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Abstract. This Experience report compares using model fields and model meth-
ods for specifying abstractions in abstract implementations. Our experience is
connected to past discussions of alternatives in modeling heap state changes and
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1 Introduction

Deductive verification (DV) of software requires writing specifications in some speci-
fication language (SL) to complement an actual program implementation in some pro-
gramming language (PL). Similarly to writing the implementation, specifications ben-
efit from designs that abstract, clarify and simplify the intent of the program. Good
abstractions can make the specification more obviously correct1 and improve the per-
formance of the underlying DV system in generating the proofs that verify that the
specifications and implementation are consistent.

Tools that perform deductive verification of software translate a combination of pro-
gram source code and specifications into a logical language that can then be submitted
to a theorem prover to determine whether the source code and specifications are consis-
tent with each other. The translation process incorporates the semantics of both the PL
and the SL. It also must consider which formulation of logical language structure will
provide the best proof success, both in proofs succeeding at all and in the time taken to
do so.

In the Java Modeling Language (JML) [10,15], as in some other SLs, one has a
choice to use model fields or model methods (or a mixture) in writing specifications.

1 In this paper, as generally in DV, we are concerned to establish that implementations concur
with their specifications. But both can be wrong together. Thus a specification that can be writ-
ten more cleanly and readably is more amenable to human review and can be “more obviously”
in agreement with the intent of the software.
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In a recent (October 2021–March 2022) specification project for an industrial client, a
target example was specified in each way.

The contribution of this Experience Report is to describe how model fields and
model methods were used in OpenJML [6,7] for this example, identify the advantages
and disadvantages of each approach, and, in particular, how the logical encoding used
by the deductive verification system was affected. To set the stage, early sections of this
paper provide a summary of how DV systems encode PL and SL constructs, particularly
the heap.

The context of this work is deductive verification for legacy software, in this case
software written in Java. Thus we did not have the opportunity to use a system such as
Dafny [18,19] that is designed to verify software as it is written. Rather this project used
a specification language (JML) and tool (OpenJML) appropriate to the target language
(Java). In this case, OpenJML is translating to SMT-LIB [24], with Z3 [11] as its back-
end, automated logical engine.

The examples given below use Java as the PL and JML as the SL; JML embeds
specifications in Java code as Java comments beginning with //@. OpenJML was
extended to handle reads clauses and recursive model fields and (which are then similar
to dynamic frames), both of which were implicit in JML, but without carefully defined
semantics. However these techniques and ideas are applicable to other imperative pro-
gramming languages with heap data storage, such as object-oriented languages, and to
other DV tools, particularly SMT-based tools like ACSL [1] and Frama-C [13].

The overall motivation for this project at the outset was to take the work of this
report beyond what is reported here, namely to determine (a) which logical encodings
of PL features are easier to write and understand (in tool implementations), (b) which
encodings show better proof performance and success, and then (c) are the differences
significant enough to warrant a substantial refactoring of a DV tool implementation.

2 Logical Encoding of Local Computations

Like other modular DV systems, JML and OpenJML verify a program method by
method. Each method’s implementation is verified independently against its own speci-
fication, using just the specifications of methods on which its implementation and speci-
fication depend. The collection of verification proofs of all the methods in the program,
together with proofs of termination, constitute a sound verification that the program
and its specifications are consistent. A typical DV system translates PL+SL source into
logic with a series of steps.

1. Using the semantics of the PL and SL, convert the source into an equivalent form
that consists just of a DAG of basic blocks, where each basic block consists only of
assignments, assert statements, assume statements and havoc statements. Into each
back edge of a loop, where control returns to the loop’s beginning, an assertion
of the loop’s inductive invariant is inserted. In Java, throwing exceptions, try-catch-
finally statements, break and continue statements, and the interplay among these can
lead to complex flows among many basic blocks. Havoc statements assign to listed
variables an arbitrary value consistent with the variable’s type; these are used in the
representation of loops and method calls.
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2. Apply a single-static-assignment (SSA) transformation to all the assignments and
variable uses so that each variable has a unique declaration/initialization statement.

3. Transform to a logical form by replacing program variables with logical variables,
assignments with assumptions, basic blocks with chains of implications, and the
whole DAG of basic blocks as a set of logical block equations. The logical encoding
states the property that all the preconditions and other assumptions together imply
that all the desired program properties (e.g., not throwing exceptions) and specifica-
tion assertions hold. This is the property that if proved to always hold verifies that
the program implementation and its specifications are consistent.

4. Those logical block equations are then transformed into the input language for a
logical solver, such as into SMT-LIB for solvers such as CVC5 [3,4] or Z3 [11].

5. The logical solver then pronounces that set of formulae to be unsatisfiable, satisfi-
able, or unknown. For SMT solvers, the property to be proved is negated, so that a
response of satisfiablemeans that there is a particular, concrete assignment of values
to logical variables that satisfies all the preconditions and other assumptions, but also
satisfies the negated assertion (that is, falsifies the original assertion), thereby pro-
viding a counterexample to a desired proof of consistency. An unsatisfiable response
means no such assignment exists, and thus the given assertions are entailed by the
given assumptions (i.e., the implementation is consistent with the specification). A
response of unknown means that the solver ran out of time or memory or otherwise
could not eliminate all possible satisfying assignments.2

Our concern in this paper is principally with the SSA transformation and its interaction
with the heap and with method calls. To set the stage for later complications, the fol-
lowing simple example code snippet shows the SSA and logical transformations when
only stack variables are used. Stack variables are simple because in languages such as
Java that do not permit arbitrary address and pointer calculations, there is no aliasing
among stack variables.

Consider this source code snippet (using Java notation for assignments and opera-
tors). Here the assert statement can be considered the specification and the other state-
ments the program implementation.

1 x = x + y;
2 y = x - y;
3 x = x - y;
4 //@ assert x == \old(y) && y == \old(x);

The \old construct says to evaluate its argument in the context at the beginning of the
code snippet. This simple example just has one basic block.

The SSA transformation results in the following.

1 x1 = x0 + y0;
2 y1 = x1 - y0;
3 x2 = x1 - y1;
4 assert x2 == y0 && y1 == x0;

2 The presence of quantified expressions often yields a response of unknown.
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For the transformation to a logical form, we use logical variables that have the same
name as the SSA variable, but using subscripts. We obtain the following:

(x1 = x0 + y0) → (y1 = x1 − y0) → (x2 = x1 − y1) → (x2 = y0 ∧ y1 = x0) (1)

In (1), = is equality, → is right-associative boolean implication, and ∧ is conjunction.
Negating formula (1), converting to SMT-LIB, and passing the result to an SMT solver
produces unsat, i.e., the assertion follows from the program code.

In this example, the + in the program source is addition in Java, the + in the assert
statement is addition in the specification language, and the + in the logical formula
is addition in the logical language, which in SMT-LIB is addition over the unbounded
mathematical integers. Here we mapped the first two into the latter, which is an inter-
pretation of the semantics of the PL addition and SL addition as mathematical addition.
However, for Java, addition must be interpreted as 2’s-complement addition; addition
in JML specifications is by default mathematical addition.

3 Encoding Heap Access and Update—Previous and Related
Work

3.1 Notation

The encoding process above becomes more complicated when the PL has references
to objects in heap storage. This introduces the possibility of aliasing—different vari-
ables can refer to the same object—and objects have substructure in the form of named
fields or as array elements. In Java, field names are constants and are not subject to
any computation; in C/C++ by contrast, fields can overlap in memory as unions and
pointer arithmetic can cause arbitrary aliasing. Java also has arrays, which are essen-
tially objects with computable fields, but in Java array indexes can only refer to elements
that are within the bounds of the array. The ensuing discussion will focus on fields, as
arrays are handled similarly, with only minor modification.

A heap containing objects with fields is thus a mutable (updatable) structure,
indexed by a reference value and a field name, that stores values that have PL types,
such as integers of various bit-widths, boolean values and references. The discussion
that follows uses the following notation:

– object references are denoted by symbols like o and p in programs with correspond-
ing logical symbols as o and p

– references to arrays are denoted by variations on a in PL and SL and a in logic
– variations on i, j, k are PL and SL variables of various integer-like types; corre-
sponding logical variables are i, j, and k

– field names use letters like f and g; the logical equivalents are variations of f and g,
as constants, or of F and G as maps

– letters like v and v indicate values of various types stored in PL fields or in logical
maps

– the heap is implicit in programs, but is represented as variations on h (as an index)
or H (as a map) in logical equations
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– brackets, as in f [o] or L [h, o, f ], denote map lookup; the notation f [o := v] and
L [h, o, f := v] is map update: f [o := v] denotes a new map f ′ that is the
same as f except that f ′[o] = v. That is, these two operations satisfy the axioms

∀f, o, v : f [o := v][o] = v and ∀f, o, p, v : p �= o → f [o := v][p] = f [p]

and similarly for maps with other types and numbers of indices.

3.2 Heaps as Maps

Most generally then, we can represent a heap access as a lookup L in a map h, where
L [h, o, f ] returns a value v corresponding to object o and field f in heap h, and
L [h, o, f := v] returns a new heap value h′ in which the value v is now associated
with o and f , but otherwise h′ is the same as h. One complication is that the type of v
must match the type of f , for a typed PL like Java.

In 2011, Böhme andMoskal [5] published an assessment of a variety of heap encod-
ings and measured their performance on a set of bespoke benchmarks when imple-
mented for a number of logical engines. The encoding variations stem from treating the
heap as an index in L or as a map itself; similarly, fields can be represented as either
constant values that are indices into a map or as maps themselves. That gives a number
of options, as presented and named in [5]:

synchronous heap the heap H is an updateable 2-dimensional map indexed on object
and field, with lookupH[o, f ]. (Standard SMT-LIB does not support explicitly two-
dimensional arrays, though some SMT solvers, such as Z3, do.)

two-dimensional heap the heapH is a nested map of maps, where either the object or
the field may be the first index, with lookup H[o][f ] or H[f ][o]. These nested maps
make update more complicated: instead of H[o, f := v], there is either H[o :=
H[o][f := v]] or H[f := H[f ][o := v]].

field heap the heap is separated into a number of heaps by field, so each field f is
represented by a map F [o]. This corresponds to currying the map H[f ] into a map
F (for each field) from references to values, which is possible because field names
are pure constants.

The fact that the heap is implicit in the field heap encoding, whereas in all other encod-
ings it is explicit, makes the field heap categorically different than the other encodings.
In some ways the field heap encoding is simpler to use, particularly in the absence of
method calls. However, it does lose the ability to quantify over fields, which can be
useful in modeling features such as frame conditions. Thus axiomatization with non-
field heaps can be more succinct, whereas with field heaps those axioms may need to
be re-instantiated whenever the heap changes.

For C or C++ another option is needed to model pointer arithmetic:

linear heap lookup is H[dot(o, f)], which uses an operation, dot, that combines a
pointer and a field.

Böhme and Moskal measured performance of these options, axiomatizing each encod-
ing option for a variety of logical solvers. Variations of orders of magnitude in perfor-
mance were measured. They reported several interesting observations:
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– The field heap encoding was by far the most efficient in most cases; the two-
dimensional heap of the form H[p][f ] was comparable in time performance for Z3,
but solved many fewer problems.

– Performance on other heap encodings varied considerably across solvers and across
encodings.

– In the case of Z3, the performance varied significantly depending on the set of tool
parameters used. It also varied significantly with the use of patterns to guide the
instantiation of quantified formulas.

– SMT-based solvers (e.g., Z3, CVC3, Yices) performed overall better on this bench-
mark set than did ATP solvers (e.g., E, SPASS, Vampire).

– Breaking up a large verification formula can produce some performance improve-
ment.

An overall observation is the importance of design choices (heap encoding, tool, tool
parameters) to the performance of the DV system. However, the systems involved in this
study were measured more than a decade ago; they have been significantly improved
since then, as evidenced by the results of the annual SMTCOMP competition [8,23,25],
but as the measurements have not been repeated, we are building, cautiously, on the
original conclusions.

The reasons for differences in performance for different heap encodings are a mat-
ter of speculation. However, a reasonable hypothesis is that in the field heap the solver
spends less time doing alias determination than in the two-dimensional heap mappings,
since inH[f ][p], some reasoning steps are needed to determine whether two field iden-
tifiers f and f ′ are the same or different.

3.3 Arrays

Arrays are encoded like fields, but with an integer index. Like fields, there are a vari-
ety of ways to encode arrays. In Java, these must take account of the property that
Java arrays are aliasable; that is, the assignment b = a; means that b now refers
to the same array as a, not to a copy of it. Element i of array-typed field a of an
object o, that is, o.a[i], might be encoded as A [L [h, o, a], i] or HA[H[o, a], i] or
E[A[o]][i], where A , HA, E, and A are maps for the portion of the heap containing
arrays. Type considerations add complexity because L [h, o, a] and A[o] are now an
array type. There are now two layers of heap lookup, but otherwise the kinds of axioms
and reasoning needed are similar to those for regular fields. It is also possible to consider
integer indices (of arrays) to be just another kind of field identifier, further unifying the
treatment of fields and arrays. We ignore arrays in the following discussion.

3.4 Embedding in SMT

If we use SMT-LIB [24] as the logical language, then we need to consider to what
extent SMT-LIB supports these encoding models. (Even if a tool uses Boogie [17] as
an intermediate language, the encoding will eventually be mapped into SMT-LIB.)

There is a design choice in how SMT-LIB is used to encode mappings with a single
index: one can use either SMT-LIB’s uninterpreted functions or its maps with single-
index but with arbitrary index and value types.
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– The advantage of using SMT-LIB’s built-in maps is that then the solver can use the
solver’s built-in, highly engineered decision procedures for read-over-write maps,
which includes extensionality.3 However, SMT-LIB is also strictly typed, which
means that different map types are needed for different field types.

– Objects can be treated more uniformly if the model uses generically axiomatized
uninterpreted functions; e.g., heap values that are arrays can be treated the same
as heap values that are other references. The types of different field values can be
handled by defining injective functions that wrap values into a generic container
and unwrap them into specified types.4 One disadvantage of this approach is that
the solver then needs to reason its way through these wrapping and unwrapping
functions.

Also, SMT-LIB does not support maps with more than one index (though Z3 does),
soH[o, f ] must necessarily be either axiomatized as uninterpreted functions or embed-
ded in standard SMT-LIB as either H[o][f ] or H[f ][o].

In addition to Böhme and Moskal [5], other authors have discussed the use of these
encodings in specific systems.

– Leino and Rümmer [20] present how these encodings are accommodated in the
design of Boogie [17].

– Weiss [26] recaps Böhme and Moskal’s discussion of heap encodings in the context
of the KeY tool [14] and its JavaDL logic.

– The KeY Book [2] also gives axioms for heap encoding in the KeY tool.
– Mostowski and Ulbrich [21] also discuss the semantics and implementation of JML
model methods in the context of dynamic dispatch.

– Müller [22] discusses extensively the problems in verifying abstractions, though
without detailed discussions of logical heap encodings.

OpenJML currently uses the field heap encoding, inheriting it from its predecessors
ESC/Java2 [9] and ESC/Java [12]. Part of the goal of this project was to determine
whether a change in heap encoding would be worth the refactoring effort.

4 Model Fields and Model Methods

As will be illustrated in the next section and discussed in more detail in Sect. 7, abstract
properties of a class can be represented by either model fields or model methods.

A model field is a field that is only present in the specification. It may be completely
uninterpreted, with its properties determined by axioms, invariants and pre- and post-
conditions. Or it can be set equal to an expression using JML’s represents clause,
in which case that equality results in an axiom or assumption about the value of the
model field. In other respects, a model field is encoded just like other fields—as an
array lookup as described in Sect. 3.2.

A model method is a pure (i.e. side-effect-free) method that is part of the specifica-
tion but can be used with specification expressions. A model method typically has pre-

3 Private communication with Clark Barrett regarding CVC5. April 2022.
4 Private communication. Rustan Leino regarding encoding in Dafny and Boogie. April 2022.
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and postconditions that stipulate when it is well-defined and what its value is. Generally
speaking, method calls used in implementations or specifications are replaced by asser-
tions of preconditions and assumptions of postconditions. But there are circumstances
in which a matching logical function is defined that mirrors the definition of the model
method. This helps with ensuring that underspecified model methods are deterministic
and is also necessary for recursive methods.

5 Simple Example

Consider the simple example shown in Fig. 1. The interface Shape has properties
sides and perimeter, which are model fields. JML allows interfaces to have instance
fields for this purpose. The Java methods sides() and perimeter() report these
properties. In Java these are abstract methods with no implementation, but in JML we
can give specifications telling their values in terms of the model fields. Another method
twice() doubles the linear dimensions of the Shape. Consequently it is specified as
assigning to (potentially modifying) perimeter, but not to sides.

The class Square is one implementation of Shape. The notable item here is the use
of the represents clauses to associate expressions with the interfaces’s model fields.
One can easily imagine another class Triangle that also implements Shape.

Figure 2 shows a test program. With the addition of features to avoid arithmetic
overflow,5 this combination of program and specification verifies. Keep in mind that
verification in JML is modular: the verification of test() refers only to the specifi-
cations of methods it calls, that is, only to methods in Shape and not to anything in
Square. Similarly, Shape knows nothing about Square.

The key question is this: the call of twice() in test() modifies the heap, and
test() only knows that it has a Shape object, so how does the verifier know that the
value of perimeter() has changed but the value of sides() has not? The answer
combines information from two parts of Shape’s specification:

(a) The frame condition (i.e., the assigns clause) of Shape.twice() states that
the method might change the value of the model field perimeter but not sides.
(OpenJML enforces the rules that two model fields with different names have dis-
joint data groups. In derived classes, a field may not be added to two data groups
unless one is explicitly a member of the other.)

(b) The postcondition of Shape.twice() uses the new value of perimeter but the
call to sides() only uses the not-changed value of sides.

That is, to verify the test program in Fig. 2, the verifier uses the frame condition
(assigns perimeter;) and the specifications of the model methods from Shape.
The specifications of the model methods are effectively inlined in the logical represen-
tation of the source and specifications for verification.

5 The full program is available from the author, but not included for reasons of space.
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1 public interface Shape {
2 //@ public model instance int sides;
3 //@ public model instance int perimeter;
4
5 //@ assigns perimeter;
6 //@ ensures perimeter == 2*\old(perimeter);
7 public void twice();
8
9 //@ ensures \result == sides;

10 //@ pure
11 public int sides();
12
13 //@ ensures \result == perimeter;
14 //@ pure
15 public int perimeter();
16 }
17 public class Square implements Shape {
18 public int side; //@ in perimeter;
19
20 //@ represents sides = 4;
21 //@ represents perimeter = 4*side;
22
23 //@ ensures side == s && sides == 4;
24 public Square(int s) { side = s; }
25
26 // specification inherited
27 public void twice() { side = 2*side; }
28
29 // specification inherited; cf the represents clause for sides
30 //@ pure
31 public int sides() { return 4; }
32
33 // specification inherited; cf the represents clause for perimeter
34 public int perimeter() { return 4*side; }
35 }

Fig. 1. Simple example specified with model fields

1 public class Test {
2 public void test(Shape shape) {
3 int s = shape.sides();
4 int p = shape.perimeter();
5 shape.twice();
6 int ss = shape.sides();
7 int pp = shape.perimeter();
8 //@ assert s == ss;
9 //@ assert 2*p == pp;

10 }
11 }

Fig. 2. A test program for Shape

6 Using Model Methods

Now why are the model fields even needed? Could we not simply use the methods
size() and perimeter() to model the properties of the Shape? Note that in JML
one can model the behavior of a system using mathematical types and operations, such
as mathematical integers and reals, sequences, sets and maps. These mathematical func-
tions do not interact with the heap; thus, one could declare model fields with such math-
ematical types and connect them to the implementation through represents clauses.
However, doing so would require significant duplication of concepts and implementa-
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tion: the actual implementation and a parallel structure, perhaps more abstract, in the
specification. It is often more convenient and more concise, especially in simple situ-
ations, to use Java methods themselves (either ones in the actual Java implementation
or ones added as model methods in the JML specification) as modeling elements. JML
allows some Java methods (those that are declared pure, do not have side-effects, do
not throw exceptions, and always terminate) to be used as such modeling functions.

For example we could write, in interface Shape,

1 //@ old int oldSides = sides();
2 //@ old int oldPerimeter = perimeter();
3 //@ ensures sides() == oldSides;
4 //@ ensures perimeter() == 2*oldPerimeter;
5 void twice();

(Here the old clause captures a value computed in the pre-state as a local variable
available in the post-conditions. It is used to simplify reading or to extract common
subexpressions.) However, verification along these lines does not work without further
modification. The first problem is that twice() does not indicate what it might alter.
We still need a frame condition, which can be specified using a datagroup that limits the
changes that twice() may perform.6 The second problem is that because there is no
concrete field in which to ground the values of sides() and perimeter(), we need
to implement in the encoded logic that the methods are deterministic. This determinism
ensures that two successive calls of, say sides(), with no intervening change in the
heap produce the same result.

The standard encoding for method calls is that the preconditions are asserted, the
frame conditions are translated into havoc statements, and the postconditions (giving
the relationships of new values of the havoced variables to old ones) are assumed. In
the absence of postconditions, the havoced variables are unconstrained. To encode that
the method is deterministic, OpenJML adds an assumption of the form result ==
f(args), where result is a logical variable representing the result of the method call
and f is a logical function that represents the method being called. The encoding of
such functions is discussed below; the effect of this assumption is that, within the same
heap state, a given (pure) method always gives the same result, even if that result is
underspecified.

A third problem, is that the postcondition of Shape.twice() must include state-
ments about how twice() affects both sides() and perimeter(). Given this post-
condition, the implementation of test() can be verified. But if there are 20 methods
instead of two, all 20 would have to be listed. The reason? There is no specification
of what these methods depend on. Even if we add the datagroup mentioned above, we
have no indication about whether these methods depend on memory locations in that
datagroup. Without knowing that sides() does not depend on side, the system cannot
conclude that its value does not change when twice() is called. The solution to this
problem is to add reads (a.k.a. accessible) clauses to the specifications of functions
that list the memory locations on which the functions depend.

6 There is not space here to explain the use of datagroups; see [16] for a justification of the
datagroup approach used in JML.
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1 interface Shape {
2
3 //@ model instance JMLDataGroup _state;
4 //@ model instance JMLDataGroup _sides;
5
6 //@ public normal_behavior
7 //@ old int oldPerimeter = perimeter();
8 //@ reads _state;
9 //@ assigns _state;

10 //@ ensures perimeter() == 2*oldPerimeter;
11 public void twice();
12
13 //@ public normal_behavior
14 //@ reads _sides;
15 //@ pure
16 public int sides();
17
18 //@ public normal_behavior
19 //@ reads _state;
20 //@ pure
21 public int perimeter();
22 }
23
24 class Square implements Shape {
25 //@ public normal_behavior
26 //@ ensures side == s ;
27 public Square(int s) { side = s; }
28 public int side; //@ in _state;
29
30 //@ also public normal_behavior
31 //@ old int oldSides = sides();
32 //@ old int oldPerimeter = perimeter();
33 //@ reads side, _state;
34 //@ assigns side, _state;
35 //@ ensures sides() == oldSides;
36 //@ ensures perimeter() == 2*oldPerimeter;
37 public void twice() { side = 2*side; }
38
39 //@ also public normal_behavior
40 //@ reads _sides;
41 //@ ensures \result == 4;
42 //@ pure
43 public int sides() { return 4; }
44
45 //@ also public normal_behavior
46 //@ reads _state;
47 //@ ensures \result == 4*side;
48 //@ pure
49 public int perimeter() { return 4*side; }
50 }

Fig. 3. Specification using model methods

The adjusted specification is shown in Fig. 3 (the code for Test is unchanged) and
verifies without problem.

The important conclusions to draw from this example are these:

– In Shape, the model methods perimeter() and sides() are uninterpreted
functions. They may have some properties that can be axiomatized, such as having
non-negative values, but they are very underspecified.

– Reasoning about repeated invocations of such model methods within the same pro-
gram state (i.e., with reference to the same heap) relies on these methods being
deterministic—always producing the same values for the same arguments and eval-
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uation context. Axioms relying on a definition of a corresponding logical function
in the encoding must be added to the translation of a method call to ensure this
determinism.

– Reasoning about invocations of a model method in different heaps relies on knowing
that the memory locations that might have been changed in altering the heap are
disjoint from the memory locations that are read by the model method.

The issues here concern underspecified functions—functions with insufficient specifi-
cation to enable their results to be computed from their specification. It is worth noting
that the same problems arise with recursive functions, even fully defined ones, because
logical reasoning engines do not do induction on their own and do not unroll recur-
sive definitions. Recursive functions are also essentially underspecified, axiomatized,
uninterpreted functions.

Invariants pose one additional difficulty for model methods. With model fields one
can easily state an invariant like 0 <= perimeter in Shape. With model fields one
would write 0 <= perimeter(). But in JML, invariants must hold when methods
are called; so in this case, 0 <= perimeter() must hold before perimeter() is
called. A circular invocation of perimeter() results. The usual way to fix this is to
declare perimeter() as a helper method for which invariants are neither required
nor guaranteed. But then in the call of Square.perimeter() the invariant cannot be
assumed and an arithmetic overflow might occur. In such situations a model field might
be needed in any case.

7 Encoding Model Methods

This section describes logical encodings for model methods, that is, methods that are
used in specifications and so need a logical representation.

One can translate a method like perimeter into a corresponding logical function
that has formal parameters for every entity on which the value of the method depends.
In this case that is the Shape reference itself and the heap; functions that represent
Java methods with additional parameters will also need logical equivalents of those
additional parameters.

There are variations on this theme that depend on the heap encoding. To explain
these we use the logical type REF as the type of all Java objects and Heap as the
logical type of heaps in the encoding.

– If heaps are encoded as synchronous or two-dimensional heaps, then a model method
is encoded as a logical function that takes a heap parameter; e.g., perimeter() is
encoded as the logical function perimeter(h, p) where h has type Heap and p has
type REF .

– If the field heaps encoding (see Sect. 3.2) is used, then the heap parameter is replaced
by a list of the specific field heaps needed in the evaluation of the function’s specifi-
cation. However, such a list might be long.

– The heap parameter can also be made implicit by currying perimeter(h, p) into
perimeterh(p), where there is a different logical function for perimeter for each
heap (i.e., for each program state). With this option neither the heap nor any field
maps need be listed as parameters.
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The last option works best with field heaps, for which the heap is already an implicit
parameter. For other heap encodings the first option works best, because there is an
explicit heap that can be passed as an argument; with some theorem provers, this is a
rationale for preferring encodings other than field heaps. However, when working with
underspecified methods, both alternatives suffer equally from the problem described
next.

For underspecified methods, the reasoning problem is the lack of sufficient infor-
mation about such methods. We can contrast this with completely specified meth-
ods, such as Square’s method perimeter, which is specified to return a value of
4 × L [h, p,#side], where #side is a constant corresponding to the field side. By
contrast, for an underspecified method, such as Shape’s model method perimeter,
a call may have different results in different program states; because the heap h is a
parameter to the encoding perimeter(h, p). For reasoning about such calls, the reads
clause is crucial. Consider two heap states, h and h′, where h′ is derived from h by some
sequence of heap-changing operations. Let Δ(h, h′) be the set of memory locations
which are changed between the two heaps; the prover knows that Δ(h, h′) is at most
the union of the frame location sets for each heap-changing operation in the sequence
going from h to h′. In general, for a method m with receiver p, arguments args, and
reads footprint freads(h, p, args), if freads(h, p, args) is disjoint from Δ(h, h′), then
m(h, p, args) = m(h′, p, args). (Note that in general a reads footprint depends on the
function’s arguments and the current heap.)

There are a couple design options that encode such reasoning. On the one hand
we can state the above relationship between heap-change footprints and function reads
footprints as a general property of heaps, footprints, and functions. But this requires
encoding heaps, frame footprints for heap changing methods, reads footprints of func-
tions, and functions themselves as first-class elements in the logical encoding. Such an
encoding adds to the reasoning load for the theorem prover.

On the other hand, we can introduce axioms stating under which conditions
m(h, p, args) = m(h′, p, args) for each pair of heaps and each function as needed,
but only as needed. This adds many more axioms, but they are tailored for specific sit-
uations in the program encoding; in addition the axioms can often be instantiated for
the method arguments that are actually used, avoiding the need for the logic engine to
figure out when to instantiate the quantified axiom.

Our experience in actual practice is that this latter approach works acceptably. It was
implemented because it was the smaller step from the existing implementation, though
an experiment contrasting this approach with the approach of using general axioms is
still needed. We say “working acceptably” due to the smallish scale of our test examples
and target system. The number of axioms and states was manageable because the size
of methods was moderate and the numbers of methods used for modeling within a given
method was not large.

8 Contrast and Conclusion

The goal of this work was to make a comparison between specifying using model fields
vs. using model methods. To summarize the differences in practice of these two abstrac-
tion mechanisms,
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a model field

– is a possibly-uninterpreted abstract specification-only field
– may be given an interpretation using a represents clause
– has an associated datagroup that, in combination with the frame conditions of heap-
changing operations, implies when the model field (for a given object) is unchanged
and when it might be changed by those heap-changing operations

a model method

– is a possibly uninterpreted abstract specification-only method
– may be given an interpretation using postconditions
– has an associated reads clause that, in combination with the frame conditions of

heap-changing operations, implies when the value of the model method (for a given
object and set of arguments) is unchanged and when it might be changed by those
heap-changing operations

Summarized in this way, model fields and model methods are quite similar: model fields
are like model methods that depend only on the heap and the receiver object; model
methods can describe properties that have more parameters than just the receiver object.

Here are our experience-generated informal observations on using both mecha-
nisms.

– Both means of modeling were overall successful in specifying the target example.
– Where both mechanisms were applicable, model fields were easier to use because:

• They can precisely specify a method’s result for an otherwise underspecified
abstract method.

• They rely on a heap encoding that is already implemented in the tool.
– Model methods are necessary to specify properties that need arguments or that are
not simple values characteristic of an object (e.g., a model method is needed to
describe the value of a list element at some index, whereas the length of a list can be
a model field).

– Reasoning about underspecified model methods in the presence of heap changes
required implementing additional axioms that enabled reasoning about changes in
those methods (or lack thereof) when the program’s state changed. This included
implementing reads clauses and the infrastructure for comparing locations sets
from assigns clauses and reads clauses.

– The interaction between invariants and model methods, particularly uninterpreted
model methods in interfaces or abstract classes, typically makes it easier to write
specifications using model fields (when invariants are involved).

– The simplest and most successful specifications were those that consisted of model
fields that were values of some mathematical type. Those values and their operations
are not part of the heap and so reasoning about them bypasses the issues noted in
this paper; the model fields themselves are part of the program state and are part of
assigns sets of memory locations.

These (informal) observations are from a single project’s experience and on a relatively
small project. It will take future work on larger projects to determine how well they
generalize.
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