −∞ cannot be used when computing
bero or bdil. As f is an image, we have for all x ∈ D, f(x) ∈ [0,M − 1]. This
implies that ξ(f(x)) ∈ [0, ξ(M − 1)]. A bottom value ⊥ = −ξ(M − 1) is chosen
such that ξ(f)(x) − ⊥ ≥ ξ(M − 1). This implies that ξ(f)(x) + ⊥ ≥ ξ(0). We
then define the approximations b̃dil and b̃ero of bdil and bero as follows:

b̃dil = −ξ(Wh) · V + ⊥ · (1 − V ) (23)

b̃ero = ξ(Wh) · V + ⊥ · (1 − V ). (24)

From Eq. (21), (23), (24), an expression of ĝ is deduced:

ĝ = ξ−1
[
δb̃dil

(ξ(f)) − εb̃ero
(ξ(f))

]
. (25)

It only contains components with derivatives and which can be used in the
back-propagation algorithm. In practice, Wh and Wm are both initialised as null
matrices.

Remark 1. In order to push the weights of the kernel Wh away from zero, one
might introduce a mean Gaussian or a mean squared Gaussian, as a regularisa-
tion function of Wm. This idea will be explored in future works.
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5 Illustration and Results

We have illustrated our LMM network by using the Fashion MNIST dataset
composed of a training set of 60 000 images and a test set of 10 000 images [33].
Each image is digitised with a 8-bit greyscale and has a size of 28 × 28 pixels.

The goal was to learn a structuring function (or probe) b (represented by
both matrices Wh and Wm) so as to discover a reference structuring function
br. This reference structuring function was defined as follows, for all x ∈ DWbr

,
where DWbr

⊂ D and Wbr is a matrix of size 7 × 7:

br(x) =

{
h(x) if h(x) ≥ 0, where h(x) = −β

√
7‖x‖2 �+ c

−∞ otherwise.
(26)

Let Dbr = {x ∈ DWbr
| h(x) ≥ 0} be the domain of the probe. The mask

kernel Wm,r and the height kernel Wh,r of the reference structuring function br

are defined by Wm,r = 1Dbr
and ∀x ∈ DWbr

, Wh,r(x) = br(x), if x ∈ Dbr and
Wh,r(x) = 0, otherwise. 1Dbr

is the indicator function of the set Dbr .
By varying the parameters β ∈ {0.2, 0.4, . . . , 1.2} and c ∈ {10, 25, . . . , 250}, a

total of 102 reference structuring functions br were generated. With those br, the
desired outputs g = Asp�+

br
(f) (i.e. a ground-truth) were computed in both train

and test datasets. In the train set, the weights of b were learnt by minimising a
loss L(g, ĝ). In the test set, the map of Asplund distance layer ĝ = Asp�+

b (f) was
applied to the images f with the learnt structuring function b. The average of
a validation metric V alm was computed between the estimated outputs ĝ and
the ground-truth g. For the loss L and the validation metric V alm, we used the
mean square error MSE or the LIP-mean square error LIPMSE [28]:

MSE(g, ĝ) =
1
P

P∑

i=1

[gi − ĝi]
2 (27)

LIPMSE(g, ĝ) =
M2

P

P∑

i=1

[
ln

(
M − gi

M − ĝi

)]2

, (28)

where P is the number of pixels of g. The results of the validation metrics are
shown in Table 1. In order to verify the robustness to lighting variations of our
neural network, we have performed two other experiments with the same train
set, but two additional test sets. We had therefore three test sets. i) The first
test set is the initial test set. ii) The second test set is composed of the images of
the first test set which were darkened by LIP-adding to them a constant of 100.
iii) The third test set is composed of the images of the first test set which were
brightened by LIP-subtracting from them a constant of 100. In Table 1, one can
notice that the averaged validation metrics between the three test sets are similar
with a residual difference less than 1.2× 10−6 grey levels. Our neural network is
therefore robust to lighting variations which are modelled by the LIP-addition
of a constant.
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Table 1. Comparison of the validations metrics V alm in three test sets: average,
standard deviation and absolute average differences with the ground truth of the 1st

test set. Parameters: 15 epochs, Adam optimiser, learning rate α = 0.5, batch size: 20.

Test sets Metrics Averages Std dev. Abs. av. diff.

1st test set MSE 9.740 × 10−5 0.673 × 10−3

(initial, f) LIPMSE 6.528 × 10−4 2.580 × 10−3

2nd test set MSE 9.740 × 10−5 0.673 × 10−3 0

(dark, f �+ 100) LIPMSE 6.529 × 10−4 2.581 × 10−3 7 × 10−8

3rd test set MSE 9.740 × 10−5 0.673 × 10−3 1 × 10−10

(bright, f �− 100) LIPMSE 6.516 × 10−4 2.576 × 10−3 1.2 × 10−6

The error Epr(Wh,Wh,r) between the height kernels of the learnt probe b
and of the reference probe br is defined as follows:

Epr(Wh,Wh,r) =
1

A.B

⎡

⎣min
k

∑

x∈Dbr

(Wh,r(x) − (Wh(x) �+ k))2 +
∑

x/∈Dbr

W 2
h (x)

⎤

⎦

(29)
It takes into account that the map of Asplund distances is invariant under the
LIP-addition of a constant to its probe. Table 2 shows the average errors between
the kernels Wm and Wh of the learnt structuring function b and the kernels Wm,r

and Wh,r of the reference structuring function br, in the train set. One can notice
that the average MSE between the soft mask kernels Wm and Wm,r is very small,
with a value in 1e − 05. The average error between the height kernels Wh and
Wh,r has a value in 1e-04 grey levels. This means that the learnt kernels Wm

and Wh are similar to the reference kernels Wm,r and Wh,r. The learnt probe b
is therefore similar to the reference probe br.

Table 2. In the train set, comparison of the average errors between the kernels Wm

and Wh of the learnt probe b and the kernels Wm,r, Wh,r of the reference probe br. A
total of 102 probes b have been learnt.

Kernels Errors Averages Std dev.

Heights of the probe Wh Epr 6.89 × 10−5 4.50 × 10−4

Soft mask of the probe Wm MSE 2.23 × 10−4 7.74 × 10−4

Figure 2 shows an image f of the test set (Fig. 2a). This image was darkened
f �+ 100 (Fig. 2b) or brightened f �− 100 (Fig. 2c). The ground-truth g was com-
puted with the map of Asplund distances with the reference probe br: g = Asp�+

br
f

(Fig. 2d). The predictions ĝ of the maps of Asplund distances were made with
the learnt structuring function b: (i) in the initial image: Asp�+

b f1 (Fig. 2e), (ii)
in the darkened images: Asp�+

b (f1 �+ 100) (Fig. 2f) and (iii) in the brightened
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image: Asp�+
b (f1 �− 100) (Fig. 2g). These images show that there is no noticeable

differences between the predictions Asp�+
b f , Asp�+

b (f �+ 100), Asp�+
b (f �− 100) and

the ground-truth g = Asp�+
br

f and that the predictions are robust to lighting
variations which are modelled by the LIP-addition or the LIP-subtraction of a
constant. Figure 3 shows that the height kernels Wh,br of the reference probe br

and Wh of the learnt probe b are similar. The mask kernels Wm,br and Wm are
also similar.

Fig. 2. (a) Image f coming from the Fashion MNIST test dataset. (b) f �+ 100 darkened
image. (c) f �− 100 brightened image. (d) Asp�+

brf : ground-truth g, i.e. map of Asplund
distances with the reference probe br. Predictions ĝ, i.e. maps of Asplund distances
with the learnt probe b: (e) in the initial image Asp�+

b f ; (f) in the darkened image
Asp�+

b (f �+ 100); (g) in the brightened image Asp�+
b (f �− 100).

Fig. 3. In the inverted grey scale, height kernels (a) Wh,br of the reference probe br
and (b) Wh of the learnt probe b. Mask kernels (c) Wm,br of the reference probe br and
(d) Wm of the learnt probe b. As Wm is a soft mask, a color scale was used.
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6 Conclusion

We have introduced a logarithmic morphological neural network which is robust
to real lighting variations. Those variations are modelled by the LIP-addition
of a constant and they are caused by a change in the light intensity or in the
camera exposure-time. Such a neural net is based on the functional Asplund
metric defined with the LIP-additive law. In the future, by combining several
logarithmic morphological layers, we will define neural nets for numerous prac-
tical applications where the light is uncontrolled. We will also study neural nets
for the LIP-multiplicative Asplund metric, which is invariant under changes of
opacity. Such changes are modelled by the LIP-multiplication by a scalar.
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