
Automated Repair of Security Errors
in C Programs via Statistical Model

Checking: A Proof of Concept

Khanh Huu The Dam1, Fabien Duchene1(B), Thomas Given-Wilson1,
Maxime Cordy2, and Axel Legay1

1 UCLouvain, Louvain-La-Neuve, Belgium
{khan.dam,fabien.duchene,thomas.given-wilson,axel.legay}@uclouvain.be

2 University of Luxembourg, Esch-sur-Alzette, Luxembourg
maxime.cordy@uni.lu

Abstract. One major challenge in software development is finding and
repairing programming errors. Recently, formal methods such as model
checking have become a popular approach to finding errors due to their
formal guarantees about error status and evidence of the error in the form
of a trace. Another recently growing area, automated program repair,
aims to fix errors using automated approaches that do not require pro-
grammer intervention. This paper gives a proof of concept that one can
combine these two areas using state-of-the-art approaches in both: the
discovery of program errors and traces exhibiting these errors; and auto-
mated program repair building on test cases generated from traces. This
naturally links together the discovery, learning, repairing, and validation
of repair in a single package.

1 Introduction

The discovery and repair of errors are major challenges in software engineer-
ing that take developers considerable effort. This is why software engineering
research has intensively worked on improving techniques to assess program cor-
rectness and to repair program errors.

Formal methods have become a popular approach to finding errors in hard-
ware and software systems. Formal methods offer great promise in that they can
provide guarantees regarding the presence or absence of errors in the system.
Model Checking (MC) [7], for instance, exhaustively explores the possible exe-
cutions of the system (or a model of the system) in search of errors – typically
expressed as violations of a given temporal property. Formal methods contrasts
with other approaches more prominently used in software development, such
as testing techniques whose offered guarantees are limited to the behavior that
(manually or generated) test cases cover.

Formal methods were initially restricted to the verification of system mod-
els (e.g. transition systems) that would directly be provided by the user.
More recent tools enable the verification of source code directly. These tools
implement a variety of analysis approaches, including: heuristics [29]; model
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 279–298, 2022.
https://doi.org/10.1007/978-3-031-19849-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_17

280 K. H. T. Dam et al.

checking [7] and variations [17]; symbolic verification [10], and runtime analy-
sis [12]. Unfortunately, all those approaches either suffer from the state-space
explosion problem (i.e. the program state space is too large to be explored
exhaustively) or from difficulties in handling the memory model of the system
under verification. These two limitations hinders the practical applicability of
formal methods to real-world programs.

Statistical Model Checking (SMC) [14,20,33] resolves these complexity limita-
tions, albeit at the cost of some statistical uncertainty in the results. Instead of
exhaustive exploration, SMC simulates multiple executions of a system and mon-
itors these executions in regards to expected properties. Then, SMC uses statis-
tical algorithms to extrapolate its conclusions to the system globally. While SMC
can efficiently find errors and avoid the aforementioned complexity issues, SMC
provides only a statistical likelihood of the absence of errors. So far, SMC has
been mostly applied to verify safety and liveness properties on (stochastic) mod-
els of systems. This includes for example, properties of biological systems [9,16],
robotics [26], security [30], or of railway systems [3]. On the other hand, with
the exception of [18,24], SMC has not been used to verify properties on pro-
gram code. Program code analysis applications are generally limited to specific
reachability properties and restricted fragments of programming languages. In
particular, the verification of security properties that depend on space and time
memory failures (e.g. out of bounds, overflows, read-only memory access, etc.)
has not yet been explored, whereas such failures are prominent in popular lan-
guages such as C. The verification of such properties is critical because their
violation leads to serious errors that conventional testing techniques (that lean
on a test suite) cannot unveil [23].

The main challenge in applying SMC and other formal methods to program
code is to accurately and efficiently model the possible values within the pro-
gram and its complex internal information. The true possible values of a program
execution can be difficult to determine because of the large domains of values
to consider (e.g. all 64-bit Integers) and the difficulty of tracking complex run-
time relationships between successive values. Similarly, building an accurate but
abstract model of memory organization is challenging, since the compiler and
operating system have specific features that are opaque to the verification engine.
All these challenges ultimately lead to inaccuracies in the verification results and,
in turn, to an increasing risk of overlooking pernicious security vulnerabilities.

In [5], we have proposed the C Statistical Model Checker (C-SMC) approach
and tool in order to address these challenges and enable the discovery a wide
range of security errors. C-SMC combines the inherent strengths of SMC with
a runtime engine to connect the program under verification with a real exe-
cutions. This allows us to reason on contextual information such as memory,
stack, registers, warning flags, etc. The runtime engine feeds the SMC engine
with information over the program executions without having to derive a formal
model of the entire hardware and operating system’s behavior. We, more specif-
ically, use a debugging engine – viz. GDB [1] – to inform the analysis on the true
instantiations of memory and internal system hardware to determine concrete
values. As C-SMC builds on SMC, this approach can handle many independent

Automated Repair of Security Errors in C Programs 281

executions of the program and effectively combine the analysis results of these
executions in order to determine the likelihood to satisfy given properties.

Automated Program Repair (APR) [11] is a popular area of research that aims
to automate code modifications in order to fix existing errors without program-
mer intervention. APR is typically used once the presence of an error has been
detected in the program, e.g. via formal methods or a tool such as C-SMC.

The process of most APR approaches fall in the subarea of “generate and
validate”. During the generation part the APR uses test case results in order to
locate suspicious code statements possibly responsible for the error and, then,
alter these statements in order to produce candidate patches. During the valida-
tion part the APR methods execute the program test suite on the patched code
and discard all patches that make some tests fail.

Contribution. The present paper is a proof of concept of how to enrich C-SMC
with a program repair module. The tool is used both to generate error trace as
well as to evaluate potential patches. Concretely, C-SMC can discover errors and
produce test cases that can then be the input to APR, and further C-SMC can
validate the patches generated as part of the APR itself. We show how an APR
approach can benefit from the statistical nature of SMC and the information
that C-SMC produces regarding the errors discovered.

Conceptually, we propose to use the set of traces that C-SMC produce as
inputs for APR. The traces are divided into positive traces (that raise no error)
and negative traces (that exhibit the error). Hence, we lean on the capability
of SMC to provide multiple traces that reveal the error – and to do so without
guidance from developer-written or automatically generated tests. Based on the
traces, we determine the set of suspicious statements through reverse data-flow
analysis from the statement where the error was revealed.

We, then, propose a neural agent-based method that, given a set of suspicious
statements, looks for the sequence of actions (statement alterations) that maxi-
mizes the likelihood to repair the error. Candidate sequences of actions produce
in turn potential patches whose correctness is validated via C-SMC to speed up
the process.

We evaluate our repair approach on the benchmark from [5]. Our repair
approach fixes 8 out of the 9 errors and – compared to a random baseline –
does so while producing 23% to 91% fewer candidates patches in all cases but
one. Put together, SMC and APR effectively automate the detection and repair
of memory usage-related errors to an extent that previous approaches could
not achieve. Our approach complements the state of the art on software testing
and repair, which has mostly focused on test-based approaches. Here we find a
productive union of formal methods – viz. SMC – and APR that yield a complete
package for error detection and repair.

To summarize, our main contributions are as follows. (1) Propose the first
approach for automated error detection and program repair that builds on sta-
tistical model checking. Our approach can detect and repair pernicious security
errors that conventional test cases are not likely to trigger. (2) Propose a novel
genetic algorithmic searching approach to find an effective program repair effi-
ciently. (3) Demonstrate an implementation of our approach on top of established

282 K. H. T. Dam et al.

tools and technologies. (4) Evaluate our approach using a benchmark of eight
memory usage-related errors and one arithmetic error. Our evaluation results
suggest that (a) our detection method could find all of the nine errors, and (b)
our repair method could fix eight of these errors and do so with fewer generated
patches for seven of these eight errors.

Structure. The structure of the paper is as follows. Section 2 provides back-
ground and related work that are necessary to understand the paper. Section 3
presents an illustrative example used in this work. Section 4 describes the novel
genetic algorithmic repair agent. Section 5 presents our implementation and
experimental results. Section 6 concludes.

Note on Content. As said above, this paper is a proof of concept paper that is
written to generate discussions with the community. Consequently, many formal
details are left out of this presentation.

2 Background and Related Work

We consider systems/programs where executions are represented by traces, i.e.,
sequences of states. Each state represents the status of the system under verifi-
cation at a given moment of time. States and traces can be abstracted as math-
ematical objects such as (sequences of) Boolean variables [7]. When considering
languages such as C, a state represents the current location in the program (line
of code), its memory, and the set of instructions/statements that are available
from this state. A state can also contain information about the execution envi-
ronment. A trace moves from on state to another state by following a transition.
When considering languages such as C, such transition represents the execution
of an instruction.

2.1 Essentials of Statistical Model Checking

Statistical Model Checking (SMC) [14,20,33] is a variety of probabilistic model
checking (see e.g. [2]) that exploits execution traces to avoid an explicit represen-
tation of the state space. The evaluation of properties is instead calculated from
an empirical distribution of the executions of the system. Given a number of sta-
tistically independent traces of a stochastic model, and the capabilities to decide
whether a trace satisfies a property, it is possible to estimate the probability that
the model will satisfy the property.

Note that unlike model checking [7], SMC provides results that are not com-
plete and may only provide an approximation of the true properties of the sys-
tem. Thus, an estimate of the behavior may be obtained with a specified con-
fidence provided by, e.g. the Okamoto bound [14,25]. Further, it is possible to
efficiently evaluate the truth of a hypothesis without needing to calculate the
actual probability using, e.g. the sequential probability ratio test [31,33]. SMC
can also be used to compute the probability of rare errors [21].

To apply SMC requires building a model of the system and expressing
the properties to be checked. Typically the model can be defined as a labeled

Automated Repair of Security Errors in C Programs 283

transition system (LTS) and the properties expressed in a logic such as bounded
linear temporal logic (BLTL) that can express complex behavioral properties
with nested temporal causality.

2.2 Trace Execution Properties

Expressing properties formally is key in software verification. Based on defini-
tions above, properties about a program can be defined in terms of properties
over states, over individual traces, and over sets of traces. We first focus on the
first two types of properties. The last one, which corresponds to the verification
of the whole program, will be handled in the next (sub-)section.

A propositional logic can define properties about each state individually. To
be able to consider all the states of an execution trace, this propositional logic
needs to be extended. One popular extension is Linear Temporal Logic LTL [27].
LTL allows us to make hypotheses of unbounded traces via temporal operators.
As SMC restricts to finite trace executions, we consider a bounded LTL, where
each temporal operator is bounded for the number of states to which it applies.

Bounded Linear Temporal Logic (BLTL) is an enhancement of LTL that adds
bounds expressed in step or time units. The syntax of BLTL is as follows:

φ, ψ ::= p | φ ∨ ψ | ¬φ | φ U≤t ψ | X≤t φ . (1)

The p is propositional variables, disjunction φ ∨ ψ and negation ¬φ are all as
in LTL. The formula Xφ is true if φ is true in the next state from the current
state. The formula φ U≤t ψ is true if both: ψ becomes true before t in the sequence
from the current state; and φ remains true in every state before the state where
ψ becomes true. For a formal definition of BLTL semantics, see [35]. A BLTL
formula is expressed with respect to a trace. It is also helpful to have conjunction
(φ∧ψ) and implication (φ ⇒ ψ) that are defined in the usual manner. Similarly
the always (G) and eventually (F) operators can be defined using the BLTL
syntax above as follows. Eventually is defined as F≤tφ = trueU≤t φ and means
that the formula φ should become true before t. Always is defined as G≤tφ =
¬F≤t¬φ and means that φ must always hold for the next t.

Let w = s0, s1, ..., sL, ... be an execution trace, and denote by wj =
sj , ..., sL, ... the portion of the trace starting from j (included). The truthful-
ness of the formulas can be decided using the rules described in Table 1.

BLTL allows us to express reachability properties such as “the software
should eventually reach a state where variable x is equal to 1”. The logic can
also be used to express more elaborated causalities such as “always, if the soft-
ware reaches a state where x is equal to 1, it will eventually reach a state where
y is equal to 1”. This expressive power allows us to express a wide range of
safety and security properties. BLTL properties can be verified with monitoring
procedures [13]. Such procedures, inspect successive states of an execution trace
until it can decide whether the property is satisfied. BLTL properties, which
are a fragment of safety properties, can be monitored over finite traces using
well-established techniques such as those presented in [13].

284 K. H. T. Dam et al.

Table 1. BLTL rules.

w |= F≤tφ iff w |= true U≤tφ

w |= G≤tφ iff w |= ¬(F≤t¬φ)

w |= φU≤tψ iff ∃i, t0 ≤ ti ≤ t0 + t and wi |= ψ and ∀j, 0 ≤ j < i, wj |= φ

w |= X≤tφ iff ∃i, i = max(j|t0 ≤ tj ≤ t0 + t) and wi |= φ

w |= X≤φ iff w1 |= φ

w |= φ ∨ ψ iff w |= φ or w |= ψ

w |= φ ∧ ψ iff w |= ¬φ ∨ w |= ¬ψ

w |= φ ⇒ ψ iff w |= ¬φ ∨ ψ

w |= ¬φ iff w �|= ϕ

w |= true always

w |= false never

2.3 Probabilistic Verification

We now turn to properties defined over sets of trace executions, that is properties
defined on the whole system. We are interested in solving the probabilistic BLTL
problem, that is to compute the probability for the system to satisfy a BLTL
property φ. Such probability being defined as the probability that a random
trace of the system satisfies φ.

Statistical model checking [19] has been proposed as an efficient approach
to solve such problem. SMC statistically measures the truthfulness of properties
over a smaller number of traces. This is done by performing a fixed number of
simulations of the system and using an algorithm to estimate the probability
that the system satisfies the property. As the number of observed executions is
finite, this answer comes together with a confidence interval [19].

There is a wide range of statistics algorithms that can be used to estimate the
probability to satisfy a given property. This includes, e.g., importance splitting
and sampling [19] that can also be used to efficiently exhibit traces that do not
satisfy the property. As the study of those algorithms is not the topic of this
paper, we propose to work with the most simple one that is based on the Monte
Carlo estimator. The estimator relies on the following proportion:

γ̄ =
∑N

i=1 1(wi |= φ)
N

where 1(x) =

{
1 if x is true
0 otherwise.

(2)

where N is the number of simulation being performed. Let γ be the true prob-
ability to satisfy φ and P be a probability evaluation. Let ε (precision) and δ
(confidence)be small values. The Chernoff-Hoeffding bound [15] guarantees that
P (|γ̄ − γ| ≥ ε) ≤ δ is given by N = � ln2−lnδ

2ε2 �. Thus, by controlling the number
of trace executions verified, the user entirely controls the preciseness of the γ̄
estimator.

Automated Repair of Security Errors in C Programs 285

2.4 SMC Tools

As seen in the previous section, SMC mainly depends on sub-parts that include
the type of execution trace property that has to be monitored and the statis-
tical algorithm used to compute the stochastic guarantee. Implicitly, SMC also
depends on the type of system under verification and on the capacity to generate
an arbitrary number of execution traces from this system.

In [34], the authors proposed YMER, a tool that can be used to verify BLTL
properties of Markov Chains with an hypothesis testing procedure. That is, the
tool decides between two hypothesis rather than computing an exact probability.
In [8] Monte Carlo is applied to verify properties of Metric Temporal Logic over
stochastic timed automata. Those tools have been shown to be very efficient on
various problems. However, they are rather static in the sense that they do not
exploit the intrinsic modularity of SMC. As an example, YMER does not permit
replacing the hypothesis testing algorithm by a Monte Carlo one. None of those
tools allows replacing classical BLTL with an algorithm that would consider
debugger expression. On the top of this, none of those tools consider C code.

In [4,22], Boyer et al. introduced Plasma a Statistical Model Checking
(SMC) [19] tool that can provide the ability to create custom statistical model
checkers. Especially, Plasma works with open source plugins that can (1) spec-
ify the property under verification (this includes BLTL as well as many other
logics such as those introduced in [6]), (2) monitor traces, (3) generate traces in
an efficient manner, i.e., to minimize the number of traces needed to compute
the probability to satisfy a given property. Those plugins can be customized to
adapt to a wide range of properties and systems.

In a recent work [5], we have introduced C-SMC, a new open source plugin
that allows us to monitor security properties of C program. C-SMC monitors
BLTL properties via and extension that exploits states of the GDB debugger
as input instead of Boolean abstraction. Using this, BLTL properties can refer
to variables, registers, memory, locations and next instructions of a given state
of the C program. In addition properties can also refer to special flags of the
GDB debugger. C-SMC has been able to detect security and safety flaws such as
buffer and integer overflows. It can also be used to detect overflow that depends
on contextual information coming e.g. from global variables. The later one shall
be showed in our motivating example.

3 Illustrative Example

Consider the illustrative binary search example given in Listing 1.1. Variable r
should be initialized to size-1 but is initialized to size. This error will lead
the search to occasionally go out of the bounds of the array being inspected.
Consider an array of size 10 (indexed from 0 to 9) containing numbers 1 to 10.
If the search function is called with a value that is greater than the greatest
value of the array (10 in this example) then it will go out of bounds looking for
the value located at arr[size] (10 in this case).

286 K. H. T. Dam et al.

1 int search(int arr[],int size

,int elem) {

2 int l = 0;

3 int r = size; //not size -1

4 int m = 0;

5 while (r >= l) {

6 m = (l+r) / 2;

7 if (arr[m] == elem) {

8 return m;

9 } else if (arr[m] > elem)

{

10 r = m - 1;

11 } else {

12 l = m + 1;

13 }

14 }

15 return -1;

16 }

Listing 1.1. Binary Search Example.

This behavior will often lead
to no consequences (because even
if the access is out of bounds it
is still checking a valid address
on the stack) and thus be unde-
tected. However, when looking for
a value not contained in the array,
11 for instance, it is possible that
the memory address located just
after the end of the array con-
tains the searched for value. In
this case, the output of the search
function will be invalid. This error
is very hard to reproduce and
to express. Indeed, the search
function itself does not contain
the information about the input
values (i.e. arr and size and
whether or not size is correct) and so most analysis engines can only warn
about a potential out of bounds access for all instances of arr[m] or report no
errors.

Pernicious security errors like the above are difficult to reveal through con-
ventional testing. This is due to the fact that testing focuses on comparing
outputs for a given set of inputs. As an example, we show in Listing 1.2 a set of
14 test cases that thoroughly check whether the search function works correctly
when invoked on (1) all elements that the array contains and (2) close elements
that the array does not contain. For conciseness, we have concatenated all these
cases into a single piece of code. In this code, the report fail function is used
to report when some test yields an incorrect result.

1 int tab[8] = {-3,-1,0,4,5,6,7,8};

2 int input [14] = {-3,-1,0,4,5,6,7,8,-2,1,2,3, -(rand() % (

MAXINT - 3)) - 4,(rand() % (MAXINT - 8)) + 9};

3 int i = 0;

4 while (i < 8) { // Test good values

5 int y = search(tab ,sizeof(tab)/sizeof(tab [0]),input[i]);

6 if (y != i) { report_fail(input[i]); }

7 i++;

8 }

9 while (i < 14) { // Test random values outside the good

values

10 int y = search(tab ,sizeof(tab)/sizeof(tab [0]),input[i]);

11 if (y != -1) { report_fail(input[i]); }

12 i++;

13 }

Listing 1.2. Test Cases for the search function

Automated Repair of Security Errors in C Programs 287

Observe that all these test cases will usually pass. Thus, although developers
can strenuously test the search function and find other potential errors, it is
likely that the out of bounds access error will never occur during the test exe-
cution. This error would actually occur in the unlikely event where the searched
value is not in the array but resides in memory exactly at the memory address
located right after the end of the array. In such a case, the search function would
return an index value equal to the size of the array, while the special value -1
is expected. This example already demonstrates that test cases are inappropri-
ate to detect errors related to memory usage because the error is independent
of the particular inputs on which the function is tested. Even if every possible
int value was covered in the test suite, the error would likely remain unde-
tected. To detect this error with C-SMC instead of checking the value of the
output for a given input, we monitor the value of the variable m using the for-
mula m = 0|(0 <= m&m < size. With this formula we can check that at any
moment, m does not go out of bounds. This allows us to detect an error that is
very hard to reproduce or detect with unit tests or analysis engines.

3.1 SMC-Based Validation

Consider again the binary search example shown in Listing 1.1, where the upper
bound of the binary search r is initialized beyond the end of the array arr. A
natural check for array data structure is to ensure there is no access (read or
write) beyond the limit of the array. This can be formulated as a BLTL property:

¬(arr[x] ∧ x ≥ |arr|), (3)

where arr[x] indicates an access to the array arr at offset x and x ≥ |arr|
indicates that x is greater than or equal to the size of arr.

In the example code, there are two accesses to an array, one at lines 7 and
one at line 9. However, the value m that records the accessed index is modified at
each loop iteration, based on the values of size, elem, and the values contained
in arr. Hence, the above property can be reformulated as:

G≤1000(line = 7 ∨ line = 9) => m ≥ 0 ∧ m < size, (4)

where line indicates the line number in C code, m and size are variables m and
size in C code of Listing 1.1.

Assume that C-SMC tested with the following input values for search to
generate tests (and in particular this limits the scope of our search).

1 int tab [8] = {1,2,3,4,5,6,7,8};
2 int v = (rand() % 10);
3 int i = search(tab , 8, v);

Listing 1.3. Simple Example of Search C Code Input

After running 4 tests with C-SMC we may discover that the program works
properly for v ∈ {6, 2, 3} while 9 causes a problem. Observe that applying SMC

288 K. H. T. Dam et al.

to search could yield an infinite number of traces that exhibit both good and
bad behavior depending on the input arguments given to the search function.
As an example, consider the inputs given in Listing 1.2. They will generate traces
that satisfy Property 4 when v is assigned to a value located between index 0
and 12 of the input array (input[0:12]) given in line 2 of Listing 1.2. They will
generate traces that do not satisfy Property 4 when v is assigned to input[13].
In fact, all searches for a value v ≤ 8 will provide a GOOD trace, and all searches
for values v > 8 will provide a BAD trace. Note that the capabilities to identify
GOOD and BAD traces depends on the randomized algorithm used to generate
inputs. There exists various strategies to reach this objective. Including, e.g.,
importance splitting and sampling.

BLTL can also be used to describe other classes of properties that are beyond
the scope of classical testing. As an example, it is worth checking that the pro-
gram terminates after a bounded number of steps. The latter can be expressed
by:

F≤1000(line = 15 ∨ line = 16) (5)

In addition, we can also use BLTL to specify expected (input, output) pairs just
like in typical test cases. Such BLTL formulae would take the form:

G≤1000(line = 16 => eax = gt) (6)

where eax is a reserved symbol to indicate the return value of the function and
gt is a specific, user-defined target output.

3.2 Using Traces for Automated Program Repair

We now turn to illustrate how to repair the program. Observe that the trace
monitoring process of SMC has the potential to locate error statements/lines.
Those can be exploited to produce a set of possible changes, i.e., actions, for
fixing the program according to the execution traces. The key principle is to start
from the statement where SMC detected the violation of a property, and apply
a reverse data-flow analysis to determine all previously executed statements
that share a (direct or indirect) data dependency with the statement where the
violation was located. It then examines the abstract syntax tree of the program in
order to determine the constituents of these statements and, in turn, determines
the set of actions (statement alterations) that the repair agent will consider. For
example, a BAD trace given by C-SMC contains lines 2, 3, 5, 6, 7, 9, 10 and 12,
and this trace is ended at line 7. Applying the reverse data-flow analysis from line
7, we locates error statements at lines 6, 10, 12, 3 and 2. We can then generate
possible changes to each of these lines. This approach is similar to fault-spectrum
localisation as presented in [32].

We want to use a repair agent that takes as input the set of possible actions
that the trace analysis component identified based on the error trace. It then
produces different sequences of actions (based on the taken set) and applies these
sequences to generate a set of independent patches that are themselves verified

Automated Repair of Security Errors in C Programs 289

with C-SMC. This process continues until the faulty program is fixed or until the
computational budget (expressed in number of produced patches) is reached.

For instance, the agent has fixed our binary search error example by modi-
fying the line where variable r is initialized, as shown in Listing 1.4.

In the rest of this paper, we describe a trace analysis framework that can
be used in combination with a genetic algorithm based repair agent. We then
report on case studies that implement this proof of concept.

4 Designing a Repair Agent

1 int search(int arr[],int

size ,int elem) {

2 int l = 0;

3 int r = size - 1;//

patched

4 int m = 0;

5 while (r >= l) {

6 m = (l+r) / 2;

7 if (arr[m] == elem) {

8 return m;

9 } else if (arr[m] >

elem) {

10 r = m - 1;

11 } else {

12 l = m + 1;

13 }

14 }

15 return -1;

16 }

Listing 1.4. Binary Search Function C
Code

Our objective is to develop a repair
agent that exploits the information
contained in execution traces gener-
ated by the SMC engine. We first
show how to reason on a trace. Espe-
cially, we give intuition on how a trace
can be corrected. Recall that each
trace contains lines (i.e. location in
program’s code) which are reached
by the execution and a property field
which specifies the property violated
by the program. Intuitively, the error
statements/lines appear to BAD traces.
The last line in a BAD trace indicates
where the property has been violated
and the error occurs. Let L be a set of
lines which may cause the error. Let T
be a set of BAD traces from C-SMC. L
is computed as follows. Initially, L =
{�i|�i is the last line in the traceti ∈
T }. Then, � ∈ t is iteratively added

to L if there exist a �′ ∈ L, and (�′, �) are data dependent (this can be done via
classical taint analysis techniques).

Table 2 shows lines appearing in execution traces of the illustrative example
(Listing 1.1) computed by C-SMC on the three properties given in Eqs. 4, 5 and 6.
The error lines, which are marked with a X, are given by L = {2, 3, 6, 7, 10, 12}.
In order to fix the faulty program, we propose to apply an action to the error
lines. An action is implemented by either replacing or inserting a new statement
at a given error line. An action a = (�, c) means that a change c is implemented
at line �. The change c is generated by three ways as follows. First, one can
change operators of an expression. For example, if <name> <operator> <name>
is an expression, then <operator> can be changed by taking an operator in
either the arithmetic operators or the comparison operators. Second, one can
replace the current patterns of an expression by existing patterns in the pro-
gram. The replacement is applied to an expression which matches to an expres-
sion pattern in the library. The existing expression matches to a pattern if

290 K. H. T. Dam et al.

Table 2. Error lines for the example in Listing 1.1.

Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Property 1 (Eq. 4) - X X - - X X - - X - X - - - -

Property 2 (Eq. 5) - - - - - - - - - - - - - - - -

Property 3 (Eq. 6) - - - - - - - - - - - - - - - -

its abstract syntax tree can be transformed to the pattern’s abstract syntax
tree, or if they contain the same numbers of <name and <operator>. For exam-
ple, if (<name> <operator> <name>)<operator> <name> is an expression and
it matches to the pattern <name> <operator>(<name> <operator> <name>), a
change is made by the <name> in the pattern by the <name> in the expression.
Third, a change can be created by inserting a new statement. Consider, e.g., the
insertion of the control statements if else, or the addition of special statements
such as break, continue, exit, return.

4.1 A SMC-Based Program Repair Algorithm

Our objective is to fix the faulty program by finding a subset of actions (called
patch) from actions given by the trace analysis. By fixing the program, we mean
that all properties under verification are satisfied with probability one. We here
propose the use of a genetic algorithm and heuristics to generate the patch in
an efficient manner.

Let gp denote a faulty program. Let Agp denotes a finite set of actions given
by the trace analysis part to fix the faulty program gp. Let Πgp be a power
set of Agp (the set of patches). A patch ρ = {a ∈ Agp} ∈ Πgp is applied to
gp to transform gp to gp, i.e., gp

ρ−→ gp. Let G be a finite set of programs, i.e.,
G = {gp|∃ρ ∈ Πgp : gp

ρ−→ gp}. Our task is to find a patch ρ∗ ∈ Πgp such that
gp

ρ∗−→ gp∗ and gp∗ is a fixed program. Note that the faulty program gp is fixed
by a patch ρ∗, i.e., gp

ρ∗−→ gp∗, if all the properties given in the environment are
satisfied by gp∗.

Let f be an objective function f : G → [0.0, 1.0]m where [0, 1]m denotes the
output of m properties of a program gp ∈ G, e.g., f(gp) = [0.0, 1.0, 0.2] indicates
that the program gp has 0% chance for holding the property 1, 100% chance
for holding the property 2 and 20% chance for holding the property 3. The
program gp∗, i.e., gp

ρ∗−→ gp∗, satisfies all properties such as f(gp∗) = [1.0]m.
Let s = f(gp) be a validation-state of the program gp, i.e., a vector whose
components represent the probability to satisfy the properties under verification.
Consider s0 = f(gp) to be the initial validation-state, i.e. the initial probability
value for each property that the program must eventually satisfy.

Our genetic algorithm works by evaluating a population of patches. In case,
those patches do not lead to s∗, mutation and recombination operators shall be
called. Given a validation-state, our objective is to derive actions that will lead
to better patches and eventually to a better validation-state. For doing so, we

Automated Repair of Security Errors in C Programs 291

propose to use a Q-function [28] to specify the relation of states and actions, as
follows. For every observed patch ρ ∈ Πgp:

Q(s, a) = r + γ max
a′

Q(s′, a′),∀a ∈ ρ., (7)

where γ is a coefficient in [0, 1], r and s′ are reward and validation-state respec-
tively. We assume the reward to be 0 when the system is not repaired and 1 if
it is repaired. In practice, we will stick to those two values. In theory, a reward
of 0, 5 would mean that the program is half fixed. Initially, we have Q(s, a) = 0
for every state s and every action a ∈ Agp. The reward r gets 1.0 if the faulty
program is fixed. Otherwise, it gets −1.0.

Intuitively, Q(s, a) indicates the probability to choose action a at validation-
state s. The Q-function is updated for every patch and its values later are used
to generate a new patch. For instance, if there is a patch ρ = {a1, a2} and the
state transitions s0

a1−→ (s1, r1)
a2−→ (s2, r2), then the Q-function is updated as

follows: Q(s0, a1) = r1 + maxa′Q(s1, a′) and Q(s1, a2) = r2 + maxa′Q(s2, a′).
In this work, we implement a ε greedy selection algorithm to choose an action
for the patch generation, such that, at a state s an action is either chosen by
arg maxa∈Agp

(Q(s, a)) with a given probability ε or chosen any action a ∈ Agp

with probability 1 − ε.

Input : ε,Q(s),A
Output: an action a

1 if random() < ε then
2 a ← arg maxa∈A(Q(s, a))
3 else
4 a ← random(A)
5 end

Algorithm 1: ε greedy selection algorithm (GreedySelection())

To estimate the values of Q-function, we implement an estimator neural
network NN(s, s′). The network takes the source validation-state s and the des-
tination validation-state s′ as inputs. It outputs the value of the Q-function at
validation-state s. Output values are used to compute a patch for the transition
s → s′. Hence, if there is a transition s → s′, the values of Q-function at the
state s, i.e., Q′(s) ≈ Q(s, a)a∈Agp

, which are used to compute a patch ρ: s
ρ−→ s′,

are computed as follows.
Q′(s) = NN(s, s′) (8)

For every patch, the neural network is updated by the actual values of actions
in this patch with the following Mean Squared Error loss function.

MSE =
1
n

n∑

i=1

(Yi − Ȳi)2, (9)

where Yi = Q′(s, ai) and Ȳi = Q(s, ai) are predicted/actual values of the action
ai at the state s, respectively. n is the number of actions, i.e., n = |ρ|. Note that

292 K. H. T. Dam et al.

Input : a set of actions Agp, MaxPopulation, the estimator neural network
NN, τ is the threshold to create an optimal patch, and the initial/final
states of C program s0, s∗

Output: ρ∗ is an optimal patch to fix the faulty program
1 P ← {{a}Agp}
2 N ← 0
3 isdone ← False
4 while not isdone and N ≤ MaxPopulation do
5 N ← N + |P |
6 S ← ∅
7 foreach ρ ∈ P do
8 s ← Evaluate(ρ)
9 UpdateQ(s, ρ, NN)

10 S ← S ∪ {s}
11 if s = s∗ then
12 isdone ← True
13 ρ∗ ← ρ
14 break

15 end

16 end
17 parents ← SelectParent(P, S, nparent)
18 P ← CreatePopulation(parents, S, NN, s0, s∗)

19 end
20 if not isdone then
21 Q(s0) ← NN(s0, s∗)
22 ρ∗ ← {a ∈ Agp|Q(s0, a) ≥ τ}
23 end

Algorithm 2: The patch generation algorithm

if s
ρ−→ s′, Q(s, ai)ai∈ρ is computed by Eq. 7 and Q′(s, ai)ai∈ρ is a value of Q′(s),

which is predicted by NN, i.e., Q′(s) = NN(s, s′).
We are now ready to present the genetic algorithm for patch generation

as shown in Algorithm 2. Intuitively, patches are created from one action in
the set of actions given by the trace analysis part (line 1). Then, each patch
is evaluated by SMC (line 8). The validation-states obtained from this eval-
uation are used to update the neural network NN (line 9). If there exists a
patch which can fix the faulty program, i.e., the state of the current patch
is the final state s∗, the algorithm terminates (line 11–14). Otherwise, it cre-
ates a parent set from the current population, i.e., P , and generates a new
population from this set (lines 17–18). If the optimal patch is not found after
exceeding the limit number, i.e., MaxPopulation, the threshold τ is used to
choose actions for creating an “optimal” patch (line 21–22). The threshold τ
is used to select actions in a patch. We use τ to vary the number of actions
in a patch. Although the patch chosen by τ may not be a good one for fix-
ing the faulty program, it can be a recommendation for the developers to fix
their code. Algorithm 3 presents the parent selection algorithm. This algorithm
conserves n selected parents by exploiting an Euclidean distance between the

Automated Repair of Security Errors in C Programs 293

Input : a population P , a set S of states of population P , n is the number of
selected parents

Output: a parent set is the subset of P
1 Compute the Euclidean distance between the state of each patch and the final

state [1.0]m.
2 Select n patches from P which have the shortest distance from the final state.

Algorithm 3: The Parent Selection algorithm (SelectParent())

Input : The parent population P ,S, NN and the initial/final states of C
program s0, s∗

Output: a population P ′

1 Q(s0) ← NN(s0; s∗)
2 a ← GreedySelection(ε, Q(s0), Agp)
3 P ′ ← {a}
4 foreach ρ ∈ P do
5 s ← S[ρ] // the state of the C-program after applying patch ρ
6 Q(s) ← NN(s, s∗)
7 amax = argmaxa∈Agp Q(s, a)
8 amin = argmina∈ρ Q(s, a)
9 P ′ ← P ′ ∪ {ρ ∪ {amax}}

10 P ′ ← P ′ ∪ {ρ \ {amin}}
11 end
12 foreach ρ1 ∈ P do
13 s1 ← S[ρ1]
14 Q(s1) ← NN(s1, s∗)
15 ρ′

1 ← Sort ρ1by Q(s1)
16 foreach ρ2 ∈ P do
17 s2 ← S[ρ2]
18 Q(s2) ← NN(s2, s∗)
19 ρ′

2 ← Sort ρ2by Q(s2)
20 P ′ ← P ′ ∪ switch a part of ρ′

1 and ρ′2
21 end

22 end

Algorithm 4: The Population Generation algorithm (CreatePopulation())

validation state obtained for each patch and the expected final validation-state.
Algorithm 4 presents the recombination and mutation operations. Initially, the
new population P ′ is created from the parent population starting with a patch
of one action that is selected by Function GreedySelection. Then, P ′ is grown
up by two operators (lines 1–3). The first operator is the mutation operator. It
implements two operations: (1) to add an action with the highest Q-value into ρ,
(2) to remove an action a ∈ ρ with the lowest Q-value (lines 4–11). The second
operator called recombination replace a pair (ρ1, ρ2) by a pair (ρ′

1, ρ
′
2) that is

created by exchanging actions which are associated with the highest Q-values in
ρ1 and ρ2 (lines 12–21).

294 K. H. T. Dam et al.

5 Implementation and Experimental Results

We implemented the APR process described in Sect. 4 with three modules: the
environment module, trace analysis module, and agent module.

The environment module has two roles: C program evaluation and program
repair evaluation. The C program evaluation is done by interfacing with C-SMC
and inputting the C program and BLTL properties. If any property of the C
program is not satisfied then repair must be triggered (otherwise the program
is error free and no further action taken). The traces from C-SMC are gathered
along with their result (GOOD or BAD) and these are sent to the trace analysis
module. The program repair role takes a patch from the agent module and
produces the state of the C program after applying the patch.

The trace analysis module takes a set of traces from the environment module
and the C program as inputs, and produces a set of actions to fix the C program.
For the motivating example, it analyses the BAD traces of Eq. 4 and generates
actions to fix the C program at lines 2, 3, 5, 6, 7, 8, 9, 10, 12. Then, these actions
are sent to the agent module for patch generation.

The agent module takes the lines from the trace analysis module and imple-
ments the algorithms detailed in Sect. 4 to generate a patch to apply to the C
program. The agent module then sends this to the environment module to evalu-
ate the efficacy of the patch and provide this as data for further patch generation
using the genetic techniques described in Sect. 4.

5.1 Experimental Results

In this section, we evaluate the performance of the C-SMC based APR tool with
Q-function on the motivating example in Listing 1.1 and in three variants. Our
objective is to evaluate the performance of a Q-function with respect to a random
strategy to select actions to mutate and recombine in the genetic algorithm.

In this experiment, we choose the maximum population to be 3000 patches,
i.e., MaxPopulation = 3000 and we applied the randomized strategy for action
selection. The results are reported in Table 3. The motivating example in List-
ing 1.1 starts in validation-state s0 = [0.9, 1.0, 1.0]. It is fixed by the APR tool
after 50 patches out of a population of 112 patches by the random strategy.
Variant 1 is obtained by replacing l = m + 1 with l = m − 1 at line 12. The
initial validation-state is given by s0 = [1.0, 1.0, 0.6]. It is fixed by our tool after
72 patches while it takes a population of 210 patches to fix it with a random
strategy. Variant 2 is obtained by replacing r = size with r = size − 1 at line 3,
m = (l + r)/2 with m = (r − l)/2 at line 6 and l = m + 1 with l = m − 1 at line
12. Its initial validation state is given by s0 = [1.0, 1.0, 0.4]. It is fixed after 290
patches by our tool while the random strategy takes 2259 patches. Variant 3 is
obtained by replacing r = m − 1 with r = m + 1 at line 10 and l = m + 1 with
l = m − 1 at line 12. Its initial validation-state is given by s0 = [1.0, 1.0, 0.6]. It
is fixed after 290 patches by our tool. A random strategy could not fix it after
a population of 3000 patches. The results show that the use of an optimized
Q-function drastically improve the selection of patches.

Automated Repair of Security Errors in C Programs 295

Table 3. Comparison of the APR tool with Q-function and the random strategy.

Size of population to fix the fault

Motivating
example

Variant 1 Variant 2 Variant 3

APR tool with random strategy 112 210 2259 >3000

APR tool with Q function 50 72 290 2012

Table 4. Evaluation of the APR tool on other C code.

Size of population to fix the fault

APR tool with random
strategy

APR tool with
Q-function

Binary search 112 50

Binary search (variant 1) 210 72

Binary search (variant 2) 2259 290

Binary search (variant 3) >3000 2012

Static out-of-bounds 4 2

Random out-of-bounds 4 2

Divide by zero 1 3

Buffer overflow 25 3

Local binary search 13 10

Pointer to pointer 2 1

Read-only memory Failed Failed

Integer overflow 10 3

The C-SMC based APR tool with Q-function was also applied to the nine
benchmark error programs from [5] that are available on GitHub1. The results
are shown in Table 4. Observe that in all cases (except for “read-only memory”)
the combination of C-SMC with APR was able to not only find the error, but
also successfully repair the error. The failure to repair the “read-only memory”
example is due to there being no reasonable way for the patch generation algo-
rithm to create a suitable repair. While this example was relevant to demonstrate
the capabilities to detect such errors, it would be difficult to fix given the patch
algorithms possible changes, and also to preserve the program’s behavior. Fur-
ther, in all cases (except for “divide by zero”) the APR tool with Q-function
proved to be more effective than the random strategy.

Due to space limitation, a detailed analysis of the benchmarks is given in the
aforementioned GitHub. These results demonstrate that the approach is effective
both in concept and in practice, and further that the APR Q-function strategy
is an improvement over the default (random) genetic algorithm.

1 https://github.com/csvl/bugs.

https://github.com/csvl/bugs

296 K. H. T. Dam et al.

6 Conclusions and Future Work

The challenge of finding and repairing errors in software development is complex
and ongoing. Formal methods such as SMC provide a strong basis for finding
and proving the existence of errors, including a trace to demonstrate the error.
The statistical nature of SMC allows the generation of multiple correct and
erroneous traces of the program. These traces form a natural set of test cases
that can be the input for APR approaches. Combining SMC with APR is an
effective solution to find errors and provide the necessary information to repair
them.

This paper presents a proof of concept showing that this approach is effective
in discovering, learning, repairing, and validating the repair in a single tool. Fur-
ther, the proposed Q-function for improving the genetic algorithmic search for a
patch improves the efficacy of the patch generation. This is demonstrated by the
implementation here exploiting C-SMC and demonstrating effective discovery
and repair of errors.

Future Work. We would like to extend our approach to guided simulations
approaches such as importance sampling and splitting. This shall help us to find
error traces in a more efficient manner and hence improve the efficiency of the
repair agent. We also would like to apply the work to a wider class of systems.
Especially, we would be interested in applying the approach to real-time version
of C. This could be done by exploiting recent work on stochastic timed automata
implemented in UPPAAL-SMC [18]. The limitations of the “read-only memory”
benchmark also motive the use of more complex repair tools in the agent and
other methods of patch generation. Finally, observe that this paper is a proof of
concept. Comparison with other tools shall be investiguated in near future.

References

1. GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/. Accessed
14 Oct 2020

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Basile, D., ter Beek, M.H., Legay, A.: Strategy synthesis for autonomous driv-
ing in a moving block railway system with Uppaal Stratego. In: Gotsman, A.,
Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 3–21. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50086-3 1

4. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1 12

5. Chenoy, A., Duchene, F., Given-Wilson, T., Legay, A.: C-SMC: a hybrid statistical
model checking and concrete runtime engine for analyzing C programs. In: Laar-
man, A., Sokolova, A. (eds.) SPIN 2021. LNCS, vol. 12864, pp. 101–119. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84629-9 6

6. Clarke, E.M., Donzé, A., Legay, A.: On simulation-based probabilistic model check-
ing of mixed-analog circuits. Formal Methods Syst. Des. 36(2), 97–113 (2010)

https://www.gnu.org/software/gdb/
https://doi.org/10.1007/978-3-030-50086-3_1
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-030-84629-9_6

Automated Repair of Security Errors in C Programs 297

7. Clarke, E.M., Henzinger, T.A., Veith, H.: Introduction to model checking. In:
Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Check-
ing, pp. 1–26. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-
8 1

8. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

9. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. Int. J. Softw. Tools Technol.
Transf. 17(3), 351–367 (2015)

10. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Sarkar, V., Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation, Chicago, IL, USA,
12–15 June 2005, pp. 213–223. ACM (2005)

11. Goues, C.L., Pradel, M., Roychoudhury, A., Chandra, S.: Automatic program
repair. IEEE Softw. 38(4), 22–27 (2021)

12. Havelund, K.: A scala DSL for rete-based runtime verification. In: Legay, A., Ben-
salem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 322–327. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40787-1 19

13. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

14. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

15. Hoeffding, W.: Probability Inequalities for sums of Bounded Random Variables. In:
Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding, pp. 409–
426. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-0865-5 26

16. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03845-7 15

17. Karakaya, K., Bodden, E.: Sootfx: a static code feature extraction tool for java and
android. In: 21st IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2021, Luxembourg, 27–28 September 2021, pp. 181–186.
IEEE (2021)

18. Kulczynski, M., Legay, A., Nowotka, D., Poulsen, D.B.: Analysis of source code
using UPPAAL. In: Proença, J., Paskevich, A. (eds.) Proceedings of the 6th Work-
shop on Formal Integrated Development Environment, F-IDE@NFM 2021, Held
online, 24–25th May 2021. EPTCS, vol. 338, pp. 31–38 (2021)

19. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

20. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

21. Legay, A., Sedwards, S., Traonouez, L.-M.: Rare events for statistical model check-
ing an overview. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS,
vol. 9899, pp. 23–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45994-3 2

https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-642-40787-1_19
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-45994-3_2
https://doi.org/10.1007/978-3-319-45994-3_2

298 K. H. T. Dam et al.

22. Legay, A., Sedwards, S., Traonouez, L.-M.: Plasma lab: a modular statistical model
checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952,
pp. 77–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 6

23. Liu, K., Koyuncu, A., Bissyandé, T.F., Kim, D., Klein, J., Traon, Y.L.: You cannot
fix what you cannot find! an investigation of fault localization bias in benchmarking
automated program repair systems. In: 12th IEEE Conference on Software Testing,
Validation and Verification, ICST 2019, Xi’an, China, 22–27 April 2019, pp. 102–
113. IEEE (2019)

24. Ngo, V.C., Legay, A.: Formal verification of probabilistic SystemC models with
statistical model checking. J. Softw. Evol. Process. 30(3), e1890 (2018)

25. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10, 29–35 (1959)

26. Palopoli, L., et al.: Navigation assistance and guidance of older adults across com-
plex public spaces: the DALi approach. Intell. Serv. Robot. 8(2), 77–92 (2015)

27. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), Providence, RI, USA, pp. 46–57. IEEE,
September 1977

28. Sutton, R.S., Barto, A.G.: Reinforcement Learning - An Introduction. Adaptive
Computation and Machine Learning, MIT Press, Cambridge (1998)

29. Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.:
TransDPOR: a novel dynamic partial-order reduction technique for testing actor
programs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol.
7273, pp. 219–234. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30793-5 14

30. ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A.: Quantitative security
risk modeling and analysis with RisQFLan. Comput. Secur. 109, 102381 (2021)

31. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

32. Wen, W.: Software fault localization based on program slicing spectrum. In: Glinz,
M., Murphy, G.C., Pezzè, M. (eds.) 34th International Conference on Software
Engineering, ICSE 2012, 2–9 June 2012, Zurich, Switzerland, pp. 1511–1514. IEEE
Computer Society (2012)

33. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

34. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988 43

35. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to stateflow/simulink verification. Formal Methods Syst. Des. 43(2),
338–367 (2013)

https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/11513988_43

	Automated Repair of Security Errors in C Programs via Statistical Model Checking: A Proof of Concept
	1 Introduction
	2 Background and Related Work
	2.1 Essentials of Statistical Model Checking
	2.2 Trace Execution Properties
	2.3 Probabilistic Verification
	2.4 SMC Tools

	3 Illustrative Example
	3.1 SMC-Based Validation
	3.2 Using Traces for Automated Program Repair

	4 Designing a Repair Agent
	4.1 A SMC-Based Program Repair Algorithm

	5 Implementation and Experimental Results
	5.1 Experimental Results

	6 Conclusions and Future Work
	References

