
Tiziana Margaria
Bernhard Steffen (Eds.)

LN
CS

 1
37

01

Leveraging Applications
of Formal Methods,
Verification and Validation
Verification Principles

11th International Symposium, ISoLA 2022
Rhodes, Greece, October 22–30, 2022
Proceedings, Part I

Lecture Notes in Computer Science 13701

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Tiziana Margaria · Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification and Validation

Verification Principles

11th International Symposium, ISoLA 2022
Rhodes, Greece, October 22–30, 2022
Proceedings, Part I

Editors
Tiziana Margaria
University of Limerick, CSIS and Lero
Limerick, Ireland

Bernhard Steffen
TU Dortmund
Dortmund, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-19848-9 ISBN 978-3-031-19849-6 (eBook)
https://doi.org/10.1007/978-3-031-19849-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
Chapter “OnDeductiveVerification of an Industrial Concurrent SoftwareComponentwithVerCors” is licensed
under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5547-9739
https://orcid.org/0000-0001-9619-1558
https://doi.org/10.1007/978-3-031-19849-6
http://creativecommons.org/licenses/by/4.0/

Introduction

As General and Program Chairs we would like to welcome you to the proceedings of
ISoLA 2022, the 11th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation held in Rhodes (Greece) during October 22–30,
2022, and endorsed by EASST, the European Association of Software Science and
Technology.

Returning to the traditional in-person event, ISoLA 2022 provided a forum for
developers, users, and researchers to discuss issues related to the adoption and use of
rigorous tools and methods for the specification, analysis, verification, certification,
construction, testing, and maintenance of systems from the point of view of their
different application domains. Thus, since 2004 the ISoLA series of events has served
the purpose of bridging the gap between designers and developers of rigorous tools
on one side, and users in engineering and in other disciplines on the other side.
It fosters and exploits synergetic relationships among scientists, engineers, software
developers, decision makers, and other critical thinkers in companies and organizations.
By providing a specific, dialogue-oriented venue for the discussion of common
problems, requirements, algorithms, methodologies, and practices, ISoLA aims in
particular at supporting researchers in their quest to improve the practicality, reliability,
flexibility, and efficiency of tools for building systems, and users in their search for
adequate solutions to their problems.

The program of ISoLA 2022 consisted of a collection of special tracks devoted to
the following hot and emerging topics:

1. Rigorous Engineering of Collective Adaptive Systems
(Organizers: Rocco De Nicola, Stefan Jähnichen, Martin Wirsing)

2. Programming: What is Next?
(Organizers: Klaus Havelund, Bernhard Steffen)

3. X-by-Construction meets Runtime Verification
(Organizers: Maurice H. ter Beek, Loek Cleophas, Martin Leucker, Ina Schaefer)

4. Automated Software Re-Engineering
(Organizers: Serge Demeyer, Reiner Hähnle, Heiko Mantel)

5. Digital Twin Engineering
(Organizers: John Fitzgerald, Peter Gorm Larsen, Tiziana Margaria, Jim
Woodcock, Claudio Gomes)

6. SpecifyThis - Bridging gaps between program specification paradigms
(Organizers: Wolfgang Ahrendt, Marieke Huisman, Mattias Ulbrich, Paula
Herber)

7. Verification and Validation of Concurrent and Distributed Heterogeneous Systems
(Organizers: Marieke Huisman, Cristina Seceleanu)

8. Formal Methods Meet Machine Learning
(Organizers: Kim Larsen, Axel Legay, Bernhard Steffen, Marielle Stoelinga)

9. Formal methods for DIStributed COmputing in future RAILway systems
(Organizers: Alessandro Fantechi, Stefania Gnesi, Anne Haxthausen)

vi Introduction

10. Automated Verification of Embedded Control Software
(Organizers: Dilian Gurov, Paula Herber, Ina Schaefer)

11. Digital Thread in Smart Manufacturing
(Organizers: Tiziana Margaria, Dirk Pesch, Alan McGibney)

It also included the following the embedded or co-located events:

• Doctoral Symposium and Poster Session (Sven Jörges, Salim Saay, Steven Smyth)
• Industrial Day (Axel Hessenkämper, Falk Howar, Hardi Hungar, Andreas Rausch)
• DIME Days 2022 (Tiziana Margaria, Bernhard Steffen)

Altogether, the proceedings of ISoLA 2022 comprises contributions collected in four
volumes:

• Part 1: Verification Principles
• Part 2: Software Engineering
• Part 3: Adaptation and Learning
• Part 4: Practice

We thank the track organizers, the members of the program committee, and their
reviewers for their effort in selecting the papers to be presented, the local Organization
Chair, Petros Stratis, and the EasyConferences team for their continuous precious
support during the entire period preceding the events, and the Springer for being, as
usual, a very reliable partner for the proceedings production. Finally, we are grateful to
Christos Therapontos for his continuous support for the Web site and the program, and
to Steve Bosselmann for his help with the editorial system EquinOCS.

Special thanks are due to the following organizations for their endorsement: EASST
(European Association of Software Science and Technology) and Lero - The Irish
Software Research Centre, along with our own institutions - TU Dortmund and the
University of Limerick.

We wish you, as an ISoLA participant, lively scientific discussions at this edition,
and also later, when reading the proceedings, valuable new insights that contribute to
your research and its uptake.

October 2022 Bernhard Steffen
Tiziana Margaria

Organization

Program Committee Chairs

Margaria, Tiziana University of Limerick and Lero, Ireland
Steffen, Bernhard TU Dortmund University, Germany

Program Committee

Ahrendt, Wolfgang Chalmers University of Technology, Sweden
Cleophas, Loek Eindhoven University of Technology (TU/e),

The Netherlands
De Nicola, Rocco IMT School for Advanced Studies, Italy
Demeyer, Serge Universiteit Antwerpen, Belgium
Fantechi, Alessandro Università di Firenze, Italy
Fitzgerald, John Newcastle University, UK
Gnesi, Stefania ISTI-CNR, Italy
Gomes, Claudio Aarhus University, Denmark
Gurov, Dilian KTH Royal Institute of Technology, Sweden
Havelund, Klaus Jet Propulsion Laboratory, USA
Haxthausen, Anne Technical University of Denmark, Denmark
Herber, Paula University of Münster, Germany
Hessenkämper, Axel Schulz Systemtechnik GmbH, Germany
Howar, Falk TU Dortmund University, Germany
Huisman, Marieke University of Twente, The Netherlands
Hungar, Hardi German Aerospace Center, Germany
Hähnle, Reiner TU Darmstadt, Germany
Jähnichen, Stefan TU Berlin, Germany
Jörges, Sven FH Dortmund, Germany
Lamprecht, Anna-Lena University of Potsdam, Germany
Larsen, Kim Aalborg University, Denmark
Larsen, Peter Gorm Aarhus University, Denmark
Legay, Axel UCLouvain, Belgium
Leucker, Martin University of Lübeck, Germany
Mantel, Heiko TU Darmstadt, Germany
Margaria, Tiziana University of Limerick and Lero, Ireland
McGibney, Alan Munster Technological University, Ireland
Pesch, Dirk University College Cork, Ireland
Rausch, Andreas Clausthal University of Technology, Germany

viii Organization

Saay, Salim University of Limerick, Ireland
Schaefer, Ina Karlsruhe Institute of Technology, Germany
Seceleanu, Cristina Mälardalen University, Sweden
Smyth, Steven TU Dortmund University, Germany
Steffen, Bernhard TU Dortmund University, Germany
Stoelinga, Marielle University of Twente, The Netherlands
Ulbrich, Mattias Karlsruhe Institute of Technology, Germany
Wirsing, Martin LMU Munich, Germany
Woodcock, Jim University of York, UK
ter Beek, Maurice ISTI-CNR, Italy

Additional Reviewers

Abbas, Houssam
Adelt, Julius
Alberts, Elvin
Arbab, Farhad
Bainczyk, Alexander
Barbanera, Franco
Beckert, Bernhard
Berducci, Luigi
Beringer, Lennart
Bettini, Lorenzo
Bhattacharyya, Anirban
Blanchard, Allan
Boerger, Egon
Bogomolov, Sergiy
Bonakdarpour, Borzoo
Bortolussi, Luca
Bourr, Khalid
Brandstätter, Andreas
Breslin, John
Broy, Manfred
Bubel, Richard
Bures, Tomas
Busch, Daniel
Chaudhary, Hafiz Ahmad Awais
Chiti, Francesco
Ciancia, Vincenzo
Cok, David
Cordy, Maxime
Damiani, Ferruccio
De Donato, Lorenzo
Demrozi, Florenc

Di Stefano, Luca
Dierl, Simon
Dubslaff, Clemens
Duchêne, Fabien
Eldh, Sigrid
Ernst, Gidon
Feng, Hao
Flammini, Francesco
Freitas, Leo
Gabor, Thomas
Gerastathopoulos, Ilias
Groote, Jan Friso
Grosu, Radu
Grunske, Lars
Hallerstede, Stefan
Hansen, Simon Thrane
Hartmanns, Arnd
Hatcliff, John
Heydari Tabar, Asmae
Hnetynka, Petr
Inverso, Omar
Jakobs, Marie-Christine
John, Jobish
Johnsen, Einar Broch
Jongmans, Sung-Shik
Kamburjan, Eduard
Katsaros, Panagiotis
Kittelmann, Alexander
Knapp, Alexander
Kosmatov, Nikolai
Kretinsky, Jan

Organization ix

Kuruppuarachchi, Pasindu
Köhl, Maximilan
König, Christoph
Könighofer, Bettina
Lee, Edward
Lluch Lafuente, Alberto
Loreti, Michele
Madsen, Ole Lehrmann
Massink, Mieke
Mauritz, Malte
Mazzanti, Franco
Merz, Stephan
Micucci, Daniela
Monica, Stefania
Monti, Raul
Morichetta, Andrea
Nardone, Roberto
Naujokat, Stefan
Nayak, Satya Prakash
Neider, Daniel
Niehage, Mathis
Nolte, Gerrit
Ölvecky, Peter
Pace, Gordon
Perez, Guillermo
Petrov, Tatjana
Phan, Thomy
Piterman, Nir
Pugliese, Rosario
Reisig, Wolfgang
Remke, Anne
Riganelli, Oliviero
Ritz, Fabian

Rocha, Henrique
Runge, Tobias
Santen, Thomas
Scaletta, Marco
Schallau, Till
Schiffl, Jonas
Schlatte, Rudolf
Schlüter, Maximilian
Schneider, Gerardo
Schürmann, Jonas
Seisenberger, Monika
Smyth, Steven
Soudjani, Sadegh
Spellini, Stefano
Stankaitis, Paulius
Stewing, Richard
Stolz, Volker
Tapia Tarifa, Silvia Lizeth
Tegeler, Tim
Tiezzi, Francesco
Trubiani, Catia
Tschaikowski, Max
Tuosto, Emilio
Valiani, Serenella
Van Bladel, Brent
van de Pol, Jaco
Vandin, Andrea
Vittorini, Valeria
Weber, Alexandra
Weigl, Alexander
Wright, Thomas
Zambonelli, Franco

Contents – Part I

SpecifyThis - Bridging Gaps Between Program Specification
Paradigms

SpecifyThis – Bridging Gaps Between Program Specification Paradigms 3
Wolfgang Ahrendt, Paula Herber, Marieke Huisman, and Mattias Ulbrich

Deductive Verification Based Abstraction for Software Model Checking 7
Jesper Amilon, Christian Lidström, and Dilian Gurov

Abstraction in Deductive Verification: Model Fields and Model Methods 29
David R. Cok and Gary T. Leavens

A Hoare Logic with Regular Behavioral Specifications . 45
Gidon Ernst, Alexander Knapp, and Toby Murray

Specification-Based Monitoring in C++ . 65
Klaus Havelund

Specification and Verification with the TLA+ Trifecta: TLC, Apalache,
and TLAPS . 88
Igor Konnov, Markus Kuppe, and Stephan Merz

Selective Presumed Benevolence in Multi-party System Verification 106
Wolfgang Ahrendt and Gordon J. Pace

On the Pragmatics of Moving from System Models to Program Contracts 124
Thomas Santen

X-by-Construction Meets Runtime Verification

X-by-Construction Meets Runtime Verification . 141
Maurice H. ter Beek, Loek Cleophas, Martin Leucker, and Ina Schaefer

Robustness-by-Construction Synthesis: Adapting to the Environment
at Runtime . 149
Satya Prakash Nayak, Daniel Neider, and Martin Zimmermann

TriCo—Triple Co-piloting of Implementation, Specification and Tests 174
Wolfgang Ahrendt, Dilian Gurov, Moa Johansson, and Philipp Rümmer

xii Contents – Part I

Twinning-by-Construction: Ensuring Correctness for Self-adaptive Digital
Twins . 188
Eduard Kamburjan, Crystal Chang Din, Rudolf Schlatte,
S. Lizeth Tapia Tarifa, and Einar Broch Johnsen

On Formal Choreographic Modelling: A Case Study in EU Business
Processes . 205
Alex Coto, Franco Barbanera, Ivan Lanese, Davide Rossi,
and Emilio Tuosto

Configurable-by-Construction Runtime Monitoring . 220
Clemens Dubslaff and Maximilian A. Köhl

Runtime Verification of Correct-by-Construction Driving Maneuvers 242
Alexander Kittelmann, Tobias Runge, Tabea Bordis, and Ina Schaefer

Leveraging System Dynamics in Runtime Verification of Cyber-Physical
Systems . 264
Houssam Abbas and Borzoo Bonakdarpour

Automated Repair of Security Errors in C Programs via Statistical Model
Checking: A Proof of Concept . 279
Khanh Huu The Dam, Fabien Duchene, Thomas Given-Wilson,
Maxime Cordy, and Axel Legay

Towards Safe and Resilient Hybrid Systems in the Presence of Learning
and Uncertainty . 299
Julius Adelt, Paula Herber, Mathis Niehage, and Anne Remke

Non-functional Testing of Runtime Enforcers in Android . 320
Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani

Automata Learning Meets Shielding . 335
Martin Tappler, Stefan Pranger, Bettina Könighofer, Edi Muškardin,
Roderick Bloem, and Kim Larsen

Safe Policy Improvement in Constrained Markov Decision Processes 360
Luigi Berducci and Radu Grosu

Runtime Verification Meets Controller Synthesis . 382
Shaun Azzopardi, Nir Piterman, and Gerardo Schneider

Contents – Part I xiii

Assumption Monitoring of Temporal Task Planning Using Stream
Runtime Verification . 397
Felipe Gorostiaga, Sebastián Zudaire, César Sánchez,
Gerardo Schneider, and Sebastián Uchitel

Verification and Validation of Concurrent and Distributed
Heterogeneous Systems

Verification and Validation of Concurrent and Distributed Heterogeneous
Systems (Track Summary) . 417
Marieke Huisman and Cristina Seceleanu

A Thread-Safe Term Library (with a New Fast Mutual Exclusion Protocol) 422
Jan Friso Groote, Maurice Laveaux, and P. H. M. van Spaendonck

ST4MP: A Blueprint of Multiparty Session Typing for Multilingual
Programming . 460
Sung-Shik Jongmans and José Proença

On Binding in the Spatial Logics for Closure Spaces . 479
Laura Bussi, Vincenzo Ciancia, Fabio Gadducci, Diego Latella,
and Mieke Massink

An Efficient VCGen-Based Modular Verification of Relational Properties 498
Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto, and Pascale Le Gall

On Deductive Verification of an Industrial Concurrent Software
Component with VerCors . 517
Raúl E. Monti, Robert Rubbens, and Marieke Huisman

Exploring a Parallel SCC Algorithm: Using TLA+and the TLC Model
Checker . 535
Jaco van de Pol

An IoT Digital Twin for Cyber-Security Defence Based on Runtime
Verification . 556
Jorge David de Hoz Diego, Anastasios Temperekidis,
Panagiotis Katsaros, and Charalambos Konstantinou

A Formal Model of Metacontrol in Maude . 575
Juliane Päßler, Esther Aguado, Gustavo Rezende Silva,
Silvia Lizeth Tapia Tarifa, Carlos Hernández Corbato,
and Einar Broch Johnsen

Author Index . 597

SpecifyThis - Bridging Gaps Between
Program Specification Paradigms

SpecifyThis – Bridging Gaps Between
Program Specification Paradigms

Wolfgang Ahrendt1(B), Paula Herber4, Marieke Huisman2,
and Mattias Ulbrich3

1 Chalmers University of Technology, Gothenburg, SE, Sweden
ahrendt@chalmers.se

2 University of Twente, Enschede, NL, The Netherlands
m.huisman@utwente.nl

3 Karlsruhe Institute of Technology, Karlsruhe, DE, Germany
ulbrich@kit.edu

4 University of Münster, Münster, DE, Germany

paula.herber@uni-muenster.de

Abstract. We motivate and summarise the track SpecifyThis – Bridg-
ing gaps between program specification paradigms, taking place at the
International Symposium on Leveraging Applications of Formal Meth-
ods, ISoLA 2022.

Keywords: Specification · Verification · Formal methods

1 Introduction

The field of program verification has seen considerable successes in recent years.
At the same time, both the variety of properties that can be specified and the
collection of approaches that solve such program verification challenges have spe-
cialised and diversified a lot. Examples include contract-based specification and
deductive verification of functional properties, the specification and verification
of temporal properties using model checking or static analyses for secure infor-
mation flow properties. While this diversification enables the formal analyses of
ever more kinds of properties, it may leave the impression of isolated solutions
that solve different, unrelated problems.

Here lies a great potential that waits to be uncovered: If either of the
approaches can be extended to enable the interpretation of specifications used
in other approaches and to use them beneficially in its analyses, a considerable
extension of the power and reach of formal analyses is achievable. A discipline
of “separation and integration of concerns” can be obtained, by, e.g., combining
temporal specifications of a protocol with a contract-based specification of its
implementation units.

The theme of this track is to investigate and discuss what can be achieved in
joint efforts of the communities of different specification and verification tech-
niques. This track is a natural next step following a series of well-structured

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 3–6, 2022.
https://doi.org/10.1007/978-3-031-19849-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_1

4 W. Ahrendt et al.

online discussions within the VerifyThis community during the last year. There,
we identified first candidates for the combination/interplay of formal program
verification methods. Following that, the ISoLA 2022 track addresses questions
such as how specifications which are shared between different approaches should
look like, how different abstraction levels can be bridged, how semantical differ-
ences can be resolved, which application areas can benefit from which method
combinations, what artifacts can be carried forward through different verifica-
tion technologies, what role user interaction (in form of specifications) plays, and
how one can integrate the various techniques into the development processes.

2 Summary of Contributions

Jesper Amilon, Christian Lidström, and Dilian Gurov [1] (Deductive Verifica-
tion Based Abstraction for Software Model Checking) describe a combination
of model-checking and deductive verification, where deductive verification is
applied to prove local pre-post specifications of source code units, and model
checking is applied to prove global (temporal) properties of the system. The
model checker is not applied to the source code, but to the abstractions pro-
vided by the pre-post-specifications. The approach is theoretically well founded
in abstract contract theory [7], implemented in a combination of Frama-C and
TLA+, and demonstrated on an example.

David Cok and Gary Leavens [2] (Abstraction in Deductive Verification:
Model Fields and Model Methods) report how different abstraction techniques
available in the Java Modeling Language JML can be employed to verify Java
programs. To this end, the authors describe how model fields and methods can
serve as means of abstraction and sketch how existing logical encodings of heap
memory can be enriched to accommodate model entities. Abstraction from con-
crete program states to more abstract notions of state is an important vehicle
to cross boundaries between different verification techniques.

Gidon Ernst, Alexander Knapp and Toby Murray [3] (A Hoare Logic with
Regular Behavioral Specifications) introduce a variant of Hoare logic, which
allows to capture trace properties (of terminating programs). In this way,
behavioural and state properties can be combined in a single specification. The
idea is that a program explicitly emits certain statements, which together form
the trace of the program. The Hoare triples specify the assumptions on the trace
so far, and capture the trace that will be emitted by the current program frag-
ment. The Hoare logic with traces is proven sound in Isabelle, and the sketch of
a completeness argument is given. The approach is implemented in a prototype
tool, and illustrated on two case studies.

Klaus Havelund [4] (Specification-based Monitoring of C++) proposes an
approach for specification-based monitoring of C/C++ applications using a mix
of a state machine and rule based language. He presents LogScope, a system
for monitoring event streams against formal specifications that are expressed
in state-machine style but with expressive rules to describe possible events.
LogScope takes such a formal specification together with an application, and

SpecifyThis 5

translates them into a monitored program. The author illustrates the applica-
bility and expressiveness of the specification language and the overall approach
with a number of examples.

Igor Konnov, Markus Kuppe, and Stephan Merz [6] (Specification and Ver-
ification With the TLA+ Trifecta: TLC, Apalache, and TLAPS) show how dif-
ferent verification paradigms can be applied to models in the same modelling
language. The authors use the formalism TLA+ (temporal logic of actions) to
model a termination detection algorithm for distributed systems. The specifca-
tion, in which operations are defined using before-after-predicates in first-order-
logic over set theory, is then subjected to different formal verification approaches,
like explicit-state model checking, bounded symbolic model checking, and theo-
rem proving The paper provides insights into how the different formal tools for
TLA+ can be used in combination to solve a non-trivial case study.

Gordon Pace and Wolfgang Ahrendt [8] (Selective Presumed Benevolence in
Multi-Party System Verification) extend an existing sequent calculus for smart
contracts with the concept of selective benevolence. To achieve this, they define
new proof rules that enable us to assume benevolence of some (specified) parties
in smart contract verification, while assuming potentially malevolent (worst-
case) behavior from others. The benevolent parties can be defined as a predicate,
either statically or dynamically. The authors discuss the benefits of presumed
benevolence and its potential uses.

Thomas Santen [9] (On the Pragmatics of Moving from System Models to
Program Contracts) describes a case study on the VerifyThis Long Term Chal-
lenge problem (the Hagrid key server) [5] on how to construct a verified imple-
mentation from an abstract system model. It first presents a model for the key
server in Alloy. This model consists of a state description, and various transitions
that model the key server operations. It then describes how this is transformed
into executable code with contracts.

References

1. Amilon, J., Lidström, C., Gurov, D.: Deductive Verification Based Abstraction for
Software Model Checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS,
vol. 13701, pp. 7–28. Springer, Cham (2022)

2. Cok, D., Leavens, G.: Abstraction in deductive verification: Model fields and model
methods. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp.
29–44. Springer, Cham (2022)

3. Ernst, G., Knapp, A., Murray, T.: A Hoare logic with regular behavioral specifica-
tions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp. 45–64.
Springer, Cham (2022)

4. Havelund, K.: Specification-based Monitoring in C++. Margaria, T., Steffen, B.
(eds.) ISoLA 2022. LNCS, vol. 13701, pp. 65–87. Springer, Cham (2022)

5. Huisman, M., Monti, R., Ulbrich, M., Weigl, A.: The verifyThis collaborative long
term challenge. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M.
(eds.) Deductive Software Verification: Future Perspectives. LNCS, vol. 12345, pp.
246–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64354-6 10

https://doi.org/10.1007/978-3-030-64354-6_10

6 W. Ahrendt et al.

6. Konnov, I., Kuppe, M., Merz, S.: Specification and verification with the TLA+

trifecta: TLC, Apalache, and TLAPS. In: Margaria, T., Steffen, B. (eds.) ISoLA
2022. LNCS, vol. 13701, pp. 88–105. Springer, Cham (2022)

7. Lidström, C., Gurov, D.: An abstract contract theory for programs with procedures.
In: FASE 2021. LNCS, vol. 12649, pp. 152–171. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-71500-7 8

8. Pace, G., Ahrendt, W.: Selective Presumed Benevolence in Multi-Party System
Verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp.
106–123. Springer, Cham (2022)

9. Santen, T.: On the pragmatics of moving from system models to program contracts.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp. 124–138.
Springer, Cham (2022)

https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-030-71500-7_8

Deductive Verification Based Abstraction
for Software Model Checking

Jesper Amilon, Christian Lidström, and Dilian Gurov(B)

KTH Royal Institute of Technology, Stockholm, Sweden
{jamilon,clid,dilian}@kth.se

Abstract. The research community working on formal software veri-
fication has historically evolved into two main camps, grouped around
two verification methods that are typically referred to as Deductive Ver-
ification and Model Checking. In this paper, we present an approach
that applies deductive verification to formally justify abstract models for
model checking in the TLA framework. We present a proof-of-concept
tool chain for C programs, based on Frama-C for deductive verification
and TLA+ for model checking. As a theoretical foundation, we sum-
marise a previously developed abstract contract theory as a framework
for combining these two methods. Since the contract theory adheres to
the principles of contract based design, this justifies the use of the app-
roach in a real-world system design setting. We evaluate our approach on
two case studies: a simple C program simulating opening and closing of
files, as well as a C program based on real software from the automotive
industry.

Keywords: Contracts · Deductive verification · Model checking

1 Introduction

The literature on formal software verification can roughly be grouped into two
branches, typically referred to as Deductive Verification and Model Checking.
Deductive verification historically stems from Floyd-Hoare style logics. Hoare
logic contracts in term of pre- and post-conditions (see, e.g., [10]) are meaningful
in the context of programs that are understood as state transformers, i.e., pro-
grams the purpose of which is to transform certain initial values to certain final
values, where the intermediate values are just implementation details irrelevant
to the computed function. Deductive verification thus focuses on the transfor-
mational behaviour of programs. Technically, it is typically based on symbolic
approaches, such as computing Weakest Preconditions or Symbolic Execution,
to convert programs annotated with specifications to formulas in First-Order
Logic, and then on (back-end) algorithmic SAT/SMT solving.

This work has been funded by the FFI Programme of the Swedish Governmental
Agency for Innovation Systems (VINNOVA) as the AVerT2 project 2021-02519.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 7–28, 2022.
https://doi.org/10.1007/978-3-031-19849-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_2

8 J. Amilon et al.

On the other hand, model checking historically stems from algorithmic
approaches to evaluating whether a formula of (some) Temporal Logic holds
in a given state of a Kripke structure (see, e.g., [6]). It focuses on the non-
terminating, temporal behaviour of programs. Technically, it is typically based on
property-preserving abstractions of programs (or system descriptions) to finite-
state representations, and then on algorithmic state-space exploration.

While this dichotomy of transformational versus temporal behaviour of pro-
grams is useful, the two aspects are not mutually exclusive and can be relevant
for one and the same software system. For instance, the software embedded
in modern vehicles is typically structured in two layers. The lower, infrastruc-
ture layer contains a scheduler, which essentially executes an infinite loop that
periodically calls, in a predefined order, a fixed set of modules (called applica-
tions) in the upper, application layer. The individual applications are of a purely
transformational nature: they read certain input values coming from the sensors
and set by the infrastructure, and compute, in a finite number of steps, certain
output values which are then propagated by the infrastructure software to the
actuators. If we have to formally verify the safety of such embedded software,
both transformational and temporal properties need to be taken into account.
In this particular domain, one can even observe a hierarchy between the two, as
a consequence of the hierarchy between the two software layers: one can view
the temporal behaviour on top of the transformational one.

In this paper, we propose an approach that can be described as Deductive
Verification Based Abstraction for Software Model Checking. The essence of our
approach is to relativise the verification of the temporal properties of a pro-
gram on the transformational properties of certain selected program components.
The transformational properties are phrased as Hoare logic style contracts, and
deductive verification is performed to verify that the components indeed fulfil
their contracts. Then, for the purpose of model checking of the temporal prop-
erties of the program, the selected components are replaced by their contracts.
Since this results in modular verification, it has good chances of scaling better
than model checking on its own, which is a monolithic technique.

Our approach allows the results of deductive verification to be lifted to (and
utilised in) the temporal domain. In the context of our embedded software
example mentioned above, one would apply deductive verification to verify the
transformational properties of the modules in the application layer, and then
combine their contracts with the infrastructure software into a model that is
model checked against the temporal properties. To combine such heterogeneous
approaches to formal verification in a sound and consistent manner, a unify-
ing semantic foundation is needed. In this paper, we summarise a previously
developed abstract contract theory [14] as a theoretical framework for combin-
ing deductive verification with model checking, and show how our approach can
be formalised in this abstract contract theory.

To test our idea, we are currently experimenting with a tool chain for C pro-
grams, based on Frama-C for deductive verification and TLA+ for model check-
ing. As preliminary evaluation, we have applied our approach on two example

Deductive Verification Based Abstraction 9

C-programs, with one being based on a real software module taken from the
automotive industry.

Related Work. The idea of combining code with contracts when performing
model checking is explored in several previous works.

Sun et al. [20] show how contracts can be used when creating models to be
verified with the PAT model checker, by means of a case study where PAT is
used to model check itself. The target language is C#, and the approach is to
include code and contracts into the models by allowing PAT models to dynam-
ically load C# code (possibly annotated with contracts). This differs from our
approach where code and contracts are translated statically into the modelling
language. The main focus of their work is, however, the verification of PAT, and
they do not evaluate how the use of contracts affects scalability. Their approach
also differs from ours in that they perform runtime verification of the contracts.

Beckert et al. [4] use contracts to introduce modularity into the bounded
model checker JBMC for Java programs. Their approach differs from ours in
that they integrate the program and the contracts by performing transformations
on the original Java program, whereas we translate the program and the con-
tracts separately into the modelling language before we integrate them. Similarly,
Champion et al. [7] use contracts to achieve modularization for the SMT-based
model checker Kind2. They show on an example that their approach improves
the scalability of the tool. Contracts are part of the modelling language and
specify the behaviour of nodes in the model, as there is no underlying program-
ming language, and thus no translation of programs into models, unlike in our
approach.

Closest to our philosophy of using deductive verification for the purposes
of formally justifying abstract models of program behaviour, to be then used
for model checking, is perhaps the work by Ortwijn et al. [18]. It can be seen
as a generalisation of our approach to concurrent programs, where Separation
Logic with Fractional Permissions is used for deductive verification, and where
the abstraction is into process algebraic muCRL terms. Finally, it should be
pointed out that the model of programs proposed here, where certain parts
have been abstracted into TLA actions, is very close in spirit to the notion
of flow graph studied in [19]. The authors consider there the problem of how
to compositionally model check flow graphs against temporal properties, but do
not address the problem of extracting flow graphs from source code in a provably
correct manner, as we do here.

Structure. The paper is organised as follows. In Sect. 2 we present an overview of
our approach and the envisaged tool chain. Deductive verification and Frama-C
are described in Sect. 3, while model checking and TLA in Sect. 4. Then, Sect. 5
gives a summary of our abstract contract theory from [14], and explains how it
serves as a theoretical foundation for our approach. We present a preliminary
practical evaluation of our approach in Sect. 6, and conclude with Sect. 7.

10 J. Amilon et al.

Program

Temporal
property

Identify
atomic blocks

b1, . . . bn

Specify
b1 . . . bn

with ACSL
contracts
c1 . . . cn

Verify for
each block
bi that bi
satisfies ci

Translate the
program code
into TLA+

Translate
the contracts

c1 . . . cn
into TLA+

Interleave the translations
into an abstract TLA+

model of the program

Model check the TLA+ model
for the temporal property

WP

C2TLA+

TLC

Frama-C

TLA Toolbox

Fig. 1. Flowchart illustrating our verification approach and tool chain

2 Overview of the Verification Approach

The starting point of our approach is a C program and some temporal property,
which we want the program to satisfy. Our proposed verification approach and
tool chain are illustrated in Fig. 1. As shown, we rely on Frama-C for (abstraction
using) deductive verification, and on TLA+ for modelling and model checking.

Illustrating Example. Consider the simple program shown in Fig. 2. The main
function of the program repeatedly reads a temperature value, converts it from
Kelvin to Celsius, and finally outputs the converted value (the value of the vari-
able in kelvin is expected to be updated between each iteration in the loop).
Assume that we want to use the TLC model checker to verify the program
against some chosen temporal property (TLA and TLC is described in more
detail in Sect. 4.1). Then, the first step of our approach would be to identify
sequential blocks in the code that can be recognised as atomic with respect to
the chosen temporal property, and then to provide these blocks with contracts.
For specifying block contracts, we use the (Hoare logic style) ACSL specification
language, which is the annotation language supported by Frama-C (described in
Sect. 3). For our example program, we have chosen to consider the convert temp

Deductive Verification Based Abstraction 11

1 volatile int in_kelvin;

2 int out_celsius;

3

4 /*@

5 requires k >= 0;

6 assigns \nothing;

7 ensures \result == \old(k) - 273;

8 */

9 void convert_temp(int k) {

10 int res = k;

11 res = res - 273;

12 return res;

13 }

14

15 int main() {

16 int c, k;

17 while (1) {

18 k = in_kelvin; // read temp (in Kelvin)

19 c = convert_temp(k); // convert temp

20 out_celsius = c; // write temp (in Celsius)

21 }

22 }

Fig. 2. A simplified temperature converter program

function as an atomic block, which we have annotated with an ACSL function
contract (see the text in green preceding the function). Next, we use WP, the
Frama-C plugin for deductive verification, to verify that convert temp satis-
fies its contract. Then comes the key point of our approach: when creating the
TLA+ model of the program, we rely on the (deductively verified) ACSL con-
tract of convert temp, instead of on its code, to abstract the block into a TLA
action. The remaining parts of the main function (i.e., the while loop and the
reading/writing) are modelled directly from their code. By using the contract of
convert temp instead of its code, the created model abstracts from the irrele-
vant implementation details of convert temp, such as the use of the intermediate
variable res, thus decreasing the complexity of the model.

Tool Chain. Figure 1 also shows the envisaged tool chain supporting our app-
roach. On the contract side, we are working with Frama-C, by specifying con-
tracts in ACSL and verifying them using the WP plugin. On the modelling side,
we work with the TLA framework by using the TLA toolbox, which allows both
for specifying models in TLA+ and performing model checking with TLC over
the models. To translate contracts code into TLA+, we use the Frama-C plugin
C2TLA+ [15] (see Sect. 4.2).

The steps in Fig. 1 where no specific tool or plugin is specified have, in this
work, been carried out manually. There is potential to automate more of the
steps. In particular, automating the translation of contracts into TLA+, and
interleaving contract and code translations in TLA+, should be straightfor-

12 J. Amilon et al.

ward. However, automating some of the steps may be challenging. For instance,
automating the (first) step of identifying which code blocks to identify as atomic
is problematic. The difficulty stems from the conflicting goals of producing an
abstract model of the program that, on one hand, has as a reduced state space
as possible, and on the other hand, is faithful with respect to the temporal prop-
erties we want to verify. The approach we take in our case study (Sect. 6) is to
use functions as atomic blocks. However, this may not always be adequate; in
particular, larger functions with side-effects may not be atomic with respect to
certain temporal properties.

A further challenge is to automate the (second) step of providing the selected
code blocks with contracts. Automated inference of specifications (contracts) is
an area of active research showing promising results; see, e.g., [1]. However,
automatically generated contracts tend to document the code rather than the
intention behind it, and tend thus to be more verbose than contracts provided by
humans. Future work is needed to address these challenges. Another possibility
is that the code has already been verified against contracts using deductive
verification in some other verification context, in which case one can get the
contracts for free by reusing the already existing ones.

Abstract Contract Theory. The approach outlined above is compatible with the
contract based design methodology. This typically entails designing a system in
a top-down manner, through refinement and decomposition of contracts, so that
low-level components can be independently implemented against their contracts,
while ensuring that top-level properties still hold. In Sect. 5 we show that the
proposed method of procedure-modular verification can be cast in a previously
developed contract theory [14]. This provides a strong theoretical foundation for
our verification approach, and, since the contract theory supports a contract
based design workflow, this translates to the approach presented here.

3 Deductive Verification and Frama-C

Frama-C is a software verification and analysis platform [8] for the C language
(specifically, the C99 ISO standard [11]). It follows a modular design, and numer-
ous plugins provide various types of analyses. One of these plugins is WP [3],
with which deductive verification (based on Weakest Preconditions) can be per-
formed. Frama-C has its own specification language, called ANSI/ISO C Spec-
ification Language (ACSL) [2]. ACSL specifications are written as annotations
directly in the source code, as C comments starting with an @ character. A com-
monly used construct is the function contract, which specifies the behaviour of a
function and is annotated in the source code. In Fig. 2, an example of an ACSL
function contract for convert temp is shown. The requires clause specifies the
pre-condition, which is an assertion that must be fulfilled by callers before call-
ing the function. In this case, the original temperature must be at least 0, which
is the lowest possible temperature in Kelvin. The ensures clause specifies the
post-condition, an assertion that should hold after executing the function. Here
it specifies that the return value will be the converted temperature. The assigns

Deductive Verification Based Abstraction 13

clause specifies the frame condition, i.e., what memory locations may have their
values changed during execution. In this case only local variables are updated, so
the special keyword \nothing is used to let callers know that no global memory is
changed. ACSL also support so-called ghost variables and code. Ghost variables
are similar to regular variables, except they are only visible in specifications,
much like logical variables in standard Hoare logic [10]. Ghost statements, such
as ghost variable declarations, are preceded by the ghost keyword.

If we take the view of an ACSL contract as separated from the function it
specifies, and denote it by C = (P,Q,L), where P is the pre-condition, Q the
post-condition, and L all the mutable memory locations per the frame condition,
one can give it a denotational semantics as follows:

[[C]] def= {(s, s′) | ∀I. (s |=I P ⇒ s′ |=I Q) ∧ ∀l �∈ L. s′(l) = s(l)} (1)

where I ranges over the possible interpretations of logical variables. This is in
line with the standard definition of a function satisfying an ACSL contract [2].

4 Model Checking and TLA

This section describes the TLA framework, and how to abstract (deductively
verified) contracts into TLA actions, for model checking of programs against
temporal properties.

4.1 The TLA Framework

The Temporal Logic of Actions (TLA) is a temporal logic for specifying and rea-
soning about concurrent systems. TLA defines systems and system behaviours
using the temporal operators � (always) and ♦ (future) over actions as elemen-
tary formulas. Below, we summarise the concepts of TLA required for under-
standing this paper. The formalisation is based on Lamport [12], but adjusted
for better integration with our abstract contract theory presented in Sect. 5.1.

Actions. In TLA, an action is a predicate representing transitions between two
sets of states. Following the terminology of [12], we say that an action is a
predicate over primed and non-primed flexible variables and rigid variables. From
a programming perspective, rigid variables act as constants and flexible variables
as program variables. Furthermore, a non-primed flexible variable x represents
the value of x in the state we are transitioning from, while a primed variable x′

represents the value in the state we are transitioning to. Here, we consider states
to be mappings from flexible variables to values, and use State to denote the set
of all states. For example, the action x′ > x specifies a transition between any
two states s and t such that t(x) > s(x). Semantically, actions are defined, for a
given interpretation over rigid variables, as a binary relation on State. In Fig. 3,
we illustrate, using some example operators, how actions are defined formally,
where I now ranges over all interpretations of rigid variables.

14 J. Amilon et al.

Let A, A1 and A2 be actions, s and t states, v a flexible variable, N a rigid variable
(constant), e1 and e2 integer expressions over flexible and rigid variables. Then,
the semantics of a TLA action, denoted [[A]]I for a given interpretation I, can
be defined as a binary relation on State, using the auxiliary function eval for
evaluating expressions, as follows:

1. [[A1 ∧ A2]]I
def= [[A1]]I ∩ [[A2]]I

[[¬A]]I
def= (State × State)\ [[A]]I

[[e1 ≥ e2]]I
def= {(s, t) | eval(s, t, I, e1) ≥ eval(s, t, I, e2)}

2. eval(s, t, I, e1 + e2)
def= eval(s, t, I, e1) + eval(s, t, I, e2)

eval(s, t, I, v) def= s(v)
eval(s, t, I, v′) def= t(v)
eval(s, t, I, N) def= I(N)

Fig. 3. The semantics of actions in TLA

Temporal Formulas. TLA can be lifted to a temporal logic by including the LTL
operators � and ♦. Formally, we first lift the domain of actions from State ×
State to Stateω (the set of infinite traces), denoted [[A]]ωI , as follows:

[[A]]ωI
def= {〈σ1σ2 . . .〉 | (σ1, σ2) ∈ [[A]]I}

That is, an action is defined to hold over an infinite trace if it holds when
evaluated over the first two states of the trace. With this, we can now treat
actions as temporal formulas, and can define the semantics of the temporal
operators � and ♦ as usual. Let T be a temporal formula, then:

[[�T]]ωI
def= {σω = 〈σ1, σ2, . . .〉 | ∀n ∈ N. 〈σn, σn+1, . . .〉 ∈ [[T]]ωI}

[[♦T]]ωI
def= {σω = 〈σ1, σ2, . . .〉 | ∃n ∈ N. 〈σn, σn+1, . . .〉 ∈ [[T]]ωI}

Modelling Programs in TLA. A program is modelled from a triple (Init ,M, F),
where Init specifies the constraints on the initial state, M the next-state relation
describing possible state-transitions in the program, and F defines some fairness
constraints. From such a triple, a program is defined by a formula:

Φ
def= Init ∧ �[M]vars ∧ F,

where vars are the program variables in M and [M]vars is syntactic sugar for
M ∨ vars ′ = vars. This allows “stuttering” steps between (identical) states,
which can be useful (in particular) when specifying concurrent systems.

As a simple example, let M = (x < 100 → x′ = x + 1) ∧ (x ≥ 100 → x′ = 0)
and consider the following TLA formula specifying a program that increments
the variable x from 0 to 100, and then wraps around to start from 0 again:

Deductive Verification Based Abstraction 15

x = 0 ∧ �[M]〈x〉 ∧ �♦〈M〉〈x〉 (2)

The expression 〈M〉x is syntactic sugar for M ∧ x′ �= x; thus, the fairness
condition simply states that x must always eventually be incremented.

Verifying Temporal Properties (Model Checking). TLA also allows for specifying
temporal properties, against which programs can be verified. Since both pro-
grams and properties are defined in TLA, verification amounts to showing that
the denotation of the temporal property subsumes the denotation of the pro-
gram: given a temporal property T and an interpretation I, we say that a TLA
program Φ satisfies T over I iff [[Φ]]ωI ⊆ [[T]]ωI . For example, let Φ be the exam-
ple program in (2) and T be the formula �(x ≥ 0). Then, Φ satisfies T since
σω ∈ [[Φ]] ⇒ σω ∈ [[T]], thus [[Φ]]ωI ⊆ [[T]]ωI . In practice, one applies the model
checker TLC (see below) to verify that the subset relation between a program Φ
and a temporal property T holds.

TLA+ and TLC. TLA+ [13] is a concrete language that implements the TLA
framework and allows for specifying models of computer programs. The syntax
of TLA+ is intended to resemble mathematical notation: for example, “/\” and
“\/” denote ∧ and ∨, respectively. TLC [21] is an explicit-state model checker,
which can be used to model check TLA+ specifications for both safety and
liveness properties (which are also specified in TLA+). An example of a TLA+

is shown in Fig. 4. The specification is a translation of the temperature conversion
program in Fig. 2 (see Sect. 4.2 for a further description of the translation of the
program into the TLA+ specification).

4.2 Translating Code and Contracts into TLA

For contracts, the translation is performed by converting the contract into an
action equivalent to the denotation of the contract. Since both contracts and
actions are evaluated over State × State, we can convert the contract into a
TLA action by taking its denotation. That is, let Ac denote the action obtained
from translating a contract C = (P,Q,L). We then define:

AC def= ∀I. (P ⇒ Q) ∧ ∀l �∈ L. l′ = l

The so-defined translation is semantics-preserving, since the definition of the
action AC is equivalent to the definition of the denotation of C.

For the translation of C code into TLA, we do not define a concrete trans-
lation function here. Instead, we rely on the C2TLA+ [15] plugin for Frama-C,
which automatically translates a program into a TLA+ specification. C2TLA+
translates a given C program into TLA+ by defining, for each statement in the
code, an action corresponding to that statement. The control flow of the pro-
gram is translated by defining a variable in the TLA+ model representing the
call stack, program counter, frame pointers, and (global and local) memory. The

16 J. Amilon et al.

control flow is then simulated in the model using the program counter and call
stack to ensure that, in every reachable state, only one action (statement) is
feasible (can be executed).

1 -----------------------MODULE Temperature ------------------------------------
2 EXTENDS Integers
3

4 VARIABLES in_kelvin , out_celsius , k, c, result , pc
5 vars == <<in_kelvin ,out_celsius , k, c, result , pc >>
6

7 Init == out_celsius = 0 /\ in_kelvin = 273 /\
8 /\ c = 0 /\ k = 273 /\ result = 0 /\ pc = 1
9

10 convert_temp(_k) == (_k >= 0) => (result ' = (_k - 273))
11 /\ UNCHANGED(<<in_kelvin , out_celsius , k, c>>)
12

13 M == /\ (pc = 1 /\ in_kelvin ' \in 263..283 /\ pc' = 2
14 /\ UNCHANGED(<<out_celsius , k, c, result >>))
15 \/ (pc = 2 /\ k' = in_kelvin /\ pc' = 3
16 /\ UNCHANGED(<<in_kelvin , out_celsius , c, result >>))
17 \/ (pc = 3 /\ convert_temp(k) /\ pc' = 4)
18 \/ (pc = 4 /\ out_celsius ' = c /\ pc' = 1
19 /\ UNCHANGED(<<in_kelvin , k, c, result >>))
20

21 Spec == Init /\ [][M]_vars /\ ([]<> <<M>>_vars)
22 ===

Fig. 4. Translation of the temperature conversion program into TLA+

Example. Consider again the temperature conversion program in Fig. 2. In Fig. 4,
we show a TLA+ specification created by translating the code in the main
function and the contract in the program into TLA+ (following the approach
described in Sect. 2). In the model, the control flow of the original C program
is simulated using the pc (program counter) variable. Note also that, for each
action, we are required to specify variables that are not updated using the built-
in UNCHANGED predicate. Here, both the program code and the contract have been
translated manually into TLA+. In Sect. 6, we provide more details regarding
how to apply the approach and how the C2TLA+ tool can be used to automate
the translation of program code into TLA+. Using the model checker TLC, it is
possible to verify temporal properties for the specification in Fig. 4. For exam-
ple, TLC verifies that the specification satisfies the following temporal property
stating that if the temperature is always above 273 K, then it will also always
be above 0◦ C:

�(in kelvin ≥ 273) ⇒ �(out celsius ≥ 0) (3)

5 Contracts as a Unifying Theory

In this section, we introduce our abstract contract theory and present our work in
the setting of this theory. In doing so, we provide a strong theoretical foundation
for our work and show that the methodology follows established principles in
contract-based design.

Deductive Verification Based Abstraction 17

5.1 An Abstract Contract Theory

In previous work, we proposed an abstract contract theory [14], which supports
the Design-by-Contract methodology developed and advocated by Meyer in [16].
Our theory instantiates the contract meta-theory of Benveniste et al. [5], and
thus satisfies several properties considered crucial in system design methodolo-
gies, such as independent implementation, and reuse, of components. The con-
tract theory is developed at the semantic level, and can be implemented by
means of concrete languages for writing program components and contracts.

As the basic unit of behaviour, we take the abstract notion of a run, rep-
resenting a single execution of a system (or part thereof), and let Run denote
the set of all runs. In a concrete setting, an example of a run could be an ele-
ment of State×State, i.e., a pair of states constituting a possible pre-state and
post-state of a procedure call. We focus on procedural, sequential programming
languages, and assume some finite universe of procedure names P. For a given
set of procedure names P ⊆ P, a procedure environment EnvP = P → 2Run is a
mapping from procedure names to their possible runs. Let Env def=

⋃
P⊆P EnvP .

We define a partial order on procedure environments as follows. For any two pro-
cedure environments ρ ∈ EnvP and ρ′ ∈ EnvP ′ , we have ρ � ρ′ iff P ⊆ P ′ and
∀p ∈ P.ρ(p) ⊆ ρ′(p). The partial order (Env,�) forms a complete lattice, since
both a greatest lower bound (glb), and a least upper bound (lub), exists for every
subset of Env. The glb operation on environments is denoted as usual by �, and
the lub operation by �.

To formally define components and contracts, we first equip both notions
with an interface I = (P−, P+), where P− and P+ are disjoint subsets of P.
P+ is the set of procedures (to be) implemented in a component, and P− are
the procedures called by it, but not implemented within it. Our contract theory
is summarised in Fig. 5. We use μx. f(x) to denote the least fixed-point of the
function f (when it exists), ρ�

P to denote the (top) environment mapping every
procedure in P to Run, and for any mapping h : A → B and set A′ ⊆ A, we
use h|A′ to denote the restriction of h on the sub-domain A′.

Instantiation of the Theory. In our contract theory, we have deliberately left the
domain of Run unspecified. This allows the domain to be instantiated as needed
by the concrete application domain, and even to combine multiple domains. Cer-
tain constraints do need to be fulfilled, though. For the theory to be well-defined
(e.g., that the involved fixed-points exist), all base components used to build
larger components must be monotonic mappings (monotonicity of composed
components is then ensured by the composition operator).

In our previous work [14], we argued for the importance of separating con-
tracts from their implementation, and gave contracts a denotational semantics,
defining the denotation of a contract C in a way that guarantees that the equa-
tion:

[[C]] =
⋃

S |= C

[[S]] (4)

18 J. Amilon et al.

1. A component m with interface Im = (P −
m , P+

m) is a monotonic mapping of type
m : Env

P−
m

Env
P+
m

.
2. Two components m1 and m2 are composable iff P+

m1 ∩ P+
m2 = ∅.

3. Given two composable components m1 : Env
P−
m1

Env
P+
m1

and
m2 : Env

P−
m2

Env
P+
m2

, their composition is defined as a mapping
m1 × m2 : Env

P−
m1×m2

Env
P+
m1×m2

such that:

P+
m1×m2

def= P+
m1 ∪ P+

m2 P −
m1×m2

def= (P −
m1 ∪ P −

m2) \ (P+
m1 ∪ P+

m2)

m1 × m2
def= λρ−

m1×m2 ∈ Env
P−
m1×m2

. μρ. χ+
m1×m2(ρ)

where χ+
m1×m2

: Env
P+
m1×m2

Env
P+
m1×m2

is defined, in the context of a

given ρ−
m1×m2

∈ Env
P−
m1×m2

, as follows. Let ρ+
m1×m2

∈ Env
P+
m1×m2

, and let

ρ−
m1 ∈ Env

P−
m1

be the environment defined by:

ρ−
m1(p) def=

{
ρ+
m1×m2

(p) if p ∈ P −
m1 ∩ P+

m2

ρ−
m1×m2

(p) if p ∈ P −
m1 \ P+

m2

and let ρ−
m2 ∈ Env

P−
m2

be defined symmetrically. We then define:

χ+
m1×m2(ρ

+
m1×m2)(p) def=

{
m1(ρ−

m1)(p) if p ∈ P+
m1

m2(ρ−
m2)(p) if p ∈ P+

m2

4. A denotational contract c with interface Ic = (P −
c , P+

c) is a pair (ρ−
c , ρ+

c),
where ρ−

c ∈ Env
P−
c

and ρ+
c ∈ Env

P+
c

.
5. A component m with interface Im = (P −

m , P+
m) is an implementation for, or

implements, a contract c = (ρ−
c , ρ+

c) with interface Ic = (P −
c , P+

c), denoted
m |= c, iff P −

c ⊆ P −
m , P+

m ⊆ P+
c , and m(ρ−

c � ρ�
P−
m\P−

c
) 	 ρ+

c .
6. A component m is an environment for contract c iff, for any implementation m′

of c, m and m′ are composable, and
∀ρ−

m×m′ ∈ Env
P−
m×m′

. (m × m′)(ρ−
m×m′)|P+

c
	 ρ+

c .

7. A contract c refines contract c′, denoted c � c′, iff ρ−
c′ 	 ρ−

c and ρ+
c 	 ρ+

c′ .
8. The conjunction of two contracts c1 = (ρ−

c1 , ρ+
c1) and c2 = (ρ−

c2 , ρ+
c2) is the

contract c1 ∧ c2
def= (ρ−

c1 � ρ−
c2 , ρ+

c1 � ρ+
c2).

9. Two contracts c1 = (ρ−
c1 , ρ+

c1) and c2 = (ρ−
c2 , ρ+

c2) with interfaces Ic1 =
(P −

c1 , P+
c1) and Ic2 = (P −

c2 , P+
c2) are composable if: (i) P+

c1 ∩ P+
c2 = ∅,

(ii) ∀p ∈ P −
c1 ∩ P+

c2 . ρ+
c2(p) ⊆ ρ−

c1(p), and (iii) ∀p ∈ P −
c2 ∩ P+

c1 . ρ+
c1(p) ⊆ ρ−

c2(p).
10. The composition of two composable contracts c1 = (ρ−

c1 , ρ+
c1) and c2 =

(ρ−
c2 , ρ+

c2) with interfaces Ic1 = (P −
c1 , P+

c1) and Ic2 = (P −
c2 , P+

c2) is the contract

c1 ⊗ c2
def= (ρ−

c1⊗c2
, ρ+

c1 � ρ+
c2), where:

ρ−
c1⊗c2

def= (ρ−
c1 � ρ−

c2)
∣
(P−

c1∪P−
c2)\(P+

c1∪P+
c2)

Fig. 5. Our abstract contract theory

Deductive Verification Based Abstraction 19

is fulfilled, i.e., that the denotation of a contract is the union of the denotations
of all programs that satisfies it. The rationale for this is that we desire programs
to satisfy their contracts exactly when [[S]] ⊆ [[C]]. Procedure-modular verifica-
tion is then facilitated by considering a special contract environment ρc induced
by the above equality: let every procedure p be equipped with a contract Cp, we

then define ρc(p) def= [[Cp]]. Now, programs are given a contract-relative seman-
tics [[S]]cr , where the denotations of procedure calls is defined by the denotations
of their contracts instead of their bodies. This gives rise to a separate satisfaction
relation Sp |=cr Cp, based on the contract-relative semantics.

For each domain used to instantiate the contract theory, concrete syntax
for implementing and specifying programs is needed. Then, each instantiation
requires abstraction functions, which take the concrete syntax and produce com-
ponents and contracts in the abstract contract theory, as well as a contract-
relative satisfaction relation |=cr . The abstraction to components and contracts
must be such that the following properties hold:

1. For any two disjoint sets of functions P+
1 and P+

2 , abstracted individually
into components m1 and m2, respectively, and P+

1 ∪P+
2 abstracted into com-

ponent m, we have m1 × m2 = m.
2. For any procedure p with procedure contract Cp, abstracted into compo-

nent mp with contract cp, we have Sp |=cr Cp whenever mp |= cp.

Contracts in Our Approach. In our concrete setting, when working with compo-
nents in the domain State × State, contracts and the contract-relative seman-
tics of statements will also be over this domain (by design of the approach, not
because of theoretical restrictions). However, when in the domain Stateω, we
allow certain procedures (which we assume are marked in some way) to have
contracts in the domain State×State, by defining the contract-relative seman-
tics for contracts in both domains. This allows us to verify some components
in the setting of pre- and post-states, and then reuse their contracts to verify
temporal properties in the domain of infinite traces. Since we are adhering to the
contract theory, which follows the axioms of the meta-theory [5], we ensure that
the desired properties for proper design-chain management hold. As an example,
recall the temperature conversion program in Fig. 2. For this program, we con-
sider the main function to be defined in the domain Stateω, while the contract
for the conversion function is in State × State.

5.2 Deductive Verification in the Abstract Contract Theory

In the following paragraph, we provide some intuition for the instantiation of the
contract theory with a concrete semantics. We assume that every procedure p
is associated with a body Sp. The semantics of statements is defined relative an
interface (P−, P+) and environments ρ− ∈ EnvP − and ρ+ ∈ EnvP+ , denoted

[[S]]ρ
+

ρ− . Specifically, the semantics of a function call is then defined as ρ+(p) when
p ∈ P+, and as ρ−(p) when p ∈ P−. Given ρ− ∈ EnvP − , we define the function

20 J. Amilon et al.

ξ : EnvP+ → EnvP+ by ξ(ρ+)(p) def= [[Sp]]
ρ+

ρ− and consider its least fixed point ρ+
0 .

This is used as the basis of a standard denotation [[S]]ρ−
def= [[S]]ρ

+
0

ρ− . Using this,

we can define the contract-relative semantics of statements as [[S]]cr def= [[S]]ρc
.

Details of this formalisation for a simple procedural language can be found in [9].
In this setting, we can now define how to abstract programs and contracts into

components and denotational contracts, respectively. For any set of procedures
P+, calling procedures P ′, we define the component m : EnvP −

m
→ EnvP+

m
,

where P−
m

def= P ′ \ P+
m and P+

m
def= P+, so that ∀ρ−

m ∈ EnvP −
m

. ∀p ∈
P+

m . m(ρ−
m)(p) def= [[Sp]]ρ−

m
. For a procedure p with an ACSL contract Cp, call-

ing other procedures P−, we define the denotational contract cp = (ρ−
cp , ρ

+
cp)

with interface P+
cp

def= {p} and P−
cp

def= P−, so that ρ+
cp(p) def= ρc(p), and

∀p′ ∈ P−. ρ−
cp(p

′) = ρc(p′).
The full semantics of the concrete languages, C and ACSL, is implicitly

defined by Frama-C and will not be expanded upon here. Note that, per the
semantics of an ACSL function contract as given in (1), which is the only ACSL
construct of concern in the present paper, a function can be verified against its
contract, and relative to the contracts of other functions, only if its denotation is
subsumed by that of its contract. This is in accordance with condition (4). Thus,
the contract-relative satisfaction relation |=cr is such that the two properties of
abstraction discussed in Sect. 5.1 hold.

5.3 Procedure-Modular Verification with TLA

Verification in the two domains can now be combined, by abstracting the con-
tracts of the already-verified contracts into actions. This can also be viewed as a
form of procedure-modular verification, where temporal properties are checked
for a larger program, relative the ACSL contracts of some of the called proce-
dures. To this end, we take the view that a procedure environment ρ ∈ EnvP

in the domain State × State as discussed in Sect. 3, maps procedure names to
actions. We let Run = (State× State) ∪ Stateω, and as previously explained,
assume that certain procedures have been selected to be considered actions. For
a TLA program S with interface (P−, P+), we can define the denotation [[S]]ρc

where, for some p ∈ P−, ρc(p) ∈ EnvP − are actions, or denotations of type
State × State of the called procedure. In this way we get a contract-relative
semantics where programs produce infinite state sequences, but depend partially
on procedures producing actions, or state pairs. We can then abstract the con-
crete languages in the same way as in Sect. 5.2.

Note that, while the concrete contract languages are different in the domains
(in one case it is ACSL, and in the other TLA+), the concrete language for
defining components is the same, namely C, meaning that the abstraction from
procedures to components is in reality performed in two steps, first from C code
and ACSL contracts to TLA+ specifications and actions, and from there to
components. We use TLC to verify programs. From a denotational viewpoint,

Deductive Verification Based Abstraction 21

successful verification in TLC means that there is a subset relation between
the denotation of the program and the specification. Hence, the two required
properties listed in Sect. 5.1 are fulfilled.

Considering again the example from Fig. 2, the component mmain resulting
from abstracting the main function would map denotations for the called function
convert temp in the domain State×State to denotations of main in the domain
Stateω. The exact behaviour is obtained from the body of main translated
to TLA, and parameterised on the behaviour of convert temp. Verification is
performed by substituting the contract of convert temp for its behaviour, on
the concrete level, which is shown in Fig. 4.

5.4 Contract Based System Design

As we have previously shown [14], our contract theory is an instance of the
meta-theory of Benveniste et al. [5], thus establishing a number of properties
desired of system design methodologies, such as independent implementation
and verification of components. In contract-based design, a system is typically
designed in a top-down manner, starting from the desired high-level properties
that the system must satisfy, which are then decomposed into contracts for the
(sub-)components. The components are then implemented independently, relying
only on the contracts of other components.

By casting the approach proposed in the present paper, we have established
that it is compatible with the principles of contract-based design. In particular,
ensuring correctness of a system as a whole reduces to showing, one the one hand,
that the composition of the contracts of the sub-components of the system refines
the top-level contracts, and, on the other hand, that the concrete procedures
satisfy their concrete specifications, according to the contract-relative semantics.

In the example from Fig. 2, we would typically have a top-level contract c
specifying the temporal behaviour of the system, without any required proce-
dures. This contract would then be decomposed into contracts cconv and cmain

for the two procedures, respectively. The former would be defined concretely
in ACSL, expressing the possible state pairs resulting from conversion, without
needing any assumptions on other procedures. The latter would be defined by
a concrete TLA formula, with assumptions on the actions produced by the con-
version function. By showing that cconv ⊗ cmain � c, and that the two concrete
implementations satisfy their contracts according to the methodology outlined
in the preceding sections, it is, by the properties of the contract theory, then
established that mconv ⊗ mmain |= c.

6 Preliminary Evaluation

To evaluate our approach, we conducted two experiments, one using a simple toy
program simulating some file operation, and the second one using a simplified
software module taken from the automotive industry. Both experiments were
carried out on a Dell Latitude 7420 using Ubuntu 20.04 running in VirtualBox
with 8 GB RAM and on Intel i5 CPU (2 cores).

22 J. Amilon et al.

1 #define OPEN 1
2 #define CLOSED 0
3 #define N 32
4

5 int file_status;
6 int input;
7

8 /*@ ensures -(N*2) <= input <= N*2; */
9 void havoc_input (){}

10

11 /*@ assigns \nothing; */
12 int read_file(int i){
13 return i; // Dummy statement
14 }
15

16 /*@ assigns \nothing; */
17 void write_file(int i) {
18 //pass
19 }
20

21 /*@
22 requires 0 <= n < N && file_status == OPEN;
23 ensures file_status == CLOSED;
24 assigns file_status;
25 */
26 void file_operation(int n) {
27 int i; i = 0;
28 int tmp; tmp = 0;
29 int sum; sum = 0;
30 if (file_status == OPEN) {
31 /*@ loop assigns i, tmp , sum; */
32 while (i < n) {
33 tmp = read_file(i);
34 sum += tmp;
35 i += 1;
36 }
37 write_file(sum);
38 file_status = CLOSED;
39 }
40 }
41

42 void main() {
43 while (1) {
44 havoc_input ();
45 if (0 < input && input < N) {
46 file_status = OPEN;
47 file_operation(input);
48 }
49 }
50 }

Fig. 6. Program imitating behaviours including reading and writing to a file

6.1 Simple File Open-Close Example

The first test case consists of a simple example that simulates a program per-
forming file operations. The program, which is shown in Fig. 6, repeatedly reads
from the file, performs some operation and writes to the file. For this program,
the temporal property we are interested in verifying (using model checking) is
that, whenever the file is open, it will eventually be closed. This property is
captured by the following TLA formula:

� (file status = OPEN ⇒ ♦ (file status = CLOSED)) (5)

Deductive Verification Based Abstraction 23

To evaluate our method, we created two TLA+ models: one modelled directly
from the program code, and a second abstract model that was created following
the approach outlined in Sect. 2. After creating the two models, we compared
the size of the state space of the models, and the time required for verifying
property (5).

Creating the Models. The first model was translated directly from the C pro-
gram code using the C2TLA+ tool. Due to limitations in C2TLA+, some man-
ual overhead was required to achieve a correct specification. We also added a
fairness constraint to the model (since this is not performed automatically by
C2TLA+), stating that the program should never get stuck (i.e., “stutter”) indef-
initely. Furthermore, we made some abstractions regarding the domain of the
variables: input is given the domain [−2 ∗ N,N] and file status the domain
[0,1]. Moreover, in the main function, a call is made to a havoc input function
in each iteration of the loop, which represents non-deterministic assignment of
the input variable. In a real setting, input is expected to be assigned by some
external component between each iteration of the loop. In the TLA+ model,
the havoc effect is achieved by manually inserting an action that simply assigns
input non-deterministically within its domain.

The second model is a more abstract version of the first model, achieved by
modelling the file operation function from a contract instead of the program
code. The contract used to model file operation was written in ACSL and
is shown as an annotation above the function in Fig. 6. Note that, since the
temporal property we are interested in verifying concerns only the open/close
property of the file, i.e., the value of the file status variable, the contract
only specifies the behaviour of this variable. Using the WP plugin of Frama-C,
we verified that file operation satisfies its contract. Thereafter, we translated
the contract into a TLA action, following the method in Sect. 4.2; that is, it was
translated into the action:

(0 <= n ∧ n < N ∧ file status = OPEN) ⇒ (file status = CLOSED)

Lastly, we completed the creation of the second abstract model by replacing the
parts of the TLA+ model corresponding to file operation with the translation
of the contract. To properly integrate the contract action into the model, we
also added a conjunct to handle appropriately the program counters and stack
registers of the model.

Table 1. Results of model checking two models for property (5)

Verified Total # of states # of unique states Verification time

Full model Yes 832 615 45 574 ∼51 s

Abstract model Yes 26 602 841 ∼5 s

Model Checking. Model checking was performed using TLC on both the full
model, created directly from the program code and on the second abstract model

24 J. Amilon et al.

including the contract action for file operation. The results of the model
checking are shown in Table 1 and, as expected, the state space of the second
abstract model was significantly smaller than the state space of the full model.
Moreover, verification time decreased from 51 s to 5 s, showing that the smaller
state space, for this example, factored into the time required for verification by
TLC. For a fair comparison of the verification time between the two models,
one should also add the time required by WP for verifying the contract to the
total verification time of the abstract model. However, for this example, the time
required by WP was negligible (0.15 s).

1 int state[NUM_SIGNALS]; // global vehicle state
2 static int primaryCircuitNoFlowTime = 0; // counter
3

4 void steering () {
5 VEHICLE_INFO veh_info;
6 SENSOR_STATE prim_sensor;
7

8 //read
9 get_system_state (& veh_info);

10

11 // evaluate
12 eval_prim_sensor_state (&veh_info , &prim_sensor);
13 secondary_steering (&veh_info , &prim_sensor);
14

15 //write
16 write(SECONDARY_CIRCUIT_HANDLES_STEERING , veh_info.secondCircHandlesStee);
17 write(ELECTRIC_MOTOR_ACTIVATED , veh_info.electricMotorAct);
18 }
19

20

21 // scheduler
22 void main() {
23 while (1) {
24 steering ();
25 havoc_inputs ();
26 }
27 }

Fig. 7. The steering function from the steering module together with the main function
which simulates a scheduler

6.2 Simplified Industrial Example

As a second example, we use a C program based on a real software module
taken from the automotive industry. The structure of, and C constructs used
in, the case study program follows that of the real module, but the code have
been rewritten and to some extent simplified, for proprietary reasons and due
to limitations in the current tool-chain. The evaluation method for this example
follows exactly that of the previous example. That is, we first created a full model,
directly from the program code and then created a second model by abstracting
one function using a contract for the function. Then, we model checked both
models for a given property and compared the state spaces and verification
times.

Deductive Verification Based Abstraction 25

Description the Software Module. The software module used in this example
performs a diagnosis of the status of the primary power steering of a vehicle
and, in case of malfunction, activates the secondary (backup) power steering.
A power steering is a device that reduces the manual effort required by the
driver to rotate the steering wheel of the vehicle. The entry-point function of the
module (the steering function) and the scheduler (the main function) of the
simplified version are shown in Fig. 7. The full case study module is roughly 120
lines of code. In a real setting, the scheduler would be some external software
that repeatedly calls several modules in a given order; here, we encoded the
scheduler with the infinite while loop in the main function.

Upon invocation, the steering function first reads the current state of the
vehicle, then calculates if secondary power steering should be activated and,
lastly, writes the result. In a real setting, the reading and writing consist of
communicating with a real-time database but, in our simplified version, this is
simulated by reading and writing to the global array state, which represents the
state of the vehicle. Note that, from the perspective of the steering module, the
state of the vehicle consists of both inputs and outputs. Similar to our previous
example, all (input) variables of the modules are assumed to be assigned by some
external component at any time during program execution, which is represented
with the call to havoc inputs. The module also contains a counter as the global
variable primaryCircuitNoFlowTime, the purpose of which is to remember if
some property holds over several sequential executions. Specifically, the counter
keeps track of the number of sequential iterations (if any) the electric motor of
the vehicle has suffered from hydraulic malfunction.

Creating the Models. As for our first example, the first model is created by using
the C2TLA+ tool, adding a fairness constraint, and abstracting the domains
of certain variables (e.g., variables that are treated as Boolean values in the
C programs are assigned the domain [0, 1]). The havoc statement in the main
function was also treated similarly as in the first example, i.e., by inserting a
TLA action in the model that assigns all input variables non-deterministically
within their respective domains.

The second model was created by first identifying the steering function as
a block of code that we consider as atomic and thus should be specified with an
ACSL contract. It might appear surprising that we consider almost the entire
example program as atomic, but recall that, in a real setting, the steering module
will be only one of several modules called by the scheduler. As a contract for the
steering function, we used an ACSL contract already written in a previous case
study [17]. It should be pointed out that since we re-used a contract originally
written for deductive verification of the module, no additional manual labour
was required for this step in this particular example (and as pointed out above,
we indeed advocate such a way of combing deductive verification with model
checking). Using WP, we verified that steering satisfies the contract. Lastly,
we translated the contract into TLA+ and integrated it into the first model to
create the second abstract model.

26 J. Amilon et al.

Table 2. Results of model checking two models for property (6)

Verified Total # of states # of unique states Verification time

Full model Yes 84 720 46 265 ∼12 s

Abstract model Yes 35 458 4 552 ∼10 s

Model Checking. We model checked the two models, using TLC, against the
following liveness property:

If the electric motor of the engine suffers from hydraulic malfunction,
then the secondary steering should eventually be activated.

In TLA, this property is captured with the formula:

� (hydraulic malfunction ⇒ ♦ secondary steering) (6)

where hydraulic malfunction represents the condition that the electric motor has
suffered from hydraulic malfunction, and secondary steering the condition that
the secondary steering is activated.

The results of model checking the two different models are shown in Table 2.
As seen, verification was successful for both models. Furthermore, we again see
that the state space (number of unique states) was significantly smaller for the
abstract model. However, for this example, we did not observe any significant
difference in the time required for verification (12 s vs 10 s). Moreover, as with the
previous example, one should also consider the time required by WP for verifying
the contract (2.150 s) to the total verification time of the abstract model.

7 Conclusion

In this paper, we proposed an approach of how to combine deductive verification
with model checking in a natural manner, subordinating the former to the latter.
First, deductive verification is used to abstract blocks of code, which can be
considered atomic, into Hoare logic style contracts, in a provably correct manner.
Then, the program model resulting (conceptually) from replacing the code blocks
with their contracts, is model-checked against the temporal properties of interest.
The Temporal Logic of Actions was proposed as a framework for representing the
resulting program models, since both programs and Hoare logic contracts can
be naturally expressed in TLA. We gave a semantic foundation of our modular
approach, in terms of an abstract contract theory we developed earlier. Finally,
we illustrated our approach on two example programs, using Frama-C for the
deductive verification of the selected code blocks, and the TLA+ Toolbox (with
TLC) for representing the abstract program models and for their model checking.

Our preliminary experiments are far too few as yet to allow any definitive
conclusions to be drawn. Both examples in Sect. 6 showed that our approach

Deductive Verification Based Abstraction 27

led to a significant reduction in the size of the state space of the TLA+ model.
Furthermore, the first example indicates that the reduction of the state space
may significantly reduce verification time. However, in the second example, no
speedup in verification time was observed. A key difference in the two examples
is that the contract used in the first example was an incomplete specification (in
the sense that it does not describe fully the indented behaviour of the program),
while the contract used in the second example was a complete one (it models fully
the intended behaviour of the function). We are as of yet not sure as to why, for
the second example, the difference in verification time was not proportionate to
the difference in the size of the state space, and it remains to be shown that our
approach can improve scalability also when relying on complete specifications
for the abstraction.

Another aspect is that the performance of our approach may have been influ-
enced by the particular choice of tools. In particular, the choice of the C2TLA+
plugin and the TLC model checker may not have been optimal as tool support
for our approach. One hypothesis is that a symbolic model checker may be a
better choice.

Future work includes performing a proper evaluation of our proposed app-
roach, both for complete and incomplete specifications, and to complete and
improve the tool chain. Another question that needs investigation is how to
adequately choose the granularity of the code blocks to be considered as atomic
actions. Lastly, better support for showing decomposition and refinement of con-
tracts is desired, for instance by further developing the contract theory in that
direction.

References

1. Alshnakat, A., Gurov, D., Lidström, C., Rümmer, P.: Constraint-based contract
inference for deductive verification. In: Ahrendt, W., Beckert, B., Bubel, R.,
Hähnle, R., Ulbrich, M. (eds.) Deductive Software Verification: Future Perspec-
tives. LNCS, vol. 12345, pp. 149–176. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64354-6 6

2. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. https://frama-c.com/acsl.html

3. Baudin, P., Bobot, F., Correnson, L., Dargaye, Z., Blanchard, A.: WP Plug-in
Manual - Frama-C 23.1 (Vanadium). CEA LIST. http://frama-c.com/download/
frama-c-wp-manual.pdf

4. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4 4

5. Benveniste, A., et al.: Contracts for System Design, vol. 12. Now Publishers, Nor-
well (2018). https://doi.org/10.1561/1000000053

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10̂20 states and beyond. In: Proceedings of Logic in Computer Science
(LICS 1990), pp. 428–439. IEEE Computer Society (1990). https://doi.org/10.
1109/LICS.1990.113767

https://doi.org/10.1007/978-3-030-64354-6_6
https://doi.org/10.1007/978-3-030-64354-6_6
https://frama-c.com/acsl.html
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1561/1000000053
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1109/LICS.1990.113767

28 J. Amilon et al.

7. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

8. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

9. Gurov, D., Westman, J.: A hoare logic contract theory: an exercise in denotational
semantics. In: Müller, P., Schaefer, I. (eds.) Principled Software Development, pp.
119–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98047-8 8

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

11. ISO: ISO C standard 1999. Technical report, ISO/IEC 9899:1999 draft (1999).
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

12. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994). https://doi.org/10.1145/177492.177726

13. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, Boston (2002). https://research.
microsoft.com/users/lamport/tla/book.html

14. Lidström, C., Gurov, D.: An abstract contract theory for programs with proce-
dures. In: Guerra, E., Stoelinga, M. (eds.) FASE 2021. LNCS, vol. 12649, pp.
152–171. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71500-7 8

15. Methni, A., Lemerre, M., Ben Hedia, B., Haddad, S., Barkaoui, K.: Specifying and
verifying concurrent C programs with TLA+. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 206–222. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-17581-2 14

16. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

17. Nyberg, M., Gurov, D., Lidström, C., Rasmusson, A., Westman, J.: Formal veri-
fication in automotive industry: enablers and obstacles. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 139–158. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03427-6 14

18. Oortwijn, W., Gurov, D., Huisman, M.: Practical abstractions for automated ver-
ification of shared-memory concurrency. In: Beyer, D., Zufferey, D. (eds.) VMCAI
2020. LNCS, vol. 11990, pp. 401–425. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-39322-9 19

19. Soleimanifard, S., Gurov, D.: Algorithmic verification of procedural programs in
the presence of code variability. Sci. Comput. Program. 127, 76–102 (2016)

20. Sun, J., Liu, Y., Cheng, B.: Model checking a model checker: a code contract com-
bined approach. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp.
518–533. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16901-
4 34

21. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-319-98047-8_8
https://doi.org/10.1145/363235.363259
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://doi.org/10.1145/177492.177726
https://research.microsoft.com/users/lamport/tla/book.html
https://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-319-17581-2_14
https://doi.org/10.1007/978-3-319-17581-2_14
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-030-03427-6_14
https://doi.org/10.1007/978-3-030-39322-9_19
https://doi.org/10.1007/978-3-030-39322-9_19
https://doi.org/10.1007/978-3-642-16901-4_34
https://doi.org/10.1007/978-3-642-16901-4_34
https://doi.org/10.1007/3-540-48153-2_6

Abstraction in Deductive Verification: Model
Fields and Model Methods

David R. Cok1(B) and Gary T. Leavens2

1 Safer Software Consulting, Rochester, NY, USA
david.r.cok@gmail.com

2 University of Central Florida, Orlando, FL, USA
Leavens@ucf.edu

Abstract. This Experience report compares using model fields and model meth-
ods for specifying abstractions in abstract implementations. Our experience is
connected to past discussions of alternatives in modeling heap state changes and
the axiomatic basis for deductive verification of programs with uninterpreted,
underspecified or recursive methods.

Keywords: Formal methods · SMT solver · Deductive verification · Java
Modeling Language · JML · OpenJML

1 Introduction

Deductive verification (DV) of software requires writing specifications in some speci-
fication language (SL) to complement an actual program implementation in some pro-
gramming language (PL). Similarly to writing the implementation, specifications ben-
efit from designs that abstract, clarify and simplify the intent of the program. Good
abstractions can make the specification more obviously correct1 and improve the per-
formance of the underlying DV system in generating the proofs that verify that the
specifications and implementation are consistent.

Tools that perform deductive verification of software translate a combination of pro-
gram source code and specifications into a logical language that can then be submitted
to a theorem prover to determine whether the source code and specifications are consis-
tent with each other. The translation process incorporates the semantics of both the PL
and the SL. It also must consider which formulation of logical language structure will
provide the best proof success, both in proofs succeeding at all and in the time taken to
do so.

In the Java Modeling Language (JML) [10,15], as in some other SLs, one has a
choice to use model fields or model methods (or a mixture) in writing specifications.

1 In this paper, as generally in DV, we are concerned to establish that implementations concur
with their specifications. But both can be wrong together. Thus a specification that can be writ-
ten more cleanly and readably is more amenable to human review and can be “more obviously”
in agreement with the intent of the software.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 29–44, 2022.
https://doi.org/10.1007/978-3-031-19849-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_3

30 D. R. Cok and G. T. Leavens

In a recent (October 2021–March 2022) specification project for an industrial client, a
target example was specified in each way.

The contribution of this Experience Report is to describe how model fields and
model methods were used in OpenJML [6,7] for this example, identify the advantages
and disadvantages of each approach, and, in particular, how the logical encoding used
by the deductive verification system was affected. To set the stage, early sections of this
paper provide a summary of how DV systems encode PL and SL constructs, particularly
the heap.

The context of this work is deductive verification for legacy software, in this case
software written in Java. Thus we did not have the opportunity to use a system such as
Dafny [18,19] that is designed to verify software as it is written. Rather this project used
a specification language (JML) and tool (OpenJML) appropriate to the target language
(Java). In this case, OpenJML is translating to SMT-LIB [24], with Z3 [11] as its back-
end, automated logical engine.

The examples given below use Java as the PL and JML as the SL; JML embeds
specifications in Java code as Java comments beginning with //@. OpenJML was
extended to handle reads clauses and recursive model fields and (which are then similar
to dynamic frames), both of which were implicit in JML, but without carefully defined
semantics. However these techniques and ideas are applicable to other imperative pro-
gramming languages with heap data storage, such as object-oriented languages, and to
other DV tools, particularly SMT-based tools like ACSL [1] and Frama-C [13].

The overall motivation for this project at the outset was to take the work of this
report beyond what is reported here, namely to determine (a) which logical encodings
of PL features are easier to write and understand (in tool implementations), (b) which
encodings show better proof performance and success, and then (c) are the differences
significant enough to warrant a substantial refactoring of a DV tool implementation.

2 Logical Encoding of Local Computations

Like other modular DV systems, JML and OpenJML verify a program method by
method. Each method’s implementation is verified independently against its own speci-
fication, using just the specifications of methods on which its implementation and speci-
fication depend. The collection of verification proofs of all the methods in the program,
together with proofs of termination, constitute a sound verification that the program
and its specifications are consistent. A typical DV system translates PL+SL source into
logic with a series of steps.

1. Using the semantics of the PL and SL, convert the source into an equivalent form
that consists just of a DAG of basic blocks, where each basic block consists only of
assignments, assert statements, assume statements and havoc statements. Into each
back edge of a loop, where control returns to the loop’s beginning, an assertion
of the loop’s inductive invariant is inserted. In Java, throwing exceptions, try-catch-
finally statements, break and continue statements, and the interplay among these can
lead to complex flows among many basic blocks. Havoc statements assign to listed
variables an arbitrary value consistent with the variable’s type; these are used in the
representation of loops and method calls.

Model Fields and Methods 31

2. Apply a single-static-assignment (SSA) transformation to all the assignments and
variable uses so that each variable has a unique declaration/initialization statement.

3. Transform to a logical form by replacing program variables with logical variables,
assignments with assumptions, basic blocks with chains of implications, and the
whole DAG of basic blocks as a set of logical block equations. The logical encoding
states the property that all the preconditions and other assumptions together imply
that all the desired program properties (e.g., not throwing exceptions) and specifica-
tion assertions hold. This is the property that if proved to always hold verifies that
the program implementation and its specifications are consistent.

4. Those logical block equations are then transformed into the input language for a
logical solver, such as into SMT-LIB for solvers such as CVC5 [3,4] or Z3 [11].

5. The logical solver then pronounces that set of formulae to be unsatisfiable, satisfi-
able, or unknown. For SMT solvers, the property to be proved is negated, so that a
response of satisfiablemeans that there is a particular, concrete assignment of values
to logical variables that satisfies all the preconditions and other assumptions, but also
satisfies the negated assertion (that is, falsifies the original assertion), thereby pro-
viding a counterexample to a desired proof of consistency. An unsatisfiable response
means no such assignment exists, and thus the given assertions are entailed by the
given assumptions (i.e., the implementation is consistent with the specification). A
response of unknown means that the solver ran out of time or memory or otherwise
could not eliminate all possible satisfying assignments.2

Our concern in this paper is principally with the SSA transformation and its interaction
with the heap and with method calls. To set the stage for later complications, the fol-
lowing simple example code snippet shows the SSA and logical transformations when
only stack variables are used. Stack variables are simple because in languages such as
Java that do not permit arbitrary address and pointer calculations, there is no aliasing
among stack variables.

Consider this source code snippet (using Java notation for assignments and opera-
tors). Here the assert statement can be considered the specification and the other state-
ments the program implementation.

1 x = x + y;
2 y = x - y;
3 x = x - y;
4 //@ assert x == \old(y) && y == \old(x);

The \old construct says to evaluate its argument in the context at the beginning of the
code snippet. This simple example just has one basic block.

The SSA transformation results in the following.

1 x1 = x0 + y0;
2 y1 = x1 - y0;
3 x2 = x1 - y1;
4 assert x2 == y0 && y1 == x0;

2 The presence of quantified expressions often yields a response of unknown.

32 D. R. Cok and G. T. Leavens

For the transformation to a logical form, we use logical variables that have the same
name as the SSA variable, but using subscripts. We obtain the following:

(x1 = x0 + y0) → (y1 = x1 − y0) → (x2 = x1 − y1) → (x2 = y0 ∧ y1 = x0) (1)

In (1), = is equality, → is right-associative boolean implication, and ∧ is conjunction.
Negating formula (1), converting to SMT-LIB, and passing the result to an SMT solver
produces unsat, i.e., the assertion follows from the program code.

In this example, the + in the program source is addition in Java, the + in the assert
statement is addition in the specification language, and the + in the logical formula
is addition in the logical language, which in SMT-LIB is addition over the unbounded
mathematical integers. Here we mapped the first two into the latter, which is an inter-
pretation of the semantics of the PL addition and SL addition as mathematical addition.
However, for Java, addition must be interpreted as 2’s-complement addition; addition
in JML specifications is by default mathematical addition.

3 Encoding Heap Access and Update—Previous and Related
Work

3.1 Notation

The encoding process above becomes more complicated when the PL has references
to objects in heap storage. This introduces the possibility of aliasing—different vari-
ables can refer to the same object—and objects have substructure in the form of named
fields or as array elements. In Java, field names are constants and are not subject to
any computation; in C/C++ by contrast, fields can overlap in memory as unions and
pointer arithmetic can cause arbitrary aliasing. Java also has arrays, which are essen-
tially objects with computable fields, but in Java array indexes can only refer to elements
that are within the bounds of the array. The ensuing discussion will focus on fields, as
arrays are handled similarly, with only minor modification.

A heap containing objects with fields is thus a mutable (updatable) structure,
indexed by a reference value and a field name, that stores values that have PL types,
such as integers of various bit-widths, boolean values and references. The discussion
that follows uses the following notation:

– object references are denoted by symbols like o and p in programs with correspond-
ing logical symbols as o and p

– references to arrays are denoted by variations on a in PL and SL and a in logic
– variations on i, j, k are PL and SL variables of various integer-like types; corre-
sponding logical variables are i, j, and k

– field names use letters like f and g; the logical equivalents are variations of f and g,
as constants, or of F and G as maps

– letters like v and v indicate values of various types stored in PL fields or in logical
maps

– the heap is implicit in programs, but is represented as variations on h (as an index)
or H (as a map) in logical equations

Model Fields and Methods 33

– brackets, as in f [o] or L [h, o, f], denote map lookup; the notation f [o := v] and
L [h, o, f := v] is map update: f [o := v] denotes a new map f ′ that is the
same as f except that f ′[o] = v. That is, these two operations satisfy the axioms

∀f, o, v : f [o := v][o] = v and ∀f, o, p, v : p �= o → f [o := v][p] = f [p]

and similarly for maps with other types and numbers of indices.

3.2 Heaps as Maps

Most generally then, we can represent a heap access as a lookup L in a map h, where
L [h, o, f] returns a value v corresponding to object o and field f in heap h, and
L [h, o, f := v] returns a new heap value h′ in which the value v is now associated
with o and f , but otherwise h′ is the same as h. One complication is that the type of v
must match the type of f , for a typed PL like Java.

In 2011, Böhme andMoskal [5] published an assessment of a variety of heap encod-
ings and measured their performance on a set of bespoke benchmarks when imple-
mented for a number of logical engines. The encoding variations stem from treating the
heap as an index in L or as a map itself; similarly, fields can be represented as either
constant values that are indices into a map or as maps themselves. That gives a number
of options, as presented and named in [5]:

synchronous heap the heap H is an updateable 2-dimensional map indexed on object
and field, with lookupH[o, f]. (Standard SMT-LIB does not support explicitly two-
dimensional arrays, though some SMT solvers, such as Z3, do.)

two-dimensional heap the heapH is a nested map of maps, where either the object or
the field may be the first index, with lookup H[o][f] or H[f][o]. These nested maps
make update more complicated: instead of H[o, f := v], there is either H[o :=
H[o][f := v]] or H[f := H[f][o := v]].

field heap the heap is separated into a number of heaps by field, so each field f is
represented by a map F [o]. This corresponds to currying the map H[f] into a map
F (for each field) from references to values, which is possible because field names
are pure constants.

The fact that the heap is implicit in the field heap encoding, whereas in all other encod-
ings it is explicit, makes the field heap categorically different than the other encodings.
In some ways the field heap encoding is simpler to use, particularly in the absence of
method calls. However, it does lose the ability to quantify over fields, which can be
useful in modeling features such as frame conditions. Thus axiomatization with non-
field heaps can be more succinct, whereas with field heaps those axioms may need to
be re-instantiated whenever the heap changes.

For C or C++ another option is needed to model pointer arithmetic:

linear heap lookup is H[dot(o, f)], which uses an operation, dot, that combines a
pointer and a field.

Böhme and Moskal measured performance of these options, axiomatizing each encod-
ing option for a variety of logical solvers. Variations of orders of magnitude in perfor-
mance were measured. They reported several interesting observations:

34 D. R. Cok and G. T. Leavens

– The field heap encoding was by far the most efficient in most cases; the two-
dimensional heap of the form H[p][f] was comparable in time performance for Z3,
but solved many fewer problems.

– Performance on other heap encodings varied considerably across solvers and across
encodings.

– In the case of Z3, the performance varied significantly depending on the set of tool
parameters used. It also varied significantly with the use of patterns to guide the
instantiation of quantified formulas.

– SMT-based solvers (e.g., Z3, CVC3, Yices) performed overall better on this bench-
mark set than did ATP solvers (e.g., E, SPASS, Vampire).

– Breaking up a large verification formula can produce some performance improve-
ment.

An overall observation is the importance of design choices (heap encoding, tool, tool
parameters) to the performance of the DV system. However, the systems involved in this
study were measured more than a decade ago; they have been significantly improved
since then, as evidenced by the results of the annual SMTCOMP competition [8,23,25],
but as the measurements have not been repeated, we are building, cautiously, on the
original conclusions.

The reasons for differences in performance for different heap encodings are a mat-
ter of speculation. However, a reasonable hypothesis is that in the field heap the solver
spends less time doing alias determination than in the two-dimensional heap mappings,
since inH[f][p], some reasoning steps are needed to determine whether two field iden-
tifiers f and f ′ are the same or different.

3.3 Arrays

Arrays are encoded like fields, but with an integer index. Like fields, there are a vari-
ety of ways to encode arrays. In Java, these must take account of the property that
Java arrays are aliasable; that is, the assignment b = a; means that b now refers
to the same array as a, not to a copy of it. Element i of array-typed field a of an
object o, that is, o.a[i], might be encoded as A [L [h, o, a], i] or HA[H[o, a], i] or
E[A[o]][i], where A , HA, E, and A are maps for the portion of the heap containing
arrays. Type considerations add complexity because L [h, o, a] and A[o] are now an
array type. There are now two layers of heap lookup, but otherwise the kinds of axioms
and reasoning needed are similar to those for regular fields. It is also possible to consider
integer indices (of arrays) to be just another kind of field identifier, further unifying the
treatment of fields and arrays. We ignore arrays in the following discussion.

3.4 Embedding in SMT

If we use SMT-LIB [24] as the logical language, then we need to consider to what
extent SMT-LIB supports these encoding models. (Even if a tool uses Boogie [17] as
an intermediate language, the encoding will eventually be mapped into SMT-LIB.)

There is a design choice in how SMT-LIB is used to encode mappings with a single
index: one can use either SMT-LIB’s uninterpreted functions or its maps with single-
index but with arbitrary index and value types.

Model Fields and Methods 35

– The advantage of using SMT-LIB’s built-in maps is that then the solver can use the
solver’s built-in, highly engineered decision procedures for read-over-write maps,
which includes extensionality.3 However, SMT-LIB is also strictly typed, which
means that different map types are needed for different field types.

– Objects can be treated more uniformly if the model uses generically axiomatized
uninterpreted functions; e.g., heap values that are arrays can be treated the same
as heap values that are other references. The types of different field values can be
handled by defining injective functions that wrap values into a generic container
and unwrap them into specified types.4 One disadvantage of this approach is that
the solver then needs to reason its way through these wrapping and unwrapping
functions.

Also, SMT-LIB does not support maps with more than one index (though Z3 does),
soH[o, f] must necessarily be either axiomatized as uninterpreted functions or embed-
ded in standard SMT-LIB as either H[o][f] or H[f][o].

In addition to Böhme and Moskal [5], other authors have discussed the use of these
encodings in specific systems.

– Leino and Rümmer [20] present how these encodings are accommodated in the
design of Boogie [17].

– Weiss [26] recaps Böhme and Moskal’s discussion of heap encodings in the context
of the KeY tool [14] and its JavaDL logic.

– The KeY Book [2] also gives axioms for heap encoding in the KeY tool.
– Mostowski and Ulbrich [21] also discuss the semantics and implementation of JML
model methods in the context of dynamic dispatch.

– Müller [22] discusses extensively the problems in verifying abstractions, though
without detailed discussions of logical heap encodings.

OpenJML currently uses the field heap encoding, inheriting it from its predecessors
ESC/Java2 [9] and ESC/Java [12]. Part of the goal of this project was to determine
whether a change in heap encoding would be worth the refactoring effort.

4 Model Fields and Model Methods

As will be illustrated in the next section and discussed in more detail in Sect. 7, abstract
properties of a class can be represented by either model fields or model methods.

A model field is a field that is only present in the specification. It may be completely
uninterpreted, with its properties determined by axioms, invariants and pre- and post-
conditions. Or it can be set equal to an expression using JML’s represents clause,
in which case that equality results in an axiom or assumption about the value of the
model field. In other respects, a model field is encoded just like other fields—as an
array lookup as described in Sect. 3.2.

A model method is a pure (i.e. side-effect-free) method that is part of the specifica-
tion but can be used with specification expressions. A model method typically has pre-

3 Private communication with Clark Barrett regarding CVC5. April 2022.
4 Private communication. Rustan Leino regarding encoding in Dafny and Boogie. April 2022.

36 D. R. Cok and G. T. Leavens

and postconditions that stipulate when it is well-defined and what its value is. Generally
speaking, method calls used in implementations or specifications are replaced by asser-
tions of preconditions and assumptions of postconditions. But there are circumstances
in which a matching logical function is defined that mirrors the definition of the model
method. This helps with ensuring that underspecified model methods are deterministic
and is also necessary for recursive methods.

5 Simple Example

Consider the simple example shown in Fig. 1. The interface Shape has properties
sides and perimeter, which are model fields. JML allows interfaces to have instance
fields for this purpose. The Java methods sides() and perimeter() report these
properties. In Java these are abstract methods with no implementation, but in JML we
can give specifications telling their values in terms of the model fields. Another method
twice() doubles the linear dimensions of the Shape. Consequently it is specified as
assigning to (potentially modifying) perimeter, but not to sides.

The class Square is one implementation of Shape. The notable item here is the use
of the represents clauses to associate expressions with the interfaces’s model fields.
One can easily imagine another class Triangle that also implements Shape.

Figure 2 shows a test program. With the addition of features to avoid arithmetic
overflow,5 this combination of program and specification verifies. Keep in mind that
verification in JML is modular: the verification of test() refers only to the specifi-
cations of methods it calls, that is, only to methods in Shape and not to anything in
Square. Similarly, Shape knows nothing about Square.

The key question is this: the call of twice() in test() modifies the heap, and
test() only knows that it has a Shape object, so how does the verifier know that the
value of perimeter() has changed but the value of sides() has not? The answer
combines information from two parts of Shape’s specification:

(a) The frame condition (i.e., the assigns clause) of Shape.twice() states that
the method might change the value of the model field perimeter but not sides.
(OpenJML enforces the rules that two model fields with different names have dis-
joint data groups. In derived classes, a field may not be added to two data groups
unless one is explicitly a member of the other.)

(b) The postcondition of Shape.twice() uses the new value of perimeter but the
call to sides() only uses the not-changed value of sides.

That is, to verify the test program in Fig. 2, the verifier uses the frame condition
(assigns perimeter;) and the specifications of the model methods from Shape.
The specifications of the model methods are effectively inlined in the logical represen-
tation of the source and specifications for verification.

5 The full program is available from the author, but not included for reasons of space.

Model Fields and Methods 37

1 public interface Shape {
2 //@ public model instance int sides;
3 //@ public model instance int perimeter;
4
5 //@ assigns perimeter;
6 //@ ensures perimeter == 2*\old(perimeter);
7 public void twice();
8
9 //@ ensures \result == sides;

10 //@ pure
11 public int sides();
12
13 //@ ensures \result == perimeter;
14 //@ pure
15 public int perimeter();
16 }
17 public class Square implements Shape {
18 public int side; //@ in perimeter;
19
20 //@ represents sides = 4;
21 //@ represents perimeter = 4*side;
22
23 //@ ensures side == s && sides == 4;
24 public Square(int s) { side = s; }
25
26 // specification inherited
27 public void twice() { side = 2*side; }
28
29 // specification inherited; cf the represents clause for sides
30 //@ pure
31 public int sides() { return 4; }
32
33 // specification inherited; cf the represents clause for perimeter
34 public int perimeter() { return 4*side; }
35 }

Fig. 1. Simple example specified with model fields

1 public class Test {
2 public void test(Shape shape) {
3 int s = shape.sides();
4 int p = shape.perimeter();
5 shape.twice();
6 int ss = shape.sides();
7 int pp = shape.perimeter();
8 //@ assert s == ss;
9 //@ assert 2*p == pp;

10 }
11 }

Fig. 2. A test program for Shape

6 Using Model Methods

Now why are the model fields even needed? Could we not simply use the methods
size() and perimeter() to model the properties of the Shape? Note that in JML
one can model the behavior of a system using mathematical types and operations, such
as mathematical integers and reals, sequences, sets and maps. These mathematical func-
tions do not interact with the heap; thus, one could declare model fields with such math-
ematical types and connect them to the implementation through represents clauses.
However, doing so would require significant duplication of concepts and implementa-

38 D. R. Cok and G. T. Leavens

tion: the actual implementation and a parallel structure, perhaps more abstract, in the
specification. It is often more convenient and more concise, especially in simple situ-
ations, to use Java methods themselves (either ones in the actual Java implementation
or ones added as model methods in the JML specification) as modeling elements. JML
allows some Java methods (those that are declared pure, do not have side-effects, do
not throw exceptions, and always terminate) to be used as such modeling functions.

For example we could write, in interface Shape,

1 //@ old int oldSides = sides();
2 //@ old int oldPerimeter = perimeter();
3 //@ ensures sides() == oldSides;
4 //@ ensures perimeter() == 2*oldPerimeter;
5 void twice();

(Here the old clause captures a value computed in the pre-state as a local variable
available in the post-conditions. It is used to simplify reading or to extract common
subexpressions.) However, verification along these lines does not work without further
modification. The first problem is that twice() does not indicate what it might alter.
We still need a frame condition, which can be specified using a datagroup that limits the
changes that twice() may perform.6 The second problem is that because there is no
concrete field in which to ground the values of sides() and perimeter(), we need
to implement in the encoded logic that the methods are deterministic. This determinism
ensures that two successive calls of, say sides(), with no intervening change in the
heap produce the same result.

The standard encoding for method calls is that the preconditions are asserted, the
frame conditions are translated into havoc statements, and the postconditions (giving
the relationships of new values of the havoced variables to old ones) are assumed. In
the absence of postconditions, the havoced variables are unconstrained. To encode that
the method is deterministic, OpenJML adds an assumption of the form result ==
f(args), where result is a logical variable representing the result of the method call
and f is a logical function that represents the method being called. The encoding of
such functions is discussed below; the effect of this assumption is that, within the same
heap state, a given (pure) method always gives the same result, even if that result is
underspecified.

A third problem, is that the postcondition of Shape.twice() must include state-
ments about how twice() affects both sides() and perimeter(). Given this post-
condition, the implementation of test() can be verified. But if there are 20 methods
instead of two, all 20 would have to be listed. The reason? There is no specification
of what these methods depend on. Even if we add the datagroup mentioned above, we
have no indication about whether these methods depend on memory locations in that
datagroup. Without knowing that sides() does not depend on side, the system cannot
conclude that its value does not change when twice() is called. The solution to this
problem is to add reads (a.k.a. accessible) clauses to the specifications of functions
that list the memory locations on which the functions depend.

6 There is not space here to explain the use of datagroups; see [16] for a justification of the
datagroup approach used in JML.

Model Fields and Methods 39

1 interface Shape {
2
3 //@ model instance JMLDataGroup _state;
4 //@ model instance JMLDataGroup _sides;
5
6 //@ public normal_behavior
7 //@ old int oldPerimeter = perimeter();
8 //@ reads _state;
9 //@ assigns _state;

10 //@ ensures perimeter() == 2*oldPerimeter;
11 public void twice();
12
13 //@ public normal_behavior
14 //@ reads _sides;
15 //@ pure
16 public int sides();
17
18 //@ public normal_behavior
19 //@ reads _state;
20 //@ pure
21 public int perimeter();
22 }
23
24 class Square implements Shape {
25 //@ public normal_behavior
26 //@ ensures side == s ;
27 public Square(int s) { side = s; }
28 public int side; //@ in _state;
29
30 //@ also public normal_behavior
31 //@ old int oldSides = sides();
32 //@ old int oldPerimeter = perimeter();
33 //@ reads side, _state;
34 //@ assigns side, _state;
35 //@ ensures sides() == oldSides;
36 //@ ensures perimeter() == 2*oldPerimeter;
37 public void twice() { side = 2*side; }
38
39 //@ also public normal_behavior
40 //@ reads _sides;
41 //@ ensures \result == 4;
42 //@ pure
43 public int sides() { return 4; }
44
45 //@ also public normal_behavior
46 //@ reads _state;
47 //@ ensures \result == 4*side;
48 //@ pure
49 public int perimeter() { return 4*side; }
50 }

Fig. 3. Specification using model methods

The adjusted specification is shown in Fig. 3 (the code for Test is unchanged) and
verifies without problem.

The important conclusions to draw from this example are these:

– In Shape, the model methods perimeter() and sides() are uninterpreted
functions. They may have some properties that can be axiomatized, such as having
non-negative values, but they are very underspecified.

– Reasoning about repeated invocations of such model methods within the same pro-
gram state (i.e., with reference to the same heap) relies on these methods being
deterministic—always producing the same values for the same arguments and eval-

40 D. R. Cok and G. T. Leavens

uation context. Axioms relying on a definition of a corresponding logical function
in the encoding must be added to the translation of a method call to ensure this
determinism.

– Reasoning about invocations of a model method in different heaps relies on knowing
that the memory locations that might have been changed in altering the heap are
disjoint from the memory locations that are read by the model method.

The issues here concern underspecified functions—functions with insufficient specifi-
cation to enable their results to be computed from their specification. It is worth noting
that the same problems arise with recursive functions, even fully defined ones, because
logical reasoning engines do not do induction on their own and do not unroll recur-
sive definitions. Recursive functions are also essentially underspecified, axiomatized,
uninterpreted functions.

Invariants pose one additional difficulty for model methods. With model fields one
can easily state an invariant like 0 <= perimeter in Shape. With model fields one
would write 0 <= perimeter(). But in JML, invariants must hold when methods
are called; so in this case, 0 <= perimeter() must hold before perimeter() is
called. A circular invocation of perimeter() results. The usual way to fix this is to
declare perimeter() as a helper method for which invariants are neither required
nor guaranteed. But then in the call of Square.perimeter() the invariant cannot be
assumed and an arithmetic overflow might occur. In such situations a model field might
be needed in any case.

7 Encoding Model Methods

This section describes logical encodings for model methods, that is, methods that are
used in specifications and so need a logical representation.

One can translate a method like perimeter into a corresponding logical function
that has formal parameters for every entity on which the value of the method depends.
In this case that is the Shape reference itself and the heap; functions that represent
Java methods with additional parameters will also need logical equivalents of those
additional parameters.

There are variations on this theme that depend on the heap encoding. To explain
these we use the logical type REF as the type of all Java objects and Heap as the
logical type of heaps in the encoding.

– If heaps are encoded as synchronous or two-dimensional heaps, then a model method
is encoded as a logical function that takes a heap parameter; e.g., perimeter() is
encoded as the logical function perimeter(h, p) where h has type Heap and p has
type REF .

– If the field heaps encoding (see Sect. 3.2) is used, then the heap parameter is replaced
by a list of the specific field heaps needed in the evaluation of the function’s specifi-
cation. However, such a list might be long.

– The heap parameter can also be made implicit by currying perimeter(h, p) into
perimeterh(p), where there is a different logical function for perimeter for each
heap (i.e., for each program state). With this option neither the heap nor any field
maps need be listed as parameters.

Model Fields and Methods 41

The last option works best with field heaps, for which the heap is already an implicit
parameter. For other heap encodings the first option works best, because there is an
explicit heap that can be passed as an argument; with some theorem provers, this is a
rationale for preferring encodings other than field heaps. However, when working with
underspecified methods, both alternatives suffer equally from the problem described
next.

For underspecified methods, the reasoning problem is the lack of sufficient infor-
mation about such methods. We can contrast this with completely specified meth-
ods, such as Square’s method perimeter, which is specified to return a value of
4 × L [h, p,#side], where #side is a constant corresponding to the field side. By
contrast, for an underspecified method, such as Shape’s model method perimeter,
a call may have different results in different program states; because the heap h is a
parameter to the encoding perimeter(h, p). For reasoning about such calls, the reads
clause is crucial. Consider two heap states, h and h′, where h′ is derived from h by some
sequence of heap-changing operations. Let Δ(h, h′) be the set of memory locations
which are changed between the two heaps; the prover knows that Δ(h, h′) is at most
the union of the frame location sets for each heap-changing operation in the sequence
going from h to h′. In general, for a method m with receiver p, arguments args, and
reads footprint freads(h, p, args), if freads(h, p, args) is disjoint from Δ(h, h′), then
m(h, p, args) = m(h′, p, args). (Note that in general a reads footprint depends on the
function’s arguments and the current heap.)

There are a couple design options that encode such reasoning. On the one hand
we can state the above relationship between heap-change footprints and function reads
footprints as a general property of heaps, footprints, and functions. But this requires
encoding heaps, frame footprints for heap changing methods, reads footprints of func-
tions, and functions themselves as first-class elements in the logical encoding. Such an
encoding adds to the reasoning load for the theorem prover.

On the other hand, we can introduce axioms stating under which conditions
m(h, p, args) = m(h′, p, args) for each pair of heaps and each function as needed,
but only as needed. This adds many more axioms, but they are tailored for specific sit-
uations in the program encoding; in addition the axioms can often be instantiated for
the method arguments that are actually used, avoiding the need for the logic engine to
figure out when to instantiate the quantified axiom.

Our experience in actual practice is that this latter approach works acceptably. It was
implemented because it was the smaller step from the existing implementation, though
an experiment contrasting this approach with the approach of using general axioms is
still needed. We say “working acceptably” due to the smallish scale of our test examples
and target system. The number of axioms and states was manageable because the size
of methods was moderate and the numbers of methods used for modeling within a given
method was not large.

8 Contrast and Conclusion

The goal of this work was to make a comparison between specifying using model fields
vs. using model methods. To summarize the differences in practice of these two abstrac-
tion mechanisms,

42 D. R. Cok and G. T. Leavens

a model field

– is a possibly-uninterpreted abstract specification-only field
– may be given an interpretation using a represents clause
– has an associated datagroup that, in combination with the frame conditions of heap-
changing operations, implies when the model field (for a given object) is unchanged
and when it might be changed by those heap-changing operations

a model method

– is a possibly uninterpreted abstract specification-only method
– may be given an interpretation using postconditions
– has an associated reads clause that, in combination with the frame conditions of

heap-changing operations, implies when the value of the model method (for a given
object and set of arguments) is unchanged and when it might be changed by those
heap-changing operations

Summarized in this way, model fields and model methods are quite similar: model fields
are like model methods that depend only on the heap and the receiver object; model
methods can describe properties that have more parameters than just the receiver object.

Here are our experience-generated informal observations on using both mecha-
nisms.

– Both means of modeling were overall successful in specifying the target example.
– Where both mechanisms were applicable, model fields were easier to use because:

• They can precisely specify a method’s result for an otherwise underspecified
abstract method.

• They rely on a heap encoding that is already implemented in the tool.
– Model methods are necessary to specify properties that need arguments or that are
not simple values characteristic of an object (e.g., a model method is needed to
describe the value of a list element at some index, whereas the length of a list can be
a model field).

– Reasoning about underspecified model methods in the presence of heap changes
required implementing additional axioms that enabled reasoning about changes in
those methods (or lack thereof) when the program’s state changed. This included
implementing reads clauses and the infrastructure for comparing locations sets
from assigns clauses and reads clauses.

– The interaction between invariants and model methods, particularly uninterpreted
model methods in interfaces or abstract classes, typically makes it easier to write
specifications using model fields (when invariants are involved).

– The simplest and most successful specifications were those that consisted of model
fields that were values of some mathematical type. Those values and their operations
are not part of the heap and so reasoning about them bypasses the issues noted in
this paper; the model fields themselves are part of the program state and are part of
assigns sets of memory locations.

These (informal) observations are from a single project’s experience and on a relatively
small project. It will take future work on larger projects to determine how well they
generalize.

Model Fields and Methods 43

Acknowledgements. Work on JML and OpenJML has benefited from various NSF research
grants. OpenJML has also benefited from sponsorship by various industrial clients, including
AWS and Goldman Sachs. Thanks also to Rustan Leino and Mattias Ulbrich for private conver-
sations regarding heap encodings in their various tools.

References

1. ACSL. ANSI-C Specification Language (2021). https://github.com/acsl-language/acsl/
2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.: Deductive soft-

ware verification - The KeY Book. In: LNCS, Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-49812-6

3. Barbosa, H., et al.: CVC5: a versatile and industrial-strength SMT solver. In: TACAS 2022.
LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99524-9 24

4. Barrett, C., et al.: CVC5 web site (2022). https://cvc5.github.io/
5. Böhme, S., Moskal, M.: Heaps and data structures: a challenge for automated provers. In:

Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
177–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6 15

6. Cok, D.R.: (2021)
7. Cok, D.R.: JML and OpenJML for Java 16. In: Proceedings of the 23rd ACM International

Workshop on Formal Techniques for Java-like Programs (FTfJP 2021), pp. 65–67. Associa-
tion for Computing Machinery, NY (2021). https://www.openjml.org

8. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. J. Satisfiability Boolean
Model. Comput. 9, 207–242 (2014)

9. Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G., Burdy, L.,
Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 108–128.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30569-9 6

10. Cok, D.R., Leavens, G.T., Ulbrich, M.: Java Modeling Language (JML) Reference Manual,
2nd edn (2022). www.openjml.org/documentation/JML Reference Manual.pdf

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

12. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation (PLDI 2002), vol. 37(5), pp. 234–245. SIG-
PLAN, NY. ACM (2002)

13. Frama-C: (2021). https://frama-c.com
14. KeY: The KeY project (2021). www.key-project.org
15. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral inter-

face specification language for Java. Technical Report 98-06-rev29, Iowa State University,
Department of Computer Science (2006). Also ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006)

16. Leino, K.R.M.: Data groups: specifying the modification of extended state. SIGPLAN Not.
33(10), 144–153 (1998)

17. Leino, K.R.M.: This is boogie 2 (2008)
18. Leino, K.R.M., et al.: Dafny github site (2021). https://github.com/dafny-lang/dafny.

Accessed Sept 2021
19. Leino, K.R.M., Ford, R.L., Cok, D.R.: Dafny reference manual. https://github.com/dafny-

lang/dafny/blob/master/docs/DafnyRef/out/DafnyRef.pdf. Accessed Jul 2021

https://github.com/acsl-language/acsl/
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://cvc5.github.io/
https://doi.org/10.1007/978-3-642-22438-6_15
https://www.openjml.org
https://doi.org/10.1007/978-3-540-30569-9_6
www.openjml.org/documentation/JML_Reference_Manual.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://frama-c.com
www.key-project.org
https://github.com/dafny-lang/dafny
https://github.com/dafny-lang/dafny/blob/master/docs/DafnyRef/out/DafnyRef.pdf
https://github.com/dafny-lang/dafny/blob/master/docs/DafnyRef/out/DafnyRef.pdf

44 D. R. Cok and G. T. Leavens

20. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: design and
logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
312–327. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 26

21. Mostowski, W., Ulbrich, M.: Dynamic dispatch for method contracts through abstract predi-
cates. In: Proceedings of the 14th International Conference on Modularity (MODULARITY
2015), pp. 109–116. Association for Computing Machinery, NY (2015)

22. Müller, P.: Modular Specification and Verification of Object-Oriented Programs, pp. 143–
194. Springer-Verlag, Heidelberg (2002). https://doi.org/10.1007/3-540-45651-1 5

23. SMTCOMP: Smtcomp competition (2022). https://smt-comp.github.io/2022/
24. Tinelli, C., et al.: SMT-LIB web site (2003). https://smtlib.cs.uiowa.edu/
25. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The SMT

competition 2015–2018. J. Satisf. Boolean Model. Comput. 11(1), 221–259 (2019)
26. Weiß, B.: Deductive verification of object-oriented software: dynamic frames, dynamic logic

and predicate abstraction. PhD thesis, KIT (2011)

https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/3-540-45651-1_5
https://smt-comp.github.io/2022/
https://smtlib.cs.uiowa.edu/

A Hoare Logic with Regular Behavioral
Specifications

Gidon Ernst1(B), Alexander Knapp2, and Toby Murray3

1 LMU Munich, Munich, Germany
gidon.ernst@lmu.de

2 Augsburg University, Augsburg, Germany
knapp@informatik.uni-augsburg.de

3 University of Melbourne, Melbourne, Australia
toby.murray@unimelb.edu.au

Abstract. We present a Hoare logic that extends program specifications
with regular expressions that capture behaviors in terms of sequences of
events that arise during the execution, akin session types and process-like
behavioral contracts. In comparison, the approach presented here strikes
a particular balance between expressiveness and proof automation. The
approach is modular and integrates well with auto-active verification
tools. We describe and demonstrate our prototype implementation in
SecC using two case studies: A matcher for E-Mail addresses and a spec-
ification of the game steps in the VerifyThis Casino challenge.

Keywords: Hoare logic · Behavioral specification · Regular
expressions

1 Introduction

Context of this work is the aim to declaratively specify the state machine logic
of programs that have a control state and in which the sequence of events mat-
ters. A typical example are stateful protocols (e.g. the TCP handshake) and
device drivers. One motivation for this paper in particular is the Casino case
study from the ongoing VerifyThis discussion series since 2021.1 Goal of these
discussions is to bring different communities together and bridge specifications
using contract-based mechanisms typically found in deductive verification tools
and the automata-based approaches of model-checking. Of particular interest
was the integration of automata-like specifications and models with deductive
program verification tools. Attributing and verifying temporal behavior of sys-
tems has a long history, e.g. [2,17,26]. Contemporary approaches include an
embedding of a highly expressive process-calculus language into the Separation
Logic assertions [4,23,24,30], tackling highly complex protocols and low-level
implementations at the same time at the cost of manual annotation and proof

1 https://verifythis.github.io/casino/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 45–64, 2022.
https://doi.org/10.1007/978-3-031-19849-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_4&domain=pdf
https://verifythis.github.io/casino/
https://doi.org/10.1007/978-3-031-19849-6_4

46 G. Ernst et al.

burden. At the other end of the spectrum are approaches for temporal logic model
checking of C programs [8,29,33], which achieve full automation by abstraction,
bounded search, or by restricting the properties that can be verified.

Goal: Here, we aim to explore a particular point in the design space of embed-
ding declarative behavioral specification of event traces into the pre- and post-
conditions of a Hoare-like logic. The approach combines strong reasoning about
the functional correctness of programs with a light-weight integration of behav-
ioral aspects into contracts. We strive for an as-simple-as-possible extension of
Hoare logic with such behavioral specifications; and by restricting ourselves to
behaviors described by regular expressions the additional proof obligations can
be decided automatically with little additional effort in the verification.

We illustrate these ideas with an example in Sect. 2, which will uncover that
an entirely naive approach does not work and that behavioral specifications need
to take some form of dependence on the state to capture interesting behavior.

Contribution: In Sect. 3, we develop a Hoare-like logic with judgements
{P U } c {Q V }, where in addition to the ordinary pre-/postcondition pair
P,Q for command c, we have two regular trace specifications U and V that record
the history [4] of events emitted so far and after termination of c, respectively.
The logic is proved sound in the Isabelle/HOL proof assistant and we suggest
a corresponding completeness result. We have implemented the approach in the
deductive verification tool SecC [11], as discussed with details on this automa-
tion in Sect. 4. We illustrate and discuss in depth the approach with two case
studies in Sect. 5: A matcher for E-Mail addresses and the Casino challenge. We
discuss related work in Sect. 6, where in addition to the approach taken here, a
dual view has been proposed on the role of trace specifications U and V that are
part of the judgements. We clarify how this affects properties of the resulting
logics.

2 Motivation

We clarify the minimal ingredients that are needed for the construction of the
logic using an example. Consider a loop that generates a sequence of alternating
events even and odd, where the loop test nondeterministically terminates the
loop but only in a state when b is false, expressed as pseudocode:

b :=
∨ b

b

b := ¬b

Fig. 1. Event alternation

The specification command emit a demarks the
occurrence of an event during program execution,
and we are interested in specifying the behavior
of programs in terms of the event traces that can
occur at runtime. Events are sometimes attributed
to certain steps of the program’s semantics, but
here we just keep them abstract and assume that
the right events have been placed at appropriate
locations in the source code in terms of emit state-
ments.

A Hoare Logic with Regular Behavioral Specifications 47

The behavior of the above program is captured nicely by a regular expression:

program specification (even·odd)∗ (1)

where · denotes concatenation and ∗ denotes repetition. The program is indeed
correct with respect to this specification, informally because the loop body is
executed for the first time with ¬b, thus emitting an even event first, the loop
alternates between the two events, and terminates never, only after no event or
after an odd event has been emitted.

A straightforward idea to specify the traces of a while loop is to repeat
whatever the body produces, using the star operator. In the example above, the
behavior of the loop body can be abstracted by the regular expression (even+odd)
from which we can conclude that the loop adheres to (even+odd)∗. However, this
naive approach cannot capture the alternation of even and odd events as pro-
duced by the loop. This insight coincides with the fact that the finite automaton
that accepts the same language as (1) has two states, thus, we need two regular
expressions to describe traces with respect to the current value of b.

Just as with the functional component of loop specifications, we can choose
whether we want to describe the events observed so far (analogously to an invari-
ant), or alternatively whether we want to specify the traces that are still permit-
ted to occur (analogously to a loop postcondition or summary [10,12,32]). For
this example, the two alternative loop specifications are:

loop invariant (even·odd)∗ if ¬b (even·odd)∗·even if b

loop summary (even·odd)∗ if ¬b odd·(even·odd)∗ if b

The regular expressions are conditioned upon a formula which depends on the
value of b in some arbitrary intermediate state encountered at the loop head. If b
is currently true, then the invariant expresses that this current state has been
reached by a trace prefix that ends in an even event, such that the subsequent
iteration concatenating an odd to the end of this regular expression will again
give (1). Conversely, the loop summary in this case makes it explicit that the next
event expected is an odd event. For now we will focus on the invariant approach
as it is easier to present and more familiar (cf. [10, Rule LoopContract]).

3 Approach

We present an extension of Hoare logic that integrates trace specifications in
terms of regular expressions with deductive proofs, where program correctness
is expressed as judgements of the form {P U } c {Q V } with respect to pre-
/postconditions P , Q and a command c. In addition, there are two conditional
regular expressions U and V , subsequently called regular behavioral specifica-
tions, denoting the trace prefix and resulting trace, respectively.

48 G. Ernst et al.

3.1 Preliminaries and Notation

Conditions P,Q and φ are represented syntactically as formulas. Semantically,
formulas can be evaluated over states s ∈ S, written Ps for instance, to result
in a semantic truth value. We occasionally make use of primed variables, e.g., in
rule Spec. Within the standard non-relational evaluation wrt. a single state s,
these are treated as any other variable (i.e., the prime is part of the name).
States map variables to values, the updated state s′ = s(x �→ v) has s′(x) =
v and s′(y) = s(x) for all x �= y. Syntactic substitutions σ are written with
square brackets in comparison, e.g., P ′ ≡ Pσ ≡ P [�x �→ �x′] for σ = [�x �→ �x′] is
understood to replace variables �x by their primed counterparts �x′.

In the semantic description of the specification statement in Sect. 3.3, we
use the relational semantics of R, written as Rs,s′ . Only here, primed variables
have a special meaning to be evaluated in s′ instead, whereas all unprimed
variables are evaluated in s as usual. For example, an action that increases x
nondeterministically could be written as a relation x < x′.

3.2 Regular Behavioral Specifications

Plain regular expressions u, v, w consist of the empty language, the empty word,
symbols of an alphabet a ∈ A, sequential composition, choice,2 and repetition:

u ::= ∅ | ε | a | u·v | u + v | u∗

The language L(u) of an expression u is defined as usual as a set of words which
are finite sequences of symbols, representing behavioral traces τ = 〈 a1, . . . , an 〉
here. A regular expression u is called nullable if its language contains the empty
word, i.e., 〈 〉 ∈ L(u); and u is called empty if its language is the empty set, i.e.,
L(u) = ∅. Language inclusion and equivalence are defined as follows

u 	 v ⇐⇒ L(u) ⊆ L(v) u ≡ v ⇐⇒ L(u) = L(v)
such that u is nullable if and only if ε 	 u, and u is empty if u ≡ ∅. Nullability
and emptiness can be checked efficiently by a simple recursion over the syntax.

Definition 1 (Regular Behavioral Specification). A regular behavioral
specification U, V,W is a state-dependent choice between plain regular expres-
sions ui:

U ::= u1 if φ1 + · · · + un if φn

We tacitly interpret a plain regular expression u if true with a trivial guard as
such a specification. Syntactic substitutions Uσ propagate to the conditionals:

(u1 if φ1 + · · · + un if φn)σ = (u1 if φ1σ + · · · + un if φnσ)

2 Denoted by + here instead of | to avoid syntactic confusion with EBNF.

A Hoare Logic with Regular Behavioral Specifications 49

Similarly, the language Ls(U) of such a specification relative to a state s picks
those cases that are satisfied in s and discards the others:

Ls(u1 if φ1 + · · · + un if φn) = (u1 if φ1)s ∪ · · · ∪ (un if φn)s
where Ls(u if φ) = L(u) if φs and Ls(u if φ) = ∅ otherwise

Later, for rule Frame in Sect. 3.4, we refer to sequential composition of such
specifications which semantically obeys Ls(U ·V) = Ls(U)·Ls(V) but we refrain
here from giving a general syntactic account for brevity, and because this con-
struct may be somewhat misleading as U and V are evaluated in the same state,
even though sequential composition suggests that V might occur after U , and
maybe after a state change in the program. However, we can freely move state-
independent regular expression fragments in and out of this composition as in
Ls(u·V) = u·Ls(V), which will be the use case in the implementation (Sect. 4).
We reflect language inclusion and equivalence as predicates over states, too

(U 	 V)s ⇐⇒ Ls(U) ⊆ Ls(V) (U ≡ V)s ⇐⇒ Ls(U) = Ls(V)

such that, e.g., P =⇒ U 	 V can be regarded as a logical formula. This will
be useful in particular to express a strong consequence rule in Sect. 3.4.

3.3 Programs and Behavioral Correctness

Imperative commands c are formed by the grammar shown below, comprising
specification statements [19] and the usual composition constructs:

c ::= �x : [G � R U] | p(�e; �z) | c1; c2 | if t then c1 else c2 | while t do c | · · ·

Atomic commands like skip and assignments are subsumed by specification
statements [19] extended by a regular behavior, written �x : [G � R U]. Pro-
vided that guard G holds in a given state, the specification command takes a
nondeterministic transition by modifying the variables �x according to a transi-
tion relation R, and by emitting a trace of the language of U . Emission of single
events can be encoded as emit a ≡ − : [true � true a] with no modified vari-
ables and no constraints on the transition. We also include procedure calls p(�e;�z)
with input arguments given by expressions �e and results assigned to variables �z.

The natural big-step semantics describes executions of commands c k
τ−−→∗ k′

from an initial configuration (run s : c) with state s to a final configuration that
is either (stop s′) (regular termination in final state s′) or abort (subsuming
runtime errors). The sequence of events that have happened during this partic-
ular execution is annotated as a trace τ . The definition of the rules governing
k

τ−−→∗ k′ are entirely standard, except perhaps for the specification statement:

(run s : �x : [G � R U]) τ−−→∗ abort if not Gs and τ arbitrary

(run s : �x : [G � R U]) τ−−→∗ (stop s′) if Gs ∧ Rs,s′ ∧ τ ∈ Us,s′

where s′ = s(�x �→ �v) denotes the modified state in which the variables �x
have been updated to some arbitrary new values �v, leaving all other variables

50 G. Ernst et al.

unchanged. The arbitrary trace τ reflects that a diverging program could have
any effect. The derived command emit a behaves as expected

(run s : emit a)
〈 a 〉−−−→∗ (stop s)

For a given procedure declaration p(�x; �y) { c }, a call unfolds to the body c:

(run s : p(�e, �z)) τ−−→∗ k if (run s′ : c′) τ−−→∗ k

where c′ = c[�x, �y �→ �x′, �z] refreshes all formal input parameters �x to ensure they
are treated as local variables, whereas the formal output parameters �y (typi-
cally just one, denoted \result in JML) are replaced by the actual variables �z
such that the body c′ computes over these instead. Accordingly, the modified
state s′ = s(�x′ �→ �es) assigns to �x′ the evaluation of the arguments �e in s.

Judgements {P U } c {Q V } comprise the usual constituents, precondi-
tion P , command c, and postcondition Q, as well as the (state-dependent) regular
expressions specification U over the alphabet A collecting possible trace prefixes
seen so far, and V constraining how these may be extended by executing c.

Definition 2 (Valid Hoare Triples). A Hoare triple {P U } c {Q V } is
valid, if for all s ∈ S with traces τ , and for all configurations k′

Ps and (run s : c) τ−−→∗ k′ implies
there is s′ with k′ = (stop s′) and Qs′ and L(Us·τ) ⊆ L(Vs′)

Note that P and U are evaluated in the pre-state s, whereas Q and V are
evaluated in the post-state s′, and that k′ �= abort.

The judgement as defined above is based on histories [4] of completed execu-
tions. As such, it cannot reason about event traces of nonterminating executions,
as diverging runs are simply not generated by the semantics by design. We dis-
cuss a dual view of Hoare triples in Sect. 6, which is based on traces allowed
in the future instead [23,24]. However, our implementation described in Sect.
4 relies on the best forwards trace transformer for dispatching procedure calls
modularly, which is unavailable in the future-based setting that has a best back-
wards transformer instead, cf. Sect. 6.

3.4 Hoare Logic Proof Rules

The proof rules are standard with respect to the functional correctness aspects
captured by the pre-/postcondition. Regarding the trace specifications, there
are some aspects that are worth discussing. Typically, traces that occur dur-
ing execution are simply added to the regular expression specification in the
precondition. For example the derived rule for the emit command is just

{P U } emit a {P U ·a } Emit

The more general specification statement can be executed whenever its guard G
follows from the current precondition P . Given then that binary relation R

A Hoare Logic with Regular Behavioral Specifications 51

between unprimed and primed variables holds, we establish Q in that successor
state and that the extension of pre-traces U by any trace of W is covered by V :

P =⇒ G P ∧ R =⇒ Qσ ∧ (U ·W 	 V σ)
{P U } x : [G � R W] {Q V } Spec

where σ = [�x �→ �x′] takes care of shifting the modified variables into the successor
state within Q and V , where the primed variables are constrained by R as
described in Sect. 3.1. Rule Emit is then an instance of Spec for G,R ≡ true,
�x = 〈 〉, and W = a (cf. Sect. 3.3), such that the second premise collapses to
U ·a 	 V σ for the empty substitution σ and V = U ·a.

Example 1. We can represent the loop body of our motivating example in Fig. 1
by a single specification statement for demonstration purposes here

b : [true � b′ = ¬b a] where a =

{
even, if ¬b

odd, otherwise

Recall the invariant-like characterization of traces from Sect. 2, formalized as a
regular expression specification U(b) over program variable b:

U(b) ≡ (even·odd)∗ if ¬b + (even·odd)∗·even if b

The part of the instantiated precondition of rule Spec that relates the pre-
traces to the post-traces takes V = U to re-establish the invariant after executing
the body, which leads to the following proof obligation

b′ = ¬b =⇒ U(b)·a 	 U(b′)

This can be reduced by case analysis where U(b) and U(b′) pick the the opposite
regular expression, respectively, underlining the most recently emitted event a.

(even·odd)∗·even 	 (even·odd)∗·even if ¬b

(even·odd)∗·even·odd 	 (even·odd)∗ otherwise

Clearly, both conditions are satisfied. ♥
The following framing rule allows one to put a subpart of the execution

into the context of a prefix W that captures the past up to that point. This rule
encodes that the program execution itself cannot depend on past events, because
traces have no manifestation at runtime:

P ∧ Qσ =⇒ W ≡ Wσ {P U } c {R V }
{P W ·U } c {Q W ·V } Frame

for σ = [�x �→ �x′] wher �x are the variables modified in c. Just as with the
frame rule in Separation Logic [27] there is a side-condition that the frame W
is independent of the program execution, which we can express by an additional
premise as shown. This premise is trivially satisfied for state-independent regular
expressions and our implementation uses this heavily as explained in Sect. 4.

52 G. Ernst et al.

The frame rule expresses, intuitively, that execution of code fragments cannot
depend on the trace prefix, which means that in principle, we could avoid the
presence of the prefix U in the judgements alltogether. However, as we have seen
for example with U ·W 	 V σ in the premises of Spec we have to be careful to
which state we relate the respective trace specifications. Having both a prefix U
and result V symmetrically in the judgements therefore admits the usual and
straight-forward treatment of sequential composition:

{P U } c1 {Q V } {Q V } c2 {R W }
{P U } c1; c2 {R W } Seq

In contrast to judgements but like specification statements, modular specifica-
tions of procedure contracts can and should not mention a trace prefix at all and
just specify the trace fragment produced, in relation to the state upon procedure
call. A contract for a procedure p(�x; �y) therefore encompasses precondition G,
postcondition R, and trace annotation W , with the corresponding call rule:

{P U } �z : [Gσ � Rσ′ Wσ′] {Q V } {G ε } c {R W }
{P U } p(�e;�z) {Q V } Call

where substitutions σ = [�x �→ �e] and σ′ = [�x, �y �→ �e, �z ′] instantiate the pro-
cedure’s contract with the actual arguments in the first premise. The second
premise ensures that the procedure satisfies its contract, assuming for simplicity
that the body c does not modify the inputs �x such that these in R and W still
refer to the values in the state at the call. This is expressed by a Hoare triple that
starts from the empty trace ε, such that the correctness of p wrt. its contract
needs to be verified once only, independtly of calling contexts.

The consequence rule exhibits the usual co-/contravariance duality: We may
wish to conduct the proof with a weaker precondition P2 and a larger set of
traces seen so far U2 to establish a stronger postcondition Q2 than necessary
together with a more precise set of extended traces V2.

P1 =⇒ P2 ∧ (U1 	 U2) {P2 U2 } c {Q2 V2 } Q2 =⇒ Q1 ∧ (V2 	 V1)
{P1 U1 } c {Q1 V1 }

Conseq

This rule feeds contextual information from predicate logic formulas into the
inclusion conditions of regular language specification, just as we have seen for
the Spec rule in Ex. 1. Note that this rule makes up for not having defined
sequential concatenation of trace specifications: We can manually re-arrange
regular expressions with respect to their outer conditionals.

The rule for conditional statements is entirely standard:
{P ∧ t U } c1 {Q V } {P ∧ ¬t U } c2 {Q V }

{P U } if t then c1 else c2 {Q V } If

However, we can use the consequence rule to feed information about the positive
or negative outcome of test t into the respective occurrences of U in the two
premises to rewrite them as desired (e.g. by dropping infeasible choices).

As we have motivated by the examples above, the rule for while loops employs
in addition to an ordinary invariant I a regular expression specification U that
characterizes the traces observed when executing the loop.

A Hoare Logic with Regular Behavioral Specifications 53

{ t ∧ I U } c { I U }
{ I U } while t do c {¬t ∧ I U } While

The same U occurs for all traces in the rule in four places. This reflects the
fact that the loop specification must already be given in a closed form that is
generalized with respect to an arbitrary number of iterations. The evaluation
of U is still relative to the context for that occurrence, specifically, with the
postcondition ¬t∧I in the conclusion we can narrow down U to those cases that
actually match the exit state.

Example 2. In Sect. 2, we had specified that the loop must not exit when b
is true, such that U(b) simplifies to the desired overall behavior of the program
with properly paired even and odd events (even·odd)∗. ♥

With the help of this rule, we can justify the naive approach to loops that
just repeats any observation that can be made about the executions of the loop
body without taking any sequencing constraints into account, given here by a
plain regular expression v to simplify the presentation.

{ t ∧ I ε } B { I v }
{ I ε } while t do B {¬t ∧ I v∗ } While∗

It follows from rule While for invariant U = v∗, and we use the frame rule for
W = v∗ to justify the needed intermediate condition { t ∧ I v∗·ε } B { I v∗·v }
from the given premise of rule While*. The rest is stitched together by rule
Conseq and the algebraic laws of the repetition operator.

As an example, taking v = (even + odd) we can derive the weaker characteri-
zation of the loop’s behavior that was mentioned in Sect. 2.

Theorem 1 (Soundness). The rules presented in this paper are sound: if the
premises are valid according to Defintion 2 then the respective conclusion is also
valid.

Proof. Mechanized in Isabelle/HOL, available online. 3

https://gist.github.com/gernst/6a156facbe402f6d7f8db8b6520c7d70 �
We remark that the soundness proof does not in any way depend on the fact

that the trace specifications are regular or finitely representable.

Conjecture 1 (Completeness of Trace Annotations). If there is an ordinary reg-
ular expression v that describes the traces of a given program c, i.e., the triple
{P ε } c {Q v } is valid, then we can find regular expression specifications to
compose this fact using the proof rules, including trace invariants for loops.

Proof (Main Idea). Partition the actual state space of the program into equiva-
lence classes with respect to their trace prefixes at each program location. Since
the automaton corresponding to v has finitely many states, we can describe them
by a finite number of regular expressions that are conditional upon a predicate
logic formula characterizing the respective equivalence class. �
3 The mechanization will be made available permanently at a later date, e.g., as an

entry to the Archive of Formal Proofs at https://www.isa-afp.org/.

https://gist.github.com/gernst/6a156facbe402f6d7f8db8b6520c7d70
https://www.isa-afp.org/

54 G. Ernst et al.

4 Tool Support in SecC

We have implemented support for trace specifications in SecC, which is an
autoactive deductive program verifier for low-level concurrent C code with
expressive security specifications. It is based on the logic SecCSL [11], which
for the purposes of this paper is analogous to standard concurrent separation
logic. The tool and case studies are publicly available at https://bitbucket.org/
covern/secc.

The tool follows the classical design of most deductive tools, in which all
C functions are specified modularly in terms of user-supplied contracts, such
that they can be verified in isolation to avoid the combinatorial path explosion
of interprocedural verification. To that end, SecC supports program annotations
for function contracts, loop invariants, auxiliary statements such as intermediate
assertions and other proof hints. It is possible, too, to specify logical functions
and separation logic predicates, as well as to encode mathematical proofs (e.g.
by induction) as lemmas and lemma functions, see e.g. [16].

4.1 Specification Syntax

For this work, we extended the specification language by trace annotations. We
use the example from Sect. 2 as shown in Fig. 2 to explain the specification
syntax in general as well as for the traces.

Fig. 2. Even/odd example in SecC

In SecC, auxiliary code is wrapped
inside _(...), an idiom taken from
VCC. This is used here for different
purposes, foremost, in the contract
of function even_odd() to specify its
behavior. An annotation _(trace U)

for a function with body c cor-
responds to a Hoare triple {_
ε } c {_ U } (pre-/postconditions P
and Q are absent in the exam-
ple). Inside the loop, the specifica-
tion statement _(emit a) generates
the respective events. It is the proof
engineer’s task to place these at the
program locations of their interest—
in the future we may support events
that are implicitly generated, e.g.,
by function calls as in [9]. There is
also a trace annotation for the loop,
which showcases the concrete syntax

for conditionals, analogous to the presentation earlier in this paper albeit in SecC

https://bitbucket.org/covern/secc
https://bitbucket.org/covern/secc

A Hoare Logic with Regular Behavioral Specifications 55

each choice is listed separately. By convention, absence of a trace annotation,
even for just a particular case, enforces that no events may be emitted at all.4

4.2 Verification Engine

In contrast to the Hoare-style rules of Sect. 3, which mirror those of the logic
SecCSL behind the tool, SecC operationalizes the proof rules by a forward sym-
bolic execution algorithm, first described in [3], similarly to VeriFast [15] or the
Silicon backend of Viper [20]. The engine traverses the program using execution
states, consisting of a store of symbolic variables, a path constraint, a symbolic
representation of the heap, and for this work a trace prefix. The design of the
logic necessitates being careful about branching not just for case distinctions in
the program but also in the logic itself. To address this, SecC always takes apart
relevant case distinctions and follows the branches individually, pruning those
with an unsatisfiable path constraint. The same principle is applied to the reg-
ular trace specifications, which are broken apart into plain regular expressions
eagerly, such that SecC can make use of the rule Frame, e.g., to concatenate the
possible trace extensions after a while-loop is dispatched modularly. However,
one has to be careful not to discard any execution branch vacuously just because
there is no trace specified for it. Therefore, SecC always completes behavioral
annotations with an empty trace that is the negation of the disjunction of all
other cases (which might of course be unsatisfiable).

At the end of each execution path, SecC needs to check that the trace pro-
duced up to this point is covered by the behavioral specification annotated
to the surrounding context (a C function or a loop). The inclusion check is
implemented for plain regular expressions by an approach similar to the one
shown in [1]. It is based on the derivative δau of u with respect to symbol a
that captures the language of suffixes of u after a leading occurrence of a, i.e.,
L(δau) = {τ | a·τ ∈ L(u)}. The algorithmic check Γ � u 	 v for language
inclusion exploits this idea. It maintains in Γ pairs of expressions seen already
and proceeds recursively as shown below. Effectively, Γ is a simulation relation
between u and v from the transitions that are possible over u via the derivative.

Γ � u � v ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true, if (u, v) ∈ Γ

u empty, if v = ∅

Γ ∪ {(u, v)} � δau � δav, ∀ a ∈ first(u),

and u nullable =⇒ v nullable
otherwise

Here, first(u) ⊆ A is an overapproximation of the set of first symbols of words
in L(u), which can be computed recursively from the syntax. Termination is
ensured by unfolding each pair of expressions once only (first line).5 The second
4 We have omitted some annotations related to SecC’s enforcement of absence of

timing side-channels, which requires an invariant that b never contains any secret
such that we can branch on it, similarly for the return value of function nondet(),
shown at the top of the code listing, that models nondeterministic choice.

5 Note that it is crucial that the check whether a given pair of expressions is contained
in Γ already considers equivalence modulo reordering and duplicates of the choice
operator, otherwise, one may keep accumulating larger and larger expressions.

56 G. Ernst et al.

case catches when δav has become empty, which corresponds to an event a of u
that is not covered by the specification. Conversely, in the last case when u is
nullable but v is not, some required events were missed.

5 Case Studies

We present two case studies, a regular expression matcher in Sect. 5.1, and the
Casino in Sect. 5.2, followed by a discussion in Sect. 5.3.

5.1 Case Study: Regular Expression Matching

A canonical case study for the specification approach of this paper is to verify the
state machine of a matcher that checks whether some input adheres to a given
concrete regular expression. Here, we match E-Mail addresses in a much simpli-
fied format [a-z]+[@][a-z]+[.][a-z]+ which expects a name part and domain
part with a single dot, where both parts are separated by an @ sign.

Fig. 3. E-Mail address matcher in SecC

Often, such matchers are
implemented as a library in pro-
gramming languages, which at
runtime translates textual rep-
resentations of regular expres-
sions into some internal automa-
ton. For high-performance code,
however, the preferred alterna-
tive is to compile this automa-
ton upfront into source code,
e.g., using the popular tool
re2c [5]. Possible translation
schemes make use of language
features like loops/gotos and
switch/conditionals, represent-
ing the automaton either implic-
itly via control flow, or with an
outer loop and an explicit state
variable, as shown in the exam-
ple in Fig. 3. We will show how
to verify this code with respect
to the declarative specification of
the expected matches in terms of
the trace annotation at the top.6

The input is read by repeated
calls to some external function
next() which returns the next

6 Available in the SecC bitbucket repository at examples/case-studies/matcher.c.

https://bitbucket.org/covern/secc/src/master/examples/case-studies/matcher.c

A Hoare Logic with Regular Behavioral Specifications 57

input character. The switching logic of the state machine is implemented via vari-
able state which is modified according to transitions encoded in the nested chain
of conditionals. For example, state 0 expects a first letter symbol as the repetition
is non-empty, whereas state 1 may subsequently transition over an occurrence
of the symbol @. The loop terminates in state 6 after the input becomes empty,
encoded by c == -1. To simplify matters further, the code calls abort() when an
unexpected input character is encountered, which exposes nontermination via a
postconditon _(ensures false), i.e., a call to this function will vacuously verify
that branch of the computation.

The function check(), shown in Fig. 4, denotes the events that are emitted in
relation to the respective input characters, and also includes an error event for
all other characters. This additional event does not occur in the top-level speci-
fication of lex(), such that clearly the only way to satisfy the trace constraints
when such an error is encountered is to reject the match via a call abort().
Function check() is a specification artifact that separates out the interpretation
of inputs in terms of the four abstract events letter, at, dot, and eof. While
it may appear somewhat cumbersome to draw this connection explicitly, we
emphasize that this just reflects the prototypical nature of the design that does
not ascribe any meaning to events upfront. Of course one may provide support
for certain kinds of events out-of-the-box, perhaps complemented by character
class definitions as abbreviations for finite enumerations.

Fig. 4. Specifying the correspondence
between inputs and abstract events

The verification consists of two
parts: Annotating the while loop
with conditional trace invariants
that must jointly be preserved over
the loop body, and ensuring that this
annotation implies correctness of the
outer procedure. The possible trace
prefixes in the respective states are
captured as follows.

_(trace () if state == 0)
_(trace letter+ if state == 1)
_(trace letter+ at if state == 2)

...
_(trace letter+ at letter+ dot letter+ eof if state == 6)

They reflect the part of the input that has been matched already, starting with
the empty trace, written as () in SecC in state 0, up to the final trace in state 6.
Given the negated loop test at exit together with the invariant, the last line is
the only one with a satisfiable guard, which is precisely the guarantee we need to
satisfy the contract of lex(). Preservation over a single iteration over the loop
body is briefly discussed with respect to state 1. Its corresponding trace letter+

is initially established from a single letter event in the incoming transition from
state 0. Reading the next character in the range [a-z] in state 1 extends the trace
to letter+ letter by another letter event from check(), which is subsumed by
letter+ in state 1 again as required. On the other hand, reading an @ symbol

58 G. Ernst et al.

produces the trace specified for state 2, which is the one transitioned to at the
end of this iteration. All other transitions work analogously.

Fig. 5. Automaton specification (adapted from a model by Mattias Ulbrich, https://
verifythis.github.io/casino/spec/)

5.2 Case-Study: VerifyThis Casino Challenge

The Casino case study fueled a series of online discussions in the context of the
VerifyThis competition. The case study deals with a Casino that was originally
implemented as a smart contract on the Ethereum blockchain, but which has
since been specified, modeled, and verified in a number of different approaches.

The Casino game is offered by an operator to a player who can bet on the out-
come of a coin toss, which is decided upfront but remains hidden in an envelope,
until after the player has placed their bet and the operator decides to resolve.
Cheating by the operator is prevented by encoding the sealed envelope by pub-
lishing the cryptographic hash of a secret number whose last bit determines the
winning side of the coin. If the player wins, they receive double the amount of
money that they bet, otherwise it goes to the operator. After that, the game can
be played again. For a very nice graphical exposition of the rules by Wolfgang
Ahrendt we refer the reader to https://verifythis.github.io/casino/.

As mentioned in the introduction, a particular goal of the efforts around this
challenge was to bridge between different verification approaches, such as finite
state models, contract-based models, and hybrid solutions. An aspect in focus is
the pot of money associated with the game, which is supplied by the operator and
which needs to cover the prize of the player, causing an invariant that encodes
this requirement. Figure 5 shows a high-level description that avoids draining
the pot by simply restricting the operator to reduce the amount in the pot as
long as an unresolved bet has been placed.

SecC models this game as follows:7 Data on the blockchain is treated as
memory that has public visibility, a feature that is supported by the logic. All
data passed in and out of the operations that encode the moves in the game are
likewise specified to be public. Ownership, e.g., of a wallet or a payment that
has been sent but not received yet, naturally maps to resources in Separation
Logic, encoded into abstract predicates that cannot be duplicated.
7 Available in the SecC bitbucket repository at examples/case-studies/casino.c.

https://verifythis.github.io/casino/spec/
https://verifythis.github.io/casino/spec/
https://verifythis.github.io/casino/
https://bitbucket.org/covern/secc/src/master/examples/case-studies/casino.c

A Hoare Logic with Regular Behavioral Specifications 59

The game itself is specified as a main function with a top-level loop that
nondeterministically chooses among the next possible moves and then calls the
function that implements the respective transition. Each of these functions emits
one of the events shown in Fig. 5. The corresponding behavior of the game is
captured by the regular expression shown below. It declaratively specifies all
traces through the automaton in Fig. 5. We point out the inclusion of some
trailing changes to the pot. Moreover, it is noteworthy that after a place_bet

event no further remove_from_pot can happen until the game is decided.
_(trace init

((add_to_pot | remove_from_pot)* create_game

(add_to_pot | remove_from_pot)* place_bet

add_to_pot* decide_bet)*)

(add_to_pot | remove_from_pot)*

Since the game can be in one of three states (idle, game available, bet placed),
the trace invariant for the loop has three parts, that analogously to those of
the matcher in Sect. 5.1 reflect the different stages of the game. Like with the
even/odd example, the trace invariant duplicates as a prefix the entire specifica-
tion in order to be inductive, which results in a somewhat large, but structurally
straight-forward annotation, for example that right before deciding the bet we
have seen everything apart from the event decide_bet.
_(trace (...)

((add_to_pot | remove_from_pot)* create_game

(add_to_pot | remove_from_pot)* place_bet

add_to_pot*) if state == BET_PLACED)

where (...) here omits the entire game specification as shown above.
We have experimented further with simplified variants that just include the

functionality directly related to the trace behaviors.8 The approach taken for
the full case study is complemented by the naive approach with rule While*.
Furthermore, we formulate the game as a set of several mutually tail-recursive
procedures, each corresponding to one state. This affects the annotations in two
ways: First, each function on its own can specify its contribution to the observ-
able behaviors, and second, we are effectively encoding the summary-based app-
roach from Sect. 2, which in comparison to an invariant reasons about the trace
suffixes that are yet to be fulfilled, which in comparison to the corresponding
part of the loop annotation, specifies possible additions to the pot and includes
a final decide_bet before the game repeats recursively (where again (...) omits
the game but without init).

void game_placed()
_(trace (add_to_pot* decide_bet) // <-- behavior of just game_placed

(...))

8 Available in repository at examples/case-studies/casino-statemachine.c.

https://bitbucket.org/covern/secc/src/master/examples/case-studies/casino-statemachine.c

60 G. Ernst et al.

5.3 Discussion

The two case studies demonstrate how behavioral specifications in terms of regu-
lar expressions can capture declaratively properties of C functions as part of their
top-level modular contracts. However, loop annotations become quite involved,
and in the approach taken the user has to come up with the equivalence classes
of regular expressions corresponding to the control states of the loop.

Moreover, these expressions are typically larger than the original annotation,
and are repeated in significant parts for the many different cases. We think that
this can be addressed for example by allowing the user to abbreviate expressions
as it is possible for example in typical scanner generators like flex. Another idea
is to infer such specifications automatically, e.g., by having the user annotate
the conditions that partition the state space, but not the regular expressions
themselves. We think that this is feasible but we leave this idea for future work.

SecC verifies both case studies in less than 5s on a Thinkpad T470p. We
do not think that these numbers are particularly meaningful, as they were done
with a cold-cache JVM and they include many calls to an external SMT solver.
The overhead introduced by the regular expression inclusion check contributes
noticeably to the time to verify functions which have many paths, like the main
loops of the case studies. Nevertheless, this was never a limiting factor here, on
the contrary, thanks to the decidability of the inclusion check once the condi-
tionals are settled, there is no additional manual effort involved to help out the
verifier with additional proof hints, as it is often typical with expressive func-
tional contracts. Perhaps, when scaling up to regular expressions as they may
occur in practice, an efficient automata-based implementation may be preferable.

Finally, as hinted at already in Sect. 5.1, built-in support for certain kinds of
domain-specific events can help streamline the verification process. For example,
related work has considered opening and closing of file handles [6], as well as
function calls and returns [9]. These applications, however, would strongly benefit
from a context-free specification language, instead of a regular one, to pair each
open with a close for instance. Similarly, attaching data drawn from finite sets or
even symbolic data like file handles to events is useful. However, such extensions
reflect different trade-offs wrt. automation as the inclusion check may become
undecidable. This opens up a research space in between the work presented here
and the highly expressive approaches, in which one can experiment with practical
heuristics supported by domain-specific proof hints when needed.

6 Related and Alternative Approaches

Session types [13] capture the interactions between software components as part
of the type system. Similarly, interface automata [7] capture possible interactions
at the system level. Temporal contracts have been proposed for a functional lan-
guage in [9], but considering runtime checking only, and giving completeness to
ease the specification burden. Temporal contracts for an object-oriented language
are described in [29], and for smart contracts in [25]. Our regular behaviors are
of course closely related to session types, and we complement this area of work

A Hoare Logic with Regular Behavioral Specifications 61

with a different view and presentation of such ideas as a classic Hoare-style logic.
Moreover, the state-dependence of conditionals here gives additional expressive
power comparable to “dependent” session types, cf. [31].

Deductive verification tools like Dafny [18] and vanilla SecC [11] without the
extensions from Sect. 4 come with strong support for logical specifications, which
would in principle enable to encode regular traces into lists explicitly. A common
strategy is to encode behaviors into abstract permission-based predicates, which
integrates event histories with expressive logical data types and to some extent
first-class reasoning over such behaviors. For example, VeriFast supports such
I/O-specifications and has support not just for safety properties but also for
liveness [14,24]. VerCors has a highly elaborate mechanism to capture behaviors
as process models [23], which can then be given to a model checker to verify
system-wide properties. Another work that cuts into this direction is Igloo [30],
in which modularity and composition is a key concern. The latter two [23,30]
demonstrate how the behavioral processes can be semantically embedded as part
of an enriched heap. This bridges the gap between process calculi and the style
of local reasoning that is already supported by backend verifiers like Viper [20].

In our semantics of triples {P U } c {Q V } as presented, both U and V are
histories of events arising from program executions, similarly to [4] but avoiding
the complexity of an embedding into separation logic formulas. In contrast, [14,
23,24,30] are future-based, i.e., the precondition specifies which traces are still
allowed. The advantage of this formulation is that it can reason about infinite
behaviors, and it is therefore based on a coinductive semantics, cf. Nakata and
Uustalu [21]. In follow-up work [34], the same authors propose a Hoare logic
with expressive specifications in which traces are characterized by a composition
of state-formulas (instead of just events). Similarly, temporal program logics
like [28] expand the scope of properties that can be verified at the expense of
proof automation for the temporal behavior.

The proof systems for history-based and future-based specifications have
much in common, e.g., all rules for compound commands if and while from Sect.
3.4 are as expected. However, trace annotations in rules Spec, Frame, and Con-
seq change the order of concatenation as well as swap the order of trace inclusion
(e.g., � instead of 	 in the premise of Conseq). This notably affects reasoning
about event-nondeterminism: Let traces(c) denote the (finite) traces that a pro-
gram c can emit, ignoring any reference to states and to pre-/postconditions here,
with traces(emit w) = w nondeterministically emitting some trace τ ∈ w. Then,
let � u � c � v � = u·traces(c) ⊆ v coincide with {_ u } c {_ v } and conversely
� u � c � v � = traces(c)·v ⊆ u, for some sets of traces u and v. Mnemonically, �.�
denotes a set of traces that cannot just be enlarged and �.� denotes a set that
cannot be made smaller without invalidating a judgement. We have:

� u � emit w � u·w � Emit→
� w·u � emit w � u � Emit←

where the history-based version on the left denotes the most precise (smallest)
post-set when started from u (cf. [4, Rule Action in Fig. 5]) and the future-

62 G. Ernst et al.

based version instead computes the most precise pre-set of traces that must be
allowed upfront (cf. [23, Rule HT-PROC-UPDATE in Fig. 5]).

However, in the presence of nondeterministic emits, the two converse trans-
formers cannot be formulated in this logic. Consider � (aa)+(bb) � emit (a+b) � v �
where v should capture which traces are still allowed after emitting either an a
or a b: Clearly, v = a + b is too weak, because it would allow subsequent pro-
gram steps to emit either an a or a b regardless of the first event observed, such
that the overall set of traces becomes (a + b)·(a + b) instead. This is analogous to
the lack of best backwards transformer for Incorrectness Logic as observed by
O’Hearn [22, Sec. 5.2], albeit, that both formulations of the logic presented here
are definitely overapproximative with respect to the allowed traces.

On the other hand, asking for the best v in � (aa) + (bb) � emit (a + b) � v �
may be somewhat meaningless in practice, since a subsequent program fragment
cannot actually determine whether to emit a second a or b in the absence of
further information—we cannot build a correct program around the shown triple.
Therefore, we argue that useful trace specifications always need to resolve such
nondeterminism explicitly, e.g., as in emit (a if φ + b if ¬φ) with a formula φ
explaining the choice in reference to the current state. This is typically done in
the examples and case-studies in [23,30] and Sect. 5 anyway.

7 Conclusion

We have presented a Hoare logic that integrates external behaviors as regular
expressions into deductive verification systems. This can be used to declara-
tively specify sequences of events occurring during the execution. The approach
supports loops with control states via conditions in the specification, such that
interesting sequential behavior across multiple iterations can be captured. There
is much room for experimentation with different trade-offs between automation,
ease of specification, and expressiveness, to be explored in the future.

Acknowledgement. We thank the reviewers for their detailed comments and sugges-
tions to improve the presentation.

References

1. Almeida, R., Broda, S., Moreira, N.: Deciding KAT and Hoare logic with deriva-
tives. arXiv preprint arXiv:1210.2456 (2012)

2. Alur, R., Chaudhuri, S.: Temporal reasoning for procedural programs. In: Barthe,
G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 45–60. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2_7

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11575467_5

4. Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: History-Based Verification of
Functional Behaviour of Concurrent Programs. In: Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9276, pp. 84–98. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-22969-0_6

http://arxiv.org/abs/1210.2456
https://doi.org/10.1007/978-3-642-11319-2_7
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-319-22969-0_6
https://doi.org/10.1007/978-3-319-22969-0_6

A Hoare Logic with Regular Behavioral Specifications 63

5. Bumbulis, P., Cowan, D.D.: RE2C: a more versatile scanner generator. ACM Lett.
Program. Lang. Syst. (LOPLAS) 2(1–4), 70–84 (1993)

6. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation, pp. 57–68 (2002)

7. De Alfaro, L., Henzinger, T.A.: Interface automata. ACM SIGSOFT Softw. Eng.
Notes 26(5), 109–120 (2001)

8. Dietsch, D., Heizmann, M., Langenfeld, V., Podelski, A.: Fairness modulo theory:
a new approach to LTL software model checking. In: Kroening, D., Păsăreanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 49–66. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21690-4_4

9. Disney, T., Flanagan, C., McCarthy, J.: Temporal higher-order contracts. In: Pro-
ceedings of the 16th ACM SIGPLAN international conference on Functional pro-
gramming, pp. 176–188 (2011)

10. Ernst, G.: Loop verification with invariants and contracts. In: Finkbeiner, B., Wies,
T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 69–92. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-94583-1_4

11. Ernst, G., Murray, T.: SecCSL: Security Concurrent Separation Logic. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 208–230. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5_13

12. Hehner, E.C.R.: Specified Blocks. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005.
LNCS, vol. 4171, pp. 384–391. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-69149-5_41

13. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. (CSUR) 49(1), 1–36 (2016)

14. Jacobs, B.: Modular verification of liveness properties of the I/O behavior of imper-
ative programs. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 509–524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4_29

15. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

16. Jacobs, B., Smans, J., Piessens, F.: VeriFast: Imperative programs as proofs. In:
VSTTE workshop on Tools & Experiments (2010)

17. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
(TOPLAS) 16(3), 872–923 (1994)

18. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

19. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst.
(TOPLAS) 10(3), 403–419 (1988)

20. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

21. Nakata, K., Uustalu, T.: Trace-based coinductive operational semantics for while.
In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,

https://doi.org/10.1007/978-3-319-21690-4_4
https://doi.org/10.1007/978-3-319-21690-4_4
https://doi.org/10.1007/978-3-030-94583-1_4
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1007/978-3-540-69149-5_41
https://doi.org/10.1007/978-3-540-69149-5_41
https://doi.org/10.1007/978-3-030-61362-4_29
https://doi.org/10.1007/978-3-030-61362-4_29
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2

64 G. Ernst et al.

vol. 5674, pp. 375–390. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9_26

22. O’Hearn, P.W.: Incorrectness logic. In: Proceedings of the ACM on Programming
Languages 4(POPL), 1–32 (2019)

23. Oortwijn, W., Gurov, D., Huisman, M.: An abstraction technique for verifying
shared-memory concurrency. Appl. Sci. 10(11), 3928 (2020)

24. Penninckx, W., Timany, A., Jacobs, B.: Specifying I/O using abstract nested Hoare
triples in separation logic. In: Proceedings of the 21st Workshop on Formal Tech-
niques for Java-like Programs, pp. 1–7 (2019)

25. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: Verx:
Safety verification of smart contracts. In: 2020 IEEE symposium on security and
privacy (SP), pp. 1661–1677, IEEE (2020)

26. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46–57, ieee (1977)

27. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. of Logic in Computer Science (LICS), pp. 55–74, IEEE (2002)

28. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: Rgitl: A temporal logic
framework for compositional reasoning about interleaved programs. Ann. Math.
Artif. Intell. 71(1), 131–174 (2014)

29. Soleimanifard, S., Gurov, D., Huisman, M.: Procedure-modular specification and
verification of temporal safety properties. Softw. Syst. Modeling 14(1), 83–100
(2013). https://doi.org/10.1007/s10270-013-0321-0

30. Sprenger, C., et al.: Igloo: Soundly linking compositional refinement and sepa-
ration logic for distributed system verification. In: Proceedings of the ACM on
Programming Languages 4(OOPSLA), 1–31 (2020)

31. Toninho, B., Caires, L., Pfenning, F.: A decade of dependent session types. In: 23rd
International Symposium on Principles and Practice of Declarative Programming,
pp. 1–3 (2021)

32. Tuerk, T.: Local reasoning about while-loops. Proc. of Verified Software: Theory,
Tools, and Experiments (VSTTE) 2010, 29 (2010)

33. Urban, C., Ueltschi, S., Müller, P.: Abstract interpretation of CTL properties.
In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 402–422. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99725-4_24

34. Uustalu, T., Nakata, K.: A hoare logic for the coinductive trace-based big-step
semantics of while. Logical Methods Comput. Sci. 11(1), 488–506 (2015)

https://doi.org/10.1007/978-3-642-03359-9_26
https://doi.org/10.1007/978-3-642-03359-9_26
https://doi.org/10.1007/s10270-013-0321-0
https://doi.org/10.1007/978-3-319-99725-4_24

Specification-Based Monitoring in C++

Klaus Havelund(B)

Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA

klaus.havelund@jpl.nasa.gov

Abstract. Software systems cannot in general be assumed proven cor-
rect before deployment. Testing is still the most common approach to
demonstrate a satisfactory level of correctness. However, some errors
will survive verification efforts, and it is therefore reasonable to monitor
a system after deployment, to determine whether it executes correctly.
Both for testing and post-deployment monitoring, it may be desirable to
be able to formalize correctness properties that can be monitored against
program executions. This is also referred to as runtime verification. We
present a specification language and a monitoring system for monitoring
such specifications against event streams. The monitoring engine front-
end, written in Scala, translates the specification to C++, whereas the
back-end (the monitoring engine), written in C++, interprets the gener-
ated C++ monitor on an event stream. This makes it feasible to monitor
the execution of C and C++ programs online.

1 Introduction

The correctness of software is usually demonstrated through extensive testing.
A test suite usually consists of test cases, where each test case consists of a test
input vector and a test oracle, which determines whether the test case executes
properly. Since testing does not provide 100% coverage of all execution paths,
there is also a need after deployment to monitor the software as it executes. For
this the concept of monitors is needed. We present LogScope (available at [24]),
a system for monitoring event streams (traces) against formal specifications,
also referred in literature as Runtime Verification (RV). A formal specification,
written by a user, is translated into a monitor in C++, which can be used both as
a test oracle before deployment, or for monitoring the system as it executes after
deployment. A monitor generated from a formal specification is event-driven. It
receives events, one by one, modifying its internal state for each observed event,
and emitting an error message or calling a callback function in case a violation
of the specification is encountered. Such a system can be used offline, analyzing
log files, or online, monitoring the system real-time as it executes. The system
solves the following problem:

The research performed was carried out at Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aeronautics and Space Admin-
istration.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 65–87, 2022.
https://doi.org/10.1007/978-3-031-19849-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_5

66 K. Havelund

Given a sequence of events emitted from a software application, how can
we assure that the event stream satisfies a set of desired properties?

The frontend, written in the Scala programming language, parses a specifi-
cation and translates it to an Abstract Syntax Tree (AST) in C++. The backend,
the monitoring engine itself, written in C++, imports the C++ AST generated
by the frontend, and interprets it over a sequence of events emitted to it. The
fact that the backend is implemented in C++ makes it possible to monitor appli-
cations online that themselves are written in C or C++, which is important for
embedded systems. It is for example unthinkable to call a monitor in Java or
Python from a C/C++ program in an embedded application, unless monitor-
ing is performed remotely and asynchronously. Numerous RV systems have been
developed in the past, as discussed in Sect. 2, but most are implemented in high-
level languages such as Java. In most cases there will be a need to convert events
generated by the software to the event format of LogScope. This is, however,
a straightforward task.

The specification language allows to state properties about events that can
carry data, e.g. relating data occurring in events at different positions in the
trace. We refer to this as parametric monitoring. What makes the specification
language stand out compared to most related work is that it combines a rule-
based language and a state machine language. A rule-based system consists of a
set of rules operating on a set of facts in a memory, where a fact is a named data
record. Each rule has a condition and an action. The condition of a rule can refer
to the memory and query whether certain facts are present or not, including the
data they carry, which is used to support parametric monitoring. The action of
a rule can add facts to or delete facts from the memory. As such several facts can
be active at any moment in time. The ability to refer to the presence/absence
of facts can be used to model past time temporal properties by letting facts be
generated when certain events occur that need to be remembered in the future.
LogScope is fundamentally a rule-based system but its specification language
has a state machine look and feel by supporting the definition of event triggered
transitions as part of fact definitions.

The paper is organized as follows. Section 2 discusses related work. Section 3
provides an overview of the tool. Section 4 explains the notation through a series
of examples. Section 5 outlines how to use the tool. Section 6 briefly outlines
aspects of the implementation. Section 7 describes experimentation performed.
Finally, Sect. 8 concludes the paper. Appendix A contains visualizations of the
monitors presented throughout the paper, generated by LogScope.

2 Related Work

LogScope’s concepts can be traced back to the early RuleR system [2], where
the idea of merging rule-based programming with state machine notation was
first explored, and implemented in Java. That work was followed by the first ver-

Specification-Based Monitoring in C++ 67

sion of LogScope1 [4,23], implemented and executing monitors in Python, in
contrast to the here presented system where monitors are generated in the higher
performing C++. The algorithmic approach, however, was the same, namely
parsing a monitor specification into an Abstract Syntax Tree (AST) and then
interpreting it over the trace, as we shall discuss later on. The earlier system did
not allow to query the fact memory for presence/absence of facts. It was, how-
ever, richer in a number of other ways, including providing a temporal logic layer
translated to the automaton layer, and allowing Python code to be written as
part of monitors, such as in e.g. conditions and actions. The here presented ver-
sion does not yet offer similar capabilities for including C++ code in monitor
specifications.

We have developed other runtime verification systems based on the same
idea of merging rule-based programming with state machines, including Daut
[10,17] (in Scala) and PyContract [8,27] (in Python). Both are so-called
internal DSLs, in contrast to LogScope, which is an external DSL with its
own grammar and parser. In an internal DSL monitors are written directly in
the host language, which we in Sect. 7 shall see can have important impact
on performance. We also developed the purely rule-based runtime verification
system LogFire [18,22], also an internal Scala DSL, based on the RETE
algorithm [12,13] traditionally used in expert systems, in order to explore the
applicability of this algorithm for runtime verification. The Rmor monitoring
framework for C [16] generates C code from an external state machine DSL that
includes aspect-oriented programming for instrumenting code to be monitored.

Numerous other RV systems have been developed over time providing exter-
nal DSLs. Many are written in high-level application programming languages,
such as e.g. Java, Scala, and Ocaml, which makes them less suited for online
monitoring of embedded systems. Java-MaC [21] was an early system support-
ing a past time temporal logic, allowing for a clear separation between the defi-
nition of the primitive events of a system and the system properties. It enables
automatic instrumentation of Java code to generate events for the monitor.
Java-MaC does not support parametric monitoring, however.

A number of systems support efficient parametric monitoring through slicing:
the idea of splitting the trace of events carrying data into several subtraces of
propositional events, each of which is then submitted to a propositional monitor.
Mop [25] offers several data parametric specification formalisms as separate plu-
gins, including state machines, past and future temporal logics, regular expres-
sions, grammars, etc. The logics are separated in the sense that any property is
expressed in one of the logics. The parameterization is based on slicing, which
is very efficient, but which offers a somewhat limited expressiveness. Mop sup-
ports automated code instrumentation using aspect-oriented programming (via
AspectJ). The Qea system [28] is based on extended finite state machines,
and improves the expressiveness of the slicing approach compared to Mop by

1 The original system was focused on Log analysis, hence the name LogScope (scope
as in telescope).

68 K. Havelund

allowing so-called free variables that can be updated in the monitors. Larva [6]
offers a specification language for writing Dynamic Automata with Timers and
Events (DATEs), also a form of extended finite state machines, and similar to
timed automata enriched with stopwatches. It supports a basic form of paramet-
ric monitoring with slicing. Various other specification formalisms are translated
into DATEs. DATEs can communicate via channels and global variables. The
system also supports automated code instrumentation using aspect-oriented pro-
gramming (via AspectJ).

A different branch of formalisms include those supported in stream-based
systems. Lola [9] is a synchronous stream-based language which allows the user
to specify the properties of a program in past and future linear time temporal
logic. The language guarantees bounded memory to perform online monitoring,
but differs from most other synchronous languages in that it is able to refer
to future values in a stream. It allows the user to collect statistics at runtime
and to express numerical queries. The CoPilot specification language [26] is
an internal Haskell DSL from which monitors in C are generated for moni-
toring hard real-time reactive systems. It supports a past time temporal logic
and a bounded future time temporal logic, both mapped into stream expres-
sions. It supports data parameterization, which is bounded due to the real-time
constraints requiring statically bounded execution time and memory usage.

Closely related are systems resembling variants of the linear µ-calculus,
using recursion. Eagle [3] implements a recursive data parametric calculus
with past and future time operators. Hawk [7] extends Eagle with constructs
for capturing parameterized program events such as method calls and method
returns. Parameters can be executing thread, the objects that methods are called
upon, arguments to methods, and return values. The tool automates program
instrumentation of Java programs (via AspectJ). DetectEr [1] implements a
future time data parametric Hennessy-Milner logic with recursion for monitoring
Erlang programs.

Several systems have been developed specifically supporting forms of first-
order linear time temporal logic as the core logic. MonPoly [5] supports a first-
order linear time temporal logic with future and past time temporal operators.
The logic also supports aggregation operators (e.g., sum and average), increasing
the expressiveness of the logic. BeepBeep [15] permits writing first-order linear
time temporal logic properties over the data in a trace of Xml messages. In [11] is
presented a framework that lifts monitor synthesis procedures for propositional
temporal logics to a temporal logic over structures within a given first-order
theory. To evaluate such specifications, SMT solving and classical monitoring of
propositional temporal properties are combined. DejaVu [19] supports a first-
order past linear time temporal logic and represents data occurring in events
with BDDs. In [20] is described an extension that augments that logic with
rules.

Specification-Based Monitoring in C++ 69

3 Overview

LogScope supports formal analysis of event (telemetry) streams. The tool takes
as input:

– a formal specification in the Scope language, expressing the properties that
the event stream has to satisfy. The specification consists of a collection of
monitor specifications.

– an event stream.

LogScope produces on standard output a report describing where (if at all)
the event stream violates the specification. The results of monitoring can also
be accessed as a data structure for further processing. The Scope specification
language merges rule-based programming with state machines. An example of
a monitor specification in the Scope language is the following, formalizing the
property that: “Every command (with some apriori unknown name, bound to
the variable ‘x’) must eventually succeed, without a failure before” (the language
will be explained in detail in subsequent sections):

monitor CommandsMustSucceed {
always {

COMMAND(name : x) ⇒ RequireSuccess (x)
}

hot RequireSuccess (cmdName) {
FAIL(name : cmdName) ⇒ error
SUCCESS(name : cmdName) ⇒ ok

}
}

Figure 1 illustrates the architecture of LogScope. A monitor specification, writ-
ten in the Scope specification language by a user, is by the frontend (written
in the Scala programming language) translated to an AST in C++, represent-
ing the structure of the specification, and stored in the file contract.cpp. The
backend compiles with the contract.cpp file, as well as with a main program
in the main.cpp file, also written by a user. This main program is responsible
for obtaining events E1, E2, . . . from the System Under Observation, referred to
as SUO, and forwarding them to the backend, which then monitors them using
the contract in contract.cpp.

For each monitor in contract.cpp is maintained an internal memory, called
the frontier, which is a set of active states S1, S2, ..., Sk. States in LogScope
are similar to those of state machines, however, in contrast to traditional state
machines the frontier can contain more than one state, each parameterized with
its own data. As we shall see, a state can have transitions out of the state, which
can delete states, create new states, and/or issue error messages to a report. For
each incoming event Ei, a monitor conceptually applies the event to each state
S1, S2, . . . , Sk in the frontier2, causing states to be removed, states to be added,
and/or error messages to be issued.
2 Optimizations similar to slicing can avoid examining all states.

70 K. Havelund

Fig. 1. The LogScope architecture.

In online monitoring, where the monitor continuously monitors the SUO
as it executes, there is conceptually no end to the monitoring, it theoretically
continues “forever”. However, in offline monitoring, analyzing e.g. a log file,
monitoring terminates after the last event in the log file has been processed. The
specification language contains language constructs, which only have meaning
when/if end of monitoring occurs. Specifically it is checked that there are no
remaining unfulfilled obligations: events that should occur but did not.

In the following we first present the Scope specification language, and sub-
sequently the tool itself in terms of the frontend and backend.

4 The Specification Language

A specification consists of one or more files, each containing zero or more moni-
tor specifications. From each monitor specification is generated a monitor AST
(in C++). When there is no confusion possible, we shall use the term monitor
instead of monitor specification. Each monitor specification represents a prop-
erty that must hold on an event sequence. We shall illustrate the LogScope
specification language through a sequence of examples, that combined cover the
different aspects of the language. All the examples concern the commanding of
a planetary rover. We start with examples where events do not carry data, and
then move on to the more interesting case where events carry data.

4.1 Events

Conceptually, an event is a named record, with a name and a mapping from
fields to values, where both fields and values are strings. We can think of an
event to have the following form:

Specification-Based Monitoring in C++ 71

name(field1 : value1, . . . , fieldn : valuen)

In case the map is empty we just refer to the name. Some examples are:

– reboot
– command(name : “TURN”, kind : “FSW”, sol : “125”)

This description suffices to understand the specification language. Later, in
Sect. 5, we shall see how such events are concretely created with the backend
C++ API.

4.2 A Simple State Machine

Let us assume that the SUO repeatedly emits two events:

− command : command being issued to, and received by, rover
− succeed : successful termination of command execution on rover

Note that for this first example we do not care about the fact that there are
different kinds of commands. We also do not care about the data that events
carry. We want to monitor the following property:

Property P1:
After submission of a command, a success of the command must follow,
and no other command can be submitted in between.

The monitor for this property is shown in Fig. 2. The monitor, named M1, first
declares which events it will monitor, namely command and succeed. Declaring
such events has the main purpose of reducing the risk of making specification
mistakes by e.g. misspelling event names when defining the states. Then two
states are defined: Command and Succeed. The state Command is the initial state
of the state machine, indicated by the state modifier init. The state contains one
transition: command ⇒ Succeed, expressing that if a command event is observed,
then we leave (remove from the frontier) the Command state and enter (add to the
frontier) the Succeed state. The Succeed state is annotated with a hot modifier,
with the meaning that this state must be left (removed) before end of monitoring
occurs (if it occurs). Leaving the Succeed state can happen in one of two ways.
Either a succeed event occurs, in which case we return to the Command state, or
another command event occurs, in which case we report an error.

Textual monitors are visualized by LogScope using GraphViz’s dot-
format, see Appendix A. This can help in convincing the specification writer
that the specification expresses the intended property.

72 K. Havelund

monitor M1 {
event command , succeed

i n i t Command {
command ⇒ Succeed

}

hot Succeed {
succeed ⇒ Command
command ⇒ error

}
}

Fig. 2. Monitor M1 for property P1.

4.3 Some Alternative Monitors

Figure 3 shows some alternative monitors for property P1, illustrating different
aspects of the language. In the monitor M1a, instead of alternating between
the states Command and Succeed, whenever a command event is observed in the
Command state, in addition to creating a Succeed state, we immediately re-create
the Command state. This is done by listing the Command state on the right-
hand side of the transition arrow ⇒ , in addition to the Succeed state, separated
by a comma. In the Succeed state itself, instead of creating a Command state on
observing a succeed event, the ok state is entered, which effectively means that we
are leaving the Succeed state successfully. This approach is, however, semantically
slightly different in the sense that this monitor will keep looking for successes
of commands, even after a failure due to a command being issued while waiting
for a success. In the monitor M1, such an extra command will cause the frontier
to become empty. Note that we have not annotated the Command state with the
modifier init. In case no states are annotated with init, the first state is by default
initial (unless the monitor contains anonymous states as shown in monitor M1c).

Monitor M1b shows how we can annotate a state with the modifier always
to obtain the same effect as the transition in the Command state in the M1a

monitor. The always modifier causes the state to always persist, even when
transitions out of the state are taken. It is common for such always states to be
anonymous, by not giving them a name. This is shown in the monitor M1c, which
is the recommended (most convenient) way to write this monitor. If there are
anonymous states in a monitor they become initial states in addition to states
explicitly annotated with the modifier init. Only if there are no states annotated
with init and there are no anonymous states, the first state becomes the initial
state.

4.4 Monitoring Events that Carry Data

We shall now monitor events that carry data, represented as maps from fields
to string values. This is where LogScope distinguishes itself from traditional
state machines. In our next example along the same theme, we shall specifically
distinguish between different commands identified by name and kind. That is,
our events have the form:

Specification-Based Monitoring in C++ 73

monitor M1a {
event command , succeed

Command {
command ⇒

Succeed , Command
}

hot Succeed {
succeed ⇒ ok
command ⇒ error

}
}

(a) Monitor M1a.

monitor M1b {
event command , succeed

always Command {
command ⇒

Succeed
}

hot Succeed {
succeed ⇒ ok
command ⇒ error

}
}

(b) Monitor M1b.

monitor M1c {
event command , succeed

always {
command ⇒

Succeed
}

hot Succeed {
succeed ⇒ ok
command ⇒ error

}
}

(c) Monitor M1c.

Fig. 3. Alternative monitors M1a, M1b, and M1c for property P1.

− command(name : c , k i nd : k) : command being issued
− succeed (name : c) : successful termination

The kind k can for example be the string ”FSW” (Flight Software, in contrast to
Flight Hardware). We shall now modify the property P1 slightly. The property
stated that “After submission of a command, a success of the command must
follow, and no other command can be submitted in between”. We shall now dis-
tinguish between different commands, identified by their names, and relax the
property to:

Property P2:
After submission of a flight software command with a name x, a success
of the command named x must follow (with the same name), and that
command x cannot be re-submitted in between.

Note that x is a variable representing any command name observed. This means
that in between a command named x and its success, another command named y
can be submitted as long as x �= y. A monitor for this property is shown in Fig. 4.
Now the events are declared to carry maps (data). The event command carries
a map defining two fields, name, a string denoting the name of the command,
and kind, the kind of the command. The succeed command carries its name. Note
that all data are strings3. The anonymous initial always state contains a single
transition, which on the left-hand side of the arrow ⇒ matches any command

event where the kind field is the string ‘‘ FSW”. On such a match the command
name itself is bound to the variable x. This x is then referred to on the right-hand
side state, where it is bound to the c field of the created Succeed state. So, e.g.
if the command command(name : “TURN”, kind : “FSW”) is observed, then
a Succeed(c : “TURN”) state is created.

The Succeed state itself is parameterized with a map with a single field c.
This field is referred to in the transitions. For example, the first transition states
that if a succeed event is observed with a map, which maps the field name to the
value of c that was passed as parameter, then we successfully leave the Succeed

state by creating an ok state. On the other hand, if a command event is observed
where the name is c, it is an error.

3 An extension of the language can allow different types of values.

74 K. Havelund

The general rule for when a variable name in a transition is bound versus
matched against is the following. A variable, such as x in the always state, is
bound to an incoming value of an event if x is not occurring as parameter to the
state. A variable, such as c in the Succeed state, is matched against if occurs as
parameter to the state.

Note that we do not refer to the kind field of the command event in the
second transition of the Succeed state (even though all commands monitored by
this monitor defines a kind field in their associated maps). The intent is that we
do not want any command of any kind with the name c to occur while waiting
for a success. We could alternatively have narrowed it down to flight software
commands by adding a kind : ‘‘ FSW”. Note that the order of arguments are not
important since we are dealing with maps. The format of monitor M2 is typical,
many properties will have this form.

monitor M2 {
event command(cmd , kind) , succeed (cmd)

always {
command(cmd : x , kind : ”FSW”) ⇒ Succeed (c : x)

}

hot Succeed (c) {
succeed (cmd : c) ⇒ ok
command(cmd : c) ⇒ error

}
}

Fig. 4. Monitor M2 for property P2.

4.5 Referring to the Past

The properties we have seen so far are what we call a future time properties.
They have the general form: “if some event occurs, then some other events have
to occur in the future and/or other events should not occur in the future”. It is,
however, also useful sometimes to refer to things that happened in the past, and
specifically to things that did not happen. Let us add a constraint to property
P2, namely that a command is only allowed to succeed, if it has been commanded
in the past and not yet succeeded. The added constraint refers to the past. That
is, our property now becomes:

Property P3:
After submission of a flight software command with a name x, a success
of the command named x must follow (with the same name), and that
command x cannot be re-submitted in between. Furthermore, a command
is only allowed to succeed if it has been commanded in the past and not yet
succeeded.

The monitor M3 in Fig. 5 monitors this property. The monitor is the same as in
Fig. 4 except that in the initial always state we have added an extra transition:

succeed (name : x) @ ! Succeed (c : x) ⇒ e r r o r

Specification-Based Monitoring in C++ 75

In addition to the event pattern succeed(name : x), after the symbol @ follows a
condition !Succeed(c : x) stating that there does not (! is negation) exist a state
in the frontier with a map that maps the field c to the value x bound in the
event on the left-hand side of the @ symbol. If there is no such state, hence the
command x is not expected to succeed, then an error is reported. In general, after
the @ symbol, a comma separated list of conditions can occur (negated or not),
which each have to be true for the transition to be taken. The conditions can
bind variables, exactly as does our event here. Bindings can be seen in patterns
occurring to the right of the bindings.

monitor M3 {
event command(cmd , kind) , succeed (cmd)

always {
command(cmd : x , kind : ”FSW”) ⇒ Succeed (c : x)
succeed (cmd : x) @ ! Succeed (c : x) ⇒ error

}

hot Succeed (c) {
succeed (cmd : c) ⇒ ok
command(cmd : c) ⇒ error

}
}

Fig. 5. Monitor M3 for property P3.

4.6 A Complex Property

The following final example does not introduce essential new language features
(except a less essential one), but illustrates how a more complex monitor can
look like. We expand the scenario with additional events. We here assume that
when a command is received on the rover, it is not immediately executed, but
rather it is stored in a queue. While in the queue the command can be cancelled.
If not cancelled it is then eventually dispatched for execution. The execution
can fail or it can succeed. After successful execution, the command has to be
closed (e.g. cleaning up). Each command, in addition to having a name, is now
also associated with a command number, increased by 1 for each submitted
command. We consider the following events:

− command(name : c , n r : n , k i nd : k)
− c a n c e l (name : c , n r : n)
− d i s p a t c h (name : c , n r : n)
− f a i l (name : c , n r : n)
− succeed (name : c , n r : n)
− c l o s e (name : c , n r : n)

We shall refer to the combination of a command name and its number as a
command instance. Our new property is as follows.

76 K. Havelund

P4:
After submission of a flight software command instance, a dispatch of the
command instance must follow, unless it is cancelled first. Once dispatched,
it must succeed, without any failure occurring before. In between the dis-
patch and the success of a command instance, we should observe no re-
submission of that command (any command instance with that name). A
command instance is not allowed to succeed unless it has been dispatched.
Once a command instance has succeeded, it must be closed, and it is not
allowed to succeed again.

The monitor for property P4 is shown in Fig. 6. The second transition in the
initial always state uses a condition to catch command successes that are not
expected. The first transition in the Succeed state creates two new states, a
NoMoreSuccess state and a Close state. The second transition in the Succeed state
uses a wildcard symbol to indicate that any flight software command instance
with the name sc will cause an error in this state, we don’t care what the com-
mand number is. In this monitor, the transition has the same meaning as the
following transition where we do not mention the nr field at all:

command(cmd : sc , k i nd : ”FSW”) ⇒ e r r o r

Whether we use a don’t care symbol or not does, however, have an effect in
case we do not declare our events at the beginning of the monitor: using a don’t
care symbol, as in nr : , does require that there is an nr field in the command’s
data map. If not an error is issued.

monitor M4 {
event command(cmd , nr , kind) , cance l (cmd , nr) , d i spatch (cmd , nr) ,

f a i l (cmd , nr) , succeed (cmd , nr) , c l o s e (cmd , nr)

always {
command(cmd : c , nr : n , kind : ”FSW”) ⇒ Dispatch (dc : c , dn : n)
succeed (cmd : c , nr : n) @ ! Succeed (sc : c , sn : n) ⇒ error

}

hot Dispatch (dc , dn) {
cance l (cmd : dc , nr : dn) ⇒ ok
dispatch (cmd : dc , nr : dn) ⇒ Succeed (sc : dc , sn : dn)

}

hot Succeed (sc , sn) {
succeed (cmd : sc , nr : sn) ⇒

NoMoreSuccess (nc : sc , nn : sn) ,
Close (cc : sc , cn : sn)

command(cmd : sc , nr : , kind : ”FSW”) ⇒ error
f a i l (cmd : sc , nr : sn) ⇒ error

}

NoMoreSuccess (nc , nn) {
succeed (cmd : nc , nr : nn) ⇒ error

}

hot Close (cc , cn) {
c l o s e (cmd : cc , nr : cn) ⇒ ok

}
}

Fig. 6. Monitor M4 for property P4.

Specification-Based Monitoring in C++ 77

4.7 The Complete Grammar

The complete grammar for the Scope language is defined in Fig. 7. In addi-
tion to traditional grammar notation we also use A,∗ denoting A zero or more
times, separated by commas, and likewise for A,+ denoting A one or more times,
separated by commas.

Note that one does not need to define events. In that case the events are
inferred from the state transitions. Providing event definitions, however, serves
two purposes: (1) to offer an additional well-formedness check on the state tran-
sitions, that they refer to events declared, and (2) if no events are declared, then
only events used in the state transitions are submitted to the monitor, otherwise
all declared events are submitted. This can make a difference when using step
and next modifiers explained below.

The non-terminal ‘Modifier’ introduces two modifiers we have not explained
before. A step state will be deleted from the frontier at the next event if none of
its transitions fire. A next state will cause an error at the next event if none of its
transitions fire. In the definition of the non-terminal ‘Trans’ (transition), if a pat-
tern on the right-hand side of ⇒ is negated, the corresponding state is removed.
Such patterns must be grounded with no undefined identifiers. Note that when
taking a transition, the source state containing the transition is removed from
the frontier, unless the state is annotated with the always modifier.

Specification ::= Monitor*

Monitor ::= monitor Id ‘{’ EventDef* State* ‘}’

EventDef ::= event Event,+

Event ::= Id [‘(’ Id,+ ‘)’]

State ::= Modifier+ ‘{’ Trans+ ‘}’ | Modifier* Id [‘(’ Id,* ‘)’] [‘{’ Trans+ ‘}’]

Modifier ::= init | always | hot | step | next

Trans ::= Pat [‘@’ Pat,+] ‘⇒’ Pat,*

Pat ::= [‘!’] Id [‘(’ Constraint,* ‘)’]

Constraint ::= Id ‘:’ Range

Range ::= Value | Id | ‘_’

Value ::= String | Number

Id ::= Letter (Letter | Digit | ‘_’)*

Letter ::= ‘a’ - ‘z’ | ‘A’ - ‘Z’

Digit ::= ‘0’ - ‘9’

Number ::= Digit Digit*

String ::= text between double quotes

Fig. 7. Grammar for the LogScope language.

5 Usage

The front-end is delivered as a jar-file and a script referring to the jar-file. The
logscope script is applied as follows to n files (for n ≥ 1) containing monitor
specifications in the Scope language:

logscope 〈file1 〉 〈filen〉

78 K. Havelund

LogScope will merge the monitor specifications in the different files into one
specification and translate it to C++. It does not matter in which order the
files are provided, or how monitors are distributed over the files. In case the
input specification passes the parsing and type checking, LogScope will gen-
erate a directory tool-generated, containing the file contract.cpp with the
generated C++ AST (which will be used to monitor the specified monitors) and
visualizations of monitors in .png format, one for each monitor.

The user writes a program, say main.cpp, which is compiled with the
generated contract.cpp file, and which instantiates the specification in
contract.cpp and feeds it events. Figure 8 shows a program, main.cpp, using
the contract.cpp file (by importing contract.h) that is generated by the fron-
tend from the monitor specification in Fig. 5.

In line 4 we create a SpecObject object via a call of the makeContract
function, that the generated file contract.cpp defines. The SpecObject contains
the AST of the specification as a C++ object tree. We then create a trace, a
list of four events, in lines 5–10. In our case, the specification in Fig. 5 processes
the events: command(cmd,kind) and succeed(cmd). Here command and succeed are
the names, and cmd and kind are the fields. If we look at the first event in line
6, it represents a command at time 10, with the ‘‘ cmd” field having the value
‘‘ TURN” and the ‘‘ kind” field having the value ‘‘ FSW”. The for-loop in lines
11–13 iterates through each event e in the trace, and feeds it to the contract via
a call of the eval method. Finally, in line 14, we end the monitoring. This can
cause additional error messages to be produced in case any hot states remain
in the frontier of monitor. Note that during online monitoring this method may
never be called. As shown in this example, the monitor must be fed events e via
calls of the form contract . eval (e). For the purpose of a simple presentation we
created an explicit trace. When monitoring an application in online mode (as
it executes) it is up to the implementer of the application to invoke these calls.
When monitoring an application in offline mode, it us up to the implementer of
the application to write events to a file, which can then later be processed.

1 #include ” cont rac t . h”
2
3 int main () {
4 SpecObject cont ract = makeContract () ;
5 l i s t <Event> events = {
6 Event (10 , ”command” ,{{”cmd” , ”TURN”} ,{”kind” , ”FSW”}}) ,
7 Event (20 , ”command” ,{{”cmd” , ”TRACK”} ,{”kind” , ”FSW”}}) ,
8 Event (30 , ” succeed ” ,{{”cmd” , ”TURN”}}) ,
9 Event (40 , ” succeed ” ,{{”cmd” , ”SEND” }}) ,

10 } ;
11 for (Event &e : events) {
12 contract . eva l (e) ;
13 } ;
14 cont rac t . end () ;
15 }

Fig. 8. The main program in main.cpp.

Monitoring the above trace causes two errors to be detected, the first due to
the 4th event (line 9 in Fig. 8), which is a success of a command that has not
been issued. At the end of monitoring (at the call contract.end() in line 14),

Specification-Based Monitoring in C++ 79

an additional error is detected, indicating that the monitor M3 ends in the hot
Succeed state, since the TRACK command has not succeeded.

6 Implementation

The front-end, implemented in Scala, parses the Scope specification using
Scala’s parser combinator library and produces an AST in Scala. The AST is
type checked, and then written out as an AST in C++ to the file contract.cpp.
Monitors are visualized with GraphViz [14]. The backend is implemented in
C++14 (the 2014 version).

The monitoring engine can be conceived as operating with objects of three
main classes. An object of the SpecObject class represents the specification,
which is a collection of monitors, each of which is represented by an object of
the MonitorObject class. Each such monitor, at any moment in time during
monitoring, contains a set of active states, each represented by an object of
the StateObject class. Each of these three classes defines an eval(Event &e)
method, evaluating a single event, as shown in Fig. 9.

void SpecObject : : eva l (Event &e) {
for (MonitorObject ∗m : monitors) m−>eva l (e) ;

}

void MonitorObject : : eva l (Event e) {
i f (i sRe l evant (e)) {

event = e ;
s tatesToDelete . c l e a r () ;
statesToAdd . c l e a r () ;
for (auto s t a t e : s t a t e s) s t a t e . eva l () ;
for (auto &sta t e : s tatesToDele te) s t a t e s . e ra s e (s t a t e) ;
for (auto &sta t e : statesToAdd) s t a t e s . i n s e r t (s t a t e) ;

}
}

void StateObject : : eva l () {
bool f i r e d = f a l s e ;
for (as t : : Trans i t i on ∗ t rans : stateAST−>t r a n s i t i o n s) {

Trans i t i onResu l t r e s u l t = eva lTrans i t i on (t rans) ;
i f (r e s u l t == Trans i t i onResu l t : : FAILED) e r r o r () ;
f i r e d = f i r e d | | (r e s u l t != Trans i t i onResu l t : : SILENT) ;

} ;
i f (stateAST−>i sNext && ! f i r e d) e r r o r () ;
i f (! stateAST−>i sAlways &&

(stateAST−>i sNext | | stateAST−>i s S t ep | | f i r e d)) {
monitor−>recordStateToDelete (∗ this) ;

}
}

Fig. 9. Evaluation methods.

The SpecObject::eval method calls the eval method on each of its mon-
itors. The method MonitorObject::eval only handles events relevant to the
monitor (either declared, or if no event declarations: used). It calls the eval
method on each of its states. It operates on two variables storing states to be
deleted and states to be added due to the effect of the transitions in the monitor.
Finally, the StateObject::eval method walks through the transitions. Next-
states must fire. The state is removed if it is not an always state, and it is a next
or step state, or a transition fired.

80 K. Havelund

7 Experiment

7.1 Setting Up the Experiment

In order to evaluate LogScope’s performance, we compared it to two other
monitoring systems: Daut [10,17] and PyContract [8,27]. As previously men-
tioned, while the LogScope specification language is an external DSL – a
stand-alone language, where a monitor specification is translated to an AST (in
C++) and then interpreted; both Daut and PyContract are internal DSLs,
in respectively Scala and Python, implementing automata concepts very sim-
ilar to the one of LogScope. An internal DSL is effectively a library in the host
language. A user is therefore not limited to the expressiveness of the DSL, but
can use the entire host language for writing monitors if needed. This can e.g.
be useful for performing computations on the data appearing in events. Gener-
ally, high-level languages such as Python, and especially Scala, are well suited
for defining internal DSLs. Both internal DSLs use the host language’s pattern
matching to match events against transition left hand sides. This turns out to be
a crucial difference from the C++ implementation of LogScope, where this pat-
tern matching had to be implemented. The aging earlier version of LogScope
[4,23], implemented in Python, and executing in Python, was not performing
well, and has for this reason been eliminated from the numeric comparison.

We monitored a slight modification of property M4 in Fig. 6, shown in Fig. 10,
which requires less memory, avoiding the accumulating memory needed by the
NoMoreSuccess state for example. The Daut version of this property is shown
in Fig. 11 and the PyContract version is shown in Fig. 12. We applied each
monitor to 8 logs (traces) with varying length and shape. Table 1 shows the
execution times in seconds and milliseconds. Each log is generated by an artificial
log generator developed specifically for the experiment, parameterized with a
shape S = (P,R) of positive integers, where P denotes how many commands
are active in parallel, from issuing the command, dispatching, succeeding, and
closing (four events), and R indicates how many times such a parallel execution
is repeated.

7.2 Result and Interpretation

The surprise here is that LogScope, with a backend implemented in C++,
is slower than the other two systems implemented in Scala and Python. The
Scala version has the best performance, which in part likely can be contributed
to the JVM’s just-in-time compilation. We believe the reason for LogScope’s
weaker performance to be the following. LogScope supports an external DSL,
where a monitor specification is translated (by the Scala frontend) into an
AST (in C++). This AST is subsequently during monitoring interpreted on
the stream of input events. The interpreter includes our own implementation of
pattern matching of events against transition left-hand sides. In contrast, both
Daut and PyContract are internal shallow DSLs, where monitors are written
directly in the host language, and specifically using the pattern matching pro-
vided by the host languages, yielding an advantage wrt. Performance. Note that

Specification-Based Monitoring in C++ 81

this performance advantage of internal shallow DSLs also holds when compared
to interpretation of internal deep DSLs, which are similar to external DSLs,
in that a program/specification in the DSL is represented as a data structure
(AST). Note finally that the C++ implementation uses dynamic memory allo-
cation (as do Daut and PyContract). This should in a revised version for
embedded software monitoring be replaced by a static memory pool, potentially
providing efficiency improvements wrt. Time and memory.

The presented C++ version of LogScope, however, performs better than
the earlier version described in [4,23]. This is perhaps not so surprising since
they both use fundamentally the same technique of interpreting the monitor
specification AST over the trace, and C++ is a high performance programming
language compared to Python.

monitor M4 modified {
event command(cmd , nr , kind) , cance l (cmd , nr) , d i spatch (cmd , nr) ,

f a i l (cmd , nr) , succeed (cmd , nr) , c l o s e (cmd , nr)

always {
command(cmd : c , nr : n , kind : ”FSW”) ⇒ Dispatch (dc : c , dn : n)

}

hot Dispatch (dc , dn) {
cance l (cmd : dc , nr : dn) ⇒ ok
dispatch (cmd : dc , nr : dn) ⇒ Succeed (sc : dc , sn : dn)

}

hot Succeed (sc , sn) {
succeed (cmd : sc , nr : sn) ⇒ Close (cc : sc , cn : sn)
command(cmd : sc , nr : , kind : ”FSW”) ⇒ error
f a i l (cmd : sc , nr : sn) ⇒ error

}

hot Close (cc , cn) {
succeed (cmd : cc , nr : cn) ⇒ error
c l o s e (cmd : cc , nr : cn) ⇒ ok

}
}

Fig. 10. Monitor M4 modified, used in experiment.

c lass M4 modified extends Monitor [Event] {
always {

case Com(c , n , ”FSW”) ⇒ Dispatch (c , n)
}

case c lass Dispatch (cmd : Str ing , nr : S t r ing) extends s t a t e {
hot {

case Can(‘cmd ‘ , ‘ nr ‘) ⇒ ok
case Dis (‘ cmd ‘ , ‘ nr ‘) ⇒ Succeed (cmd , nr)

}
}

case c lass Succeed (cmd : Str ing , nr : St r ing) extends s t a t e {
hot {

case Suc (‘ cmd ‘ , ‘ nr ‘) ⇒ Close (cmd , nr)
case Com(‘cmd ‘ , , ”FSW”) ⇒ e r r o r ()
case Fai (‘ cmd ‘ , ‘ nr ‘) ⇒ e r r o r ()

}
}

case c lass Close (cmd : Str ing , nr : S t r ing) extends s t a t e {
hot {

case Suc (‘ cmd ‘ , ‘ nr ‘) ⇒ e r r o r ()
case Clo (‘ cmd ‘ , ‘ nr ‘) ⇒ ok

}
}

}

Fig. 11. Monitor M4 modified, in the Scala DSL Daut.

82 K. Havelund

Table 1. Result of experiment. For each log is shown shape S of the log: a pair (P,R)
of constants, where P denotes how many commands are active in parallel, from issuing
the command, dispatching, succeeding, and closing (four events), and R indicates how
many times such a parallel execution is repeated. The number of events in a log is
4 ∗ P ∗ R.

log nr 1 2 3 4 5 6 7 8

S= (P,R) (1,12500) (50,250) (1,50000) (5,10000) (10,5000) (20,2500) (1,125000) (5,25000)

nr. of events 50,000 50,000 200,000 200,000 200,000 200,000 500,000 500,000

LogScope 5.172 s 42.974 s 20.571 s 14.884 s 21.857 s 35.537 s 23.471 s 37.256

PyContract 0.373 s 4.600 s 1.567 s 3.425 s 5.120 s 8.811 s 4.511 s 9.483 s

Daut 0.595 s 0.733 s 0.927 s 0.938 s 1.000 s 1.221 s 1.482 s 1.431 s

c lass M4 modified (Monitor) :
def t r a n s i t i o n (s e l f , event) :

match event :
case { ’name ’ : ’command ’ , ’cmd ’ : c , ’ nr ’ : n , ’ kind ’ : ”FSW” } :

return s e l f . Dispatch (c , n)

@data
c lass Dispatch (HotState) :

cmd : str
nr : str

def t r a n s i t i o n (s e l f , event) :
match event :

case { ’name ’ : ’ cance l ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return ok

case { ’name ’ : ’ d i spatch ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return s e l f . Succeed (s e l f . cmd , s e l f . nr)

@data
c lass Succeed (HotState) :

cmd : str
nr : str

def t r a n s i t i o n (s e l f , event) :
match event :

case { ’name ’ : ’ succeed ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return s e l f . Close (s e l f . cmd , s e l f . nr)

case { ’name ’ : ’command ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : , ’ kind ’ : ”FSW” } :
return e r r o r ()

case { ’name ’ : ’ f a i l ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return e r r o r ()

@data
c lass Close (HotState) :

cmd : str
nr : str

def t r a n s i t i o n (s e l f , event) :
match event :

case { ’name ’ : ’ succeed ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return e r r o r ()

case { ’name ’ : ’ c l o s e ’ , ’cmd ’ : s e l f . cmd , ’ nr ’ : s e l f . nr } :
return ok

Fig. 12. Monitor M4 modified, in the Python DSL PyContract.

8 Conclusion

We have presented a framework in C++ for monitoring event streams, with
a frontend written in Scala supporting an external DSL. We compared the
implementation with two other monitoring systems implemented in respectively
Scala and Python. It turns out that those systems perform better, likely due to
the fact that they are internal DSLs benefiting from the host language’s pattern
matching constructs.

The current version of the tool is a prototype. A continuation of this work
would include the following activities. There is a need to obtain a better under-
standing of the performance differences. In general, there is a need to modify the

Specification-Based Monitoring in C++ 83

backend C++ code to match embedded programming practices. This includes
most importantly to avoid dynamic memory allocation, using instead statically
sized object pools. The backend monitoring engine can be further optimized.
One can e.g. use indexing to quickly identify what states an event is relevant for.
Various extensions to the specification language can be considered, such as e.g.
allowing the use of C++ code as part of specifications. Currently arguments to a
state are passed by referring to the formal parameter names. Allowing positional
arguments without referring to the formal parameter names might be desirable.
Finally, a more optimal way to translate a monitoring specification is to translate
it to a C++ program that is specialized for the monitor (rather than translating
it to an AST in C++). Partial evaluation could be considered as an approach to
achieve this, partially evaluating the interpreter given a specification, yielding a
program that now only takes the event trace as input.

A Visualization of Monitors

Textual monitors are automatically visualized using GraphViz’s dot-format
[14]. This appendix shows the visualization of the textual monitors presented in
Sect. 4.

Monitor M1. The monitor M1 in Fig. 2 is visualized in Fig. 13. Hot states
(annotated in text with the modifier hot) are visualized as orange arrow shaped
pentagons. Orange means danger: this state has to be left eventually. Non-hot
states are visualized as green rectangles, we can stay in those “forever” (termi-
nating monitoring in such a state is ok). The initial state Command is pointed to
by an arrow leaving a black point. Transitions are labelled with events (and addi-
tional conditions as we shall see later). The color red in general indicates error.
For example a command issued in the Succeed state causes an error, symbolized
with a red cross on a horizontal line.

M1

Command

Succeed

commandsucceed

command

Fig. 13. Monitor M1 visualized.

84 K. Havelund

Monitors M1a, M1b, and M1c. The three monitors M1a, M1b, and M1c in
Fig. 3 are visualized in Figure 14. Figure 14a, the visualization of M1a, shows
how multiple target states are visualized: the transition of the Command state
triggered by a command event creates a Succeed and a Command state. This is
visualized with a black triangle (symbolizing a Boolean ‘and’: ∧) with dashed
lines leading to the target states. Note how in the Succeed state, a succeed event
leads to ok which in the visualization is shown as a green dot. The visualization
of monitor M1b in Fig. 14b illustrates how an always state is visualized: with
an unlabelled self loop. The difference between the visualization of this monitor
and of M1c in Fig. 14c is only that the initial state in Fig. 14c has no name.

M1a

Command

command

Succeed

succeed command

(a) Monitor M1a.

M1b

Command

Succeed

command

succeed command

(b) Monitor M1b.

M1c

Succeed

command

succeed command

(c) Monitor M1c.

Fig. 14. Monitors M1a, M1b, and M1c visualized.

Monitor M2. Monitor M2 in Fig. 4 is visualized in Fig. 15. The difference from
previous visualizations is that now events carry data maps, which is shown. It is
also shown how bindings to fields in target state maps are created. Specifically,
the transition ‘command(name : x, kind :‘‘FSW”) ⇒ Succeed(c : x)’ from the initial
always state is shown as an edge labelled with command(cmd : x, kind : ‘‘FSW”),
and below it the binding of the c field of the Succeed state (see its definition) to
the x that was bound on the left of the ⇒ symbol.

Specification-Based Monitoring in C++ 85

M2

Succeed(c)

command(cmd : x,kind : "FSW")
c := x

succeed(cmd : c) command(cmd : c)

Fig. 15. Monitor M2 visualized.

M3

Succeed(c)

command(cmd : x,kind : "FSW")
c := x

succeed(cmd : x)
!Succeed(c : x)

succeed(cmd : c) command(cmd : c)

Fig. 16. Monitor M3 visualized.

Monitor M3. Monitor M3 in Fig. 5 is visualized in Fig. 16. The only new visu-
alization concept here is that the transition from the initial always state to the
error state is now labelled not only with the event pattern succeed(name : x) but
also with the condition pattern !Succeed(c : x) underneath.

Monitor M4. Monitor M4 in Fig. 6 is visualized in Fig. 17. Recall that by
observing the color scheme one can from the graph quickly understand the vio-
lations being checked for: orange means terminating here is a violation, and red
means an occurred violation.

86 K. Havelund

M4

Dispatch(dc,dn)

command(cmd : c,nr : n,kind : "FSW")
dc := c
dn := n

succeed(cmd : c,nr : n)
!Succeed(sc : c,sn : n)

cancel(cmd : dc,nr : dn)

Succeed(sc,sn)

dispatch(cmd : dc,nr : dn)
sc := dc
sn := dn

succeed(cmd : sc,nr : sn) command(cmd : sc,nr : _,kind : "FSW") fail(cmd : sc,nr : sn)

NoMoreSuccess(nc,nn)

nc := sc
nn := sn

Close(cc,cn)

cc := sc
cn := sn

succeed(cmd : nc,nr : nn) close(cmd : cc,nr : cn)

Fig. 17. Monitor M4 visualized.

References

1. Attard, D.P., Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: A runtime
monitoring tool for actor-based systems. In: Gay, S., Ravara, A. (eds.) Behavioural
Types: from Theory to Tools, chapter 3, pp. 49–76. River Publishers (2017)

2. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol.
4839, pp. 111–125. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77395-5 10

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

4. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log files. J.
Aerosp. Comput. Inf. Commun. 7(11), 365–390 (2010)

5. Basin, D.A., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal
first-order properties with aggregations. Formal Methods Syst. Design 46(3), 262–
285 (2015)

6. Colombo, C., Pace, G.J., Schneider, G.: LARVA – safer monitoring of real-time
Java programs (tool paper). In: Proceedings of the 2009 Seventh IEEE Interna-
tional Conference on Software Engineering and Formal Methods, SEFM ’09, pp.
33–37, Washington, DC, USA, IEEE Computer Society (2009)

https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/978-3-540-24622-0_5

Specification-Based Monitoring in C++ 87

7. d’Amorim, M., Havelund, K.: Event-based runtime verification of Java programs.
In: Proceedings of the Third International Workshop on Dynamic Analysis, WODA
’05, pp. 1–7, New York, NY, USA, Association for Computing Machinery (2005)

8. Dams, D., Havelund, K., Kauffman, S.: Python library for trace analysis. In:
Dang, T., Stolz, V. (eds) Runtime Verification. Tbilisi, Georgia, September 28–
30, Springer, Cham, LNCS (2022). https://doi.org/10.1007/978-3-031-17196-3 15

9. D’Angelo, B., et al.: LOLA: Runtime monitoring of synchronous systems. In: Pro-
ceedings of TIME 2005: the 12th International Symposium on Temporal Repre-
sentation and Reasoning, pp. 166–174, IEEE (2005)

10. Daut. https://github.com/havelund/daut (2022)
11. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Softw. Tools

Technol. Transf. (STTT) 18(2), 205–225 (2016)
12. Robert, B.: Doorenbos. Production Matching for Large Learning Systems. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA (1995)
13. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match

problem. Artif. Intell. 19, 17–37 (1982)
14. Graphviz. https://graphviz.org (2022)
15. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts

with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)
16. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,

Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68524-1 3

17. Havelund, K.: Data automata in Scala. In: 2014 Theoretical Aspects of Software
Engineering Conference, TASE 2014, Changsha, China, September 1–3, pp. 1–9.
IEEE Computer Society (2014)

18. Havelund, K.: Rule-based runtime verification revisited. Softw. Tools Technol.
Transf. (STTT) 17(2), 143–170 (2015)

19. Havelund, K., Peled, D.: Runtime verification: from propositional to first-order
temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237,
pp. 90–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 7

20. Havelund, K., Peled, D.: An extension of LTL with rules and its application to
runtime verification. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol.
11757, pp. 239–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32079-9 14

21. Kim, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time assurance tool for
Java. In: Proceedings of the 1st International Workshop on Runtime Verification
(RV’01), vol.55(2) of ENTCS. Elsevier (2001)

22. LogFire. https://github.com/havelund/logfire
23. LogScope in Python. https://github.com/havelund/logscope (2022)
24. LogScope in Scala/C++. https://github.com/logscope (2022)
25. Meredith, P.O.N., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the

MOP runtime verification framework. Int. J. Softw. Tech. Technol. Transf (STTT)
14249–289 (2011)

26. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: Monitoring embedded
systems. Innov. Syst. Softw. Eng. 9(4), 235–255 (2013)

27. PyContract. https://github.com/pyrv/pycontract (2022)
28. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.

In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55

https://doi.org/10.1007/978-3-031-17196-3_15
https://github.com/havelund/daut
https://graphviz.org
https://doi.org/10.1007/978-3-540-68524-1_3
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/978-3-030-32079-9_14
https://doi.org/10.1007/978-3-030-32079-9_14
https://github.com/havelund/logfire
https://github.com/havelund/logscope
https://github.com/logscope
https://github.com/pyrv/pycontract
https://doi.org/10.1007/978-3-662-46681-0_55

Specification and Verification
with the TLA+ Trifecta: TLC, Apalache,

and TLAPS

Igor Konnov1, Markus Kuppe2, and Stephan Merz3(B)

1 Informal Systems, Vienna, Austria
2 Microsoft Research, Redmond, USA

3 University of Lorraine, CNRS, Inria, LORIA, Nancy, France
stephan.merz@loria.fr

Abstract. Using an algorithm due to Safra for distributed termina-
tion detection as a running example, we present the main tools for ver-
ifying specifications written in TLA+. Examining their complementary
strengths and weaknesses, we suggest a workflow that supports differ-
ent types of analysis and that can be adapted to the desired degree of
confidence.

Keywords: Specification · TLA+ · Model checking · Theorem proving

1 Introduction

TLA+ [13] is a formal language for specifying systems, in particular concurrent
and distributed algorithms, at a high level of abstraction. The foundations of
TLA+ are classical Zermelo-Fraenkel set theory with choice for representing the
data structures on which the algorithm operates, and the Temporal Logic of
Actions (TLA), a variant of linear-time temporal logic, for describing executions
of the algorithm.

Most users write TLA+ specifications using one of the two existing IDEs
(integrated development environments): the TLA+ Toolbox [11], a standalone
Eclipse application, and a Visual Studio Code Extension, which can be run in a
standard Web browser. To different degrees, both IDEs also integrate the three
main tools for verifying TLA+ specifications: the explicit-state model checker
tlc [16], the symbolic SMT-based model checker apalache [8], and the TLA+

Proof System tlaps [2], an interactive proof assistant.
In this paper, we use a non-trivial algorithm for detecting termination of

an asynchronous distributed system [5] as a running example for presenting
the three tools. Based on their complementary strengths and weaknesses, we
suggest a workflow that can serve as a guideline for analyzing different kinds of
properties of a TLA+ specification, to different degrees of confidence. This is the

Support by the Inria-Microsoft Research Joint Centre and Interchain Foundation,
Switzerland is gratefully acknowledged.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 88–105, 2022.
https://doi.org/10.1007/978-3-031-19849-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_6

Specification and Verification with the TLA+ Trifecta 89

0

3

2

1

(a) Visual representation.

module AsynchronousTerminationDetection

extends Naturals
constant N
assume NAssumption

Δ
= N ∈ Nat \ {0}

Node
Δ
= 0 ..N −1

variables active, pending , termDetect

TypeOK
Δ
= ∧ active ∈ [Node boolean]

∧ pending ∈ [Node Nat]
∧ termDetect ∈ boolean

vars
Δ
= 〈active, pending , termDetect〉

terminated
Δ
=

∀n ∈ Node : ¬active[n] ∧ pending [n] = 0

(b) TLA+ representation of the state space.

Fig. 1. The ring of nodes and its TLA+ representation.

first paper that applies all three tools to a common specification and identifies
their complementary qualities. We hope that future TLA+ users will find our
presentation useful for applying these tools to their own specifications. All of our
TLA+ modules and ancillary files for running the tools are available online [9].

Outline of the Paper. Section 2 presents a high-level specification of the prob-
lem of termination detection written as a TLA+ state machine, whose proper-
ties are verified in Sect. 3. Safra’s algorithm is informally presented in Sect. 4.
Section 5 describes different approaches for verifying the properties of the algo-
rithm using model checking and theorem proving, including checking that the
algorithm refines the high-level specification introduced earlier. Finally, Sect. 6
concludes the paper and outlines ideas for future work.

2 Specifying Termination Detection

Before presenting Safra’s algorithm for detecting termination of processes on a
ring, we formally state the problem to be solved. Although this is not strictly
required for using TLA+, it will allow us to succinctly state correctness of the
algorithm in terms of refinement, and to introduce the TLA+ tools on a small
specification.

As illustrated in Fig. 1a, we assume N nodes that perform some distributed
computation. Each node can be active (indicated by a double circle) or inactive
(single circle). When a node is active, it may perform some local computation,
and it can send messages to other nodes. Messages can be understood as car-
rying tasks to be performed by the receiver: an inactive node can still receive
messages and will then become active. The purpose of the algorithm is to detect
whether all nodes are inactive. Note that the ring structure indicated in Fig. 1a
is unimportant for the statement of the problem: it will become relevant for the
termination detection algorithm to be introduced later.

90 I. Konnov et al.

Figure 1b contains the initial part of a TLA+ specification that formally
states the problem of termination detection. Specifications appear in TLA+

modules that contain declarations of constant and variable parameters, state-
ments of assumptions and theorems, but mainly contain operator definitions of
the form Op(args) Δ= expr; if the operator does not take arguments, the empty
pair of brackets is omitted.

Whereas constant parameters are interpreted by fixed (state-independent)
values, variable parameters correspond to state variables that represent the evo-
lution of a system: a state assigns values to variables. TLA+ expressions are
classified in four levels: constant formulas1 do not contain any variables, thus
their value is the same at all states during the execution of a system. State
formulas may contain constants and unprimed variables, and such formulas are
evaluated at individual states. Action formulas may additionally contain primed
variables; they are evaluated over pairs (s, t) of states: an unprimed variable v
denotes the value of v in s whereas the primed variable v′ denotes the value of v
in t. Finally, temporal formulas involve operators of temporal logic such as �
(always) and ♦ (eventually), and they are evaluated over (infinite) sequences
of states. By abuse of language, we will sometimes say that a module defines a
state predicate rather than that it defines an operator representing a Boolean
state formula, and similarly for the other levels.

TLA+ modules form a hierarchy by extending and instantiating other mod-
ules. Module AsynchronousTerminationDetection extends module Naturals
from the standard library in order to import the definition of the set Nat of nat-
ural numbers and standard arithmetic operations. It declares a constant param-
eter N and defines the constant Node as the interval of integers between 0 and
N − 1. It also declares variable parameters active, pending, and termDetect,
intended to represent the status of each node (active or inactive), the number
of pending messages at each node, and whether termination has been detected
or not. TLA+ is untyped, but it is good engineering practice to document the
expected types of constants and variables using a formula of the shape v ∈ S
where S is a set that denotes the type of v. Thus, assumption NAssumption
states that N must be a non-zero natural number, and the state predicate
TypeOK indicates the expected types of the variables:2 active and pending are
Boolean and natural-number valued functions over Node, whereas termDetect
is a Boolean value. The formal status of the two typing predicates is quite differ-
ent: an instance of the module that does not satisfy NAssumption is considered
illegal, whereas TypeOK just defines a predicate. (We will later check that the
predicate indeed holds at every state during any execution.) Finally, the module
declares a predicate terminated that is true at states in which the system has
globally terminated: all nodes are inactive, and no message is pending at any
node.

The part of the specification shown in Fig. 1b corresponds to the static model
of the system. Module AsynchronousTerminationDetection continues as shown

1 In TLA+ jargon, the term “formula” denotes any expression, not necessarily Boolean.
2 In TLA+, long conjunctions and disjunctions are conventionally written as lists

whose “bullets” are the logical operator, with nesting indicated by indentation.

Specification and Verification with the TLA+ Trifecta 91

Init
Δ
=

∧ active ∈ [Node boolean]
∧ pending = [n ∈ Node 0]
∧ termDetect ∈ {false, terminated}

Terminate(i)
Δ
=

∧ active[i]
∧ active ′ = [active except ![i] = false]
∧ pending ′ = pending
∧ termDetect ′ ∈ {termDetect , terminated ′}

SendMsg(i , j)
Δ
=

∧ active[i]
∧ pending ′ = [pending except ![j] = @ + 1]
∧ unchanged 〈active, termDetect〉

RcvMsg(i)
Δ
=

∧ pending [i] > 0
∧ active ′ = [active except ![i] = true]
∧ pending ′ = [pending except ![i] = @ − 1]

unchanged termDetect

DetectTermination
Δ
=

∧ terminated
∧ termDetect ′ = true
∧ unchanged 〈active, pending〉

Next
Δ
=

∨ ∃i ∈ Node : RcvMsg(i)
∨ ∃i ∈ Node : Terminate(i)
∨ ∃i , j ∈ Node : SendMsg(i , j)
∨ DetectTermination

Spec
Δ
=

∧ Init ∧ �[Next]vars
∧ WFvars (DetectTermination)

Fig. 2. End of module AsynchronousTerminationDetection.

in Fig. 2 with the specification of a transition system that abstractly repre-
sents the problem of distributed termination detection. The initial condition Init
expresses that the variable active can take any type-correct value and that no
messages are pending. As for termDetect, it will usually be false initially, but
it could be true in case the predicate terminated holds.3 The transition formu-
las Terminate(i), SendMsg(i, j), RcvMsg(i), and DetectTermination describe
the allowed transitions. For example, Terminate(i) describes local termination of
node i. The action is possible if node i is active, the value of variable active after
the transition is similar to its previous value, except that active[i] is false, and
variable pending is left unchanged. The variable termDetect may also remain
unchanged, but a clever termination algorithm may set it to true provided the
predicate terminated has become true with the termination of node i. Note that
updates of function-valued variables are expressed using except clauses, which
describe for which arguments the function is set to a new value. On the right-
hand side of such a clause, the symbol @ refers to the old value of the function
at the argument that is updated. The definitions of the remaining actions are
similar.

The action Next is defined as the disjunction of the actions introduced before,
and the temporal formula Spec corresponds to the overall specification of the
system behavior. It has the standard form

Init ∧ �[Next]vars ∧ L

3 Remember that the purpose of this specification is not to describe a specific ter-
mination detection algorithm, but rather an abstract transition system meant to
represent any such algorithm.

92 I. Konnov et al.

of a TLA+ specification, asserting that executions must start in a state satisfying
the initial condition and that all transitions must either correspond to a system
transition (described by formula Next) or leave the variables vars unchanged.
The supplementary condition L is usually a conjunction of fairness conditions;
in our example, we require that termination detection should eventually occur
provided that it remains enabled. Indeed, the formula WFv(A) is defined in
TLA+ as

�
(
(�enabled 〈A〉v) ⇒ ♦〈A〉v

)

which asserts that the action 〈A〉v, defined as A∧ v′ �= v, must eventually occur
if it ever remains enabled. Enabledness of an action is defined as

enabled A
Δ= ∃v′ : A

where v is the tuple of variables that have (free) primed occurrences in A.
One may consider assuming stronger fairness conditions for this specification,

such as that any pending message should eventually be received. However, weak
fairness of the action DetectTermination is all that is required to ensure that
global termination will be detected.

3 Verification by Model Checking and Theorem Proving

Module AsynchronousTerminationDetection provides a high-level specification
of termination detection; it does not describe a mechanism for solving the prob-
lem. Nevertheless, we can already use the TLA+ tools in order to verify some
correctness properties, including type correctness, safety, and liveness.

The safety property asserts that termination is not detected unless the system
has indeed terminated, while liveness asserts that termination will eventually be
detected. These properties can be expressed as the temporal formulas

Safe
Δ= �SafeInv, where SafeInv

Δ= termDetect ⇒ terminated,

Live
Δ= terminated � termDetect.

The formula F � G is shorthand for �(F ⇒ ♦G), and it asserts that whenever F
is true, G must eventually become true. Correctness of the specification means
proving the theorems that Spec implies the above properties. We may also want
to verify that once the system has terminated, it will remain quiescent, expressed
as

Quiescence
Δ= �(terminated ⇒ �terminated).

Note that the two properties Safe and Quiescence imply the derived property

�(termDetect ⇒ �terminated)

asserting that once termination has been detected, the system will remain glob-
ally inactive.

Specification and Verification with the TLA+ Trifecta 93

INIT Init

NEXT Next

CONSTANT N = 4

INVARIANTS TypeOK Safe

Fig. 3. A tlc configuration file: It fixes N as 4, the initial and transition predicates as
Init and Next , and the invariants to be verified as TypeOK and Safe.

3.1 Finite-State Model Checking Using TLC

tlc is an explicit-state model checker for checking safety and liveness of finite
instances of TLA+ specifications [16]. In order to describe the finite instance and
to indicate the properties to be checked, tlc requires, in addition to the TLA+

specification, a configuration file. In our example, we have to provide a value for
the constant parameter N representing the number of nodes. For example, the
configuration file in Fig. 3 instructs tlc to check the invariants TypeOK and
Safe against the instance of four nodes. tlc is integrated into both IDEs for
TLA+, the TLA+ Toolbox and the Visual Studio code extension. Both IDEs
generate tlc configuration files in the background.

Since in our specification, nodes may send arbitrarily many messages, the
state space is infinite even for a fixed number of nodes. We therefore add a state
constraint bounding the number of pending messages to K messages per node.4
tlc quickly verifies all four properties introduced earlier and reports that the
system has 4,097 distinct reachable states for N = 4 and K = 3. For N = 6
and K = 3, we obtain 262,145 states, illustrating the well-known problem of
state-space explosion.

It is instructive to observe what happens when a specification contains an
error. For example, let us assume that we forgot the conjunct active[i] in the
definition of action SendMsg(i). Running tlc on the modified specification
indicates that the invariant Safe is violated.5 tlc produces a counter-example
containing a step where all processes are inactive and termination has been
detected, but where a message is sent. In the successor state, terminated is
therefore false, while the variable termDetect is still true, violating the asserted
invariant.

Besides checking the invariants TypeOK and Safe, tlc can also check prop-
erties of specifications expressed as temporal formulas, including Quiescence and
Live. For the latter, it is important to include the fairness assumption in the
specification of the instance to be verified by replacing the INIT and Next entries
in the configuration file by SPECIFICATION Spec.

3.2 Bounded Model Checking with Apalache

apalache [8] is a symbolic model checker that leverages the SMT (satisfiability
modulo theories) solver Z3 [4] for checking TLA+ executions of bounded lengths

4 More precisely, tlc will not compute any successors of states at which the constraint
does not hold.

5 Property Quiescence is also violated, but invariant violations are found earlier.

94 I. Konnov et al.

constant
* @type: Int;

N
variables

* @type: Int -> Bool;

active,
* @type: Int -> Int;

pending,
* @type: Bool;

termDetect

Fig. 4. Type annotations for apalache.

as well as proving inductive invariants. Similar to tlc, apalache can check
instances of specifications where the size of data structures remains bounded.
Reusing the configuration file shown in Fig. 3, apalache does not actually
require a bound K for the number of pending messages, as it can reason about
unbounded integers.

Whereas tlc enumerates the reachable states one by one, apalache encodes
bounded symbolic executions as a set of constraints, which are either proven to
be unsatisfiable or solved by an SMT solver. apalache uses the standard many-
sorted first-order logic of SMT, and it infers types of expressions in a TLA+

specification based on an annotation of constants and variables with types, as
shown in Fig. 4. Its type checker ensures that these annotations are consistent
with the use of the constants and variables in the expressions that appear in the
specification.

Similar to the foundational paper on bounded model checking [1], we write

Spec |=k �Inv

to denote that a state formula Inv holds true in all states of all bounded exe-
cutions of specification Spec that perform at most k transitions. By abuse of
notation, we also allow Inv to be an action formula, which must then be true
for all pairs of subsequent states within these bounded executions, and we call
Inv an action invariant.

apalache can check that the state invariants TypeOK and SafeInv hold of
an instance of our specification where N = 4 and k ≤ 10, in less than a minute.
Figure 5a shows the performance of apalache when checking the combined
invariant TypeOK ∧ SafeInv, for N ∈ 3 .. 6 and execution length k up to 20
steps. As can be seen, apalache suffers from considerable slowdown when the
parameters N and k are increased. This is caused by combinatorial explosion
of the underlying SMT problem, similar to state explosion of state enumeration
in tlc.

We can also direct apalache to check that the invariant

IndInv
Δ= TypeOK ∧ SafeInv

Specification and Verification with the TLA+ Trifecta 95

(a) Bounded model checking. (b) Inductive invariant checking.

Fig. 5. Checking TypeOK ∧ SafeInv using apalache.

is inductive and therefore holds for executions of arbitrary length. Informally,
this means that IndInv holds true for the initial states specified with Init, and
that it is preserved by all transitions specified with Next.

Using the notation introduced above, we frame these two properties as the
apalache queries (1) and (2) below. The first query establishes that IndInv is
a state invariant of the original specification for all executions of length 0, and
therefore it must hold in all states that satisfy Init. The second query confirms
that IndInv is a state invariant for all executions of length 1 when using IndInv
as the initialization predicate instead of Init. Therefore, any step of an execution
starting in a state in which IndInv holds preserves the invariant.

Init ∧ �[Next]vars |=0 �IndInv (1)
IndInv ∧ �[Next]vars |=1 �IndInv (2)

Both of these runs take only a second on a standard laptop for N = 4. In
fact, we can show the inductiveness of IndInv for N = 100 in 20 s. Figure 5b
shows the performance of apalache when checking property (2) for various
values of N . Comparing Figs. 5a and 5b, it becomes apparent that we can prove
inductive invariants of instances of specifications that have astronomically larger
state spaces than those for which standard bounded model checking is feasible.
Moreover, inductive invariants guarantee that the property holds for executions
of arbitrary length. However, as we will see in Sect. 5, finding useful inductive
invariants is not always as easy as it was in this example.

We cannot directly check the property Quiescence with apalache, as it is
written as a temporal property. One way of doing so would be to introduce a
history variable that records the sequence of states seen so far and formulate the
property as a state invariant over this history. apalache offers support for this
approach in the form of checking so-called trace invariants.

However, we can avoid the encoding as a trace invariant by observing that
the property Quiescence can be verified by checking that the action invariant
terminated ⇒ terminated′ holds for all transitions taken from the reachable

96 I. Konnov et al.

states. Since we have shown that IndInv is an inductive invariant, it suffices to
use apalache to check the following:

IndInv ∧ �[Next]vars |=1 �(terminated ⇒ terminated′) (3)

It takes apalache 3 s and 11 s to show that property (3) holds for N = 4 and
N = 100, respectively.

3.3 Theorem Proving Using TLAPS

Model checking is invaluable for finding errors, and the counter-examples com-
puted in the case of property violations help designers understand their root
cause. However, it is restricted to the verification of finite instances, and it suf-
fers from combinatorial explosion. The TLA+ Proof System (tlaps) [2] can be
used to prove properties of arbitrary instances of a specification. The effort is
independent of the size of the state space, but it requires the user to write a
proof, which is then checked by the system.

tlaps does not implement a foundational proof calculus for TLA+, but relies
on automatic back-end provers to establish individual proof steps. Correspond-
ingly, TLA+ proofs are written as a collection of steps that together entail the
overall theorem. A proof step may be discharged directly by a back-end, or it
may recursively be proved as the consequence of lower-level steps, leading to
a hierarchical proof format [12]. The proof of an inductive invariant such as
TypeOK is written as follows.

theorem TypeCorrect
Δ= Spec ⇒ �TypeOK

〈1〉1. Init ⇒ TypeOK
〈1〉2. T ypeOK ∧ [Next]vars ⇒ TypeOK ′

〈1〉3. qed by 〈1〉1, 〈1〉2, ptl def Spec

It consists of three top-level steps 〈1〉1 – 〈1〉3.6 The first two steps assert that
the initial condition implies the invariant, and that the invariant is preserved by
any transition allowed by [Next]vars. The final qed step corresponds to prov-
ing the theorem, assuming the preceding steps could be proved. The by clause
directs tlaps to check the proof of this step by invoking the ptl back-end (for
“propositional temporal logic”), assuming steps 〈1〉1 and 〈1〉2, and expanding
the definition of formula Spec. ptl can discharge this proof obligation, which
essentially corresponds to an application of the proof rule

I ⇒ J J ∧ [N]v ⇒ J ′

I ∧ �[N]v ⇒ �J

of temporal logic. By relying on the ptl back-end, which implements a decision
procedure for linear-time temporal logic, the user does not have to indicate
a specific proof rule, and tlaps can discharge more complex steps involving
temporal logic.
6 Steps are named 〈l〉n where l indicates the nesting level of the step and n is arbitrary.

Specification and Verification with the TLA+ Trifecta 97

In order to complete the proof of the theorem, we must provide proofs for
steps 〈1〉1 and 〈1〉2. These steps assert (the validity of) a state and an action
formula, respectively, and therefore do not require temporal logic.7 The first
step can be proved by invoking the assumption NAssumption and expanding
the definitions of Init, TypeOK, and the defined operators used therein. The
second step requires some more interaction and is decomposed into one sub-proof
per disjunct in the definition of Next. The TLA+ Toolbox provides an assistant
for such syntactic decompositions. The proofs of the invariant Safe and of the
safety property Quiescence are similar, but they also use theorem TypeCorrect
in order to introduce predicate TypeOK as an assumption.

The proof of the liveness property makes use of the fairness hypothesis that
appears as part of the specification. Since the fairness formula is defined in
terms of enabled (cf. Sect. 2), we first prove a lemma that reduces the relevant
enabledness condition to a simple state predicate.

lemma EnabledDT
Δ=

assume TypeOK
prove (enabled 〈DetectTermination〉vars)

⇔ (terminated ∧ ¬termDetect)

The proof of this lemma makes use of specific directives for reasoning about
enabled provided by tlaps. The proof of the liveness property is then finished
in a few lines of interaction:

theorem Liveness
Δ= Spec ⇒ Live

〈1〉. define P
Δ= terminated ∧ ¬termDetect

〈1〉1. T ypeOK ∧ P ∧ [Next]vars ⇒ P ′ ∨ termDetect′

〈1〉2. T ypeOK ∧ P ∧ 〈DetectTermination〉vars ⇒ termDetect′

〈1〉3. T ypeOK ∧ P ⇒ enabled 〈DetectTermination〉vars
〈1〉4. qed by 〈1〉1, 〈1〉2, 〈1〉3, T ypeCorrect, ptl def Spec, Live

The first two steps are proved by expanding the required definitions, the third
step is a consequence of lemma EnabledDT , and the final step follows from the
preceding ones, and theorem TypeCorrect, by propositional temporal reason-
ing. More complex cases would typically require induction over a well-founded
ordering, which is supported by a standard library of TLA+ lemmas.

4 Safra’s Algorithm for Termination Detection

In his note EWD998 [5], Dijkstra describes an algorithm due to Safra for detect-
ing termination on a ring of processes. Safra’s algorithm extends a simpler algo-
rithm due to Dijkstra, described in note EWD840 [6], which assumes that mes-
sage passing between processes is instantaneous. In both algorithms, node 0 plays
the role of a master node that will detect global termination.
7 tlaps replaces primed variables occurring in action formulas by fresh variables,

unrelated to their unprimed counterparts.

98 I. Konnov et al.

In addition to the activation status and message counter represented by the
variables active and pending introduced for the state machine of Sect. 2, each
node now has a color (white or black) and maintains an integer counter that rep-
resents the difference between the numbers of messages it has sent and received
during the execution. In addition, a token circulates on the ring whose attributes
are its color token.c, its position token.p (i.e., the number of the node that the
token is currently at), and an integer counter token.q that represents the sum
of the counter values of the nodes visited so far. Safra’s algorithm does not have
the variable termDetect.

Informally, the algorithm relies on the idea that when the system has globally
terminated, each node is locally inactive and the sum of the differences between
sent and received messages is 0. By visiting each node, checking its activation
status and accumulating the counter values, the token reports these conditions
to the master node. Colors are used in order to rule out false positives: nodes
color themselves black at message reception (i.e., when they may have become
active again), and the token becomes black when it passes a black node. A round
in which a black token returns to node 0 is deemed inconclusive.

Formally, the algorithm is described by a state machine. The initial values
of each node’s activation status and color are arbitrary, all node counters are 0,
and there are no pending messages. The token is initially black (ensuring that it
will perform at least one full round of the ring), and its initial counter value is 0.
The token can be located at any of the nodes. The transitions of the algorithm
are as follows.

InitiateProbe. Node 0 may initiate a new round of the token when it holds
the token (i.e., token.p = 0) and when the previous round did not detect
termination: either the token is black, node 0 is black, or the sum of the
counter of node 0 and token.q is positive. Node 0 transfers a fresh white
token to its neighbor node (i.e., token.p = N − 1, token.c = white, and
token.q = 0) and repaints itself white.

PassToken. A non-zero node i may pass the token to its neighbor when it holds
the token (i.e., token.p = i) and when it is inactive. After the transition,
token.p will be i−1, token.q is augmented by node i’s counter value, and the
token will be black if node i is black or if it was already black, whereas node i
becomes white.

SendMsg. This action is similar to the corresponding action of the abstract
state machine, except that the sender’s counter value is incremented by 1.

RcvMsg. Again, this action is similar to the corresponding action of the abstract
state machine. However, the receiver’s counter value is decremented by 1, and
the receiver becomes black.

Terminate. This action is analogous to the corresponding action of the abstract
state machine.

Specification and Verification with the TLA+ Trifecta 99

Node 0 declares global termination when it is inactive, has no pending mes-
sages, holds a white token, its color is white, and the sum of token.q and its own
counter value is 0. A TLA+ specification of the algorithm is available online [9].

5 Analyzing Safra’s Algorithm

As for the high-level specification of Sect. 2, we use the model checkers tlc
and apalache to gain confidence in the correctness of the algorithm by check-
ing its properties for small instances, and then start writing a full correctness
proof using tlaps. Instead of rechecking the elementary correctness properties
introduced in Sect. 3, an attractive way of verifying the correctness of the algo-
rithm in TLA+ is to formally relate it to the high-level algorithm by establishing
refinement.

5.1 Model Checking Correctness Properties

We start by writing a type-correctness invariant for the TLA+ specification of
Safra’s algorithm and define the predicate of termination detection as follows:

termDetect
Δ= ∧ token.p = 0 ∧ token.c = “white”

∧ color[0] = “white” ∧ ¬active[0] ∧ pending[0] = 0
∧ token.q + counter[0] = 0

We use tlc to verify type correctness, as well as the properties Safe, Live,
and Quiescence introduced in Sect. 3, for fixed values of N . Again, we need a
state constraint for bounding the number K of pending messages at each node,
but also the maximum counter values C and token counter Q. The state space
of this specification is significantly larger than that of the higher-level model:
fixing N = 3, K = C = 3 and Q = 9, tlc finds 1.3 million distinct states and
requires 42 s on a desktop-class machine. For N = 4 and the same bounds for
the other parameters, we obtain 219 million distinct states, and tlc requires
about 50min. While tlc scales to multiple cores and can, e.g., verify safety of
EWD998 for N = 4 on a machine with 32 cores and 64 GB of memory in around
10min, it would be hopeless to model check the specification for larger values
such as N = 6 in reasonable time.

Experience indicates that by exhaustively checking all reachable states,
including corner cases that would arise very rarely in actual executions of the
algorithm, model checking finds errors in small instances of a specification.
Choosing suitable parameter values is a matter of engineering judgment. For
example, an error introduced into the definition of action PassToken such that
the token adopts the color of the visited node, independently of the current token
color, is found by tlc when N ≥ 4, but the definition is correct for N ≤ 3.

If exhaustive model-checking is infeasible due to the size of the state space,
tlc can verify safety and liveness properties on randomly generated behaviors.
Since randomized state exploration has no notion of state-space coverage, tlc
runs until either it finds a violation, is manually stopped, or up to a given resource

100 I. Konnov et al.

limit. Because randomized state exploration is an embarrassingly parallel prob-
lem, it scales with the number of available cores.

To illustrate the effectiveness of randomized state exploration with tlc, we
separately introduced six bugs in the specification of Safra’s algorithm that we
observed while teaching TLA+ classes. Beyond the previously mentioned bug of
not taking into account the token color when non-initiator nodes pass the token,
we initialize the token to white, allow an active node to pass the token, omit to
whiten a node that passes the token, or prevent the initiator from initiating a
new token round when its color is black. Half of these bugs violate property Inv,
while the other half violate TD!Spec (see below). With the parameter value fixed
to N = 7 and no state constraint, randomized state exploration, with a resource
limit of 2 to 3 s and for behaviors of length up to 100 states, finds violations
of Inv and TD!Spec in the majority of runs for any of the six bugs. Thus, the
minimal resource usage makes it feasible, and the high likelihood of findings bugs
makes it desirable to automatically run randomized state exploration repeatedly
in the background while writing specifications. Users can run randomized state
exploration with the Visual Studio Code Extension whenever its editors are
saved. Once a spec has matured and randomized state exploration stops finding
bugs, users can switch to exhaustive model-checking.

For more complex specifications, the likelihood of finding bugs with repeated,
brief randomized state exploration can usually be increased further. If a candi-
date inductive invariant IndInv is known, using it as the initial condition makes
tlc explore states that are located at arbitrary depths in the state space. Should
the set of all states defined by IndInv be too large or even infinite, tlc can ran-
domly select a subset from that set with the help of operators defined in the
standard Randomization module. This technique is described in more detail as
part of a note on validating candidates for inductive invariants with tlc [14].

apalache again is particularly useful when it comes to checking inductive
invariants. Dijkstra’s note [5] introduces the following inductive invariant Inv
(written in TLA+):

Sum(f, S) Δ= FoldFunctionOnSet(+, 0, f, S)
Rng(a, b) Δ= {i ∈ Node : a ≤ i ∧ i ≤ b}
Inv

Δ= ∧ Sum(pending,Node) = Sum(counter,Node)
∧ ∨ ∧ ∀i ∈ Rng(token.p+ 1, N − 1) : active[i] = false

∧ token.q = Sum(counter,Rng(token.p+ 1, N − 1))
∨ Sum(counter,Rng(0, token.p)) + token.q > 0
∨ ∃i ∈ Rng(0, token.p) : color[i] = “black”
∨ token.c = “black”

The expression Sum(f, S) represents the sum of f [x] for all x ∈ S; it is defined
in terms of the operator FoldFunctionOnSet from the TLA+ Community Mod-
ules [10], a collection of useful libraries for use with TLA+.

As explained in Sect. 3.2, we can use apalache to check that Inv is indeed
an inductive invariant for finite instances of the specification. For N = 4, this
takes 11 s. It is not hard to see that Inv, together with predicate termDetect,

Specification and Verification with the TLA+ Trifecta 101

implies terminated. Indeed, termDetect implies that the three final disjuncts of
the invariant are false, hence the first disjunct must be true. Thus, all nodes are
inactive, and token.q equals the sum of the counter values of nodes 1 .. N −1. By
termDetect, it follows that the sum of the counter values of all nodes must be
0, and by the first conjunct of Inv it follows that there are no pending messages
at any node, hence terminated is true.

5.2 Safra’s Algorithm Implements Termination Detection

Instead of verifying the TLA+ specification of Safra’s algorithm against correct-
ness properties such as Safe and Live, we can show that it implements the
high-level state machine of Sect. 2. It then follows that the properties verified for
that state machine are “inherited” by the low-level specification. Since in TLA+,
refinement is implication, this assertion can be stated by inserting the following
lines in the module representing Safra’s algorithm:

TD
Δ= instance AsynchronousTerminationDetection

theorem Refinement
Δ= Spec ⇒ TD!Spec

The first line declares an instance TD of the high-level specification in which
the constant parameter N and the variable parameters active, pending and
termDetect are instantiated by the expressions of the same name in the spec-
ification of Safra’s algorithm.8 Theorem Refinement asserts that every run of
Spec (the specification of Safra’s algorithm) also satisfies TD!Spec, defined in
Fig. 2.

tlc can reasonably verify refinement for values of N < 5, and with a similar
state constraint as before, simply by indicating TD!Spec as the temporal prop-
erty to be checked. apalache cannot handle the fairness condition that is part
of TD!Spec, but it can verify initialization and step simulation. Technically, this
is done by checking one state invariant and one action invariant with apalache:

Init ∧ �[Next]vars |=0 �TD!Init (4)
TypeOK ∧ Inv ∧ �[Next]vars |=1 �[TD!Next]TD!vars (5)

Checking condition (4) with the apalache machinery is equivalent to show-
ing Init ⇒ TD!Init, which is needed to show the initialization property of refine-
ment. To prove step simulation, we have to show that any transition described
by [Next]vars, starting in any reachable state of the low-level specification, sim-
ulates a high-level transition according to [TD!Next]TD!vars. As expressed in
condition (5), the previously established inductive invariants TypeOK and Inv
are sufficient for proving step simulation.

The TLA+ specification of Safra’s algorithm as described in Sect. 4 can be
refined further by introducing explicit message channels and node addresses.
We refer readers to the modules EWD998Chan and EWD998ChanID [9] that
contain corresponding TLA+ specifications for which refinement can be checked
using the TLA+ tools.
8 In general, instance allows constant and variable parameters to be instantiated by

expressions defined in terms of the operators defined in the current context.

102 I. Konnov et al.

5.3 Proving Correctness Using TLAPS

After gaining confidence in the validity of our specification of Safra’s algorithm,
we again use tlaps for proving its correctness for arbitrary instances. The type
correctness proof is quite similar to that of the high-level specification described
in Sect. 3.3. We also used tlaps for proving the inductive invariant Inv intro-
duced in Sect. 5.1. However, at the time of writing, no theorem libraries exist in
tlaps for operators such as FoldFunctionOnSet, and we therefore stated ele-
mentary properties without proof, and specialized them for the derived operator
Sum such as

lemma SumIterate
Δ=

assume new fun ∈ [Node → Int],
new inds ∈ subset Node, new e ∈ inds

prove Sum(fun, inds) = fun[e] + Sum(fun, inds \ {e})
The invariance proof itself was written in one person-day and required about

230 lines in the proof language of TLA+. The hierarchical proof style helps to
focus on individual steps without having to remember the overall proof.

Based on the inductive invariant and the following lemma

lemma Safety
Δ= TypeOK ∧ Inv ∧ termDetect ⇒ Termination

that formalizes the argument presented at the end of Sect. 5.1, it is not hard
to use tlaps for proving the safety part of the refinement relation, i.e. the
implications expressed by properties (4) and (5), for arbitrary instances of the
specification. The proofs of the lemma and the safety part of the refinement
theorem require about 110 lines of TLA+ proof and were written in half a person-
day.

In order to prove liveness of the algorithm, we first reduce the enabledness
condition of the action for which fairness is assumed, to a simple state predicate,
as we did in Sect. 3.3. We must then show that any state satisfying predicate
terminated must be followed by one where termDetect holds. Relying on the
already proved invariants, we set up a proof by contradiction and define

BSpec
Δ= �TypeOK∧�Inv∧�¬termDetect∧�[Next]vars∧WFvars(System)

where the last conjunct corresponds to the fairness assumption of the specifica-
tion, in which System represents the disjunction of the token-passing transitions.
Informally, detecting termination may require three rounds of the token:

1. The first round brings the token back to node 0, while terminated remains
true.

2. After the second round, the token is back at node 0, all nodes are white (since
no messages could be received), and terminated is still true.

3. At the end of the third round, the same conditions hold, and additionally the
token is white and the token counter holds the sum of the counters of the
nodes in the interval 1 .. N − 1.

Specification and Verification with the TLA+ Trifecta 103

We prove a lemma corresponding to each of the rounds. For example, for the
first round we assert

lemma Round1 Δ= BSpec ⇒ (terminated � (terminated ∧ token.p = 0))

The proof proceeds by induction on the current position k of the node: if k = 0,
the assertion is trivial. For the case k+1, any step of the system either leaves the
token at node k+1 or brings it to node k. Moreover, the token-passing transition
from node k + 1 is enabled, and it takes the token to node k.

The statements and proofs of the two other lemmas are similar. Finally,
the post-condition of the third round, together with Inv, implies termDetect,
concluding the proof. As a corollary, we can finish the refinement proof: we
showed in Sect. 3.3 that the enabledness condition of TD.DetectTermination
corresponds to the conjunction terminated ∧ ¬termDetect, and we just proved
that this predicate cannot hold forever, implying the fairness condition. The
TLA+ proof takes 245 lines and was written in less than one person-day, aided
by the fact that the three main lemmas and their proofs are quite similar.

6 Conclusion

TLA+ is a language for the formal and unambiguous description of algorithms
and systems. In this paper, we presented the three main tools for verifying prop-
erties of TLA+ specifications: the explicit-state model checker tlc, the symbolic
model checker apalache, and the interactive proof assistant tlaps, at the hand
of a formal specification of a non-trivial distributed algorithm. The ProB model
checker can also verify TLA+ specifications through a translation to B [7], but
we did not evaluate its use on the case study presented here. The three tools
that we considered have complementary strengths and weaknesses. They offer
various degrees of proof power in exchange for manual effort or computational
resources. Whereas tlc is essentially a push-button tool, tlaps requires signifi-
cant user effort for inventing a proof. Likewise, apalache can sometimes prove
invariants of specifications that have significantly larger (or even infinite) state
spaces than tlc can handle, but it requires human ingenuity to find an inductive
invariant. Hence, we advocate the following basic workflow.

Since errors in specifications are usually found for small instances, it is easiest
to start by using tlc for checking basic invariant properties. The same proper-
ties can also be checked using apalache for short execution prefixes. However,
apalache really shines for checking inductive (state and action) invariants since
doing so only requires considering a single transition. Once reasonable confi-
dence has been obtained for safety properties, liveness properties can be verified
using tlc. One potential pitfall here is that the use of a state constraint may
mask non-progress cycles in which some variable value exceeds the admissible
bounds. Both model checkers suffer from combinatorial explosion; for apalache
the length of the execution prefixes that need to be examined tends to be the
limiting factor. For very large state spaces, tlc provides support for random-
ized state exploration, which empirically tends to find bugs with good success

104 I. Konnov et al.

when exhaustive exploration fails. When model checking finds no more errors
and even more confidence is required, one can start writing a proof and check it
using tlaps. In this way, properties of arbitrary instances can be verified, at the
expense of human effort that can become substantial in the presence of complex
formulas.

All three tools accept the same input language TLA+. Whereas apalache
requires writing typing annotations for state variables and certain operator def-
initions, these are usually not very difficult to come up with. Not surprisingly,
the tools pose additional restrictions on the input specifications. For example:

1. tlc rejects action formulas of the form x′ ∈ S when S is an infinite set, and no
unique value has been determined for the variable x′ by an earlier conjunct: in
this case, the formula would require tlc to enumerate an infinite set. However,
the user can override operator definitions such as S during model-checking
without modifying the original specification.

2. apalache has recently dropped support for recursive operators and functions
in favor of fold operations, e.g., FoldSet and FoldFunction. Folding a set S
of bounded cardinality, that is, |S| ≤ n, for some n, needs up to n iterations,
which is easy to encode in SMT as opposed to general recursion.

3. tlaps currently does not handle recursive operator definitions, and support
for proving liveness properties has only recently been added. In practice,
reasoning about operators that are not supported natively by its backends
requires well-developed theorem libraries.

Despite these limitations, all three tools share a large common fragment
of TLA+. This ability to use different tools for the same specification is extremely
valuable in practice, for example for using the model checkers to verify a putative
inductive invariant in the middle of writing an interactive proof.

Future work should focus on improving the capabilities of each tool. Although
tlc is quite mature, it could benefit from better parallelization of liveness check-
ing. Recent work has focused on improved presentation of counter-examples,
including their visualization and animation [15], and on randomized exploration
of state spaces. For apalache, alternative encodings of bounded verification
problems as SMT problems could help with performance degradation when con-
sidering longer execution prefixes. It would also be useful to lift the current
restriction to the verification of safety properties and consider bounded verifica-
tion of liveness properties. tlaps users would appreciate better automation, such
as the tool being able to indicate which operator definitions should be expanded,
better support for higher-order problems, and for verifying liveness properties.
The IDEs could help with using the tools synergistically, such as starting an
exploratory model checking run that corresponds to a given step in a proof.

Besides the work on verifying properties of formal specifications, there is
interest in relating TLA+ specifications to system implementations. The two
main lines of research are model-based test case generation from formal specifi-
cations and trace validation, in which the specification serves as a monitor for
supervising an implementation. Davis et al. [3] present an interesting real-life
case study, in which trace validation was found to be particularly successful.

Specification and Verification with the TLA+ Trifecta 105

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

2. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA+ proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 147–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32759-9_14

3. Davis, A.J.J., Hirschhorn, M., Schvimer, J.: Extreme modelling in practice. Proc.
VLDB Endow. 13(9), 1346–1358 (2020)

4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

5. Dijkstra, E.W.: Shmuel Safra’s version of termination detection (1987). https://
www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF

6. Dijkstra, E.W., Feijen, W.H.J., van Gasteren, A.: Derivation of a termination detec-
tion algorithm for distributed computations. Inf. Proc. Lett. 16, 217–219 (1983)

7. Hansen, D., Leuschel, M.: Translating TLA+ to B for validation with ProB. In:
Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321,
pp. 24–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-
4_3

8. Konnov, I., Kukovec, J., Tran, T.: TLA+ model checking made symbolic. Proc.
ACM Program. Lang. 3(OOPSLA), 123:1–123:30 (2019)

9. Konnov, I., Kuppe, M., Merz, S.: TLA+ specifications of EWD998 (2021). https://
github.com/tlaplus/Examples/tree/ISoLA2022/specifications/ewd998

10. Kuppe, M.A., et al.: TLA+ community modules. https://github.com/tlaplus/
CommunityModules

11. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. In: Monahan, R.,
Prevosto, V., Proença, J. (eds.) Fifth Workshop on Formal Integrated Development
Environment (F-IDE). EPTCS, vol. 310, pp. 50–62. Porto, Portugal (2019)

12. Lamport, L.: How to write a proof. Amer. Math. Monthly 102(7), 600–608 (1995)
13. Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2002)
14. Lamport, L.: Using TLC to check inductive invariance (2018). https://lamport.

azurewebsites.net/tla/inductive-invariant.pdf
15. Schultz, W.: An animation module for TLA+ (2018). https://easychair.org/smart-

slide/slide/8V76
16. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,

L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-48153-2_6

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF
https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF
https://doi.org/10.1007/978-3-642-30729-4_3
https://doi.org/10.1007/978-3-642-30729-4_3
https://github.com/tlaplus/Examples/tree/ISoLA2022/specifications/ewd998
https://github.com/tlaplus/Examples/tree/ISoLA2022/specifications/ewd998
https://github.com/tlaplus/CommunityModules
https://github.com/tlaplus/CommunityModules
https://lamport.azurewebsites.net/tla/inductive-invariant.pdf
https://lamport.azurewebsites.net/tla/inductive-invariant.pdf
https://easychair.org/smart-slide/slide/8V76
https://easychair.org/smart-slide/slide/8V76
https://doi.org/10.1007/3-540-48153-2_6

Selective Presumed Benevolence
in Multi-party System Verification

Wolfgang Ahrendt1 and Gordon J. Pace2(B)

1 Chalmers University of Technology, Gothenburg, Sweden
ahrendt@chalmers.se

2 University of Malta, Msida, Malta

gordon.pace@um.edu.mt

Abstract. The functional correctness of particular components in a
multi-party system may be dependent on the behaviour of other com-
ponents and parties. Assumptions about how the other parties will act
would thus have to be reflected in the specifications. In fact, one can find
a substantial body of work on assume-guarantee reasoning with respect
to the functional aspects of the component under scrutiny and those
of other components. In this paper, we turn to look at non-functional
assumptions about the behaviour of other parties. In particular, we look
at smart contract verification under assumptions about presumed benev-
olence of particular parties and focusing on reentrancy issues—a class of
bugs which, in the past few years, has led to huge financial losses. We
make a case for allowing, in the specification, fine-grained assumptions
on benevolence of certain parties, and show how these assumptions can
be exploited in the verification process.

Keywords: Smart contracts · Interactive systems · Non-functional
specifications

1 Introduction

Verification of a component in a distributed system which brings together multi-
ple actors comes with the need for assumptions about how the other parties will
interact with the component under scrutiny. In a setting where the other com-
ponents are processes designed to work well with our code (whether its another
method we wrote, a library we trust or a service we rely on), we would typi-
cally assume their well-behaviour, effectively presuming their benevolence. In an
open-world setting, however, when a component interacts with external parties
on whom we have no control, we may have to assume these parties to be mali-
cious. Design of such systems and their verification typically takes one of these
two extreme views.

Now consider smart contracts—essentially executable code running on a
decentralised platform [12,13] regulating the behaviour of multiple parties. The
correctness of such code is, indeed, of high importance to a user of such a sys-
tem. Bugs may affect functionality, interfering with the user (and other parties)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 106–123, 2022.
https://doi.org/10.1007/978-3-031-19849-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_7&domain=pdf
http://orcid.org/0000-0002-5671-2555
http://orcid.org/0000-0003-0743-6272
https://doi.org/10.1007/978-3-031-19849-6_7

Selective Presumed Benevolence in Multi-party System Verification 107

and hindering them from interacting through the smart contract in the originally
intended manner. Take, for instance, a smart contract allowing parties to pur-
chase, sell and transfer tokens, and a bug which may occasionally create a new
token with a new owner but reusing an existing id, effectively stopping the cur-
rent user from exercising their rights on their token. Other bugs may be better
described as vulnerabilities, not deviating from expected behaviour when used
normally, but allow a malicious party to capitalise on them to carry out logic
not as originally (hopefully) intended by the smart contract developer. Many
such types of vulnerabilities are known in the smart contract world: integer over-
and underflow, transaction order dependency, reentrancy, gas-limit attacks, unex-
pected reverts, etc., with some being easier to avoid than others. Although there
is no line, fine or otherwise, to draw between these two types of bugs, the main
difference between the two would lie in the intention of the party triggering the
bug.

Take reentrancy, which we discuss in more detail later on in this paper, and
which we will use as an illustrative use case for our contribution. Informally, a
smart contract is vulnerable to reentrancy bugs if it exhibits wrong behaviour
when the smart contract invokes another party, which unexpectedly calls back
the original smart contract.1 This was the cause of various high-profile instances
of bugs, the exploitation of which led to huge financial losses [5]. A verification
engineer would not be fazed by such bugs, reasoning that having identified a
class of such undesirable behaviour, we can write an anti-specification to capture
instances of such bugs. But it is not as simple as this. Sometimes (albeit rarely),
reentrancy may be a desirable feature, and in others it may not lead to any
undesirable behaviour, making such blanket analyses undesirable.

Furthermore, such a vulnerability may not necessarily be a show-stopper for
a particular party. For instance, if we know that there is such a vulnerability
which only we can exploit, we may still decide to participate as part of the smart
contract (which may already be in place, and cannot be updated). After all, we
trust ourselves not to exploit the loophole if the otherwise normal behaviour
of the smart contract is what we are after. Consider a smart contract which
allows a party to send funds to another party with an intermediary performing
due diligence checks on the two parties. If such a contract has a reentrancy
vulnerability exploitable only by the receiver resulting in the loss of the funds,
and someone is willing to send us funds through the smart contract, we can
simply accept and use the contract in the expected way, not exploiting the bug.

This notion can be extended to situations in which we may assume certain
other parties not to be malicious.2 Consider a smart contract which handles the

1 The design of the execution platform on blockchains such as Ethereum, even trans-
ferring funds from one smart contract to another involves a call to the recipient’s
code, providing potential for reentrant calls.

2 We are sorely tempted to simply say that we trust those other parties. However, in
the blockchain world, the word trust has been heavily used and comes with much
baggage—trustless computation, trusted oracles, trusted parties, etc. We thus chose
to avoid the use of the term in order to avoid confusion and talk about benevolence
and trust that a particular party will not perform a reentrancy attack.

108 W. Ahrendt and G. J. Pace

sale of a property, involving the seller and their spouse, the real-estate agent,
and the buyer. The smart contract to be used may have reentrancy issues which
only the seller and/or their spouse may exploit. This may certainly be an issue
for the buyer and for the real-estate agent, but from the seller’s point-of-view,
if they are happy to assume that neither they nor their spouse will exploit the
vulnerability they would not object to the use the smart contract and enabling
the transaction to go through. Similar situations may arise in which the par-
ties who may exploit such code would have other incentives, economic, social or
otherwise, outweighing their gains from exploiting the smart contract, in which
case another party may choose to presume that they will not carry out mali-
cious actions. We propose verification techniques verifying a multi-party system
against a specification whilst selectively presuming benevolence of certain par-
ties.

These are the sort of scenarios we will explore in this paper, essentially
proposing a language semantics which allows for proving the correctness of spec-
ifications annotated by the set of parties presumed to be benevolent—essentially
having such presumptions becoming an element of the specification. This paper
is driven by the idea that the distinction of who we will presume will act in good
faith should be made explicit in the specification, and capitalised in the verifi-
cation. In particular, we will illustrate these notions by focusing on verification
of smart contracts written in Solidity [6], explicitly making assumptions about
party-benevolence with regards to reentrancy attacks.

Related Work. Different variations of relative correctness have been studied
extensively in the literature (even if ‘relative correctness’ is not regularly used
as a term). In particular, assume-guarantee reasoning has been invented [7,10]
to allow compositional verification of component based software. The approach
typically taken is to specify functional-correctness properties by writing specifi-
cations that make explicit both the assumptions that the component can make
about its environment, and the guarantees that it provides. In contrast, in our
approach we talk about the functional guarantees made by a component, but
against non-functional assumptions about other components. The use of such
compositional verification for smart contracts has not, to our knowledge, been
explored, despite the fact that smart contracts are typically multi-party sys-
tems. If one focuses on vulnerability due to reentrancy attacks, the literature is
rife with techniques and tools to identify them e.g. [8,9,11]. However, all these
techniques simply identify the possible reentrancy, and are not concerned with
which parties may (or may not) initiate the according attack. Ironically, based
on our experience in the sector, it is not uncommon that when faced with such
a potential vulnerability, a domain expert may dismiss the concern due to the
fact that the only party that can trigger the ‘attack’ is a trusted party, e.g., the
sole owner of a wallet contract, or generally some party that has no interest in
running the attack.

The paper is organised as follows. In Sect. 2 we provide the necessary back-
ground about smart contract programming and reentrancy required for the rest
of the paper. In Sect. 3 we present previous work on proof rules for Solidity tak-

Selective Presumed Benevolence in Multi-party System Verification 109

ing a best or worst case approach to reentrancy (i.e. either trusting everyone not
to perform a reentrancy attack, or not trusting anyone). Based on this, in Sect. 4
we present a new proof rules parametrised by presumed party-benevolence, and
we finally conclude in Sect. 6.

2 Smart Contracts, Solidity and Reentrancy

Agreements between autonomous agents identify obligations and rights of those
agents. Automation of the actions regulated by the agreement partially addresses
this concern, in that if actions (and the lack thereof) are enforced by the exe-
cution engine, the original agreement is guaranteed to be adhered to. We say
that this only partially addresses the problem, since a party which can exer-
cise control over the execution platform can still interfere with adherence to the
contract. With the development of blockchain and other decentralised ledger
technologies, the technology was adapted to provide trustless decentralised exe-
cution platforms on which smart contracts can be hosted. On public blockchains
such as Ethereum [13], miners validate and carry out transactions initiated by
users of the blockchain, recording them in a block in return for a mining reward.
It is up to the other nodes on the network to ensure that only valid blocks
are accepted. The initialisation and execution of smart contracts take the form
of special transactions, also executed by a miner writing that transaction in a
block, and checked to be a faithful execution by the others. However, unlike a
transaction consisting solely of a transfer of funds, executing arbitrary code is
not a constant cost operation. The solution typically used is to providing the
miner with a reward proportionate to the cost of the computation. This is done
by associating each virtual machine instruction with a number of gas units, and
having the initiator of the call pay a fee to cover the gas required to execute the
code. The miner takes funds to cover the total number of gas units consumed by
the execution of the call. If the fee does not cover the whole call, it is reverted,
but the miner still gets to keep the fee.

Solidity [6] is an imperative programming language (with a sprinkle of object-
oriented features) designed and developed to write smart contracts, originally for
the Ethereum [13] blockchain. A Solidity smart contract consists of a set of func-
tions each of which can be invoked by parties through a blockchain transaction.

1 contract MultiWallet {
2 private mapping (address => uint) balances;
3
4 function depositTo(address receiver) payable public {
5 balances[receiver] += msg.value;
6 }
7
8 function withdraw(uint amount) public {
9 require (balances[msg.sender] >= amount);
10 msg.sender.transfer(amount);
11 balances[msg.sender] -= amount;
12 }
13 }

Listing 1. A multi-user wallet written in Solidity.

110 W. Ahrendt and G. J. Pace

Listing 1 shows a simple multi-user wallet programmed as a smart contract,
which allows multiple users to keep cryptocurrency (in the smart contract) and
pay other parties (directly from the smart contract), with a separate account
held per user. The state of the smart contract is a mapping from addresses
of owners to balances—crypto value is represented as an unsigned integer in
Solidity. Two functions are provided, depositTo() to allow depositing funds into
an individual’s account, and withdraw() to send funds from a user’s account in
that smart contract to their address on the blockchain.

At a glance, one may see no features distinguishing the language from the
myriad of other imperative or object-oriented languages computer scientists are
familiar with. There are, however, certain features which particularly charac-
terise smart contract programming languages:

– Firstly, smart contracts typically handle cryptocurrency (or some form of dig-
ital assets), and programming languages for smart contracts provide native
functionality to receive and send funds. It is worth noting that smart contracts
can own cryptocurrency themselves, which is how the MultiWallet contract
works. Any funds received are kept in the smart contract and any payment
is done by sending funds from the smart contract to the recipient. Solid-
ity provides a payable keyword to annotate functions, such as depositTo()
which, when called, may also receive funds (unless a function is annotated to
be payable, calls made to the function carrying funds would fail at runtime).
For instance, depositTo() which is used to put crypto in a user’s account, will
update the mapping for the identified user by the amount of funds sent upon
calling the function. Note that in Solidity, information about the call is stored
in the msg structure which includes, amongst others, the field value which
provides the amount of funds sent with the call. To send funds out of the
smart contract, Solidity uses a method transfer() called on the recipient’s
address.

– The other feature of smart contracts is that they (usually) act as multi-party
computation, and thus have an inherent notion of parties. On Ethereum, these
parties are identified by their address which corresponds to where a smart
contract is located, or to a personal address at which a user can accumulate
and control funds. In the MultiWallet smart contract, the addresses are used
as the key of the mapping to keep track how much of the funds kept in the
smart contract are owned by each user.3 They are also used in the require
statement (in the withdraw() function), which checks that the caller of the
function (identified by another field in the msg structure—msg.sender) has
enough funds accumulated in the smart contract to send on.4

3 Note that this allows both humans and other smart contracts to use this smart
contract, the former through transactions and the latter through direct calls to the
MultiWallet smart contract.

4 If the condition appearing in the require statement is not satisfied, the whole com-
putation is aborted and reverted, i.e., any changes to the state are reversed and only
a record that a reverted call was made is kept on the blockchain.

Selective Presumed Benevolence in Multi-party System Verification 111

We have kept this example simple in order to illustrate the language, but one
could have additional logic, for instance releasing the funds only once a trusted
third party has checked the identity of the sender or the receiver of the funds.

One distinguishing feature of how smart contracts on Ethereum, and indeed
most other Distributed Ledger Technologies (DLTs), work is that a trans-
action is performed in isolation of others. In other words, if a user sends
a transaction to MultiWallet.depositTo(), and another user sends one to
MultiWallet.withdraw(), one of the two transactions is executed to completion
before the other can be started. This ensures a degree of atomicity of compu-
tation in that function executions do not overlap. However, if a smart contract
performs a call to another smart contract, that smart contract may call back the
original smart contract, violating this illusion of atomicity. The original transac-
tion will still have been executed to completion, but halfway through, the smart
contract was reentered, thus executing another call, possibly even to the same
function, within that transaction (on a different level of the call-stack). Such
external calls thus require additional care in order to ensure smart contract
correctness.

The snag is that when the transfer command is used to send funds to
another smart contract, this performs an external call to the receive() function
on the receiver’s smart contract,5 thus ceding control to the other party, who
may call back the original smart contract. The simple and innocent-looking code
shown in the MultiWallet smart contract, in fact, does not take this into account.

Consider a situation in which depositTo() is called with Alice’s address,
sending 1 Ether6 in the process, and once again with Bob’s address, also with
1 Ether. This results in the smart contract storing a total of 2 Ether with the
table of balances showing that Alice and Bob own 1 Ether each. If MultiWallet
is correct, neither Alice nor Bob should be able to use more than 1 Ether from
the smart contract. Now consider a call to withdraw(1 Ether) coming from
Bob’s address. Since Bob’s balance is 1 Ether, the require statement succeeds,
allowing the transfer to be called. Recall that if Bob’s address points at a smart
contract, this is a call to the transfer function in that smart contract, which
may, apart from receiving the funds, maliciously call MutliWallet.withdraw(1
Ether) again. Note that Bob’s balance is still recorded as 1 Ether, thus allowing
the sending of 1 more Ether to Bob. If Bob’s transfer function now just accepts
the funds, the calls terminate successfully with Bob having taken 2 Ether out of
the MultiWallet smart contract, even though he owned only 1 Ether. This class
of bugs, called reentrancy bugs, have been the cause of many high profile major
cryptocurrency losses due to incorrect code, perhaps the most notorious being
The DAO7 hack [5].

5 In older versions of Solidity, it was the (nameless) fallback function which was exe-
cuted on the receiver side of a transfer.

6 Ether is the unit of cryptocurrency on the Ethereum blockchain.
7 The DAO was a smart contract implementing a venture capital fund in a decen-

tralised manner (hence the name DAO referring to Decentralised Autonomous
Organisation).

112 W. Ahrendt and G. J. Pace

In this case (and as typically recommended in most Solidity developers’ guide-
lines), one solution is to update the balance before the transfer is performed, thus
avoiding reentrant calls abusing of the balance not yet being reduced. The fol-
lowing example shows that this rule-of-thumb is not a foolproof one.

AwaitingApproval

start

AwaitingPayment AwaitingKYCInfo Done

Fig. 1. Process flow of a one-shot KYC-approved transfer.

Example 1. Consider a smart contract to handle a one-shot payment which
depends on an intermediary oracle to perform checks on the proposed receiver
of the funds. In practice, such know-your-customer (KYC) checks are required
for regulatory purposes, and this contract enables compliance to such require-
ments by having the sender identify a KYC oracle whose responsibility is to
approve or reject the transfer based on background checks they may perform.
In return, the oracle smart contract gets paid a commission. The abstract pro-
cess flow of the smart contract is shown in Fig. 1.8 The smart contract allows
the processing of a single transaction, the details of which are assumed to be
given in the constructor. Once initialised, the KYC oracle can approve and affect
the payment (along the transitions labelled with calls to approvePayment() and
affectPayment() in sequence), or reject it (along the transition labelled with
rejectPayment()). Whether the oracle approves or rejects the transaction, they
are then expected to register the KYC information (along the transition labelled
registerKYCInfo(..). These calls (and transitions) implicitly carry information
and transfer of funds not shown in the diagram: (i) upon contract setup, the
sender sends funds into the smart contract by calling the (payable) construc-
tor, providing the receiver, the intermediary (the KYC checker), the amount
to be paid to the receiver, and the amount due as commission to the inter-
mediary; (ii) the intermediary can then approve (using approvePayment()) or
reject (using rejectPayment()) the payment, getting half of their commission;
(iii) in case of a rejection the sender gets their funds back immediately, whilst
in the case of an approval, the receiver can then withdraw their funds using
affectPayment(); (iv) at the end of the process, the intermediary can record (a
hash of) the KYC information to prove that they really did perform background
checks using registerKYCInfo(..) receiving the rest of their commission.9 List-
8 The full code of the smart contracts used in this paper can be found in the public

repository https://github.com/gordonpace/reentrancy-bugs.
9 In practice, we would also need functionality to deal with the case of the intermediary

or the receiver not performing their part, introducing timeouts after which the other
party can force the logic of the smart contract forward.

https://github.com/gordonpace/reentrancy-bugs

Selective Presumed Benevolence in Multi-party System Verification 113

ing 2 shows select parts of the code. Note that in order to keep track of the state
of the smart contract, a variable mode is used, ranging over an enumerated type.
Also note the constructor which is called when the smart contract is set up.

The contract uses the generally accepted rule-of-thumb of performing trans-
fer of funds at the end of functions, after all variables have been updated. So
can anything go wrong due to reentrancy? Upon rejecting a payment using
rejectPayment(), the intermediary and the sender receive some funds, but upon
inspection, one can see that the intermediary can use the fact that the mode
of the contract has already been updated, and when their transfer function
is called, they immediately call registerKYCInfo(..) to steal all the remain-
ing funds including those of the sender. Therefore, in this example, doing all
assignments before the transfers does not prevent the possibility of a harmful
reentrance attack!
1 contract KYCTransfer {
2 constructor (
3 address payable _receiver , uint _payment_amount ,
4 address payable _intermediary , uint _commission_amount
5) payable { ... }
6
7 function approvePayment () public byIntermediary { ... }
8
9 function rejectPayment () public byIntermediary {
10 // Make sure that we are in the right mode and move
11 // on to the mode awaiting KYC information to be recorded
12 require (mode == Mode.AwaitingApproval);
13 mode = Mode.AwaitingKYCInfo;
14
15 // The intermediary gets 50% of their commission (rounded
16 // down if necessary)
17 intermediary.transfer(commission_amount / 2);
18
19 // The payer gets his money back
20 payer.transfer(payment_amount);
21 }
22
23 function affectPayment () public byReceiver { ... }
24
25 function registerKYCInfo(bytes32 _KYC_information) public byIntermediary {
26 // Check that the contract is in the right mode and move
27 // on to the final mode where no other action is possible
28 require (mode == Mode.AwaitingKYCInfo);
29 mode = Mode.Done;
30
31 ...
32 // Reset payment and commission amounts for safety
33 payment_amount = 0;
34 commission_amount = 0;
35
36 // Send the remaining commission funds to the intermediary
37 // (avoiding rounding calculations)
38 intermediary.transfer(address(this).balance);
39 }
40 }

Listing 2. Code of a smart contract implementing a one-shot KYC-approved transfer.

An interesting observation can be made here, one that is at the heart of this
paper: from the point-of-view of the sender the contract is unsafe, but from the
intermediary’s point-of-view it can be considered safe. Obviously, it depends on
what we mean by safe. In this case, we can specify an invariant which states what

114 W. Ahrendt and G. J. Pace

funds are expected to be sent and received to and from which party. For instance,
one part of the invariant could be that the intermediary will never receive more
funds than the amount specified in the constructor. Taking a worst-case scenario
(i.e. allowing all parties to perform reentrant calls) this invariant does not hold,
although it holds if we take a best-case scenario view (i.e. we assume that no
party will perform reentrant calls). However, we can also look at what happens
if we only assume that certain parties will not perform a reentrant call. If we
only trust the intermediary not to perform such call (either because we are
the intermediary or perhaps because the intermediary has too much at stake
to perform such attacks), the invariant can be proved to hold no matter what
other parties do. Trusting the sender and receiver not to perform reentrant calls,
however, does not suffice to enable the invariant to be proved.

So Why Does It Really Matter? The root problem indicated by the above
examples is that both the developer and the reader of a contract’s implementa-
tion often focus on the main purpose of transfer, which is the passing of crypto
funds to some receiver. They may not consider the possibility of the receiver
calling back the sending contract during the execution of transfer.10

The fact that this feature led to a number of high-profile losses on Ethereum,
resulted in a change in the way the blockchain execution engine handles smart
contract fund transfers—there is a cap on the amount of gas which calls to
transfer can use. The notion of gas as a resource to be paid for to execute code
is the most common way through which public blockchains motivate miners (the
nodes in the decentralised network which process transactions and record them
on the blockchain) to execute and record execution of smart contract code. The
execution of every operation of the (compiled) smart contract code uses gas, to
be paid by the caller. Since many versions of the Ethereum protocol (the latest
is called Arrow Glacier at the time of writing), the gas fee of transfer is lower
than the fee of a call. Thereby, the gas passed to the receiver of transfer is not
sufficient for the receiver to call any other contract. Any such call would result
in the whole call reverting. In particular, this means that it cannot call back.

There are, however, various arguments why one still should consider potential
callbacks during transfer. One is that the current protection against callbacks
depends entirely on the fees for transfer and for calls. For instance, a well
established Ethereum community blog [1], emphasises that gas fees can and
will change, and that “smart contracts should be robust to this fact”. But even
with stable gas fees, the concern would not go away. The transfer operation
is actually only one way to pass crypto funds. Another is to explicitly use the
call operation. For instance, instead of c.transfer(1 Ether), one can write
c.call{value: 1 Ether}(""). This passes the same 1 Ether to c, but with the
difference that all remaining gas is passed on, which makes callbacks possible.
Although less safe, this is widely used, even in the standard Solidity library
collection openzeppelin (e.g., in utils/Address.sol). Moreover, a blog [1] from

10 Some are even unaware that any code at all is executed on the receiver side during
execution of transfer, in case the receiver is a contract address.

Selective Presumed Benevolence in Multi-party System Verification 115

Consensys Diligence, an important player in the Ethereum community, heavily
advocates the use call instead of transfer.11

Even if one trusts the call-back protection induced by the gas fee of transfer,
one just has to replace every transfer in this paper by a call, and the callback
protection is gone. The main reason why we use transfer in this paper rather
than call, is one of simplicity of presentation.

Although we have focused on the reentrancy in smart contracts, we note that
the problem is just one instance of a much more general issue. In all computa-
tional contexts where we have a multi-party code base, and where interacting
parties may have potentially conflicting interests, there is the question of what
can and cannot be assumed of other parties’ behavior, and what the consequences
of such assumptions are on the safety of one’s own code.

3 Semantics of Solidity and Handling of Callbacks

There are many reasons why smart contracts are a killer application for formal
verification [4]: potentially conflicting interests between participating parties, the
immutable nature of the code, the handling of digital assets of value, etc. In [3],
a program logic calculus was presented for a core fragment of Solidity. The cal-
culus is implemented in the (currently prototypical) program verification system
SolidiKeY, a version of the KeY system [2] dedicated to Solidity verification.

In this section, we will briefly present the calculus rules for transfer (with
minor adaptions for presentation) in two different versions: (i) a version allow-
ing for the possibility of callbacks during the call to transfer; and (ii) a version
which assumes no such callbacks. In the previous work [3], the two rules served
as a means of performing a best case or worst case scenario verification. Such an
upfront decision can be motivated by technical arguments (like the aforemen-
tioned gas fees) or as a choice between trusting everyone, or no one to not call
back during a transfer. We will use this as a baseline on which we will later on
build rules for handling presumption of selective benevolence in later sections.

The KeY approach is based on dynamic logic (DL), an extension of first-
order logic (FOL) by a multi-modality that is parameterised by programs. DL
formulae are defined inductively, with FOL connectives as the base forms. The
additional form in DL is the box modality: [π]post, which takes a program π (in
our context Solidity code), and another DL formula post. The formula means:
if π terminates successfully (i.e., it does not revert), then the property post
holds in the reached final state. Due to this inductive definition, DL formulas
are closed under the usual propositional and first-order connectives. A frequently
encountered DL formula pattern using these operators is pre → [π]post, which
corresponds to the Hoare triple: {pre}π{post}. DL formulas are evaluated in

11 The rationale behind their advice is that by not having the safety net of a gas limit,
developers are bound to design smart contracts more carefully. The authors disagree.
This is akin to saying that one should not wear a helmet on a motorbike, because
that would mean that you will drive more carefully.

116 W. Ahrendt and G. J. Pace

states, which are essentially a mapping from program variables to values. A DL
formula is valid if it evaluates to true in all states.

In KeY, DL is further extended with updates for symbolic execution. An
update v1 := t1 ‖ . . . ‖ vn := tn consists of program variables v1, . . . , vn and
terms t1, . . . , tn (where n can be 1), and represents a state change in the form
of explicit substitutions. If u is an update and φ is a DL formula, then {u}φ is
also a DL formula, with {v1 := t1 ‖ . . . ‖ vn := tn}φ evaluated in state s being
equivalent to φ evaluated in a state s′, where s′ coincides with s except that each
vi is mapped to the value of ti in s. In a proof construction, a DL formula of the
form {u}[π]post represents the status of symbolic execution where the a prefix
of a program (path) has already been turned into update u, and the remaining
program π is still to be executed (symbolically). At intermediate proof steps, we
can have DL formulae with nested updates like in {u1}{u2}[π]post, which will
be merged to a single update by further proof steps. See [2,3] for details.

To reason about the validity of formulae, we use a sequent calculus, which
we present here in a simplified fashion. A sequent φ1, . . . , φn =⇒ ψ has a set of
formulas φ1, . . . , φn on the left and a single formula ψ on the right12 and whose
meaning is equivalent to (

∧
i=1..n φi) → ψ. Calculus rules are denoted as rule

schemata of the form:

name
premises

︷ ︸︸ ︷

Γ1 =⇒ φ1 . . . Γn =⇒ φn

Γ =⇒ φ
︸ ︷︷ ︸

conclusion

where Γ, Γi, φ, φi denote sets of formulas or just formulas, respectively.
Since one important feature of smart contracts is that they can receive, store

and send crypto assets, in specifications and proofs it is frequently required
to express properties about the asset flow. In order to do so, Solidity DL as
presented in [3] has the notion of financial net—the difference between incoming
and outgoing payments which a contract has with another address. Solidity DL
uses the built-in function net : address → Z to keep track of the asset flow
between this contract and other addresses, with:

net(a) = money received from a − money sent to a

The verification methodology is based on contract invariants relating the external
flow of money with the persistent internal data of the contract (which we call
storage). These contract invariants are expected to hold whenever control is
outside the contract. For instance, in the setting of an auction contract where
every user can make bids, increase bids, and withdraw bids, the contract invariant
I may look something like:

I ≡ ∀a ∈ address. bids[a] = net(a)
12 The implemented calculus allows for more than one formula on the right-hand side of

a sequent, but here we limit ourselves to one formula for simplicity of presentation.

Selective Presumed Benevolence in Multi-party System Verification 117

This invariant states that bids is a mapping with the current effective bid of an
address a, equivalent to the financial net of the contract with address a.

With this notation, we are now in a position to present the proof rules for the
symbolic execution of the transfer function in the code of the sending contract.

Rule for transfer with Callback. We start by looking at the version which
allows for callback, making no assumption about the receiving contract. Since
the transfer may result in callbacks, we must ensure that the smart contract
invariant holds before the transfer is made in order to ensure that any callback
will find that the invariant holds, and thus also allows us to assume that the
invariant will still hold when control is returned after the transfer:

transfer (with callback)

Γ, c �= this =⇒ {u}{net(c) := net(c) − v}I
Γ, c �= this =⇒ {u}{storage := st ‖ net := n}(I → [ω]φ)

Γ, c �= this =⇒ {u}[c.transfer(v);ω]φ

The rule handles a transfer to the destination address c other than this same
contract this, and allows us to reach a conclusion that φ will hold after executing
c.transfer(v);ω, if we start with u as the result of symbolic execution so far.
The rule splits the proof into two branches establishing that: (i) after sending
the requested amount to c (i.e., after subtracting v from the financial net this
contract has with c), invariant I of contract this holds, thus ensuring that
the contract is in a consistent state when control is handed over to c; and (ii)
if the invariant holds, but making no assumption about the storage and net
variables13 (since callbacks may have changed these values in the meantime),
then executing ω will ensure that φ will hold upon termination.

Rule for transfer Without Callback. For the second version of the rule,
which assumes that the receiver of the transfer will not perform a callback, we
know that this contract will not be accessed and therefore we need not prove the
invariant but simply that φ will finally hold. This makes the rule substantially
simpler:

transfer (without callback)

Γ, c �= this =⇒ {u}{net(c) := net(c) − v}[ω]φ
Γ, c �= this =⇒ {u}[c.transfer(v); ω]φ

In this case, we simply need to prove that, after updating the net of the receiving
address, executing ω to completion will ensure that φ holds at the end.

In SolidiKeY, the user can configure which rule to use for a proof as a
whole, thus deciding upfront to either allow potential callbacks from all con-
tracts (with callback), or from none (without callback). Examples which were veri-
fied using either of the rule settings are discussed in [3].

13 The variable storage and the mapping net are assigned newly generated constants st
and n, about which no knowledge can be inferred. After that update, the invariant
I is assumed, meaning the invariant is all we know about storage and net when
continuing symbolic execution of ω.

118 W. Ahrendt and G. J. Pace

4 Presumption of Benevolence

The original motivation for having two different rules was to allow the user
of SolidiKeY control whether to trust gas fee-based callback prevention. How-
ever, as we have already discussed, the choice can also be made with regards to
assumptions about the benevolence of certain parties, where benevolence of a
receiver c of a transfer c.transfer(v) is taken to mean that c will not call back
into the sender (directly or indirectly) during execution of the transfer.

Presumption of benevolence can be either static, where a fixed set of addresses
are presumed to be consistently benevolent, or dynamic, where the addresses to
be trusted is determined at runtime and may change throughout the execution.
In all cases, the specification has to clearly state the assumption under which
a property is expected to hold, hence giving rise to different guarantees under
different assumptions.

4.1 Presuming Benevolence of Oneself

When a smart contract provides a service which a user may want to access, and
with no knowledge about other parties involved in the contract, one may try to
prove correctness of a specification using a worst case scenario, in which we allow
any transfer to perform callbacks. However, although a particular user may not
be able to make any assumption about the behaviour of others, they can make
them of themselves (or of a smart contract they control). If it is in the user’s
interest that the smart contract works as per the given specification, they can
attempt to prove correctness by assuming no callbacks from transfers to their
address—effectively presuming benevolence of themselves.

The following proof rule allows for the differential treatment between a
trusted address s (oneself) and that of others:

transferBenevolentOneself

Γ, c �= this, c = s =⇒ {u}{net(c) := net(c) − v}[ω]φ
Γ, c �= this, c �= s =⇒ {u}{net(c) := net(c) − v}I
Γ, c �= this, c �= s =⇒ {u}{storage := st ‖ net := n}(I → [ω]φ)

Γ, c �= this =⇒ {u}[c.transfer(v);ω]φ

The rule effectively combines the two rules given in Sect. 3, branching over
whether the receiver’s address is the trusted caller i.e. c = s—if it is, the premise
from the no-callback rule applies14 (appearing as the first antecedent of the
rule above), and if not, the two premisses of the possible-callback rule apply
(appearing as the second and third antecedents in the rule above).

Assuming benevolence of oneself, whoever the caller of a function, we only
rely on the fact that if a transfer is made to the trusted address s, there will
be no callback into the contract, and symbolic execution proceeds accordingly,
with no need to show the invariant at that moment.
14 By ‘premise applies’, we mean that the branches produced by the other premisses

close trivially, as their left sides are false.

Selective Presumed Benevolence in Multi-party System Verification 119

4.2 Presuming Benevolence of a Static Group

As a generalisation of this rule, it may be reasonable to presume benevolence of
several parties. For instance, when buying a house together with your siblings,
you may choose to trust the behaviour of yourself and your siblings, but not that
of the ones selling the house or that of the estate agent. This is an example of a
statically determined trusted group and can be encoded as the following rule:

transferBenevolent(S)

Γ, c �= this, c ∈ S =⇒ {u}{net(c) := net(c) − v}[ω]φ
Γ, c �= this, c �∈ S =⇒ {u}{net(c) := net(c) − v}I
Γ, c �= this, c �∈ S =⇒ {u}{storage := st ‖ net := n}(I → [ω]φ)

Γ, c �= this =⇒ {u}[c.transfer(v);ω]φ

The rule is almost identical to the previous one, but trusts a receiver if they
appear in a (constant) set S i.e. c ∈ S.

4.3 Presuming Benevolence of a Dynamic Group

The two rules we have just seen require the parties to be trusted to be decided
statically a priori, and remain unchanged throughout the execution of the smart
contract. In practice, this may be too much of a constraint. For instance, one
may want to trust a party which is only known at runtime or which may change
e.g. in an auction smart contract, one may trust that the current top bidder has
no interest in breaking the smart contract’s invariant, but the top bidder is not
known before the smart contract starts executing, nor does it remain constant
throughout the execution.

If we use a predicate ben to characterise which addresses are trusted at any
point during execution i.e. an address c is trusted if ben(c), we can encode such
dynamic presumed benevolence using the following rule:

transferBenevolencePredicate

Γ, c �= this
=⇒

{u}
⎛

⎝
ben(c) → {net(c) := net(c) − v}[ω]φ

∧ ¬ben(c) → {net(c) := net(c) − v}I
∧ ¬ben(c) → {storage := st ‖ net := n}(I → [ω]φ)

⎞

⎠

Γ, c �= this =⇒ {u}[c.transfer(v);ω]φ

Compared to the earlier rules, this one makes a case distinction over the pred-
icate ben, which may depend on the state. Thereby, the set of trusted parties
is not statically fixed. The rule thus has only one premise, meaning it does not
cause an immediate branching of the proof since the code which was (symboli-
cally) executed before the transfer, and which is captured in the update u, can
potentially influence the validity of ben(c). The rule will still, indirectly, cause
a branching of the proof, which is however delayed to after applying u to the
conjunction in further proof steps.

120 W. Ahrendt and G. J. Pace

The predicate ben will be defined in the specification of the contract. For
instance, the contract at hand may have a mapping trustworthy from addresses
to bool to indicate which parties may be trusted. The specification of the con-
tract could define ben as follows:

ben(a) ≡ (trustworthy[a] = true)

As another example, one may trust all addresses which have invested more than
2 Ether into the contract, in which case ben would be defined as follows:

ben(a) ≡ (net(a) >= 2 ether)

As a final example, we may return to trusting the current top bidder in an
auction smart contract by defining ben to be:

ben(a) ≡ (a = top bidder)

5 Collaborative Malicious Behaviour

One important property of these semantics is that they are monotonic under pre-
sumed benevolence. In other words, an invariant which can be proved when trust-
ing a set of parties would still hold if we trust even more parties. For instance, if
we write C
B I to indicate that smart contract C satisfies invariant I if parties
B are presumed to be benevolent, we should be able to show that:

Program invariants are monotonic with respect to the set of presumed
benevolent parties. Given sets of parties B and B′, smart contract C and
invariant I, if B ⊆ B′ and C
B I, then it follows that C
B′ I.

A natural question is whether we can also use proofs with different sets of
parties to require trust in less parties. For instance, if we know that C
B1 I
and that C
B2 I, can we argue that we do not need to presume benevolence of
B1 \B2 since they are not presumed to be benevolent in the second assumption,
nor that of B2 \ B1 since they are not presumed to be benevolent in the first
assumption. In other words, does it follow that C
B1∩B2 I? We show that this is
not the case by counter-example, showing a system and an invariant which holds
if we presume benevolence either of party p1 or of party p2. However, we show
that the invariant will not hold if we cannot presume benevolence of anyone i.e.
{p1} ∩ {p2}.

Example 2. Consider a two-party token system, in which token ownership by
one party indicates certain rights of that party, impinging on the other party
e.g. use of a single parking space exclusive to the two parties. An implementa-
tion of this as a smart contract is shown in Listing 3, and cycles across three
phases (i) the first in which anyone may load the smart contract with funds
using loadAndLaunchTokens() (e.g. the funds could be jointly contributed to
by the two parties, or by their employer); (ii) the second phase in which the

Selective Presumed Benevolence in Multi-party System Verification 121

parties may acquire the tokens using acquireToken1() and acquireToken2(),
and implemented in such a manner that whenever one party takes a token, the
other is compensated in funds; (iii) the third phase in which owners may use the
tokens.
1 contract TwoUtilityToken {
2 /*@ contract_invariant
3 !(tokens_owned1 == 2 && tokens_owned2 == 2) &&
4 tokens_owned1 <= 2 && tokens_owned2 <= 2
5 */
6 ...
7
8 function loadAndLaunchTokens () public payable { ... }
9
10 function acquireToken1 () public {
11 // Only user1 may invoke this
12 require (msg.sender == user1);
13 // The contract must be in token acquisition mode
14 require (mode == Mode.TokenAcquisition);
15
16 // User 1 acquires one token
17 tokens_owned1 ++;
18 // Pay user 2 compensation
19 user2.transfer (1 ether);
20
21 // Move on to the token usage mode if enough tokens have been acquired
22 if (tokens_owned1 + tokens_owned2 >= 2)
23 mode = Mode.TokenUsage ;
24 }
25
26 function acquireToken2 () public { ... }
27
28 function useToken () public { ... }
29 }

Listing 3. Code of a two user utility token.

The smart contract invariant will ensure that the supply of tokens is limited—
it will never be the case that any one of the users owns more than two tokens, or
that both users own two tokens each. The implementation takes a safer route,
and switches to token usage mode (phase 3) as soon as the sum of tokens owned
reaches two as can be seen in the code shown for function acquireToken1(). It
is worth noting that the state of the smart contract is encoded in the variable
mode, which is updated at the end of acquireToken1() i.e. after transferring
funds, because of reentrancy. Since control is temporarily given to user 2 during
the transfer of funds, if we would have already updated the mode, that party
would have the opportunity to use any token they own before user 1 can, thus
giving them an undesirable advantage.

The question is whether anything can go wrong. Verifying the invariant using
the no-reentrancy semantics allows us to prove that the contract is safe, indicat-
ing that if anything can go wrong, it would have do so due to reentrancy. The
invariant can also be proved if we assume that the first user will not attempt
reentrancy, and similarly for the second party. Good, both primary stakeholders
have the power to ensure that the smart contract does not violate the invari-
ant. But does that suffice? Consider the following execution pattern: (i) user
1 acquires one token using acquireToken1(); (ii) user 1 calls acquireToken1()
again to acquire a second token, but when user 2 is given control through the

122 W. Ahrendt and G. J. Pace

call to transfer (on line 19), (iii) user 2 calls acquireToken2()15 to (hurriedly)
acquire a token, but as user 1 gains control when their compensation is being
transferred, (iv) user 1 will call acquireToken1() again. Since the mode is only
changed at the end of the functions,16 all tokens will be successfully acquired,
resulting in user 1 owning 1 token, and user 2 owning 3 tokens, thus violating
the invariant. Furthermore, if gas were not a concern, the two parties can nest
this attack to any depth, acquiring even more tokens.

Verifying the smart contract allowing both parties to use reentrancy would,
in fact, identify this vulnerability. But is the contract safe to use if violation can
only occur through collaboration? It largely depends on other parties involved in
the contract. If a third party e.g. the employer of the two users is the one loading
the smart contract with funds to pay compensation, then the parties might
collaborate together to take more funds than originally envisaged. However, if
the parties are the only ones involved (they are also the ones who would load
funds into the smart contract), then the contract is safe in that either party
can play clean to ensure that the invariant is not violated. This illustrates an
interesting game theoretic situation in which we would be able to reason about
conditional contract safety with respect to an invariant as long as we have a
notion of user benefits and gains.

6 Conclusions

We have looked at a particularly thorny issue of reentrancy in smart contracts—
a vulnerability that has led to huge financial losses in the past few years. In fact,
the problem is a much more general one, that of reasoning about systems which
perform synchronous external calls and may thus have to handle callbacks when
ceding control to these other parties. Typically, such systems are designed with
their specifications holding only when they can trust certain other parties never
to perform such callbacks, which raises the issue of how to deal with specifications
whose correctness may be conditional on other parties. In a way, it is a problem
akin to assume-guarantee, but with the assumptions being non-functional ones
i.e. not about what properties hold of the results that the external party will
give us, but rather about how that party will compute that result. Combining
such functional and non-functional aspects of a specification in order to enable
formal proof is not straightforward, as we have seen in this paper.

One aspect of smart contracts which we have alluded to multiple times in
this paper is that of parties’ interest. Since smart contracts explicitly encode the
notion of parties and of digital asset migration, one can typically encode some
form of utilitarian interpretation to a particular smart contract state change
being to the benefit of a particular party but possibly not to that of another.
Such an interpretation would allow for economics-based reasoning of whether

15 The code of acquireToken2() is identical to acquireToken1() but with the parties
switched.

16 As already discussed, moving it forward in the code will open another vulnerability.

Selective Presumed Benevolence in Multi-party System Verification 123

a particular party stands to gain or lose from a callback. This would enable a
more refined version of callback-freedom semantic analysis: assuming rational
agents, and thus that a party would never engage in callbacks if they stand
to lose if they do so, does a smart contract satisfy a particular specification
under such an assumption? The notion of a party’s interest in a contract is not
always straightforward to encode (e.g. is the value of gaining 10 tokens alone
any different from that of yourself and another party gaining 10 tokens each?)
and we leave this as future work.

References

1. Consensys Diligence: Stop Using Solidity’s transfer() Now. https://consensys.net/
diligence/blog/2019/09/stop-using-soliditys-transfer-now/

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book. From Theory to Practice, vol.
10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

3. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data
integrity. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp.
9–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6 2

4. Ahrendt, W., Pace, G.J., Schneider, G.: Smart contracts: a killer application for
deductive source code verification. In: Principled Software Development, pp. 1–18.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98047-8 1

5. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

6. Ethereum: Solidity. Online Documentation (2016). https://solidity.readthedocs.io/
en/develop/introduction-to-smart-contracts.html

7. Jones, C.B.: Development methods for computer programs including a notion of
interference. Ph.D. thesis, Oxford University, UK (1981)

8. Li, B., Pan, Z., Hu, T.: Redefender: detecting reentrancy vulnerabilities in smart
contracts automatically. IEEE Trans. Reliab. 71(2), 984–999 (2022). https://doi.
org/10.1109/TR.2022.3161634

9. Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., Roscoe, B.: Reguard: finding reen-
trancy bugs in smart contracts. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering: Companion (ICSE-Companion), pp. 65–68 (2018)

10. Misra, J., Chandy, K.: Proofs of networks and processes. IEEE Trans. Softw. Eng.
7(7), 417–426 (1981)

11. Mueller, B.: Smashing Ethereum smart contracts for fun and real profit. In: HITB
SECCONF Amsterdam (2018)

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. White Paper (2009).
https://bitcoin.org/bitcoin.pdf

13. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1007/978-3-319-98047-8_1
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html
https://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html
https://doi.org/10.1109/TR.2022.3161634
https://doi.org/10.1109/TR.2022.3161634
https://bitcoin.org/bitcoin.pdf

On the Pragmatics of Moving
from System Models to Program

Contracts

Thomas Santen(B)

Formal Assurance, Aachen, Germany
santen@formalassurance.com

http://www.formalassurance.com

Abstract. Consider a software development process supported by For-
mal Methods that includes an abstract system model and contract-based
program verification. Relative to the total size of the formal system model
and the information captured in program contracts, the interface between
those two levels of abstraction is relatively small. This encourages a clear
separation of concerns between the two and a well-structured transition
from system model to program contracts even if they are expressed in
different formalisms. The paper discusses the implications of such a devel-
opment process, and illustrates it by way of the Hagrid key server, with
Alloy as a system modeling language and VCC’s annotated C as a con-
tract language.

Keywords: Formal modeling · Program contracts · Program
verification

1 Introduction

The transition from a formal model describing the data and behavior of a sys-
tem independently of a particular implementation structure to a contract-based
specification, including pre- and postconditions and data invariants of actual
program code, is a crucial step in a software development process that is sup-
ported by Formal Methods. Informed by customer projects, this paper provides
a pragmatic view on some challenges in that transition and promising ways to
address them. It is guided by the following observations:

Formal modeling and specification languages, and their supporting tools, are
usually designed to address a certain goal at a certain level of abstraction, such
as verifying crucial properties of the information processed in a system or the
protocols used to communicate with the system environment. While specification
languages may provide features to express different views of the system, e.g., data
and behavior, the levels of abstraction that they can most adequately capture
are usually limited. For example, a system modeling language will not provide
native features to talk about the program heap, whereas it may be necessary

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 124–138, 2022.
https://doi.org/10.1007/978-3-031-19849-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_8

System Models to Program Contracts 125

to address properties of the heap in program contracts. Attempting to bridge
a broader range of abstractions within a single language may be possible but
often leads to unnecessarily complex specifications that are hard to comprehend
and maintain, and push support tools to their limits. For example, a system
modeling language will not provide native features to talk about the program
heap, whereas it may be necessary to address properties of the heap in program
contracts.

Transitioning from one language to another that describes the aspects of the
system at a significantly different level of abstraction offers the opportunity to
establish a clear separation of concerns between the different system specifica-
tions. While a contract-based specification will necessarily rephrase some of the
information contained in an abstract system model, it will augment that infor-
mation in the contracts with other information that specifically relates to the
code in a particular programming language with a specific execution and mem-
ory model, such as aliasing of data, framing of changes to memory, or controlling
access to specific chunks of memory. Devising contracts with special attention to
that additional information provides structure and guidance to the development
process.

In the development of a larger system, not all developer roles have access to
all development artifacts, in particular if different organizations are involved. For
example, the team constructing a formal model of the system under development
to obtain a Common Criteria EAL-6 certification [5] needs to understand the
(informal) specification of the system but will not necessarily have access to the
actual implementation. A set of Formal Methods to be applied in a development
process with limited sharing of artifacts must be chosen carefully to support
such an access control regime.

These observations suggest a development process that clearly distinguishes
a system modeling activity from a software design and implementation activity,
in which both activities are supported by specific Formal Methods. In this pro-
cess, system modeling produces a formal description of the system to be built
and its operations. Software design and implementation produce contract-based
specifications of system interface operations and abstract data structures, as a
basis for further implementation steps producing executable code. Large parts
of these activities will be conducted by developers because they require human
creativity. Automated tools may be used to verify desired properties of the sys-
tem model or the software contracts. They may also help to keep the system
model and the software contracts consistent.

The transition from a system model to contracts consists of three major tasks:
first, an initial step preparing the actual translation; second, the translation of
the relevant parts of the system model to partial contracts; and third, the aug-
mentation of the contracts with assertions specific to the targeted programming
model and language.

It turns out that the link between the system model and the contract-based
specification is smaller than one might expect. A considerable part of the system
model does not contribute information to construct software contracts, while

126 T. Santen

that information is by no means sufficient to construct a complete contract-
based specification at the code level.

This setting also suggests that heterogeneous specifications in different speci-
fication languages can strongly support a clear separation of concerns in a formal
development process and, in particular, provide structure to the transition from
implementation-independent system models to contract-based specifications of
code.

To illustrate the impact of those observations, the following presentation
uses Alloy [9] in its latest Version 6 [1] as a system modeling language, and
annotated C as used by VCC [4] as the contract language. The VerifyThis long
term challenge Hagrid [8] provides a running example.

Section 2 introduces the running example. Section 3 sketches an Alloy model
and some critical system-level properties that can be verified with the Alloy ana-
lyzer. Different aspects of the transition from Alloy to annotated C are described
in Sect. 4. Generalizing the technical considerations of the previous sections, the
final Sect. 5 reviews the pragmatics of applying Formal Methods in real-life cus-
tomer projects and suggests some directions of future research.

2 The PGP Server Hagrid

The VerifyThis long term challenge of a PGP key server [8] is inspired by the
actual PGP key server implementation Hagrid [7], which is running on https://
keys.openpgp.org/. The functionality of the key server presented here is simpli-
fied for illustration purposes. It is not intended to be a basis for a practically
useful system.

The Hagrid system consists of three major components. First, the frontend
server provides a number of operations, which in a real system would be presented
through a web server. Second, the key database stores PGP keys indexed by email
addresses. Third, the mailer sends confirmation codes to user email addresses.

The key server system provides the following operations:

get(e) returns the key k that is associated with the email address e, if any.
add(e, k) requests the server to associate the key k with the email address

e. The server keeps this request in a set of pending requests and
produces a unique confirmation code c, which is forwarded to the
mailer to send it to the email address e.

del(e, k) requests the server to delete the key k that is supposed to be asso-
ciated with the email address e. If k is indeed associated with e, the
server keeps the deletion request in a set of pending requests and
produces a unique confirmation code c, which is forwarded to the
mailer to send it to the email address e.

addConf (c) confirms a previous add request for the confirmation code c, if such
a request is pending. Then, the pair (e, k) associated with c is added
to the key database and the operation returns success. Otherwise,
the operation returns a failure result and the key database remains
unchanged.

https://keys.openpgp.org/
https://keys.openpgp.org/

System Models to Program Contracts 127

Listing 1. Alloy signature Server

1 abs t rac t s i g Se r v e r {
2 mai l : Ma i l e r ,
3 var kdb : set DBEntry ,
4 var addReq : set Request ,
5 var de lReq : set Request ,
6 var used : set ConfCode
7 }{
8 // a c t i v e ConfCodes have not been used b e f o r e
9 l e t a c t i v e = (addReq + de lReq) . r c | {

10 no (a c t i v e & used)
11 }
12 // d e l e t e r e q u e s t s r e f e r to e x i s t i n g db e n t r i e s
13 de lReq . rdb i n kdb
14 // r e q u e s t s r e s p e c t ConfCode t yp e s
15 addReq . r c i n AddConfCode
16 de lReq . r c i n DelConfCode
17 }
18 abs t rac t s i g ConfCode {}
19 s i g AddConfCode , DelConfCode extends ConfCode {}

delConf (c) confirms a previous deletion request for the confirmation code c, if
such a request is pending. Then, the pair (e, k) associated with c is
removed from the key database and the operation returns success.
Otherwise, the operation returns with a failure result and the key
database remains unchanged.

Both, add and del re-send a previously generated confirmation code if they
are called with parameters for which a request is pending.

3 The Alloy Model

Alloy [9] is a temporal first-order relational logic. The Alloy analyzer uses the
Kodkod relational model finder and a number of SAT solvers to explore Alloy
models and verify assertions about them. The latest Version 6 of the Alloy
language and analyzer [1] comes with new features allowing one to specify and
assess behavioral models natively. It allows one to mark the mutable parts of
a system state, specify the transition relation, and assert temporal properties
of the resulting set of system traces. In addition to checking bounded traces
with SAT solving, standard model checkers like NuSMV can be used to verify
temporal properties for unbounded traces.

Listing 1 shows the Alloy signature Server describing the state of the Hagrid
server. The mailer mail is used to send confirmation messages. The key database
kdb is modeled as a set of database entries DBEntry, which in turn contain
keys and associated email addresses (not shown in the listing). Similarly, the
sets addReq and delReq model the pending add or delete requests, respectively.

128 T. Santen

Listing 2. Transition predicate for add

1 pred add [s : Se rve r , e : Email , k : Key , c” : ConfCode]{
2 c” i n AddConfCode
3 some r eq : Request | {
4 r eq . rdb . ek = k
5 r eq . rdb . ee = e
6 r eq . r c = c”
7 { // re− i s s u e same r e q u e s t
8 r eq i n s . addReq
9 } | | {

10 // i s s u e new r e qu e s t
11 r eq . r c ! i n s . addReq . r c + s . de lReq . r c + s . used
12 }
13 // update s e r v e r
14 s . addReq ’ = s . addReq + req
15 }
16 s endCon f i rma t i on [s . mai l , e , c ”]
17 // f r am ing
18 s . kdb ’ = s . kdb
19 s . delReq ’ = s . de lReq
20 s . used ’ = s . used }

The field rc of a Request holds the confirmation code issued for that request.
Lines 15 and 16 require that rc is a member of the signatures AddConfCode
or DelConfCode, respectively, which partition the abstract signature ConfCode.
The set used of confirmation codes keeps track of the confirmation codes that
the server has previously used. The keyword var, newly introduced in Alloy 6,
declares all fields of Server except mail to be mutable in a state transition.

The signature invariants of Server show the elegance of the relational calculus
in Alloy. The expression defining the set of active requests in Line 9 of Listing
1 projects the union of addReq and delReq to the field rc of Request, which
is the confirmation code associated with a request. Thus, active is the set of
confirmation codes used in pending requests.

The Hagrid operations are modeled as transition predicates in Alloy. For
example, the predicate add in Listing 2 requires that there exists a request req
for the given email address e and key k that is either in the set of pending add
requests or uses a fresh confirmation code c”. We use the convention to mark
“output” parameters of transition predicates by double quotation marks, so c”
is supposed to be an output of add.

The equality s.addReq’ = s.addReq + req in Line 14 of Listing 2 describes
the state change of the server s. In Alloy 6, the “primed” field name s.addReq’
denotes the value of that field in the post state of the transition. Similarly, Lines
18 to 20 state that the other mutable components of s remain unchanged. The
predicate sendConfirmation models the mailer operation that enqueues a message
containing a confirmation code to be sent to the given email address.

System Models to Program Contracts 129

Listing 3. Transition predicate for addConf

1 pred addConf [s : Se rve r , c : ConfCode , r ” : R e s u l t]{
2 c i n AddConfCode
3 some r eq : s . addReq | {
4 r eq . r c = c
5 r ” = Succe s s
6 s . kdb ’ = s . kdb + req . rdb
7 s . addReq ’ = s . addReq − r eq
8 s . delReq ’ = s . de lReq
9 s . used ’ = s . used + req . r c

10 } | | {
11 c ! i n s . addReq . r c
12 r ” = F a i l
13 f r ameSe r v e r [s]
14 }
15 f r ameMa i l e r [s . ma i l] }

The other operations of the Hagrid system are modeled as transition predi-
cates in a similar way, e.g., Listing 3 shows the one for addConf . The predicate
initSystem describes the valid initial system configurations. The transition rela-
tion systemStep of the Hagrid system is an existentially closed disjunction of the
operation transition predicates. Thus, the axiom initSystem && always system-
Step requires the model to exhibit all valid traces of the system.

Alloy has been designed to allow for easy validation of the specified system
behavior and assessment of critical system requirements. Alloy run commands
allow one to explore system behavior by incremental model finding. For sce-
narios of limited size, the visualizer is a valuable tool to inspect system traces
graphically, e.g., to validate how the system processes a pending add request.
For more complex scenarios, query evaluation on the generated models often
provides insight into possible defects of the model. Inspecting specific system
traces in this way is a good means to validate an Alloy specification against
informal requirements.

Critical system requirements can be formalized as assertions and then veri-
fied either for bounded traces using the SAT solvers that come with the Alloy
analyzer or with a standard model checker like NuSMV for unbounded traces.
An example is the assertion in Listing 4. It states that addConf can only be
successful for a confirmation code that has resulted from a previous add, i.e., if
addConf returns Success for some confirmation code c, then c was generated
by an add operation in some previous state and has been in the set of confir-
mation codes of pending add requests in all states since the add operation was
performed.

Interestingly, the mailer need not send a confirmation code for a pending
request before addConf can be successful, because the environment could just
guess the right confirmation code. An attempt to check the corresponding asser-
tion produces a concise counterexample illustrating such a situation.

130 T. Santen

Listing 4. Temporal assertion relating add and addConf

a s s e r t addConfOnlyAfterAdd {
a l l c : ConfCode |

always (
addConf [System . s , c , Succe s s]
imp l i e s

c i n System . s . addReq . r c
s i nce
some e : Email , k : Key | add [System . s , e , k , c]) }

4 From Alloy to VCC Contracts

When proceeding from a system model like the one presented in Sect. 3 to a piece
of executable code that is specified by contracts, a number of design decisions
need to be taken that will eventually relate the abstract mathematical concepts
of the system model to the specific data structures and algorithms used in the
implementation. At one point during this process, a transition from the lan-
guage of the system model, Alloy in our case, to the annotated programming
language, such as annotated C, needs to be made. We propose to decompose
that transition into three steps: first, precondition and framing analysis; second,
translation of Alloy signatures and predicates to annotated data structures and
partial contracts; and third, augmentation of the resulting annotated C with
assertions addressing ownership domains and resource limitations.

The tool VCC [4] is an industrially viable verifier for concurrent C. It supports
function- and thread-modular verification of highly-optimized product-quality
C code. VCC has been used to verify a large part of the kernel of Microsoft’s
Hyper-V [11]. VCC uses first-order predicate logic as a specification language.
Primary features of the annotation language include pre-/post-condition func-
tion contracts with heap frames, data invariants for C structs with an ownership
discipline, and ghost data and code. VCC uses Z3 [12] to support fully-automatic
verification of annotated C.

4.1 Precondition and Framing Analysis

The Alloy language does not offer constructs specific to programming. There-
fore, it makes sense to move from the system model to contract-based program
annotations without much “refinement” of the Alloy system model. Only a pre-
condition analysis on the transition predicates specifying the system operations
(c.f., Listing 2), and a framing analysis prepares the transition to VCC contracts.

The precondition analysis is done in the standard way proposed, e.g., in the
VDM [10] and Z [13] methodologies, by existentially quantifying a transition
predicate over the post-state and result parameters. For example, the precondi-
tion of add in Listing 2 is obtained by eliminating the existential quantifier the
following definition of addPREex. The resulting predicate addPRE conjoins Lines
3 to 15 but Lines 6 and 14, which address the effect of the operation.

System Models to Program Contracts 131

Listing 5. C struct for Alloy signature Server: fields

1 typedef s t r u c t S e r v e r {
2 Ma i l e r ∗mai l ;
3 (ghost \ ob j se t kdb ;)
4 (i n v a r i a n t \ f o r a l l \ ob ject o ;
5 o \ i n kdb ==> \ typeof (o) == \ typeof ((DBEntry∗)NULL))
6 P t r s e t ∗ kdb I ;
7 (i n v a r i a n t \ f o r a l l vo id ∗ o ;
8 o \ i n kdbI−>abs <==> (DBEntry∗) o \ i n kdb)
9 [. . .] // s i m i l a r f o r : addReq , delReq , used

10 // d i s t i n c t n e s s o f imp l ementa t i on s e t s
11 (i n v a r i a n t kdb I != addReqI && [. . .] && de lReq I != u s ed I)

12 [cont . i n L i s t i n g 7]

pred addPREex [s : Se rve r , e : Email , k : Key]{
some s . ma i l . mai lqueue ’ ,

s . kdb ’ , s . addReq ’ , s . delReq ’ , s . used ’ , c” | {
add [s , e , k , c ”] }}

The framing analysis identifies the parts of the system state that a system
operation will keep unchanged under all circumstances, i.e., for a transition pred-
icate op, all state variables x must be identified for which op implies x’ = x holds.
The resulting framing predicate conjoins the equations thus found. For add, these
are Lines 18 to 20 of Listing 2.

Finally, the parts of the transition predicate not covered by the precondition
and framing predicates form the postcondition predicate that talks about actual
change of the system state. As a result of this preparatory step, the specification
of add is re-written to the equivalent form

addPRE [s , e , k] && addPOST [s , e , k , c”] && addFRAME [s]

where addPRE, addPOST, and addFRAME are the precondition, postcondition,
and framing predicates derived from the original transition predicate in Listing 2.

While some automation support is conceivable to find that decomposition of a
transition predicate, it will still remain a manual step to ensure comprehensibility
and allow developers to work productively with those predicates in the following
development steps. Eventually the automated verification that the decomposi-
tion is equivalent to the original transition predicate ensures the soundness of
the decomposition step.

4.2 Translation to Annotated C

Although we will not provide a rigorous justification of the transition from Alloy
to VCC annotations, a comparison of the semantics of those two formalisms
motivates our approach. In particular, we consider the translation of Alloy signa-
tures to C structs, in which pointers represent atoms; we identify an appropriate

132 T. Santen

Listing 6. Generic pointer set

typedef s t r u c t P t r s e t
{

(ghost \ ob j se t abs ;)
vo id ∗ buf [SETSIZE] ;
unsigned s i z e ;
(i n v a r i a n t s i z e <= SETSIZE)

[. . .] // c oup l i n g i n v a r i a n t buf to abs
} P t r s e t ;

representation of Alloy sets as VCC ghost data; and we address the translation
of relational calculus to first-order predicate logic, which is used in VCC.

Signatures to Structs, Atoms to Pointers. Similar to an Alloy signature, a C
struct talks about fields that have values associated with the particular struct.
Thus, C structs are a natural target for representing Alloy signatures.

The semantics of an Alloy signature is a type, which is a finite set of unstruc-
tured “atoms”. The semantics of a field of a signature is a (globally visible)
relation between the type of the signature and the type mentioned in the decla-
ration of the field. For example, the declaration mail : Mailer in Server of Listing
1 semantically maps to a relation between the types of Server and Mailer, which
is further constrained to be a total function: each server maps to exactly one
mailer. For fields marked as var, the relation between signature and field value
evolves with each transition in a system trace.

This matches well with the ghost type \object in VCC, which is the type of
all C pointers to structs. Each \object has an associated type, which is the type
of struct that the pointer references.

Furthermore, the dereferencing access s−>f to the field f of a struct pointer
s resembles the semantics of the relational composition s.f accessing a field f of
a single Alloy signature s.

Therefore, we map Alloy signatures to C structs, Alloy atoms to pointers to
the respective struct types, and (for singletons s of signature types) the relational
composition s.f to a dereferencing access s−>f.

Listing 5 shows the representation of the Alloy signature Server as an anno-
tated C struct. Line 2 represents the field mail as pointer to the struct type
Mailer, which in turn represents the Alloy signature of the same name.

Sets. In VCC, the ghost set \objset is the type of sets of all pointers, inde-
pendent of their target types. Representing Alloy signatures as struct pointers,
it appears natural to represent Alloy sets as VCC object sets. Thus an Alloy
declaration kdb : set DBEntry would be represented by the ghost declaration
(ghost \objset kdb;). The typing information about kdb, namely that it is a sub-

set of DBEntry, can be covered by an invariant requiring that all members of the
object set kdb are pointers to DBEntry, see Line 4 of Listing 5.

System Models to Program Contracts 133

Listing 7. C struct for Alloy signature Server: invariants

18 // a c t i v e ConfCodes have not been used b e f o r e
19 (i n v a r i a n t \ f o r a l l Request ∗ r ;
20 (r \ i n addReq | | r \ i n de lReq)
21 ==> ! (r−>r c \ i n used))
22 // d e l e t e r e q u e s t s r e f e r to e x i s t i n g db e n t r i e s
23 (i n v a r i a n t \ f o r a l l Request ∗ d l ;
24 d l \ i n de lReq ==> dl−>rdb \ i n kdb)
25 // r e q u e s t s r e s p e c t ConfCode t yp e s
26 (i n v a r i a n t \ f o r a l l Request ∗ a r ;
27 a r \ i n addReq ==> AddConfCode (ar−>r c))
28 (i n v a r i a n t \ f o r a l l Request ∗ dr ;
29 dr \ i n de lReq ==> DelConfCode (dr−>r c))
30 [cont . i n L i s t i n g 9]

The field kdbI in Line 6 of Listing 5 provides an implementation of the object
set kdb. A common idiom in C is to implement “generic” pointers by the type
void*. Upon use, such a pointer is cast to the actual pointer type. The type
definition of Ptrset sketched in Listing 6 makes use of this idiom to provide a
very simple implementation of a generic finite pointer set by an array of a fixed
size. The ghost set abs contains the members of the set. The implementation is
an array buf of pointers to void. The field size is the cardinality of the set, which
must be less than the size SETSIZE of buf. A coupling invariant (not shown)
ensures that buf holds exactly the members of abs. The invariant in Line 7 of
Listing 5 ensures that kdbI holds exactly the data base entries in kdb.

Similarly, the other set-valued fields addReq, delReq, and used of the Alloy
signature Server are mapped to the fields addReq and addReqI, etc. in Listing 5.
As those sets are distinct, Line 11 requires that their implementations do not
alias.

Predicate Logic and Relational Calculus. Alloy is a temporal first-order rela-
tional logic. VCC uses first-order predicate logic. In Alloy, we confine the use
of temporal operators to the description of the system transition relation and
assertions about the system behavior. This is justified because temporal opera-
tors are hardly needed to describe signature invariants or transition predicates.
As a consequence, the translation of the relevant Alloy logic operators to their
VCC counterparts is straight-forward.

VCC provides the usual set operations, such as union, intersection, and mem-
bership, for \objset. However, there is no counterpart for the more powerful
operations of relational calculus. In particular, the translation of Alloy’s general
relational composition R.S, which joins the relations R and S on their co-domain
and domain, respectively, needs more consideration. Unless one of the relations
is a singleton, a systematic translation involves existential quantification, which
imposes considerable burden on analysis tools.

134 T. Santen

Listing 8. C function for add

1 ConfCode∗ add (S e r v e r ∗ s , Emai l ∗e , Key ∗k)
2 (wr i t e s s , e , k)
3 (mainta ins \wrapped (s))
4 (r e qu i r e s \wrapped (e))
5 (r e qu i r e s \wrapped (k))
6 (r e qu i r e s s−>addReqI−>s i z e < SETSIZE)
7 (r e qu i r e s s−>mai l−>mai lqueue I−>s i z e < SETSIZE)
8 (r e qu i r e s addPRE(s , e , k))
9 (ensures addPOST(s , e , k ,\ r e s u l t))

10 (ensures addFRAME(s)) ;
11 (ensures e \ i n \domain (s))
12 (ensures k \ i n \domain (s))

Consider the definition of active in Line 9 of Listing 1. Semantically, addReq
and delReq are sets of atoms of type Request, and rc is a relation mapping requests
to confirmation codes. Thus, the relational composition (addReq+DelReq).rc
evaluates to the relational image of that set union under the relation rc, which
is a set of confirmation codes.

A systematic translation of Alloy’s relational calculus to VCC in the style
of a denotational semantics would result in quite complex formulas with many
nested existential quantifiers. The resulting VCC assertions would be quite hard
to comprehend, and they would put a considerable burden on the SMT solver Z3
to find witnesses for the existential propositions. We therefore choose to manually
translate expressions of relational calculus to propositions explicitly referring to
the members of the involved sets. For increased assurance, this transformation
could be carried out in Alloy as a preparatory step like the precondition and
framing analyses. Then, the Alloy analyzer could check the equivalence of the
transformed assertion to the original formulation.

For the Hagrid specification, the invariant in Line 9 of Listing 1 translates to
the struct invariant in Line 19 of Listing 7. Similarly, the invariant stating that
pending delete requests refer to existing data base entries in Line 13 of Listing 1
translates to the struct invariant in Line 23 of Listing 7. The last two invariants
of Listing 7 are further examples of this way of translating formulas involving
relational composition.

System Operations to C Functions. We map system operations to C functions.
VCC function specifications come in the form of contracts consisting of three
major parts: preconditions, postconditions, and framing.

Listing 8 shows the declaration and contract of the C function correspond-
ing to the transition predicate of add in Listing 2. The output parameter c”
of the Alloy predicate becomes the result of the function. The precondition
addPRE(s,e,k), and the postconditions addPOST(s,e,k,\result) and addFRAME(s)
are obtained by the analysis described in Sect. 4.1. The parameter \result refers
to the return value of the function.

System Models to Program Contracts 135

Listing 9. C struct for Alloy signature Server: ownership

34 (i n v a r i a n t \mine (ma i l))
35 // owne r sh ip f o r kdb and i t s imp l ementa t i on kdb I
36 (i n v a r i a n t \mine (kdb I))
37 (i n v a r i a n t \ f o r a l l DBEntry∗ o ;
38 o \ i n kdb ==> \mine (o))
39 [. . .] // s i m i l a r owne r sh ip f o r : addReq , delReq , used
40 } Se r v e r ;

4.3 Contract Augmentation

The remaining parts of the contract of add in Listing 8 specify properties of the
C function that cannot be derived from the Alloy specification, but are specific to
the target contract language or the chosen implementation. For the case study,
they specifically relate to object ownership and resource limitations.

Ownership and Framing. VCC uses a variant of object ownership [6] to con-
trol the effect of updates to the C heap in the presence of pointer aliasing and
concurrency. Struct invariants allow one to define ownership domains that basi-
cally describe sets of struct instances whose invariants depend on one another,
such that modifying one member of the ownership domain may require checking
the invariants of other members of the ownership domain. The admissibility of
invariants [3] ensures that the validity of the invariants of all objects outside
that ownership domain is not affected by that modification.

Listing 9 sketches the ownership invariants of the struct Server. They require
that the mailer and all members of the sets kdb, addReq, delReq, and used, as
well as their implementations are owned by the server.

The contract of add reflects this design of the ownership domain. Lines 3 to
5 of Listing 8 require that the function receives three input parameters which
are \wrapped. For the server s, this state is also ensured as a postcondition. A
\wrapped object is closed and owned by the currently executing thread. If an
object is closed, its invariants hold and it cannot be changed. The ghost operation
unwrap makes a \wrapped object \mutable such that subsequent statements can
change it. The ghost operation wrap transfers a \mutable object to the \wrapped
state. Its precondition requires that the invariants of the object hold. In this
way, code can be annotated to explicitly mark the parts of the code that are
supposed to change certain parts of the heap while invariants can be assumed
to hold of all objects that are not \mutable.

The writes frame in Line 2 of Listing 8 restricts possible modifications of
the heap to the ownership domains of the three parameters. It is obvious that
add needs to modify s to store an add request for (e,k). By the construction
of the ownership domain of Server and the structs it refers to, this means that
both, e and k, become members of the ownership domain of s. The last two
postconditions of add make this explicit. As the owners of e and k change, their

136 T. Santen

state is modified by the function. Therefore, they need to be members of the
writes frame as well.

The struct invariants and the parts of function contracts that relate to own-
ership describe genuine properties of the code design. They cannot be inferred
from the system model but developers need to carefully design them to allow the
verification of the entire code to succeed. For example, the decision to transfer
the new email address and key to the ownership of the addReq field of the server
implies that the mailer cannot own that same email address, which it needs to
store in a set of messages to send.

Resource Limitations. Two additional preconditions in Lines 6 and 7 of Listing
8 relate to the fixed capacity of the set implementation used (c.f., Listing 6).
Both, the number of pending add requests and messages in the mail queue must
be less than the set capacity. Otherwise, adding a new request or sending the
respective confirmation code might fail.

The need to make those preconditions explicit in the contract, in addition to
the ones derived from the Alloy system model, points to a more general issue that
needs to be addressed in the transition from a system model to a contract-based
specification of implementation code: how to deal with resource limitations, or
exceptions, that must be handled in the code but may or may not be addressed
in the system model. Whether or not a formal treatment of resource limitations
is necessary in the transition from system model to program contracts depends
on their possible impact on system level requirements. If it is, the restrictions
may be propagated from the contracts to the system model, or the concept of
retrenchment [2] may be useful to represent them formally.

5 Discussion

The case study presented in the previous sections highlights some aspects of the
pragmatics of applying Formal Methods that manifest themselves much more
prominently in real-life projects.

Loose Coupling. The coupling of system model and software contracts that we
see in the case study resembles the shape of an hourglass, where the bottle-
neck consists of the shared properties of system model and contracts. These are
the invariants of the abstract data and the transition predicates of the system
operations, in the decomposed form of preconditions, postconditions, and fram-
ing predicates. The larger parts of both, system model and annotated program
code, do not contribute to that connection between the two.

Approximately half of the Alloy code in the case study describes the system
data and operations. The other half constructs the state transition relation of
the system and some assertions providing a rudimentary analysis of the sys-
tem behavior. In a real-life project, an adequate validation of the model with
respect to informal requirements would require substantially more Alloy code,
further reducing the relative size of the behavior description proper. Similarly, a

System Models to Program Contracts 137

substantial part of the C annotations contribute to the contract augmentation
discussed in Sect. 4.3, which would considerably grow if the code was extended
to a full, executable implementation.

Considering the formal specification as a piece of software, the coupling
between system model and software contracts is less strong than one might
expect. Consequently, it may be advantageous to use different languages for the
system model and the code contracts to come up with elegant specifications
and make good use of their respective support tools. The advantage gained in
comprehensibility of the specifications and performance of the tools may easily
outweigh the redundancy and additional effort introduced by translating “the
bottleneck” between the two languages.

Well-Structured Transition. As the case study illustrates, the transition from
system model to software contracts can be clearly structured into a number of
development activities, such as the precondition analysis, the actual translation
between languages, or the design of ownership domains. Proof obligations, such
as the equivalence between the decomposed form and the original formulation of
a transition relation predicate, help establish the soundness of the development
steps. Considering the transition as part of a software development process with
clearly defined steps involving human creativity offers guidance to developers.

Automation. The degree of automation that can be achieved to support the
translation between the system modeling and the contract languages obviously
depends on the specific languages. As the contracts resulting from the transla-
tion build the basis of further coding and verification steps, they must be well
accessible and comprehensible by developers. The case study shows that it may
not be desirable to generate partial contracts directly from the system model.
However, tool support can help to verify proof obligations, or in a more heuris-
tic sense support manual activities, e.g., by systematically searching for state
components that provably do not change under a transition relation and should
therefore be included in the framing predicate.

Future Work. Languages can always be improved, and there never is sufficient
tool support. This is true for Alloy and VCC as well. As a learning from the spe-
cific case study, however, a feature allowing one to mark and track the different
specification parts involved in the transition from system model to annotated C
would be instrumental. This could be implemented as meta-data managed by
an IDE, rather than an extension of the two languages and their specific tools.

The selection of specific features to implement should be well informed by
experience from substantial application projects, because some deficiencies or
limitations only become visible “at scale”. Unfortunately, many such projects
need to remain confidential. It would be desirable to see the experience gained in
those projects more often re-cast into academic, publicly available case studies
highlighting successes but also deficiencies that academia can learn from and
address in future research.

138 T. Santen

Acknowledgment. Thanks to my customers for allowing me to learn from real-world
applications of Formal Methods, to the anonymous reviewers for insightful and con-
structive criticism, and to Maritta Heisel for comments on an earlier draft of this paper.

References

1. Alloy analyzer version 6 (2021). https://allytools.org/alloy6.html
2. Banach, R., Jeske, C.: Retrenchment and refinement interworking: the tower theo-

rems. Math. Struct. Comput. Sci. 25(1), 135–202 (2015). https://doi.org/10.1017/
S0960129514000061

3. Cohen, E., et al.: Invariants, modularity, and rights. In: Pnueli, A., Virbitskaite,
I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 43–55. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11486-1 4

4. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

5. Common Criteria for Information Technology Security Evaluation (CC), version
3.1 revision 5 edn. (2017)

6. Dietl, W., Müller, P.: Object ownership in program verification. In: Clarke, D.,
Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. Types,
Analysis and Verification. LNCS, vol. 7850, pp. 289–318. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36946-9 11

7. The hagrid verifying OpenPGP server. https://gitlab.com/hagrid-keyserver/
hagrid

8. Huisman, M., Monti, R., Ulbrich, M., Weigl, A.: The VerifyThis collaborative long
term challenge. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M.
(eds.) Deductive Software Verification: Future Perspectives. LNCS, vol. 12345, pp.
246–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64354-6 10

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. Revised edi-
tion. MIT Press, Cambridge (2011)

10. Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Prentice Hall,
Hoboken (1990)

11. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V hypervisor with VCC.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 51

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Spivey, J.M.: The Z Notation - A Reference Manual, 2nd edn. Prentice Hall, Hobo-
ken (1992)

https://allytools.org/alloy6.html
https://doi.org/10.1017/S0960129514000061
https://doi.org/10.1017/S0960129514000061
https://doi.org/10.1007/978-3-642-11486-1_4
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-36946-9_11
https://gitlab.com/hagrid-keyserver/hagrid
https://gitlab.com/hagrid-keyserver/hagrid
https://doi.org/10.1007/978-3-030-64354-6_10
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-540-78800-3_24

X-by-Construction Meets Runtime
Verification

X-by-Construction Meets Runtime
Verification

Maurice H. ter Beek1(B) , Loek Cleophas2,3(B) , Martin Leucker4 ,
and Ina Schaefer5

1 ISTI–CNR, Pisa, Italy
m.terbeek@isti.cnr.it

2 Eindhoven University of Technology, Eindhoven, The Netherlands
l.g.w.a.cleophas@tue.nl

3 Stellenbosch University, Stellenbosch, Republic of South Africa
4 University of Lübeck, Lubeck, Germany

leucker@isp.uni-luebeck.de
5 KIT, Karlsruhe, Germany

ina.schaefer@kit.edu

Abstract. In recent years, researchers have started to investigate X-
by-Construction (XbC)—beyond correctness as considered by the more
traditional Correctness-by-Construction (CbC) paradigm—as a refine-
ment approach to engineer systems that by-construction satisfy certain
non-functional properties—also, and in particular, in the setting of prob-
abilistic systems and properties. In line with the need to join forces
with concepts from runtime verification (RV), this track brings together
researchers and practitioners working to share their views on the many
possible synergies between CbC/XbC at design time and RV at runtime.

1 Motivation

Correctness-by-Construction (CbC) sees the development of software (systems)
as a step-wise refinement process from specification to code, ideally by CbC
design tools that automatically generate error-free software (system) implemen-
tations from rigorous and unambiguous requirement specifications. Afterwards,
testing only serves to validate the CbC process rather than to find bugs.

A lot of progress has been made on CbC, and after a successful track on the
combination of CbC with post-hoc verification at ISoLA 2016 [7], at ISoLA 2018
it was time to look further than correctness by investigating a move from CbC to
X-by-Construction (XbC), i.e., by considering also non-functional properties [6].
XbC is thus concerned with a step-wise refinement process from specification to
code that automatically generates software (system) implementations that by
construction satisfy specific non-functional properties (i.e., concerning security,
dependability, reliability, resource or energy consumption, and the like). In line
with the growing attention to fault tolerance and the increasing use of machine-
learning techniques in modern software systems, which make it hard to establish
guaranteed properties [22], as witnessed in other tracks at ISoLA 2022 [16,20],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 141–148, 2022.
https://doi.org/10.1007/978-3-031-19849-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_9&domain=pdf
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-7221-3676
http://orcid.org/0000-0002-3696-9222
https://doi.org/10.1007/978-3-031-19849-6_9

142 M. H. ter Beek et al.

a third track in this series, at ISoLA 2020/2021, focussed on XbC in the setting
of probabilistic systems and properties [5].

Runtime verification (RV) is concerned with monitoring and analysing actual
software (and hardware) system behaviour [17]. RV is of paramount importance
to system correctness, reliability, and robustness by providing an additional level
of rigour and effectiveness when compared to testing, and improved practical
applicability when compared to exhaustive formal verification. RV can be used
prior to deployment, for testing, verification, and debugging purposes, as well as
after deployment, for ensuring reliability, safety, and security—and for providing
fault containment and recovery or online system repair, possibly paired with a
digital twin acting as the virtual counterpart of the actual real-time (software
and/or hardware) system behaviour [9].

2 Aim

Building on the highly successful ISoLA tracks mentioned above, the aim of this
track is to bring together researchers and practitioners who are interested in
CbC/XbC, and who acknowledge the need to join forces with concepts from RV.
We believe this is important since (1) achieving correctness starting at design
time is difficult—if not impossible—with the current proliferation of systems
with data-driven AI components, while (2) a system failure detected by RV may
possibly be repaired, but how can it be ensured that the corrected system is
indeed better than before?

Given this specific topic, this ISoLA 2022 track fits perfectly as fourth track
in the aforementioned series of ISoLA tracks:

ISoLA 2016 Correctness-by-Construction and Post-hoc Verification:
Friends or Foes?

ISoLA 2018 X-by-Construction
ISoLA 2020/2021 X-by-Construction: Correctness Meets Probability
ISoLA 2022 X-by-Construction Meets Runtime Verification

We have therefore invited both researchers and practitioners working in the
following communities to participate in this track and share their views on the
many possible synergies between CbC/XbC at design time and RV at runtime:

– People working on system-of-systems, who address modelling and analysis
(considering correctness, but also non-functional properties concerning secu-
rity, reliability, resilience, energy consumption, performance, sustainability,
and the like) of networks of interacting legacy and new software systems, and
who are interested in applying CbC/XbC or RV techniques in this domain in
order to provide guarantees for system-of-systems.

– People working on quantitative modelling and analysis, for instance through
probabilistic/real-time systems and probabilistic/statistical model checking,
in particular in the specific setting of dynamic, adaptive or (runtime) recon-
figurable systems with variability. These people typically work on lifting suc-
cessful formal methods and (runtime) verification tools from single systems to

X-by-Construction Meets Runtime Verification 143

families of systems, i.e., design and (runtime) verification techniques that need
to cope with the complexity of systems stemming from behaviour, variabil-
ity, and randomness—and which focus not only on correctness but also on
non-functional properties concerning safety, security, performance, depend-
ability, and the like. As such, they may be interested in applying CbC/XbC
or RV techniques in this domain to provide proper guarantees for families of
systems.

– People working on systems involving components that employ machine-
learning (ML) or other artificial intelligence (AI) approaches. In these set-
tings, models and behaviour are typically dependent on what is learned from
large data sets, and may change dynamically based on yet more data being
processed. As a result, guaranteeing properties (whether correctness or non-
functional ones) becomes hard, and probabilistic reasoning needs to be applied
instead with respect to such properties for the components employing AI
approaches. As a consequence, people working in this domain may be inter-
ested in applying CbC/XbC or RV techniques to provide guarantess for such
AI-based systems.

3 Contributions

We briefly describe the contributions of this track and group them thematically.

3.1 CbC: Robustness, Co-piloting, and Digital Twinning

In [18], Nayak et al. consider correctness-by-construction in the light of robust-
ness. While an optimal strategy may meet the correctness criteria under the given
model of the environment, small deviations of the environment’s behaviour may
render the strategy non-optimal or even incorrect. Especially, if the environment
is non-antagonistic, strategies could be improved. Based on robust specifications
in so-called robust Linear Temporal Logic (rLTL), the authors study the prob-
lem of monitoring the behaviour of the environment and adapting strategies
accordingly to achieve robustness-by-construction.

In [3], Ahrendt et al. suggest a novel approach to development of safety-
critical software, combining learning-based co-piloting with formal methods in
order to assist agile, simultaneous development of (1) implementation, (2) spec-
ification, and (3) tests. The vision is that an IDE supporting this approach
would assist users by suggesting necessary changes to the other elements if one
of the three were changed. Controlled by the user, such changes could be used
to reestablish consistency, possibly in an iterative fashion. The authors describe
the approach, and argue that the community is in a good position to realise this
vision, covering challenges and possible solutions.

In [14], Kamburjan et al. address the problem of reestablishing the twinning
property between a digital twin and a physical twin when the latter changes over
time due to adaptation and reconfiguration. To this aim, the authors propose

144 M. H. ter Beek et al.

to combine feedback loops from the well-known MAPE-K (Monitor-Analyze-
Plan-Execute over a shared Knowledge) reference control model for organising
autonomous and self-adaptive systems with semantic reflection to automatically
ensure that digital artefacts twine correctly with physical systems, i.e., that the
resulting system is twinned-by-construction.

In [10], Coto et al. explore the impact that the introduction of syntactic
or semantic restrictions to rule out models that could lead to communication
glitches like message loss or deadlocks have on the usability of formal modelling.
To this aim, the authors benchmark the use of a formal choreographic mod-
elling language designed to support the correctness-by-construction principle of
message-passing systems for the modelling of real business processes taken from
the official documentation of European customs business process models. As
such, the current paper provides an initial comparison between modelling with
the Business Process Modelling Notation (BPMN), widely used in practice, and
formal choreographic approaches, deeply investigated theoretically.

3.2 CbC and RV: Configurable and Cyber-Physical Systems

In [12], Dubslaff and Köhl coin configurable-by-construction runtime monitoring
inspired by automata-theoretic runtime verification, featured transition systems
from software product lines, and stream-based runtime monitoring. The authors
consider runtime monitoring with variability in the system being monitored as
well as in the monitor itself. The need for configurable monitors is motivated
with an example of real driving emissions tests. In this running example, both
the system being monitored as well as the monitor itself are configurable as they
depend on the sensor configuration of the car. Considering monitors to be them-
selves configurable opens many new challenges, several of which are discussed
in the current paper. The authors introduce an automata-based framework for
configurable monitors and their synthesis from featured LTL specifications, and
they present an extension of the stream-based specification language Lola to the
setting of configurable systems.

In [15], Kittelmann et al. introduce a method to refine hybrid automata
representing verified (safety-critical) cyber-physical systems into correspond-
ing executable source code amenable to runtime verification. Their approach
employs ArchiCorC, a component-based architecture-level tool incorporating
the correctness-by-construction paradigm, to generate code. As a case study,
the authors consider the context of driving maneuvers, and apply ArchiCorC in
this context. Subsequent simulation of executable and verified maneuvers allows
requirement validation for various scenarios.

In [1], Abbas and Bonakdarpour address the setting of a hybrid (continuous
or discrete) distributed system (model). They analyse the opportunities and
challenges concerning the exploitation of various kinds of knowledge for the
benefit of more effective, or more efficient, runtime verification in the context of
cyber-physical systems. The current paper describes cutting-edge problem space,
provides ideas and directions for solutions, and points out numerous directions
for further research.

X-by-Construction Meets Runtime Verification 145

3.3 XbC: Security, Resilience, and Consumption Properties

In [11], Dam et al. present a proof of concept combining fault localisation tech-
niques and automated program repair methods for security errors in C programs.
The approach is to exploit program traces using statistical model checking and
to apply patch candidates that are identified by a genetic algorithm. For this
purpose, the authors evaluate populations of patches using a novel Q-function,
which indicates the probability to choose patches at a certain validation state.
They demonstrate the effectiveness of their approach for memory usage-related
errors using benchmarks from the automotive domain.

In [2], Adelt et al. discuss the analysis of safety and resilience of intelligent
hybrid systems. In contrast to purely deductive verification methods, which
mostly focus on worst-case behaviour based on pessimistic assumptions, they
propose a novel methodology that combines deductive verification of hybrid sys-
tems with statistical model checking. This enables (1) to construct provably
safe and resilient systems, but also (2) to achieve certain performance levels
with a statistical guarantee. The authors demonstrate applicability on an intelli-
gent water distribution system, whose behaviour was learned through reinforce-
ment learning. Based on the proposed approach, the water distribution system
is proven to be safe and resilient towards pump failures with respect to failure
probability and repair time, while guaranteeing low energy costs.

In [19], Riganelli et al. present the test tool Test4Enforcers that is able to val-
idate the correctness of software enforcers for both functional and non-functional
properties. The functional correctness part was presented in prior work. The cur-
rent paper focusses on the non-functional properties of power consumption, mem-
ory consumption, launch time, and responsiveness. To this aim, Test4Enforcers
generates a test suite and executes this suite on apps with and without enforcers.
By comparing the performance measurements, degradation introduced by faulty
enforcers is detected.

3.4 CbC and RV: Reinforcement Learning and Synthesis

In [21], Tappler et al. present a way to avoid safety violations during reinforce-
ment automata learning using shield synthesis. The unknown environments are
modelled as Markov Decision Processes (MDPs) with associated cost/reward
functions. Shields are constructed from recorded traces, and subsequently serve
as runtime guards/monitors that block actions that introduce a too high risk of
safety violations within the next k steps of the automaton. Iteratively, the col-
lected data is used to learn new MDPs with higher accuracy, resulting in shields
able to prevent more safety violations. An implementation and application to a
case study of a Q-learning agent show that while the agent explores the environ-
ment during training, the improved learned models lead to shields that are able
to prevent many safety violations.

In [8], Berducci and Grosu present a pipeline for solving Constrained Markov
Decision Processes (MDPs), starting from formal requirements, in a correct-
by-construction style. A reinforcement learning-based iterative approach to the

146 M. H. ter Beek et al.

synthesis of control policies has to balance target, safety, and comfort in its
objective. The model-based reinforcement-learning algorithm presented by the
authors ensures with high probability that policy updates only occur when safety
performance stays the same or improves. To improve on previous approaches,
the authors propose to combine model-based and model-free approaches for more
data-efficient algorithms. The authors suggest that the resulting dynamics model
fit to the data can be used to validate the obtained policy before deployment.

In [4], Azzopardi et al. study the potential of combining controller syn-
thesis and runtime verification. Controller synthesis is a general technique to
ensure correctness-by-construction: given a controllable system (and environ-
ment) description and a specification of the system behaviour to achieve, con-
troller synthesis allows to obtain a controlled version of the system meeting the
specification. However, this promise is only met if the environment in which
the system is running is modelled correctly, and the computational resources
allow the synthesis of a corresponding strategy. Runtime verification considers
the actual behaviour of the system and its environment may be used in combina-
tion with controller synthesis in several ways. The authors identify and discuss
three different patterns: (1) monitors that identify when control is needed and
what needs to be controlled; (2) monitors that identify violation of environment
assumptions; and (3) monitors that mediate between different controllers and
other agents.

In [13], Gorostiaga et al. elaborate on a concrete combination of correctness-
by-construction and runtime verification in the setting of controlling Unmanned
Aerial Vehicles (UAVs). In this setting, often temporal planning is used as a
method for getting an a priori correct plan to steer the UAVs. Again, assumptions
about the environment as well as simplifications have to be made to obtain a
plan. In the current paper, it is shown how stream runtime verification can be
integrated with the temporal planning to monitor the assumptions about the
environment and to mitigate deficiencies of the current plan.

References

1. Abbas, H., Bonakdarpour, B.: Leveraging system dynamics in runtime verification
of cyber-physical systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, LNCS
13701, pp. 264–278. Springer, Heidelberg (2022)

2. Adelt, J., Herber, P., Niehage, M., Remke, A.: Towards safe and resilient hybrid
systems in the presence of learning and uncertainty. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2022, LNCS 13701, pp. 299–319. Springer, Heidelberg (2022)

3. Ahrendt, W., Gurov, D., Johansson, M., Rümmer, P.: TriCo – triple co-piloting of
implementation, specification and tests. In: Margaria, T., Steffen, B. (eds.) ISoLA
2022, LNCS 13701, pp. 174–187. Springer, Heidelberg (2022)

4. Azzopardi, S., Piterman, N., Schneider, G.: Runtime verification meets controller
synthesis. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, LNCS 13701, pp. 382–
396. Springer, Heidelberg (2022)

5. ter Beek, M.H., Cleophas, L., Legay, A., Schaefer, I., Watson, B.W.: X-by-
construction: correctness meets probability. In: Margaria, T., Steffen, B. (eds.)

X-by-Construction Meets Runtime Verification 147

ISoLA 2020. LNCS, vol. 12476, pp. 211–215. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-61362-4 11

6. ter Beek, M.H., Cleophas, L., Schaefer, I., Watson, B.W.: X-by-construction. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 359–364.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4 21

7. ter Beek, M.H., Hähnle, R., Schaefer, I.: Correctness-by-construction and post-
hoc verification: friends or foes? In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9952, pp. 723–729. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47166-2 51

8. Berducci, L., Grosu, R.: Safe policy improvement in constrained Markov decision
processes. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, LNCS 13701, pp. 360–
381. Springer, Heidelberg (2022)

9. Colombo, C., et al.: COST action IC1402 runtime verification beyond monitor-
ing. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 18–26.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 2

10. Coto, A., Barbanera, F., Lanese, I., Rossi, D., Tuosto, E.: On formal choreographic
modelling: a case study in EU business processes. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2022, LNCS 13701, pp. 205–219. Springer, Heidelberg (2022)

11. Dam, K.H.T., Duchêne, F., Given-Wilson, T., Cordy, M., Legay, A.: Automated
repair of security errors in C programs via statistical model checking: a proof of
concept. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, LNCS 13701, pp. 279–298.
Springer, Heidelberg (2022)

12. Dubslaff, C., Köhl, M.A.: Configurable-by-construction runtime monitoring. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2022, LNCS 13701, pp. 220–241. Springer,
Heidelberg (2022)

13. Gorostiaga, F., Zudaire, S., Sánchez, C., Schneider, G., Uchitel, S.: Assumption
monitoring of temporal task planning using stream runtime verification. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2022, LNCS 13701, pp. 397–414. Springer, Hei-
delberg (2022)

14. Kamburjan, E., Din, C.C., Schlatte, R., Tapia Tarifa, S.L., Johnsen, E.B.:
Twinning-by-construction: ensuring correctness for self-adaptive digital twins. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2022, LNCS 13701, pp. 188–204. Springer,
Heidelberg (2022)

15. Kittelmann, A., Runge, T., Bordis, T., Schaefer, I.: Runtime verification of correct-
by-construction driving maneuvers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022,
LNCS 13701, pp. 242–263. Springer, Heidelberg (2022)

16. Larsen, K.G., Legay, A., Nolte, G., Schlüter, M., Stoelinga, M., Steffen, B.: Intro-
duction to formal methods meet machine learning (F3ML). In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2022. LNCS, vol. 13703, pp. 393–405. Springer, Heidelberg
(2022)

17. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Methods Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.
2008.08.004

18. Nayak, S.P., Neider, D., Zimmermann, M.: Robustness-by-construction synthesis:
adapting to the environment at runtime. In: Margaria, T., Steffen, B. (eds.) ISoLA
2022, LNCS 13701, pp. 149–173. Springer, Heidelberg (2022)

19. Riganelli, O., Micucci, D., Mariani, L.: Non-functional testing of runtime enforcers
in Android. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, LNCS 13701, pp.
320–334. Springer, Heidelberg (2022)

https://doi.org/10.1007/978-3-030-61362-4_11
https://doi.org/10.1007/978-3-030-61362-4_11
https://doi.org/10.1007/978-3-030-03418-4_21
https://doi.org/10.1007/978-3-319-47166-2_51
https://doi.org/10.1007/978-3-319-47166-2_51
https://doi.org/10.1007/978-3-030-03769-7_2
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004

148 M. H. ter Beek et al.

20. Seisenberger, M., et al.: Safe and secure future AI-driven railway technologies:
challenges for formal methods in railway. In: Margaria, T., Steffen, B. (eds.) ISoLA
2022. LNCS, vol. 13704, pp. 246–268. Springer, Heidelberg (2022)

21. Tappler, M., Pranger, S., Könighofer, B., Muškardin, E., Bloem, R., Larsen, K.:
Automata learning meets shielding. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022,
LNCS 13701, pp. 335–359. Springer, Heidelberg (2022)

22. Wing, J.M.: Trustworthy AI. Commun. ACM 64(10), 64–71 (2021). https://doi.
org/10.1145/3448248

https://doi.org/10.1145/3448248
https://doi.org/10.1145/3448248

Robustness-by-Construction Synthesis:
Adapting to the Environment at Runtime

Satya Prakash Nayak1(B) , Daniel Neider2 , and Martin Zimmermann3

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
sanayak@mpi-sws.org

2 Safety and Explainability of Learning Systems Group, Carl von Ossietzky
Universität Oldenburg, Oldenburg, Germany

daniel.neider@uni-oldenburg.de
3 Aalborg University, Aalborg, Denmark

mzi@cs.aau.dk

Abstract. While most of the current synthesis algorithms only focus on
correctness-by-construction, ensuring robustness has remained a chal-
lenge. Hence, in this paper, we address the robust-by-construction
synthesis problem by considering the specifications to be expressed
by a robust version of Linear Temporal Logic (LTL), called robust
LTL (rLTL). rLTL has a many-valued semantics to capture different
degrees of satisfaction of a specification, i.e., satisfaction is a quantita-
tive notion.

We argue that the current algorithms for rLTL synthesis do not com-
pute optimal strategies in a non-antagonistic setting. So, a natural ques-
tion is whether there is a way of satisfying the specification “better”
if the environment is indeed not antagonistic. We address this ques-
tion by developing two new notions of strategies. The first notion is
that of adaptive strategies, which, in response to the opponent’s non-
antagonistic moves, maximize the degree of satisfaction. The idea is to
monitor non-optimal moves of the opponent at runtime using multiple
parity automata and adaptively change the system strategy to ensure
optimality. The second notion is that of strongly adaptive strategies,
which is a further refinement of the first notion. These strategies also
maximize the opportunities for the opponent to make non-optimal moves.
We show that computing such strategies for rLTL specifications is not
harder than the standard synthesis problem, e.g., computing strategies
with LTL specifications, and takes doubly-exponential time.

1 Introduction

Formal methods have focused on the paradigm of correctness-by-construction,
i.e., ensuring that systems are guaranteed to meet their design specifications.
While correctness is necessary, it has widely been acknowledged that this prop-
erty alone is insufficient for a good design when a reactive system interacts
with an ever-changing, uncontrolled environment. To illustrate this point, con-
sider a typical correctness specification ϕ ⇒ ψ of a reactive system, where ϕ is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 149–173, 2022.
https://doi.org/10.1007/978-3-031-19849-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_10&domain=pdf
http://orcid.org/0000-0002-4407-8681
http://orcid.org/0000-0001-9276-6342
http://orcid.org/0000-0002-8038-2453
https://doi.org/10.1007/978-3-031-19849-6_10

150 S. P. Nayak et al.

an environment assumption and ψ the system’s desired guarantee. Thus, if the
environment violates ϕ, the entire implication becomes vacuously true, regard-
less of whether the system satisfies ψ. In other words, if the assumption about
the environment is violated, the system may behave arbitrarily. This behavior is
clearly undesirable as modeling any reasonably complex environment accurately
and exhaustively is exceptionally challenging, if not impossible.

The example above shows that reactive systems must not only be correct
but should also be robust to unexpected environment behavior. The notion of
robustness we use in this paper is inspired by concepts from control theory [20,32,
33,35] and requires that deviations from the environment assumptions result in
at most proportional violations of the system guarantee. More precisely, “minor”
violations of the environment assumption should only cause “minor” violations
of the system guarantee, while “major” violations of the environment assumption
allow for “major“violations of the system guarantee.

To capture different degrees of violation (or satisfaction) of a specification, we
rely on a many-valued extension of Linear Temporal Logic (LTL) [28], named
robust Linear Temporal Logic (rLTL), which has recently been introduced by
Tabuada and Neider [36]. The basic idea of this logic can best be illustrated
by considering the prototypical environment assumption ϕ := p (“always p”),
which demands that the environment ensures that an atomic proposition p holds
at every step during its interaction with the system. Clearly, ϕ is violated even
if p does not hold at a single step, which is a “minor” violation. However, the
classical Boolean semantics of LTL cannot distinguish between this case and the
case where p does not hold at any position, which is a “major” violation. To
distinguish these (and more) degrees of violations, rLTL adopts a five-valued
semantics with truth values B4 = {1111, 0111, 0011, 0001, 0000}. The set B4 is
ordered according to 1111 > 0111 > 0011 > 0001 > 0000, where 1111 is inter-
preted as true and all other values as increasing shades of false. In case of the
formula ϕ, for instance, the interpretation of these five truth values is as follows:
ϕ evaluates to 1111 if the environment ensures p at every step of the interac-
tion, ϕ evaluates to 0111 if p holds almost always, ϕ evaluates to 0011 if p holds
infinitely often, ϕ evaluates to 0001 if p holds at least once, and ϕ evaluates
to 0000 if p never holds. The semantics of rLTL is then set up so that ϕ ⇒ ψ
evaluates to 1111 if any violation of the environment assumption ϕ causes at
most a proportional violation of the system guarantee ψ (i.e., if ϕ evaluates to
truth value b ∈ B4, then ψ must evaluate to a truth value b′ ≥ b).

Here, we are interested in the synthesis problem for rLTL specifications. As
usual, we model such a synthesis problem as an infinite-duration two-player
game. Since we study rLTL synthesis, we consider games with rLTL winning
conditions, so-called rLTL games.

rLTL games with a Boolean notion of winning strategy for the system player
have already been studied by Tabuada and Neider [36]. In their setting, the
objective for the system player is as follows: given a truth value b ∈ B4, he must
react to the actions of the environment player in such a way that the specification
is satisfied with a value of at least b. As for ω-regular games, a winning strategy

Robustness-by-Construction Synthesis 151

for the system player can immediately be implemented in hardware or software.
This implementation then results in a reactive system that is guaranteed to
satisfy the given specification with at least a given truth value b ∈ B4, regardless
of how the environment acts.

While rLTL games provide an elegant approach to robustness-by-
construction synthesis, the Boolean notion of winning strategies that Tabuada
and Neider adopt has a substantial drawback: it does not incentivize the system
player to satisfy the specification with a value better than b, even if the environ-
ment player allows this. Of course, one can (and should) statically search for the
largest b ∈ B4 such that the system player can win the game. However, this tradi-
tional worst-case view does not account for many practical situations where the
environment is not antagonistic, e.g., in the presence of intermittent disturbances
or noise, or when the environment cannot be modeled entirely [15,16,25,26,37].
In such situations, the system player should exploit the environment’s “bad”
moves, i.e., actions that permit the system player to achieve a value greater
than b, and adapt its strategy at runtime.

We present two novel synthesis algorithms for rLTL specifications that ensure
that the resulting systems are robust by construction (in addition to being cor-
rect by construction). These are based on two refined non-Boolean notions of
winning strategies for rLTL games which both optimize the satisfaction of the
specification.

The first notion, named adaptive strategies, uses automata-based runtime
verification techniques [6] to monitor plays, detect bad moves of the environment,
and adapt the actions of the system player to optimize the satisfaction of the
winning condition. The second notion, named strongly adaptive strategies, is
an extension of the first one that, in addition to being adaptive, also seeks
to maximize the opportunity for the environment player to make bad moves.
We show that both types of strategies can be computed using methods from
automata theory and result in effective synthesis algorithms for reactive systems
that are robust by construction and adapt to the environment at runtime.

After recapitulating rLTL in Sect. 2, we introduce adaptive strategies in
Sect. 3 and show that one can compute such strategies in rLTL games in doubly-
exponential time by reducing the problem to solving parity games [10]. In Sect. 4,
we then turn to strongly adaptive strategies. It turns out that this type of strat-
egy does not always exist, which we demonstrate through an example. Never-
theless, we give a doubly-exponential time algorithm that decides whether a
strongly adaptive strategy exists, and, if this is the case, computes one. Our
algorithm is based on reductions to a series of parity and obliging games [14]. As
the LTL synthesis problem is 2EXPTIME-complete [29], which is a special case
of the problems we consider here, computing both types of adaptive strategies is
2EXPTIME-complete as well. Furthermore, the size of the (strongly) adaptive
strategies our algorithms compute is at most doubly exponential, matching the
corresponding lower bound for LTL games, demonstrating that this bound is
tight. Thus, our results show that adaptive robust-by-construction synthesis is
asymptotically not harder than classical LTL synthesis.

152 S. P. Nayak et al.

All proofs omitted due to space restrictions can be found in the full ver-
sion [24].

Related Work. Robustness in reactive synthesis has been addressed in various
forms. A prominent example is work by Bloem et al. [7], which considers the
synthesis of robust reactive systems from GR(1)-specifications. In subsequent
work, Bloem et al. [9] have surveyed a large body of work on robustness in
reactive synthesis and distilled three general categories: (i) “fulfill the guarantee
as often as possible even if the environment assumption is violated”, (ii) “if it
is impossible to fulfill the guarantee, try to fulfill it whenever possible” and (iii)
“help the environment to fulfill the assumption if possible”.

Prototypical examples include the work by Topcu et al. [37], Ehlers and
Topcu [16], Chatterjee and Henzinger [12], Chatterjee et al. [14], and Bloem et
al. [8].

However, our notion of adaptive strategies is more closely related to the
notion of subgame perfect equilibrium [19]. A strategy profile is a subgame per-
fect equilibrium if it represents a Nash equilibrium of every subgame of the
original game, i.e., the strategies are not only required to be optimal for the
initial vertex but for every possible initial history of the game. Subgame per-
fect equilibria have been well studied in the context of graph games with LTL
objectives [19,38]. Our results on adaptive strategies can be used to extend this
concept to games with rLTL objectives. In particular, a pair of adaptive strate-
gies for both players in such games forms a subgame perfect equilibrium and
vice versa. Moreover, a subgame perfect equilibrium in such games is more fine-
grained than subgame perfect equilibria in games with LTL objectives due to
the many-valued semantics of rLTL. On the other hand, our notion of strongly
adaptive strategies is more general than subgame perfect equilibria.

Also, the work of Almagor and Kupferman [1] is very similar to our notion of
adaptive strategies. They introduced the notion of good-enough synthesis that is
considered over a multi-valued semantics where the goal is to compute a strategy
that achieves the highest possible satisfaction value. While some of the methods
mentioned above do adapt to non-antagonistic behavior of the environment, we
are not aware of any approach that would additionally optimize for the oppor-
tunities of the environment to act non-antagonistically, as our notion of strongly
adaptive strategies does.

Quantitative objectives in graph-based games (and their combination with
qualitative ones) have a rich history. Among the most prominent examples are
mean-payoff parity games [13] and energy parity games [11]. The former type of
game combines a parity winning condition (as the canonical representation for
ω-regular properties) with a real-valued payout whose mean is to be maximized,
while the latter type seeks to satisfy an ω-regular winning condition with the
quantitative requirement that the level of energy during a play must remain
positive. However, to the best of our knowledge, research in this field has focused
on worst-case analyses with antagonistic environments.

Our notion of (strongly) adaptive strategies relies on central concepts intro-
duced in the logic rLTL [36], a robust, many-valued extension of LTL. One of

Robustness-by-Construction Synthesis 153

rLTL’s key features is its syntactic similarity to LTL, which allows for a seamless
and transparent transition from specifications expressed in LTL to specifications
expressed in rLTL. Moreover, it is worth mentioning that rLTL has spawned
numerous follow-up works, including rLTL model checking [2–4], rLTL runtime
monitoring [21], and robust extensions of prompt LTL and Linear Dynamic
Logic [27], as well as CTL [22].

Finally, let us highlight that preliminary results on adaptive strategies have
been presented as a poster at the 24th ACM International Conference on Hybrid
Systems: Computation and Control [23].

2 Preliminaries

In this section, we describe the syntax and semantics of Robust LTL and how it
is different from classical LTL. Moreover, we discuss some important results on
rLTL and introduce games with rLTL specifications.

Robust Linear Temporal Logic. We assume that the reader is familiar with Linear
Temporal Logic [28]. We fix a finite non-empty set P of atomic propositions. The
syntax of rLTL is similar to that of LTL with the only difference being the use
of dotted temporal operators in order to distinguish them from LTL operators.
More precisely, rLTL formulas are inductively defined as follows:

– each p ∈ P is an rLTL formula, and
– if ϕ and ψ are rLTL formulas, so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ ⇒ ψ, ϕ (“next”),

ϕ (“always”), ϕ (“eventually”), ϕRψ (“release”) and ϕUψ (“until”).

As already discussed, rLTL uses the set B4 = {1111, 0111, 0011, 0001, 0000}
of truth values, which are ordered as follows:

1111 > 0111 > 0011 > 0001 > 0000.

Intuitively, 1111 corresponds to “true”, and the other four values correspond to
different degrees of “false”.

The rLTL semantics is a mapping V, called valuation, that maps an infinite
word α ∈ (2P)ω and an rLTL formula ϕ to an element of B4. Before we define the
semantics, we need to introduce some useful notation. Let α = α0α1 · · · ∈ (2P)ω

be an infinite word. For i ∈ N, let αi... = αiαi+1 · · · be the (infinite) suffix of α
starting at position i. Also, for 1 ≤ k ≤ 4, we let Vk(α,ϕ) denote the k-th entry
of V(α,ϕ), i.e., V(α,ϕ) = V1(α,ϕ)V2(α,ϕ)V3(α,ϕ)V4(α,ϕ). Now, V is defined
inductively as follows, where the semantics of Boolean connectives relies on da
Costa algebras [31]:

154 S. P. Nayak et al.

V(α, p) =

{
0000 if p �∈ α0

1111 if p ∈ α0

V(α, ¬ϕ) =

{
0000 if V(α, ϕ) = 1111

1111 otherwise

V(α, ϕ ∨ ψ) = max
{V(α, ϕ), V(α, ψ)

} V(α, ϕ ⇒ ψ) =

{
1111 if V(α, ϕ) ≤ V(α, ψ)

V(α, ψ) otherwise

V(α, ϕ ∧ ψ) = min
{V(α, ϕ), V(α, ψ)

} V(α, ϕ) = V(α1..., ϕ)

V(α, ϕ) =

(
inf
i≥0

V1(αi..., ϕ), sup
j≥0

inf
i≥j

V2(αi..., ϕ), inf
j≥0

sup
i≥j

V3(αi..., ϕ), sup
i≥0

V4(αi..., ϕ)

)

V(α, ϕ) =

(
sup
i≥0

V1(αi..., ϕ), sup
i≥0

V2(αi..., ϕ), sup
i≥0

V3(αi..., ϕ), sup
i≥0

V4(αi..., ϕ)

)

The semantics for the temporal operators U and R can be generalized simi-
larly. We refer the reader to Tabuada and Neider [36] for more details.

Example 1. We can see that for the formula p, the valuation V(α, p) can be
expressed in terms of the LTL valuation function W by

V(α, p) = W (α, p)W (α, p)W (α, p)W (α, p).

This evaluates to different values in B4 distinguishing various degrees of viola-
tions as seen in Sect. 1.

Example 2. Now let us see how the rLTL semantics for a specification of the
form ϕ ⇒ ψ captures robustness. Consider an instance where the environment
assumption ϕ is p and the system guarantee ψ is q and assume the specifi-
cation p ⇒ q evaluates to 1111 for some infinite word. Let us see how the
system behaves in response to various degrees of violation of the environment
assumption.

– If p holds at all positions, then p evaluates to 1111. Hence, by the seman-
tics of implication, q also evaluates to 1111, which means q holds at all
positions. Therefore, the desired behavior of the system is retained when the
environment assumption holds with no violation.

– If p holds eventually always but not always (a minor violation of p), then
p evaluates to 0111. Hence, q evaluates to 0111 or higher, meaning that

q also needs to hold eventually always.
– Similarly, if p holds at infinitely (finitely) many positions, then q needs to

hold at infinitely (finitely) many positions.

Hence, the semantics of p ⇒ q captures the robustness property as desired.
Furthermore, if p ⇒ q evaluates to b < 1111, then p evaluates to a higher
value than b, whereas q evaluates to b. So, the desired system guarantee is
not satisfied. However, the value of p ⇒ q still describes which weakened
guarantee follows from the environment assumption.

Robustness-by-Construction Synthesis 155

From rLTL to Büchi Automata. Given an LTL formula ϕ, a generalized Büchi
automaton (see [34] for a definition) with O(2|ϕ|) states and O(|ϕ|) accepting
sets can be constructed that recognizes the infinite words satisfying ϕ [5], where
|ϕ| denotes the number of subformulas of ϕ. Using a similar method, Tabuada
and Neider obtained the following result.

Theorem 1 ([36]). Given an rLTL formula ϕ and a set of truth values B ⊆ B4,
one can construct a generalized Büchi automaton A with 2O(|ϕ|) states and O(|ϕ|)
accepting sets that recognizes the infinite words on which the value of ϕ belongs
to B, i.e., L(A) = {w ∈ (2P)ω | V(α,ϕ) ∈ B}.

rLTL Games. We consider infinite-duration two-player games over finite graphs
with rLTL specifications. Here, we assume basic familiarity with games on
graphs. Formally, an rLTL game G = (A, ϕ) consists of (i) a finite, directed,
labelled arena A = (V,E, λ) with V = V0 ·∪ V1, an edge relation E ⊆ V × V ,
and a labelling function λ : V → 2P , and (ii) an rLTL formula ϕ over P. The
game is played by two players, Player 0 and Player 1, who construct a play
ρ = v0v1 · · · ∈ V ω by moving a token along the edges of the arena. A play
ρ = v0v1 · · · induces an infinite word λ(ρ) = λ(v0)λ(v1) · · · ∈ (2P)ω, and the
value of the play, denoted by V(ρ), is the value of the formula ϕ on λ(ρ). Player 0’s
objective is to maximize this value, while Player 1’s objective is to minimize it.

Strategies. A play prefix is a finite, nonempty path p ∈ V ∗ in the arena. Then,
a strategy for Player i, i ∈ {0, 1}, is a function σ : V ∗Vi → V mapping each play
prefix p ending in a vertex in Vi to one of its successors. Intuitively, a strategy
prescribes Player i’s next move depending on the play prefix constructed so far.

A strategy σ is memoryless if it only depends on the last vertex, i.e., for
every prefix p ending in vertex v, it holds that σ(p) = σ(v). Moreover, we say
a strategy has memory size m if there exists a finite state machine with output
with m states computing the strategy (see Grädel et al. [18] for more details).

Next we define the plays that are consistent with a given strategy for Player i.
Typically, this means that the token is placed at some initial vertex and then,
whenever a vertex of Player i is reached, then Player i uses the move prescribed
by the strategy for the current play prefix to extend this prefix. Note that the
strategy does not have control over the initial placement of the token.

Here we will use a more general notion, inspired by previous work in opti-
mal strategies for Muller games [17] and in subgame perfect equilibria in graph
games [19,38]: the initial prefix over which the strategy does not have control
over might be longer than just the initial vertex. This means strategies are also
applicable to prefixes that where not constructed according to the strategy. How-
ever, crucially, the strategy still gets access to that prefix and therefore can base
its decisions on the prefix it had no control over. This generality will turn out to
be useful both when defining adaptive strategies and when combining strategies
to obtain adaptive strategies.

Formally, for a play prefix p = v0v1 · · · vn and a strategy σ for Player i,
a play ρ is a (σ, p)-play if ρ = pvn+1vn+2 · · · with vk+1 = σ(v0v1 · · · vk) for all

156 S. P. Nayak et al.

0

{p}
1

{}
4

{}
5

{p}
2

{p}
3

{}

Fig. 1. First motivating example for adaptive strategies

vk ∈ Vi with k ≥ n. Note that the prefix p is arbitrary here, i.e., it might not have
been constructed following the strategy σ. Moreover, a (σ, p)-play prefix pp′ is a
prefix of a (σ, p)-play. We say that a play ρ starting in some vertex v is consistent
with σ, if it is a (σ, v)-play (which is the classical notion of consistency). Finally,
a play prefix p is consistent with σ if it is the prefix of some play that is consistent
with σ.

In the paper introducing rLTL [36], Tabuada and Neider gave a doubly-
exponential time algorithm that solves the classical rLTL synthesis problem,
which is equivalent to solving the following problem.

Problem 1. Given an rLTL game G, an initial vertex v0 and a truth value b ∈ B4,
compute a strategy σ (if one exists at all) for Player 0 such that every (σ, v0)-play
has value at least b.

Note that Tabuada and Neider were interested in strategies for Player 0
that enforce the value b from v0, i.e., strategies such that every consistent play
starting in the given initial vertex has at least value b. In contrast, we will
compute strategies that are improvements in two dimensions: (i) they enforce
the optimal value rather than a given one, and (ii) they do so from every possible
play prefix, even if they did not have control over the prefix.

3 Adaptive Strategies

In this section, we start by presenting a motivating example, a game in which
classical strategies for Player 0 are not necessarily optimal (in an intuitive sense).
We then formalize this intuition by introducing adaptive strategies and give a
doubly-exponential time algorithm to compute such strategies.

Motivating Example. Consider the arena given in Fig. 1 (where Player 0’s vertices
are shown as circles and Player 1’s vertices are shown as squares) with the rLTL
specification ϕ = p.

Suppose the token is initially placed at vertex 0. Considering Player 1 plays
optimally, the token would eventually reach vertex 2, from which the best pos-
sible scenario for Player 0 is to enforce a play where p holds at infinitely many
positions. As the classical problem only considers the worst-case analysis, a clas-
sical strategy for Player 0 is to try to visit vertex 2 infinitely often. That can be
done by moving the token along one of the following edges every time the token
reaches Player 0’s vertices: {0 → 1; 3 → 2; 4 → 0}. Note that the move 4 → 0

Robustness-by-Construction Synthesis 157

is irrelevant in this worst-case analysis, as vertex 4 is never reached if Player 1
plays optimally.

Suppose Player 1 makes a bad move by moving along 1 → 4. Then, Player 0
can force the play to eventually just stay at vertex 5, and hence, p holds almost
always. However, the above classical strategy for Player 0 moves the play back
to vertex 0, from which p might not hold almost always. Therefore, a better
strategy for Player 0 is to move along 4 → 5 if the token reaches vertex 4 to
get a play where p holds almost always; otherwise, enforce a play where p holds
at infinitely many positions as earlier by moving along 0 → 1 and then 3 → 2
repeatedly.

In the worst case, i.e., if Player 1 does not make a bad move by reaching
vertex 4, both strategies yield value 0011. However, if Player 1 does make a bad
move by reaching vertex 4, the second strategy achieves value 0111 on some plays,
while the second one does not. So, in the worst case analysis, both strategies are
equally good, but if we assume that Player 1 is not necessarily antagonistic, then
the second strategy is better as it is able to exploit the bad move by Player 1. We
call such a strategy adaptive as it adapts its moves to achieve the best possible
outcome after each bad move of the opponent. We will formalize this shortly.

To further illustrate the notion of adaptive strategies, consider another game
with the arena shown in Fig. 2 and with rLTL specification ϕ′ = (¬q ⇒ p)∧
(q ⇒ r). In this example, Player 1 has only two strategies starting from
vertex 0: one moving the token along 0 → 1 and one moving the token along
0 → 2.

The best truth value Player 0 can enforce in this game is 0011. This is because
Player 1 can move along the edge 0 → 2, which satisfies the second implication
with value 1111 (as q does not occur), but also satisfies the premise of the first
implication with value 1111. Hence, the value of the whole formula is the value
of the subformula p. The best value Player 0 can achieve for it is indeed 0011
by looping between vertices 3 and 2. His only other choice, i.e., to move to 4
eventually, only results in the value 0001.

However, if Player 1 does not take the edge 0 → 2 but instead moves to
vertex 2 via vertex 1, Player 0 can gain from this bad move by instead moving
to vertex 4. In that case, the formula is satisfied with truth value 1111. Thus,
a strategy that adapts to the bad move by the opponent can achieve a better
value than one that does not, if they do make a bad move.

0

r

1

q, r

2

r

3

p, r

4

r

Fig. 2. Second motivating example for adaptive strategies

158 S. P. Nayak et al.

3.1 Definitions

Recall that a (σ, p)-play for a strategy σ for Player i and a play prefix p (not
necessarily consistent with σ) is an extension of p by σ, i.e., Player i uses the
strategy σ to extend the play prefix p they had not control over, while still taking
the prefix p into account when making the decisions. We say that a strategy σ
for Player 0 enforces a truth value of b from a play prefix p, if we have V(ρ) ≥ b
for every (σ, p)-play ρ. Similarly, we say a strategy τ for Player 1 enforces a truth
value of b from a play prefix p, if we have V(ρ) ≤ b for every (τ, p)-play ρ. This
conforms to our intuition that Player 0 tries to maximize the truth value while
Player 1 tries to minimize it. Moreover, we say Player i can enforce a value b
from some prefix p if they have a strategy that enforces b from p.

Remark 1. Let p be a play prefix. If Player 0 can enforce value b0 from p and
Player 1 can enforce value b1 from p then b0 ≤ b1.

For example, consider the game given in Fig. 1 with the rLTL specifica-
tion p. Using the analysis given in Sect. 3, we can see that Player 0 can enforce
0111 and 0011 from prefixes 014 and 012, respectively, by moving the token
along {0 → 1; 4 → 5; 3 → 2}. It is easy to check that these are the best values
Player 0 can enforce from those prefixes as Player 1 can enforce the same values
from these prefixes.

We are interested in a strategy that enforces the best possible value from
each play prefix. This is formalized as follows.

Definition 1 (Adaptive Strategies). In an rLTL game, a strategy σ0 for
Player 0 is adaptive if from every play prefix p, no strategy for Player 0 enforces
a better truth value than σ0, that is, if some strategy σ for Player 0 enforces a
truth value of b from p, then σ0 also enforces the value b from p.

Note that p is not required to be consistent with σ0 in the above definition,
i.e., an adaptive strategy achieves the best possible outcome from every possible
play prefix (even for those it had no control over when they are constructed).
Also, let us mention that a dual notion can be defined for Player 1.

As mentioned earlier, one can notice that the concept of adaptive strategies is
similar to the concept of subgame perfect equilibrium [19]. Furthermore, adaptive
strategies can be used to extend the notion of subgame perfect equilibrium to
rLTL games as in the following remark.

Remark 2. Given an rLTL game, a pair of adaptive strategies for both players
forms a subgame perfect equilibrium for the game, and vice versa.

Here, we prefer the notion of adaptive strategies over the notion of subgame
perfect equilibria, as we focus on strategies for Player 0 and generally disregard
strategies of Player 1.

3.2 Computing Adaptive Strategies

Now, to synthesize an adaptive strategy, we need to monitor the bad moves of the
opponent at runtime by keeping track of the best value that can be enforced from

Robustness-by-Construction Synthesis 159

the current play prefix. To do that, using the idea of automata-based runtime
verification [6], we construct multiple parity automata to monitor the bad moves
of the opponent and then we synthesize adaptive strategies by using a reduction
to parity games (see [18] for definitions).

Given an rLTL game G = (A, ϕ) with A = (V,E, λ), we proceed as follows:

1. We construct generalized (non-deterministic) Büchi automata Ab such that
L(Ab) = {w ∈ (2P)ω | V(w,ϕ) ≥ b} for all b ∈ B4.

2. We determinize each Ab to obtain a deterministic parity automaton Cb with
the same language.

3. For each b, we construct a parity game Gb by taking the product of the arena A
and the parity automaton Cb.

4. We solve the above parity games Gb [10], yielding, for each truth value b,
a finite-state winning strategy for the original game G with value b (if one
exists).

5. We combine all these winning strategies for Player 0 computed in the last
step to obtain an adaptive strategy σ for Player 0.

Let us now explain each step in more detail.

Step 1. We construct the generalized non-deterministic Büchi automata Ab such
that L(Ab) = {w ∈ (2P)ω | V(w,ϕ) ≥ b} for all b ∈ B4. By Theorem 1, the
automaton Ab has 2O(|ϕ|) states and O(|ϕ|) accepting sets.

Step 2. We determinize each Ab to get a deterministic parity automaton Cb =
(Qb, 2P , qb

0, δ
b, Ωb) with 22O(|ϕ|)

states and 2O(|ϕ|) colors [34].

Step 3. We construct the (unlabelled) product arena Ab = (V b, Eb) of the
arena A = (V,E, λ) and the parity automaton Cb such that V b = V × Qb,
V b

i = Vi × Qb for i ∈ {0, 1}, and

((v, q), (v′, q′)) ∈ Eb if and only if (v, v′) ∈ E and δb(q, λ(v)) = q′.

The function Ω̄b assigns colors to the vertices such that Ω̄b(v, q) = Ωb(q). The
desired parity games are the Gb = (Ab, Ω̄b) with b ∈ B4.

It is easy to verify that Player 0 wins a play ρ′ = (v0, q
b
0)(v1, q

b
1) · · · in Gb if

and only if the value of the play ρ = v0v1 · · · in G is at least b. Furthermore,
given a path ρ = v0v1 · · · vk in A, there is a unique path of the form ρ′ =
(v0, q

b
0)(v1, q

b
1) · · · (vk, qb

k) in Ab, that is when qb
i+1 = δb(qb

i , vi) for all 0 ≤ i ≤ k−1.
Since winning a play in Gb is equivalent to the corresponding play in G

satisfying ϕ with truth value b or greater, we can characterize the enforcement
of b in G by the winning region of Player 0 in Gb, i.e., the set of vertices from
which Player 0 has a winning strategy. This can easily be shown by simulating
a winning strategy from (v, q) to extend the play prefix p and vice versa.

Remark 3. Fix a play prefix p in the rLTL game G, and let (v, qb) be the last
vertex of the corresponding play in the parity game Gb for some b. Then, Player 0
can enforce b from p if and only if (v, qb) is in his winning region of Gb.

160 S. P. Nayak et al.

Step 4. We solve the resulting parity games Gb and determine the winning
regions Win(Gb) of Player 0 and uniform memoryless winning strategies σb for
Player 0 that are winning from every vertex in the corresponding winning region.
The parity games have n = |V | · 22O(|ϕ|)

vertices and k = 2O(|ϕ|) colors. Since
k < lg(n), these can be solved in time O(n5) = |V |5 · 22O(|ϕ|)

[10].

Step 5. Consider the extended rLTL game G′ = (A′, ϕ), where A′ = (V ′, E′, λ′)
with V ′ = V × Q0000 × · · · × Q1111,

E′ =
{(

(v1, q
0000
1 , . . . , q1111

1), (v2, q
0000
2 , . . . , q1111

2)
) |

(v1, v2) ∈ E and δb(qb
1, λ(v)) = qb

2 for all b ∈ B4

}
,

and λ′ such that λ′(v, q0000, . . . , q1111) = λ(v) for all v ∈ V and qb ∈ Qb.
It is easy to see that there is a one to one correspondence between the plays

in both games G and G′. Besides that, the rLTL specification is also the same
in both games. Therefore, computing an adaptive strategy in the game G is
equivalent to computing one in the game G′. Now using the analysis given in
Step 3, we have the following in the rLTL game G′:

• A vertex v′ is in E≥b = {(v, q0000, . . . , q1111) ∈ V ′ | (v, qb) ∈ Win(Gb)} if and
only if Player 0 can enforce b from every play prefix in G′ ending in v′.

• Using these sets, we now define the set E=b of vertices from which the maxi-
mum value Player 0 can enforce is b. Formally, this set is given by

E=b =

{
E≥1111 if b = 1111,
E≥b \ E≥b+1 if b < 1111,

where b+1 is the smallest value bigger than b < 1111. Note that the sets E=b

form a partition of the vertex set of G′.

Furthermore, it is easy to see that if a play ρ satisfies a parity objective
then every play sharing a suffix with ρ also satisfies the parity objective. Since
the game G′ is a product of parity games and since we have characterized the
enforcement of truth values via the membership in the winning regions of the
parity games (see Remark 3), the next remark follows.

Remark 4. In the rLTL game G′, for two play prefixes p1, p2 ending in the same
vertex, the following holds: if a memoryless strategy σ for Player 0 enforces a
truth value b from p1, then it also enforces the value b from p2.

Then, we can see that if the token stays in E=b for some b, then Player 0
can simulate the strategy σb for Gb to enforce the value b in G′. Therefore, we
obtain a memoryless adaptive strategy σ for Player 0 in the game G′ as follows:
for every vertex (v, q0000, . . . , q1111) in E=b, we define σ(v, q0000, . . . , q1111) to
be the unique successor of (v, q0000, . . . , q1111) in G′ that corresponds to the
successor σb(v, qb) of (v, qb) in Gb. Thus, σ simulates the strategy σb for the

Robustness-by-Construction Synthesis 161

largest b such that the value b can be enforced (which is exactly what σb does
from such a prefix). Hence, it is an adaptive strategy for Player 0 in G′.

Finally, using the strategy σ, one can compute a corresponding strategy in
the game G with memory Q0000×Q0001×· · ·×Q1111, which is used to simulate the
positional strategy σ. The resulting finite-state strategy is an adaptive strategy
for Player 0 in G.

Note that the adaptive strategy in G is of doubly-exponential size in |V | and
|ϕ|. This upper bound is tight, since there is a doubly-exponential lower bound
on the size of winning strategies for LTL games [30], which can be lifted to rLTL
games.

Similarly, one can compute an adaptive strategy for Player 1. Hence, an
adaptive strategy for both players in an rLTL game can be computed in time
doubly-exponential in the size of the formula.

Theorem 2. Given an rLTL game, an adaptive strategy of a player can be com-
puted in doubly-exponential time. Moreover, each player has an adaptive strategy
with doubly-exponential memory size.

Note that adaptive strategies enforce the best possible value from the given
prefix. This value can be obtained at runtime as follows: Given a play prefix p
ending in some vertex v, let (q0000, . . . , q1111) be the state of the automaton
implementing the adaptive finite-state strategy computed above is in after the
prefix p. Note that this state has to be tracked to determine the next move
the strategy prescribes at prefix p (in case v ∈ V0). Then, there is a unique b
such that (v, q0000, . . . , q1111) ∈ E=b. Then, the value currently enforced by the
adaptive strategy is b, which, by construction, is the maximal one that can be
enforced from p.

4 Strongly Adaptive Strategies

In the previous section, we have argued the importance of adaptive strategies
and proved that in every rLTL game both players have an adaptive strategy.
Intuitively, such a strategy exploits bad moves of the opponent to always enforce
the best truth value possible after a given prefix. However, such a strategy does
not necessarily seek out opportunities for the opponent to make bad moves. We
argue that this property implies that some adaptive strategies are more desirable
than others, which leads us to the notion of strongly adaptive strategies.

In this section, we define strongly adaptive strategies, which are based on a
fine-grained analysis of the possibilities a strategy gives the opponent to make
bad moves and the resulting outcomes of such bad moves. We show that strongly
adaptive strategies do not exist in every rLTL game. This is in stark contrast
to adaptive strategies, which always exists. Nevertheless, we give a doubly-
exponential time algorithm that decides whether a strongly adaptive strategy
exists and, if yes, computes one.

162 S. P. Nayak et al.

4.1 Bad Moves

We already have used the notion of bad moves in Sect. 3 in an intuitive, but
informal, way. Formally, we say a play ρ = v0v1 · · · contains a bad move of
Player i at position j > 0 if the player can enforce some value b from the
prefix v0 · · · vj−1 but can no longer enforce the value b from the prefix v0 · · · vj .
Note that the position j is the target of the bad move. Moreover, note that
moving from v0 · · · vj−1 to vj can only be a bad move for Player i if it is Player i’s
turn at vj−1. Also, there must be some other edge from vj−1 to a vertex v �= vj

so that they can still enforce b from v0 · · · vj−1v.
For the example given in Fig. 1, we know that Player 1 can enforce the value

0011 from 01 (by moving the token from 01 to 2). Suppose she moves the token
from 01 to 4 instead. Then, Player 0 can enforce 0111 by visiting vertex 5. Hence
Player 1 can no longer enforce 0011 from 014. Therefore, the move from prefix 01
to vertex 4 made by Player 1 is bad.

Note that if Player 1 makes a bad move from a play prefix p to vertex v,
then the maximum value Player 0 can enforce from pv is strictly larger than the
maximum value he can enforce from p. Hence, if the maximum value Player 0
can enforce from a play prefix is 1111, then Player 1 can not make any bad move
from that prefix. Moreover, assuming Player 0 does not make any bad move,
the maximum value Player 0 can enforce from any play prefix can increase at
most four times during a play. Thus, Player 1 can make at most four bad moves
against an adaptive strategy, because such a strategy does not make any bad
moves.

Remark 5. Let σ be an adaptive strategy and p a play prefix (not necessarily
consistent with σ). Then, every (σ, p)-play ρ = v0v1 · · · contains at most four
bad moves of Player 1 after p. Also, if there is no bad move by Player 1 at
positions j0, j0 +1, . . . , j1 in ρ, then σ enforces the same truth values from every
prefix of the form v0 · · · vj with j0 − 1 ≤ j < j1.

Our next example shows that an adaptive strategy does not actively seek out
opportunities for the opponent to make bad moves, it just exploits those made.

4.2 Motivating Example

Recall the example given in Fig. 1. The strategy for Player 0 given by {0 → 1; 3 →
2; 4 → 5} is adaptive: if Player 1 makes a bad move by moving from 1 to 4, then
moving from 4 to 5 improves the value of the play to 0111. Such an improvement
can only be enforced after the bad move.

Another adaptive strategy for Player 0 is to move along 0 → 2 directly in his
first move and then move along 3 → 2 every time. Then, the token can never
reach vertex 1. Hence, Player 1 can never make a bad move. However, it also
means that there can not be a play with value 0111. By contrast, if Player 0
moves along 0 → 1, there is a chance of getting such plays (when Player 1 makes
a bad move of 1 → 4). Therefore, using the earlier strategy of moving the token

Robustness-by-Construction Synthesis 163

along 0 → 1, Player 0 might be able to enforce 0111 at some point, but he can
never achieve the value 0111 when moving directly to vertex 2.

Similarly, in many games, a player may have two (or more) optimal choices to
move the token from some prefix. In such situations, that player should compare
the bad moves their opponent can make in both choices and determine the choice
in which they can enforce the best value after a bad move has been made by
the opponent. To capture this, we refine the notion of adaptive strategies by
introducing strongly adaptive strategies, which are, in a sense to be formalized
below, the best adaptive strategies.

4.3 Definitions

In this section, we introduce the necessary machinery to define strongly adaptive
strategies for Player 0. Throughout this section, we are concerned with ranking
adaptive strategies according to the number of bad moves they allow Player 1
to make, and on the effect these moves have. For the sake of conciseness, unless
stated otherwise, from now on a bad move always refers to a bad move by
Player 1.

We begin by introducing a ranking of plays and then lift this to strategies.
As the number of bad moves in one play is bounded by four, this results in at
most five truth values that can be enforced from prefixes of the play, i.e., the one
that is enforced before the first bad move, and the ones after each bad move. If
Player 1 makes less than four bad moves during a play, we use the symbol ⊥ /∈ B4

to signify this.
We collect this information in a summary, a five-tuple (b0, . . . , bk,⊥, . . . ,⊥) ∈

(B4∪{⊥})5 such that ⊥ �= b0 < b1 < · · · < bk. The set of all summaries is denoted
by S.

Fix an adaptive strategy σ for Player 0, a play prefix p not necessarily con-
sistent with σ, and a (σ, p)-play ρ, and let 0 ≤ k ≤ 4 be the number of bad
moves by Player 1 after p. Define p0 = p and let pj , for 1 ≤ j ≤ k, be the
prefix of ρ ending at the position of the j-th bad move. Due to Remark 5, these
prefixes contain information about all possible truth vales that are enforced by
Player 0 from prefixes of ρ. We employ summaries to capture the values a given
strategy σ enforces from these prefixes. Formally, for 0 ≤ j ≤ k, let bj be the
maximal value that σ enforces from pj . As σ is adaptive, these values are strictly
increasing. So, we can define the summary smry(σ, p, ρ) = (b0, . . . , bk,⊥, . . . ,⊥).
Intuitively, the summary collects all information about which truth values the
strategy σ enforces after each bad move has been made. If there are less than
four bad moves in ρ after p, then we fill the summary with ⊥’s to obtain a vector
of length five.

We will use such summaries to compare strategies. To do so, we compare sum-
maries in lexicographic order ≤lex with ⊥ being the smallest element. In other
words, we prefer larger truth values of smaller ones and prefer the opportunity
for a bad move over the impossibility of a bad move.

164 S. P. Nayak et al.

Example 3. Consider again the game in Fig. 1. Let σ1 be the memoryless Player 0
strategy always making the moves {0 → 1; 3 → 2; 4 → 5}. Then,

smry(σ1, 0, 0145ω) = smry(σ1, 01, 0145ω) = (0011, 0111,⊥,⊥,⊥)

and smry(σ1, 014, 0145ω) = (0111,⊥,⊥,⊥,⊥) because the play 0145ω does not
contain a bad move of Player 1 after 014. In addition, smry(σ1, p, 01(23)ω) =
(0011,⊥,⊥,⊥,⊥) for every prefix p of 01(23)ω, as the play does not contain any
bad move of Player 1.

Let σ2 now be the memoryless Player 0 strategy given by {0 →
2; 3 → 2; 4 → 5}. Then, we have smry(σ2, p, 0(23)ω) = (0011,⊥,⊥,⊥,⊥) for
every prefix p of 0(23)ω because the play does not contain bad moves of Player 1.

We continue by listing some simple properties of summaries that are useful
later on. Consider the prefixes 0, 01, 014 of 0145ω in Example 3. The former
two have the same summary s, while the summary of the latter is obtained by
shifting s to the left. Note that moving from 01 to 4 is a bad move of Player 1,
while moving from 0 to 1 is not. By inspecting the definition of play summaries,
it is clear that extending plays by bad moves corresponds to a left shift, while
Remark 5 implies that the absence of bad moves keeps summaries stable.

To formalize this, we use the following notation: for s = (b0, . . . , bk,⊥,
. . . ,⊥) ∈ S with k > 0 let lft(s) = (b1, . . . , bk,⊥, . . . ,⊥) ∈ S, i.e., we shift s
to the left and fill the last entry with a ⊥. As entries in summaries are strictly
increasing, we have lft(s) >lex s for every s with at least two non-⊥ entries.

Remark 6. Let σ be an adaptive strategy for Player 0, let p be a play prefix, and
let ρ = v0v1 · · · be a (σ, p)-play. Further, let n = |p|, i.e., vn−1 is the last vertex
of p, and note that ρ is also a (σ, pvn)-play.

If ρ has a bad move at position n, then smry(σ, pvn, ρ) = lft(smry(σ, p, ρ))
(reflecting the fact that ρ has one bad move less after pvn than after p), otherwise
we have smry(σ, pvn, ρ) = smry(σ, p, ρ). Note that we have kept σ and ρ fixed
and just added a vertex to the prefix we consider.

As seen above, a bad move shifts the summary to the left. The following
remark shows a dual result, allowing us to determine the summary of a play
prefix of length one from the summary of play prefix up to the first bad move.
In Example 3, note that the strategy σ1 (using the edges {0 → 1; 3 → 2; 4 → 5})
enforces value 0011 from 0, i.e., the first entry of smry(σ1, 0, 0145ω) is 0011. The
play 0145ω has its first bad move of Player 1 at position 2, and the corresponding
summary is smry(σ1, 014, 0145ω) = (0111,⊥,⊥,⊥,⊥). Hence, smry(σ1, 0, 0145ω)
must be the “concatenation” (0011, 0111,⊥,⊥,⊥) of 0011 and (0111,⊥,⊥,⊥,⊥)
(with the last ⊥ removed). In general, we have the following property.

Remark 7. Let s = (b0, . . . , bk,⊥, . . . ,⊥) ∈ S with k > 0 and let v be a vertex.
Let σ be an adaptive strategy such that b0 is the maximal value that σ enforces
from v and let ρ be a (σ, v)-play with at least one bad move, and let p be the prefix
of ρ ending at the position of the first bad move. Then, smry(σ, p, ρ) = lft(s) if
and only if smry(σ, v, ρ) = s.

Robustness-by-Construction Synthesis 165

Again, recall Example 3, and consider the plays ρb = 0145ω (with a
bad move by Player 1) and ρn = 01(23)ω (without a bad move), which
are both (σ1, 0)-plays. We have smry(σ1, 0, ρb) = (0011, 0111,⊥,⊥,⊥) and
smry(σ1, 0, ρn) = (0011,⊥,⊥,⊥,⊥). Disregarding the ⊥’s the summary of ρn can
be seen as a strict prefix of the summary of ρb. Note that (0011,⊥,⊥,⊥,⊥) <lex

(0011, 0111,⊥,⊥,⊥).
In general, fix a strategy σ, a play prefix p, and a (σ, p)-play ρ with

smry(σ, p, ρ) = (b0, . . . , bk,⊥, . . . ,⊥). Then, for every k′ < k there is a (σ, p)-
play ρ′ with smry(σ, p, ρ′) = (b0, . . . , bk′ ,⊥, . . . ,⊥), i.e., any play where Player 1
stops making bad moves after the first k′ ones (recall that making bad moves is
a choice).

To formalize this, we say that a summary (b0, . . . , bk,⊥, . . . ,⊥) is a strict
prefix of a summary (b′

0, . . . , b
′
k′ ,⊥, . . . ,⊥) if k < k′ and bj = b′

j for all 0 ≤ j ≤ k,
i.e., we only consider non-⊥ entries. Now, fix (σ, p)-plays ρ, ρ′. We say that ρ is
(σ, p)-covered by ρ′ if smry(σ, p, ρ) is a strict prefix of smry(σ, p, ρ′). Also, we say
that ρ is a (σ, p)-uncovered play if there is no (σ, p)-play ρ′ that covers it. When
σ and p are clear from context, we drop them and say that a play is uncovered.
In the example, ρn is (σ1, 0)-covered by ρb, which is (σ1, 0)-uncovered.

Now, we lift summaries from plays to strategies by defining smry(σ, p) as
the lexicographical minimum over all smry(σ, p, ρ) where ρ ranges over (σ, p)-
uncovered plays. Note that if ρ (σ, p)-covers ρ′, then the summary of ρ is a
strict prefix of the summary of ρ′ and, therefore, strictly smaller. Our defini-
tion of smry(σ, p) discards such plays when computing the minimum, but the
information is not lost as it appears as a prefix of a covering play.

In the running example, we have smry(σ1, 0) = (0011, 0111,⊥,⊥,⊥) and
smry(σ2, 0) = (0011,⊥,⊥,⊥,⊥).

Remark 8. Let σ be an adaptive strategy for Player 0 and let p be a play prefix.
If smry(σ, p) = s for some s ∈ S, then there exists a (σ, p)-uncovered play ρ such
that smry(σ, p, ρ) = s.

Finally, we are ready to formalize our intuitive notion of strongly adaptive
strategies, i.e., adaptive strategies that seek out opportunities for the opponent
to make bad moves. Recall that summaries record the possibility, and the effect,
of Player 1 making bad moves. So, we intuitively say a strategy is strongly
adaptive if it maximizes the summaries globally.

Recall that a strategy is adaptive if the value it enforces from any possible
play prefix is as large as the value any other strategy enforces from that prefix.
Analogously, a strategy is strongly adaptive if its summary for every play prefix
is as good as the summary from the play prefix for any other strategy.

Definition 2. An adaptive strategy σ0 is strongly adaptive if smry(σ0, p) ≥lex

smry(σ, p) for every adaptive strategy σ and every play prefix p.

Before we start our proof, let us introduce one more useful bit of notation.
For every play prefix p, let smry(p) denote the lexicographical maximum of
smry(σ, p) over all adaptive strategies σ for Player 0 in the game G, i.e.,

166 S. P. Nayak et al.

smry(p) = max
σ

smry(σ, p),

where σ ranges over all adaptive strategies for Player 0.
Note that every strongly adaptive strategy is adaptive by definition, and the

first entry of smry(p) is equal to the maximal value that can be enforced from p.
However, as argued above, not every adaptive strategy is strongly adaptive, so
in particular a strongly adaptive strategy for Player 0 never makes a bad move
(of Player 0).

4.4 Existence of Strongly Adaptive Strategies

While strongly adaptive strategies generalize adaptive strategies, there is a catch
in the definition: The former may not always exist, whereas the latter always
do. To show this, consider the graph given in Fig. 3 with initial vertex 0 and
the formula ϕ = p. It is clear that Player 0 can enforce 0011 from every play
prefix in 0(10)∗ by eventually moving to vertex 3. And if at some point, Player 1
makes the bad move 1 → 2, then Player 0 enforces 0111 as the token stays at
vertex 2 forever. However, every adaptive strategy for Player 0 has to eventually
visit vertex 3, unless Player 1 makes a bad move prior.

Note that Player 1 can only make a bad move at vertex 1, so visiting 1 once
more when at vertex 0 instead of moving to vertex 3 gives her another chance
to make a bad move. So, to optimize the enforced value under one bad move,
Player 1 should stay in the loop between 0 and 1 forever. However, this is not
the optimal behavior if no bad move occurs, as looping yields a value of 0000,
which is smaller than the value 0011 that is achieved by eventually moving to 3.

Formally, for n ≥ 0, let σn be the strategy such that σn(0(10)n′
) = 1 for all

n′ < n and σn(0(10)n′
) = 3 for all n′ ≥ n, i.e., σn gives Player 1 n chances to

make a bad move and then moves to 3, thereby preventing her from making a
bad move. Note that each of the σn is adaptive, but σn+1 gives Player 1 more
opportunities to make a bad move than σn, namely for the prefix 0(10)n.

Fix some n. There are only two (σn+1, 0(10)n)-plays, i.e., 0(10)n10(34)ω

(Player 1 does not make a bad move) and 0(10)n12ω (Player 1 makes a bad
move). Then, smry(σn+1, 0(10)n, 0(10)n10(34)ω) = (0011,⊥,⊥,⊥,⊥) as well
as smry(σn+1, 0(10)n, 0(10)n12ω) = (0011, 0111,⊥,⊥,⊥). Hence, we conclude
smry(σn+1, 0(10)n) = (0011, 0111,⊥,⊥,⊥), as the former is covered by the lat-
ter.

Towards a contradiction assume there is a strongly adaptive strategy σ. By
definition, we have

smry(σ, 0(10)n) ≥lex smry(σn+1, 0(10)n) = (0011, 0111,⊥,⊥,⊥) (1)

for every n. As we have smry(σ, 0(10)n) <lex (1111,⊥,⊥,⊥,⊥) (p does not hold
at vertex 0), σ must give Player 1 the chance to make at least one bad move
after the prefix 0(10)n. So, we must have σ(0(10)n) = 1, as Player 1 can only
make a bad move at vertex 1.

Thus, the play (01)ω (with value 0000) is a (σ, 0(10)n)-play for every n,
i.e., σ only enforces 0000 from every such prefix. Hence, the first entry of

Robustness-by-Construction Synthesis 167

0 1 2

p

34

p

Fig. 3. An rLTL game with no strongly adaptive strategy

smry(σ, 0(10)n) is 0000 for every n. This contradicts Inequality (1). Therefore, σ
is not strongly adaptive, i.e., Player 0 does not have a strongly adaptive strategy
in the game.

As strongly adaptive strategies do not necessarily exist, we are interested in
the following problem.

Problem 2. Given an rLTL game, determine whether a strongly adaptive strat-
egy for Player 0 exists and, if yes, compute one.

4.5 Computing Strongly Adaptive Strategies

We solve Problem 2 for an rLTL game G = (A, ϕ) by constructing the parity
games Gb for each b and the extended game G′ = (A′, ϕ) as in the algorithm
given in Sect. 3.2. Recall that Player 0 wins Gb if and only if he can enforce b in
G and that G′ is the product of the Gb. As we have described in Step 5 of that
algorithm, it is easy to see that solving Problem 2 for the game G is equivalent
to solving the problem for game G′. Hence, from now on, we only consider G′

and show properties for the game G′, which we can use later to compute a
strongly adaptive strategy in G. This strategy can then be transformed into a
strongly adaptive strategy for G. In the following, it is often useful to focus on
one truth value by equipping G′ with the parity condition of Cb for some b: a
vertex (v, q1111, . . . , q0000) has the color that qb has in Cb. Thus, G′ equipped with
the parity condition of Gb is equivalent to Gb.

To decide whether a strongly adaptive strategy exists, we proceed as follows:

1. We first give a characterization of the vertices v of G′ with smry(v) = s
that only uses summaries that are larger than s. This allows us to compute
smry(v) for every vertex v by induction over the summaries.

2. Using the decomposition of G′ into regions with the same summary and the
characterization we construct a series of obliging games [14]. In an obliging
game, Player 0 has a strong winning condition that has to be satisfied on
every play and a weak winning condition that must be satisfiable if Player 1
cooperates. In our case, the strong winning condition requires Player 0 to
always enforce the best value that is currently possible and the weak condition
requires Player 1 to have a chance to make a bad move (if the summary
encodes that this is still possible), i.e., whenever possible, Player 1 is given
the chance to make a bad move.

3. Finally, if Player 1 has in all obliging games a strategy satisfying both the
strong and the weak condition, then these can be turned effectively into a
strongly adaptive strategy, otherwise there is no such strategy.

168 S. P. Nayak et al.

We first provide a useful lemma showing that a strategy in G′ is strongly
adaptive if and only if its summary is history independent, i.e., only depends on
the last vertex.

Lemma 1. A strategy σ for Player 0 in G′ is strongly adaptive if and only if
for every play prefix p ending in vertex v, it holds that smry(σ, p)) = smry(v).

As computed in Sect. 3.2, let E=b be the set of vertices in G′ from which the
maximum value Player 0 can enforce is b. Furthermore, for a summary s ∈ S, let
V≥s denote the set of vertices v in G′ for which smry(v) ≥lex s. Let V=s, V>s,
and V<s be defined similarly.

Remark 9. Let s = (b0, . . . , bk,⊥, . . . ,⊥). Then, V=s ⊆ E=b0 .

For a vertex set F , let pre(F) denote the set of vertices from which there
is an edge to F . Maybe surprisingly, we do not distinguish between vertices of
Player 0 and Player 1, but we will only apply pre(F) when it is Player 1’s turn.

Next, we characterize the sets V=s in terms of the existence of strategies
that witness summaries. The key aspects of this characterization is that it only
refers to summaries s′ >lex s, which will later allow us to compute these sets
inductively.

Given a strategy σ for Player 0 in G′ and a play prefix p, let Π(σ, p) denote
the set of (σ, p)-plays that do not contain a bad move by Player 1 after p.

Definition 3. Let σ be a strategy for Player 0, p be a play prefix, and s =
(b0, . . . , bk,⊥, . . . ,⊥) a summary. We say that σ is an s-witness from p if and
only if it satisfies the following three properties:

Enforcing Every play in Π(σ, p) satisfies the parity condition of the game
Gb0 . Thus, a witness has to enforce b0 unless Player 1 makes a bad move.
Enabling If k ≥ 1, there exists a play in Π(σ, p) that visits pre

(
V=lft(s)

)
.

Thus, if there is the chance to reach a vertex where Player 1 can make a bad
move, then a witness has to visit such a vertex. Note that we require that the
bad move leads to a vertex with summary lft(s), which is the largest summary
that can be guaranteed to be reached from p after a bad move.
Evading If k ≥ 1, then let us define Ev(s) to be the set of summaries s′ =
(b′

0, . . . , b
′
k′ ,⊥, . . . ,⊥) with b′

0 > b0, s′ <lex lft(s), and such that s′ is not
a strict prefix of lft(s). Then, no play in Π(σ, p) visits pre

(
V=s′

)
for any

s′ ∈ Ev(s). Thus, a witness can never reach a vertex where Player 1 can
make a bad move to reach a summary that is worse than lft(s).

Recall that lft(s) >lex s and that s′ ∈ Ev(s) implies s′ >lex s.
Our next lemma shows that witnesses do indeed witness the summaries of

vertices.

Lemma 2. In the game G′, for some summary s and for some vertex v, we have
v ∈ V=s if and only if v �∈ V>s and there is an s-witness from v.

Robustness-by-Construction Synthesis 169

We now give a method to compute V=s for each summary s ∈ S by induc-
tion from the largest to the smallest summary. Since truth values in a sum-
mary are strictly increasing, (1111,⊥, . . . ,⊥) is the maximal summary. We have
V=(1111,⊥,...,⊥) = E=1111, which we can compute using Tabuada and Neider’s
result for classical rLTL games (see Sect. 2). For the inductive step, assume that
for a summary s = (b0, . . . , bk,⊥, . . . ,⊥) the sets V=s′ are already computed for
every s′ >lex s. The set V=s can then be computed using the following algorithm:

1. If k = 0, then return E≥b0 \ V>s. Here, E≥b0 can again be computed using
Tabuada and Neider’s result for classical rLTL games.

2. Now assume k > 0. Let As be the subgraph of A′ restricted to the vertex set

E≥b0 \
(
V>s ∪

⋃

s′∈Ev(s)
Reach1(V=s′)

)
,

where Reach1(F) denotes the set of vertices of A′ from which Player 1 can
force the token to reach F . This set can be computed in linear time (in the
number of edges of A′) using standard methods to solve reachability games
(see [18] for more details). In the proof of correctness of the algorithm (see
Lemma 3) we show that As does not have any terminal vertices.
Also, the sets V=s′ for s′ ∈ Ev(s) are already computed, because the sum-
maries s′ ∈ Ev(s) are all greater than s.

3. Let Win(s) be the winning region for Player 0 in the parity game with
arena As and coloring as in the game Gb0 . Return the set of vertices in
Player 0’s winning region Win(s) from which pre

(
V=lft(s)

)
is reachable in

the subgraph of A′ restricted to Win(s).

Lemma 3. The algorithm described above computes the sets V=s for s ∈ S.

Now, we give a characterization of strongly adaptive strategies in terms of
summary witnesses.

Lemma 4. In the game G′, a strategy σ is strongly adaptive if and only if it is
a smry(p)-witness from every play prefix p.

Now, we show how to decide whether a strategy satisfying the condition
given in Lemma 4 exists, i.e., a strategy that is a smry(p)-witness from every
play prefix p. Furthermore, if such a strategy exists, we compute one. To do
so, we present a reduction to another type of game, called obliging games. So,
before describing the details of the reduction, let us recapitulate the definitions
and useful results on obliging games.

Obliging games are two-player games introduced by Chatterjee et al. [14].
They have two winning conditions, S and W , called strong and weak condi-
tions. The objective of Player 0 is to ensure the strong winning condition while
allowing Player 1 to cooperate with him to additionally fulfil the weak winning
condition. Formally, a strategy σ for Player 0 is uniformly gracious if it satisfies
the following:

– for every vertex v, every (σ, v)-play is S-winning, and
– for every play prefix p consistent with σ, there is a W -winning (σ, p)-play.

170 S. P. Nayak et al.

We are only interested in parity/Büchi obliging games (i.e., the strong condition
is a parity condition, and the weak one is a Büchi condition). The next theorem
follows directly from the results by Chatterjee et al. [14].

Theorem 3. A parity/Büchi obliging game with n vertices and a parity condi-
tion with k colors can be reduced to a parity game with O(n) vertices and O(k)
colors. Moreover, if Player 0 has a uniformly gracious strategy in such an oblig-
ing game, he has a uniformly gracious strategy with a memory of size at most
O(k).

Now, coming back to our problem, we define obliging games Gs (for each
s ∈ S), which are subgames of G′, such that a uniformly gracious strategy in
Gs satisfies the properties of an s-witness locally. In particular, the games are
defined in way such that the strong condition resembles the Enforcing property,
the weak condition resembles the Enabling property, and the restricted vertex
set ensures that the Evading property is satisfied.

Definition 4. Given a summary s = (b0, . . . , bk,⊥, . . . ,⊥) ∈ S, let Gs be the
obliging game obtained from G′ as follows:

– The set of vertices V (Gs) is the set V=s ∪ {vnew}, where vnew is a new vertex
that does not belong to V ′.

– The set of edges E(Gs) contains the following edges:
• The edges of the game G′ restricted to the vertex set V=s.
• All edges of the form (v, vnew) where v is a terminal vertex in the game G′

restricted to V=s.
• A self loop on vnew.

– The strong condition Ss is a min-parity condition such that the color of vnew

is 0 and the color of any other vertex is the same as in Gb0 .
– If k = 0, then there is no weak condition, i.e., Ws is a Büchi condition with

F = V (Gs). If k > 0, then the weak condition Ws is a Büchi condition with
F = pre(lft(s)) ∪ {vnew}.
The following lemma formalizes the connection between uniformly gracious

strategies in the obliging games Gs and strongly adaptive strategies in G′.

Lemma 5. There exists a strongly adaptive strategy in G′ if and only if there
exists a uniformly gracious strategy in every obliging game Gs. Given a uniformly
gracious strategy with finite memory in each obliging game Gs, one can effectively
combine these into a strongly adaptive strategy with finite memory in G′.

Since the game G′ has doubly-exponential size, using Theorem 3, the par-
ity/Büchi obliging games Gs can be reduced to doubly-exponential-sized parity
games. Once we computed a strongly adaptive strategy for G′, it can then be
reduced to a strongly adaptive strategy for the original game G.

Moreover, note that strongly adaptive strategies also have doubly-exponential
memory since the obliging games we constructed have doubly-exponential size.
By Theorem 3, uniformly gracious strategies in such obliging games require
memory of linear size, leading to the following result.

Robustness-by-Construction Synthesis 171

Theorem 4. Given an rLTL game, one can decide in doubly-exponential time
whether Player 0 has a strongly adaptive strategy. If yes, one can compute one
with doubly-exponential memory in doubly-exponential time.

Note that by dualizing the definitions and the constructions, an analogous
result for Player 1 can also be obtained.

5 Conclusion

We argued that in a reactive system, in addition to correctness, we also need
to ensure robustness. To this end, we introduced adaptive strategies for rLTL
games that satisfy the specification to a higher degree when the environment is
not antagonistic. We also presented a stronger version of adaptive strategies that
additionally maximizes the opportunities for the opponent to make bad choices.
Finally, we showed that both adaptive and strongly adaptive strategies can be
computed in doubly-exponential time. As we know that the classical LTL and
rLTL synthesis algorithms also take doubly-exponential time, we conclude that
adaptive and strongly adaptive strategies are not harder to compute.

In future work, we aim to investigate even more general notions of adaption to
the behavior of a not necessarily antagonistic environment. Possible approaches
include observing the environment’s behavior and trying to compare that to
optimal strategies for the environment.

References

1. Almagor, S., Kupferman, O.: Good-enough synthesis. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020, Part II. LNCS, vol. 12225, pp. 541–563. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8 28

2. Anevlavis, T., Neider, D., Phillipe, M., Tabuada, P.: Evrostos: the rLTL verifier.
In: ACM International Conference on Hybrid Systems: Computation and Control,
HSCC 2019, pp. 218–223. ACM (2019). https://doi.org/10.1145/3302504.3311812

3. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Verifying rLTL formulas: now
faster than ever before! In: IEEE Conference on Decision and Control, CDC 2018,
pp. 1556–1561. IEEE (2018). https://doi.org/10.1109/CDC.2018.8619014

4. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Being correct is not enough:
efficient verification using Robust Linear Temporal Logic. ACM Trans. Comput.
Log. 23(2), 8:1–8:39 (2022). https://doi.org/10.1145/3491216

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.

ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011). https://doi.org/10.1145/
2000799.2000800

7. Bloem, R., et al.: Synthesizing robust systems. Acta Informatica 51(3–4), 193–220
(2014). https://doi.org/10.1007/s00236-013-0191-5

8. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 14

https://doi.org/10.1007/978-3-030-53291-8_28
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1145/3491216
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/s00236-013-0191-5
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14

172 S. P. Nayak et al.

9. Bloem, R., Ehlers, R., Jacobs, S., Könighofer, R.: How to handle assumptions in
synthesis. In: Workshop on Synthesis, SYNT 2014. EPTCS, vol. 157, pp. 34–50
(2014). https://doi.org/10.4204/EPTCS.157.7

10. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: ACM SIGACT Symposium on Theory of Computing,
STOC 2017, pp. 252–263. ACM (2017). https://doi.org/10.1145/3055399.3055409

11. Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60
(2012). https://doi.org/10.1016/j.tcs.2012.07.038

12. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 21

13. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In:
IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 178–187. IEEE
Computer Society (2005). https://doi.org/10.1109/LICS.2005.26

14. Chatterjee, K., Horn, F., Löding, C.: Obliging games. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 284–296. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4 20

15. Dallal, E., Neider, D., Tabuada, P.: Synthesis of safety controllers robust to unmod-
eled intermittent disturbances. In: IEEE Conference on Decision and Control, CDC
2016, pp. 7425–7430. IEEE (2016). https://doi.org/10.1109/CDC.2016.7799416

16. Ehlers, R., Topcu, U.: Resilience to intermittent assumption violations in reac-
tive synthesis. In: International Conference on Hybrid Systems: Computation and
Control, HSCC 2014, pp. 203–212. ACM (2014). https://doi.org/10.1145/2562059.
2562128

17. Fearnley, J., Zimmermann, M.: Playing Muller games in a hurry. Int. J. Found.
Comput. Sci. 23(3), 649–668 (2012). https://doi.org/10.1142/S0129054112400321

18. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A
Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

19. Kuhn, H.W.: Extensive Games and the Problem of Information. Princeton Uni-
versity Press, Princeton (1953)

20. Majumdar, R., Render, E., Tabuada, P.: A theory of robust omega-regular software
synthesis. ACM Trans. Embed. Comput. Syst. 13(3), 48:1–48:27 (2013). https://
doi.org/10.1145/2539036.2539044

21. Mascle, C., Neider, D., Schwenger, M., Tabuada, P., Weinert, A., Zimmermann, M.:
From LTL to rLTL monitoring: improved monitorability through robust semantics.
In: HSCC 2020: 23rd ACM International Conference on Hybrid Systems: Compu-
tation and Control, pp. 7:1–7:12. ACM (2020). https://doi.org/10.1145/3365365.
3382197

22. Nayak, S.P., Neider, D., Roy, R., Zimmermann, M.: Robust computation tree logic.
In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods. LNCS,
vol. 13260, pp. 538–556. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06773-0 29

23. Nayak, S.P., Neider, D., Zimmermann, M.: Adaptive strategies for rLTL games. In:
HSCC 2021: ACM International Conference on Hybrid Systems: Computation and
Control, pp. 32:1–32:2. ACM (2021). https://doi.org/10.1145/3447928.3457210

24. Nayak, S.P., Neider, D., Zimmermann, M.: Robustness-by-construction synthesis:
adapting to the environment at runtime. CoRR abs/2204.10912 (2022). https://
doi.org/10.48550/arXiv.2204.10912

https://doi.org/10.4204/EPTCS.157.7
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/j.tcs.2012.07.038
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1109/LICS.2005.26
https://doi.org/10.1007/978-3-642-15375-4_20
https://doi.org/10.1109/CDC.2016.7799416
https://doi.org/10.1145/2562059.2562128
https://doi.org/10.1145/2562059.2562128
https://doi.org/10.1142/S0129054112400321
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/2539036.2539044
https://doi.org/10.1145/2539036.2539044
https://doi.org/10.1145/3365365.3382197
https://doi.org/10.1145/3365365.3382197
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.1007/978-3-031-06773-0_29
https://doi.org/10.1145/3447928.3457210
https://doi.org/10.48550/arXiv.2204.10912
https://doi.org/10.48550/arXiv.2204.10912

Robustness-by-Construction Synthesis 173

25. Neider, D., Totzke, P., Zimmermann, M.: Optimally resilient strategies in push-
down safety games. In: International Symposium on Mathematical Foundations of
Computer Science, MFCS 2020. LIPIcs, vol. 170, pp. 74:1–74:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.
2020.74

26. Neider, D., Weinert, A., Zimmermann, M.: Synthesizing optimally resilient con-
trollers. In: EACSL Annual Conference on Computer Science Logic, CSL 2018.
LIPIcs, vol. 119, pp. 34:1–34:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.34

27. Neider, D., Weinert, A., Zimmermann, M.: Robust, expressive, and quantitative
linear temporal logics: pick any two for free. Inf. Comput. 104810 (2021). https://
doi.org/10.1016/j.ic.2021.104810

28. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science, 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.
org/10.1109/SFCS.1977.32

29. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM Symposium
on Principles of Programming Languages, 1989, pp. 179–190. ACM Press (1989).
https://doi.org/10.1145/75277.75293

30. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

31. Priest, G.: Dualising intuitionictic negation. Principia Int. J. Epistemol. 13(2),
165–184 (2009). https://doi.org/10.5007/1808-1711.2009v13n2p165

32. Samuel, S., Mallik, K., Schmuck, A., Neider, D.: Resilient abstraction-based con-
troller design. In: HSCC 2020: ACM International Conference on Hybrid Systems:
Computation and Control, pp. 33:1–33:2. ACM (2020). https://doi.org/10.1145/
3365365.3383467

33. Samuel, S., Mallik, K., Schmuck, A., Neider, D.: Resilient abstraction-based con-
troller design. In: IEEE Conference on Decision and Control, CDC 2020, pp. 2123–
2129. IEEE (2020). https://doi.org/10.1109/CDC42340.2020.9303932

34. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementa-
tion of generalised Büchi automata. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 42–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33386-6 5

35. Tabuada, P., Caliskan, S.Y., Rungger, M., Majumdar, R.: Towards robustness for
cyber-physical systems. IEEE Trans. Autom. Control 59(12), 3151–3163 (2014).
https://doi.org/10.1109/TAC.2014.2351632

36. Tabuada, P., Neider, D.: Robust linear temporal logic. In: Conference on Com-
puter Science Logic, CSL 2016. LIPIcs, vol. 62, pp. 10:1–10:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.
10

37. Topcu, U., Ozay, N., Liu, J., Murray, R.M.: On synthesizing robust discrete
controllers under modeling uncertainty. In: Hybrid Systems: Computation and
Control, HSCC 2012, pp. 85–94. ACM (2012). https://doi.org/10.1145/2185632.
2185648

38. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer
games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
212–223. Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 21

https://doi.org/10.4230/LIPIcs.MFCS.2020.74
https://doi.org/10.4230/LIPIcs.MFCS.2020.74
https://doi.org/10.4230/LIPIcs.CSL.2018.34
https://doi.org/10.1016/j.ic.2021.104810
https://doi.org/10.1016/j.ic.2021.104810
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.5007/1808-1711.2009v13n2p165
https://doi.org/10.1145/3365365.3383467
https://doi.org/10.1145/3365365.3383467
https://doi.org/10.1109/CDC42340.2020.9303932
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1109/TAC.2014.2351632
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.1145/2185632.2185648
https://doi.org/10.1145/2185632.2185648
https://doi.org/10.1007/11944836_21

TriCo—Triple Co-piloting
of Implementation, Specification

and Tests

Wolfgang Ahrendt1(B) , Dilian Gurov2 , Moa Johansson1 ,
and Philipp Rümmer3,4

1 Chalmers University of Technology, Gothenburg, Sweden
{ahrendt,moa.johansson}@chalmers.se

2 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@kth.se

3 University of Regensburg, Regensburg, Germany
philipp.ruemmer@ur.de

4 Uppsala University, Uppsala, Sweden

Abstract. This white paper presents the vision of a novel method-
ology for developing safety-critical software, which is inspired by late
developments in learning based co-piloting of implementations. The
methodology, called TriCo, integrates formal methods with learning
based approaches to co-pilot the agile, simultaneous development of three
artefacts: implementation, specification, and tests. Whenever the user
changes any of these, a TriCo empowered IDE would suggest changes
to the other two artefacts in such a way that the three are kept consis-
tent. The user has the final word on whether the changes are accepted,
rejected, or modified. In the latter case, consistency will be checked again
and re-established. We discuss the emerging trends which put the com-
munity in a good position to realise this vision, describe the methodology
and workflow, as well as challenges and possible solutions for the reali-
sation of TriCo.

1 Introduction

In this white paper, we present the vision of a software methodology, called
TriCo (Triple Co-Piloting), which targets in particular, but not exclusively, the
development of safety-critical software, where defects can incur high financial or
reputational costs, or can compromise human safety.

The latest safety standards in the avionics (DO-178C) and automotive (ISO
26262) areas now require or recommend the use of formal methods for ensur-
ing the robustness of safety-critical embedded software, as conventional methods
such as testing alone do not provide the required safety guarantees. However, tra-
ditional formal methods are not a good match for the current state-of-practice.
The threshold to apply formal methods is high, as their application requires sig-
nificant expertise, and formal methods are not well integrated into development

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 174–187, 2022.
https://doi.org/10.1007/978-3-031-19849-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_11&domain=pdf
http://orcid.org/0000-0002-5671-2555
http://orcid.org/0000-0002-0074-8786
http://orcid.org/0000-0002-1097-8278
http://orcid.org/0000-0002-2733-7098
https://doi.org/10.1007/978-3-031-19849-6_11

TriCo—Triple Co-piloting of Implementation, Specification and Tests 175

processes. Tackling this challenge, TriCo aims to formulate a new approach to
develop robust software cost-efficiently. TriCo builds on the enormous progress
that has recently been made in a number of relevant fields: in automated reason-
ing and constraint solving, which have in the last years produced tools that are
significantly more scalable than the techniques available before; in verification
and model checking, where new algorithms have been found to fully automati-
cally analyse software programs of substantial complexity; and in machine learn-
ing, which is today able to automatically solve problems that were long thought
to be beyond the reach of computers. Leveraging those advances, TriCo rep-
resents a new co-development paradigm that treats specifications as first-class
objects, to be developed simultaneously with implementations and tests, and
proposes the use of co-piloting to intelligently assist software developers in this
process.

In this paper, we outline our vision of how efficient development of robust
software will be conducted in the near future, with the help of novel tools,
acting as the developer’s co-pilot, which integrate recent advances in automated
reasoning, machine learning, and synthesis.

1.1 Triple Co-piloting at a Glance

There are two main reasons why the adoption of traditional formal methods in
industrial practice has been slow. Firstly, formal specifications are in general
difficult to create and maintain, and require a considerable level of expertise
and training. Secondly, formal techniques do not always scale well with the size
of software, and their application often lacks the necessary efficiency. Both of
these issues are particularly problematic when formal methods are applied a
posteriori, i.e., after the software code has been produced. On the other hand,
developing good specifications first, to only then start coding, has not either
been a workable approach in software development practice.

The TriCo methodology aims to address these problems, using a novel
method for co-development of code, tests and specifications, by means of a soft-
ware development co-pilot integrated seamlessly into development environments.
The purpose of the co-pilot is to enable the developer to create code, tests and
specifications simultaneously, from the very beginning, and to guide the devel-
oper in this process by suggesting human-understandable modifications in the
respective other artefacts whenever the developer changed one of them, such that
the three are kept consistent. Figure 1 illustrates our approach, which is based
on exact, logic-based techniques, boosted by machine learning. It can be seen
as a generalisation of the well-known correctness-by-construction paradigm, in
that all three types of artefacts are treated as citizens with equal rights when it
comes to them being correct.

Recent advances in AI, and in particular in machine learning (ML), have
made the latter a powerful tool to efficiently solve problems in many areas,
such as computer vision, pattern recognition, and natural language processing,
which have hitherto been solved only inefficiently with algorithmic approaches.

176 W. Ahrendt et al.

Implementation Specification

Tests

Conformance

C
on
fo
rm

an
ce C

onform
ance

Adaptation

A
da
pt
at
io
n A

daptation

Fig. 1. Co-development and co-piloting of implementations, tests, and specifications.

The TriCo methodology aims to use ML to enhance exact techniques in a num-
ber of ways, for example, to enable the co-pilot to learn suggesting human-
understandable specifications based on test-cases and implementations. ML will
be used to train the co-pilot, before and during its use, learning when and what
suggestions to give to the developer in different situations.

The method should be supported by IDEs, providing automated co-piloting
to the developer, facilitating the agile development and maintenance of the
implementation-tests-specification triangle. The system would constantly anal-
yse formal consistency of the three artefacts when one of them has changed, and
provide suggestions for adaptation of the other two, to be accepted or rejected by
the developer. The system should feed the user decisions into a common training
set, thereby achieving a federated learning of appropriate artefact adaptions. By
combining the complementary strengths of machine learning on the one hand
and logic based automated reasoning on the other, the TriCo methodology forms
a novel, seamlessly integrated method for developing robust software efficiently.

2 Emerging Trends in Software Technology

Our approach of co-development of code, tests and specifications in the spirit of
co-piloting is well suited for encompassing many emerging technologies, and thus
support human developers in different ways. We note that our methodology does
not aim at automated decisions about any of the artefacts. Rather, it aims at
automated suggestions for adapting the artefacts to each other. The suggestions
are triggered by the user, who changed one of the artefacts, and they have to
be accepted (and possibly modified) by the user, to bring all three artefacts in
sync again in a way which matches the intentions. In the following, we review
emerging trends which this endeavour can build on.

TriCo—Triple Co-piloting of Implementation, Specification and Tests 177

2.1 Code Synthesis Through Large Language Models

With the current development of large language models with billions of param-
eters, trained on open source code from, e.g., GitHub, code synthesis co-pilots
seem set to soon becoming an everyday tool for programmer’s integrated in
common IDEs [6,10,11]. The user may type in some code or a description in
natural language, and the system automatically provides a suggestion. Other
tasks include translating between different programming languages, or suggest-
ing fixes for broken code, given a compiler error message. In many cases the
code is perfectly sensible, but it should be noted that no guarantees whatsoever
can be given about actual correctness, and sometimes nothing useful will be
generated at all. Furthermore, the large language models make no claims about
understanding how the generated programs function, but they are very good at
picking up common patterns seen in the vast training data, making them suitable
for generation of boiler-plate code for frequently used programming languages
and applications, such as web programming. The authors of Google’s recent
PaLM system summarise some of the limitations and risks [11], p. 26:

“When deploying LM-based systems within software development, a key
risk is that the generated code could be incorrect, or introduce subtle
bugs.[...] Developers should review suggested code before adding it to a pro-
gram, but they may not always find subtle bugs in suggested code.[...] Func-
tional correctness is only one aspect of source code quality; LM-produced
suggestions must also be readable, robust, fast, and secure”

The authors further point out that there is little work on software testing and
verification methods for systems including code synthesis from large language
models.

Our proposed methodology can cover also software development including
this kind of “untrusted” synthesis components. Suggestions from, e.g., a large
language model are harnessed in a larger environment which complements it
with test-cases and specifications. The latter may be written by a human, but
an alternative is to allow automated generation of (suggested) test cases and
specifications, which we survey next.

2.2 Automated Test Case Generation

For TriCo, a particularly relevant automated test generation technique is
property-based random test-case generation, which manifests itself in the
QuickCheck family of tools [16]. It features strong requirements coverage and
very effective test-case minimisation. Here, the programmer writes down spe-
cific properties that are desired by the system, commonly as quite compact
statements. One can envision a user typing in such properties for testing, which
perhaps may also be used by the kind of code synthesis system we describe above
as cues. The synthesised code can then be tested automatically. Symbolic execu-
tion-based techniques [3,24], on the other hand, feature instead high code cov-
erage (e.g., MC/DC, full feasible branch coverage). Further, there are advances

178 W. Ahrendt et al.

in enhancing coverage-directed test generation by machine-learning techniques
[17]. Our proposed co-piloting methodology is meant to exploit automated test
generation of a variety of styles, to exploit the complementary strengths of the
techniques. However, as far as the test oracle is concerned, the user shall have
the final word on whether or not an oracle matches the intended behaviour.

2.3 Specification Synthesis

Formal specifications serve several purposes. They provide a compact and precise
description of the functions and properties of software, and can be used as input
to formal verification systems for proving correctness, or to test-case generation
systems. Our co-pilot will need to perform specification synthesis to produce
suggestions of specification updates when code has been changed, or to provide
a compact description of code that has been synthesised. Even without passing
it to a verification system, it can be helpful for the user to spot an error in
generated code if complemented by a suggested specification of its functionality.
Does the code do what the specification says? If not, which of them matches the
intention?

Due to the effort required to write specifications by hand, specification syn-
thesis has been recognised as a problem of increasing importance, and received
attention in several communities. Specifications in the form of contracts can,
for instance, be computed using the classical weakest-precondition calculus,
symbolic execution [15], counterexample-guided abstraction refinement [23], or
through model checking [5]. The concept of Maximal Specification Inference [4]
generalises the inference of weakest pre-conditions and considers the specifica-
tions of multiple functions simultaneously. Specifications can also be derived
using dynamic analysis, as for instance in the Daikon tool [12].

Theory exploration [27] is another emerging method. Given a (functional)
program, it invents a concise formal description of the program behaviour as a
set of equational statements. Generation is interleaved with automated testing
or symbolic evaluation [26]. These properties may then be inspected by the
programmer, and passed to a theorem prover to verify that the code satisfies the
statements. Naturally, if given a buggy program, a specification generation tool
will generate a corresponding “buggy” specification. In our co-piloting setting,
the human user will still have the task of checking that the generated specification
is in accordance with the users intentions, but we argue that this task can be
easier than spotting a bug in the source code itself.

2.4 Formal Software Verification

Reasoning about conformance is one of the principal tasks underlying the TriCo
methodology. Any change in the three considered artefacts—implementation,
tests, specification—implies that the three conformance relations have to be
reevaluated, so that possible mismatches are identified and can be corrected.
The conformance Implementation ↔ Specification is known as the formal soft-
ware verification problem, and has been studied for a long time and in a variety of

TriCo—Triple Co-piloting of Implementation, Specification and Tests 179

fields. For us, in particular two styles of verification are relevant, namely deduc-
tive verification (e.g., [2,7,19]) in which automated tools are applied to check
fully-annotated programs; and software model checking [18], which attempts to
handle also programs that are only partially annotated in an automated way.
A recent direction of research that combines concepts from deductive verifica-
tion with model checking algorithms are approaches based on Constraint Horn
Clauses [9,13], which form an intermediate verification language in software
model checking, but more generally can provide automation for a wide range of
program logics.

Machine Learning for Verification. ML for automatic verification can largely be
split into three different areas: (i) methods that see each verification instance as
a separate learning task, e.g., the task of learning a loop invariant from observed
program behaviour; (ii) methods that see each verification instance as one data
point, which are then used to train a verification system; and (iii) methods for
parameter learning. An overview of (i) is given in the recent tutorial [21]; the app-
roach has seen increasing adoption over the last years, and uses algorithms like
decision-tree learning, syntax-guided synthesis, or reinforcement learning [25] to
solve verification problems. Approach (ii) has turned out much less successful,
up to this point, given the big gap between the approximate reasoning of sta-
tistical inference and the exact nature of program verification. Approach (iii) is
significantly easier to implement, and is today used, for example, to choose the
right verification back-end for each verification task (e.g., [22]).

3 The TriCo Methodology

The ambition of the TriCo methodology is to take test-driven agile develop-
ment [20] to a higher robustness level. In addition to the developer eagerly writ-
ing unit tests which describe the behaviour for a set of selected input cases,
the methodology advocates that formal specifications covering all inputs and
prestates are co-developed along with tests and implementation. The workflow
is an extension of test-driven development, but gives much stronger robustness
guarantees. The methodology aims in the first place at sequential correctness
of programs, i.e., the absence of errors which already manifest in sequential
execution.

Consider the productive use of redundancy in existing development processes.
Typically, the latter make extensive use of testing to validate software behaviour:
two artefacts, implementations and tests, are written that both describe intended
program behaviour. Unit/regression tests are written early during the process,
and are re-executed and augmented whenever new functionality is introduced, or
defects are corrected. Development maintains the invariant that, at any commit
point, implementations and test cases are consistent, i.e., the implementation
will pass all tests. Inconsistencies between the implementation and the tests
constitute a bug (in the implementation, in the tests, or in both), and today’s
development infrastructure will enforce the immediate correction of such bugs.

180 W. Ahrendt et al.

It is the process of keeping implementations and tests consistent that leads to
higher quality of both artefacts.

Test cases, however, only describe the behaviour of the implementation on
selected inputs and prestates. Assurance of code behaviour beyond specific test
cases can only be provided by formal, mathematical methods. Formal specifica-
tions describe the intended behaviour of a program (unit) for all inputs and
prestates in a precise, unambiguous, and machine-readable format. Specifica-
tions can, for instance, include data-consistency invariants of classes and data
structures, loop invariants, procedure contracts, or assumptions and guaran-
tees between caller and callee units. Most formal verification methods require
formal specifications. Unfortunately, formal specifications are hard to produce.
Furthermore, in the way formal methods are used today, their benefits during
the software lifetime are long-term and hard to quantify [14]. As a consequence,
most software projects do not work with formal specifications.

3.1 Envisaged Workflow

The TriCo methodology provides a software development method and the nec-
essary tool support for efficient, agile software development, while achieving a
high level of robustness. Our approach is based on three main principles, as
illustrated on Fig. 1: (a) co-development of three artefacts: implementation, test
cases, and specification, (b) co-piloting of adaptions made necessary by changes
in any of the artefacts, and (c) combining learning- and logic-based methods
to achieve (b). To achieve scalability, the method is compositional w.r.t. code
units, in the sense that each unit gives rise to a separate triple of artefacts, to
be co-developed by the user with help of the co-pilot.

With the three artefacts come three conformance relations:

1. Conformance of an implementation unit and the associated unit test cases
means foremost that the implementation makes the oracle of each test case
pass successfully. But other aspects can also be included into this conformance
relation, such as code coverage criteria.

2. Conformance of an implementation unit and its specification, on the other
hand, means that the behaviour of every possible run of the unit’s code satis-
fies the specification. This can be determined by numerous formal verification
methods. In TriCo, the analysis of this conformance shall be provided in an
integrated manner, in the background, without the user having to choose,
install, or learn about the various methods and backend-tools which collabo-
ratively solve this task under the hood.

3. Finally, conformance of a unit’s test cases and the corresponding specifica-
tion means that the specification is strictly a generalisation of all the unit’s
test cases (each consisting of a concrete input/prestate plus an oracle on
the output/poststate). In turn, this means that each of the test cases can
be understood as a very concrete ‘lemma’ implied by the specification. Also
here, the according analysis methods execute in the background.

TriCo—Triple Co-piloting of Implementation, Specification and Tests 181

A basic principle of the TriCo methodology is that mutual conformance of
implementation, tests, and specification is an invariant that is intact in between
different work passes of code development and maintenance. When the user
changes any one of the three artefacts (blue solid arrow in Fig. 1), this will
typically break the conformance invariant. For instance, a new test case may
not be satisfied by the implementation, and/or require a generalisation of the
specification. Or a change in the implementation may invalidate a property from
the specification, and/or make some test cases fail. To address these arising
inconsistencies, a TriCo empowered IDE shall analyse in the background whether
conformance to any of the other two artefacts is broken. If that is indeed the case,
the system computes an adaption of the affected artefact(s) that re-establishes
mutual conformance. Computing such adaptions is based on a combination of
machine learning with exact, formal methods. The adaption is presented as a
suggestion to the user, who has to accept or reject it (blue dotted arrow in
Fig. 1). Only after the user has accepted a suggested adaption, it will take effect.
It is this very point which makes the method very user-centered. We argue that
this will lead to higher-quality software than automated adaption decisions, in
particular because a mismatch between two artefacts can indicate an error on
either of them, and the user should decide which side meets the intention of the
software unit. Finally, the user’s decisions to accept or reject suggested adaptions
are used to train the learning facilities, which will generate ever better adaption
suggestions over time.

3.2 Use Cases

To be more concrete, let us consider the use case where, starting from mutually
conforming implementation, test cases, and specification, the user changes the
implementation. This may lead to a violation of the specification (among others),
to be detected by formal methods operating in the background. Once a viola-
tion is diagnosed, the co-pilot will suggest an adaption of the specification. The
adaption is produced by the trained machine learning facility, but validated with
exact methods, to be finally accepted or rejected by the user, thereby training the
co-pilot in turn. In case the user decides to reject an adaption of the specification,
numerous proceedings can come into play, such as reverting the latest change of
implementation, or hand-editing the rejected suggestion (to be re-checked), or
letting the co-pilot suggest a finer modification on the latest implementation.

As a second use case, let us consider a code unit which was developed with
(pure) test driven development, so far without any formal specifications. The
user can then ask the co-pilot to incrementally suggest specifications, obtained
by generalisation from the test cases, against which (if accepted by the user) the
implementation will be verified. As a variation of this use case, a code unit may
be developed from the start with the co-pilot, but by developers initially unfa-
miliar with formal specifications. Continuous generalisation of the incrementally
developed test cases, and the corresponding verification, will make the develop-
ment of formally verified software a side-product of agile test driven development,
thereby offering a smooth learning curve into using the TriCo methodology.

182 W. Ahrendt et al.

As a third use case, let us consider the integration of legacy code into the
TriCo process. When connecting actively developed code with legacy code, what
is needed most for further analysis are interface specifications of the legacy units.
TriCo shall support intelligent editing of such interface specifications, empowered
by machine learning. Moreover, the caller-side use of legacy functionality can
be employed to infer contract specifications, and corresponding test cases to
validate the contract specifications. Another approach to the same problem is
to provide data generators, run the legacy code on the generated data, and
generalise the observed output to synthesise specifications, following a theory
exploration approach.

3.3 Envisaged Technology

Achieving the goal of integrated co-piloting of implementation, test cases, and
specification requires a hybrid, highly integrated set of functionalities. For that,
the TriCo methodology envisages to employ, expand on, and combine numerous
techniques, such as machine learning (neural networks, reinforcement learning),
formal software verification, symbolic execution, symbolic debugging, specifica-
tion/contract inference, specification mining, theory exploration, test automa-
tion, automated test case generation, runtime verification, code refactoring, and
combinations thereof.

We envisage a tool chain which provides to users an environment where
they can co-develop, in an agile way, the three aforementioned artefacts with
continuous co-piloting support. The architecture of the tool chain would be such
that the core functionalities are provided in a web-service, paired with a user
side web-interface. The server architecture also enables federated training of the
learning facilities.

4 Research Efforts Required for TriCo

While much of what is presented in this paper is a vision still waiting to be turned
into reality, we believe that the time is right to start a research programme that
will provide the required components for TriCo. This research can build on the
enormous progress that has recently been made in a number of relevant fields:
in automated reasoning and constraint solving, which have in the last years
produced tools that are significantly more scalable than the techniques available
before; in verification and model checking, where new algorithms have been found
to fully automatically analyse software programs of substantial complexity; and
in machine learning, which is today able to automatically solve problems that
were long thought to be beyond the reach of computers. This section discusses
some of the remaining research challenges in the different fields.

Challenge 1: Representation and Transformation of Artefacts

The Challenge: Formal methods have to handle the complexity of real-world
programming and specification languages, e.g., of languages like C, Java, ACSL,

TriCo—Triple Co-piloting of Implementation, Specification and Tests 183

or JML. In TriCo, this complexity is amplified by the multitude of modifications
and transformations taking place between the three different artefacts (Fig. 1):
all three artefacts can be edited by the developer, at any point; all three artefacts
can also be synthesised or adapted by the co-pilot to (re-)establish the confor-
mance relations. Changes computed by the co-pilot must not destroy the cues
the developer depends on (e.g., formatting, naming, or comments), and editing
by the developer must not compromise meta-data maintained by the co-pilot.

A Possible Solution: This challenge could be addressed by defining a uniform
intermediate language to represent all three artefacts, implementations, speci-
fications, and test cases. This intermediate language is not intended for direct
human editing, but is connected through meta-data to multiple real-world pre-
sentation languages (e.g., C and ACSL). The developer works with the presen-
tation languages, and any changes made are automatically and incrementally
mapped to the intermediate representation. The co-pilot primarily operates on
the intermediate language, and changes on this layer are reflected by carefully
updating the presentation layer.

As one suitable intermediate language, we consider the use of extended ver-
sions of Constraint Horn Clauses (CHC) [9,13]. CHCs have been adopted in
software model checking as a common interface between programming language
front-ends and verification back-ends, since CHCs are general enough to capture
many programming language features (including control structure, procedure
calls, various concurrency models, heap models), provide simple and unambigu-
ous semantics in terms of the SMT-LIB theories [8], and can easily be connected
to various automatic verification approaches.

Challenge 2: Efficient Automatic Conformance Analysis

The Challenge: In TriCo, any change in the three artefacts (implementation,
tests, specification, Fig. 1) requires a co-pilot to reevaluate the three conformance
relations, so that possible mismatches are identified and can be corrected. The
existing methods for conformance checking, which are formal software verifica-
tion, software testing, and checking specification refinement, are all algorithmi-
cally hard, and often limited in terms of scalability.

A Possible Solution: Given the existing huge body of research on the differ-
ent kind of conformance checking, no step-changes are to be expected in the
near future, but we believe that the right application and combination of exist-
ing methods can carry TriCo a long way. A co-pilot can be based on (i) a
bespoke combination of static and dynamic methods, utilising their complemen-
tary strengths, so that rapid feedback can be provided to the developer after each
change; (ii) incrementality in checking, which is achieved, e.g., by the caching
of conformance certificates in the form of rich program annotations (e.g., com-
puted loop invariants); and (ii) the use of machine learning to boost checking,
for instance to predict likely cases of conformance violations, or along the lines
described in Sect. 2.4.

184 W. Ahrendt et al.

Challenge 3: Defect Diagnosis and Suggestion of Adaptations

The Challenge: At the core of TriCo is the ability to identify and suggest adap-
tations of any of the artefacts—implementations, specifications, tests—when any
of the other artefacts change. This is largely a new direction of research, since not
all of the six possible combinations of artefacts have been considered in prior
research. Closely related areas include program repair, which can be used to
compute updates of an implementation when the specification is modified, and
model-based diagnosis to explore the space of possible explanations for observed
inconsistencies.

A Possible Solution: Diagnosis is triggered by conformance violations detected
by the methods from Challenge 2, and aims at inferring plausible explanations
for which part or feature of an artefact is responsible for the non-conformance.
For this, as well as for computing adaptations, a combination of techniques
from different fields is needed: formal methods, to exactly model the relationship
between the artefacts, based on results of conformance checking; constraint solv-
ing and optimisation, which ensure minimality of the provided explanation or
adaptation, and can be provided through modern techniques from the Satisfia-
bility Modulo Theories (SMT) field; and machine learning, which is able to rank
explanations and adaptations in a way that is consistent with the expectations
of the user.

An important aspect is that techniques should reflect existing software devel-
opment practices: a co-pilot has the purpose of supporting the developer, not
to enforce a coding style the developer is unfamiliar or uncomfortable with.
One line of thought towards this goal is the concept of transformation models,
which are abstract characterisations of typical artefact modifications; covering,
for instance, notions of refactoring, but also other typical steps in code editing.
By learning how transformations of one artefact induce corresponding trans-
formations of the other artefacts, a co-pilot will be able to compute and rank
adaptations in a way that is consistent with developer expectations and habits.
This ambitious goal of the methodology requires research in several directions:
(i) an effective, domain-specific language to express transformation models has
to be defined; (ii) algorithms to mine transformation models from recorded edit-
ing sequences of developers; and (iii) methods for pairing, on-the-fly matching,
and instantiation of transformation models.

5 Turning Vision into Reality

What are the concrete steps to turn the TriCo vision into reality? As a first
step towards implementing a full-fledged co-pilot, we envisage the development
of a TriCo demonstrator in the form of an advanced integrated development
environment (IDE) that includes the co-piloting functionality proposed in Sect. 3.
The IDE could for instance be designed as a web application, to be gradually
extended over time. The implementation could proceed as follows:

TriCo—Triple Co-piloting of Implementation, Specification and Tests 185

1. Initially, the IDE would mainly be an editor for implementations, specifica-
tions, and tests. This editor can be built on top of existing JavaScript frame-
works, for instance the CodeMirror system [1]. It can already offer opt-in
functionality to record the editing steps done by a developer, and automat-
ically collect this data, which can later serve as training data for machine
learning.

2. A second version of the IDE could include conformance checking, and thus
initial support for co-editing all three artefacts.

3. Next, support for diagnosis and adaptation could be added to the co-pilot.
Again, the IDE shall be able to record and collect developer interaction
sequences, so that data becomes available to further improve the co-pilot.

4. Further extensions could include support for collaborative development, the
integration with version control (GitHub), and support for standard contin-
uous integration systems.

All this would lay the ground for plugging in, and closely integrate, a glowing
variety of techniques, reasoning based and learning based, analytic and synthetic,
to keep the three artefacts mutually in sync, in a co-piloting fashion, when the
user evolves any of them.

Co-development and co-piloting have to be constantly evaluated in the light
of the original objectives: to enable efficient production of robust software. Fur-
ther, data has to be produced as input for training the verification and adap-
tation methods, using the data collection functionality, and guidelines to be
developed for the integration of the TriCo approach into industrial develop-
ment practices, including Agile development [20] in general and, for instance,
Scrum [28]. For evaluation purposes, case studies can be formulated and carried
out in different contexts: with industrial collaborators, covering development
tasks that are close to the industrial practice; and within course projects at
universities, providing a setup in which comparative studies between different
development practices carrying out the same development task are possible. To
evaluate efficiency and robustness, one could monitor the development effort in
the projects and assess the quality of developed implementations and specifica-
tions through code review and independent testing, and by interviews with the
developers.

We strongly believe that co-development of implementations, specifications,
and tests is the future of software development. Triple co-piloting is our vision
of how this future can materialise. We now invite the community to join us in
discussing and further developing this vision, and to participate in its realisation.

References

1. Codemirror. https://codemirror.net
2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):

Deductive Software Verification-The KeY Book. LNCS, vol. 10001. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49812-6

https://codemirror.net
https://doi.org/10.1007/978-3-319-49812-6

186 W. Ahrendt et al.

3. Ahrendt, W., Gladisch, C., Herda, M.: Proof-based test case generation. In:
Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P., Ulbrich, M. (eds.)
Deductive Software Verification – The KeY Book. LNCS, vol. 10001, pp. 415–451.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6 12

4. Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. In: Pro-
ceedings of POPL, vol. 51. ACM (2016)

5. Alshnakat, A., Gurov, D., Lidström, C., Rümmer, P.: Constraint-based contract
inference for deductive verification. In: Ahrendt, W., Beckert, B., Bubel, R.,
Hähnle, R., Ulbrich, M. (eds.) Deductive Software Verification: Future Perspec-
tives. LNCS, vol. 12345, pp. 149–176. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64354-6 6

6. Austin, J., et al.: Program synthesis with large language models (2021).
arXiv:2108.07732

7. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

8. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa (2017).
http://www.smt-lib.org/

9. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

10. Chen, M., et al.: Evaluating large language models trained on code,
arxiv:2107.03374 (2021). arXiv:2107.03374

11. Chowdhery, A., et al.: PaLM: scaling language modeling with pathways (2022).
arXiv:2204.02311

12. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1–3), 35–45 (2007)

13. Fedyukovich, G., Rümmer, P.: Competition report: CHC-COMP-21. In: Hojjat,
H., Kafle, B. (eds.) Proceedings 8th Workshop on Horn Clauses for Verification
and Synthesis, HCVS@ETAPS 2021, Virtual, 28 March 2021. EPTCS, vol. 344,
pp. 91–108 (2021)

14. Gleirscher, M., Foster, S., Woodcock, J.: New opportunities for integrated formal
methods. ACM Comput. Surv. (CSUR) 52(6), 1–36 (2019)

15. Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A.W., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 101–121. Springer,
London (2010). https://doi.org/10.1007/978-1-84882-912-1 5

16. Hughes, J.: Software testing with QuickCheck. In: Horváth, Z., Plasmeijer, R.,
Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 183–223. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17685-2 6

17. Ioannides, C., Eder, K.I.: Coverage-directed test generation automated by machine
learning - a review. ACM Trans. Des. Autom. Electron. Syst. 17(1), 1–21 (2012)

18. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
1–54 (2009)

19. Kosmatov, N., Prevosto, V., Signoles, J.: A lesson on proof of programs with Frama-
C. Invited tutorial paper. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS,
vol. 7942, pp. 168–177. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38916-0 10

20. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Hoboken (2003)

https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-030-64354-6_6
https://doi.org/10.1007/978-3-030-64354-6_6
http://arxiv.org/abs/2108.07732
http://www.smt-lib.org/
https://doi.org/10.1007/978-3-319-23534-9_2
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2204.02311
https://doi.org/10.1007/978-1-84882-912-1_5
https://doi.org/10.1007/978-3-642-17685-2_6
https://doi.org/10.1007/978-3-642-38916-0_10
https://doi.org/10.1007/978-3-642-38916-0_10

TriCo—Triple Co-piloting of Implementation, Specification and Tests 187

21. Parthasarathy, M., Garg, P.: Machine-learning based methods for synthesizing
invariants. Tutorial at CAV 2015 (2015)

22. Richter, C., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020)

23. Seghir, M.N., Kroening, D.: Counterexample-guided precondition inference. In:
Proceedings of Programming Languages and Systems - 22nd European Symposium
on Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, 16–24 March 2013,
pp. 451–471 (2013)

24. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-13, pp. 263–272. Association for Computing Machinery,
New York (2005)

25. Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invariants for
program verification. In: Advances in Neural Information Processing Systems 31,
NeurIPS 2018, Montréal, Canada (2018). https://proceedings.neurips.cc/paper/
2018

26. Singher, E., Itzhaky, S.: Theory exploration powered by deductive synthesis. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 125–148. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 6

27. Smallbone, N., Johannson, M., Claessen, K., Algehed, M.: Quick specifications for
the busy programmer. J. Funct. Program. 27 (2017)

28. Takeuchi, H., Nonaka, I.: The new new product development game. Harv. Bus.
Rev. 64(1), 137–146 (1986)

https://proceedings.neurips.cc/paper/2018
https://proceedings.neurips.cc/paper/2018
https://doi.org/10.1007/978-3-030-81688-9_6

Twinning-by-Construction: Ensuring
Correctness for Self-adaptive Digital

Twins

Eduard Kamburjan1 , Crystal Chang Din2 , Rudolf Schlatte1 ,
S. Lizeth Tapia Tarifa1 , and Einar Broch Johnsen1(B)

1 University of Oslo, Oslo, Norway
{eduard,rudi,sltarifa,einarj}@ifi.uio.no

2 University of Bergen, Bergen, Norway
crystal.din@uib.no

Abstract. Digital twin applications use digital artefacts to twin phys-
ical systems. The purpose is to continuously mirror the structure and
behavior of the physical system, such that users can analyse the physical
system by means of the digital twin. However, the physical system might
change over time. In this case, the digital twin’s ensemble of digital arte-
facts needs to be reconfigured to correctly twin the physical system again.
This paper considers a digital twin infrastructure combining MAPE-K
feedback loops and semantic reflection to automatically ensure that the
digital artefacts correctly twin the physical system; i.e., the resulting
system is twinned-by-construction. We consider the monitoring of both
structural and temporal correctness properties for digital twin, including
the time delay required by reconfiguration, and the capture of execution
traces to reflect digital threads in the digital twin framework.

1 Introduction

Digital twins are a major innovation driver for the digitisation of key industries.
Digital twin applications use digital artefacts to continuously mirror a physical
system, such that users can analyse the physical system by means of the digital
twin. At their core, they describe applications where a physical system, the
physical twin (PT), is mirrored structurally and behaviourally by some digital
system, the digital twin (DT); this mirroring turns the DT into a live replica of
the PT. It is crucial that the PT and the DT interact with each other; i.e., data
flows between them in both directions such that the DT can detect changes in
the PT and perform actions. The physical system might change over time. In
this case, the digital twin’s ensemble of digital artefacts needs to be reconfigured
to correctly twin the physical system again. Over its liftetime, the DT can then
be seen as a trace of different configurations of digital artefacts, reflecting the
changes to the PT. In this paper, we consider DTs that explicitly mirror changes
to the PT in the digital system, enabling the user to access the digital thread of
a physical asset.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 188–204, 2022.
https://doi.org/10.1007/978-3-031-19849-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_12&domain=pdf
http://orcid.org/0000-0002-0996-2543
http://orcid.org/0000-0002-3588-5609
http://orcid.org/0000-0001-5601-5517
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0001-5382-3949
https://doi.org/10.1007/978-3-031-19849-6_12

Twinning-by-Construction 189

In this paper, we discuss the reconfiguration of digital twins from the per-
spective of X-by-construction (XbC) approaches and self-adaptive systems, and
how these reconfigurations can be monitored. We say that a physical system is
twinned by a digital system if the digital system has the same structure and
behavior as the physical system. Static digital twins, i.e., twins that mirror a
structure that does not change over time, are twinned-by-construction if the ini-
tialisation of the digital system ensures this twinning property. However, when
the PT evolves over time, self-adaptation at runtime will play a crucial role in
not only keeping the DT running, but also to re-establish its twinning property.

To illustrate these interactions between a self-adaptive DT and the PT, we
consider an architecture for digital twins based on MAPE-K feedback loops [1–
3] (Monitor, Analyse, Plan, and Execute based on Knowledge), a well-known
method to organize autonomous systems. We distinguish between two different
MAPE-K feedback loops for the digital twin units and the digital twin infras-
tructure in a digital twin application, where a DT unit is a digital artefact, for
example, a simulator that mirrors exactly one part of the physical system, and
the DT infrastructure orchestrates an ensemble of DT units.

One of the MAPE-K feedback loops uses the DT infrastructure to make
sure that the DT units indeed jointly mirror the PT. Twinning-by-construction
(TbC) ensures that the DT infrastructure connects the DT units in such a way
that the DT mirrors the structure of the PT. If the physical system changes
over time, the DT infrastructure needs to adapt and re-twin the digital system
and re-establish the structural and behavioural correspondence between PT and
DT. The DT infrastructure also realizes other features of the application, e.g.,
the above-mentioned data flow, the user interfaces, and analysis support over
the DT such as the exploration of speculative scenarios, which again can be
realised via a second MAPE-K feedback loop that only focuses on the behavioural
correspondence between PT and DT.

This paper mainly focuses on the structural correspondence between the PT
and the DT, as shown in Fig. 1, and discusses the connection between the concept
of twinned-by-construction and self-adaptation at runtime by combining MAPE-
K feedback loops with semantically lifted programs [4], and runtime monitoring
of properties for self-adaptive systems. Semantically lifted programs combine
knowledge graphs and object-oriented programming languages by enabling the
program to semantically reflect on itself as a knowledge graph. For digital twin
applications, we implement the DT units by means of functional mock-up units
(FMUs) [5,6] and use ontology-based asset models to connect the state of the
DT and the PT [7] (see Fig. 1). Knowledge graphs enable a uniform treatment
of the DT infrastructure (via semantic reflection) and a physical system (via the
asset model). Users can send queries to both the asset model and the DT.

Furthermore, we consider trace-based TbC for digital twin applications. Cor-
rect twinning captures the property that the current structure of the DT corre-
sponds to the current structure of the PT, as it is expressed in the asset model.
Trace-based TbC strengthens this notion of correctness by requiring that the
execution trace of the DT must also mirror the (execution) trace of the PT.
Based on this constraint, information concerning physical twin units that are

190 E. Kamburjan et al.

Fig. 1. High-level description of a digital twin architecture: the asset model serves as
an interface for structural changes between digital twin (DT) and physical system (PS).
Knowledge graphs enable uniform access to both DT and asset model.

no longer present in the current configuration of the PT, but were previously
present, can be found in the trace of the DT. Consequently, information can
be retrieved about DT units corresponding to PT units that no longer exist.
Trace-based TbC connects digital twins to the concept of digital threads (see,
e.g., [8,9]), which has not been explored so far for DTs using ontologies and asset
models.

Contributions and Structure. Our main contributions are (1) a detailed discus-
sion that establishes a conceptual link between digital twins, X-by-construction
and self-adaptation at runtime, and (2) an extension of semantical lifting that
connects the digital thread with asset models. We introduce the notion of
twinned-by-construction in Sect. 2 and the role of self-adaptation at runtime
in Sect. 3. Section 4 broadens the discussion to digital threads for semantically
lifted programs. We discuss related work and conclude the paper in Sect. 5 and
Sect. 6

2 Twinned-by-Construction Systems

In this section we discuss twinned-by-construction (TbC) for static digital twins,
and the role played by knowledge graphs. We introduce the basics by example
and refrain from giving a formal introduction of the technology stack. For a
summary of the use of knowledge graphs in digital twins and asset models, we
refer to [7]; for a general introduction, we refer to [10].

Asset Model. An asset model serves as an interface between a physical and a
digital system. It is a database (or a file) containing an organized description of
the composition and properties of assets. An asset model is useful in a digital
twin context because it can provide the twin with static configuration data for
the digital twin units. The DT infrastructure is responsible for the updates and
synchronization between the asset model and the DT. We assume here that the
asset model is expressed as, or can be converted into, a knowledge graph.

Twinning-by-Construction 191

Example 1. Consider a digital twin that, for some building construction, is twin-
ning the structure of the walls. The building has two walls at the moment: one is
left of the other one. As a knowledge graph, this is expressed using the following
triples in RDF [11]:

as:InProd rdfs:subClassOf as:Asset.
as:Wall rdfs:subClassOf as:Asset.
as:w1 a as:Wall. as:w2 a as:Wall.
as:w1 a as:InProd. as:w2 a as:InProd.
as:w1 as:leftOf as:w2.

Each RDF triple consists of three nodes, where in the example each node
is either a name of the form prefix:name, or the symbol a expressing that the
first node belongs to the third node, which must be a class. In the example,
the first two lines define three classes, the class of all assets (as:Asset), and
its subclasses of all walls (as:Wall) and all assets which are actively used in
production as:InProd. Lines 3–4 define two objects as:w1 and as:w2 which are
walls used in production. The last line defined that as:w1 is left of as:w2. The
order between the triples listed in the asset model does not matter.

Twinned-by-Construction. If the physical system does not change, the DT
can be statically checked to ensure that it correctly mirrors the structure of the
PT by statically comparing the asset model with the structure described in the
DT infrastructure. Since the core principle of the digital twin is the structural
mirroring, the asset model can be used as a guideline to construct the digital
twin. In this case, we say that the digital twin is twinned-by-construction and
the task of establishing the structural connection between PT and DT using an
asset model is twinning-by-construction.

Figure 2 shows the structure of a correctly twinned system with two physical
twin units (e.g., two walls Asset 1 and Asset 2), their two descriptions in the
asset model (e.g., w1 and w2 in the RDF given above) and two digital twin units
DTU 1 and DTU 2 (e.g., two wall simulators): Any DT unit twins some part of
the asset model, which in turn represents a PT unit. The DT unit and the PT
unit are directly connected by data flowing between them. The correct twinning
is established over all DT and PT units, as the interconnections in the physical
system must also be mirrored in the digital one. For Example 1, this would be
that the wall simulators are connected according to the asset:leftOf guideline.

Given a fixed asset model, an existing DT infrastructure, and a mapping from
asset classes to DT units, one can easily define the corresponding structure in
the digital twin: first, for each class of the asset define a class in the application
with the same spatial information and the used simulation unit. Second, for
each object in the asset model create an object of the corresponding class, and
replicate the spatial information. We elide the details of this construction, which
is the current way to write digital twins, but point out that such systems are
already TbC.

192 E. Kamburjan et al.

Fig. 2. Structure of a digital twin for two assets (Asset 1 and Asset 2) as PT units.

The Role of Knowledge Graphs. Knowledge graphs (KGs) are the estab-
lished technique to formalize domain knowledge and add semantics (w.r.t. a
domain) to data. In particular, they provide a uniform way to represent, query
and reason about data. In the TbC approach, their role is twofold:

Uniform Structure Representation. The asset model can be a knowledge
graph,1 and the information required for twinning can be accessed using
standard KG technologies. The DT infrastructure can be translated into a
knowledge graph, using semantical lifting [4], that maps program states to
KGs, meaning that the information about the structure of the DT has the
same format and representation as the structure of the PT.

Uniform Data Access. Starting from the uniform representation of structure,
both the user and the DT infrastructure itself can query and reason about
the combined structure of DT and PT. The user can access the digital twin,
e.g., its simulation results, in terms of the asset model. The DT infrastruc-
ture can detect structural drift between DT and PT, i.e., if the structural
correspondence does not hold when querying over both structures.

3 Twinning-by-Construction and Temporal Properties

In the previous section we discussed how a given asset model, describing the state
of a physical system, can be used to construct a digital system that is TbC. Now,
we turn our attention to self-adaptation. Self-adaptation is triggered when we
observe a deviation of the DT unit with respect to the PT unit and when there
are changes in the asset model. When constructing self-adaptive systems in the
context of digital twins, it is important to consider a library of reusable DT units,
support for a self-adaptation process that takes into consideration requirements
for the reconstruction, and support for reasoning, analysis, and tuning during the

1 This approach is taken by several on-going projects, e.g., the READi project [12].

Twinning-by-Construction 193

reconstruction process [13]. This can be realised following the MAPE-K feedback
loop schema [1–3] with four activities: Monitor, Analyse, Plan, and Execute, over
a shared Knowledge.

In addition, we consider properties for both behavioural and structural rela-
tions to the assets. The reason for considering these additional properties is
that while the physical systems change, the DT infrastructure must preserve
the twinning property by reconfiguring the structure between the corresponding
DT units within a time bound. This structural reconfiguration, which we call
re-twinning, poses additional temporal constraints on the physical and digital
systems in that twinning must be ensured at a certain speed. We now detail
these different activities.

MAPE-K Schema for Data Streams. Self-adaptation is needed when we
observe model drift, i.e., a deviation between a DT unit and its PT unit. In this
context, the monitor step collects data streams from the physical and digital
system. The analysis step can use temporal properties to express expectations
on the data stream that are needed for the model in the digital twin to work,
e.g., using runtime monitoring (see Fig. 5, top right monitor). In our building
example, one may have a restriction that the moisture of the wall is never higher
than 1%. If the sensors report a moisture value beyond this threshold, the system
triggers an error. During the analysis step, one can also use a hyperproperty [14]
and compare the data output from the physical system with the data output
from the digital system to detect if the difference is above a threshold to trigger
an error.

The planning step can use model search techniques to find the best parame-
ters for the DT unit to adjust the observed output deviation from the PT unit,
and the execute step will reconfigure the relevant DT units by resetting their
parameters. This is a major application scenario for digital shadows,2 which
detect anomalies not only by analysing the data stream, but by the relation of
data stream and the digital twin unit.

MAPE-K Schema for Structural Self-adaptation. The connection of dig-
ital twin and asset model must also be maintained. As shown in Fig. 3, the
self-adaptation process must detect structural changes in the asset, and trigger
reconfiguration of the digital system such that the temporal TbC properties that
were established initially holds again, as initially discussed in [7].

Example 2. Continuing with Example 1, we consider the situation that a third
wall as:w3 is added to the building under construction and, consequently, to the
asset model. In the knowledge base, the following triples are added:

as:w3 a as:Wall. as:w3 a as:InProd. as:w2 as:leftOf as:w3.

2 A digital shadow is a digital twin with unidirectional data flow: the DT does not
send commands back to the PT [15].

194 E. Kamburjan et al.

Monitor

Analyse Plan

Execute

Self-Adaptive DT

AM

PT

Knowledge

KB

Fig. 3. Structural self-adaptation of a DT following a MAPE-K feedback loop.

Twinning uses the asset model, which is formalized as a knowledge base, to
ensure that all assets that are to be twinned are indeed represented by some
DT units and that the DT units are correctly connected (i.e., according to the
PT). Additionally, TbC ensures that no DT units without a PT equivalent exist
in the DT. It is application-specific what assets are modelled and how the DT
infrastructure repairs its state – thus, it is not possible to generate a generic DT
infrastructure fully automatically from an asset model.

However, in the monitor step we can formulate the condition that the DT
is twinning the PT correctly by posing the query that returns the mismatches:
(1) all assets not represented in the DT and (2) all objects not corresponding
to an existing asset in the PT. An example of such a query is shown below.
It assumes that the DT infrastructure can be seen as a knowledge base, where
all its DT units are represented as instances of a class dti:DTUnit, and that
each DT unit is connected to the asset it twins via the dti:twins property.
The following SPARQL [16] query retrieves all assets that occur in the physical
system but are not twinned:

SELECT ?x { ?x a as:InProd.
FILTER NOT EXISTS (?y a dti:DTUnit. ?y dti:twins ?x.)

}

The analysis step is in charge of understanding that the structure is mirrored
correctly, which can be expressed in our example simply by using as:leftOf.
We can similarly define a query that returns all DT units that are not respecting
the structure of the assets (shown in Fig. 4), where we assume that the structure
of the DT infrastructure that connects DT units is using an analogous property
dti:leftOf. We say that a system is simply twinned if both queries return an
empty set. A simply twinned system has one DT unit for each PT unit, and
all the DT units are correctly connected. Let SIMPLE be the conjunction of the

Twinning-by-Construction 195

SELECT ?dtu { ?dtu a dti:DTUnit. ?dtu dti:twins ?asset.

OPTIONAL(

?asset as:leftOf ?right.

FILTER NOT EXISTS (

?dtuRight a dti:DTUnit.

?dtu dti:leftOf ?dtuRight.

?dtuRight dti:twins ?right.

)

)

}

Fig. 4. A query to ensure that all twinned units are connected correctly. It returns the
set of DT units that are not mirroring the structure correctly.

two given queries. Observe that the SIMPLE query only works because there are
several sources of data for the knowledge base: the domain knowledge, the asset
model and the current state of the DT infrastructure.

The planning step identifies the DT units that must be created; in this case,
one DT unit for each member of the returned set in the queries, if non-empty.

The execution step creates the identified DT units and link them correctly to
the existing DT units according to the asset model. The execution step triggers
re-twinning, which is done according to the planning step.

Temporal Properties of the DT Infrastructure. It takes time to re-twin
and it may be crucial to ensure that re-twinning happens sufficiently fast. For
this reason, we also consider temporal properties of the DT infrastructure, which
are here represented using Metric Temporal Logic (MTL) [17,18], an extension
of LTL with intervals that is suited for online monitoring [19]. The syntax of a
MTL formula ϕ over state predicates p and intervals I3 is given by

ϕ :: = p | false | ϕ ∧ ϕ | ¬ϕ | ϕUI ϕ

and the abbreviations �I ϕ = falseUI ϕ, ♦I ϕ = ¬�I ¬ϕ, �ϕ = �[0,∞) ϕ. The
intuition for �I ϕ is that ϕ holds at all points in time in the interval I and the
intuition for ♦I ϕ is that ϕ holds at some point in the interval I.

A property expressing that if a system is out of sync, then it will be re-
twinned within n time units (as shown in Fig. 5), is expressed as follows:

n−Resync ≡ �
(
SIMPLE � .= ∅ → ♦[0,n]SIMPLE

.= ∅)
.

Regulating the Rate of Re-twinning. Twinning takes time. So one must
make sure that the asset model is not changing too fast. For example, if
every change in the physical system triggers re-twinning, then several connected

3 We use discrete time with intervals of the form [n,m] or [n,∞), where n,m ∈ N.

196 E. Kamburjan et al.

Fig. 5. Refined structure of the digital twin architecture after a change: an new DT
unit is added for the new asset and the twinning property must be re-established.

changes (e.g., changing several assets in one maintenance) should be submitted
at once to the asset model. Formally, one demands that the distance between
any CHANGE is not less than m time units. The following formula expresses this
constraint:

m−Change ≡ �
(
CHANGE → ¬♦(0,m]CHANGE

)
.

In our reference architecture, changes in the asset model and the re-twinning
process can happen independently: m−Change monitors the asset model inter-
face and reports if the asset model is updated too often, while n−Resync monitors
the DT infrastructure itself, see Fig. 5.

The rate of change of the asset models, which captures the evolution of the
PT, should not be faster than the twinning speed, i.e., the speed of the DT
infrastructure that updates according to the changes in the asset model. Thus,
the property to be monitored is

TEMPm,n ≡ m > n ∧ m−Change ∧ n−Resync .

4 The Digital Thread as a Temporal Property

So far, we have considered properties that relate the current state of a digital sys-
tem and the current state of the physical system, as well as temporal properties
that ensure that twinning happens at the correct frequency. This, however, does
not consider the so-called “digital thread”, which must take into account not only
the current state of the system, but also its trace of past actions. This requires
a specific notion of twinning for traces and has consequences for the structure of

Twinning-by-Construction 197

the DT infrastructure: not all DT units are relevant for the twinning property
of the current state, and the DT units for replaced or removed assets must be
handled differently. First, we describe an example of more involved changes in
the physical system.

Example 3. Continuing Example 1, the newly built third wall (as:w3 in the asset
model) is used to replace the second wall (as:w2 in the asset model), which is
removed in the process. Afterwards as:w3 is removed as well and as:w1 remains
as the sole wall. The total sequence of actions, the trace, in the physical system
is as follows:

1. build walls as:w1 and as:w2,
2. build wall as:w3,
3. replace as:w2 with as:w3, and
4. decommission as:w3.

The twinning actions in Steps 1 and 2 have been explained in Sect. 2 and 3.
Now we continue from Step 3. The following asset model reflects this change by
marking that the digital twin unit as:w2 as decommissioned, as:w3 as replacing
as:w2. It updates the information that that as:w1 is now directly left to as:w3:

as:w1 a as:Wall. as:w2 a as:Wall. as:w3 a as:Wall.
as:w1 a as:InProd. as:w2 a as:Decom. as:w3 a as:InProd.
as:w1 as:leftOf as:w3. as:w3 as:replaces as:w2.

The change on the asset model already realizes the digital thread. We can
query about what the PT has performed from the knowledge base. For example,
to retrieve the walls that as:w2 was next to, we can run the following query:

SELECT ?x {?x as:leftOf [as:replaces* as:w2]}

which gives us as:w1. The digital twin however, must keep the information about
the DT unit for as:w2 available as well. As we require that the DT infrastructure
represents every physical asset that was part of the asset model at some point in
a DT, it is guaranteed that such a DT unit existed, but it must still exist now
and be ignored for the twinning property of the current state – all assets which
are instances of the decommissioned class as:Decom must be ignored for it.4
Thus, we refine the DT infrastructure and introduce the digital twin graveyard,
see Fig. 6, a data structure where DT units of decommissioned, or otherwise
removed, assets are saved, but ignored for the twinning of the current state.

The refined structure is shown in Fig. 6: The DT infrastructure contains a DT
graveyard structure, where, compared to Fig. 5 one DT unit has been moved and
is, consequently ignored for the twinning property. Note that the corresponding
asset (Asset 1) has been removed from the physical system, but its asset model
(AM 1) remains. The moved DT unit is also disconnected from the other DT
units, while the asset model contains information about the old structure.

4 This is already modelled in the SIMPLE query above.

198 E. Kamburjan et al.

Fig. 6. Structure of the digital twin. The graveyard retains the DT units, which are
needed for the digital thread, but must be ignored for the twinned property.

The digital thread is, thus, realised on the asset model (and possible con-
nected to the original designs, requirements, etc.) of the walls, and in the DT
infrastructure (using semantic reflection of the graveyard). However, there are
further events in the trace of the physical system that are not changing the struc-
ture. For example, if a wall is repainted, it is visible in the asset model, but does
not require a change in the DT. Similarly, changes in the DT infrastructure that
are not structural, such as behavioural reconfigurations, must be made available
to the user.

One can easily refine the asset model by recording more information about
the events, for example their time and data and additional, explicit informa-
tion when, how and why as:w3 was replaced. We refrain from giving a realistic
example using a full ontology based asset model like IMF [12], but illustrate the
additional information by performing the last step on our building example.

Example 4. Next, we remove wall as:w3 completely and we add information
about the removal. The asset model becomes the following (in terms of Fig. 6,
this is the complete asset model including AM1, AM2, and AM3, without general
declarations of the classes):

as:w1 a as:Wall. as:w2 a as:Wall. as:w3 a as:Wall.
as:w1 a as:InProd. as:w2 a as:Decom. as:w3 a as:Decom.
as:w1 as:leftOf as:w3. as:w3 as:replaces as:w2.
as:w3 as:observed as:ev1. as:w3 as:removedAt as:ev2.
as:ev1 a as:Observation. as:ev1 a as:WaterDamage".
as:ev1 as:at "2022-05-21.12:10:00"^^xsd:date.
as:ev2 a as:Removal. as:ev2 as:byCompany "Parken".
as:ev2 as:at "2022-05-22.12:00:00"^^xsd:date.

This marks as:w3 as decommissioned, but also records two events: as:ev1
records that there was some water damage at a specific date and as:ev2 records
that a removal was performed at a specific date by the company Parken. The

Twinning-by-Construction 199

fourth line of the asset model connects the as:w3 with events as:ev1 and as:ev2.
The first event as:ev1, is not relevant for the structure of the DT infrastruc-
ture, yet may trigger a behavioural reconfiguration – our data stream monitor
detects the violation of the moisture constraint, but the DT unit is not moved
to the graveyard. Yet, the information of the reconfiguration is available in the
knowledge graph of the DT infrastructure. For example, consider the following
reconfiguration:

dti:dtu1 dti:twins as:w3.
dti:dtu1 dti:reconfiguration dti:ev3.
dti:ev3 dti:at "2022-05-21.12:11:00"^^xsd:dateTime.
dti:ev3 dti:newParam "1"^^xsd:int.
dti:dtu1 dti:removal dti:ev4.
dti:ev4 dti:at "2022-05-22.12:01:00"^^xsd:dateTime.

Now, the user can run queries to investigate possible causes for a reconfig-
uration, or the consequences of some event. For example, the following query
returns all reconfigurations that happened on the date of a water damage:

SELECT ?reconf {
?asset as:observed ?ev. ?ev a as:WaterDamage.
?dtu dti:twins ?asset. ?dtu dti:reconfiguration ?reconf.
?ev as:at ?datetime. ?reconf dti:at ?datetime.}

A possible perspective is that we check whether an event on asset side has
been twinned. However, a reconfiguration can mirror different events (or changes
without events, due to model drift), so one cannot in general require a one-to-
one correspondence between events in the DT infrastructure and events in the
physical system.5

The above example shows the intricate interactions of asset models, traces,
the re-establishment of twinning properties and self-adaptation at runtime. We
now return to the expression of temporal properties and monitoring of twinning
process itself.

Monitoring Traces. As discussed, consistency of the updating speed is guar-
anteed: Formula TEMP expresses that every change in the asset model is mirrored
in time by the DT infrastructure and the digital twin is simply twinned again.
For example, it cannot be the case that the DT updates too slowly and could
not perform the addition of as:w3 in Step 2 in time so that actions in Steps 3
and 4 are not able to be realised.

A part of this is correctness w.r.t. simple twinning: Every physical unit (that
is correctly handled in the asset model) has a DT unit twinning it. While the

5 Note that while we require a one-to-one correspondence between PT and DT units
here, this is only a simplification for simple twinning, one can easily extend the
system to handle one-to-many twinning relations.

200 E. Kamburjan et al.

final state of the digital twin has the DT unit for as:w1, we know that the
DT has also created DT units for the other assets. Next, we discuss how we
formalize temporal simple twinning, which expresses simple twinning also for
decommissioned physical units. And give the following query TempSimple:

SELECT ?x {
?x a dti:DTUnit.
FILTER NOT EXISTS(

?x dti:twins ?asset. ?asset a as:Decom.
?asset as:removedAt [a as:Removal; as:at ?datetime1].
?x dti:removal [a dti:Remove; dti:at ?datetime2].
FILTER (

microsec(?datetime2) - microsec(?datetime1) < 5*60*1000
)

)
}

If the system is correctly twinned with respect to removal/replacement of
PT and DT units, the query should return an empty set. So the query above
returns all DT units, excepts those which have a removal event within 5min of
the removal of the corresponding asset they twin, i.e., we define 5min as the time
limit for re-twinning. It is guaranteed that this holds if (1) TEMP holds and (2)
the DT infrastructure is implemented correctly. Thus, we monitor that the DT
infrastructure correctly implements the following temporal property, trace-based
TbC :

TEMPm,n ∧ �
(
TempSimple � .= ∅ → ♦[0,n]TempSimple

.= ∅)
.

5 Related Work

The connection of digital twins and asset models so far is mostly used for data
integration to handle the numerous heterogeneous data sources of the physi-
cal twin. For example, Yan et al. [20] use knowledge bases (KBs) to integrate
data in manufacturing equipment, Banerjee et al. [21] use a similar approach to
interact with data from IoT sensors in industrial production lines, and Oakes
et al. [22] for drivetrains. Going one step further, Wascak et al. [23] aim to use
asset models as part of this integration in their abstract digital twin architecture.
More abstractly, Kharlamov et al. [24] have investigated the use of KBs for data
integration in the context of the energy industry, and used this integrated data
to enable machine learning on data streams [25]. Lietaert et al. [26] use KBs
similarly to integrate data for machine learning approaches.

To the best of our knowledge, the use of KBs to handle structural drift of
the PT and its asset model is hitherto unexplored. Various methods exist to
detect parameter or model drift, both statistical, e.g. Woodcock et al. [27] and
formal, e.g. [28]. Multiple works have addressed formal modelling and verifica-
tion of self-adaptive systems to provide assurances [29] using MAPE-K feed-
back loops. Various approaches, from very methodological such as ENTRUST

Twinning-by-Construction 201

[30] to more concrete, using formal techniques, such as ActivFORMS [31] that
uses formal models at runtime in the form of timed automata. Recent works
explore Petri nets to model self-adaptive systems, along with domain specific
language [32–34]. Arcaina et al. have developed Abstract State Machines [3,35]
to model interactive MAPE-K loops. Formal verification of MAPE-K loops have
been also explored from the perspective of use cases. Feng et al. [36] adapts a
case study for DT engineering to verify MAPE-K feedback loops and Päßler et
al. [37] develops a formal model of Metacontrol [38] for the heating system of
a smart home that considers MAPE-K loops and self-adaptation using a black
box approach. Compared to the work presented in this paper, all the previous
approaches focuses on the behavioural aspect of self-adaptation, and not on the
structural aspect as discussed in this paper. To the best of our knowledge, we are
not aware of other approaches that take into account structural self-adaptation
and MAPE-K feedback loops.

6 Conclusion

This paper considers a digital twin infrastructure that combines MAPE-K feed-
back loops and semantic reflection. Whereas feedback loops can be used to real-
ize runtime self-adaptation for the digital twin, semantic reflection enables the
structure of the digital twin and of the asset to be uniformly represented in
a knowledge base. We show how the resulting knowledge base can be queried
by the digital twin application and reasoned over to detect misconfigurations
that violate digital twin correctness properties. Consequently, the feedback loops
and semantic reflection jointly ensure that the ensemble of digital artefacts is
indeed always a correct twin, i.e., the combined digital artefacts are twinned-by-
construction.

In the paper, we consider the monitoring of both structural and temporal
correctness properties for digital twin reconfiguration, including that a structural
twin relation is established by the repair function, that the time delay required
by reconfiguration is within a given bound, and that the digital thread is reflected
in the digital twin framework. To this aim, the knowledge base is extended to
capture execution traces, such that the evolution of the physical and digital
systems can be compared by querying the knowledge base.

In our current work, the correctness property of twinning is specified as an
empty query result from a query on the knowledge base that combines the asset
model and the semantically reflected digital twin configuration.

In future work, we plan to investigate the feasability of our approach using
a bigger case study that will be evaluated the SMOL framework, which supports
both semantic reflection and digital artefacts embedded as FMUs. Furthermore,
we plan to investigate the static verification of query-based specifications of
programs with knowledge bases.

Acknowledgements. This work was partially supported by University of Bergen
and the Research Council of Norway via the projects SIRIUS (237898) and PeTWIN
(294600).

202 E. Kamburjan et al.

References

1. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software
Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02161-9_3

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

3. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K
feedback loops for self-adaptation. In: Inverardi, P., Schmerl, B.R. (eds.) 10th
IEEE/ACM International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2015), pp. 13–23. IEEE Computer Society (2015)

4. Kamburjan, E., Klungre, V.N., Schlatte, R., Johnsen, E.B., Giese, M.: Program-
ming and debugging with semantically lifted states. In: Verborgh, R., et al. (eds.)
ESWC 2021. LNCS, vol. 12731, pp. 126–142. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77385-4_8

5. Blochwitz, T., et al.: Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: The Modelica Association Modelica
Conference, pp. 173–184 (2012)

6. Kamburjan, E., Johnsen, E.B.: Knowledge structures over simulation units. In:
Proceedings of the SCS Annual Modeling and Simulation Conference (ANNSIM)
(2022). In press

7. Kamburjan, E., Klungre, V.N., Schlatte, R., Tapia Tarifa, S.L., Cameron, D.,
Johnsen, E.B.: Digital twin reconfiguration using asset models. In: Proceedings
of the 11th International Symposium on Leveraging Applications of Formal Meth-
ods (ISoLA 2022) (2022). This volume

8. Gould, L.S.: What are digital twins and digital threads? Automot. Des. Prod. 23
(2018)

9. Margaria, T., Schieweck, A.: The digital thread in industry 4.0. In: Ahrendt, W.,
Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 3–24. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34968-4_1

10. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
CRC Press, Chapman and Hall (2010)

11. W3C, RDF Working Group: Resource description framework https://www.w3.org/
RDF

12. Fjosna, E., Waaler, A.: READI information modelling framework (IMF). Asset
Information Modelling Framework. Technical report, READI Joint Industry
Project (2021). https://readi-jip.org/wp-content/uploads/2021/03/Information-
modelling-framework-V1.pdf

13. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_1

14. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

15. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in man-
ufacturing: a categorical literature review and classification. IFAC-PapersOnLine
51(11), 1016–1022 (2018)

16. W3C, SPARQL Working Group: Sparql 1.1 query language https://www.w3.org/
TR/sparq

https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/978-3-030-34968-4_1
https://www.w3.org/RDF
https://www.w3.org/RDF
https://readi-jip.org/wp-content/uploads/2021/03/Information-modelling-framework-V1.pdf
https://readi-jip.org/wp-content/uploads/2021/03/Information-modelling-framework-V1.pdf
https://doi.org/10.1007/978-3-642-35813-5_1
https://www.w3.org/TR/sparq
https://www.w3.org/TR/sparq

Twinning-by-Construction 203

17. Brandt, S., Kalayci, E.G., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev,
M.: Ontology-based data access with a horn fragment of metric temporal logic. In:
AAAI, pp. 1070–1076, AAAI Press (2017)

18. Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255–299 (1990)

19. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_15

20. Yan, H., Yang, J., Wan, J.: KnowIME: a system to construct a knowledge graph
for intelligent manufacturing equipment. IEEE Access 8, 41805–41813 (2020)

21. Banerjee, A., Dalal, R., Mittal, S., Joshi, K.P.: Generating digital twin models
using knowledge graphs for industrial production lines. In: Proceedings of the Web
Science Conference (WebSci 2017), pp. 425–430, ACM (2017)

22. Oakes, B.J., Meyers, B., Janssens, D., Vangheluwe, H.: Structuring and accessing
knowledge for historical and streaming digital twins. In: Tiddi, I., Maleshkova, M.,
Pellegrini, T., de Boer, V., (eds.) Joint Proceedings of the Semantics Co-located
Events: Poster& Demo Track and Workshop on Ontology-Driven Conceptual Mod-
elling of Digital Twins Co-located with Semantics 2021, vol. 2941 of CEUR Work-
shop Proceedings. CEUR-WS.org (2021)

23. Waszak, M., Lam, A.N., Hoffmann, V., Elvesæter, B., Mogos, M.F., Roman, D.: Let
the asset decide: digital twins with knowledge graphs. In: 19th IEEE International
Conference on Software Architecture (ICSA) (2022)

24. Kharlamov, E., Martín-Recuerda, F., Perry, B., Cameron, D., Fjellheim, R.,
Waaler, A.: Towards semantically enhanced digital twins. In: IEEE BigData, pp.
4189–4193, IEEE (2018)

25. Zhou, B., et al.: SemML: facilitating development of ML models for condition
monitoring with semantics. J. Web Semant. 71, 100664 (2021)

26. Lietaert, P., Meyers, B., Van Noten, J., Sips, J., Gadeyne, K.: Knowledge graphs
in digital twins for AI in production. In: Dolgui, A., Bernard, A., Lemoine, D.,
von Cieminski, G., Romero, D. (eds.) APMS 2021. IAICT, vol. 630, pp. 249–257.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85874-2_26

27. Woodcock, J., Gomes, C., Macedo, H.D., Larsen, P.G.: Uncertainty quantification
and runtime monitoring using environment-aware digital twins. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12479, pp. 72–87. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-83723-5_6

28. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Form. Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

29. Weyns, D., et al.: Perpetual assurances for self-adaptive systems. In: de Lemos, R.,
Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Sys-
tems III. Assurances. LNCS, vol. 9640, pp. 31–63. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-74183-3_2

30. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2017)

31. Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation.
In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2014), pp. 125–134, ACM (2014)

32. Fakhir, M.I., Kazmi, S.A.R.: Formal specification and verification of self-adaptive
concurrent systems. IEEE Access 6, 34790–34803 (2018)

https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-030-85874-2_26
https://doi.org/10.1007/978-3-030-83723-5_6
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-319-74183-3_2
https://doi.org/10.1007/978-3-319-74183-3_2

204 E. Kamburjan et al.

33. Mian, N.A., Ahmad, F.: Modeling and analysis of MAPE-K loop in self adaptive
systems using Petri nets. Int. J. Comput. Sci. Netw. Secur. 17, 6 (2017)

34. Camilli, M., Capra, L.: Formal specification and verification of decentralized self-
adaptive systems using symmetric nets. Discrete Event Dyn. Syst. 31(4), 609–657
(2021)

35. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of
self-adaptive systems with decentralized control. In: ACM Transactions on
Autonomous and Adaptive Systems (2016)

36. Feng, H., et al.: Integration of the MAPE-K loop into digital twins ANNSIM (2022).
To appear

37. Päßler, J., Aguado, E., Silva, G.R., Corbato, C.H., Johnsen, E.B., Tapia Tarifa,
S.L.: A formal model of Metacontrol in Maude (2022). Under review

38. Corbato, C.H.: Model-based self-awareness patterns for autonomy. PhD thesis,
Universidad Politécnica de Madrid (2013)

On Formal Choreographic Modelling:
A Case Study in EU Business Processes

Alex Coto1, Franco Barbanera2, Ivan Lanese3, Davide Rossi4,
and Emilio Tuosto1(B)

1 Gran Sasso Science Institute, L’aquila, Italy
emilio.tuosto@gssi.it

2 Department of Mathematics and Computer Science, University of Catania,
Catania, Italy

3 Focus Team, University of Bologna/INRIA, Bologna, Italy
4 University of Bologna, Bologna, Italy

Abstract. Formal choreographic modelling advocates a correctness-by-
construction principle for the development of sound communication pro-
tocols. This principle usually hinges on syntactic or semantic restrictions
to rule out models that could lead to communication glitches like mes-
sage losses or deadlocks.

This paper explores how these restrictions impact on the usability
of formal modelling. More precisely, we benchmark the use of a formal
choreographic modelling language designed to support the correctness-
by-construction principle of message-passing systems. To this purpose,
we consider the formal choreographic modelling of real business processes
taken from the official documentation of European customs business pro-
cess models. In fact, following a steadily increasing trend, the European
Union started to use BPMN to support the legal provisions of the cus-
toms business process models.

1 Introduction

Choreographic models [30] are becoming popular in many application domains.
For instance, the business process modelling notation (BPMN) [29] is used to
design and document both software [31] and other kinds of workflows such as
those in the health domain (e.g., [26]) or, as for the case study of this paper, in
public administrations (e.g., [34]). Such models are described by means of nota-
tions presenting a wide range of levels of formalisation. Semi-formal notations
like BPMN are rather expressive and flexible since they tend to feature sev-
eral mechanisms to ease the representation of complex processes. As a matter

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No 778233, by the MIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems) and
by the Progetto di ateneo Unict PIA.CE.RI. 2020–2022 Linea 2. Barbanera, Lanese and
Tuosto have also been partially supported by INdAM as members of GNCS (Gruppo
Nazionale per il Calcolo Scientifico).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 205–219, 2022.
https://doi.org/10.1007/978-3-031-19849-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_13

206 A. Coto et al.

of fact, semi-formal approaches are customary among practitioners and usually,
once requirements are collected, they are the first step taken in the development
phase. Formal approaches, instead, have been developed - mostly in academia
- with the aim of supporting the so-called correctness-by-construction principle.
Accordingly, a choreography holistically describes the interactions of a system
and enables the “automatic” extraction of a skeleton description of its single com-
ponents. Key to this approach is the guarantee that systems obtained that way do
enjoy relevant communication properties such as lock-freedom. Researchers strive
for the development of solid theories to support the correctness-by-construction
principle. Ideally, it would be desirable to attain theories and tools that are
flexible and expressive enough to be largely applicable in practice. The present
paper analyses through a practical example the distance between a semi-formal
and a formal model. We hope that our small hands-on analysis sheds some light
on the usefulness of formal models.

The correctness-by-construction principle mentioned above hinges on the
interplay between the so-called global and a local view of a formal choreogra-
phy. The former view specifies the observable behaviour of the process at hand
as a whole while the latter view specifies the behaviour of each component in
isolation. The usual design approach rests on two steps:

– First, the designer defines a global view of the process that enjoys suitable
properties, often dubbed well-formedness conditions.

– Then, local views (and possibly executable artefacts) are algorithmically
derived from the global view by means of a projection operation guaran-
teeing relevant communication properties when applied to well-formed global
views.

Often, well-formedness conditions are defined in terms of syntactic or semantic
restrictions. Several formal modelling languages have been proposed in the liter-
ature to realise this correcteness-by-construction principle (see [2,3,6,13,18,23,
28,32,33] to mention but a few, others can be found in the survey in [25]).

In this paper we address the following question:

to what extent well-formedness conditions hinder modelling?

We consider the formal modelling of real business processes taken from the offi-
cial documentation of European customs business process models available at
https://aris9.itsmtaxud.eu/businesspublisher. The documentation of these pro-
cesses is heavily based on BPMN [29] specifying the interactions among par-
ticipants involved in the bureaucracy of legal provisions. The type of BPMN
diagram adopted for this specification is a collaboration diagram, that is a dia-
gram that can represent both the inner structure of the business process of each
involved party (in terms of tasks, choices and so forth) and the structure of the
interactions among these parties (in terms of message exchanges). As we shall
see, this greatly helps in connecting our formalisation to the case study.

An exhaustive analysis on the family of formal choreographic formalisms
would be beyond our possibilities. We therefore choose global choreographies [33]
(g-choreographies for short) because they have a straightforward semantics and
feature an intuitive visual presentation akin to BPMN diagrams, so easing the

https://aris9.itsmtaxud.eu/businesspublisher

On Formal Choreographic Modelling 207

comparison between the two. We refer the reader to [33] for a formal presentation
of g-choreographies; here we will overview them in Sect. 2 and exploit their visual
notation to informally describe them by examples in Sect. 4.

The correcteness-by-construction principle is rendered in g-choreographies by
requiring the so called well-branchedness condition [33]. Intuitively, this condi-
tion requires that each distributed choice

– has a unique active participant, that is only one of the participants of the
choice decides which branch has to be followed

– any participant other than the active one is passive, namely it either (i) has
exactly the same observable behaviour in each branch, or (ii) it is (unambigu-
ously) notified of the choice by a participant already aware of the decision.

Our comparative analysis highlights that well-formedness conditions of for-
mal choreographic models have an heavy impact on the modelling of the
processes. As we argue in Sect. 5, this is not only due to the choice of g-
choreographies as choreographic formalism but, more generally, to the con-
straints required to ensure the correcteness-by-construction principle.

Besides the typical fact that assumptions have to be made when semi-formal
documentation of processes is ambiguous or incomplete, we have observed that
the similarity between BPMN and g-choreographies cannot always be exploited.
In particular, we have observed that optional sub-processes do clash with the
restrictions imposed by g-choreographies and, as argued in Sect. 5, with most
of the formal approaches in the literature. More crucially, exploiting similarities
may actually be misleading and leads to models that do not faithfully reflect the
intended behaviour of the process. This problem can be resolved using design
languages that are not well-structured (yet formal), at the cost of renouncing to
exploit the affinity.

Structure of the Paper. Section 2 presents a brief background on BPMN and
g-choreographies. Section 3 introduces our case study. Section 4 shows the g-
choreographies of the case study. Section 5 reports the analysis of our modelling
exercise. Finally, Sect. 6 draws some conclusions and sketches future work.

2 Background

In order to support the modelling of business processes, the Object Management
Group (https://www.omg.org) introduced the Business Process Model and Nota-
tion (BPMN) specification [29]. The main aim of this specification is to provide
a notation comprehensible to business users while capturing complex process
semantics for technical users. In fact, BPMN is the de facto standard used to
describe business processes. In this context a business process is a generic pro-
cess, in the sense of a coordinated set of activities aiming at achieving a goal,
where the goal is the production of goods or the supply of services. BPMN has
been designed for a wide array of business users interested in different viewpoints;
this translates into the definition of four different diagrams (and their respective
underlying metamodels): process, collaboration, conversation and choreography.

https://www.omg.org

208 A. Coto et al.

Process diagrams focus on detailing the internal structure of a business pro-
cess. The process is modeled as a network of flow objects (events, activities and
gateways) connected by connecting objects (sequence flows). The execution of a
process can be thought of as a flow of activities described by the traversing of
the process’ network by one or more tokens moving through flow objects, carried
by connecting objects.

Collaboration diagrams depict the cooperation of different partners’ busi-
ness processes in terms of message exchanges (where message flows are an addi-
tional kind of connecting objects). Each partner’s internal process can be fully
described by a process diagram contained in the partner’s pool, or the internal
process can be kept opaque by representing the partner as a collapsed pool.
Figure 1, detailed later in the paper, depicts a collaboration diagram. Three par-
ties (at the top) are represented by collapsed pools. A fourth participant (at the
bottom) is represented by a pool containing the process diagram that details its
internal behavior. The interactions between the parties take place in the form of
message exchanges represented by message flow (the dashed arrows connecting
the various pools).

Choreography diagrams focus on how interactions between participants take
place and abstract completely from the internal behavior of each participant.
Their network is composed of basic message exchanges (choreography task), a
reduced set of events and gateways connected by sequence flows.

Conversation diagrams focus on other interaction-related aspects and are
outside the scope of this paper.

In the context of the present work, BPMN choreography diagrams are most
definitely relevant, however these diagrams are rarely used, possibly because of
their rather convoluted semantics. For example, out of about ∼114000 BPMN
models present in various projects in GitHub1 only 333 of them are choreogra-
phies (less than 0.3%).

The case study we present mostly adopts BPMN collaboration diagrams.
While our focus stays on the interaction between participants, the modeling of
the behavior of some of them represented in the diagrams allows us to better
understand their internal logic.

To model the processes described in Sect. 3 we adopt the language of
global choreographies [33] (g-choreographies for short). The reason to choose
g-choreographies is that the definition of their formal syntax and semantics is
equipped with an intuitive visual presentation akin to BPMN diagrams. In fact,
we will appeal to this intuitive presentation and refer to [33] for the technical
definitions.

The basic elements of g-choreographies are interactions of the form A−→B : m
where A and B are distinct role names and m is a message type drawn from a
given set M (disjoint from the set P of role names). Intuitively, A−→B : m repre-
sents the fact that participant A sends to B the message m (and B receives it).

1 These models have been identified by (i) searching through the GitHub API the files
with the extension .bpmn and then (ii) using pattern matching to identify the ones
describing choreographies.

On Formal Choreographic Modelling 209

A g-choreography is basically interpreted as a regular language over an alphabet
of interactions. For simplicity, we do not consider here another key feature of
g-choreographies, namely parallel composition. In fact, the scenarios we consider
in Sect. 3 do not require parallel composition. However, in practice parallel com-
position is sometimes needed. For instance, the documentation for the amend-
ment process discussed in Sect. 3 specifies a procedure which is independent
of the ones we consider here and can be formalised using parallel composition
of g-choreographies2. Instead of giving a formal definition of g-choreographies,
we will describe them using examples drawn from our scenarios. The following
remarks are worthwhile. In selecting our scenarios we strove to identify parts of
the BPMN models that have a straightforward counterpart in g-choreographies
as well as parts where the connection is not that clear cut. This, and our conse-
quent modelling choices, are instrumental to make the points of Sect. 5.

3 Legal Provisions

In 2010 the European Union introduced the customs business process models [17]
on request of member states’ customs authorities. These processes are expressed
for the most part as a mix of text and BPMN diagrams [29] collected in the repos-
itory at https://aris9.itsmtaxud.eu/businesspublisher (and publicly available by
following the ‘Anonymous access’ link there). The purpose of these models is to
document and facilitate the reading of the legal provisions.

We will focus on the workflow of the procedures for the entry of goods. A key
element within these procedures is the entry summary declaration (ENS), a docu-
ment submitted by declarants stating relevant information for the import (nature
of the goods, carrier, etc.). These procedures activate several tasks which depend
on multiple factors such as where ENS documents were lodged and the transport
infrastructures through which the goods enter (i.e. sea, air, or road&rail). Also,
after its submission, an ENS goes through a validation process. The validation
culminates either in the registration of the ENS or in the request of amendments
or additional information. In the latter case, the EU regulations require to notify
these requests to the involved parties.

Amendment. We illustrate part of this procedures starting by briefly describing
how an amendment3 gets processed on the customs office of first entry (COFE).
The process is documented by the L3-ENT-01-05-Process ENS At Office Of
First Entry - Amendment diagram in the repository, reported in Fig. 1.

Upon being received by the COFE, the amendment goes through an initial
verification process to check, for example, whether the amendment concerns pre-
viously submitted information. If the amendment of the ENS is deemed valid, it
is registered and multiple participants are notified; according to the documen-
tation,
2 A precise formalisation would involve also other considerations that do not emerge

very clearly from the current documentation.
3 Amendments may be necessary due to changes of e.g., carriers, or dates of travel of

the goods, etc.

https://aris9.itsmtaxud.eu/businesspublisher

210 A. Coto et al.

Fig. 1. BPMN specification of the amendment process

– if the amendment was lodged at the COFE, a registration notification is sent
to the declarant ;

– a carrier is notified when different from the declarant and asks to be notified;
– if, instead than at COFE, the amendment was lodged in another customs

office (OCOFE) then the OCOFE has to be notified;

If the amendment is invalid instead, the participants are notified of the rejection
following a communication pattern for notifications similar to the one above.

Arrival of Goods. A more elaborate process describes the arrival of goods. For
the purpose of illustration, let us focus on the case where the goods arrive
through road and rail as depicted in the set of diagrams collected in the repos-
itory (cf. L3-ENT-01-04-Process ENS At Office Of First Entry-Road and
Rail), one of which is reproduced4 in Fig. 2. The diagram in Fig. 2 is more
complex than the one in Fig. 1; in fact, it contains nested choices with a loop
involving several participants. We now comment on the procedure designed for
the arrival of goods as depicted in Fig. 2.

When a full or partial ENS is received at the declared COFE, a first check
occurs for the validity and consistency of the information provided. If the ENS
is deemed invalid, it is rejected, and this is notified to the declarant so that they
can optionally send amendments and iterate the above procedure. Otherwise, the
4 The diagram is hardly readable; it is reported only to give readers a hint on the

complexity of these models. Some details of the model can be inferred from the
g-choreography Fig. 4 (cf. Sect. 4) corresponding to the diagram in Fig. 2.

On Formal Choreographic Modelling 211

F
ig
.
2
.
B

P
M

N
sp

ec
ifi

ca
ti

o
n

o
f
th

e
p
ro

ce
ss

fo
r

th
e

a
rr

iv
a
l
o
f
g
o
o
d
s

212 A. Coto et al.

ENS is registered and automatically assigned a master reference number (MRN),
which is stored in the system. This registration is notified to the declarant and
optionally to the carrier (under the same conditions as for the amendment pro-
cedure).

At this point, a risk analysis involving some member states needs to occur.
Therefore, the ENS is forwarded to the states and the custom offices deemed
to be involved in the risk analysis. These offices should send back information
about any identified risks. If any additional information is required by the COFE
or the OCOFE (depending on where the ENS was lodged to), the declarant and
(optionally) the carrier are requested to send such information to the relevant
office. Also, there might be the need for additional controls to be performed,
in which case some of the involved participants (i.e., Declarant, Carrier, and
OCOFE) might need to be notified, in a similar fashion as when additional infor-
mation is required. Once the additional controls (if any) are performed, the ENS
Data Risk results and control measures should be forwarded to the involved
member states customs offices.

Simplifying Assumption. The processes described above are part of a larger
workflow, the formalisation of which falls out of the scope of this paper. In fact,
in the next sections we will assume that the declarant decided to lodge the ENS
to the COFE. The other option would yield basically the same g-choreographies;
hence we do not consider it, so reducing the amount of branching and avoiding
repetitions. Another assumption is that carrier and declarant do not coincide;
the other case can simply be obtained by removing from our formalisation all
the branches involving the carrier.

4 Formal Models

We now describe the g-choreographies corresponding to the BPMN diagrams
of our case studies. These models have been manually produced from the docu-
mentation available at https://aris9.itsmtaxud.eu/businesspublisher. We believe
that this process could be partly automated by “compiling” the BPMN models
into g-choreographies; however, this is not in the scope of this paper.

Amendment. A g-choreography capturing the amendment process is given by
the diagram in Fig. 3. The intuitive graphical notation uses gates to represent
the combinators of the language; in particular branching and merging points of
a non-deterministic choice (and loops) are represented by + -gates. Noteworthy,
the branching structure of the process in Fig. 3 reflects the one of the BPMN
diagram in Fig. 1. Actually, any g-choreography is well-structured in the sense
that gates behave as well-balanced parenthesis: for each opening gate there is a
corresponding closing one. (In passing we note that well-structuredness is also
considered in BPMN modelling and it is studied in e.g., [10] and references

https://aris9.itsmtaxud.eu/businesspublisher

On Formal Choreographic Modelling 213

COFE Declarant : Rej COFE OCOFE : Rej COFE OCOFE : RegReg COFE Declarant : RegReg

+

COFE Carrier : Rej COFE Carrier : RegReg

+

+

+

+

+

Fig. 3. The amendment process as g-choreography

therein.) Well-structuredness is pictorially represented in Fig. 3 by making clos-
ing gates darker than opening ones. For instance, the topmost (opening) + -gate
is matched by the bottommost (closing) one; note5 that this is not the case for
the BPMN diagram of Fig. 1 where the second diamond from the left is not
matched by any closing gateway. The - and the -gates mark the start and the
end of the g-choreography, respectively.

The semantics of a g-choreography can be described in intuitive terms as the
sequences of interactions6 from the -gate to the -gate. For instance, in the
diagram of Fig. 3 the topmost + -gate allows four possible branches that capture
the options that COFE has to consider when validating an ENS. The following
remarks are worthwhile for our considerations in Sect. 5. Firstly, the diagram in
Fig. 3 should be considered embedded in a larger process where Declarant had
previously sent the ENS either to COFE or OCOFE. Secondly, as per the infor-
mal description of the scenario in Sect. 3, the diagram abstracts away from the
details about how COFE decides the next course of action. Finally, the innermost
choices do not respect the conditions that g-choreographies require to guarantee
correctness (which will be described in Sect. 5).

Arrival of Goods. The g-choreography for the arrival of goods process, shown
in Fig. 4, is rather more complicated than the one for the amendment. Since
the former process has more optional interactions than the latter one, Fig. 4 has
several + -gates with a branch with an empty box directly connected to the corre-
sponding closing gate; this visually represents the fact that the choice is possibly
resolved without explicit interactions. As said, the diagram is obtained from the
L3-ENT-01-04-Process ENS At Office Of First Entry - Road and Rail
BPMN present in the repository as depicted in Fig. 2.

5 This remark will be reconsidered in Sect. 5.
6 Formally, these are the words generated by the g-choreography interpreted as a

regular expression on an alphabet of interactions.

214 A. Coto et al.

COFE Declarant : ENSRej COFE Declarant : ENSRegENSReg

+

COFE Carrier : RegReg

+

+

COFE COPC : FwdENS

COPC COFE : RiskInfo

COFE Declarant : MoreInfo

COFE Carrier : MoreInfo

Declarant COFE : AdditionalInfo

+

+

+

+

+

COFE Declarant : AdvInt

COFE COFE : AdvInt
+

+

COFE COPC : ENSData
+

+
+

Fig. 4. The arrival of goods process as g-choreography

On Formal Choreographic Modelling 215

A source of complexity in this diagram is the presence of the loop for the
request of additional information whose entry point is the rightmost + -gate. This
loop is structurally isomorphic to the corresponding one in the BPMN diagram.
We will see in Sect. 5 that this is not however a correct formalisation of the
process due to the different semantics.

5 From BPMN to Global Choreographies

This section discusses the nuances of the formalisation of the scenarios with g-
choreographies. A definite advantage has been the use of the BPMN diagrams
specifying procedures as starting point; indeed these diagrams greatly help in
understanding the processes, without having to dive in the actual legislation.
In fact, this allowed us to exploit the similarities between g-choreographies and
BPMN. Nonetheless, several assumptions and modelling decisions had to be
taken due to factors which are worth discussing here. In fact, we believe that
they would occur regardless of the formal choreographic language used.

The BPMN diagrams of our scenarios heavily rely on value passing. In
fact, several decisions cannot be taken without assuming that some informa-
tion is properly propagated to participants. For instance, the decision of noti-
fying the carrier is taken according to some information somehow available at
COFE through an interaction between carrier and COFE, presumably after car-
rier and declarant agreed on the ENS. In a modelling language which abstract
away from data, such choices either become non deterministic choices (like in
our g-choreographies) or explicit interactions. We opted for the first alterna-
tive to maintain an higher degree of similarity between BPMN diagrams and
g-choreographies as well as because it is not always straightforward to extract
the conditions determining such choices from the documentation. For instance,
it is not clear from the documentation if an ENS where declarant and carrier
coincide can be amended to one where they are different; also, the interpretation
of the BPMN diagram would be drastically different if this amendment were
possible. This decision has however drawbacks which we now spell out.

A first problem is the one announced at the end of Sect. 4. The loop in
Fig. 4 seemingly corresponds to the one in the BPMN diagram but, actually,
it has a semantics different than the intend one. In the BPMN diagram, the
notification to the carrier is either sent in all iterations or in none of them;
this is possible because the decision of COFE is taken according to previously
received information which does not change during the iteration. Instead, this
is not the case in the g-choreography of Fig. 4: at each iteration COFE can non-
deterministically decide to perform the notification or not. To faithfully model
the intended behaviour the loop should be preceded by a choice where COFE
decides either to iterate and always send the notification or to iterate just the
interactions with the declarant.

More in general, choreographic formalisms ensuring correctness-by-
construction require that choices are taken by a single participant and com-
municated to other involved participants via message passing, that is by sending

216 A. Coto et al.

them different messages. This rules out the possibility, quite common in practice
and explicitly covered by BPMN’s data-based exclusive gateway, that decisions
are taken based on data. For instance, in the example above the choice of noti-
fying the carrier or not depends on shared data.

The other issue is also related to the fact that formal choreographic languages
are often conceived to support the correctness-by-construction principle. Correct-
ness typically refers to communication properties such as deadlock freedom or
guarantees about messages (e.g., no message loss). This requires to limit language
expressivity. For instance, many variants of global types (see [25] and references
therein) do not allow choices with empty branches. As seen, the BPMN models of
the scenarios heavily rely on optional communications to some participants (e.g.,
the notification of rejection to the carrier). Unlike global types, g-choreographies
can faithfully reflect this; in fact, optional communications have been rendered
as g-choreographies with + -gates representing a non-deterministic choice where
a branch is empty. However, this bluntly violates the well-branchedness condi-
tion required for the correctness of g-choreographies [33]. In fact, according to
the semantics of g-choreographies, Carrier cannot be certain whether the ENS
is rejected or there is a delay in the communication from COFE. An analysis of
the g-choreography in Fig. 3 would flag this as a problem whose solution would
force us to introduce some interaction on the empty branch. On the other hand,
optional processes (like the notification to the carrier) occur rather often in prac-
tice. Optional behaviour is supported in choreography automata [2], according to
the refined theory recently proposed in [19,20]. Optional behaviour can also be
specified in [22,24], but there if a participant joins only a part of a choreography,
explicit connection and disconnection actions are required. Indeed, choreography
automata allow selective participation, that is there can be participants occurring
only on some of the branches of a non-deterministic choice.

As discussed in Sect. 4, g-choreographies are well-structured. This is often
a desirable property of design languages and basically all syntax-based chore-
ographic modelling languages are well-structured. In practice however, well-
structured languages may be forced —by their own nature— to handle some typi-
cal situations in a cumbersome way. For instance, the BPMN diagram L3-ENT-01
-04-Process ENS At Office Of First Entry - Road and Rail allows ame-
ndments to an ENS to arrive while the ENS itself is being processed. This would
basically correspond to “jumping” from one branch to another of a choice, which
is not allowed by well-structuredness. To circumvent this problem one has to
replicate the common behaviour on each branch. Notice that this might not be
always straightforward (e.g., when the replication is inside an iteration). In mod-
elling languages such as choreography automata, which are not well-structured,
this problem is less acute.

6 Conclusions and Future Work

This work just scratched the surface of the comparison between BPMN mod-
elling, widely used in practice, and formal choreographic approaches, which have

On Formal Choreographic Modelling 217

been deeply investigated theoretically (see the survey in [25], and in particular
all the thread on multiparty session types [23]). We are not aware of other similar
attempts while many works study formal semantics and analysis techniques for
BPMN (see e.g., [9,10,16] and references therein) and BPMN choreographies (see
e.g., [11,12] and references therein). Formal choreographic models are abstrac-
tions built to support the correctness-by-construction principle. Typically, these
formalisms abstract away from many aspects and focus on specific aspects “in
vitro”. For instance, some formal models of choreographies feature value pass-
ing [4,5,19,27], some others have considered adaptive choreographies [7,8,13,22].
Nonetheless, a formalism comprehensively combining these features is missing
and, perhaps, not even worthwhile since it would probably be so complex to be
not applicable in practice.

As we have discussed, easy modelling calls for generalised conditions on chore-
ographic models, e.g., participants may be involved only in some branches of a
choice. This is in particular the case for optional actions. Such a generalization
have been recently considered in [19,22], but they are still missing from many
approaches. On the other side, we believe that it is best practice to avoid dia-
grams which are obscure to the reader, and even less suitable for automatic
analysis. An example here is the case of choices which depend on data. We
believe that what triggers such choices should instead be made apparent by the
messages used in the communications.

Another note is that we found out that most of the available diagrams, includ-
ing the ones we selected as case studies, represent the view of a system from a
single participant (e.g., COFE in our case study). It would be good to develop
techniques for composing such local views into a global view along the lines in [1]
and in [15].

References

1. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Composition and
decomposition of multiparty sessions. J. Log. Algebraic Meth. Program. 119,
100620 (2021)

2. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 6

3. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and choreogra-
phies: bridging the gap between supervisory control and coordination of services.
Log. Meth. Comput. Sci. 16(2), 2–3 (2020)

4. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15375-4 12

5. Bocchi, L., Melgratti, H.C., Tuosto, E.: On resolving non-determinism in chore-
ographies. Log. Methods Comput. Sci. 16(3) (2020)

6. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.)
COORDINATION 2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006).
https://doi.org/10.1007/11767954 5

https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/11767954_5

218 A. Coto et al.

7. Castellani, I., Dezani-Ciancaglini, M., Pérez, J.A.: Self-adaptation and secure infor-
mation flow in multiparty communications. Formal Aspects Comput. 28(4), 669–
696 (2016). https://doi.org/10.1007/s00165-016-0381-3

8. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive multiparty ses-
sions. Serv. Oriented Comput. Appl. 9(3), 249–268 (2014). https://doi.org/10.
1007/s11761-014-0171-9

9. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach to
modeling and verification of business process collaborations. Sci. Comput. Pro-
gram. 166, 35–70 (2018)

10. Corradini, F., Morichetta, A., Muzi, C., Re, B., Tiezzi, F.: Well-structuredness,
safeness and soundness: a formal classification of BPMN collaborations. J. Log.
Algebraic Meth. Program. 119, 100630 (2021)

11. Corradini, F., Morichetta, A., Polini, A., Re, B., Tiezzi, F.: Collaboration vs. chore-
ography conformance in BPMN. Log. Methods Comput. Sci. 16(4) (2020)

12. Corradini, F., Morichetta, A., Re, B., Tiezzi, F.: Walking through the semantics
of exclusive and event-based gateways in BPMN choreographies. In: Alvim, M.S.,
Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling Compu-
tational Systems: A Journey from Logic and Concurrency to Security and Privacy.
LNCS, vol. 11760, pp. 163–181. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31175-9 10

13. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies: theory and implementation. Log. Meth. Comput. Sci. 13(2) (2017)

14. de’Liguoro, U., Melgratti, H.C., Tuosto, E.: Towards refinable choreographies. In:
Lange, J., Mavridou, A., Safina, L., Scalas, A. (eds.) Proceedings 13th Interaction
and Concurrency Experience, ICE 2020, 19 June 2020, Volume 324 of EPTCS, pp.
61–77 (2020)

15. de’Liguoro, U., Melgratti, H.C., Tuosto, E.: Towards refinable choreographies. J.
Log. Algebraic Meth. Programm. 127, 100776 (2022). Extended and revised version
of [14]

16. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

17. EU customs BPMN. https://ec.europa.eu/taxation customs/customs-4/union-
customs-code/ucc-bpm en

18. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. TCS 328(1–2), 19–37 (2004)

19. Gheri, L., Lanese, I., Sayers, N., Tuosto, E., Yoshida, N.: Design-by-contract for
flexible multiparty session protocols. In: Ali, K., Vitek, J. (eds.) 36th European
Conference on Object-Oriented Programming, ECOOP 2022, 6–10 June 2022,
Berlin, Germany, Volume 222 of LIPIcs, pp. 8:1–8:28. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022)

20. Gheri, L., Lanese, I., Sayers, N., Tuosto, E., Yoshida, N.: Design-by-contract for
flexible multiparty session protocols (artifact). Dagstuhl Artifacts Ser. 8(2), 21:1–
21:5 (2022)

21. Guanciale, R., Tuosto, E.: An abstract semantics of the global view of choreogra-
phies. In: Proceedings 9th Interaction and Concurrency Experience, ICE 2016,
Heraklion, Greece, 8–9 June 2016, pp. 67–82 (2016)

22. Harvey, P., Fowler, S., Dardha, O., Gay, S.J.: Multiparty session types for safe
runtime adaptation in an actor language. In: Møller, A., Sridharan, M. (eds.) 35th
European Conference on Object-Oriented Programming, ECOOP 2021, 11–17 July
2021, Aarhus, Denmark (Virtual Conference), Volume 194 of LIPIcs, pp. 10:1–
10:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

https://doi.org/10.1007/s00165-016-0381-3
https://doi.org/10.1007/s11761-014-0171-9
https://doi.org/10.1007/s11761-014-0171-9
https://doi.org/10.1007/978-3-030-31175-9_10
https://doi.org/10.1007/978-3-030-31175-9_10
https://ec.europa.eu/taxation_customs/customs-4/union-customs-code/ucc-bpm_en
https://ec.europa.eu/taxation_customs/customs-4/union-customs-code/ucc-bpm_en

On Formal Choreographic Modelling 219

23. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM, 63(1), 9:1–9:67 (2016). Extended version of a paper presented at POPL08

24. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) Fundamental Approaches to Software Engineering
- 20th International Conference, FASE 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
22–29 April 2017, Proceedings, Volume 10202 of Lecture Notes in Computer Sci-
ence, pp. 116–133. Springer (2017). https://doi.org/10.1007/978-3-662-54494-5 7

25. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

26. Percorsi diagnostici terapeutici e assistenziali adenocarcinoma della prostata.
https://www.ispro.toscana.it/sites/default/files/ReteOncologica/PROSTATA.
ALLEGATO.D.pdf

27. Jongmans, S.-S., van den Bos, P.: A predicate transformer for choreographies. In:
Sergey, I. (ed.) Programming Languages and Systems. PP, pp. 520–547. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-99336-
8 19

28. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Cerone, A., Gruner, S., (eds.)
Sixth IEEE International Conference on Software Engineering and Formal Meth-
ods, SEFM 2008, Cape Town, South Africa, 10–14 November 2008, pp. 323–332.
IEEE Computer Society (2008)

29. Object Management Group. Business Process Model and Notation (BPMN).
https://www.omg.org/spec/BPMN/2.0.2/PDF

30. Peltz, C.: Web services orchestration and choreography. IEEE Comput. 36(10),
46–52 (2003)

31. Pillat, R., Oliveira, T., Alencar, P., Cowan, D.: BPMNt: a BPMN extension for
specifying software process tailoring. Inf. Softw. Technol. 57, 95–115 (2015)

32. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of choreog-
raphy. In: Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, pp. 973–982 (2007)

33. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. JLAMP, 95,
17–40 (2018). Revised and extended version of [21]

34. The r/ukpersonalfinance flowchart v3.0.7. https://flowchart.ukpersonal.finance

https://doi.org/10.1007/978-3-662-54494-5_7
https://www.ispro.toscana.it/sites/default/files/ReteOncologica/PROSTATA.ALLEGATO.D.pdf
https://www.ispro.toscana.it/sites/default/files/ReteOncologica/PROSTATA.ALLEGATO.D.pdf
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-99336-8_19
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://flowchart.ukpersonal.finance

Configurable-by-Construction Runtime
Monitoring

Clemens Dubslaff1(B) and Maximilian A. Köhl2(B)

1 Technische Universität Dresden, Dresden, Germany
clemens.dubslaff@tu-dresden.de

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

koehl@cs.uni-saarland.de

Abstract. Most modern systems, be it cyber-physical or mere software
systems, are highly configurable. The main challenge when dealing with
such configurable systems stems from the usually huge number of sys-
tem variants that can be exponential in the number of configuration
options or features. Monitoring systems that react on observations, e.g.,
sensor data, varying across system configurations or being themselves
configurable also face this challenge but have barely been considered in
the literature. In this paper, we discuss new aspects for runtime mon-
itoring with variability in the system being monitored as well as the
monitor itself. As a first step towards a configurable-by-construction run-
time monitoring approach, we introduce configurable monitors from an
automata-theoretic and stream-based perspective. For this, we harvest
existing work on featured transition systems and present a variability-
aware variant of the stream-based specification language Lola.

1 Introduction

Modern cyber-physical systems such as cars, airplanes, or robots are highly con-
figurable based on customer needs or through their inherent adaptivity to the
environments in which they are operating. For example, cars may come with dif-
ferent driver assistance systems the customer payed for or robots adapt their
behaviors depending on whether they operate in a machine-only or human-
machine co-adaptive setting. Within software systems we also encounter config-
urability, e.g., in software product lines that can be configured through features
as incremental or optional functionalities [2,32]. Often the configuration spaces
are exponential in the number of configuration options or features, which renders
the development, analysis, and explanation of such systems challenging tasks.

The manifold possibilities to configure these systems raise further chal-
lenges also in the runtime monitoring setting that have been barely addressed
in the existing literature. In this paper, we propose first steps towards a

This work was partially supported by the DFG under the projects TRR 248 (see
https://perspicuous-computing.science, project ID 389792660) and EXC 2050/1 (CeTI,
project ID 390696704, as part of Germany’s Excellence Strategy).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 220–241, 2022.
https://doi.org/10.1007/978-3-031-19849-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_14&domain=pdf
http://orcid.org/0000-0001-5718-8276
http://orcid.org/0000-0003-2551-2814
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-031-19849-6_14

Configurable-by-Construction Runtime Monitoring 221

configurable-by-construction runtime monitoring approach that is inspired by
automata-theoretic runtime verification [6,24], featured transition systems [11],
and stream-based runtime monitoring [12,27]. Specifically, we (a) discuss chal-
lenges towards configurable monitors and variability-aware runtime verification
in general, (b) present methods to synthesize concise featured monitors from
specifications in a featured variant of linear temporal logic (LTL) [11], and (c)
introduce a configurable variant of the stream-based specification language Lola
[12] together with a family-based analysis for well-formedness and efficient mon-
itorability that exploits commonalities across system variants. While there exist
many different approaches to runtime monitoring and verification, automata-
based and stream-based approaches are among the most prominent [24]. Hence,
we concretize the idea of configurable-by-construction runtime monitoring for
both of them.

Outline and Contribution. This paper is structured as follows. We first dis-
cuss benefits and open challenges in a configurable runtime monitoring setting
(Sect. 2). Then, we introduce an automata-based framework for configurable
monitors and their synthesis from featured LTL specifications (Sect. 3) and
extend the stream-based specification language Lola to the configurable setting
(Sect. 4). These two orthogonal approaches are intentionally presented in self-
contained sections to separate concerns and allow interested readers to choose
the approach according to their needs. We close the paper by summarizing our
findings and related work and provide an outlook on future work (Sect. 5).

2 The Quest of Configurable Runtime Monitoring

Considering monitors to be themselves configurable opens many new challenges.
In this section, we first introduce a running example of a configurable system
from the automotive systems domain before we discuss selected challenges and
how they are addressed in this paper.

2.1 Feature-Oriented Example

While conducting research on real-world runtime monitoring of vehicles [9,22],
we encountered the need for monitor configurability. Inspired by this example,
we here establish a running example on feature-oriented systems modeling.

Real Driving Emissions Tests. It is well known that the real driving emis-
sions (RDE) regulation, put in force by the European Union [29], can be cast
into a runtime monitoring problem using existing stream-based runtime mon-
itoring techniques [22]. An RDE test is supposed to evaluate the emissions of
a vehicle under realistic conditions.1 In recent work, we presented an Android
application [9] that enables laypersons to conduct lightweight RDE tests via the

1 Similar test procedures exist for characteristics of electric vehicles, for instance, those
issued by the United States Environmental Protection Agency [31].

222 C. Dubslaff and M. A. Köhl

standard on-board diagnostic (OBD) interface – a component any modern car
is required to be equipped with [28]. At its core, our application relies on the
runtime monitoring framework RTLola [18]. As different cars usually have differ-
ent fuel-consumption characteristics, are fully electric, or have different sensors,
they provide different information via OBD. To this end, the RTLola specifica-
tion needs to be adapted to each car based on the car’s configuration. Currently,
the required RTLola specifications for the different configurations are pieced
together in an ad-hoc fashion [9].

For example, to compute the amount of emitted pollutants, such as nitrous
oxide (NOx), the exhaust mass flow (EMF), i.e., the mass of exhaust emitted per
time unit, must be known in addition to the relative concentration (in ppm) of
the pollutant in the exhaust gas. While many modern diesel cars come equipped
with sensors providing the relative concentration of nitrous oxide, the EMF is
rarely provided directly via OBD due to the car not having of an EMF sensor.
Fortunately, the EMF can be computed based on various other values such as
the mass air flow (MAF) in combination with the fuel rate (FR) or the fuel-air
equivalence (FAE) ratio.

Hence, the car is configurable by providing different sensors that can be used
for the RDE test. For determining whether the RDE test itself passes, monitor-
ing techniques might be used to establish a monitor observing the sensor data.
However, in this case, both the system being monitored as well as the monitor
itself should configurable as they depend on the cars sensor configuration.

Feature-Oriented Modeling. Variability in configurable systems can be
abstractly described, e.g., using well-known concepts from feature-oriented sys-
tem development [2]. Here, configuration options are encapsulated in features
as optional or incremental units of functionality [32] where each set of features
stands for a system configuration. Not all configurations are feasible in prac-
tice: For instance, any car without an EMF sensor or MAF sensor cannot be
used for RDE tests since then, the EMF cannot be obtained by neither sensing
nor computation. Such constraints on feasible system configurations are usu-
ally specified by feature diagrams [20] to describe the set of valid configurations.
Feature diagrams are hierarchical diagrams over features where the parents of
features have to be also included in the configuration containing the respective
feature. A feature diagram for our RDE example is shown in Fig. 1. Here, if
the FR feature is included in the system variant, this requires feature EMFc
to be included as well.2 Branching connectives in feature diagrams might also
impose constraints on children, e.g., any configuration that has the RDE feature
is also required to include at least one of the features EMF, NOxs, or COs. Differ-
ently, the EMFc feature requires both, the MAFs feature and the FR feature to be
included towards a valid configuration. In total, there are 3+4·(1+2·3) = 31 dif-
ferent system variants, e.g., {RDE,NOxs} and {RDE,EMF,EMFc,MAFs,FAEs},
but not {RDE,NOxs,EMFc}.
2 For brevity, we shorten the feature names for computation and sensor features with

tailing c and s, respectively.

Configurable-by-Construction Runtime Monitoring 223

RDE

EMF NOx sensor CO sensor

EMF computation EMF sensor

MAF sensor FR

FR sensor FAE sensor

feature

all of . . .

feature

some of . . .

Fig. 1. Feature diagram of the configurable RDE system.

2.2 Challenges

While configurable system design and analysis is a well-established area, e.g.,
in feature-oriented software development, the link to runtime monitoring tech-
niques is still missing. Indeed, the example of Sect. 2.1 demonstrates that there
is a need for specification mechanisms that treat configurations as first-class
citizens. It should be clear that similar considerations apply to other scenar-
ios where variability plays a key role, e.g., monitoring of computer networks or
microservice-based cloud applications where reconfiguration and scaling happens
on a rather frequent basis.

Towards our configurable-by-construction approach to runtime monitoring
that establishes the aforementioned link, we now identify five challenges that
are to be addressed:

(1) Featured specification languages: As a first step, variability-aware spec-
ification languages for runtime monitoring and verification have to be developed
or existing languages have to be adapted to account for variability. Such lan-
guages should yield monitor families, i.e., sets of monitors for different configu-
rations, and may in addition offer support for more advanced scenarios such as
online reconfiguration without disrupting any ongoing monitoring.

(2) Family-based monitoring: Given a featured specification, it has to be
possible to decide properties of this specification over all possible configurations
without suffering from the exponential blowup in the number of features. In
particular, in case a monitor has to be configured at runtime, as in Sect. 2.1,
separate monitors for each valid configuration are often infeasible. Similar as for
family-based analysis approaches, where an all-in-one analysis on a family model

224 C. Dubslaff and M. A. Köhl

avoids the combinatorial blowup that arises within a one-by-one analysis of each
configuration [30], a solution to this challenge could be to aim towards family
monitors that are configurable and establish all-in-one family-based monitoring.

(3) Synthesis of monitors: For arriving at a monitor we have to be able
to effectively synthesize such from featured specifications. This applies to moni-
tors for single configurations but also to family monitors to enable a family-based
monitoring approach as described in (2). It might be also possible that for certain
configurations no monitor can be synthesized. The challenge is here to efficiently
check well-formedness of a configuration, i.e., whether a monitor can be synthe-
sized for the configuration, and to determine all well-formed configurations for
which a family monitor can be synthesized. Another interesting question would
be: Can we give an upper bound on the required memory and computation time
of each single configuration monitor or family monitor?

(4) Matching monitor and system configurations: Configurable monitors
can provide monitors with different functionalities depending on the contexts of
the monitor or to enable reconfigurations in the case of family monitors. How-
ever, their primary use case might be monitoring systems that are themselves
configurable. In Sect. 2.1 configurable monitors are required to adapt to the cars
configuration of sensors on which the monitor bases its verdict of passing the
RDE test. For such cases, mechanisms that match system and monitor configu-
rations have to be developed.

(5) Suitable monitor configurations: Monitor configurations may also be
more suitable than others [5]. Returning to Sect. 2.1, the EMF sensor might be
preferred to EMF computation, as it is presumably more precise than a value
computed based on other sensor data. Then, the configuration of monitors turns
to an optimization problem: What is the most suitable monitor configuration
given a requirement, e.g., the matching to system configurations as of (4)?

2.3 This Paper

Exhaustively addressing all of the challenges raised above goes beyond the scope
of this paper. In the following, we tackle some aspects towards configurable
monitors by presenting an automata-based and a stream-based approach.

The automata-based approach is used to enhance standard LTL monitorabil-
ity techniques [24] to the feature-oriented setting, presenting featured monitors
as formalism to specify family monitors (addressing challenge (2)) and a synthe-
sis algorithm towards monitors for properties in featured LTL [11] (3).

Our stream-based approach relies on the specification language Lola3, for
which we introduce a configurable variant (1). We present family-based anal-
3 This applies to all variants of Lola, including the original variant [12], Lola 2.0 [17],

and RTLola [18]. For simplicity, we use “Lola” as an umbrella term here.

Configurable-by-Construction Runtime Monitoring 225

ysis algorithms for well-formedness (3) [12] and efficient-monitorability of con-
figurable Lola specifications that exploits commonalities between configurations
and thus mitigates the exponential blowup in the number of features (2).

3 Configurable Automata-Based Monitoring

In this section, we tackle the problem of constructing featured monitors by means
of an automata-theoretic approach to runtime monitors [7,24] that are config-
urable through features.

3.1 Preliminaries

For a finite set X we denote by X∗ and Xω the sets of finite and infinite sequences
of elements in X, respectively, and by ε ∈ X∗ the empty sequence.

Propositional Logic. By B(X) we denote the set of Boolean expressions over
X, given by the grammar φ::=true | x | ¬φ | φ ∧ φ where variables x range
over X. We use well-known Boolean connectives such as ∨, →, etc. from which
a Boolean expression can be easily obtained using standard syntactic transfor-
mations such as De Morgan’s rule. Further, we define false = ¬true. The
satisfaction relation � ⊆ ℘(X) × B(X) is defined in the usual way, where for
Y ⊆ X and φ ∈ B(X) we have Y � φ if φ evaluates to true when all variables
in Y are assumed to be true and all variables in X \ Y are false, respectively.
We denote by �φ� = {Y ⊆ X | Y � φ} the set of all φ-satisfying sets. With
χ(φ) ∈ B(X) for a formula φ ∈ B(X) we identify a characteristic formula that is
unique modulo φ-satisfaction, i.e., for all φ, φ′ ∈ B(X) with �φ� = �φ′� we have
χ(φ) = χ(φ′).4

Linear Temporal Logic. To specify temporal properties, we rely on linear
temporal logic (LTL) [26]. An LTL formula over X is given by the grammar

ϕ ::= true | x | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where x ranges over X. Basically, an LTL formula is a Boolean expression and we
essentially use the same derived notations but with including the next operator
X and the until operator U. The size |ϕ| of an LTL formula ϕ is defined as the
number of contained operators. An infinite sequence π ∈ Xω with π = π0π1 . . .
satisfies an LTL formula ϕ, written π � ϕ, if either ϕ = true, ϕ = x and
π0 = x, ϕ = ¬ψ and π �� ψ, ϕ = ψ ∧ψ′ and π � ψ as well as π � ψ′, ϕ = Xψ and
π1π2 . . . � ψ, and ϕ = ψUψ′ and there is a k ∈ N such that πkπk+1 . . . � ψ′ and
πiπi+1 . . . � ψ for all i < k.

4 A canonical candidate for χ(φ) would be the disjunctive normal form χ(φ) =∨
Y ∈�φ�

(∧
x∈Y x ∧ ∧

x∈X\Y ¬x
)
, but also any other uniquely chosen formula, e.g.,

focusing on small lengths, would be suitable.

226 C. Dubslaff and M. A. Köhl

Monitors. We loosely follow definitions for automata-theoretic runtime moni-
toring according to Bauer et al. [7].

Definition 1. (Monitor) A monitor is a tuple A = (Q,Σ, δ, ι) where Q is
a finite set of control states containing verdict states �,⊥ ∈ Q, Σ is a finite
input alphabet, δ : Q × Σ → Q is a transition function where δ(p, α) = p for all
p ∈ {�,⊥} and α ∈ Σ, and ι ∈ Q is an initial state.

Intuitively, a monitor is a deterministic finite state automaton that contains two
accepting states V = {�,⊥} that are traps and formalize verdicts � and ⊥. For
π ∈ Σ∗ with π = π0π1 . . . πn we write δ(q, π) for δ(δ(q, π0), π1 . . . πn), i.e., the
state reached after consuming π, where δ(q, ε) = q.

Definition 2. (Monitor for LTL) Let ϕ be an LTL formula over Σ. A mon-
itor A = (Q,Σ, δ, ι) is a monitor for ϕ if for all π ∈ Σ∗

δ(ι, π) = � iff πρ � ϕ for all ρ ∈ Σω and
δ(ι, π) = ⊥ iff πρ �� ϕ for all ρ ∈ Σω.

Intuitively, a monitor for an LTL formula ϕ observes a sequence π and yields
a verdict � or ⊥ if ϕ is surely satisfied or not satisfied, respectively, w.r.t. to all
extensions of π. Conversely, if no verdict state is reached via π, a final decision
about satisfaction of ϕ cannot be drawn.

Theorem 1. ([7]) For any LTL formula ϕ over Σ there is a monitor Aϕ for ϕ

with a state space of size O(22|ϕ|
).

Feature-Oriented Systems. We denote the set of abstract features by F and
say that any set C ⊆ F is a configuration. To formally describe behaviors of
a configurable system family, featured transition systems (FTSs) [11] enhance
transition systems by feature guards, i.e., Boolean expressions over F that are
annotated to transitions. Formally, an FTS is a tuple T = (S, F,Σ,Δ, I) where
S, F , and Σ are finite sets of states, features, and actions, respectively, Δ ⊆
S × B(F) × Σ × S is a featured transition relation, and I ⊆ B(F) × S is a set
of featured initial states. The projection of T onto a configuration C ⊆ F is the
transition system T |C = (S,Σ,Δ|C , I|C) where I|C is the set of initial states ι
for which there is (φ, ι) ∈ I with C � φ and Δ|C ⊆ S × Σ × S is the smallest
transition relation that satisfies

(s, φ, α, t) ∈ Δ C � φ

δ(s, α) = t

The semantics of an FTS T is thus a family of transition systems {T |C | C ⊆
F}.5 To specify variability-aware properties, e.g., for FTSs, featured linear tem-
poral logic (fLTL) has been defined as featured extension of LTL [11]. Formulas

5 Note that behaviors for invalid feature configurations can be specified through non-
satisfying feature guards on initial states, leading to empty initial state projections.

Configurable-by-Construction Runtime Monitoring 227

in fLTL over a feature domain F and an alphabet Σ are of the form [φ]ϕ where
φ ∈ B(F) is a feature guard over F and ϕ is an LTL formula over Σ. For a set
Φ of fLTL formulas, we define Φ|C =

∧
[φ]ϕ∈Φ,C�φ ϕ as the LTL formula that is

effective in a feature configuration C ⊆ F .

Example 1. Let us specify properties for the configurable RDE system example
(see Sect. 2.1). In case the EMF sensor is present, a desirable property is that no
computation of the EMF is triggered, as the EMF should be directly obtained
from the EMF sensor. This could be expressed, e.g., by an fLTL formula

ψ0 = [EMFs]¬♦comp-EMF.

Another example would be the property that if the EMF computation feature
is included and no EMF sensor is present, then after the MAF sensor has been
read, in the next step the EMF must be computed. This is expressed by

ψ1 = [EMFc ∧ ¬EMFs]�(use-MAF-sensor → Xcomp-EMF).

3.2 Featured Monitors

Combining the concepts of monitors and FTSs, we define featured monitors:

Definition 3. (Featured Monitor) A featured monitor is an FTS M =
(Q,F,Σ,Δ, I) where Q contains verdict states V and where for all C ⊆ F :

(i) (q, true, α, q) ∈ Δ for all q ∈ V and α ∈ Σ
(ii) for all p ∈ Q and α ∈ Σ there is exactly one (p, φ, α, q) ∈ Δ with C � φ
(iii) there is exactly one (φ, ι) ∈ I with C � φ

Note that any projection M|C of a featured monitor M onto a configuration
C ⊆ F is a monitor according to Definition 1 when interpreting Δ|C as tran-
sition function and I|C as single state. This monitor is well-defined due to the
uniqueness of C-satisfying transitions and initial states. Intuitively, a featured
monitor M ensembles multiple monitors M|C for feature configurations C ⊆ F .

To combine monitoring functionalities of featured monitors, we define a fea-
tured monitor composition by a product construction that adjusts feature guards
and verdicts. For this, the verdict composition on some p and q is defined by

p � q =

⎧
⎪⎨

⎪⎩

� if p = � and q = �
⊥ if p = ⊥ or q = ⊥
〈p, q〉 otherwise.

Definition 4. (Featured Monitor Composition) Let Mi = (Qi, F,Σ,Δi,
Ii) for i ∈ {0, 1} be two featured monitors over a common feature domain F
and alphabet Σ. The composition of M0 and M1 is defined by M0 � M1 =
(Q,F,Σ,Δ, I) where

228 C. Dubslaff and M. A. Köhl

– Q = V ∪ (Q0 × Q1)
– Δ ⊆ Q × B(F) × Σ × Q is the smallest featured transition relation such that

(p0, φ0, α, q0) ∈ Δ0 (p1, φ1, α, q1) ∈ Δ1

p0 � p1 �∈ V
(
p0 � p1, χ(φ0 ∧ φ1), α, q0 � q1

)
∈ Δ

p ∈ V α ∈ Σ
(p, true, α, p) ∈ Δ

– I =
{(

χ(φ0 ∧ φ1), ι0 � ι1
)

| (φ0, ι0) ∈ I0, (φ1, ι1) ∈ I1

}
.

Recall that χ(φ) denotes a uniquely defined φ-equivalent Boolean expression and
that V = {�,⊥} is the set of verdict states.

Lemma 1. M0 � M1 is a featured monitor for any two featured monitors M0

and M1 over a common feature domain and alphabet.

3.3 Synthesizing Featured Monitors

We use formulas in fLTL to specify variability-aware monitoring properties and
describe how to synthesize featured monitors. Recall that for a set Φ of fLTL
formulas, we define Φ|C =

∧
[φ]ϕ∈Φ,C�φ ϕ as the LTL formula that is effective in

a feature configuration C ⊆ F .

Definition 5. (Featured Monitor for fLTL) Let Φ be a finite set of fLTL
properties over F and Σ. A featured monitor for Φ is a featured monitor M over
F and Σ such that M|C is a monitor for Φ|C for all configurations C ⊆ F .

Thus, a featured monitor for a set of fLTL formulas Φ provides a concise repre-
sentation of a family of monitors that verdicts LTL properties for configurations
to be jointly satisfied.

Let now [φ]ϕ be an fLTL formula over the feature domain F and an alphabet
Σ. Further, let Aϕ = (Q,Σ, δ, ι) be the monitor for ϕ according to Theorem 1.
We then define the featured monitor Mϕ

φ = (Q,F,Σ,Δ, I) by

Δ =
{ (

q, χ(φ), α, δ(q, α)
)
,
(
q, χ(¬φ), α, q

)
| q ∈ Q,α ∈ Σ

}

and I = {(χ(φ), ι), (χ(¬φ),�)}. Note that Mϕ
φ is indeed a featured monitor for

[φ]ϕ since for all configurations C ⊆ F with C � φ we have that Mϕ
φ |C = Aϕ

and Aϕ is a monitor for ϕ.

Theorem 2. For any set of fLTL formulas Φ, we have that MΦ =
�

[φ]ϕ∈Φ Mϕ
φ

is a featured monitor for Φ.6

Example 1. Let us describe how to synthesize a featured monitor from the set
of fLTL formulas Φ = {ψ0, ψ1} from Example 1. First, we construct monitors
for ψ0 and ψ1 according to Theorem 1 and, following the construction for Mϕ

φ

6 The corner case where |Φ| = 0 is covered by the �-verdicting featured monitor Mtrue
true

that arises from Atrue = (V, Σ, δ, �) where δ(p, α) = p for all p ∈ V and α ∈ Σ.

Configurable-by-Construction Runtime Monitoring 229

M0 :

EMFs p Σ\{comp-EMF}

⊥

{comp-EMF}

Σ

¬EMFs � Σ

M1 :

EMFc∧¬EMFs q Σ\{use-MAF-sensor}

r

{use-MAF-sensor}{comp-EMF}

⊥

Σ\{comp-EMF}

Σ
¬EMFc∨EMFs � Σ

Fig. 2. Synthesized featured monitors M0 and M1 for ψ0 and ψ1, respectively

EMFs
p, � Σ\{comp-EMF}

⊥

{comp-EMF}

Σ

EMFc∧¬EMFs �, q Σ\{use-MAF-sensor}

�, r

{use-MAF-sensor}{comp-EMF}

Σ\{comp-EMF}
¬EMFc∧¬EMFs � Σ

Fig. 3. Featured monitor composition MΦ = M0 � M1 for Φ = {ψ0, ψ1}

above, include feature guards towards M0 and M1. In Fig. 2 we depict both M0

and M1. For brevity, we only show the reachable parts where feature guards are
satisfiable, annotated the transitions with the set of possible actions for the
transition, and only indicated the feature guard once in initial states.

In Fig. 3 we show the featured monitor MΦ = M0 � M1 obtained by the
construction of Theorem 2. Note that there is also an initial state (false, 〈p, q〉)
not depicted in Fig. 3 due to the unsatisfiable feature guard. The featured moni-
tor MΦ as of Fig. 3 provides a non-trivial ⊥-verdict and only a trivial �-verdict
for configurations that do not have EMF computation nor sensor. This configu-
ration can be considered as non-valid, since then, no RDE test is possible (see
Sect. 2.1). However, there are also properties that have both, non-trivial ⊥- and
�-verdicts: Consider the property of passing the NOx emission test in an RDE
setup, i.e., that within 60 and 120 min, a valid RDE situation arises and the NOx
emissions are below a threshold of 80 mg/km. To specify this property in fLTL,
observe that time intervals can be expressed in LTL by chains of X-operators,
e.g., ♦[2,4]ϕ stands for the formula XX(ϕ∨X(ϕ∨Xϕ)) specifying ϕ to hold within
2 and 4 time units. With this at hand, the fLTL property for the NOx passing
RDE test could be specified by

230 C. Dubslaff and M. A. Köhl

ψNOx
passed = [NOxs]♦[60,120](valid-RDE ∧ NOx-emission < 80).

If the test is valid within the time interval and the emissions are below the
threshold, then the featured monitor verdicts �, while when passing the upper
time bound of 120 without reaching a valid RDE state where the emissions are
below the threshold, the featured monitor verdicts ⊥.

3.4 Concise Featured Monitors

In the last sections, we introduced featured monitors and provided a method
to synthesize such from fLTL specifications. To keep the presentation clean,
we disregarded several technicalities that, however, would increase feasibility of
the approach. First, our definitions always range over all possible configurations
C ⊆ F but could well be defined to range over valid configurations only. Sec-
ond, our synthesis construction could be enhanced by reduction steps to obtain
more concise featured monitors. For instance, we could join featured transitions
(p, φ, α, q) and (p, φ′, α, q) towards (p, χ(φ ∨ φ′), α, q) as well as featured initial
states (φ, ι) and (φ′, ι) towards (χ(φ ∨ φ′), ι). Transforming featured monitors
into the related formalism of FTSs, we can directly apply dedicated bisimula-
tion techniques [8] towards a compact featured monitor. For this, we label the
verdict states � and ⊥ by corresponding atomic propositions � and ⊥, respec-
tively, and keep all other states not labeled at all. Featured bisimulation is then
achieved w.r.t. verdicts, preserving the featured monitor properties.

4 Configurable Stream-Based Monitoring

As discussed in Sect. 2, there is a need for featured specification languages for
runtime monitoring. We now address this challenge by presenting an extension
of the stream-based specification language Lola [12]. For simplicity, we will do so
for the original variant of Lola [12]. Our extension is orthogonal to the extensions
introduced by Lola 2.0 [17] and RTLola [18]. It should be straightforward to use
the same techniques to introduce variability to those extensions.

We first restate the syntax and semantics of Lola as well as the central theo-
rem necessary for constructing monitors out of Lola specifications. As our con-
tribution, we then (a) introduce a notion of composability of Lola specifications,
(b) use this notion to define configurable Lola specifications, and (c) present a
family-based analysis for configurable Lola specifications ensuring that a moni-
tor can be constructed for each configuration of interest and that the amount of
memory it requires is independent of the length of its input.

4.1 Preliminaries

Let’s start by introducing the stream-based specification language Lola.

Configurable-by-Construction Runtime Monitoring 231

Definition 6. (Lola Specification [12]7) Let T be a set of data types and S be
a set of typed stream variables, i.e., each s ∈ S has an associated type Ts ∈ T . A
Lola specification over T and S is a partial function f : S ⇀ E assigning stream
variables to typed stream expressions. The set of typed stream expressions E is
defined inductively by:

(i) Constants and stream variables of type T are expressions of type T .
(ii) Let g : T1 × · · · × Tk → T be a k-ary operator and η1, . . . , ηk be expressions

of type T1, . . . , Tk, then g(η1, . . . , ηk) is an expression of type T .
(iii) Let η be a Boolean expression and η1 and η2 be expressions of some type T ,

then ite(η, η1, η2) is an expression of type T .
(iv) Let s be a stream variable of type T , c be a constant of type T , and z ∈ Z,

then s[z, c] is a stream expression of type T .

A Lola specification f defines stream expressions for the set dom(f) ⊆ S of
stream variables. Those variables are coined dependent while the remaining vari-
ables are coined independent. The idea is that the stream expressions constrain
the values the dependent variables can have at certain points in time.

The semantics of Lola is defined in terms of evaluation models. An evaluation
model σ of length N assigns a sequence σ(s) = σ1(s) · · · σN (s) of values of type
Ts, coined a stream, to each stream variable s ∈ S. Note that the individual
streams all have the same length N . Given an evaluation model σ we inductively
define an evaluation function �·�t for stream expressions at time t:

�c�t = c �s�t = σt(s) �g(η1, . . . , ηk)�t = g(�η1�t, . . . , �ηk�t)

�ite(η, η1, η2)�t =

{
�η1�t if �η�t = true

�η2�t otherwise

�s[z, c]�t =

{
σt+z(s) if 1 ≤ t + z ≤ N

c otherwise

An evaluation model σ is consistent with a Lola specification f , denoted by
σ � f , if and only if �f(s)�t = σt(s) for all s ∈ dom(f) and 1 ≤ t ≤ N . That is,
the values of each dependent stream variable s ∈ dom(f) over time are consistent
with the expressions specified by f .

Let us now have a look at a concrete example taken from Sect. 2.1. The RDE
regulation stipulates that the acceleration at at time t shall be computed as
follows [29, ANNEX IIIA, Appendix 7a, 3.1.2]:

at = (vt−1 + vt+1)/(2 · 3.6)

7 We slightly deviate from the original definition for notational convenience. In partic-
ular, we do not allow expressions of the form η[z, c] where η is an arbitrary stream
expression. It has been shown that those can be rewritten to s′[z, c] by introducing
an additional stream variable s′ such that f(s′) = η.

232 C. Dubslaff and M. A. Köhl

Hence, the acceleration at time t shall be computed using the velocity v at time
t − 1 and t + 1. The translation into Lola is straightforward:

f(a) =
v[−1, 0] + v[+1, 0]

2 · 3.6

By using an offset expression of the form s[z, c] we can access the value of the
stream variable v in the past as well as the future. The default value c in an
offset expression is used at time t if and only if the time t + z lies outside of the
streams provided by the evaluation model. Offset expressions are arguably the
most innovative feature of Lola and responsible for its great expressive power.
We refer to the original Lola paper for a detailed discussion [12].

Online Monitoring and Well-Formedness. An online monitor for a Lola
specification incrementally computes values for the dependent stream variables
based on incrementally observed independent stream variables. In the following,
we refer to the streams for the independent variables as input streams and to
the streams for the dependent variables as output streams.

Using this terminology, an online monitor for a specification f computes
output streams from input streams such that those streams together form an
evaluation model consistent with the given specification. Being able to construct
such a monitor is the primary purpose of a Lola specification.

In case of our example, assume that v is an independent variable, i.e., the
velocity is provided as an input to the monitor, the monitor will then compute
the stream for the acceleration a as defined by the RDE regulation.

Unfortunately, with the provided definitions, it might be impossible to com-
pute output streams from input streams as no evaluation model may exist or
there might be multiple such models for a given set of input streams leading to
ambiguity [12]. To address this issue, a notion of well-definedness is introduced: A
Lola specification is well-defined if and only if for any set of appropriately typed
input streams, all of the same length, it has exactly one consistent evaluation
model [12]. This restriction ensures that the monitor is well-defined.

From a practical perspective, however, well-definedness is difficult to deal
with. Instead, the original paper [12] introduces a purely syntactic criterion
called well-formedness such that the following central theorem holds:

Theorem 3. ([12]) If a specification is well-formed, then it is well-defined.

Now, well-formedness is defined by means of a dependency graph:

Definition 7. (Dependency Graph) Let f be a Lola specification over the
stream variables S. The dependency graph for f is a directed and weighted multi-
graph G = 〈S, E〉 where E is the set of edges. An edge is a triple 〈sx, sy, z〉 where
sx, sy ∈ S and z ∈ Z. The set E of edges contains an edge 〈sx, sy, z〉 if and only
if sx ∈ dom(f) and the expression f(sx) contains an offset expression sy[z, c]
for some constant c.

Configurable-by-Construction Runtime Monitoring 233

Intuitively, the existence of an edge 〈sx, sy, z〉 in E records the fact that the
stream for sx depends on the stream for sy with an offset of z. If there exists a
cycle whose weights z sum up to zero, i.e., a zero-weight cycle, then the value
at a given time circularly depends on the very same value leading to ambiguity
issues. Well-formedness forbids precisely such viscous cycles.

Definition 8. (Well-Formedness) A specification is well-formed if and only
if its dependency graph does not contain any zero-weight cycle.

By checking well-formedness of a specification, we make sure that a monitor
for it is uniquely defined. It is this property of well-formedness that has to be
checked in order to ensure that a monitor can be constructed using the techniques
presented in the original Lola paper [12]. We refer to this paper for further details
regarding the monitor construction and Theorem3. Note that the zero-weight
cycle problem, i.e., the problem of deciding whether a zero-weight cycle exists, is
known to be NP-complete, which can be shown by a simple reduction from the
NP-complete subset-sum problem [3, Theorem 3.12].

4.2 Configurable Lola

We now introduce an extension of Lola that yields monitor families and accounts
for variability. To this end, we first define a notion of composition enabling the
combination of multiple Lola specifications into one.

Definition 9. (Composition) Two Lola specifications f1 and f2 are com-
posable if and only if their dependent variables are disjoint. Formally that is
dom(f1) ∩ dom(f2) = ∅. For two composable specifications f1 and f2, we define
their composition f1 ‖ f2 : dom(f1) ∪ dom(f2) → E as follows:

(f1 ‖ f2)(s) :=

{
f1(s) if s ∈ dom(f1)
f2(s) if s ∈ dom(f2)

Note that the composition f1 ‖ f2 is itself a Lola specification. The set of depen-
dent variables of f1 ‖ f2 is dom(f1) ∪ dom(f2).

Without the restriction to composable specifications, the composition of two
specifications would be problematic since the sets of dependent variables may
overlap, thus, containing multiple potentially different equations for the same
variable thereby leading to ambiguity.

Note that the composition operator ‖ is associative and commutative. For
that reason, the order of composition does not matter and any set of pairwise
composable Lola specifications has a unique composition.

Leveraging this notion of composability, we now have all the tools to formally
introduce configurable Lola specifications:

Definition 10. (Configurable Lola Specification) A configurable Lola
specification is a set F = {f1, . . . , fm} of Lola specifications, i.e., fi is a Lola

234 C. Dubslaff and M. A. Köhl

EMF sensor feature (EMFs):

input emf_sensor: Float64; // g/s

output emf = emf_sensor;

EMF computation feature (EMFc):

input maf_sensor: Float64; // g/s

input fuel_rate: Float64; // g/s

output emf = maf_sensor + fuel_rate;

FR sensor feature (FRs):

input fuel_rate_sensor: Float64; // g/s

output fuel_rate = fuel_rate_sensor;

FR computation feature (FRc):

input maf_sensor: Float64; // g/s

input fuel_air_equivalence_sensor: Float64; // ratio

output fuel_rate = maf_sensor / (14.5 * fuel_air_equivalence_sensor)

Fig. 4. Features extracted from the different RDE Lola specifications [9,22].

specification for each 1 ≤ i ≤ m. We call the individual specifications fi features
of F . A configuration C of F is a subset of F such that all features included in
the subset are pairwise composable.

By composition as defined in Definition 9, every configuration gives rise to
a uniquely defined composite specification. In the following, we make use of
this fact and simply treat configurations as if they are Lola specifications. In
particular, we apply the concepts of well-formedness and efficient monitorability
directly to configurations.

Featured Lola specifications make variability a first-class concept enabling
the specification of configurable-by-construction runtime monitors. Returning
to Sect. 2.1, we can now use different features for the different ways the EMF
and fuel rate can be determined (see also Fig. 1). Figure 4 shows four features,
two for obtaining the EMF and two for computing the fuel rate. It is also a nat-
ural consequence of Definition 10 that the different ways to compute the EMF
or fuel rate are mutually exclusive because those features overlap in their depen-
dent stream variables (defined using the output keyword), i.e., they are not
composable. Using a configurable Lola specification, those features can now sys-
tematically be combined as required.

Well-formedness of Configurations. As with ordinary Lola specifications,
we have to ensure that any configuration is well-formed or at least determine
the configurations which are not. In particular, when reconfiguration at runtime
is required, we have to ensure that any configuration of interest gives rise to a
well-formed composite specification. Otherwise, at runtime, it might turn out
impossible to construct a monitor for a certain configuration.

Configurable-by-Construction Runtime Monitoring 235

In case a feature is already not well-formed itself, we can conclude that any
configuration containing this feature will also be not well-formed:

Lemma 2. If any of the individual features is not well-formed, then any config-
uration containing the respective feature is not well-formed.

This is easy to see as the dependency graph of the feature is a subgraph of
the dependency graph of the configuration. Hence, any zero-weight cycle will
also exist in the dependency graph of the configuration thereby rendering the
configuration itself not well-formed.

Unfortunately, the reverse is not true, i.e., even if the individual features are
all well-formed, this does not imply that any configuration is also well-formed.
The dependency graph of a configuration combines those of the features and may
thereby introduce new zero-weight cycles that are not present in the dependency
graphs of any of the features when considered in isolation.

An obvious way to decide whether all configurations are well-formed would be
to construct the specification for each configuration and then determine whether
it is well-formed. Considering each configuration of a configurable Lola specifica-
tion in isolation and checking its well-formedness is, in general, exponential in the
number of features of that specification, thus rendering it infeasible as soon as
the amount of features grows large. As we will see, using a family-based analysis
for checking well-formedness prevents this blowup by exploiting commonalities
between different configurations.

4.3 Family-Based Specification Analysis

For checking well-formedness and efficient monitorability for all configurations
without an exponential blowup, we present a family-based analysis that exploits
commonalities between configurations. Instead of using a dependency graph for
each configuration in isolation, we construct a family dependency graph:

Definition 11. (Family Dependency Graph) Let F = {f1, . . . , fm} be a
configurable Lola specification with m features over the stream variables S. The
family dependency graph for F is a directed, weighted, and feature-labeled multi-
graph G = 〈S, E〉 where E is the set of edges. An edge is a quadruple 〈sx, sy, z, i〉
where sx, sy ∈ S, z ∈ Z, and 1 ≤ i ≤ m. The set E of edges contains an edge
〈sx, sy, z, i〉 if and only if sx ∈ dom(fi) and the expression fi(sx) contains an
expression sy[z, c] for some constant c.

Intuitively, the existence of an edge 〈sx, sy, z, i〉 in E records the fact that the
stream for sx depends on the stream for sy with an offset of z when activating the
feature fi. The family dependency graph is a superimposition of the dependency
graphs of each individual feature with additional edge labels for the features
they belong to. Hence, the following criterion is easily established:

Lemma 3. If the family dependency graph of a configurable Lola specification
does not contain a zero-weight cycle, then every configuration is well-formed.

236 C. Dubslaff and M. A. Köhl

fuel_rate

fuel_air_equivalence_sensor

fuel_rate_sensor
〈0,FRs〉

maf_sensor

〈0,FRc〉

〈0,FRc2〉

〈0,FRc〉

emfemf_sensor
〈0,EMFs〉

〈0,FRc2〉〈0,EMFc〉

〈0,EMFc〉

Fig. 5. Family dependency graph (without the dashed lines) for the configurable Lola
specification in Fig. 4. The arrows are to be read as “depends on” with the given offset
and feature. The dashed lines are with the additional FRc2 feature.

Clearly, the dependency graph of every configuration is a subgraph of the
family dependency graph. Therefore, if the family dependency graph does not
contain a zero-weight cycle then the dependency graphs of any individual con-
figuration cannot contain such a cycle either.

Figure 5 shows the family dependency graph (without the dashed lines) for
the configurable Lola specification in Fig. 4. It does not contain any zero-weight
cycles, in fact, it does not contain any cycles at all. Hence, all configurations for
the configurable Lola specification are well-formed.

Lemma 3 gives us a sufficient criterion for well-formedness of every configura-
tion. This criterion can be checked with the same algorithms and techniques as
checking well-formedness of an individual specification. In contrast to the naive
approach, which would consider each configuration individually, these algorithms
can now exploit commonalities between the dependency graphs of the different
configurations thereby mitigating the exponential blowup due to the often expo-
nential number of configurations.

A Necessary Criterion. While Lemma 3 gives us a sufficient criterion for well-
formedness of all configurations, this is actually not a necessary criterion. Intu-
itively, only those zero-weight cycles pose a problem that can actually arise from
a configuration, i.e., a set of pairwise composable features. By adding this addi-
tional condition for cycles, we obtain the following theorem:

Theorem 4. Every configuration is well-formed if and only if every zero-weight
cycle in the family dependency graph contains at least two edges labeled with
features which are not composable.

The dependency graph of an individual configuration can be obtained from
the family dependency graph by removing all edges corresponding to features
which are not enabled. Now, if a zero-weight cycle in the family dependency

Configurable-by-Construction Runtime Monitoring 237

graph contains at least two edges labeled with features which are not composable,
this cycle will not be included in a dependency graph of any of the configurations
as a configuration can only contain features which are pairwise composable.
If this is the case for all zero-weight cycles of the family dependency graph,
then none of these cycles will be included in the dependency graph of any of
the configurations. As a result, all configurations are well-formed. Conversely,
if a zero-weight cycle exists which does not contain two edges that are labeled
with non-composable features, then the respective features on this cycle can be
composed to form a specification which is not well-formed.

Consider an extension of the configurable Lola specification in Fig. 4 with the
following additional feature (FRc2) for computing the fuel rate:

input maf_sensor: Float64; // g/s

input emf: Float64; // g/s

output fuel_rate = emf - maf_sensor;

This introduces additional edges in the dependency graph (dashed edges in
Fig. 5). With this feature, the family dependency graph now contains one ele-
mentary zero-weight cycle between fuel rate and emf. Indeed, a configuration
with both the FRc2 and EMFc feature is not well-formed. Enabling both features
would mean that the fuel rate should be computed based on the emf but at
the same time the emf should be computed based on the fuel rate. This cycle
yields that a monitor is no longer well-defined. Note that FRc2 and EMFc are
composable because they contain no overlapping definitions. With the family-
based analysis this can be detected solely relying on the family dependency graph
and without considering all 25 = 32 configurations one-by-one.

Complexity. As the zero-weight cycle problem, the problem of finding a zero-
weight cycle not containing two edges that are labeled with non-composable
features is also NP-complete. It is more general than the zero-weight cycle prob-
lem because it contains an additional condition on cycles. It also lies in NP
because it is easy to verify in polynomial time that a cycle is zero-weight and
does not contain two edges that are labeled with non-composable features.

For practical purposes, it makes sense to collapse all edges 〈sx, sy, z, i〉
between the same vertices sx and sy that have the same weight z into a sin-
gle edge 〈sx, sy, z, I〉 where I is the set of all feature labels found on any of these
edges. This can drastically reduce the number of edges and thereby the number
of potential zero-weight cycles to be considered.

Efficient monitorability. Recall that an additional property of Lola specifica-
tions that is of practical interest is efficient monitorability. Efficiently moni-
torable specifications are guaranteed to be monitorable with a bounded amount
of memory independent of the length of the involved streams. A Lola specifica-
tion is efficiently monitorable if and only if its dependency graph does not have
positive cycles [12]. Our family-based analysis and Theorem4 is easily extended
to the question whether all configurations are efficiently monitorable:

238 C. Dubslaff and M. A. Köhl

Theorem 5. Every configuration is efficiently monitorable if and only if every
positive-weight cycle in the feature dependency graph contains at least two edges
labeled with features which are not composable.

Practical impact. Checking the family dependency graph instead of the depen-
dency graph of each configuration in isolation can mitigate the exponential
blowup in the number of features. At the same time, it enables analyzing a con-
figurable Lola specification and makes sure that any configurations that appear
in practice will indeed give rise to a well-formed and efficiently monitorable
specification. This, in turn, means that a monitor can be synthesized and that
its memory consumption will be bounded. Based on found zero-weight cycles,
configurations that would not lead a well-formed specification can be identified
ahead-of-time, providing a static guarantee for configurations at runtime.

We want to point out that Lola specifications can be parametrized and that
parametrization can also be used for configurable monitors. However, while emu-
lating features as we considered them with parameters and ite expressions is pos-
sible to some extent, the traditional well-formedness analysis will not understand
that the different cases of “ite” are mutually exclusive. Thus, it would essen-
tially correspond to a coarse-grained analysis according to Theorem3. Instead,
the analysis we propose here is more fine-grained. In addition, when emulating
features using parameters, the independent variables of all features would be
merged with no explicit distinction about which actually have to be provided
and which are merely an encoding artifact. Thus, our work complements param-
eters offering a more fine-grained analysis and explicit treatment of features and
independent variables. Together, parameters and features as we considered them
make Lola a perfect fit for configurable-by-construction runtime verification.

5 Concluding Remarks

We presented initial concepts towards a configurable-by-construction approach
for runtime monitoring, introducing featured monitors to serve the automata-
theoretic view on runtime monitoring, and configurable Lola specifications that
take on a stream-oriented view.

Related Work. While we addressed some of the challenges for configurable-
by-construction runtime verification, this is still a largely uncharted field. In the
feature-oriented systems domain, Kim et al. [21] lift static analysis techniques to
determine those feature configurations where safety properties could be violated
and hence should be monitored during runtime. They address different problems
than we consider in this paper, not considering variability in the monitor itself.

In addition to the Lola family [12,17,18] there are also other stream-based
specification languages, in particular, TeSSLa [23] and Striver [19]. We expect
our insights on configurability to at least partially carry over to them. In addi-
tion, there are also stream-based specification mechanisms based on automata
theory [1] that provide the opportunity to consider the interplay between our
notion of featured monitors and configurable Lola specifications.

Configurable-by-Construction Runtime Monitoring 239

Future Work. Two notable dimensions that we did not consider yet in this
paper concerns the question of uninterrupted online reconfiguration and the sys-
tematic matching of monitor and system configurations. For this future work,
we could harvest results on reconfigurable systems analysis [13,14]. Monitors
that take causality information on the system into account [4] could be also con-
sidered in the feature-oriented setting [16] and could trigger preemptive recon-
figurations of features. Feature-oriented concepts can well be used to describe
context-dependent systems [15,25] or role-based systems [10]. Thus, our runtime
monitoring approach also enables monitoring systems to verdict contexts and
roles entities play, e.g., whether a network device has the role of a server, client,
or relay in different contexts.

To enhance the expressiveness of featured monitor specifications, our syn-
thesis algorithm to obtain featured monitors from sets of fLTL formulas could
surely be extended to arbitrary Boolean expressions over fLTL formulas. This
requires the definition of further composition operators on verdicts and featured
monitors, for which we solely defined the conjunctive counterpart � in this paper.

References

1. Alur, R., Mamouras, K., Stanford, C.: Automata-based stream processing. In: Pro-
ceedings of the 44th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2017). Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2017)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-oriented software product
lines. In: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37521-7

3. Baier, C., Bertrand, N., Dubslaff, C., Gburek, D., Sankur, O.: Stochastic shortest
paths and weight-bounded properties in Markov decision processes. In: Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2018), pp. 86–94. ACM, NY (2018)

4. Baier, C., et al.: From verification to causality-based explications. In: Proceed-
ings of the 48th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2021). LIPIcs, vol. 198, pp. 1:1–1:20. Leibniz-Zentrum für Informatik
(2021)

5. Baier, C., Dubslaff, C., Hermanns, H., Klauck, M., Klüppelholz, S., Köhl, M.A.:
Components in probabilistic systems: suitable by construction. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 240–261. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-61362-4 13

6. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

7. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 25

8. Belder, T., ter Beek, M.H., de Vink, E.P.: Coherent branching feature bisimu-
lation. In: Proceedings 6th Workshop on Formal Methods and Analysis in SPL
Engineering (FMSPLE@ETAPS 2015). EPTCS, vol. 182, pp. 14–30 (2015)

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-030-61362-4_13
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/11944836_25

240 C. Dubslaff and M. A. Köhl

9. Biewer, S., Finkbeiner, B., Hermanns, H., Köhl, M.A., Schnitzer, Y., Schwenger,
M.: RTLola on board: testing real driving emissions on your phone. In: TACAS
2021. LNCS, vol. 12652, pp. 365–372. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-72013-1 20

10. Chrszon, P., Baier, C., Dubslaff, C., Klüppelholz, S.: From features to roles. In:
Proceedings of the 24th ACM International Systems and Software Product Line
Conference (SPLC 2020), pp. 19:1–19:11. ACM (2020)

11. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013)

12. d’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Pro-
ceedings of the 12th International Symposium on Temporal Representation and
Reasoning (TIME 2005), pp. 166–174. IEEE Computer Society Press (2005)

13. Dubslaff, C.: Quantitative analysis of configurable and reconfigurable systems.
Ph.D. thesis, TU Dresden, Institute for Theoretical Computer Science (2021)

14. Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-
oriented systems. In: Chiba, S., Tanter, É., Ernst, E., Hirschfeld, R. (eds.) Transac-
tions on Aspect-Oriented Software Development XII. LNCS, vol. 8989, pp. 180–220.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46734-3 5

15. Dubslaff, C., Koopmann, P., Turhan, A.-Y.: Ontology-mediated probabilistic
model checking. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol.
11918, pp. 194–211. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34968-4 11

16. Dubslaff, C., Weis, K., Baier, C., Apel, S.: Causality in configurable software sys-
tems. In: Proceedings of the 44th International Conference on Software Engineering
(ICSE) (2022)

17. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

18. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24

19. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

20. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Carnegie-Mellon University Software
Engineering Institute, Tech. rep. (1990)

21. Kim, C.H.P., Bodden, E., Batory, D., Khurshid, S.: Reducing configurations to
monitor in a software product line. In: Barringer, H., et al. (eds.) RV 2010. LNCS,
vol. 6418, pp. 285–299. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16612-9 22

22. Köhl, M.A., Hermanns, H., Biewer, S.: Efficient monitoring of real driving emis-
sions. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 299–315.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 17

23. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: Proceedings of the 33rd
ACM Symposium on Applied Computing (SAC 2018). ACM, France (2018)

https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-662-46734-3_5
https://doi.org/10.1007/978-3-030-34968-4_11
https://doi.org/10.1007/978-3-030-34968-4_11
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-642-16612-9_22
https://doi.org/10.1007/978-3-642-16612-9_22
https://doi.org/10.1007/978-3-030-03769-7_17

Configurable-by-Construction Runtime Monitoring 241

24. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

25. Mauro, J., Nieke, M., Seidl, C., Yu, I.C.: Context aware reconfiguration in software
product lines. In: Proceedings of the 10th Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS 2016), pp. 41–48. ACM (2016)

26. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Symposium
on Foundations of Computer Science (SFCS 1977), pp. 46–57. IEEE (1977)

27. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 9

28. The European Parliament and the Council of the European Union: Direc-
tive 98/69/ec of the European parliament and of the council. Official Jour-
nal of the European Communities (1998). https://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:31998L0069:EN:HTML

29. The European Parliament and the Council of the European Union: Commission
Regulation (EU) 2017/1151 (2017). https://data.europa.eu/eli/reg/2017/1151/oj

30. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1s), 6:1–
6:45 (2014)

31. United States Environmental Protection Agency. https://www.epa.gov/
greenvehicles/explaining-electric-plug-hybrid-electric-vehicles

32. Zave, P.: Feature-oriented description, formal methods, and DFC. In: Gilmore, S.,
Ryan, M. (eds.) Language Constructs for Describing Features. Springer, London
(2001). https://doi.org/10.1007/978-1-4471-0287-8 2

https://doi.org/10.1007/978-3-030-03769-7_9
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
https://data.europa.eu/eli/reg/2017/1151/oj
https://www.epa.gov/greenvehicles/explaining-electric-plug-hybrid-electric-vehicles
https://www.epa.gov/greenvehicles/explaining-electric-plug-hybrid-electric-vehicles
https://doi.org/10.1007/978-1-4471-0287-8_2

Runtime Verification
of Correct-by-Construction Driving

Maneuvers

Alexander Kittelmann1,2(B), Tobias Runge1,2, Tabea Bordis1,2,
and Ina Schaefer1,2

1 TU Braunschweig, Brunswick, Germany
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

{alexander.kittelmann,tobias.runge,tabea.bordis,
ina.schaefer}@kit.edu

Abstract. Cyber-physical systems play an increasingly vital role in our
everyday lives by leveraging technology to mitigate human error. These
systems are inherently safety-critical, which requires the highest stan-
dards in quality assurance. Therefore, designing safe behaviors for these
systems in a manageable fashion and maximizing trust early on by for-
mally verifying them against a formal specification mandates a software
engineering process that prioritizes appropriate abstractions in the early
design phase. However, even if models are formally verified at design
time, their appropriateness in the real world stills needs to be validated at
runtime, as specifications are usually incomplete. In this work, we intro-
duce a methodology for refining verified cyber-physical systems modeled
by hybrid mode automata to executable source code amenable for run-
time verification. In particular, we employ ArchiCorC, which lifts the
correctness-by-construction paradigm for programs to component-based
architectures, and comes with facilities for code generation. Subsequent
simulations of the executable and verified maneuvers allow to validate
their initial requirements in a diverse set of scenarios.

Keywords: Correctness-by-construction · Cyber-physical systems ·
Runtime verification

1 Introduction

Cyber-physical systems are ubiquitous in many products that we use in our daily
lives, including avionic systems [45], automobiles [15], robotics [30], and even
medical equipment [25]. To reduce development complexity, their safety-critical
nature mandates sophisticated elicitation of requirements and formal reason-
ing techniques (e.g., formal verification) during the design stage. Model-based
development is such an approach in modern software engineering, which allows to
express cyber-physical systems in a way that makes their analysis, visualization,
and simulation tractable. The goal is to start with an abstract behavioral model
of a system that is already amenable to various analyses (e.g., scalable formal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 242–263, 2022.
https://doi.org/10.1007/978-3-031-19849-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_15

Runtime Verification of Correct-by-Construction Driving Maneuvers 243

verification) to identify conceptual design flaws as early as possible. Moreover,
the typical model-based design process spans multiple layers. That is, a refining
process is applied to add more details to the current model and to perform more
complex analyses. Eventually, the model is refined to executable source code.

A challenge is that the initial set of requirements used for successfully verify-
ing an abstract model’s behavior can often not guarantee that the system behaves
completely safe after deployment. That is, elicitated requirements are typically
incomplete for real-world execution of cyber-physical systems. Therefore, it is
of paramount importance to validate the executable model under real-world
conditions. To be cost-effective, the validation process aims at inspecting com-
pleteness of requirements by simulating the modeled behavior using one of many
data-driven validation techniques (i.e., run-time verification) [33]. Model parts
that violate any safety concerns can then be localized and improved, resulting
in an iterative development process. Examples of such simulation and analysis
tools include Matlab/Simulink [3], Ptolemy II [41], and AADLSim [8]. Most
of these simulation frameworks focus on rich specification languages, problems
orthogonal to functional safety (e.g., uncertainty or performance), and are tied
to specific modeling languages.

An important challenge is the gap between design model and the actual
implementation that is simulated. Most of the aforementioned approaches
already work with detailed enough design models amenable to simulation (e.g.,
Matlab/Simulink [3]). However, this puts a lot of burden onto the early
development of such systems due to high complexity in the modeling phase.
Moreover, formal verification (e.g., establishment of correctness proofs) becomes
intractable for these models. In contrast, maximizing abstraction of the initial
design model is necessary to make formal verification scalable. However, this
requires to add details to the implementation model before simulation, which
increases the chances to introduce new defects and invalidates verification and
simulation results.

In this work, we address this challenge by presenting an abstract formalism to
specify and verify behavior of cyber-physical systems, and then derive correct-
by-construction implementations including facilities for monitoring for virtual
simulation and run-time verification. In Fig. 1, we give a high-level overview of
the key ingredients of our proposed verification and validation pipeline, which
depicts an iterative and incremental development process consisting of four con-
secutive steps.

First, we propose to model and specify the intended behavior of cyber-
physical systems with so-called hybrid mode automata. To verify these models
and to generate correctness proofs, we translate them to differential dynamic
logic (dL) [40] and employ the interactive theorem prover KeYmaera X [34].
Second, the modeled hybrid mode automata are then translated to a component-
based architecture. In particular, we exploit ArchiCorC [22], which builds on
top of CorC [44] (a tool suite for correct-by-construction programs) and enables
a developer to establish a component-based correct-by-construction architecture.
Third, the architecture is automatically translated to source code in a general-
purpose programming language (e.g., Java or C++). Although the code genera-

244 A. Kittelmann et al.

Valid HMA

Prove
maneuver safety

Code generation
& compilation

Code Generator
e.g., Java, C++,…

KEYMAERA X

Maneuver safe Architecture correct

CORC, KEY, Z3

Iterative development / Report

Derive / implement
component architecture

ARCHICORC

1 2 3

4 Validation

Interfacing
with

Runtime

Model Code
+ Monitor

Virtual Simulation
e.g., AirSim, ROS, numerical

Fig. 1. Schematic overview of steps in the proposed verification and validation pipeline.

tion itself is unverified per se, each part of this process is verifiable when following
best practices. That is, behaviors of components ideally follow the correctness-
by-construction approach and checking validity of connections between compo-
nents (horizontally and vertically) reduces to satisfiability checks based on their
interface specifications. Moreover, the implementation also comes with facilities
for monitoring, which are automatically generated from the formal specification.

Finally, the derived executable is verified on a set of scenarios (i.e., run-time
verification by simulation). For the visual simulation environments, we integrate
AirSim [47] by Microsoft, which is used for ground and air vehicles, and the
robot operating system (ROS) together with Gazebo, which is a mature frame-
work and visualization environment for robotic systems. Validation is supported
by the automated monitoring of safety conditions. Monitoring functions are auto-
matically generated from the hybrid mode automata as part of the third step.
This allows to classify monitor violations as passable (i.e., violation does not have
an impact on safety), severe (i.e., violation does have a high chance of impacting
safety), or even fatal (e.g., vehicle collided with an object).

In summary, we make the following contributions.

– Technique: We propose a verification and validation pipeline for behaviors
of cyber-physical systems that starts with an abstract model amenable to
formal verification, and allows to derive a correct-by-construction and fully-
functional implementation amenable to run-time verification.

– Tool support: We implemented our technique as part of the tool chain
Skeditor by leveraging ArchiCorC, a model-based framework for devel-
oping correct-by-construction component-based architectures. As simulation
environment, we integrated AirSim [47] by Microsoft.

– Evaluation: We performed an empirical study on five case studies in the con-
text of automated driving, which differ in complexity and safety requirements.
In our study, we verified at run-time that none of the case studies violated
their safety requirements, which affirms that deriving fully-functional behav-
iors from highly-abstract verified models is feasible.

Runtime Verification of Correct-by-Construction Driving Maneuvers 245

2 Workflow by Example

In this section, we aim at exemplifying our proposed workflow on an automatic
distance control for road vehicles.

To formally reason about cyber-physical systems, they are often mathemat-
ically modeled by hybrid systems [1,7,16], which mix discrete and continuous
behavior in a single formalism and abstract away from unnecessary details. Mod-
eling approaches include hybrid automata [2] and hybrid programs [40].

(Cruise)
ẋ = v

|x − xl| = D
|x − xl| = D

(Accel)
ẋ = v
v̇ = a

|x − xl| ≥ D

(Brake)
ẋ = v

v̇ = −b, v ≥ 0
|x − xl| ≤ D

|x − xl| > D

|x − xl| = D

|x − xl| < D

|x − xl| > D

|x − xl| = D

|x − xl| < D

Fig. 2. Simplified hybrid system of a vehicle with automatic distance control.

In Fig. 2, we give an example of a simplified hybrid automaton representing
the aforementioned automatic distance control with three possible states, namely
Cruise, Accel, and Brake. Variables x and xl define the current position on a
straight line of both the host vehicle and the leading vehicle, and constant D
represents the ideal distance between them. Moreover, variables v, a, and b define
the current velocity, acceleration, and braking force, respectively. The goal of the
distance control is to ensure that the distance between both vehicles remains
approximately equal to D. The vehicle is in cruise mode when the distance to
the leading vehicle is equal to distance D, which also means that acceleration
a is set to zero (i.e., resulting in constant speed). In each control cycle, the
current state evolves by applying the respective differential equations and is
then evaluated, such that the automaton may transition into a different state.
That is, if the leading vehicle increases or decreases the distance, the automaton
switches to either state Accel or state Brake. The condition v ≥ 0 in state Brake
ensures that velocity v will not be allowed to become negative.

Step 1: Hybrid Mode Automaton. For modeling the behavior of cyber-
physical systems, we propose hybrid mode automata, which is a customized
combination of hybrid automata [16] and mode automata [28,29]. Hybrid mode
automata consist of a number of discrete modes with guarded transitions between
them. Although their expressiveness is equal to the expressiveness of hybrid
automata, a key difference is that a discrete and simple program is projected

246 A. Kittelmann et al.

onto each mode, which is executed each time a mode is entered. This reduces
the number of transitions by allowing more than a single computation step per
mode. Furthermore, each mode is allowed to have exactly one system of ordinary
differential equations that represents how variables change over time. In Listing
1, we present an excerpt of a possible variation of the distance control as a hybrid
mode automaton in our own domain-specific language [20].

1 automaton Distance init Cruise

2 input variables: mode Accel:
3 x, xl, D : R controller:
4 output variables: if(D<100.0) {a := C} else
5 a : R {a := *; assume a ≤ A};
6 dynamics:
7 assumption: {x’=v, v’=a & v >= 0}
8 |x − xl| ≥ D transitions:
9 guarantee: to Cruise when |x − xl| = D;

10 |x − xl| ≥ D to Brake when |x − xl| < D;
11 mode Cruise: . . .

Listing 1. Excerpt of a hybrid mode automaton for the distance control.

Besides transitions, each mode is comprised of a controller and
dynamics part. The controller part lets a user define how variables may
change (without elapsed time after entering the mode), while the dynamics part
specifies the physical evolution of variables over time. Here, mode Accel assigns
acceleration variable a the constant C if the distance to the leading vehicle is
less than 100m, and otherwise may assume any value for a that is less then the
(constant) maximum acceleration A. Additionally, we allow to specify assump-
tions and guarantees of the complete automaton using first-order logical formu-
las (with real-valued arithmetic). Assumptions state the initial condition before
executing the automaton, while guarantees state safety invariants that are not
allowed to be violated during any time of the execution. Execution of such
automata can be formally verified against the pair of assumptions and guaran-
tees using a deductive calculus.

Step 2 and 3: Correct-by-Construction Architecture and Code Gener-
ation. After a maneuver represented by the hybrid mode automaton is modeled
and verified, we use it to generate a component-based architecture amenable to
runtime execution (e.g., for the purpose of simulation). As mentioned before,
nondeterminstic assignments must be concretized manually during the imple-
mentation phase, which could potentially violate the safety guarantees. To pro-
pose a guideline for developers to implement nondeterminstic assignments in a
correct-by-construction fashion, we employ the tool suite ArchiCorC [22]. At
its core ArchiCorC [22] is a architecture modeling framework build on top
of CorC [44]. CorC enables users to start with a specification (i.e., precondi-
tion and postcondition) and to develop correct-by-construction algorithms in an
imperative language applying only sound refinement rules.

Runtime Verification of Correct-by-Construction Driving Maneuvers 247

A hybrid mode automaton is translated to ArchiCorC’s own domain-
specific language consisting of required and provided interface definitions, as
well as a textual representation for the atomic component that links provided
methods to real implementations. In particular, a component resulting from a
hybrid mode automaton provides an interface that includes (1) a control method
representing a single execution of the automaton (i.e., mode switch and exe-
cution of the discrete program), (2) methods for nondeterminstic assignments
that must be implemented by hand (ideally using CorC), and (3) a method for
monitoring the current state. The following interfaces in ArchiCorC’s interface
language exemplify this translation for the automatic headway control.

archicorc_interface IHeadwayReq {
// Parameters
double D;
// Input variables
double x, xl;

}

archicorc_interface IHeadwayProv {
// Output variables
double a;
// State ID
int state_id;

//@ requires |x − xl| ≥ D;
//@ ensures |x − xl| ≥ D;
void ctrlStep(void);

// Resolve nondet. assignment
//@ requires |x − xl| > D ∧ D ≥ 100;
//@ ensures |x − xl| > D ∧ D ≥ 100 ∧ a ≤ A;
double a1();

// Monitoring
bool monitorSatisfied(State prior);

}

As illustrated above, key element of the provided interface is the ctrlStep
method that advances the state each cycle. Automated code generated for the
ctrlStep methods resembles the structure of the corresponding hybrid mode
automaton. We translate the corresponding hybrid mode automaton to a logi-
cal formula, which is then used as postcondition, while using the hybrid mode
automaton’s assumption and environmental conditions as precondition. Finally,
we add a method to the component for monitoring whether any control actions
violate the original (and verified) controller model. Input argument State is a
simple structure used as shorthand for the collection of input and output vari-
ables. We discuss the generation of monitor code in the next section in more
detail.

Step 4: Simulation and Monitoring. Finally, the generated implementa-
tion is executed in a simulation environment to validate whether the verified
maneuver is appropriate in practice. To rule our any defects besides an insuffi-
cient specification, it is important to ensure that the executable implementation
adheres to the same correctness guarantees as the modeled and verified con-
troller. For this, we apply runtime monitoring that reports on violations during
runtime with respect to the modeled controller. On a higher level, execution of
the hybrid mode automaton is split into executing the modes and transitioning
between them. In general, this results in disjunctions of modes including infor-

248 A. Kittelmann et al.

mation about when a mode can be executed (i.e., using the guards of incoming
transitions per mode). Our automatic headway controller results in the disjunc-
tion(

(|x − xl| > D ∧ Accel) ∨ (|x − xl| = D ∧ Cruise) ∨ (|x − xl| < D ∧ Brake)
)
.

3 Modeling and Verifying Maneuvers with Hybrid Mode
Automata

In this section, we formalize hybrid mode automata, which are used for modeling,
specifying, and verifying behaviors of cyber-physical systems. In Sect. 3.1, we
present syntax and semantics of hybrid mode automata. In Sect. 3.2, we present
how to translate hybrid mode automata to differential dynamic logic for proving
their correctness against a specification.

3.1 Formalization of Hybrid Mode Automata

As presented in the previous section, we propose to model the behavior of cyber-
physical systems by means of hybrid mode automata. We first give a definition of
the syntax of hybrid mode automata and explain specific parts of it afterwards.

Definition 1 (Syntax of Hybrid Mode Automata (HMA)). A hybrid
mode automaton A is a tuple 〈Q, q0, V in, V out,Trans,Dyn,Ctrl〉 where:

– Q is a finite set of modes,
– q0 ∈ Q is the initial mode,
– V in and V out are sets of input and output variables in R, respectively. We

require that V in ∩ V out = ∅,
– Trans ⊆ Q×G(V)×Q is the set of transitions, which are labeled by a first-order

logical formula G over the input and output variables. We use the notation
q

g−→ q′ for (q, g, q′) ∈ Trans,
– Dyn : Q → ODE maps a mode to a (possibly empty) system of ordinary

differential equations,
– Ctrl : Q → HMALdisc maps a mode to the discrete control part.

The two elements of hybrid mode automata that need further explanation are
the maps Dyn and Ctrl. As described in Sect. 2, each mode is associated with a set
of ordinary differential equations and a sequence of discrete computation steps
(e.g., assigning a value to a specific variable). Semantically, the discrete com-
putations are executed sequentially and instantaneously (i.e., without elapsed
time) after a mode is entered. Afterwards, the differential system runs for indef-
inite amount of time and lets specific variables evolve accordingly. In particular,
to model discrete computations and ODEs, we adopt a simplified version of the
syntax and semantics of hybrid programs provided by Platzer [40].1

1 Further information on the syntax and semantics of hybrid programs beyond our
application in this work can be found in A. Platzer’s textbook Logical Foundations
of Cyber-Physical Systems [40].

Runtime Verification of Correct-by-Construction Driving Maneuvers 249

We denote by ODE the set of differential systems, where an element ode ∈
ODE has the following syntax:

ode ≡ x′
1 = f1(x1), . . . , x′

n = fn(xn)&H. (1)

Here, x1, . . . , xn are variables that change over time by equations f1, . . . , fn,
and H is an evolution constraint in first-order logic that restricts the maximum
evolution of these variables. For example, the ODE

[
v′ = −2&v ≥ 0

]
decrements

variable v by 2 over an arbitrary amount of time but only as long as v remains
non-negative.

The language we use for implementing discrete computations in modes will
be denoted HMAL (for Hybrid Mode Automata Language) and is a subset of
hybrid programs (excluding nondeterministic repetitions and nondeterministic
choice). We provide the following syntax for HMAL.

Definition 2 (Syntax of HMAL). The syntax of language HMAL is defined by
the following grammar, where S1 and S2 are programs of HMAL, x, x1, . . . , xn

are real-valued variables, θ is a term, P,Q, and H are first-order logical formulas
in real arithmetic, and x′ = f(x) is a system of ODEs:

S1, S2 ::= S1;S2 |x := θ |havoc x1, . . . , xn | assume H | skip
| if(H){S1}else{S2} | assert H

Language HMAL consists of seven constructs. Sequential composition first runs
the program defined by S1 and then the program defined by S2. Discrete assign-
ment assigns a value of term Θ to variable x. Nondeterministic assignment rep-
resented by the keyword havoc (·) assigns arbitrary real numbers to variables
x1, . . . , xn. These assignments must be concretized when deriving an executable
implementation. assume H is used to check that a particular formula holds at the
respective position. skip is shorthand for assume true. The selection statement
if(H) {S1} else {S2} runs program S1 if condition H holds, and runs program S2

otherwise. Finally, an assertion is similar to an assumption, where the checkable
condition H valuates to either true or false depending on the current state. A
violation of H will not just abort the current run, but the program will transition
to a designated error state, which itself does not have outgoing transitions. This
way, we mark violations of H explicitly as erroneous behavior.

After presenting the syntax of both HMAL and ODEs, we present their seman-
tics next. Execution semantics of HMAL and ODEs are each based on the tran-
sitioning between states. In particular, Let R represent the set of real numbers
and let V denote the set of real-valued variables. A state is a function σ from V
to R, i.e., σ : V → R.

Definition 3 (Semantics of HMAL and ODEs). Let V be a finite set of real-
valued variables and let Σ be the set of all possible states. The semantics of a
program S ∈ HMAL leads to the following denotational definition of the transition
relation �S�HMAL, �S�ODE ⊆ Σ×Σ, where σ, σ′ ∈ Σ represent the initial and final
state, respectively, and σerror is the error state:

250 A. Kittelmann et al.

– �S ; S′�HMAL = {(σ, σ′) | (σ, σim) ∈ �S�HMAL, (σim, σ′) ∈ �S′�HMAL} with inter-
mediate state σim,

– (σ, σ′) ∈ �x := Θ�HMAL iff σ′(x) = eval(Θ, σ) and ∀y ∈ V with x �= y it
follows that σ(x) = σ′(y),

– (σ, σ′) ∈ �havoc x1, . . . , xn�HMAL iff ∀x ∈ {x1, . . . , xn}, ∀y ∈ V with x �= y it
follows that σ(y) = σ′(y),

– (σ, σ′) ∈ �assume H�HMAL iff σ = σ′ and the assignment of variables in state
σ satisfies formula H (i.e., σ |= H),

– (σ, σ′) ∈ �if(H){S1}else{S2}�HMAL iff (σ, σ′) ∈ �assume H;S1�HMAL ∪
�assume ¬H;S2�HMAL,

–
[
(σ, σerror) ∈ �assert H�HMAL iff (σ, σ) ∈ �assume ¬H�HMAL

]
and

[
(σ, σ′) ∈

�assert H�HMAL iff (σ, σ′) ∈ �assume H�HMAL

]
,

– For ODEs: (σ, σ′) ∈ �x′ = f(x)&H�ODE iff γ : [0, r] → Σ is a solution of the
ODE x′ = f(x) with γ(0) = σ, γ(r) = σ′, and each state in between γ(0) and
γ(r) satisfies formula H with respect to differential equation x′ = f(x) (i.e.,
γ |= x′ = f(x)&H).

Both constructs, language HMAL and the definition of ODEs, are inspired by
the syntax and semantics of hybrid programs [37–40]. The language of hybrid
programs itself is only a simple nondeterministic programming language with
support for differential equations. The reason to closely follow hybrid programs
is twofold. First, hybrid programs provide a very simple programming model,
which is expressively sufficient for us to describe the intended controller logic
at this design stage. However, hybrid programs additionally provide means for
nondeterministic repetition and nondeterministic choice, which we eliminated.
The reason for the former is that a mode only performs one execution per time
step before it transitions, which makes repetition unnecessary. The reason for the
latter is that nondeterministic choice needs to be resolved when deriving a con-
crete implementation. We restrict language HMAL to nondeterministic assign-
ment only, which is simpler to resolve. The second reason is that we aim at
leveraging dL [37–40] for verifying hybrid mode automata. As dL is defined
over hybrid programs, it is natural to only make some necessary modifications.
Finally, we can give a definition of the execution semantics of hybrid mode
automata.

Definition 4 (Execution Semantics of Hybrid Mode Automata). Let
σin
i and σout

i denote valuations of variables in V . A valid run of a hybrid mode
automaton A = 〈Q, q0, V in, V out,Trans,Dyn,Ctrl〉 is a sequence of mode switches
l0, . . . , lk ∈ Q of the form runA = 〈σin

0 , l0, σ
out
0 〉, . . . , 〈σin

n , ln, σout
n 〉 such that

– σin
i and σout

i are input and output valuations of variables in V in mode li,
– for all k = 0, . . . n,

(σin
k , σout

k) ∈ {(σin, σout) | (σin, σim) ∈ �Ctrl(lk)�HMAL, (σim, σout) ∈ �Dyn(lk)�ODE},

Runtime Verification of Correct-by-Construction Driving Maneuvers 251

– the initial execution is performed after taking the first transition from initial
mode q0, such that 〈q0, G, l0〉 ∈ Trans and σin

0 |= G,
– for each i = 0, . . . , n − 1, 〈σin

i , li, σ
out
i 〉 is followed by 〈σin

i+1, li+1, σ
out
i+1〉 if and

only if there exists a transition (li, G, li+1) ∈ Trans and σin
i+1 |= G.

Execution of a hybrid mode automaton begins with taking a transition from
the initial mode, and afterwards sequentially running the currently active mode’s
discrete program and ODEs. We assume that guards of outgoing transitions of
a mode do not overlap. If no applicable outgoing transition exists, we assume
a self-transition. Assuming a logical clock, this ensures that each cycle the dis-
crete program of the currently active mode is executed, and that the dynamical
systems evolves over time. That is, the execution semantics of a hybrid mode
automaton resembles a trace semantics.

3.2 Verification Based on Differential Dynamic Logic

Differential dynamic logic (dL) [37–40] is a first-order modal logic for specify-
ing and proving safety properties of hybrid programs. That is, formulas in dL
that do not contain modalities are classical first-order logical formulas with real
arithmetic. Additionally, the modal operators [α] and 〈α〉 for a hybrid program
α express special reachability properties. Essentially, dL formula [α]φ is true iff
φ is true for all reachable states of α (i.e., upon complete execution of α), and
dL formula 〈α〉φ is true iff φ is true in some reachable state of α.

As language HMAL is defined with the semantics of hybrid programs in mind,
we prove the correctness of hybrid mode automata for a given specification by
translating them to dL. For this, we define the translation function transHMA
that relates hybrid mode automata and hybrid programs. As depicted in Listing
1, a user defines valid assumptions Φ (i.e., precondition) and guarantees Ψ (i.e.,
postcondition) of the respective behavior in first-order logic with real-valued
arithmetic. Assumptions must hold prior to executing the hybrid mode automa-
ton, whereas guarantees are invariants that must hold at every real point in time
during the continuous dynamics. The safety requirement in dL is then expressed
as

Φ → [transHMA]Ψ (2)

For example, the automatic distance control assumes initially that the difference
in positions of host and leading vehicle is greater than the minimal allowed
distance. Only then can it guarantee that the difference in positions will remain
greater throughout the execution.

To prove the validity of dL formulas deductively, a sound set of axioms and
proof rules (i.e., a deductive calculus) is required. The KeYmaera X theorem
prover [13] implements such a calculus for dL and is built on top of a small
trusted kernel written in Scala to also increase trust in the tool support itself. In
Fig. 3, we give a schematic overview of the modeling and verification procedure.
For brevity, we omit the definition of transHMA that translates hybrid mode

252 A. Kittelmann et al.

Correctness
Proofs

Hybrid Mode Automata

Realization with

KEYMAERA X
Proof Obligations

Modeling of CPSs Verification

Fig. 3. Schematic overview of the verification process.

automata to dL, as it is only of technical nature and can be found in previous
work [20]. After we proved validity of a hybrid mode automaton with respect
to the pair of assumptions and guarantees, the next goal is to derive a correct-
by-construction implementation amenable to runtime verification. This way, we
may rule out the introduction of new implementation defects and can focus on
validating completeness of the specified safety guarantees.

4 Runtime Verification of HMA Models

In this section, how monitor conditions of the controller model are generated to
validate whether the implementation behaves as intended.

4.1 Generating Monitor Conditions for Runtime Verification

In the previous sections, we described how to derive an implementation from an
HMA model. Although models and abstraction are necessary to reduce com-
plexity (e.g., for asserting correctness), any model has the tendency to deviate
from the real world. It is therefore important to monitor at runtime that the
properties proven with respect to the model are also ensured during execution.
For instance, if at some point compliance of model and implementation cannot
be guaranteed anymore, it is important to initiate fallback options that may still
hinder catastrophic behavior (e.g., emergency braking).

To be able to assess whether our controller behaves as intended, we addition-
ally generate executable monitor code for the controller in a dedicated method
with signature bool monitorSatisfied(State prior). Eventually, the monitor
code can be used throughout runtime to report condition violations of the con-
troller (i.e., deviations of controller model and implementation) that would oth-
erwise be unnoticed. In particular, the generated code compares the current
state of the controller with the previous state, which we explicitly provide as
argument (the current state is obtained from the atomic component itself). If

Runtime Verification of Correct-by-Construction Driving Maneuvers 253

transmon(Ctrl(q =̇)) transmon(S) ∧ V = V post withCtrl(q) ≡ S

transmon(S1;S1 =̇) transmon(S1) ∧ transmon(S1)

transmon(x := θ =̇) xpost = θ

transmon(havoc x1, . . . , xn =̇) true

transmon(assume H =̇) H[x xpost]

transmon(assert H =̇) H[x xpost]

transmon(skipH =̇) true

transmon(if(H){S1}else{S2} =̇)
(
H[x xpost] ∧ transmon(S1)

)

H[x xpost] transmon(S2)

Fig. 4. Translation of a mode to a logical formula for the monitoring condition.

the current state is not a valid poststate of the given prestate according to our
modeled controller, the monitor is not satisfied. This is guaranteed by using
ModelPlex [32] in our process that, given a dL model, generates monitor code
for the controller model automatically.

In particular, the monitor conditions we generate are formulas that relate
the current and next state with respect to the HMA model. That is, a monitor
condition mon(vcurr, vpost) compares the previous state comprised of variables
vcurr with the next state comprised of variables vpost, and valuates to false when-
ever the program statements of the HMA model lead to a different model state
than observed in the current state at runtime. In Fig. 4, we depict the rules
for translating the program statements of a mode of a hybrid mode automaton
to the logical counterpart for the monitoring condition. That is, if a particular
mode is executed on the implementation level, the monitor condition for the
respective controller program of the HMA model is based on this translation
scheme. Importantly, variables that do not change by the modeled controller
must evaluate to the same value in the current and next state. We represent this
by the set of unmodified variables V in the beginning of the translation, which
we explicitly add to the monitor condition.

4.2 Simulation

Simulation is an integral part of our verification and validation pipeline.
There exist numerous simulation environments to choose from, which all come
with advantages and drawbacks. Most popular in the research community,
Gazebo [23] is a simulation platform that offers a modular design that
allows developers to integrate different physics engines and to create complex
robotic systems with arbitrary sensor models and simple 3D worlds. Further-
more, Gazebo maintains a close relationship with the robot operating system

254 A. Kittelmann et al.

(ROS) [24,42], one of the most prominent open-source frameworks for personal
and industrial robotic systems. Therefore, Gazebo is typically used for simulat-
ing systems based on ROS modules. Although Gazebo comes with numerous
features to increase realism in simulations, its rendering engine cannot compete
with engines such as the Unreal engine or Unity, which makes it difficult to create
visually-rich environments close to real-world scenarios.

To focus on visually-rich environments, AirSim [47] is a recent platform
based on the Unreal engine that focuses primarily on automotive vehicles and
flying drones. Most appealing, AirSim comes with pre-existing physical models
of automotive vehicles and numerous 3D worlds (e.g., urban neighborhood or
city), which saves development time and reduces the risk of introducing insuf-
ficient physical behavior. Especially, using independently-developed models and
simulation environments is necessary in our evaluation to not invalidate empiri-
cal results.

In our validation and verification pipeline, we currently integrate both simu-
lation platforms mentioned before. We primarily use Gazebo/ROS for robotic
systems, and AirSim for automotive vehicles, such as applied in our evaluation
for various driving maneuvers. Moreover, the modularity of our tool suite allows
to extend the current set of simulation environments and to add new ones in a
plug-and-play fashion.

5 Evaluation

The above sections raised two important research questions that we try to inves-
tigate by an empirical experiment and a qualitative assessment:

RQ-1: To what degree do safety guarantees that are verified at design time hold
at execution level?

RQ-2: What are lessons learned drawn from our experiences following the pro-
posed verification and validation pipeline?

With RQ-1, we investigate the feasibility of our verification and validation
pipeline. In particular, we evaluate whether safety guarantees can be transferred
from the verification model to the execution model following the guidelines of
ArchiCorC and inspecting the generated monitor objects. Finally, with RQ-2,
we discuss our experiences with the proposed verification and validation process.

We characterize our non-trivial case study of a road vehicle and the evaluated
subject maneuvers in Sect. 5.1. In Sect. 5.2, we present results and discuss the
research questions.

5.1 Case Studies and Setup

We aim at evaluating our pipeline in the context of automated driving maneu-
vers. In particular, we employ AirSim [47] as simulation environment to validate

Runtime Verification of Correct-by-Construction Driving Maneuvers 255

to what extent correctness guarantees of verified HMA models can be trans-
ferred to implementation level. For automatic driving, the final goal is indeed to
develop such HMA models for each maneuver from a catalog of basic driving
maneuvers that can be safely applied in road traffic. The purpose of this evalu-
ation, however, is a proof of concept of our verification and validation pipeline.

In total, we created five maneuvers including validation scenarios in AirSim
to demonstrate the applicability of our verification and validation pipeline. All
studied maneuvers are modeled as hybrid mode automata, verified, and even-
tually implemented in C++ supported by ArchiCorC. As ArchiCorC is
limited with respect to floating-point reasoning, parts of the implementation
remain unverified. However, such parts are already in a form that allows to ver-
ify them when reasoning with floating-point arithmetic becomes available. A
short description of the maneuvers and their safety requirements is given in the
following.

Explore World (Vehicle version). The goal of this maneuver is to randomly
explore an area without colliding with any object. Due to the vehicle’s kine-
matics, the turning circle must be considered explicitly. Safety goals are (1)
respecting a maximum velocity (v ≤ vmax), and (2) avoiding collision.

Safe Halt. The goal of this maneuver is to drive forward in a straight line and
come to a halt if needed (i.e., either in front of an obstacle or a particular
point) without collision or overstepping. Safety goals are again (1) respecting
a maximum velocity (v ≤ vmax), and (2) avoid collision.

Lane Keeping Assistance. This maneuver captures the lateral aspects of
following a lane without deviating too far from the lane’s center point. For
this, the vehicle must drive on a lane with perceivable solid lane markings.
Safety goal is to respect a maximum lane deviation (y ≤ ymax).

Adaptive Cruise Control (Unoptimized and Optimized). This maneu-
ver captures the longitudinal aspects of following a car while keeping a safe
distance. We further split the adaptive cruise control maneuver into two
versions, an optimized version and an unoptimized version. The optimized
version resembles a more sophisticated controller on the modeled level with-
out nondeterministic assignments, whereas the unoptimized version is simpler
and delegates concretization of the acceleration part to the implementation
level. Safety goal is to avoid collision with the leading vehicle.

As our evaluation aims at investigating whether our concept is feasible, we
only built simple scenarios to test each driving maneuver in isolation. For the
Explore World maneuver, we created a closed world with numerous static obsta-
cles. For the Safe Halt maneuver, we used the same world, but placed the vehicle
in front of an obstacle in a straight line. For the lane keeping assistance, we mod-
eled a street and encoded the ground truth of the lane markings to eliminate
sensor uncertainty. For the adaptive cruise control, we added a second leading
vehicle in front of our vehicle that drives in a straight line.

256 A. Kittelmann et al.

Table 1. Simulation results.

Maneuver Safety goal Fail statistics

Non.-Det. Passable Severe Failure rate (∅) Sim. time

Explore world v ≤ vmax; no collision Yes 100% 0% 1.07% 5m

Safe halt v ≤ vmax; no collision no 100% 0% 3.03% ca. 6–12 s.

LKA Lane deviation (y ≤ ymax) Yes 100% 0% 1.63% 30 s

ACC (Unoptimized) No collision Yes 100% 0% 2.72% 30 s

ACC (Optimized) No collision No 100% 0% 2.36% 30 s

5.2 Results and Insights

In the following, we share results obtained with our case studies. In particular,
we are interested in usefulness and feasibility of our proposed approach. First,
we investigate whether safety guarantees from verified HMA models can be
transferred to the implementation level. Second, we discuss our experiences.
The concrete models are contained as examples in the tool suite Skeditor [21],
which integrates this work as part of its maneuver-centric development approach
for cyber-physical systems.2

RQ-1: Validation and Safety Violations

In the following, we investigate the feasibility of our approach by simulating sim-
ulating each case study in AirSim and validating their correctness by employing
the generated monitors. As mentioned before, each maneuver (i.e., HMA model)
was successfully verified, which leads to the question whether correctness guaran-
tees transfer to the implementation level. In Table 1, we summarize results from
the performed experiments. In particular, for the fail statistics, we report three
values. First, column passable reports on the percentage of monitor violations
that we consider as acceptable. These stem from violations of nondeterministic
assignments or other issues in the initial state, but do not violate the safety
invariants. Second, column severe reports on the percentage of violations of the
safety invariants. Finally, failure rate is the time spent in monitor-violating states
with respect to the simulation time.

We observe that none of the five maneuvers violated any of the safety invari-
ants during their simulation, which is why all reported violations are considered
as passable. Furthermore, the failure rates are all low. However, we identified
that oftentimes the initial state (i.e., a halted state with zero velocity for all
five case studies) violates the monitor condition for the control part, while dur-
ing movement the failure rate converges towards zero. Other times, the failure
rate increases for a short amount of time. We assume that the conversion of
arithmetic reals to floating-point precision results in sporadic problems.

2 https://github.com/AlexanderKnueppel/Skeditor.

https://github.com/AlexanderKnueppel/Skeditor

Runtime Verification of Correct-by-Construction Driving Maneuvers 257

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0
Time in seconds

R
el

at
iv

e
po

si
tio

n
in

 m
et

er
s

Legend
Follower

Leader

(a) Relative Positions

0

5

10

0.0 2.5 5.0 7.5 10.0
Time in seconds

Ve
lo

ci
ty

 in
 m

/s

Legend
Follower

Leader

(b) Velocities

−5.0

−2.5

0.0

2.5

0.0 2.5 5.0 7.5 10.0
Time in seconds

Ac
ce

le
ra

tio
n

in
 m

/s
²

Legend
Follower

Leader

(c) Accelerations

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0
Time in seconds

Fa
ilu

re
 ra

te
 in

 %

(d) Failure Rate

Fig. 5. Measurements for the Adaptive Cruise Control case study with the leading
vehicle keeping a velocity between 8 and 12m/s.

RQ-2: Experiences

In the following, we discuss experiences following the proposed development
and simulation process using the Optimized Adaptive Cruise Control and Safe
Halt case studies as two representative examples. In Fig. 5, we depict the posi-
tion, velocity, acceleration, and failure rate over time of the Optimized Adaptive
Cruise Control case study. The leading vehicle alternates between accelerating
and braking as shown by the acceleration (lower left), and aims at keeping the
velocity between 8m/s and 12m/s (upper right). The position (upper left) of
the ego car shows that it tightly follows the leading car, but always keeps a
minimal distance that is considered safe. The failure rate (lower right) shows the
aforementioned issue, where the initial state violates the monitor condition due
to imprecision, but afterwards the monitor condition is not violated anymore.

In contrast to the optimized version, the unoptimized version is simpler and
provides nondeterminstic assignments for braking and acceleration. Moreover,
the implementation switches accelerations only between the maximum braking
force B and maximum acceleration force A. Although safety invariants still held
at execution, we considered this behavior to be less convenient for human drivers.

258 A. Kittelmann et al.

0

10

20

30

40

0 2 4 6
Time in seconds

R
el

at
iv

e
po

si
tio

n
in

 m
et

er
s

Legend
Obstacle

Vehicle

(a) Relative Position

0.0

2.5

5.0

7.5

10.0

0 2 4 6
Time in seconds

Ve
lo

ci
ty

 in
 m

/s

Legend
Max. velocity

Vehicle

(b) Velocity

−5.0

−2.5

0.0

2.5

0 2 4 6
Time in seconds

Ac
ce

le
ra

tio
n

in
 m

/s
²

(c) Acceleration

0

25

50

75

100

0 2 4 6
Time in seconds

Fa
ilu

re
 ra

te
 in

 %

(d) Failure Rate

Fig. 6. Measurements for the Safe Halt case study with a maximum velocity of 10m/s.

We realized that optimizing this behavior is best addressed in the modeling
phase, as we decided to add additional modes for more fine-grained control.

In this specific case, we considered that resolving nondeterministic choice
at implementation level to realize the same optimization would be significantly
more difficult for two reasons. First, modes and their implementation in HMAL
provide a local view on the parameters involved (e.g., velocity), whereas the
implementation is much more detailed and scattered. The unoptimized version
sets the acceleration to a fixed constant. The optimized version, however, views
the acceleration as a function depending on variables and parameters, such as
velocity, distance to leading vehicle, and worst-case execution time. Considering
optimality of such functions increases effort during the implementation phase.
Second, verifying correctness of such optimization is also more promising in the
modeling phase, as numerical optimization is best addressed with differential
dynamic logic.

The second example illustrating the safe halt case study is shown in Fig. 6.
The vehicle must keep a maximum velocity of 10m/s and starts 40m in front of
an obstacle. Similar to the unoptimized adaptive cruise control case study, the
vehicle only switches accelerations between the maximum braking force B and

Runtime Verification of Correct-by-Construction Driving Maneuvers 259

maximum acceleration force A (upper left). The failure rate (lower right) shows
an increase in monitor violations after four seconds. Although we did not exactly
locate the cause for this issue, as both safety guarantees were not violated, we
assume that sensor uncertainties may play a role.

While failure rates should not be dismissed, the above experiments increase
our confidence in the proposed link from verified HMA models to actual imple-
mentations. All evaluated maneuvers transferred their safety guarantees to the
simulation. Although the first two case studies required more implementation
effort (e.g., due to interfacing with AirSim and processing sensor data), the
automatic code generation and reuse of existing implementations allowed us to
implement the final three case studies considerably faster. Moreover, three of
the five maneuvers used non-deterministic assignments in their hybrid mode
automata, which had to be resolved manually by us following the correctness-
by-construction approach. This ensured that no new defects were introduced and
that violations of monitor conditions can, in principle, always be traced back to
an incomplete specification. We therefore believe that our verification and vali-
dation pipeline is particularly valuable for virtual prototyping of maneuvers and
experimenting with their set of requirements.

6 Related Work

To enable the correctness-by-construction approach in our tool chain, we inte-
grated CorC [44] into ArchiCorC. The reason for this decision are manifold.
First, the feature set and future plans of CorC are sufficient for the purpose of
ArchiCorC. In particular, both tools target object-oriented languages and the
small kernel of CorC’s theoretical foundation increases trust in its correctness.
Second, CorC and ArchiCorC are based on the same technology stack, namely
the Eclipse Modeling Framework. This leads to easier maintenance of the bridge
between both tool suits and provides better user experience, as ArchiCorC
artifacts and CorC programs can all be part of the same module. Third, CorC
is well-maintained and actively developed, whereas most other frameworks in
the field of stepwise program construction are not maintained anymore and also
never reached a level of maturity, which we would consider sufficient enough for
proper integration into ArchiCorC.

In spite of its young age, CorC was already extended in several direc-
tions. First, Runge et al. [43] extended CorC with a notion of information flow
control-by-construction. Instead of checking confidentiality of data post-hoc by
static information-flow analyses, information flow control-by-construction defines
refinement rules for constructing secure programs. Second, Bordis et al. [6] intro-
duced VarCorC, which is an offspring of CorC that focuses on correctness-by-
construction for software product lines, instead of only considering monolithic
programs. Finally, ArchiCorC, as presented in this chapter, lifts CorC to
an architectural level by bundling correct-by-construction implementations in
software components and providing means for code generation.

In the literature, many languages, techniques, frameworks, and tools exist
to formally and semi-formally address the diverse set of challenges of industrial

260 A. Kittelmann et al.

cyber-physical systems development. These challenges include large system sizes,
heterogeneity of connected modules, stakeholders from a multitude of disciplines,
requirements elicitation, and also software evolution and maintenance them-
selves. Popular modeling languages include AADL [10,26,31,48,49], Model-
ica [9,14], Alloy [17,19], UML [4,11,18,27], and its variants SysML [12,35,36]
and MARTE [5,46]. While all these languages greatly contributed to the
research of system’s design and analysis, their purpose is (1) to provide rich
modeling facilities for almost all parts of a cyber-physical system, and (2) to
eventually use these models as basis for real production code. Both goals make
these languages inherently complex. For instance, AADL is used to model both
hardware and software architectures of real-time embedded systems in great
detail. In contrast, we aim to thrive for simplicity and focus on the functional
modeling of maneuvers only to scale and leverage formal verification.

7 Conclusion

We presented a verification and validation pipeline for cyber-physical systems,
where we explained how verified abstract maneuvers represented by hybrid mode
automata can be refined in a correct-by-construction fashion to a component-
based architecture amenable to simulation and runtime verification. In partic-
ular, we employed ArchiCorC, which (1) allows to manually resolve nonde-
terministic assignments relying on the correctness-by-construction approach for
programs and (2) automatically generates code in a general-purpose program-
ming language that can be considered correct-by-construction as well. To validate
the executable maneuver at run-time, we added functionality for automatically
generating monitor conditions based on the corresponding hybrid mode automa-
ton. As the verified model is highly abstract, monitoring ensures that the safety
obligations can be checked during runtime in case of hardware issues or environ-
mental uncertainties.

We simulated the derived controller implementations in AirSim to inspect
the appropriateness of the abstract model of a maneuver. The pursued and
accomplished goal is that the link from a formal HMA model to execution
is achievable in practice for non-trivial maneuvers. We have evaluated that all
five case studies indeed transferred their correctness guarantees to the execution
stage.

References

1. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the International
Conference on Embedded Software and Systems, pp. 273–278 (2011)

2. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci.
138(1), 3–34 (1995)

3. Angermann, A., Beuschel, M., Rau, M., Wohlfarth, U.: Matlab-simulink-stateflow.
De Gruyter Oldenbourg (2020)

Runtime Verification of Correct-by-Construction Driving Maneuvers 261

4. Bernardi, S., Gentile, U., Marrone, S., Merseguer, J., Nardone, R.: Security mod-
elling and formal verification of survivability properties: application to cyber-
physical systems. J. Syst. Softw. 171, 110746 (2021)

5. Bernardi, S., Merseguer, J.: A UML profile for dependability analysis of real-time
embedded systems. In: Proceedings of the International Workshop on Software and
Performance (WOSP), pp. 115–124 (2007)

6. Bordis, T., Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Variational correctness-
by-construction. In: Cordy, M., Acher, M., Beuche, D., Saake, G. (eds.) Proceedings
of the International Working Conference on Variability Modelling of Software-
Intensive Systems (VAMOS), pp. 7:1–7:9. ACM (2020). https://doi.org/10.1145/
3377024.3377038

7. Branicky, M.S.: Introduction to hybrid systems. In: Hristu-Varsakelis, D., Levine,
W.S. (eds.) Handbook of Networked and Embedded Control Systems. Control
Engineering, pp. 91–116. Birkhäuser, Boston (2005). https://doi.org/10.1007/0-
8176-4404-0_5

8. Buzdalov, D., Khoroshilov, A.: A discrete-event simulator for early validation of
avionics systems. In: Proceedings of the Workshop on Architecture Centric Virtual
Integration (ACVIP), p. 28 (2014)

9. Elmqvist, H., Mattsson, S.E., Otter, M.: Object-oriented and hybrid modeling in
modelica. J. Eur. des systèmes automatisés 35(4), 395–404 (2001)

10. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

11. France, R., Evans, A., Lano, K., Rumpe, B.: The UML as a formal modeling
notation. Comput. Stand. Interfaces 19(7), 325–334 (1998)

12. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: the Systems
Modeling Language. Morgan Kaufmann, San Francisco (2014)

13. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_36

14. Gómez, F.J., Aguilera, M.A., Olsen, S.H., Vanfretti, L.: Software requirements
for interoperable and standard-based power system modeling tools. Simul. Model.
Pract. Theory 103, 102095 (2020)

15. Goswami, D., et al.: Challenges in automotive cyber-physical systems design, pp.
346–354 (2012). https://doi.org/10.1109/SAMOS.2012.6404199

16. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/978-3-642-
59615-5_13

17. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

18. Jue, W., Song, Y., Wu, X., Dai, W.: A semi-formal requirement modeling pat-
tern for designing industrial cyber-physical systems. In: Proceedings of the Annual
Conference of the IEEE Industrial Electronics Society (IES), vol. 1, pp. 2883–2888.
IEEE (2019)

19. Kang, E., Adepu, S., Jackson, D., Mathur, A.P.: Model-based security analysis of a
water treatment system. In: Proceedings of the International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS), pp. 22–28. IEEE (2016)

https://doi.org/10.1145/3377024.3377038
https://doi.org/10.1145/3377024.3377038
https://doi.org/10.1007/0-8176-4404-0_5
https://doi.org/10.1007/0-8176-4404-0_5
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1109/SAMOS.2012.6404199
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13

262 A. Kittelmann et al.

20. Kittelmann, A.: Maneuver-centric formal engineering approach for cyber-physical
systemsA. Ph.D. thesis, Braunschweig, Technische Universität Carolo-Wilhelmina
zu Braunschweig (2022). https://doi.org/10.24355/dbbs.084-202204121019-0

21. Knüppel, A., Jatzkowski, I., Nolte, M., Thüm, T., Runge, T., Schaefer, I.: Skill-
based verification of cyber-physical systems. In: FASE 2020. LNCS, vol. 12076, pp.
203–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45234-6_10

22. Knüppel, A., Runge, T., Schaefer, I.: Scaling correctness-by-construction. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 187–207. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61362-4_10

23. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Proceedings of the International Conference on Intelli-
gent Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEE (2004)

24. Koubaa, A.: Robot Operating System (ROS). The Complete Reference (Volume 1)
SCI, vol. 625. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9

25. Lee, I., et al.: Challenges and research directions in medical cyber-physical systems.
Proc. IEEE 100(1), 75–90 (2012). https://doi.org/10.1109/JPROC.2011.2165270

26. Lin, Q., Adepu, S., Verwer, S., Mathur, A.: Tabor: a graphical model-based app-
roach for anomaly detection in industrial control systems. In: Proceedings of the
Asia Conference on Computer and Communications Security (ASIACCS), pp. 525–
536 (2018)

27. Mancini, T., et al.: Parallel statistical model checking for safety verification in
smart grids. In: Proceedings of the International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm), pp.
1–6. IEEE (2018)

28. Maraninchi, F., Rémond, Y.: Mode-automata: about modes and states for reactive
systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 185–199. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0053571

29. Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for
the development of safe critical systems. Sci. Comput. Program. 46(3), 219–254
(2003)

30. Michniewicz, J., Reinhart, G.: Cyber-physical robotics - automated analysis, pro-
gramming and configuration of robot cells based on cyber-physical-systems. Proc.
Technol. 15, 566–575 (2014). https://doi.org/10.1016/j.protcy.2014.09.017

31. Misson, H.A., Gonçalves, F.S., Becker, L.B.: Applying integrated formal methods
on cps design. In: Proceedings of the Brazilian Symposium on Computing Systems
Engineering (SBESC), pp. 1–8. IEEE (2019)

32. Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1), 33–74 (2016)

33. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W.: Towards cps verifica-
tion engineering. In: Proceedings of the International Conference on Information
Integration and Web-Based Applications & Services, pp. 367–371. iiWAS 2020,
Association for Computing Machinery, New York, NY, USA (2020). https://doi.
org/10.1145/3428757.3429146

34. Müller, A., Mitsch, S., Schwinger, W., Platzer, A.: A component-based hybrid
systems verification and implementation tool in Keymaera x (tool demonstration).
In: Chamberlain, R., Taha, W., Törngren, M. (eds.) CyPhy/WESE -2018. LNCS,
vol. 11615, pp. 91–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23703-5_5

35. Neghina, M., Zamfirescu, C.-B., Pierce, K.: Early-stage analysis of cyber-physical
production systems through collaborative modelling. Softw. Syst. Model. 19(3),
581–600 (2019). https://doi.org/10.1007/s10270-019-00753-w

https://doi.org/10.24355/dbbs.084-202204121019-0
https://doi.org/10.1007/978-3-030-45234-6_10
https://doi.org/10.1007/978-3-030-61362-4_10
https://doi.org/10.1007/978-3-319-26054-9
https://doi.org/10.1109/JPROC.2011.2165270
https://doi.org/10.1007/BFb0053571
https://doi.org/10.1016/j.protcy.2014.09.017
https://doi.org/10.1145/3428757.3429146
https://doi.org/10.1145/3428757.3429146
https://doi.org/10.1007/978-3-030-23703-5_5
https://doi.org/10.1007/978-3-030-23703-5_5
https://doi.org/10.1007/s10270-019-00753-w

Runtime Verification of Correct-by-Construction Driving Maneuvers 263

36. Pagliari, L., Mirandola, R., Trubiani, C.: Engineering cyber-physical systems
through performance-based modelling and analysis: a case study experience report.
J. Softw. Evol. Process 32(1), e2179 (2020)

37. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

38. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-14509-4

39. Platzer, A.: Logics of dynamical systems. In: Proceedings of the International Sym-
posium on Logic in Computer Science (LICS), pp. 13–24. IEEE Computer Society
(2012). https://doi.org/10.1109/LICS.2012.13

40. Platzer, A.: Logical Foundations of Cyber-physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

41. Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II, vol.
1. Ptolemy.org Berkeley (2014)

42. Quigley, M., et al.: Ros: an open-source robot operating system. In: Procedings of
the Workshop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)

43. Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Lattice-based information flow
control-by-construction for security-by-design, pp. 44–54. ACM (2020). https://
doi.org/10.1145/3372020.3391565

44. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6_2

45. Sampigethaya, K., Poovendran, R.: Aviation cyber-physical systems: Foundations
for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013).
https://doi.org/10.1109/JPROC.2012.2235131

46. Seceleanu, C., et al.: Analyzing a wind turbine system: From simulation to formal
verification. Sci. Comput. Program. 133, 216–242 (2017)

47. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical
simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and
Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-67361-5_40

48. Zhang, L.: Specifying and modeling automotive cyber physical systems. In: Pro-
ceedings of the International Conference on Computational Science and Engineer-
ing (CSE), pp. 603–610. IEEE (2013)

49. Zhang, L.: Modeling large scale complex cyber physical control systems based
on system of systems engineering approach. In: Proceedings of the International
Conference on Automation and Computing (ICAC), pp. 55–60. IEEE (2014)

https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1109/JPROC.2012.2235131
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1007/978-3-319-67361-5_40

Leveraging System Dynamics in Runtime
Verification of Cyber-Physical Systems

Houssam Abbas1 and Borzoo Bonakdarpour2(B)

1 Oregon State University, Corvalis, OR, USA
houssam.abbas@oregonstate.edu

2 Michigan State University, East Lansing, USA

borzoo@msu.edu

Abstract. Cyber-physical systems consist of control software systems
that interact with physical components that obey the fundamental laws
of physics. It has been long known that exhaustive verification of these
systems is a computationally challenging problem and distribution makes
the problem significantly harder. In this paper, we advocate for run-
time verification of cyber-physical systems and layout a road map for
enhancing its effectiveness and efficiency by exploiting the knowledge of
dynamics of physical processes.

1 Introduction

Cyber-physical systems (CPS), the Internet of Things (IoT), and edge applica-
tions appear in many different applications in our daily lives. CPS generally
have safety-critical nature and as in other such systems, runtime verification
(RV) is a complementary approach to static verification and testing in order to
gain assurance about the health of the system. CPS is particularly becoming
distributed over networks of agents, e.g., in sensors in infrastructures, health-
monitoring wearables, networks of medical devices, and autonomous vehicles.
Moreover, CPS and IoT often have to deal with resource constraints and any
improvement in minimizing resource utilization and consumption is in pressing
need.

While there have been proposals for monitoring CPS [2,4,5], predictive moni-
toring [3], monitoring using worst-case bounds [6], mitigating the effects of timing
inaccuracies [1,12], and for minimally intrusive CPS monitoring [9], to our knowl-
edge, the work on distributed RV and exploiting system dynamics to reduce the
overhead of RV is limited to [11]. System dynamics is especially an interesting
feature of CPS, as physical processes are assumed to obey the laws of physics. For
example, a car cannot accelerate from 1–150 km/h in only one second. Knowing
this could significantly assist in designing runtime monitors that monitor the
state of the system while ignoring scenarios that cannot be reached.

Our goal in this paper is to explore the idea of combining RV with a pre-
computed knowledge of system dynamics to enhance the effectiveness of RV and

This work is sponsored by the NSF CCF Award 2118356.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 264–278, 2022.
https://doi.org/10.1007/978-3-031-19849-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_16

Leveraging System Dynamics in Runtime Verification 265

reduce its runtime overhead. To this end, we introduce a set of ideas on the types
of dynamics knowledge that can be available and how it might be leveraged by a
runtime monitor, in the centralized and distributed setups. Specifically, we look
at:

– Types of dynamics knowledge: from simple bounds on the state changes to
full knowledge of the dynamics but only over a short amount of time.

– Different system models: we consider continuous-time and discrete-time mod-
els in a unified manner, to maintain maximum applicability of the monitors.

– Different ways to leverage the dynamics: from skipping parts of the signal
where nothing interesting can happen, to early termination of the monitoring
process.

We also discuss that the impact of the knowledge of the dynamics when
the monitor is distributed over the agents, with each agent knowing only its own
dynamics, and show how access to information about offline model-checking runs
on the model can be leveraged.

The Model-Based Design Cycle and Runtime Verification. Knowledge of the
dynamics, and offline formal verification, are possible in the model-based design
cycle, in which a model of the system-under-development is created, refined and
ultimately synthesized. Thus, by construction, the system can predict its own
future, up to a certain horizon, and up to a certain accuracy. This knowledge,
available by construction, can accelerate or improve the accuracy of online RV.

Organization. The rest of the paper is organized as follows. In Sect. 2, we present
the preliminary concepts. Section 3 discusses the role of system dynamics in
improving the runtime overhead. We discuss the distributed setting and its chal-
lenges in Sect. 4 and the impact having access to verified dynamics in Sect. 5.
Finally, we conclude in Sect. 6.

2 Preliminary Concepts

First, we set some notations. The set of reals is R, the set of non-negative reals
is R+, and the set of positive reals is R

∗
+. The set of integers {1, . . . , N} is

abbreviated as [N].

2.1 Signal Model

In this section, we review our signal model, i.e., our model of the output signal
of an agent from [11].

Definition 1. An output signal is a function x : I → R
d, which is right-

continuous, left-limited, and is not Zeno. Here, I is an interval in R+ (which
could be all of R+), and will be referred to as the timeline of the signal. �

266 H. Abbas and B. Bonakdarpour

Right-continuity means that at all t in its support, lims→t+ x(s) = x(t). Left-
limitedness means the function has a finite left-limit at every t in its support:
lims→t− x(s) < ∞. Not being Zeno means that x has a finite number of dis-
continuities in any bounded interval in its support. This ensures that the signal
cannot jump infinitely often in a finite amount of time. A discontinuity in a
signal x(·) can be due to a discrete event internal to agent A (like a variable
updated by software), or to a message sent to or received from another agent A′.

2.2 Signal Temporal Logic (STL) [8]

Let AP be a set of atomic propositions. The syntax for signal temporal logic
(STL) is defined for infinite traces using the following grammar:

ϕ := � | p | ¬ϕ | ϕ ∧ ϕ | ϕU[a,b] ϕ

where � is the logical constant standing for true, p ∈ AP and U is the
‘until’ temporal operator. We view other propositional and temporal operators
as abbreviations, that is, ⊥ = ¬� (false), [a,b] ϕ = �U [a,b]ϕ (eventually),

[a,b] ϕ = ¬([a,b] ¬ϕ) (always). We denote the set of all STLformulas by ΦSTL.
Let a trace σ = (x1, . . . , xN) be a set of N signals with common support R+.

Thus, a trace is, by definition, of infinite duration. This models that all agents
are executing concurrently, and that time does not stop. Even if the agent does
nothing over some interval [a, b], its physical output signal still has a value. This
models the output of a set of N agents operating concurrently. Each signal might
be d-dimensional. For simplicity of presentation and without loss of generality
in this paper, we assume d = 1.

To every atom p in AP is associated an N -ary function fp : RN → R.
Let |= denote the satisfaction relation. We write σ, t |= ϕ to signify ‘the

infinite trace σ satisfies formula ϕ starting at time t’. Since the signals share
a support, time t is in that shared support. Satisfaction is formally defined as
follows.

(σ, t) |= � (no condition, � is satisfied by all traces at all times)
(σ, t) |= p iff fp(x1(t), . . . , xn(t)) > 0
(σ, t) |= ϕ ∧ ψ iff (σ, t) |= ϕ ∧ (σ, t) |= ψ
(σ, t) |= ¬ϕ iff ¬((σ, t) |= ϕ)
(σ, t) |= ϕU [a,b]ψ iff ∃t′ ∈ [t + a, t + b] : (σ, t′) |= ψ ∧

∀t′′ ∈ [t, t′) : (σ, t′′) |= ϕ

Note that for the Until operator, formula ϕ is required to hold starting at the
evaluation moment t up to and excluding the ‘hand-over’ moment t′. When t = 0
we write σ |= ϕ instead of (σ, 0) |= ϕ. For example, given the trace σ shown in
Fig. 1, the STLformula ϕ = pU [4,6.5]q holds at time 0, that is, σ |= ϕ. However,
ϕ does not hold after time 2, as in that case, q must be observed after time 2+4
and before 2 + 6.5, which does not happen.

A subtlety of the online monitoring setup is that only a finite-duration seg-
ment of a trace is available at any given time, not an infinite trace. This is handled

Leveraging System Dynamics in Runtime Verification 267

in the classical manner: given a finite duration signal x, we say it satisfies/violates
ϕ iff every extension (x.y), where y is an infinite signal, satisfies/violates ϕ. Oth-
erwise, the monitor returns Unknown. Here, the dot ‘.’ denotes concatenation in
time.

p

q

0 4.5 6
t

�
⊥
�
⊥

Fig. 1. A trace σ generated by a system.

3 Exploiting Knowledge of System Dynamics

RV first emerged as a set of techniques for monitoring a signal against a specifi-
cation, without paying any attention to the dynamics that generates the signal.
This was deliberate: the setup imagined by RV pioneers was one in which a
model of the systems was not available, or was available but too complicated
for exhaustive verification (i.e., model checking). The advantage of ignoring the
signal-generating dynamics is that the resulting monitor is maximally applica-
ble: all it needs is the signal to monitor. It might also be thought that this
creates a faster monitor, since taking signal dynamics into account might add a
computational burden.

In this section, we argue that this is not always the case – indeed, we argue
that exploiting available knowledge of signal dynamics can reduce the monitor’s
run time. In a sense, this parallels earlier developments in cyber-physical sys-
tems which brought together computer scientists and control theorists to develop
model-checking and verification algorithms for hybrid dynamical systems. The
new model checking algorithms had to account for the dynamics to verify prop-
erties expressed in terms of the state variables.

3.1 Motivating Example

To motivate the benefit of using systems dynamics, we repeat one of our examples
from [11] (see Fig. 2). From knowing the rate bound |ẋ| ≤ 1 (shown by a dashed
line), the monitor concludes that the earliest x can satisfy the atom x ≥ 3 is τ1.
Similarly for y. Given that τ1 > τ2, the monitor discards, roughly speaking, the
fragment [0, τ2] from each signal and monitors the remaining pieces.

In [11] we demonstrated that such dynamics knowledge can significantly
reduce the runtime of the monitor. This paper explores other possibilities for
exploiting other forms of knowledge.

268 H. Abbas and B. Bonakdarpour

t
s

x
rate bound

y ≤ 0.5
x ≥ 3

rate bound

τ1 τ2

Fig. 2. Leveraging dynamics.

3.2 System Model

We consider signals x generated by a system under observation. A system is
modeled as a tuple Σ = (X, I, U, f,H), where X ⊆ R

d is the state space, I ⊂ X
is the set of initial states, U ⊂ R

m is the input space, f : X × U → X is the
transition function, and H : X → R

o is the output or observation function.
The model is either an Ordinary Differential Equation (ODE) in continuous

time
ẋ(t) = f(x(t), u(t)), x(0) ∈ I, u(t) ∈ U, t ∈ [0,∞)

or a Difference Equation (DEs) in discrete time

x(t + 1) = f(x(t), u(t)), x(0) ∈ I, u(t) ∈ U, t ∈ N

The DE can model, as a special case, finite state automata: in this case f models
the transition relation of the automaton. In both cases, u is the input signal,
provided by the system’s controller; in the discrete-time case, u is of course a
(discrete-time) sequence. We write x

u→ x′ to indicate a transition from x to x′

under input signal or sequence u of unspecified length.

3.3 Knowledge of Signal Dynamics

In this section, by ‘signal dynamics’, we mean the dynamics of the model that
is generating the monitored signal. E.g., the signal x might be the position of a
car which obeys an ODE

ẋ(t) = v(t)cos(θ(t)),

where v̇(t) = a(t), a is the acceleration input, and θ(t) is the steering input.
Thus the input signal is 2-dimensional: u = [a, θ].

The monitor, which runs on-board the system, may have different kinds of
knowledge about the dynamics:

1. Bounds on the signal’s derivative/difference: |ẋ(t)| ≤ L or |x(t + 1) −
x(t)| ≤ L. This is the simplest form of knowledge that we consider.

2. Local model: To each value of the state, the monitor associates a local
approximation of the dynamics. That is, if the measured state at time t is
x, the monitor considers that the signal obeys ẋ(t) = fx(x(t), u(t)), where
fx is the local model. We do not commit to how fx and f are related: the

Leveraging System Dynamics in Runtime Verification 269

former may be a linearization of the latter, or something else entirely. For
fx to be useful, we must assume that its error to f is bounded, namely
‖fx(y, u)−f(y, u)‖ ≤ e(x) for all x, y and u. (Note that sometimes fx does not
take the same input as f , in which case we must also assume some mapping
from f -inputs to fx-inputs). Presumably fx is also faster to simulate than f .
Similar equations apply to the DE case.

3. Simulating model: In this case, the monitor has access to a dynamical
model Σ′ = (Xg, Ig, Ug, g,H), with state space Xg and control space Ug,
which simulates f . This means that there is relation R between Xf and Xg,
called the simulation relation, such that:
(a) Any two related states have the same output: H(xf) = H(xg) for all

(xf , xg) ∈ R. Thus, an observer cannot tell whether they are observing
a state of f or g.

(b) For every x in If there exists a point y in Ig s.t. (x, y) ∈ R (initial
conditions are related).

(c) For every (x, y) ∈ R it holds that: x
u→ x′ in the f -system implies the

existence of a transition y
u′
→ y′ in the g-system s.t. (x′, y′) ∈ R. That

is, related states evolve into related states.
We say g simulates f . Note that every f -behavior has a corresponding g-
behavior, but not necessarily the other way around.
The notion of ε-simulation generalizes the above definition by requiring
bounded error between related states rather than equality. That is, ‖H(xf)−
H(xg)‖ ≤ ε for all (xf , xg) ∈ R

4. Short model: the monitor has access to the ‘true’ model f but can only
execute it for a short amount of time. E.g., it can only solve the ODE up to
time 5, or it can only see 5 hops ahead in the automaton.

We do not consider the case where the monitor has access to the true model
f and can execute it to any length since then, the monitor can predict exactly
the future trajectory and monitor it in a dynamics-agnostic manner.

Of course, there may be combinations of the above types of knowledge, e.g.,
a short local model.

3.4 Using Partial Knowledge

How might the monitor use these kinds of partial knowledge? And why would
that reduce the monitoring overhead? By default, we present all examples for
continuous-time signals. Obvious modifications can be made for the DE case,
unless otherwise indicated. Our approach in this section will be to start from
simple concrete examples which clarify the basic idea and technique to leverage
dynamics in runtime monitoring. We then raise some of the challenges that will
arise when we try to generalize, and suggest ways forward.

270 H. Abbas and B. Bonakdarpour

Early Termination: the most concrete idea, and one which can be readily
implemented on top of existing software, is to use the dynamics knowledge to
potentially terminate monitoring early. For instance, consider the atom p :=
(x ≥ 0) and suppose the formula is p. So far no p has been observed, and at
the present moment t, x(t) = −5. If the monitor knows that ẋ(s) ≤ −1 from
here on out (s ≥ t) then it can immediately declare a violation since x will never
go positive.

The same principle applies if the monitor has a local model with a known
deviation e to the true dynamics. The local bound provides a more refined bound,
one that is not uniform, thus reducing the conservatism of the answer, but at
the cost of solving the local model’s time-varying ODE.

A simulating model is also useful for achieving the same task if the simulation
relation meets a certain property. Namely, the state space of g, Xg, is obtained by
partitioning X, where the states in each part all satisfy a particular combination
of atoms. Formally, Xg is the quotient set of X by the equivalence relation

x ≡ y iff for all atomic propositions p, x |= p iff y |= p.

We say that the simulation respects AP. If the simulation relation respects AP,
then it is enough to execute g to get a peek at the future. This is because g
contains all the information necessary to monitor the formula: In such a case,
the monitor executes g however long is feasible and tries to predict a violation
or satisfaction, if they occur within the prediction horizon.

The above reasoning might be generalized somewhat if we find a notion of
approximate satisfaction of an atom, which we then lift to the notion of a sim-
ulation relation that approximately respects AP. This might coincide with the
notion of approximate simulation introduced in 2. Approximate simulations are
well-known in the hybrid systems literature and have been successfully used to
verify the safety of complex dynamics by reasoning over the simulating sys-
tem. For general properties expressed in a temporal logic, this is more compli-
cated as it compounds the errors in complex ways. One possible approach is to
study the formula’s language directly, and lift the approximate simulation to the
languages. It is less clear whether a general simulating model, which does not
(approximately) respect AP, can enable early termination.

It is fairly obvious that a short model can help in early termination: just
execute the model as long as feasible, say for H time units, and see if the pre-
dicted trajectory already satisfies or violates the spec. However, since we assume
the execution horizon H to be very short, this will probably waste more energy
in trajectory prediction than it saves in early termination, since most predic-
tions won’t yield a decisive verdict. An interesting research direction arises if we
assume that the monitor can query the model f at particular states: meaning
that it can simulate f for H units from a state q of its choosing, not necessarily
the current state x(t). If this is possible, then the monitor can pre-emptively
explore the model’s behavior around potentially troublesome states from which
violations of the formula can arise. Research is needed to define“troublesome
states”, and to do so in a way that takes into account the current on-going
execution and the ways in which the formula can still be violated.

Leveraging System Dynamics in Runtime Verification 271

If f is an ODE or DE, the model can be queried in a straightforward fashion
by setting the initial condition to q – but the difficulty immediately arises of
what input signal to apply to solve the ODE ẋ = f(x, u). If the controller is a
state-feedback controller, the answer is trivial, but in general, this is an open
question. If f is an automaton, querying it requires communication between the
monitor and the system itself (or perhaps the controller), in which the monitor
asks to obtain that piece of the automaton which is centered on q; i.e., q and
its out-neighbors up to H hops away. Whether this is realistic or not depends
on the system architecture: for instance, many systems do not carry a model of
their own dynamics at all, or that model is not all available in memory at any
given point in time due to memory constraints.

Skipping Parts of the Signal: The same types of knowledge might allow
skipping parts of the signal: they are not monitored, thus saving in monitor-
ing energy consumption, or freeing the monitor for other tasks, like monitoring
multiple signals in alternating fashion. This is true for instance if the monitor
knows bounds |x(t)| ≤ L. Let’s reprise the above example: consider the atom
p := (x ≥ 0) and suppose the formula is p. So far no p has been observed, and
at the present moment t, x(t) = −5. If the monitor knows that |ẋ| ≤ 1 from here
on out, then it knows x will remain negative at least for the next 5 s. So it can
ignore the next 5 s of the signal, saving processing power, and start observing
again at t + 5. The same reasoning applies if the monitor has a local model, the
only difference being that we now have possibly less conservative bounds on the
derivative and trajectory.

The use of a simulating model to skip signal segments is much less obvious.
One of the difficulties is that the simulating model g does not have the same
notion of time as the original model f . While every f -transition x

u→ x′ has

a corresponding transition y
u′
→ y′ in the g-system, the two transitions do not

necessarily take the same amount of time, and in general, there is no known
relation between the timelines. In fact, one of the reasons we develop a simulating
model is that it can abstract away or accelerate time, allowing us to run faster
simulations with it.

The use of a short model is also not obvious, because of the short horizon.
It is not clear to us whether adding the ability to query the short model at will
helps: questions of where and when to query it must be driven by the formula
being monitored and the history of the system trajectory so far, and all of these
are challenging research questions.

An additional challenge to all the above methods in the case of a general
temporal logic formula is that the monitor must track all the ways the formula
might be satisfied or violated, to avoid skipping signal segments that affect the
truth value of the formula. While in principle possible (for a finite duration tra-
jectory), it poses a heavy memory burden on the RV module, which needs to be
lightweight. A partial workaround is to simply track each atom individually and
avoid any truth value changes of the atoms. This is only a partial workaround:

272 H. Abbas and B. Bonakdarpour

as shown in the example, the truth value can change simply due to time passing,
without change in the values of any atoms.

4 Monitoring Distributed CPS

If the system under monitoring consists of multiple nodes or agents, each of
which has a local clock, then new challenges arise for runtime monitoring. These
challenges further complicate our attempts at leveraging system dynamics.

At the highest level, the biggest challenge is that local clocks can and do drift:
thus when one agent reports x1(5) = 3 and the other agent reports x2(5) = 2,
these are not necessarily truly synchronous readings. I.e., the first clock reads
5 at a different (physical) time than the second clock. Such drift can obviously
affect the validity of the monitor’s calculations.

The second high-level challenge, which is independent of clock drift, is that
each agent only has access, a priori, to its own state. So formulas that couple
agents’ states, like (x1 > 0)U (x2 > 3), require communication between agents
and exchange of information. Thus we must design a low-overhead communica-
tion protocol between the agents.

In this section, we first describe the formal setup of a distributed CPS. Then
we describe the challenges that arise when trying to leverage system dynamics’
knowledge in RV.

4.1 Distributed CPS Architecture

We assume a loosely coupled system. Specifically, the system consists of N reli-
able agents that do not fail, denoted by {A1, A2, . . . , AN}, without any shared
memory or global clock. The output signal of agent An is denoted by xn, for
1 ≤ n ≤ N . We will need to refer to some global clock which acts as a ‘real’ time-
keeper. However, this global clock is a theoretical object used in definitions and
theorems, and is not available to the agents. Messages that are passed between
agents as part of their normal functioning (i.e., independently of the monitoring
task) can be modeled as instantaneous changes in signal value, and will not be
modeled separately here. We make two assumptions:

– (A1) Partial synchrony. The local clock (or time) of an agent An can be
represented as an increasing function cn : R+ → R+, where cn(χ) is the value
of the local clock at global time χ. Then, for any two agents An and Am,
where m,n ∈ [N], we have:

∀χ ∈ R+.|cn(χ) − cm(χ)| < ε

with ε > 0 being the maximum clock skew. The value ε is assumed fixed and
known by the monitor in the rest of this paper. In the sequel, we make it
explicit when we refer to ‘local’ or ‘global’ time.

– (A2) Deadlock-freedom. The agents being analyzed do not deadlock.

Leveraging System Dynamics in Runtime Verification 273

Assumption (A1) is met by using a clock synchronization algorithm, like
NTP [10], to ensure bounded clock skew among all agents. Assumption (A2)
is stronger, meaning that some systems do indeed deadlock, while others are
explicitly guaranteed not to deadlock.

In the discrete-time setting, a distributed signal is defined as a set of events
(where an event is a value change in an agent’s variables, due to a software update
for example). We now update this definition for the continuous-time setting of
this paper. Namely, we define a distributed signal to be a set of signals (one per
agent), where each timeline is measured using the local clock cn defined above,
an event on the nth agent is a pair (t, xn(t)), and inter-agent events are partially
ordered by a variation of the happened-before (�) relation [7], extended by our
assumption (A1) on bounded clock skew among all agents. The formal definition
follows.

Definition 2. A distributed signal on N agents is a pair (E,�), where E =
(x1, x2, . . . , xN) is a vector of signals, one for each agent. All signals xk share
a support, modeling that all agents execute in parallel and that time (measured
locally) does not stop. The relation � is a relation between events in signals such
that:

(1) In every signal xn, all events are totally ordered, that is,

∀n ∈ [N]. ∀t, t′ ∈ In.
(
t < t′

)
⇒

(
(t, xn(t)) � (t′, xn(t′))

)
,

where the set In is a bounded nonempty interval.
(2) If the time between any two events is more than the maximum clock skew ε,

then the events are totally ordered, that is,

∀m,n ∈ [N]. ∀t, t′ ∈ In.
(
t + ε < t′

)
⇒

(
(t, xm(t)) � (t′, xn(t′))

)
. �

We use a new symbol E for the trace in a distributed signal, rather than σ, to
emphasize that signals in E are partially synchronous, and that their supports
are bounded (which is a technical requirement - see [11]).

Example. Figure 3 shows two timelines, generated by two agents execut-
ing concurrently. Every moment in each timeline corresponds to an event
(t, xn(t)), n ∈ [2]. Thus, we see that the following hold: (1, x1(1)) �
(2.3, x1(2.3)), (2.3, x1(2.3)) � (2.94, x2(2.94)), (1, x2(1)) � (2.94, x2(2.94)), and
(2.94, x2(2.94)) �� (3, x1(3)).

The classic case of complete asynchrony is recovered by setting ε = ∞.
Because the agents are only synchronized within an ε, it is not possible to actu-
ally evaluate all signals at the same moment in global time. The notion of con-
sistent cut and its frontier, defined next, capture possible global states: that is,
states that could be valid global states (see Fig. 3).

274 H. Abbas and B. Bonakdarpour

94

Fig. 3. Two partially synchronous continuous concurrent timelines with ε = 0.1. C
is a consistent cut. C′ is not a consistent cut: indeed (1, x1(1)) � (3.1, x2(3.1)) by
definition of happened-before. Moreover, (3.1, x2(3.1)) ∈ C′ but (1, x1(1)) is not in C′,
which violates the definition of consistent cut.

Definition 3. Let (E,�) be a distributed signal over N agents and S be the set
of all events defined as follows:

S =
{

(t, xn(t)) | xn ∈ E ∧ t ∈ In ∧ In ⊆ R+

}
.

A consistent cut C is a subset of S if and only if when C contains an event e,
then it contains all events that happened before e. Formally,

∀e, f ∈ S . (e ∈ C) ∧ (f � e) ⇒ (f ∈ C).

�

From this definition and Definition 2 it follows that if (t′, xn(t′)) is in C, then
C also contains every event (t, xm(t)) s.t. t + ε < t′. Observe that due to time
asynchrony, at any global time χ ∈ R+, there exists infinite number of consistent
cuts denoted by C(χ). This is attributed to the fact that between any two local
time instances t1 and t2 on some signal x, there exists infinite number of time
instances. Therefore, infinite number of consistent cuts can be constructed.

A consistent cut C can be represented by its frontier

front(C) =
{

(t1, x1(t1)), . . . , (tN , xn(tN))
}

,

in which each (tn, xn(tn)), where 1 ≤ n ≤ N , is the last event of agent An

appearing in C. Formally:

∀n ∈ [N] . (tn, xn(tn)) ∈ C and

tn = max
{

t ∈ In | (t, xn(t)) ∈ C
}

.

Leveraging System Dynamics in Runtime Verification 275

Example. Assuming ε = 0.1 in Fig. 3, it comes that all events below (thus,
before) the solid arc form a consistent cut C with frontier front(C) =
{(3, x1(3)), (2.94, x2(2.94))}. On the other hand, all events below the dashed
arc do not form a consistent cut since (2.3, x1(2.3)) � (3.1, x2(3.1)) and
(3.1, x2(3.1)) is in the set C ′, but (2.3, x1(2.3)) is not in C ′.

4.2 Additional Challenges in the Distributed Setup

We can conceive of numerous additional challenges arising in the distributed
setup.

The first class of challenges of distributed monitoring is that the knowledge
of the dynamics is distributed over the agents, with each agent knowing only its
own dynamics a priori. Already, even if we assume total synchrony between the
agents, there is a need to design a protocol by which this information is shared,
or some summary of it is exchanged. We will give an example of the complexity
of the task: assume that each agent has bounds on its own dynamics. In the
centralized setting, this can be used to skip parts of the signal, as described
earlier. In the distributed setup, this cannot be done directly: indeed whether a
formula will change truth value in the next second, say, depends on the bounds
of two or more agents. The relevant segment of x1 (signal of agent 1 that should
be monitored) depends on the relevant segment of x2 and vice versa. E.g., if the
atom is (x1 +x2 > 0) then, without knowing the bounds of x2, the entire x1 can
be relevant for monitoring.

On the other hand, if agent 1 know that −1 ≤ x2 ≤ 1 then it can conclude
the only relevant portion of x1 is 1 ≤ x1. Agent 1 can then send only those
segments where its signal is larger than 1. Thus there are at least two kinds of
tokens (packets of information) that must be exchanged: tokens with bounds
(from Agent 2 to Agent 1) and tokens with pieces of the signal (from Agent 1
to Agent 3, etc.).

Secondly, the partial synchrony creates difficulties in trying to leverage the
model knowledge. Indeed, even on a single agent whose clock is drifting relative to
global physical time (cn(χ) �= χ), there is an error between the model predictions,
which embody an error-free timeline, and the measurements, which integrate a
drifting timeline. For example, assume the monitor has a short model, which
it uses to predict the trajectory x1[0, 1] → R. Based on this it concludes it
can ignore the segment x1[0 : 0.3], i.e., the first 0.3 s of the signal, measured
on a perfect clock. But its local clock has an unknown, ε-bounded drift from
physical time. So, measured on its local clock, the conservative thing is to skip
x1[0 : 0.3 − ε].

It might be that the general case is a tedious, but ultimately straightforward,
generalization of this calculation: conservatively ignore shorter pieces. The tech-
nical problem is then to build an inductive argument for the general case, taking
into account the nature of the dynamics knowledge that is available.

The case of a simulating model is particularly interesting: recall that Σg

simulates Σf if for every (x, y) ∈ R it holds that: x
u→ x′ in the f -system implies

276 H. Abbas and B. Bonakdarpour

the existence of a transition y
u′
→ y′ in the g-system s.t. (x′, y′) ∈ R. The key

characteristic is that u and u′ are not necessarily of the same duration - indeed,
in general, it is difficult to get some kind of relation between the two durations.
So far in the literature, the properties verified on the simulating g-system have
not depended on time. It is not at all clear how we might apply a conservative
ε-shortening to the time bounds when the relation between the g and f timelines
is unknown.

5 Using Verified Dynamics

In this section, we explore a different kind of information: the monitor does not
have access to any kind of model. Rather, it has access to information about
offline model-checking runs on the model. That is, offline, the designer ran a
series of model-checking runs on the model, and the verdicts of these runs are
available to the monitor. Every piece of information is thus structured as a tuple
(x, h, V, φ), where:

1. x is the state from which the verification ran
2. h is the verification horizon, if applicable. E.g., in bounded model checking,

this would be the bound.
3. φ is the formula against which the model was checked. That is, the designer

checked whether the model satisfies M,x |= φ. (Here, M is the model).
4. V ∈ {�,⊥} is the verdict, or result, of the verification.

Such information is naturally available in a model-based design cycle where
formal methods play a role. Note we allow the possibility that the model-checking
runs were limited, both in terms of their bounds, and in terms of the states they
are run from.

The runtime monitor is monitoring for some property(ies) ψ that, in general,
is different from φ. The question then: can the monitor leverage the knowledge
that M,x |= φ to monitor ψ more efficiently? Intuitively, that should be possible
some of the time: when the current state is ‘near’ x, and the formula ψ is somehow
related to φ.

The following trivial cases illustrates that intuition: if the current state is
exactly x, and ψ = φ, the obviously there is no need to monitor. Or, assume the
model is a finite automaton. The current state is within s ≤ h hops of x, and
ψ ⇒ s φ. Here too, it is not necessary to monitor since the satisfaction of φ
now is implied by that of ψ earlier.

A more involved example is provided by offline reachability: suppose the
model has been verified to not enter a set of states S within h time units if it
starts from some set J . (Reachability tools like SpaceEx and Flow∗ could be
used for this). Such a guarantee holds under some assumptions on the system’s
environment, say the assumption that any disturbance w is bounded: |w(t)| ≤ 1
for all time t. Now the atomic proposition p that ‘x ∈ S’ might appear in formulas
that are monitored online. The offline reachability result can be leveraged in the

Leveraging System Dynamics in Runtime Verification 277

monitor in a predictive manner: whenever the state x is about to enter (or enters)
set J , every appearance of p in the monitored formula can be replaced by false,
as long as it appears within the scope of a temporal operators whose combined
intervals add up to less than h time units.

The challenge is to formalize then generalize this intuition to more cases. We
will also need to account for the fact that the monitor does not actually know
the current state: in general, it only has access to observables, i.e., to H(x(t))
rather than x(t).

6 Conclusion

In this paper, we explored the idea of combining runtime verification (RV) with a
pre-computed knowledge of system dynamics to enhance the effectiveness of RV
and improve its runtime overhead. To this end, we introduced a set of ideas on
how different aspects of system dynamics can be potentially leveraged to equip
the monitor with tools to decrease it involvement by ruling out certain scenarios.

Our next natural step is to materialize these ideas by developing the theory
as well as conducting rigorous experiments to validate our results. Stream-based
runtime verification techniques such as RTLola1 allows real-time monitoring for
cyber-physical systems and networks but they currently cannot handle data
streams coming from components that do not share a common clock and do not
take system dynamics into account. Thus, longer-term interesting problem is to
integrate our ideas in this on using system dynamics as well as our results in [11]
with RTLola.

References

1. Abbas, H., Mittelmann, H., Fainekos, G.: Formal property verification in a con-
formance testing framework. In: ACM-IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE), October 2014

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for
temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

3. Dokhanchi, A., Hoxha, B., Fainekos, G.: Online monitoring for temporal logic
robustness. In: Proceedings of Runtime Verification (2014)

4. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Proceed-
ings of the 25th International Conference on Computer Aided Verification (CAV),
pp. 264–279 (2013)

5. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Proceedings of the 8th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS), pp. 92–106 (2010)

6. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

1 https://www.react.uni-saarland.de/tools/rtlola/.

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/s10703-017-0286-7
https://www.react.uni-saarland.de/tools/rtlola/

278 H. Abbas and B. Bonakdarpour

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

8. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Proceedings of the Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems (FORMATS/FTRTFT), pp. 152–166 (2004)

9. Medhat, R., Bonakdarpour, B., Kumar, D., Fischmeister, S.: Runtime monitor-
ing of cyber-physical systems under timing and memory constraints. ACM Trans.
Embed. Comput. Syst. 14(4), 79:1–79:29 (2015)

10. Mills, D.: Network time protocol version 4: Protocol and algorithms specification.
RFC 5905, RFC Editor, June 2010

11. Momtaz, A., Basnet, N., Abbas, H., Bonakdarpour, B.: Predicate monitoring in
distributed cyber-physical systems. In: Proceedings of the 21st International Con-
ference on Runtime Verification (RV) 2021, pp. 3–22 (2021)

12. Jan-David, Q.: Similarity, Logic, and Games: Bridging Modeling Layers of Hybrid
Systems. Ph.D. thesis, Carl Von Ossietzky Universitat Oldenburg, July 2013

Automated Repair of Security Errors
in C Programs via Statistical Model

Checking: A Proof of Concept

Khanh Huu The Dam1, Fabien Duchene1(B), Thomas Given-Wilson1,
Maxime Cordy2, and Axel Legay1

1 UCLouvain, Louvain-La-Neuve, Belgium
{khan.dam,fabien.duchene,thomas.given-wilson,axel.legay}@uclouvain.be

2 University of Luxembourg, Esch-sur-Alzette, Luxembourg
maxime.cordy@uni.lu

Abstract. One major challenge in software development is finding and
repairing programming errors. Recently, formal methods such as model
checking have become a popular approach to finding errors due to their
formal guarantees about error status and evidence of the error in the form
of a trace. Another recently growing area, automated program repair,
aims to fix errors using automated approaches that do not require pro-
grammer intervention. This paper gives a proof of concept that one can
combine these two areas using state-of-the-art approaches in both: the
discovery of program errors and traces exhibiting these errors; and auto-
mated program repair building on test cases generated from traces. This
naturally links together the discovery, learning, repairing, and validation
of repair in a single package.

1 Introduction

The discovery and repair of errors are major challenges in software engineer-
ing that take developers considerable effort. This is why software engineering
research has intensively worked on improving techniques to assess program cor-
rectness and to repair program errors.

Formal methods have become a popular approach to finding errors in hard-
ware and software systems. Formal methods offer great promise in that they can
provide guarantees regarding the presence or absence of errors in the system.
Model Checking (MC) [7], for instance, exhaustively explores the possible exe-
cutions of the system (or a model of the system) in search of errors – typically
expressed as violations of a given temporal property. Formal methods contrasts
with other approaches more prominently used in software development, such
as testing techniques whose offered guarantees are limited to the behavior that
(manually or generated) test cases cover.

Formal methods were initially restricted to the verification of system mod-
els (e.g. transition systems) that would directly be provided by the user.
More recent tools enable the verification of source code directly. These tools
implement a variety of analysis approaches, including: heuristics [29]; model
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 279–298, 2022.
https://doi.org/10.1007/978-3-031-19849-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_17

280 K. H. T. Dam et al.

checking [7] and variations [17]; symbolic verification [10], and runtime analy-
sis [12]. Unfortunately, all those approaches either suffer from the state-space
explosion problem (i.e. the program state space is too large to be explored
exhaustively) or from difficulties in handling the memory model of the system
under verification. These two limitations hinders the practical applicability of
formal methods to real-world programs.

Statistical Model Checking (SMC) [14,20,33] resolves these complexity limita-
tions, albeit at the cost of some statistical uncertainty in the results. Instead of
exhaustive exploration, SMC simulates multiple executions of a system and mon-
itors these executions in regards to expected properties. Then, SMC uses statis-
tical algorithms to extrapolate its conclusions to the system globally. While SMC
can efficiently find errors and avoid the aforementioned complexity issues, SMC
provides only a statistical likelihood of the absence of errors. So far, SMC has
been mostly applied to verify safety and liveness properties on (stochastic) mod-
els of systems. This includes for example, properties of biological systems [9,16],
robotics [26], security [30], or of railway systems [3]. On the other hand, with
the exception of [18,24], SMC has not been used to verify properties on pro-
gram code. Program code analysis applications are generally limited to specific
reachability properties and restricted fragments of programming languages. In
particular, the verification of security properties that depend on space and time
memory failures (e.g. out of bounds, overflows, read-only memory access, etc.)
has not yet been explored, whereas such failures are prominent in popular lan-
guages such as C. The verification of such properties is critical because their
violation leads to serious errors that conventional testing techniques (that lean
on a test suite) cannot unveil [23].

The main challenge in applying SMC and other formal methods to program
code is to accurately and efficiently model the possible values within the pro-
gram and its complex internal information. The true possible values of a program
execution can be difficult to determine because of the large domains of values
to consider (e.g. all 64-bit Integers) and the difficulty of tracking complex run-
time relationships between successive values. Similarly, building an accurate but
abstract model of memory organization is challenging, since the compiler and
operating system have specific features that are opaque to the verification engine.
All these challenges ultimately lead to inaccuracies in the verification results and,
in turn, to an increasing risk of overlooking pernicious security vulnerabilities.

In [5], we have proposed the C Statistical Model Checker (C-SMC) approach
and tool in order to address these challenges and enable the discovery a wide
range of security errors. C-SMC combines the inherent strengths of SMC with
a runtime engine to connect the program under verification with a real exe-
cutions. This allows us to reason on contextual information such as memory,
stack, registers, warning flags, etc. The runtime engine feeds the SMC engine
with information over the program executions without having to derive a formal
model of the entire hardware and operating system’s behavior. We, more specif-
ically, use a debugging engine – viz. GDB [1] – to inform the analysis on the true
instantiations of memory and internal system hardware to determine concrete
values. As C-SMC builds on SMC, this approach can handle many independent

Automated Repair of Security Errors in C Programs 281

executions of the program and effectively combine the analysis results of these
executions in order to determine the likelihood to satisfy given properties.

Automated Program Repair (APR) [11] is a popular area of research that aims
to automate code modifications in order to fix existing errors without program-
mer intervention. APR is typically used once the presence of an error has been
detected in the program, e.g. via formal methods or a tool such as C-SMC.

The process of most APR approaches fall in the subarea of “generate and
validate”. During the generation part the APR uses test case results in order to
locate suspicious code statements possibly responsible for the error and, then,
alter these statements in order to produce candidate patches. During the valida-
tion part the APR methods execute the program test suite on the patched code
and discard all patches that make some tests fail.

Contribution. The present paper is a proof of concept of how to enrich C-SMC
with a program repair module. The tool is used both to generate error trace as
well as to evaluate potential patches. Concretely, C-SMC can discover errors and
produce test cases that can then be the input to APR, and further C-SMC can
validate the patches generated as part of the APR itself. We show how an APR
approach can benefit from the statistical nature of SMC and the information
that C-SMC produces regarding the errors discovered.

Conceptually, we propose to use the set of traces that C-SMC produce as
inputs for APR. The traces are divided into positive traces (that raise no error)
and negative traces (that exhibit the error). Hence, we lean on the capability
of SMC to provide multiple traces that reveal the error – and to do so without
guidance from developer-written or automatically generated tests. Based on the
traces, we determine the set of suspicious statements through reverse data-flow
analysis from the statement where the error was revealed.

We, then, propose a neural agent-based method that, given a set of suspicious
statements, looks for the sequence of actions (statement alterations) that maxi-
mizes the likelihood to repair the error. Candidate sequences of actions produce
in turn potential patches whose correctness is validated via C-SMC to speed up
the process.

We evaluate our repair approach on the benchmark from [5]. Our repair
approach fixes 8 out of the 9 errors and – compared to a random baseline –
does so while producing 23% to 91% fewer candidates patches in all cases but
one. Put together, SMC and APR effectively automate the detection and repair
of memory usage-related errors to an extent that previous approaches could
not achieve. Our approach complements the state of the art on software testing
and repair, which has mostly focused on test-based approaches. Here we find a
productive union of formal methods – viz. SMC – and APR that yield a complete
package for error detection and repair.

To summarize, our main contributions are as follows. (1) Propose the first
approach for automated error detection and program repair that builds on sta-
tistical model checking. Our approach can detect and repair pernicious security
errors that conventional test cases are not likely to trigger. (2) Propose a novel
genetic algorithmic searching approach to find an effective program repair effi-
ciently. (3) Demonstrate an implementation of our approach on top of established

282 K. H. T. Dam et al.

tools and technologies. (4) Evaluate our approach using a benchmark of eight
memory usage-related errors and one arithmetic error. Our evaluation results
suggest that (a) our detection method could find all of the nine errors, and (b)
our repair method could fix eight of these errors and do so with fewer generated
patches for seven of these eight errors.

Structure. The structure of the paper is as follows. Section 2 provides back-
ground and related work that are necessary to understand the paper. Section 3
presents an illustrative example used in this work. Section 4 describes the novel
genetic algorithmic repair agent. Section 5 presents our implementation and
experimental results. Section 6 concludes.

Note on Content. As said above, this paper is a proof of concept paper that is
written to generate discussions with the community. Consequently, many formal
details are left out of this presentation.

2 Background and Related Work

We consider systems/programs where executions are represented by traces, i.e.,
sequences of states. Each state represents the status of the system under verifi-
cation at a given moment of time. States and traces can be abstracted as math-
ematical objects such as (sequences of) Boolean variables [7]. When considering
languages such as C, a state represents the current location in the program (line
of code), its memory, and the set of instructions/statements that are available
from this state. A state can also contain information about the execution envi-
ronment. A trace moves from on state to another state by following a transition.
When considering languages such as C, such transition represents the execution
of an instruction.

2.1 Essentials of Statistical Model Checking

Statistical Model Checking (SMC) [14,20,33] is a variety of probabilistic model
checking (see e.g. [2]) that exploits execution traces to avoid an explicit represen-
tation of the state space. The evaluation of properties is instead calculated from
an empirical distribution of the executions of the system. Given a number of sta-
tistically independent traces of a stochastic model, and the capabilities to decide
whether a trace satisfies a property, it is possible to estimate the probability that
the model will satisfy the property.

Note that unlike model checking [7], SMC provides results that are not com-
plete and may only provide an approximation of the true properties of the sys-
tem. Thus, an estimate of the behavior may be obtained with a specified con-
fidence provided by, e.g. the Okamoto bound [14,25]. Further, it is possible to
efficiently evaluate the truth of a hypothesis without needing to calculate the
actual probability using, e.g. the sequential probability ratio test [31,33]. SMC
can also be used to compute the probability of rare errors [21].

To apply SMC requires building a model of the system and expressing
the properties to be checked. Typically the model can be defined as a labeled

Automated Repair of Security Errors in C Programs 283

transition system (LTS) and the properties expressed in a logic such as bounded
linear temporal logic (BLTL) that can express complex behavioral properties
with nested temporal causality.

2.2 Trace Execution Properties

Expressing properties formally is key in software verification. Based on defini-
tions above, properties about a program can be defined in terms of properties
over states, over individual traces, and over sets of traces. We first focus on the
first two types of properties. The last one, which corresponds to the verification
of the whole program, will be handled in the next (sub-)section.

A propositional logic can define properties about each state individually. To
be able to consider all the states of an execution trace, this propositional logic
needs to be extended. One popular extension is Linear Temporal Logic LTL [27].
LTL allows us to make hypotheses of unbounded traces via temporal operators.
As SMC restricts to finite trace executions, we consider a bounded LTL, where
each temporal operator is bounded for the number of states to which it applies.

Bounded Linear Temporal Logic (BLTL) is an enhancement of LTL that adds
bounds expressed in step or time units. The syntax of BLTL is as follows:

φ, ψ ::= p | φ ∨ ψ | ¬φ | φ U≤t ψ | X≤t φ . (1)

The p is propositional variables, disjunction φ ∨ ψ and negation ¬φ are all as
in LTL. The formula Xφ is true if φ is true in the next state from the current
state. The formula φ U≤t ψ is true if both: ψ becomes true before t in the sequence
from the current state; and φ remains true in every state before the state where
ψ becomes true. For a formal definition of BLTL semantics, see [35]. A BLTL
formula is expressed with respect to a trace. It is also helpful to have conjunction
(φ∧ψ) and implication (φ ⇒ ψ) that are defined in the usual manner. Similarly
the always (G) and eventually (F) operators can be defined using the BLTL
syntax above as follows. Eventually is defined as F≤tφ = trueU≤t φ and means
that the formula φ should become true before t. Always is defined as G≤tφ =
¬F≤t¬φ and means that φ must always hold for the next t.

Let w = s0, s1, ..., sL, ... be an execution trace, and denote by wj =
sj , ..., sL, ... the portion of the trace starting from j (included). The truthful-
ness of the formulas can be decided using the rules described in Table 1.

BLTL allows us to express reachability properties such as “the software
should eventually reach a state where variable x is equal to 1”. The logic can
also be used to express more elaborated causalities such as “always, if the soft-
ware reaches a state where x is equal to 1, it will eventually reach a state where
y is equal to 1”. This expressive power allows us to express a wide range of
safety and security properties. BLTL properties can be verified with monitoring
procedures [13]. Such procedures, inspect successive states of an execution trace
until it can decide whether the property is satisfied. BLTL properties, which
are a fragment of safety properties, can be monitored over finite traces using
well-established techniques such as those presented in [13].

284 K. H. T. Dam et al.

Table 1. BLTL rules.

w |= F≤tφ iff w |= true U≤tφ

w |= G≤tφ iff w |= ¬(F≤t¬φ)

w |= φU≤tψ iff ∃i, t0 ≤ ti ≤ t0 + t and wi |= ψ and ∀j, 0 ≤ j < i, wj |= φ

w |= X≤tφ iff ∃i, i = max(j|t0 ≤ tj ≤ t0 + t) and wi |= φ

w |= X≤φ iff w1 |= φ

w |= φ ∨ ψ iff w |= φ or w |= ψ

w |= φ ∧ ψ iff w |= ¬φ ∨ w |= ¬ψ

w |= φ ⇒ ψ iff w |= ¬φ ∨ ψ

w |= ¬φ iff w �|= ϕ

w |= true always

w |= false never

2.3 Probabilistic Verification

We now turn to properties defined over sets of trace executions, that is properties
defined on the whole system. We are interested in solving the probabilistic BLTL
problem, that is to compute the probability for the system to satisfy a BLTL
property φ. Such probability being defined as the probability that a random
trace of the system satisfies φ.

Statistical model checking [19] has been proposed as an efficient approach
to solve such problem. SMC statistically measures the truthfulness of properties
over a smaller number of traces. This is done by performing a fixed number of
simulations of the system and using an algorithm to estimate the probability
that the system satisfies the property. As the number of observed executions is
finite, this answer comes together with a confidence interval [19].

There is a wide range of statistics algorithms that can be used to estimate the
probability to satisfy a given property. This includes, e.g., importance splitting
and sampling [19] that can also be used to efficiently exhibit traces that do not
satisfy the property. As the study of those algorithms is not the topic of this
paper, we propose to work with the most simple one that is based on the Monte
Carlo estimator. The estimator relies on the following proportion:

γ̄ =
∑N

i=1 1(wi |= φ)
N

where 1(x) =

{
1 if x is true
0 otherwise.

(2)

where N is the number of simulation being performed. Let γ be the true prob-
ability to satisfy φ and P be a probability evaluation. Let ε (precision) and δ
(confidence)be small values. The Chernoff-Hoeffding bound [15] guarantees that
P (|γ̄ − γ| ≥ ε) ≤ δ is given by N = � ln2−lnδ

2ε2 �. Thus, by controlling the number
of trace executions verified, the user entirely controls the preciseness of the γ̄
estimator.

Automated Repair of Security Errors in C Programs 285

2.4 SMC Tools

As seen in the previous section, SMC mainly depends on sub-parts that include
the type of execution trace property that has to be monitored and the statis-
tical algorithm used to compute the stochastic guarantee. Implicitly, SMC also
depends on the type of system under verification and on the capacity to generate
an arbitrary number of execution traces from this system.

In [34], the authors proposed YMER, a tool that can be used to verify BLTL
properties of Markov Chains with an hypothesis testing procedure. That is, the
tool decides between two hypothesis rather than computing an exact probability.
In [8] Monte Carlo is applied to verify properties of Metric Temporal Logic over
stochastic timed automata. Those tools have been shown to be very efficient on
various problems. However, they are rather static in the sense that they do not
exploit the intrinsic modularity of SMC. As an example, YMER does not permit
replacing the hypothesis testing algorithm by a Monte Carlo one. None of those
tools allows replacing classical BLTL with an algorithm that would consider
debugger expression. On the top of this, none of those tools consider C code.

In [4,22], Boyer et al. introduced Plasma a Statistical Model Checking
(SMC) [19] tool that can provide the ability to create custom statistical model
checkers. Especially, Plasma works with open source plugins that can (1) spec-
ify the property under verification (this includes BLTL as well as many other
logics such as those introduced in [6]), (2) monitor traces, (3) generate traces in
an efficient manner, i.e., to minimize the number of traces needed to compute
the probability to satisfy a given property. Those plugins can be customized to
adapt to a wide range of properties and systems.

In a recent work [5], we have introduced C-SMC, a new open source plugin
that allows us to monitor security properties of C program. C-SMC monitors
BLTL properties via and extension that exploits states of the GDB debugger
as input instead of Boolean abstraction. Using this, BLTL properties can refer
to variables, registers, memory, locations and next instructions of a given state
of the C program. In addition properties can also refer to special flags of the
GDB debugger. C-SMC has been able to detect security and safety flaws such as
buffer and integer overflows. It can also be used to detect overflow that depends
on contextual information coming e.g. from global variables. The later one shall
be showed in our motivating example.

3 Illustrative Example

Consider the illustrative binary search example given in Listing 1.1. Variable r
should be initialized to size-1 but is initialized to size. This error will lead
the search to occasionally go out of the bounds of the array being inspected.
Consider an array of size 10 (indexed from 0 to 9) containing numbers 1 to 10.
If the search function is called with a value that is greater than the greatest
value of the array (10 in this example) then it will go out of bounds looking for
the value located at arr[size] (10 in this case).

286 K. H. T. Dam et al.

1 int search(int arr[],int size

,int elem) {

2 int l = 0;

3 int r = size; //not size -1

4 int m = 0;

5 while (r >= l) {

6 m = (l+r) / 2;

7 if (arr[m] == elem) {

8 return m;

9 } else if (arr[m] > elem)

{

10 r = m - 1;

11 } else {

12 l = m + 1;

13 }

14 }

15 return -1;

16 }

Listing 1.1. Binary Search Example.

This behavior will often lead
to no consequences (because even
if the access is out of bounds it
is still checking a valid address
on the stack) and thus be unde-
tected. However, when looking for
a value not contained in the array,
11 for instance, it is possible that
the memory address located just
after the end of the array con-
tains the searched for value. In
this case, the output of the search
function will be invalid. This error
is very hard to reproduce and
to express. Indeed, the search
function itself does not contain
the information about the input
values (i.e. arr and size and
whether or not size is correct) and so most analysis engines can only warn
about a potential out of bounds access for all instances of arr[m] or report no
errors.

Pernicious security errors like the above are difficult to reveal through con-
ventional testing. This is due to the fact that testing focuses on comparing
outputs for a given set of inputs. As an example, we show in Listing 1.2 a set of
14 test cases that thoroughly check whether the search function works correctly
when invoked on (1) all elements that the array contains and (2) close elements
that the array does not contain. For conciseness, we have concatenated all these
cases into a single piece of code. In this code, the report fail function is used
to report when some test yields an incorrect result.

1 int tab[8] = {-3,-1,0,4,5,6,7,8};

2 int input [14] = {-3,-1,0,4,5,6,7,8,-2,1,2,3, -(rand() % (

MAXINT - 3)) - 4,(rand() % (MAXINT - 8)) + 9};

3 int i = 0;

4 while (i < 8) { // Test good values

5 int y = search(tab ,sizeof(tab)/sizeof(tab [0]),input[i]);

6 if (y != i) { report_fail(input[i]); }

7 i++;

8 }

9 while (i < 14) { // Test random values outside the good

values

10 int y = search(tab ,sizeof(tab)/sizeof(tab [0]),input[i]);

11 if (y != -1) { report_fail(input[i]); }

12 i++;

13 }

Listing 1.2. Test Cases for the search function

Automated Repair of Security Errors in C Programs 287

Observe that all these test cases will usually pass. Thus, although developers
can strenuously test the search function and find other potential errors, it is
likely that the out of bounds access error will never occur during the test exe-
cution. This error would actually occur in the unlikely event where the searched
value is not in the array but resides in memory exactly at the memory address
located right after the end of the array. In such a case, the search function would
return an index value equal to the size of the array, while the special value -1
is expected. This example already demonstrates that test cases are inappropri-
ate to detect errors related to memory usage because the error is independent
of the particular inputs on which the function is tested. Even if every possible
int value was covered in the test suite, the error would likely remain unde-
tected. To detect this error with C-SMC instead of checking the value of the
output for a given input, we monitor the value of the variable m using the for-
mula m = 0|(0 <= m&m < size. With this formula we can check that at any
moment, m does not go out of bounds. This allows us to detect an error that is
very hard to reproduce or detect with unit tests or analysis engines.

3.1 SMC-Based Validation

Consider again the binary search example shown in Listing 1.1, where the upper
bound of the binary search r is initialized beyond the end of the array arr. A
natural check for array data structure is to ensure there is no access (read or
write) beyond the limit of the array. This can be formulated as a BLTL property:

¬(arr[x] ∧ x ≥ |arr|), (3)

where arr[x] indicates an access to the array arr at offset x and x ≥ |arr|
indicates that x is greater than or equal to the size of arr.

In the example code, there are two accesses to an array, one at lines 7 and
one at line 9. However, the value m that records the accessed index is modified at
each loop iteration, based on the values of size, elem, and the values contained
in arr. Hence, the above property can be reformulated as:

G≤1000(line = 7 ∨ line = 9) => m ≥ 0 ∧ m < size, (4)

where line indicates the line number in C code, m and size are variables m and
size in C code of Listing 1.1.

Assume that C-SMC tested with the following input values for search to
generate tests (and in particular this limits the scope of our search).

1 int tab [8] = {1,2,3,4,5,6,7,8};
2 int v = (rand() % 10);
3 int i = search(tab , 8, v);

Listing 1.3. Simple Example of Search C Code Input

After running 4 tests with C-SMC we may discover that the program works
properly for v ∈ {6, 2, 3} while 9 causes a problem. Observe that applying SMC

288 K. H. T. Dam et al.

to search could yield an infinite number of traces that exhibit both good and
bad behavior depending on the input arguments given to the search function.
As an example, consider the inputs given in Listing 1.2. They will generate traces
that satisfy Property 4 when v is assigned to a value located between index 0
and 12 of the input array (input[0:12]) given in line 2 of Listing 1.2. They will
generate traces that do not satisfy Property 4 when v is assigned to input[13].
In fact, all searches for a value v ≤ 8 will provide a GOOD trace, and all searches
for values v > 8 will provide a BAD trace. Note that the capabilities to identify
GOOD and BAD traces depends on the randomized algorithm used to generate
inputs. There exists various strategies to reach this objective. Including, e.g.,
importance splitting and sampling.

BLTL can also be used to describe other classes of properties that are beyond
the scope of classical testing. As an example, it is worth checking that the pro-
gram terminates after a bounded number of steps. The latter can be expressed
by:

F≤1000(line = 15 ∨ line = 16) (5)

In addition, we can also use BLTL to specify expected (input, output) pairs just
like in typical test cases. Such BLTL formulae would take the form:

G≤1000(line = 16 => eax = gt) (6)

where eax is a reserved symbol to indicate the return value of the function and
gt is a specific, user-defined target output.

3.2 Using Traces for Automated Program Repair

We now turn to illustrate how to repair the program. Observe that the trace
monitoring process of SMC has the potential to locate error statements/lines.
Those can be exploited to produce a set of possible changes, i.e., actions, for
fixing the program according to the execution traces. The key principle is to start
from the statement where SMC detected the violation of a property, and apply
a reverse data-flow analysis to determine all previously executed statements
that share a (direct or indirect) data dependency with the statement where the
violation was located. It then examines the abstract syntax tree of the program in
order to determine the constituents of these statements and, in turn, determines
the set of actions (statement alterations) that the repair agent will consider. For
example, a BAD trace given by C-SMC contains lines 2, 3, 5, 6, 7, 9, 10 and 12,
and this trace is ended at line 7. Applying the reverse data-flow analysis from line
7, we locates error statements at lines 6, 10, 12, 3 and 2. We can then generate
possible changes to each of these lines. This approach is similar to fault-spectrum
localisation as presented in [32].

We want to use a repair agent that takes as input the set of possible actions
that the trace analysis component identified based on the error trace. It then
produces different sequences of actions (based on the taken set) and applies these
sequences to generate a set of independent patches that are themselves verified

Automated Repair of Security Errors in C Programs 289

with C-SMC. This process continues until the faulty program is fixed or until the
computational budget (expressed in number of produced patches) is reached.

For instance, the agent has fixed our binary search error example by modi-
fying the line where variable r is initialized, as shown in Listing 1.4.

In the rest of this paper, we describe a trace analysis framework that can
be used in combination with a genetic algorithm based repair agent. We then
report on case studies that implement this proof of concept.

4 Designing a Repair Agent

1 int search(int arr[],int

size ,int elem) {

2 int l = 0;

3 int r = size - 1;//

patched

4 int m = 0;

5 while (r >= l) {

6 m = (l+r) / 2;

7 if (arr[m] == elem) {

8 return m;

9 } else if (arr[m] >

elem) {

10 r = m - 1;

11 } else {

12 l = m + 1;

13 }

14 }

15 return -1;

16 }

Listing 1.4. Binary Search Function C
Code

Our objective is to develop a repair
agent that exploits the information
contained in execution traces gener-
ated by the SMC engine. We first
show how to reason on a trace. Espe-
cially, we give intuition on how a trace
can be corrected. Recall that each
trace contains lines (i.e. location in
program’s code) which are reached
by the execution and a property field
which specifies the property violated
by the program. Intuitively, the error
statements/lines appear to BAD traces.
The last line in a BAD trace indicates
where the property has been violated
and the error occurs. Let L be a set of
lines which may cause the error. Let T
be a set of BAD traces from C-SMC. L
is computed as follows. Initially, L =
{�i|�i is the last line in the traceti ∈
T }. Then, � ∈ t is iteratively added

to L if there exist a �′ ∈ L, and (�′, �) are data dependent (this can be done via
classical taint analysis techniques).

Table 2 shows lines appearing in execution traces of the illustrative example
(Listing 1.1) computed by C-SMC on the three properties given in Eqs. 4, 5 and 6.
The error lines, which are marked with a X, are given by L = {2, 3, 6, 7, 10, 12}.
In order to fix the faulty program, we propose to apply an action to the error
lines. An action is implemented by either replacing or inserting a new statement
at a given error line. An action a = (�, c) means that a change c is implemented
at line �. The change c is generated by three ways as follows. First, one can
change operators of an expression. For example, if <name> <operator> <name>
is an expression, then <operator> can be changed by taking an operator in
either the arithmetic operators or the comparison operators. Second, one can
replace the current patterns of an expression by existing patterns in the pro-
gram. The replacement is applied to an expression which matches to an expres-
sion pattern in the library. The existing expression matches to a pattern if

290 K. H. T. Dam et al.

Table 2. Error lines for the example in Listing 1.1.

Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Property 1 (Eq. 4) - X X - - X X - - X - X - - - -

Property 2 (Eq. 5) - - - - - - - - - - - - - - - -

Property 3 (Eq. 6) - - - - - - - - - - - - - - - -

its abstract syntax tree can be transformed to the pattern’s abstract syntax
tree, or if they contain the same numbers of <name and <operator>. For exam-
ple, if (<name> <operator> <name>)<operator> <name> is an expression and
it matches to the pattern <name> <operator>(<name> <operator> <name>), a
change is made by the <name> in the pattern by the <name> in the expression.
Third, a change can be created by inserting a new statement. Consider, e.g., the
insertion of the control statements if else, or the addition of special statements
such as break, continue, exit, return.

4.1 A SMC-Based Program Repair Algorithm

Our objective is to fix the faulty program by finding a subset of actions (called
patch) from actions given by the trace analysis. By fixing the program, we mean
that all properties under verification are satisfied with probability one. We here
propose the use of a genetic algorithm and heuristics to generate the patch in
an efficient manner.

Let gp denote a faulty program. Let Agp denotes a finite set of actions given
by the trace analysis part to fix the faulty program gp. Let Πgp be a power
set of Agp (the set of patches). A patch ρ = {a ∈ Agp} ∈ Πgp is applied to
gp to transform gp to gp, i.e., gp

ρ−→ gp. Let G be a finite set of programs, i.e.,
G = {gp|∃ρ ∈ Πgp : gp

ρ−→ gp}. Our task is to find a patch ρ∗ ∈ Πgp such that
gp

ρ∗−→ gp∗ and gp∗ is a fixed program. Note that the faulty program gp is fixed
by a patch ρ∗, i.e., gp

ρ∗−→ gp∗, if all the properties given in the environment are
satisfied by gp∗.

Let f be an objective function f : G → [0.0, 1.0]m where [0, 1]m denotes the
output of m properties of a program gp ∈ G, e.g., f(gp) = [0.0, 1.0, 0.2] indicates
that the program gp has 0% chance for holding the property 1, 100% chance
for holding the property 2 and 20% chance for holding the property 3. The
program gp∗, i.e., gp

ρ∗−→ gp∗, satisfies all properties such as f(gp∗) = [1.0]m.
Let s = f(gp) be a validation-state of the program gp, i.e., a vector whose
components represent the probability to satisfy the properties under verification.
Consider s0 = f(gp) to be the initial validation-state, i.e. the initial probability
value for each property that the program must eventually satisfy.

Our genetic algorithm works by evaluating a population of patches. In case,
those patches do not lead to s∗, mutation and recombination operators shall be
called. Given a validation-state, our objective is to derive actions that will lead
to better patches and eventually to a better validation-state. For doing so, we

Automated Repair of Security Errors in C Programs 291

propose to use a Q-function [28] to specify the relation of states and actions, as
follows. For every observed patch ρ ∈ Πgp:

Q(s, a) = r + γ max
a′

Q(s′, a′),∀a ∈ ρ., (7)

where γ is a coefficient in [0, 1], r and s′ are reward and validation-state respec-
tively. We assume the reward to be 0 when the system is not repaired and 1 if
it is repaired. In practice, we will stick to those two values. In theory, a reward
of 0, 5 would mean that the program is half fixed. Initially, we have Q(s, a) = 0
for every state s and every action a ∈ Agp. The reward r gets 1.0 if the faulty
program is fixed. Otherwise, it gets −1.0.

Intuitively, Q(s, a) indicates the probability to choose action a at validation-
state s. The Q-function is updated for every patch and its values later are used
to generate a new patch. For instance, if there is a patch ρ = {a1, a2} and the
state transitions s0

a1−→ (s1, r1)
a2−→ (s2, r2), then the Q-function is updated as

follows: Q(s0, a1) = r1 + maxa′Q(s1, a′) and Q(s1, a2) = r2 + maxa′Q(s2, a′).
In this work, we implement a ε greedy selection algorithm to choose an action
for the patch generation, such that, at a state s an action is either chosen by
arg maxa∈Agp

(Q(s, a)) with a given probability ε or chosen any action a ∈ Agp

with probability 1 − ε.

Input : ε,Q(s),A
Output: an action a

1 if random() < ε then
2 a ← arg maxa∈A(Q(s, a))
3 else
4 a ← random(A)
5 end

Algorithm 1: ε greedy selection algorithm (GreedySelection())

To estimate the values of Q-function, we implement an estimator neural
network NN(s, s′). The network takes the source validation-state s and the des-
tination validation-state s′ as inputs. It outputs the value of the Q-function at
validation-state s. Output values are used to compute a patch for the transition
s → s′. Hence, if there is a transition s → s′, the values of Q-function at the
state s, i.e., Q′(s) ≈ Q(s, a)a∈Agp

, which are used to compute a patch ρ: s
ρ−→ s′,

are computed as follows.
Q′(s) = NN(s, s′) (8)

For every patch, the neural network is updated by the actual values of actions
in this patch with the following Mean Squared Error loss function.

MSE =
1
n

n∑

i=1

(Yi − Ȳi)2, (9)

where Yi = Q′(s, ai) and Ȳi = Q(s, ai) are predicted/actual values of the action
ai at the state s, respectively. n is the number of actions, i.e., n = |ρ|. Note that

292 K. H. T. Dam et al.

Input : a set of actions Agp, MaxPopulation, the estimator neural network
NN, τ is the threshold to create an optimal patch, and the initial/final
states of C program s0, s∗

Output: ρ∗ is an optimal patch to fix the faulty program
1 P ← {{a}Agp}
2 N ← 0
3 isdone ← False
4 while not isdone and N ≤ MaxPopulation do
5 N ← N + |P |
6 S ← ∅
7 foreach ρ ∈ P do
8 s ← Evaluate(ρ)
9 UpdateQ(s, ρ, NN)

10 S ← S ∪ {s}
11 if s = s∗ then
12 isdone ← True
13 ρ∗ ← ρ
14 break

15 end

16 end
17 parents ← SelectParent(P, S, nparent)
18 P ← CreatePopulation(parents, S, NN, s0, s∗)

19 end
20 if not isdone then
21 Q(s0) ← NN(s0, s∗)
22 ρ∗ ← {a ∈ Agp|Q(s0, a) ≥ τ}
23 end

Algorithm 2: The patch generation algorithm

if s
ρ−→ s′, Q(s, ai)ai∈ρ is computed by Eq. 7 and Q′(s, ai)ai∈ρ is a value of Q′(s),

which is predicted by NN, i.e., Q′(s) = NN(s, s′).
We are now ready to present the genetic algorithm for patch generation

as shown in Algorithm 2. Intuitively, patches are created from one action in
the set of actions given by the trace analysis part (line 1). Then, each patch
is evaluated by SMC (line 8). The validation-states obtained from this eval-
uation are used to update the neural network NN (line 9). If there exists a
patch which can fix the faulty program, i.e., the state of the current patch
is the final state s∗, the algorithm terminates (line 11–14). Otherwise, it cre-
ates a parent set from the current population, i.e., P , and generates a new
population from this set (lines 17–18). If the optimal patch is not found after
exceeding the limit number, i.e., MaxPopulation, the threshold τ is used to
choose actions for creating an “optimal” patch (line 21–22). The threshold τ
is used to select actions in a patch. We use τ to vary the number of actions
in a patch. Although the patch chosen by τ may not be a good one for fix-
ing the faulty program, it can be a recommendation for the developers to fix
their code. Algorithm 3 presents the parent selection algorithm. This algorithm
conserves n selected parents by exploiting an Euclidean distance between the

Automated Repair of Security Errors in C Programs 293

Input : a population P , a set S of states of population P , n is the number of
selected parents

Output: a parent set is the subset of P
1 Compute the Euclidean distance between the state of each patch and the final

state [1.0]m.
2 Select n patches from P which have the shortest distance from the final state.

Algorithm 3: The Parent Selection algorithm (SelectParent())

Input : The parent population P ,S, NN and the initial/final states of C
program s0, s∗

Output: a population P ′

1 Q(s0) ← NN(s0; s∗)
2 a ← GreedySelection(ε, Q(s0), Agp)
3 P ′ ← {a}
4 foreach ρ ∈ P do
5 s ← S[ρ] // the state of the C-program after applying patch ρ
6 Q(s) ← NN(s, s∗)
7 amax = argmaxa∈Agp Q(s, a)
8 amin = argmina∈ρ Q(s, a)
9 P ′ ← P ′ ∪ {ρ ∪ {amax}}

10 P ′ ← P ′ ∪ {ρ \ {amin}}
11 end
12 foreach ρ1 ∈ P do
13 s1 ← S[ρ1]
14 Q(s1) ← NN(s1, s∗)
15 ρ′

1 ← Sort ρ1by Q(s1)
16 foreach ρ2 ∈ P do
17 s2 ← S[ρ2]
18 Q(s2) ← NN(s2, s∗)
19 ρ′

2 ← Sort ρ2by Q(s2)
20 P ′ ← P ′ ∪ switch a part of ρ′

1 and ρ′2
21 end

22 end

Algorithm 4: The Population Generation algorithm (CreatePopulation())

validation state obtained for each patch and the expected final validation-state.
Algorithm 4 presents the recombination and mutation operations. Initially, the
new population P ′ is created from the parent population starting with a patch
of one action that is selected by Function GreedySelection. Then, P ′ is grown
up by two operators (lines 1–3). The first operator is the mutation operator. It
implements two operations: (1) to add an action with the highest Q-value into ρ,
(2) to remove an action a ∈ ρ with the lowest Q-value (lines 4–11). The second
operator called recombination replace a pair (ρ1, ρ2) by a pair (ρ′

1, ρ
′
2) that is

created by exchanging actions which are associated with the highest Q-values in
ρ1 and ρ2 (lines 12–21).

294 K. H. T. Dam et al.

5 Implementation and Experimental Results

We implemented the APR process described in Sect. 4 with three modules: the
environment module, trace analysis module, and agent module.

The environment module has two roles: C program evaluation and program
repair evaluation. The C program evaluation is done by interfacing with C-SMC
and inputting the C program and BLTL properties. If any property of the C
program is not satisfied then repair must be triggered (otherwise the program
is error free and no further action taken). The traces from C-SMC are gathered
along with their result (GOOD or BAD) and these are sent to the trace analysis
module. The program repair role takes a patch from the agent module and
produces the state of the C program after applying the patch.

The trace analysis module takes a set of traces from the environment module
and the C program as inputs, and produces a set of actions to fix the C program.
For the motivating example, it analyses the BAD traces of Eq. 4 and generates
actions to fix the C program at lines 2, 3, 5, 6, 7, 8, 9, 10, 12. Then, these actions
are sent to the agent module for patch generation.

The agent module takes the lines from the trace analysis module and imple-
ments the algorithms detailed in Sect. 4 to generate a patch to apply to the C
program. The agent module then sends this to the environment module to evalu-
ate the efficacy of the patch and provide this as data for further patch generation
using the genetic techniques described in Sect. 4.

5.1 Experimental Results

In this section, we evaluate the performance of the C-SMC based APR tool with
Q-function on the motivating example in Listing 1.1 and in three variants. Our
objective is to evaluate the performance of a Q-function with respect to a random
strategy to select actions to mutate and recombine in the genetic algorithm.

In this experiment, we choose the maximum population to be 3000 patches,
i.e., MaxPopulation = 3000 and we applied the randomized strategy for action
selection. The results are reported in Table 3. The motivating example in List-
ing 1.1 starts in validation-state s0 = [0.9, 1.0, 1.0]. It is fixed by the APR tool
after 50 patches out of a population of 112 patches by the random strategy.
Variant 1 is obtained by replacing l = m + 1 with l = m − 1 at line 12. The
initial validation-state is given by s0 = [1.0, 1.0, 0.6]. It is fixed by our tool after
72 patches while it takes a population of 210 patches to fix it with a random
strategy. Variant 2 is obtained by replacing r = size with r = size − 1 at line 3,
m = (l + r)/2 with m = (r − l)/2 at line 6 and l = m + 1 with l = m − 1 at line
12. Its initial validation state is given by s0 = [1.0, 1.0, 0.4]. It is fixed after 290
patches by our tool while the random strategy takes 2259 patches. Variant 3 is
obtained by replacing r = m − 1 with r = m + 1 at line 10 and l = m + 1 with
l = m − 1 at line 12. Its initial validation-state is given by s0 = [1.0, 1.0, 0.6]. It
is fixed after 290 patches by our tool. A random strategy could not fix it after
a population of 3000 patches. The results show that the use of an optimized
Q-function drastically improve the selection of patches.

Automated Repair of Security Errors in C Programs 295

Table 3. Comparison of the APR tool with Q-function and the random strategy.

Size of population to fix the fault

Motivating
example

Variant 1 Variant 2 Variant 3

APR tool with random strategy 112 210 2259 >3000

APR tool with Q function 50 72 290 2012

Table 4. Evaluation of the APR tool on other C code.

Size of population to fix the fault

APR tool with random
strategy

APR tool with
Q-function

Binary search 112 50

Binary search (variant 1) 210 72

Binary search (variant 2) 2259 290

Binary search (variant 3) >3000 2012

Static out-of-bounds 4 2

Random out-of-bounds 4 2

Divide by zero 1 3

Buffer overflow 25 3

Local binary search 13 10

Pointer to pointer 2 1

Read-only memory Failed Failed

Integer overflow 10 3

The C-SMC based APR tool with Q-function was also applied to the nine
benchmark error programs from [5] that are available on GitHub1. The results
are shown in Table 4. Observe that in all cases (except for “read-only memory”)
the combination of C-SMC with APR was able to not only find the error, but
also successfully repair the error. The failure to repair the “read-only memory”
example is due to there being no reasonable way for the patch generation algo-
rithm to create a suitable repair. While this example was relevant to demonstrate
the capabilities to detect such errors, it would be difficult to fix given the patch
algorithms possible changes, and also to preserve the program’s behavior. Fur-
ther, in all cases (except for “divide by zero”) the APR tool with Q-function
proved to be more effective than the random strategy.

Due to space limitation, a detailed analysis of the benchmarks is given in the
aforementioned GitHub. These results demonstrate that the approach is effective
both in concept and in practice, and further that the APR Q-function strategy
is an improvement over the default (random) genetic algorithm.

1 https://github.com/csvl/bugs.

https://github.com/csvl/bugs

296 K. H. T. Dam et al.

6 Conclusions and Future Work

The challenge of finding and repairing errors in software development is complex
and ongoing. Formal methods such as SMC provide a strong basis for finding
and proving the existence of errors, including a trace to demonstrate the error.
The statistical nature of SMC allows the generation of multiple correct and
erroneous traces of the program. These traces form a natural set of test cases
that can be the input for APR approaches. Combining SMC with APR is an
effective solution to find errors and provide the necessary information to repair
them.

This paper presents a proof of concept showing that this approach is effective
in discovering, learning, repairing, and validating the repair in a single tool. Fur-
ther, the proposed Q-function for improving the genetic algorithmic search for a
patch improves the efficacy of the patch generation. This is demonstrated by the
implementation here exploiting C-SMC and demonstrating effective discovery
and repair of errors.

Future Work. We would like to extend our approach to guided simulations
approaches such as importance sampling and splitting. This shall help us to find
error traces in a more efficient manner and hence improve the efficiency of the
repair agent. We also would like to apply the work to a wider class of systems.
Especially, we would be interested in applying the approach to real-time version
of C. This could be done by exploiting recent work on stochastic timed automata
implemented in UPPAAL-SMC [18]. The limitations of the “read-only memory”
benchmark also motive the use of more complex repair tools in the agent and
other methods of patch generation. Finally, observe that this paper is a proof of
concept. Comparison with other tools shall be investiguated in near future.

References

1. GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/. Accessed
14 Oct 2020

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Basile, D., ter Beek, M.H., Legay, A.: Strategy synthesis for autonomous driv-
ing in a moving block railway system with Uppaal Stratego. In: Gotsman, A.,
Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 3–21. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50086-3 1

4. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1 12

5. Chenoy, A., Duchene, F., Given-Wilson, T., Legay, A.: C-SMC: a hybrid statistical
model checking and concrete runtime engine for analyzing C programs. In: Laar-
man, A., Sokolova, A. (eds.) SPIN 2021. LNCS, vol. 12864, pp. 101–119. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84629-9 6

6. Clarke, E.M., Donzé, A., Legay, A.: On simulation-based probabilistic model check-
ing of mixed-analog circuits. Formal Methods Syst. Des. 36(2), 97–113 (2010)

https://www.gnu.org/software/gdb/
https://doi.org/10.1007/978-3-030-50086-3_1
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-030-84629-9_6

Automated Repair of Security Errors in C Programs 297

7. Clarke, E.M., Henzinger, T.A., Veith, H.: Introduction to model checking. In:
Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Check-
ing, pp. 1–26. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-
8 1

8. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

9. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. Int. J. Softw. Tools Technol.
Transf. 17(3), 351–367 (2015)

10. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Sarkar, V., Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation, Chicago, IL, USA,
12–15 June 2005, pp. 213–223. ACM (2005)

11. Goues, C.L., Pradel, M., Roychoudhury, A., Chandra, S.: Automatic program
repair. IEEE Softw. 38(4), 22–27 (2021)

12. Havelund, K.: A scala DSL for rete-based runtime verification. In: Legay, A., Ben-
salem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 322–327. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40787-1 19

13. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

14. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

15. Hoeffding, W.: Probability Inequalities for sums of Bounded Random Variables. In:
Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding, pp. 409–
426. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-0865-5 26

16. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03845-7 15

17. Karakaya, K., Bodden, E.: Sootfx: a static code feature extraction tool for java and
android. In: 21st IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2021, Luxembourg, 27–28 September 2021, pp. 181–186.
IEEE (2021)

18. Kulczynski, M., Legay, A., Nowotka, D., Poulsen, D.B.: Analysis of source code
using UPPAAL. In: Proença, J., Paskevich, A. (eds.) Proceedings of the 6th Work-
shop on Formal Integrated Development Environment, F-IDE@NFM 2021, Held
online, 24–25th May 2021. EPTCS, vol. 338, pp. 31–38 (2021)

19. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

20. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

21. Legay, A., Sedwards, S., Traonouez, L.-M.: Rare events for statistical model check-
ing an overview. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS,
vol. 9899, pp. 23–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45994-3 2

https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-642-40787-1_19
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-45994-3_2
https://doi.org/10.1007/978-3-319-45994-3_2

298 K. H. T. Dam et al.

22. Legay, A., Sedwards, S., Traonouez, L.-M.: Plasma lab: a modular statistical model
checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952,
pp. 77–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 6

23. Liu, K., Koyuncu, A., Bissyandé, T.F., Kim, D., Klein, J., Traon, Y.L.: You cannot
fix what you cannot find! an investigation of fault localization bias in benchmarking
automated program repair systems. In: 12th IEEE Conference on Software Testing,
Validation and Verification, ICST 2019, Xi’an, China, 22–27 April 2019, pp. 102–
113. IEEE (2019)

24. Ngo, V.C., Legay, A.: Formal verification of probabilistic SystemC models with
statistical model checking. J. Softw. Evol. Process. 30(3), e1890 (2018)

25. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10, 29–35 (1959)

26. Palopoli, L., et al.: Navigation assistance and guidance of older adults across com-
plex public spaces: the DALi approach. Intell. Serv. Robot. 8(2), 77–92 (2015)

27. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), Providence, RI, USA, pp. 46–57. IEEE,
September 1977

28. Sutton, R.S., Barto, A.G.: Reinforcement Learning - An Introduction. Adaptive
Computation and Machine Learning, MIT Press, Cambridge (1998)

29. Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.:
TransDPOR: a novel dynamic partial-order reduction technique for testing actor
programs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol.
7273, pp. 219–234. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30793-5 14

30. ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A.: Quantitative security
risk modeling and analysis with RisQFLan. Comput. Secur. 109, 102381 (2021)

31. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

32. Wen, W.: Software fault localization based on program slicing spectrum. In: Glinz,
M., Murphy, G.C., Pezzè, M. (eds.) 34th International Conference on Software
Engineering, ICSE 2012, 2–9 June 2012, Zurich, Switzerland, pp. 1511–1514. IEEE
Computer Society (2012)

33. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

34. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988 43

35. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to stateflow/simulink verification. Formal Methods Syst. Des. 43(2),
338–367 (2013)

https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/11513988_43

Towards Safe and Resilient Hybrid
Systems in the Presence of Learning

and Uncertainty

Julius Adelt, Paula Herber(B), Mathis Niehage, and Anne Remke

University of Münster, Einsteinstr. 62, 48149 Münster, Germany
{julius.adelt,paula.herber,mathis.niehage,anne.remke}@uni-muenster.de

Abstract. Intelligent hybrid systems pose a major challenge for the
analysis of safety and resilience. Deductive formal verification methods
for such systems typically use strong abstractions and focus only on the
worst-case behavior. This often seriously impedes performance. Quanti-
tative analyses based on simulations and statistical model checking, on
the other hand, are much better suited to take performance properties
into account, but generally do not provide guarantees for all possible
behaviors. In this paper, we present a novel approach to combine deduc-
tive formal verification and quantitative analysis. Our approach enables
us to construct provably safe and resilient systems, which still achieve
certain performance levels with a statistical guarantee. We demonstrate
the applicability of our approach with a case study of an intelligent water
distribution system, which is resilient towards pump failures.

Keywords: Hybrid systems · Resilience · Reinforcement learning ·
Formal verification · Statistical model checking

1 Introduction

With the advent of Industry 4.0, self-driving cars, and autonomous systems
controlling supply systems and critical infrastructure, the complexity of safety-
critical hybrid systems is steadily increasing. The complexity is driven by sev-
eral factors: they combine discrete and continuous behavior, they are real-time
dependent, and highly concurrent. In addition, while we are moving towards
autonomous systems with learning components, we have to cope with the trial-
and-error learning process and uncertainties in the dynamic environment, e.g.
failures of components, stochastic repair processes, or varying supplies and
demands. To ensure that hybrid systems are functioning correctly even in unex-
pected situations and under external disruptions, it is crucial to ensure their
safety, but also their resilience, i.e. they have to remain operational in the pres-
ence of stressors and to adapt their functioning in case stressors persist [24].
Existing approaches for the verification of hybrid systems either focus on the
rigorous verification of safety guarantees [4,12], or employ probabilistic tech-
niques to optimize the probability that a stochastic hybrid system satisfies
a temporal logic formula [28,29]. While the former often involves worst-case
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 299–319, 2022.
https://doi.org/10.1007/978-3-031-19849-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_18

300 J. Adelt et al.

considerations that impede the performance, the latter does not yield guaran-
tees for all possible behaviors.

In this paper, we propose an approach to combine deductive formal verifica-
tion with probabilistic techniques to ensure safety and resilience of hybrid sys-
tems in the presence of learning and uncertainty. Our key idea is twofold: First,
we verify safety and resilience using deductive verification while we abstract
from uncertainties using non-deterministic over-approximations. Second, we use
a probabilistic approach to find a near-optimal scheduler, which maximizes
resilience and the probability that a given performance property is satisfied.
The former gives us potentially pessimistic guarantees. The latter allows a
fine-grained control over control decisions, maximizes resilience and takes per-
formance properties under stochastic assumptions about the environment into
account. For deductive verification, we automatically transform system descrip-
tions that are modeled in the industrial design language Simulink into a formal
model in differential dynamic logic (dL) [25] and verify safety and resilience
with the interactive theorem prover KeYmaera X [12]. This provides us with
a correct-by-construction approach, where only models with potentially pes-
simistic guarantees may be used for later execution and code generation. We
capture the safe behavior of learning components with hybrid contracts [2]. To
verify resilience, we define hybrid contracts that explicitly capture the dynami-
cal adaptation of the system to potential stressors. The hybrid contracts define
safe behavior of learning components and thus provide potentially pessimistic
guarantees for their runtime behavior. To find a near-optimal scheduler, we
use (discretized) Q-learning together with a simulation of the continuous sys-
tem [31]. The learning process exploits hybrid contracts that are defined during
the deductive verification process to ensure safety, and thus follows a correct-by-
construction approach. The system then learns to adapt to reoccurring stressors.
We meet predefined performance goals, and compute the probability that a given
formula is satisfied using statistical model checking.

We demonstrate the applicability of our approach with a case study of
an intelligent water distribution system with reinforcement learning and three
pumps with stochastic failure probabilities and repair times, which is inspired by
a Simulink model by The MathWorks [43]. We formally verify that the tank never
runs empty and that it provides full service with three pumps and degraded ser-
vice with fewer pumps. With our combined approach, we provide a near-optimal
scheduler that is guaranteed to be safe and resilient by construction. It maxi-
mizes resilience and the probability that the energy consumption is kept below
a given limit.

The paper is structured as follows: Sect. 2 introduces preliminaries and Sect. 3
discusses related work. Section 4 combines deductive formal verification and
quantitative analysis for the design of safe and resilient hybrid systems. We
summarize experimental results in Sect. 5 and conclude in Sect. 6.

2 Background

In this section, we introduce reinforcement learning and the necessary back-
ground of our deductive verification approach and our quantitative analysis.

Towards Safe and Resilient Hybrid Systems 301

2.1 Reinforcement Learning (RL)

Reinforcement learning is a class of machine learning methods for learning in a
trial and error approach by interacting with an environment through actions [39].
The goal of an RL algorithm is to optimize a reward by learning a policy π(a|s)
that determines which actions to take in which states. The mathematical basis
are Markov decision processes (MDPs) [39]. An MDP is a tuple (S,A,R, p),
where S is a set of states, A a set of actions, R ⊂ R a set of rewards, and p a
probability distribution, which describes the MDPs dynamics. In an MDP, an
agent and an environment interact in discrete time steps. At each step t, the
agent chooses an action at ∈ A to apply in the current state st ∈ S. Then the
RL agent receives a new state st+1 ∈ S resulting from the applied action and
a reward rt+1 ∈ R. The probabilities of states s, actions a and rewards r at
times t are given by random variables St, At and Rt. The expected reward r
and next state s′ resulting from the application of a in s can be expressed as the
probability distribution p(s′, r|s, a) =̇ Pr{St = s′, Rt = r|St−1 = s, At−1 = a}.

2.2 Simulink and the RL Toolbox

Simulink [40] is an industrially well established graphical modeling language for
hybrid systems. It comes with a tool suite for simulation and automated code
generation. Simulink models consist of blocks that are connected by discrete or
continuous signals. The Simulink block library provides a large set of predefined
blocks, from arithmetics over control flow blocks to integrators and complex
transformations. Together with the MATLAB library, linear and non-linear dif-
ferential equations can be modeled and simulated.

Figure 1a shows a Simulink model of a simple water tank. The model has
two input ports, one for an input water supply i and one for the current water
demand d. The water level h is computed by integrating the difference of inflow
and demand d over time in an integrator block. The inflow is controlled by a
switch block. If the water level exceeds hOK , the inflow is stopped, and the
constant 0 is used instead. Otherwise, the value supplied at input port i is used.
To model discrete sampling of the water level, the model features a zero order
hold hHold, which updates its output in fixed sampling steps before the switch.

The RL toolbox [41] provides an RL agent block, which enables the simulation
of reinforcement learning algorithms directly within Simulink. The RL agent acts
in fixed sampling steps. In each time step, it samples observations st and rewards
rt, and outputs an action at chosen by its RL algorithm.

2.3 Differential Dynamic Logic

Differential dynamic logic (dL) [35] is a logic for formally specifying and reason-
ing about properties of hybrid systems, which are described as hybrid programs.

The syntax is as follows: α;β models a sequential composition of two hybrid
programs α and β. α ∪ β (or α + +β) models a non-deterministic choice. A
non-deterministic loop α∗ executes α zero or more times. The hybrid program

302 J. Adelt et al.

(a) Simulink Model

pre [{
d := ∗; ?(d ≤ dmax&d ≥ dmin);
i := ∗; ?(i ≤ imax&i ≥ imin);
{?(c ≥ ts); c := 0;hHold := h;

++?(c < ts); }
{?(hHold > hOK);

{t′ = 1, h′ = 0 − d, c′ = 1&(c ≤ ts)}
++?(hHold ≤ hOK);
{t′ = 1, h′ = i−d, c′ = 1&(c ≤ ts)}}

hOut := h;
}∗] post

(b) Differential Dynamic Logic

Fig. 1. Reinforcement Learning, Simulink, and dL

x := e evaluates the term e and assigns it to the variable x. x := ∗ denotes a
non-deterministic assignment. ?Q is a test, which checks whether the formula Q
is fulfilled. Finally, {x′

1 = θ1, x′
2 = θ2, x′

n = θn & Q} is a continuous evolution,
which evolves a set of variables x with a set of differential equations θ. A contin-
uous evolution may progress as long as the evolution domain Q is satisfied. dL
provides two modalities for reasoning about reachable states of hybrid programs.
[α]φ states that a formula φ holds in every state reachable by α. 〈α〉φ states that
there exists a state reachable by α in which φ holds. Specifications for hybrid
programs are defined as pre → [α]post.

A dL specification can be deductively verified with the interactive theorem
prover KeYmaera X [12]. Deductive reasoning avoids the state space explosion
problem and can also be used for parameterized and infinite-state systems, but
requires high expertise, e.g., for the manual definition of invariants.

2.4 Transformation from Simulink to dL
In [25], we have presented a fully-automatic transformation of hybrid Simulink
models into dL. We have defined dL expressions that precisely capture the
semantics of all Simulink blocks in a given model, connect them according to
the signal lines, and expand control conditions such that assignments and eval-
uations are only performed if the control conditions are satisfied. A simplified
illustrating example is shown in Fig. 1b. The dL model corresponds to the simple
Simulink water tank in Fig. 1a. The inputs i and d are modeled by constrained
non-deterministic assignments, i.e., an arbitrary value from the given input range
can be assigned at any time. The integrator block is captured by a continuous
evolution. Depending on the control flow condition of the switch (hHold > hOK),
the water level h evolves with 0−d or i−d. The discrete zero order hold block is
captured using discrete assignment together with a test formula, which ensures
that the assignment is only made whenever a clock variable c is equal to the
discrete sample time. The clock variable c is evolved in the continuous evolution

Towards Safe and Resilient Hybrid Systems 303

and c ≤ ts is added to the evolution domain to ensure that no discrete sampling
step is missed. A nondeterministic repetition models the global simulation loop.

To enable compositional verification, we have introduced the concept of
Simulink services [26]. A service is a group of blocks whose joint functionality
can be described by a hybrid contract, i.e., by a tuple hc = (φin, φout) specify-
ing assumptions on the inputs and guarantees on the outputs. By specifying a
hybrid contract, a service can be individually verified, and then be replaced by
its contract, which enables us to abstract from the inner workings of the service.

2.5 Stochastic Hybrid Model

In dynamic environments, we often have to cope with uncertainties such as vary-
ing demands, failures, unknown repair times, or external disruptions. A flexible
approach to cope with uncertainties and to express expectations about a dynamic
environment in terms of, e.g. a demand distribution, failure probabilities and
stochastically distributed repair times, are stochastic hybrid models. A variety
of model formalisms for stochastic hybrid systems exists, e.g. [1,6,16,28], with
highly different semantics. An interface for different stochastic hybrid systems
has been defined as Stochastic Hybrid Model (SHM) in [31]. It currently supports
modeling formalisms which combine discrete, continuous variables and random
delays with discrete nondeterminism. This results in a model with nd ∈ N dis-
crete modes mj ∈ N, j ∈ {1, . . . , nd}, and nc ∈ N continuous variables xi ∈ R,
i ∈ {1, . . . , nc}, which span a hybrid and uncountable state space S. A system of
first-order ordinary differential equations ẋ = fj(t, x(t)), where fj is a Lipschitz
continuous function describing the evolution of a continuous variable.

The specific semantics of an SHM is adopted from an existing modeling for-
malism, e.g. stochastic hybrid automata (SHA) [16] or hybrid Petri nets with
general transitions (HPnG) [14,33]. We use the latter in the case study of this
paper. The chosen semantics excludes Zeno behaviour and induces a finite num-
ber of deterministic events and random delays up to a finite time bound. Events
are caused by enabled actions, which are collected in a finite set AΓ per state
Γ ∈ S. If |AΓ | = 0, only time can pass and if |AΓ | ≥ 2, a nondeterministic
conflict occurs between different actions. The state Γ is updated according to
the specific semantics after choosing and executing one action.

As proposed in [31], we use a discrete event system (DES) to simulate specific
instances of an SHM formalism according to its semantics. The simulation runs
until a predefined time-bound or until a nondeterministic conflict occurs. After
choosing an action, the DES continues with the execution of the action. Resolving
a nondeterministic conflict can be done by a scheduler which assigns at each state
all available actions a probability by a discrete probability distribution.

Memoryless prophetic and nonprophetic schedulers are supported in [31].
In this paper, we focus on memoryless nonprophetic schedulers, as prophetic
schedulers require an amount of information that appears unrealistic in many
practical settings. A memoryless nonprophetic scheduler for a SHM is a mea-
surable function s : S → Dist(A) that maps every state Γ ∈ S to a discrete
probability distribution over the set of all actions A with support(s(Γ)) ⊆ AΓ .

304 J. Adelt et al.

2.6 Signal Temporal Logic

A property in signal temporal logic (STL) [29] expresses linear-time properties
over the state of a hybrid model. Whether a property specified in STL at time t
is satisfied in a simulation of the DES can be decided by a model checker which
monitors the state evolution. The context-free grammar

Ψ ::= tt | AP | ¬Ψ | Ψ ∧ Ψ | Ψ U [t1,t2] Ψ

constructs a signal temporal logic property Ψ . It consists of true (tt) and con-
tinuous atomic properties (AP) comparing a function f : S → R with the value
zero: f(Γ) > 0. They can be combined with a logical and or with a time-bounded
until -operator and negated. STL as in [29] only supports continuous signals, i.e.
continuous variables in our context. By mapping discrete modes to continuous
signals, they can be included as well. We refer to our own previous work [34] for
the semantics of STL in the context of HPnGs.

Statistical model checking can be used to estimate the probability of a STL
property Ψ at a time t via multiple simulation runs for a given scheduler. The
model checker returns for each run whether the run fulfils Ψ or not. Hence, given
n simulation runs, a sequence of independent values p1, . . . , pn ∈ {0, 1} can be
computed where each pi, i ∈ {1, . . . , n}, is a sample of a Bernoulli distribution
indicating whether run i fulfils Ψ at time t. The actual probability p can be
estimated by the arithmetic mean p̂ = 1

n

∑n
i=1 pi and a confidence interval p̂ ∈

[a, b]. The number of simulation runs depends on the chosen interval width and
the confidence level.

Resolving nondeterminism with a scheduler determines the following evolu-
tion of the system. Thus, the scheduler influences the probability that indicates
whether the STL property is fulfilled at time t. Hence, a interval of possible
probabilities can be obtained by choosing schedulers from the set of all memo-
ryless nonprophetic schedulers Sn(cf. [31]). In the following, the boundaries of
the interval are referred to as minimum and maximum probabilities.

2.7 Learning Optimal Decisions for Stochastic Hybrid Systems

Using reinforcement learning as summarized in Sect. 2.1 requires a finite state
space and a discrete notion of time. Neither the DES, nor its embedded SHM
compy with these requirements. The requirement of discrete time is not prob-
lematic in our setting since decisions occur only at discrete time points over a
finite set of actions. To handle the uncountable state space, [31] suggests a dis-
cretization of the continuous variables and proves the optimality of the approach
for a decreasing discretization distance.

The main idea is that the DES is simulated until a nondeterministic conflict
occurs. Then the conflict set and the discretized state are given to the scheduler
which resolves the conflict. The STL property is checked after the simulation run
reached its time-bound and a reward is given to the learner based on whether
the STL property is fulfilled. If the goal is to maximize the probability of the

Towards Safe and Resilient Hybrid Systems 305

STL formula, a positive reward is given if the property is satisfied. Otherwise
when minimizing, a reward is given if the STL property is not fulfilled.

The scheduler is trained for a predefined number of runs. Then, statistical
model checking estimates the probability of the STL property for that scheduler.

3 Related Work

In the last decade, a variety of approaches have been proposed for the formal
verification of systems that are modeled in Simulink. However, many of them,
e.g. [5,20,36], including the Simulink Design Verifier [42], are limited to discrete
subsets of Simulink. Formal verification methods that support hybrid systems
modeled in Simulink are, e.g., proposed in [8,9,30,44]. In [9] and [30], Simulink is
translated into hybrid automata. However, the models are verified by exploring
the state space via reachability analysis, which does not scale for larger sys-
tems. In [8,44], the authors present and approach to automatically transforms
a given Simulink model into Hybrid CSP and to enable the verification with
Hybrid Hoare Logic in the HHL Prover. By using Hybrid CSP as underlying
formalism, the authors inherit compositionality from a highly expressive process
algebra. However, both the property specification and the verification process
with Hybrid CSP require a very high level of expertise. Furthermore, none of
these methods enables verification of intelligent Simulink models.

Formal methods are used to ensure the safety of reinforcement learning. In [3],
the use of a shield is proposed, which substitutes unsafe for safe actions and is
synthesized from a safety automaton and an abstraction of the environment.
This idea has attracted quite some interest. A survey on shield synthesis for
reinforcement learning is given in [23]. In [13], the safety of an RL controller
is ensured via verified runtime monitors based on a differential dynamic logic
model. However, the resulting knowledge about safe actions is not used in quan-
titative analyses, i.e., they do not get an optimized probability for meeting a
performance property while only choosing guaranteedly safe actions.

Reinforcement learning has also been used on MDPs to improve performance
and safety (e.g. [19]), as well as to deal with unknown stochastic behavior [7,18],
and with linear-time logic specifications (e.g. [7,17,37]).

Applying machine learning on (infinite-state) stochastic hybrid systems in
continuous time requires discretization. A formal approach to discretization has
been taken in [21], which includes discretization of a continuous environment as
well as reinforcement learning. Learning for SHS is considered, e.g. in a variant
of ProbReach, which applies a the cross-entropy method for resolving nonde-
terminism [38]. Also [10] enriches an SMT-based approach with decision trees
and AI planning algorithms to handle nondeterminism. More generally, Fulton
et al. [11] provide an overview on challenges related to learning.

Finally, there has been some work on combining rigorous formal and statis-
tical methods. In [22], the authors incorporate statistical hypothesis testing to
compute promising configurations of program verifiers automatically. However,
they do not support hybrid systems, and they do not consider both safety and

306 J. Adelt et al.

Fig. 2. Combining deductive verification and quantitative analysis

performance properties. In [15], the authors present a formal framework for an
integrated qualitative and quantitative model-based safety analysis. This app-
roach is more closely related to our work and also exploits the idea to combine
the best out of both worlds from formal verification and quantitative analysis.
However, they again do not support hybrid systems, do not consider deductive
verification methods and also not the integration of learning components.

4 Combining Deductive and Quantitative Analyses

In this paper, we propose an approach to combine deductive formal verification
with quantitative analysis to ensure safety and resilience of hybrid systems in the
presence of learning and uncertainty. Our key idea is to use interactive deductive
verification to provide safety and a statistical model checking approach combined
with Q-learning to take performance properties into account.

Our overall approach is shown in Fig. 2. Our goal is to ensure safety
and resilience of intelligent hybrid systems. To provide formal guarantees for
the safe and resilient behavior of intelligent hybrid systems, we first trans-
late given system descriptions (e.g. a Simulink model) into a formal model in
dL [25,27], as shown in the upper part of Fig. 2. In the transformation process,
we abstract from uncertainties and the learning process using non-deterministic
over-approximations, as proposed in [2]. Then, we use the formal dL representa-
tion as an input to an interactive deductive verification tool for hybrid systems,
namely KeYmaera X. We capture critical properties that establish safety and
resilience in dL (e.g., a water tank never runs empty). Additionally, we capture
the requirements imposed on the learning components by these properties with
hybrid contracts, as proposed in [2,26]. Finally, we deductively verify that the
overall system satisfies the given properties for an unbounded time and poten-
tially even for a system model with unbounded parameters under the assumption
that the learning components adhere to the hybrid contract at runtime. This pro-
vides us with a correct-by-construction approach: the resulting verified model is

Towards Safe and Resilient Hybrid Systems 307

guaranteed to be correct (with respect to the verified safety properties), and
can be optimized and refined using simulation-based approaches and automated
code generation in later stages of the development process.

To take performance properties into account, we use a simulation-based app-
roach to find a near-optimal scheduler, which maximizes or minimizes the prob-
ability that a given performance property is satisfied. To this end, we first (man-
ually) translate the given system description into a stochastic hybrid model
(SHM), for example a HPnG, as shown in the lower part of Fig. 2. We define
safety and performance properties in STL. Then, we combine simulation with
Q-learning, as proposed in [31], to compute a non-prophetic scheduler that opti-
mizes the probability that the given STL formula is satisfied. Thereby, we restrict
ourselves to exploiting only safe actions defined by the hybrid contracts that we
have used for deductive formal verification to ensure that the resulting sched-
uler is correct by construction with respect to the (deductively) verified safety
properties. With that, we compute an optimized probability that general safety
properties (e.g. there is always a reasonable amount of water available) or per-
formance properties (e.g., the energy consumption of the pump is never above a
certain limit) are satisfied, while we still ensure that the critical safety properties
are never violated.

In the following subsections, we first introduce an intelligent water distribu-
tion system [43] with some adaptations as a motivational example, and (infor-
mally) discuss its major requirements with respect to safety, resilience, and per-
formance. Secondly, we present our approach for the deductive verification, which
enables correct-by-construction design, but may impede performance. Third and
finally, we present our simulation-based probabilistic approach that exploits the
safe actions defined by the hybrid contracts used for deductive verification while
optimizing for more general safety and performance properties.

4.1 An Intelligent Water Distribution System

Our motivational example is a water distribution system (WDS) that uses a
reinforcement learning agent to learn how to satisfy a water demand by con-
sumers as best as possible, while being energy efficient. Our model is inspired
by [43]. Figure 3 depicts our system intuitively. The system consists of three
pumps (p1, p2, p3), which are used to constantly pump fluid from a reservoir into
a water tank. Using pumps is associated with a cost. The usage of pumps is con-
trolled by the systems’ RL agent. The RL agent can activate the pumps (actions
a1 −a3), and it can limit the outflow to a maximum supply smax. The RL agent
makes these control decisions in discrete sampling steps, while the overall behav-
ior of the system is hybrid. If a pump is turned on by the RL agent, it pumps
fluid with a constant rate r into the tank. The overall inflow i is determined by
the activated pumps. The fluid in the tank is used to satisfy a consumer demand
d. This demand ranges from 0 to smax. The continuous change of the tanks water
level h is described by the differential equation h′ = i − d.

308 J. Adelt et al.

Fig. 3. Intelligent WDS inspired by [43]

Fig. 4. Simulink model of the intelligent WDS inspired by [43]

Safety. A critical safety property is that the water tank should never run empty.
We capture this with the safety property h > hmin, which should hold in any
reachable state. To ensure that a minimum supply of water is always available,
the system features a backup pump (p4), which is not controlled by the RL agent
and turns on as soon as the water level falls below a backup level hb. The backup
pump has the highest cost of all pumps. To ensure that the safety requirement
h > hmin is fulfilled, the agent has to limit the supply accordingly.

Resilience. A resilient system should be able to keep working under the influence
of external stressors [24]. To achieve this, the system needs the capability to
dynamically adapt to unexpected disruptions. In our model, pumps can break
during usage. We model a possible adaptation to this by defining a degraded
service level, where the RL agent limits the maximum water supply smax to
sdeg. As a result, the supply limit smax is chosen from the interval [sdeg, sfull],
where sfull is the highest service level, which ensures that the maximum possible
consumer demand can be satisfied, and sdeg is the degraded service level, which
ensures that only critical consumers can be supplied but that the system is still
functional even with a limited number of working pumps.

Performance. The pumps in our intelligent WDS are associated with varying
cost in terms of their energy usage. A crucial performance property of our system
is that the energy consumption stays below a certain limit.

Towards Safe and Resilient Hybrid Systems 309

1 pre [{
2 smallStep := 0;
3 /* pumps 1-3 */
4 p1 := ∗; ?(p1 = 1.0|p1 = 0.0); p2 := ∗; ?(p2 = 1.0|p2 = 0.0); p3 := ∗; ?(p3 = 1.0|p3 = 0.0);
5 /* backup pump triggered by sensor */
6 p4 := ∗; ?(p4 = 1.0|p4 = 0.0); ?(h ≤ hb p4 = 1.0);
7 /* RL agent embedding */
8 { ?(cRL ≥ tS);
9 cRL := 0; a1 := ∗; a2 := ∗; a3 := ∗; smax := ∗; ?(hcRL);

10 ++
11 ?(cRL < tS); }
12 /* in− and outflow calculation */
13 i := ∗; ?(i = (min(p1, a1) + min(p2, a2) + min(p3, a3) + p4) · r);
14 d := ∗; ?(d ≥ 0) & (d ≤ smax));
15 /* continuous behavior */
16 { ?(h ≤ hb);

17 { t′ = 1, c′
RL = 1, h′ = (i − d), smallStep′ = 1 &(h ≤ hb | smallStep ≤ ε) & cRL ≤ tS}}

18 ++
19 {{ ?(!(h ≤ hb));

20 { t′ = 1, c′
RL = 1, h′ = (i − d), smallStep′ = 1 &(!(h ≤ hb) | smallStep ≤ ε) & cRL ≤ tS}}}

21 *]h > hmin

Fig. 5. Intelligent WDS in dL

4.2 Formal Verification of Safety and Resilience

Our intelligent WDS is originally modeled in the industrial modelling language
Simulink. The model is depicted in Fig. 4. The system features an RL agent from
the RL toolbox [41], which chooses pump activations (a1, a2, a3) and maximum
supply smax. It further consists of services for each pump, which forward a binary
status (working = 1, broken = 0), a flow computation service for computing in-
and out-flow (i and d) from the pump’s status (pi), activations (ai) and maximum
supply (smax), and an integrator block, which computes the current water level
h. To formally verify safety and resilience, we first transform the Simulink model
into dL [25]. Then, we capture the safe behavior of the RL agent with hybrid
contracts in dL, and verify the model under the assumption that the RL agent
complies with its contract [2] deductively in KeYmaera X.

The formal dL model resulting from our approach is shown in Fig. 5. It uses
symbolic constants for system parameters like sampling time tS , service levels
sfull, sdegr and minimum water height hmin. This enables verifying properties for
a range of safe system parameters and every possible input scenario. The services
for individual pumps are captured by hybrid contracts (Line 4) that only capture
the possible value range of pump failures (on = 1, off = 0), while abstracting
from details like failure probabilities. The contract in Line 6 captures the backup
pump, which turns on whenever the water height falls below the backup level hb.
Line 8 to 11 contain our embedding of the RL agent. Whenever the clock cRL

reaches the sampling time of the agent tS , new values for the RL agent’s actions
are chosen. These values are subject to the contract of the RL agent (hcRL).
Lines 13 and 20 capture the computed values for in- and outflow (i and d). In
Line 16 to 20, the continuous variables of the system, including the water level,
evolve according to their differential equations. The evolutions are bounded by
the evolution domain cRL ≤ tS to ensure that no sampling times of the RL agent
are missed. To ensure that the backup pumps contract is evaluated in time, its

310 J. Adelt et al.

Table 1. Safety contract

Assumption Guarantee

True h − smax ∗ tS > hmin

Table 2. Resilience contract

Assumption Guarantee

h > hfull smax = sfull

h ≤ hdeg smax = sdeg

h > hdeg & h ≤ hfull h − smax ∗ tS > hmin

condition (h ≤ hb) and the negation (!(h ≤ hb)) are added to the control flow
conditions of the system’s continuous evolutions. To enable switching between
the conditions, a small delay (smallStep) is added to the evolution domains [25]).
The safety property h > hmin, which must hold in every reachable state, was
manually added after the [] modal operator (Line 21).

Hybrid Contract for Ensuring Safety. To ensure that the tank never runs empty
(h > hmin), the agent must manage maximum water supply and pump usage
safely. The transformed model contains nondeterministic over-approximations to
abstract from uncertainties, like pump failure times and water demand behavior.
This ensures that proofs hold for every possible behavior of the environment.
However, it also means that, to ensure safety, a hybrid contract for the RL agent
has to always consider the worst case environmental behavior. The worst case
possible behavior (regarding the safety property h > hmin) in our model is the
failure of all three pumps. We define the safe behavior of the RL agent with the
hybrid contract shown in Table 1. The contract ensures that the maximum water
supply is always limited to a value (smax) that can be satisfied by the current
water level (h) without falling below hmin until the next decision is made in one
sampling step (tS). To account for the possible failure of all pumps, the contract
does not make use of pump activation and always assumes the inflow to be zero.

Hybrid Contracts for Ensuring Resilience. To ensure resilience, we define the
contract shown in Table 2. The first guarantee ensures that the agent always
supplies the full service level smax = sfull whenever the water level is above
hfull = sfull · tS + hmin. The second guarantee specifies that the agent supplies
the degraded service level if the water level is too low, i.e., it chooses smax = sdeg

if h ≤ hdeg = sdeg · tS +hmin. This degraded service is guaranteed by the backup
pump, which turns on before the tank runs empty. The third guarantee specifies
that the agent supplies intermediate but safe levels between the two boundaries.

4.3 Resilient Scheduling Under Uncertainty

As sketched in Sect. 2.7, in the quantitative approach [31], a DES simulates a
specific instance of an SHM. Then Q-learning is used to find optimal actions
for nondeterministic conflicts, which optimize the probability that a predefined
STL formula holds. Hence, the model of the WDS, as depicted in Fig. 3 must
be expressed in a model formalism suitable for the SHM interface, as shown in
Sect. 2.5. Here, we chose Hybrid Petri Nets with general transitions [14].

Towards Safe and Resilient Hybrid Systems 311

Table 3. Fail and repair distributions for the three pumps.

Pump Fail: folded normal Repair: uniform

μ σ a b

p1 30 6 7 10

p2 20 4 3 5

p3 5 1 1 2

Model as SHM. To obtain quantitative results, we parameterize the variables
of the model, as follows. The water tank has an initial value of 5.5m and the
minimum level is set to hmin = 2 m. Each pumps fills, if active, the tank with
0.15 m per hour. When active, pumps consume energy, which leads to cost 0.1
for p1, p2 and p3, and to cost 0.15 for p4. While the backup pump can not fail,
the three ordinary pumps can fail and can be repaired. The parameters for the
corresponding probability distributions are provided in Table 3.

The nondeterministic conflict set is formed by all possible actions, i.e., the
different combinations A = {(a1, a2, a3) | ai ∈ {0, 1}}, which indicates the choice
of pumps. Note that ai = 1 indicates that pump pi is chosen, but not necessarily
corresponds to an active pump. An action must then be taken at the initial
time and after every sampling time tS = 10. At the same time instances, a
choice between three different service levels, S = {sfull, smid, sdeg} with sfull =
0.3, smid = 0.2, and sdeg = 0.15 is required. This results in action set A × S.

Applying contracts from Sect. 4.2, we compute resilient schedules to ensure
a combination of safety and resilience. This restricts the nondeterministic set
S, as the service level follows directly from the chosen contract, as indicated in
Table 2. Hence, the contract serves as scheduler for the service level.

Resilience with respect to a desired property Ψ is then encoded as STL
until formula tt U [0,t]¬Ψ , with Ψ = (h > hfull). Minimizing the probability that
this formula holds then increases resilience, as the probability to reach a state
where Ψ does not hold before time t decreases. Performance with respect to
energy consumption can be incorporated into the desired property Ψ = (h >
hfull ∧ cost < c), where h is a constant restricting the height of the water level
and c forms an upper bound for the incurred energy cost.

5 Evaluation

In this section, we summarize and discuss our experimental results obtained by
the two different approaches.

312 J. Adelt et al.

Table 4. Verified dL properties and manual verification effort

dL Property Number of

invariants

Estimated time

in hh:mm

Manual

proof steps

(1) h > hmin 8 6:00 212

(2) smax ≥ sdeg 1 0:15 9

(3) obsh > hfull → smax = sfull 1 0:10 5

(4) i = imax ∧ i · clklc ≥ hfull + hδ,RL → smax = sfull 11 8:00 332

5.1 Deductive Verification

For the evaluation of our deductive verification approach, we have verified the dL
properties (1)–(4) of Table 4 for our intelligent WDS for all reachable states ([.]
modality). The table only shows postconditions. Preconditions like assumptions
on safe ranges of system parameters are omitted for brevity. Our Simulink2dL
transformation tool and all proofs can be found online1. dL property (1) is
a typical safety property, which specifies that the tank never runs empty. dL
properties (2)–(4) capture the resilience of the system by guaranteeing service
levels under different circumstances. dL property (2) states that the system
always at least offers the degraded service level. dL property (3) states that the
full service level sfull is offered whenever the water level sampled by the RL
agent obsh is above hfull. dL property (4) captures that the full service level is
enabled, if no pumps fail and the RL agent uses all three pumps for a sufficiently
long time. Here imax = 3 · r marks the maximum possible inflow by using all
pumps except for the backup pump (p4). clklc is a fresh clock that is reset on
any pump activation changes (changes of ai or pi) and hδ,RL = (i + r) · tS is
the maximum water level change in one sampling time of the RL agent. Table 4
summarizes the time and effort spent for the verification.

5.2 Quantitative Analysis

While deductive verification guarantees properties (1)–(4) in Table 4,
HYPEG [32] provides statistical guarantees w.r.t. a finite time bound. Hence,
safety and resilience are considered quantitatively. We use a confidence level of
99% and a half interval width of 0.01. Additionally, we train schedulers which
solve nondeterministic conflicts. All considered STL properties are summarized
in Table 5.

Safety. Table 6 presents the probability that the safety property Φs holds before
time 24 h to 96 h. As base case, we consider a purely probabilistic scheduler
(U, U), which chooses pumps and a service level according to the uniform dis-
tribution from the complete action set A × S. Scheduler (L, L) minimizes the
probability that the Φs holds. Training is done over the full action set A×S and
for different predefined maximum times. Note that a new scheduler is learned

1 https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html.

https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html

Towards Safe and Resilient Hybrid Systems 313

Table 5. STL properties describing the three considered optimization goals.

Safety Φs = tt U [0.0,maxTime]¬(h > 2.0)

Resilience Φr = tt U [0.0,maxTime]¬(h > 5.0)

Performance Φp = tt U [0.0,maxTime]¬(h > 5.0 ∧ cost ≤ 0.2 · maxTime)

Table 6. Estimated probability for Φs for a combination of uniform (U), learned (L)
and contract-based (C) schedulers for the action set A × S and different maximum
times. Schedulers are indicated as tuples, indicating the considered strategy for A and
S, respectively.

24 h 48 h 72 h 96 h

(U, U)

Mean p 0.027 0.124 0.244 0.358

Sim. time 1.7 s 3.5 s 6.5 s 10.6 s

Sim. runs 5000 (min) 7204 12 229 15 250

(L, L)

Mean p 0.0 4.0 × 10−4 0.0024 0.057

Train time 1419.7 s 2348.7 s 3917.2 s 5237.1 s

Sim. time 3.7 s 5.8 s 9.0 s 11.9 s

Sim. runs 5000 (min) 5000 (min) 5000 (min) 5000 (min)

(U, C)

Mean p 0.0 0.0 0.0 0.0

Sim. time 1.9 s 2.1 s 3.1 s 3.8 s

Sim. runs 5000 (min) 5000 (min) 5000 (min) 5000 (min)

for every time bound. Finally, scheduler (U, C) chooses the pump according to
a uniform distribution and resolves S, i.e., defines a demand, according to the
contract given by the deductive approach.

For each scheduler, the estimated mean probability that Φs holds is provided
together with the simulation time and the number of simulation runs. Further-
more, the training times for the learned schedulers are listed.

Overall, the uniform scheduler (U, U) yields the highest probability of a
safety violation, which is furthermore increasing with a larger time horizon. The
learned scheduler (L, L) is better than the base case (U, U), but not as good
as the contract-based scheduler (U, C), even though it can choose from the full
action set A × S. Recent work [31] has shown that the learned scheduler will be
optimal for a vanishing discretization and an infinite amount of training runs.

We performed 2 million training runs with a learning rate decreasing from
0.1, a discount factor 1 and epsilon greedy parameter 0.15. As discretization of
the continuous variables, the valuations are truncated after the first digit.

The contract always determines the service level based on the current water
level and is encoded in the model via guard arcs which only enable one service

314 J. Adelt et al.

Table 7. Estimated probability for Φr, for learned or uniform scheduling of A and a
contract-based resolution of S and different time bounds.

24 h 48 h 72 h 96 h

(U, C)

Mean p 0.867 0.982 0.998 1.000

Sim. time 2.4 s 2.2 s 2.7 s 3.6 s

Sim. runs 7679 5000 (min) 5000 (min) 5000 (min)

(L, C)

Mean p 6.0 × 10−4 4.0 × 10−4 0.005 0.0028

Train time 976.3 s 1804.4 s 2863.0 s 3677.6 s

Sim. time 2.5 s 4.7 s 7.4 s 9.4 s

Sim. runs 5000 (min) 5000 (min) 5000 (min) 5000 (min)

level action at a time. Since appropriate service level actions are sufficient to
ensure safety, pump actions are irrelevant. The computation times depend on
the number of runs performed and the considered time horizon. The simulation
times of (U, C) are smaller than those of (U, U), since fewer decisions need to
be sampled. The simulation times for (L, L) are the highest, as every action
requires a lookup in the Q-table, instead of drawing a uniform sample.

In the current case study the approach suffers from the fact that the reward
is collected only after a sequence of consecutive choices has been made. Hence,
more training runs are required, especially for 96 h.

Clearly, the contract-based scheduler (U, C) outperforms all other schedulers
in Table 6. However, it requires a predefined contract (cf. Section 5.1).

Resilience. In the following, we use the predefined contract to assure safety for all
schedulers, hence we only consider schedulers (U, C) and (L, C). This approach
allows to optimize the probability to maintain the full service level without the
risk of a safety violation. The full service level is chosen if the water level is
larger than hfull = 5. Table 7 shows the results for schedulers (U, C) and (L, C)
for Φr (cf. Table 5).

The learned scheduler (L, C) is able to keep the estimated probability that a
reduced service level is reached very close to zero, even for longer time bounds. In
contrast, (U, C) is not able to realize the full service level with probability above
0.86, even for short time horizons, the probability of a reduced service level for
time bound 96 even equals one.2 The estimated probability increases with the
time horizon for both scheduler, as a longer sequence of choices increases the
probability to take a bad action.

Training used the same parameters as in Table 6. Note that the training
and simulation times for (L, C) are smaller than the respective times of the of

2 Scheduler (U, C) obtains different probabilities in Tables 6 and 7, since those prob-
abilities relate to different STL properties.

Towards Safe and Resilient Hybrid Systems 315

Table 8. Estimated probability for Φp for either a uniform or a learned resolution of
A, and a contract-based resolution of S. Learning is either done to optimize resilience
(Lres), or to optimize performance (Lperf) and for different time bounds.

24 h 48 h 72 h 96 h

(U, C)

Mean p 0.966 0.994 1.000 1.000

Sim. time 1.9 s 1.9 s 2.8 s 3.6 s

Sim. runs 5000 (min) 5000 (min) 5000 (min) 5000 (min)

(Lres, C)

Mean p 0.732 0.970 0.883 0.887

Train time 976.3 s 1804.4 s 2863.0 s 3677.6 s

Sim. time 6.6 s 4.7 s 10.5 s 12.7 s

Sim. runs 13021 5000 (min) 6846 6631

(Lperf, C)

Mean p 0.0168 0.111 0.038 0.078

Train time 971.3 s 1779.7 s 2860.0 s 3633.1 s

Sim. time 2.6 s 6.0 s 7.3 s 9.3 s

Sim. runs 5000 (min) 6535 5000 (min) 5000 (min)

(L, L) (cf. Table 6). This speedup results from using the contract to choose
actions concerning the service level, which is faster than learning them.

Performance. Energy cost induced by pumps have not been considered so far,
but could be optimized as well. The desired cost corresponds to the cost accu-
mulated by two pumps, since without pump failures, two pumps achieve the
full service level. However, to account for pump failures, a buffer needs to be
accumulated which incurs additional cost.

In the following Φp is minimized over the choices in A, which can be done
safely for the predefined contract. The corresponding results are shown in Table 8
for three schedulers, namely (U, C), or trained either towards on resilience (Lres,
C), similar to (L, C) from Table 7, or trained towards minimizing Φp, denoted
(Lperf, C). Clearly (U, C) and (Lres, C) are agnostic of cost and not able to
achieve a low probability for Φp. However note, that (Lres, C) outperforms (U,
C), which additionally struggles to maintain the desired height of the water level.

Schedulers trained on performance keep the estimated probability of Φp well
below 0.1, with the exception of the scheduler learned for 48 h. This is due to
the underlying distributions of the pump failures which make it harder at this
specific time to consistently stay above hfull = 5 and have limited accumulated
costs. The training times for all instances of (Lres, C) and (Lperf, C) increase
with the considered maximum time and similar for the two different training
objectives.

316 J. Adelt et al.

The deductive verification omits parts of the model, e.g. energy costs and
failure distributions. The quantitative analysis exploits this information. Hence,
we have a trade-off between the strengths of the results and the underlying
assumptions. With our combination, we get the best of both worlds: safety and
resilience are proven in a reduced model and resilience and performance are
optimized for a verified system while still giving statistical guarantees.

6 Conclusion

In this paper, we have presented an approach for the design and verification of
safe and resilient hybrid systems in the presence of learning and uncertainty. To
achieve this, we explicitly define critical safety properties and safe dynamic adap-
tations to external disruptions as hybrid contracts. Then, we formally verify that
critical properties are ensured under all circumstances using deductive verifica-
tion with the differential dynamic logic dL and the interactive theorem prover
KeYmaera X. Finally, we perform a quantitative analysis based on statistical
model checking and Q learning to maximize resilience and the probability that
performance goals are met for the verified system. Our approach is correct-by-
construction in the sense that safety and resilience guarantees are maintained by
exploiting hybrid contracts that are used for deductive verification in the quan-
titative analysis, i.e., only provably safe actions are taken in the optimization
process. Our main contribution is a novel combination of deductive formal veri-
fication and quantitative analyses, which enables us to verify complex properties
of intelligent hybrid systems in dynamic environments without impeding perfor-
mance. With that, we get a more fine-grained control over potentially conflicting
safety, resilience, and performance requirements than existing approaches. We
have shown the applicability of our approach with an intelligent water distribu-
tion system modeled in the widely used industrial design language Simulink. In
particular, we have shown that we can verify safe and resilient behavior while
still maintaining efficient energy consumption with a maximal probability.

In future work, we plan to extend our approach to more sophisticated proper-
ties that reflect resilience. In addition, we plan to investigate the potential reuse
of hybrid contracts and invariants for recurring properties and systems.

References

1. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking
of stochastic hybrid systems. Eur. J. Control. 16(6), 624–641 (2010)

2. Adelt, J., Liebrenz, T., Herber, P.: Formal verification of intelligent hybrid systems
that are modeled with simulink and the reinforcement learning toolbox. In: Huis-
man, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 349–366.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6 19

3. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

https://doi.org/10.1007/978-3-030-90870-6_19

Towards Safe and Resilient Hybrid Systems 317

4. Alur, R.: Formal verification of hybrid systems. In: ACM International Conference
on Embedded Software (EMSOFT), pp. 273–278 (2011)

5. Araiza-Illan, D., Eder, K., Richards, A.: Formal verification of control systems’
properties with theorem proving. In: UKACC International Conference on Control
(CONTROL), pp. 244–249. IEEE (2014)

6. Bertrand, N., et al.: Stochastic timed automata. Log. Methods Comput. Sci. 10(4)
(2014)

7. Cai, M., Peng, H., Li, Z., Kan, Z.: Learning-based probabilistic LTL motion plan-
ning with environment and motion uncertainties. IEEE Trans. Autom. Control
66(5), 2386–2392 (2021)

8. Chen, M., et al.: MARS: a toolchain for modelling, analysis and verification of
hybrid systems. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably
Correct Systems. NMSSE, pp. 39–58. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48628-4 3

9. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verifica-
tion. IEEE Trans. Autom. Control 48(1), 64–75 (2003)

10. Ellen, C., Gerwinn, S., Fränzle, M.: Statistical model checking for stochastic hybrid
systems involving nondeterminism over continuous domains. Int. J. Softw. Tools
Technol. Transf. 17(4), 485–504 (2015)

11. Fulton, N., Hunt, N., Hoang, N., Das, S.: Formal Verification of End-to-End Learn-
ing in Cyber-Physical Systems: Progress and Challenges. arXiv:2006.09181 (2020)

12. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

13. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32 (2018)

14. Gribaudo, M., Remke, A.: Hybrid Petri nets with general one-shot transitions.
Perform. Eval. 105, 22–50 (2016)

15. Gudemann, M., Ortmeier, F.: A framework for qualitative and quantitative formal
model-based safety analysis. In: IEEE International Symposium on High Assurance
Systems Engineering, pp. 132–141. IEEE (2010)

16. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Form. Methods Syst.
Des. 43(2), 191–232 (2013)

17. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Faith-
ful and effective reward schemes for model-free reinforcement learning of omega-
regular objectives. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 108–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 6

18. Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.: Rein-
forcement learning for temporal logic control synthesis with probabilistic satis-
faction guarantees. In: IEEE Conference on Decision and Control (CDC), Nice,
France, pp. 5338–5343. IEEE (2019)

19. Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with
logical constraints. In: International Foundation for Autonomous Agents and Mul-
tiagent Systems, AAMAS 2020, pp. 483–491 (2020)

20. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-
time MATLAB/Simulink models using SMT solving. In: International Conference
on Embedded Software (EMSOFT), pp. 1–10. IEEE (2013)

https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-319-48628-4_3
http://arxiv.org/abs/2006.09181
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-030-59152-6_6
https://doi.org/10.1007/978-3-030-59152-6_6

318 J. Adelt et al.

21. Junges, S., Jansen, N., Katoen, J.-P., Topcu, U., Zhang, R., Hayhoe, M.: Model
checking for safe navigation among humans. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 207–222. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 13

22. Knüppel, A., Thüm, T., Schaefer, I.: GUIDO: automated guidance for the configu-
ration of deductive program verifiers. In: IEEE/ACM International Conference on
Formal Methods in Software Engineering (FormaliSE), pp. 124–129. IEEE (2021)

23. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 290–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4 16

24. Laprie, J.C.: From dependability to resilience. In: IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. G8–G9 (2008)

25. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control sys-
tems modeled in simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM
2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02450-5 6

26. Liebrenz, T., Herber, P., Glesner, S.: A service-oriented approach for decomposing
and verifying hybrid system models. In: Arbab, F., Jongmans, S.-S. (eds.) FACS
2019. LNCS, vol. 12018, pp. 127–146. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-40914-2 7

27. Liebrenz, T., Herber, P., Glesner, S.: Service-oriented decomposition and verifica-
tion of hybrid system models using feature models and contracts. Sci. Comput.
Program. 211, 102694 (2021)

28. Lygeros, J., Prandini, M.: Stochastic hybrid systems: a powerful framework for
complex, large scale applications. Eur. J. Control. 16(6), 583–594 (2010)

29. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

30. Minopoli, S., Frehse, G.: SL2SX translator: from Simulink to SpaceEx models.
In: International Conference on Hybrid Systems: Computation and Control, pp.
93–98. ACM (2016)

31. Niehage, M., Hartmanns, A., Remke, A.: Learning optimal decisions for stochastic
hybrid systems. In: ACM-IEEE International Conference on Formal Methods and
Models for System Design (MEMOCODE), pp. 44–55. ACM (2021)

32. Pilch, C., Edenfeld, F., Remke, A.: HYPEG: statistical model checking for hybrid
petri nets: tool paper. In: EAI International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS), pp. 186–191. ACM Press (2017)

33. Pilch, C., Niehage, M., Remke, A.: HPnGs go non-linear: statistical dependabil-
ity evaluation of battery-powered systems. In: IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 157–169. IEEE (2018)

34. Pilch, C., Remke, A.: Statistical model checking for hybrid petri nets with multiple
general transitions. In: Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pp. 475–486. IEEE (2017)

35. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

https://doi.org/10.1007/978-3-319-99154-2_13
https://doi.org/10.1007/978-3-319-99154-2_13
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-40914-2_7
https://doi.org/10.1007/978-3-030-40914-2_7
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

Towards Safe and Resilient Hybrid Systems 319

36. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink
models using boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10431-7 14

37. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based
approach to control synthesis of Markov decision processes for linear temporal
logic specifications. In: IEEE Conference on Decision and Control, pp. 1091–1096.
IEEE (2014)

38. Shmarov, F., Zuliani, P.: Probabilistic hybrid systems verification via SMT and
Monte Carlo techniques. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol.
10028, pp. 152–168. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49052-6 10

39. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The
MIT Press, Cambridge; London (2018)

40. The MathWorks: Simulink. https://de.mathworks.com/products/simulink.html
41. The MathWorks: Reinforcement Learning Toolbox. https://www.mathworks.com/

products/reinforcement-learning.html
42. The MathWorks: Simulink Design Verifier. https://de.mathworks.com/products/

simulink-design-verifier.html
43. The MathWorks: Simulink Example: Water Distribution System Scheduling Using

Reinforcement Learning. https://de.mathworks.com/help/reinforcement-learning/
ug/water-distribution-scheduling-system.html

44. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal verification of simulink/stateflow
diagrams. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol.
9364, pp. 464–481. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24953-7 33

https://doi.org/10.1007/978-3-319-10431-7_14
https://doi.org/10.1007/978-3-319-10431-7_14
https://doi.org/10.1007/978-3-319-49052-6_10
https://doi.org/10.1007/978-3-319-49052-6_10
https://de.mathworks.com/products/simulink.html
https://www.mathworks.com/products/reinforcement-learning.html
https://www.mathworks.com/products/reinforcement-learning.html
https://de.mathworks.com/products/simulink-design-verifier.html
https://de.mathworks.com/products/simulink-design-verifier.html
https://de.mathworks.com/help/reinforcement-learning/ug/water-distribution-scheduling-system.html
https://de.mathworks.com/help/reinforcement-learning/ug/water-distribution-scheduling-system.html
https://doi.org/10.1007/978-3-319-24953-7_33
https://doi.org/10.1007/978-3-319-24953-7_33

Non-functional Testing of Runtime
Enforcers in Android

Oliviero Riganelli(B) , Daniela Micucci , and Leonardo Mariani

University of Milano-Bicocca, Milan 20126, Italy
{oliviero.riganelli,daniela.micucci,leonardo.mariani}@unimib.it

Abstract. Runtime enforcers can be used to ensure that running appli-
cations satisfy desired correctness properties. Although runtime enforcers
that are correct-by-construction with respect to abstract behavioral mod-
els are relatively easy to specify, the concrete software enforcers generated
from these specifications may easily introduce issues in the target appli-
cation. Indeed developers can generate test suites to verify the functional
behavior of the enforcers, for instance exploiting the same models used
to specify them. However, it remains challenging and tedious to verify
the behavior of enforcers in terms of non-functional performance char-
acteristics. This paper describes a practical approach to reveal runtime
enforcers that may introduce inefficiencies in the target application. The
approach relies on a combination of automatic test generation and run-
time monitoring of multiple key performance indicators. We designed our
approach to reveal issues in four indicators for mobile systems: respon-
siveness, launch time, memory, and energy consumption. Experimental
results show that our approach can detect performance issues that might
be introduced by automatically generated enforcers.

Keywords: Runtime enforcement · Testing enforcers · Non-functional
testing · Android apps

1 Introduction

Mobile applications are extremely popular. Indeed, there are applications to
support virtually any task, as witnessed by the more than 3 million applications
available for download in Google Play in the first quarter of 2022 [36].

Mobile applications interact with the hosting device, exploiting the available
resources, such as the camera, memory, battery, and Wi-Fi antenna. Unfortu-
nately, mobile applications may easily misuse resources, causing issues to the
underlying system and the rest of the applications running in the device. For
instance, an application may acquire the camera without releasing it, preventing
the access to the camera to the other applications.

To prevent these problems, users of mobile applications can install and
activate software enforcers [10–12,15,32] that guarantee that specific correct-
ness policies are satisfied (e.g., the camera is always released after it has been

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 320–334, 2022.
https://doi.org/10.1007/978-3-031-19849-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_19&domain=pdf
http://orcid.org/0000-0003-2120-2894
http://orcid.org/0000-0003-1261-2234
http://orcid.org/0000-0001-9527-7042
https://doi.org/10.1007/978-3-031-19849-6_19

Non-functional Testing of Runtime Enforcers in Android 321

acquired). These enforcers can be typically generated automatically from a
model-based representation of the processes involved in the policy that must
be enforced. For instance, I/O automata can model the behavior of apps and
services running in a mobile device, and edit automata [20] can be used to spec-
ify enforcers that can correct executions to avoid policy violations. Software
enforcers derived from these models are guaranteed to fix the execution since
they are correct-by-construction, as long as both the specified models and the
code generation process are correct.

However, models are abstractions of the behavior of the software and its envi-
ronment, and often miss many relevant details that might affect the correctness
of the enforcers. For this reason, software enforcers, even when generated auto-
matically, have to be tested. In previous work [13], we addressed the challenge of
automatically generating test cases that cover the functional specification used
to generated the enforcers, and to ensure correctness-by-construction before the
enforcers are deployed. However, correctness-by-construction is limited to the
functional aspect of the enforcers. In this paper, we address the challenge of
enriching the testing strategy with the capability to collect and analyze non-
functional indicators to ensure non-functional properties, specifically through
the detection of performance problems that might be introduced into the target
system in an attempt to apply (functional) policy. We experimented our app-
roach with several enforcers, indicators, and faults, demonstrating the usefulness
of addressing both the functional and non-functional aspects when verifying soft-
ware enforcers.

The paper is organized as follows. Section 2 provides background informa-
tion about software enforcement. Section 3 describes the test case generation
strategy for software enforcers, augmented to deal with performance problems.
Section 4 reports the results that we obtained with the evaluation of the app-
roach. Section 5 discusses related work. Finally, Sect. 6 provides final remarks.

2 Background

In this section we introduce the notion of runtime policy and policy enforcement.

2.1 Runtime Policy

A runtime policy is a predicate over a set of executions. More formally, let Σ
be a finite set of observable program actions a. An execution σ is a finite or
infinite non-empty sequence of actions a1; a2; . . . ; an. Σ∗ is the set of all finite
sequences, Σω is the set of infinite sequences, and Σ∞ = Σ∗ ∪ Σω is the set of
all sequences. Given a set of executions χ ⊆ Σ∞, a policy is a predicate P on χ.
A policy P is satisfied by a set of executions χ if and only if P (χ) evaluates to
true.

A policy may concern any behavior of an application, including resource
usage and security. For example, an Android policy [1] requires that anytime an
Android app stops using the camera, it explicitly releases the camera to make it

322 O. Riganelli et al.

available to the other apps. More in details, “if an activity1 is using the camera
and the activity receives an invocation to the callback method onPause() 2, the
activity must release the camera.” We refer to this policy throughout the paper
to describe our approach.

2.2 Policy Enforcement Models

A policy enforcement model specifies how executions must be changed to make
them satisfy a given policy. Policy enforcers can be represented with finite-state
models, such as edit and input/output automata. For instance, Fig. 1 shows an
input/output automaton that specifies an enforcement model that can enforce
a faulty activity that does not release the camera to release it.

The inputs are the events intercepted by the enforcer (represented with the
req subscript in the model) while the outputs (represented with the api subscript)
are the events emitted by the enforcer in response to the intercepted events.
When the input and the output in a same transition match (regardless of the
subscript), the enforcer is not changing the execution. If the output differs from
the input, the enforcer is changing the execution suppressing and/or adding
events.

Referring to the example model in Fig. 1, state s0 represents the case the
camera has not been acquired yet, and the enforcer is ready to intercept events
without altering the execution. In fact, both pausing the current activity (event
activity.onPause()) and acquiring the camera (event camera.open()) are
events compatible with the policy related to the access to the camera. Once
the camera is acquired (event camera.open() from state s0), the camera must
be released before the activity can be paused. In state s1, the enforcer is thus
ready to accept the camera.release() event. On the contrary, if the activity
is paused, the activity.onPause() event would violate the policy (i.e., the
activity would be paused without releasing the camera), and thus the enforcer
modifies the execution emitting the sequence of events camera.release()
activity.onPause(), which guarantees the satisfaction of the policy.

Enforcement strategies must be translated into software components (i.e.,
software enforcers) that enforce the specified strategies at runtime. This trans-
lation could be done manually, semi-automatically, or automatically. In all the
cases, the resulting components may include bugs, due to issues in the transla-
tion process and the extra code added by developers to obtain fully functional
components, and must be tested extensively before they can be deployed and
used.

To detect functional bugs, we developed Test4Enforcers [13], a tool that auto-
matically generates test cases that cover the functional specification used to gen-
erate the enforcers. In this paper, we describe how we extended Test4Enforcers

1 Activities are the entry point of interactions between users and apps https://
developer.android.com/guide/components/activities.

2 onPause() is a callback method that is invoked by the Android framework every
time an activity is paused.

https://developer.android.com/guide/components/activities
https://developer.android.com/guide/components/activities

Non-functional Testing of Runtime Enforcers in Android 323

s0start s1

camera.open()req?/camera.open()api!

activity.onPause()req?/activity.onPause()api!

camera.release()req?/camera.release()api!

activity.onPause()req?/camera.release()api!; activity.onPause()api!

Fig. 1. Enforcer for systematically releasing the camera when the activity is paused.

with the capability to detect performance bugs by collecting and analyzing non-
functional indicators.

3 Test4Enforcers

Test4Enforcers detects bugs by implementing a two-step detection strategy. The
first step, test case generation, generates test cases that cover the behavior of the
enforcer, considering both the case the enforcer has to modify the execution to
enforce the policy and the enforcer does not need to change the execution since
it already satisfies the policy. The second step, test case execution, executes the
generated test cases in the target environment both with and without the policy
enforcer by collecting the Key Performance Indicators (KPIs) that are analyzed
to detect any non-functional bug.

3.1 Test Case Generation

Test case generation consists of 3 activities, as shown in Fig. 2.

i) The Generation of the Test Sequences activity generates the test sequences
that must be covered to thoroughly test the behavior of the enforcer according
with the enforcement model.

ii) The GUI Ripping with Tracing activity runs a GUI Ripping process that
explores the GUI of the app under test while tracing the events that are in the
alphabet of the enforcement model. The output of this activity is an augmented
GUI model with states representing the GUI states visited during the ripping
process and the transitions representing the GUI actions that caused the state
change. The model is augmented since each transition is annotated with the
events in the alphabet of the enforcement model that have been executed as a
consequence of the state change.

iii) The Concrete Test Case Generation activity uses the augmented GUI
model to identify the sequences of UI interactions that exercise the test sequences
identified in the first step as the ones relevant to verify the behavior of the
enforcer. These UI interactions, enriched with program oracles, are the test cases

324 O. Riganelli et al.

that can be executed to validate the activity of the enforcer. In the following,
we briefly describe each activity, explaining how we extended the approach to
collect and verify the non-functional impact of the enforcer. More information
about Test4Enforcers can be found in [13].

Generation of the Test Sequences. In this activity, Test4Enforcers generates
the sequences of operations that must be exercised to validate an enforcer whose
behavior is captured by an enforcement model (we assume the model is correctly
specified and verified [33]). To this end, Test4Enforcers uses the Harmonized
State Identifiers (HSI) method [7,24], which is a variant of the W-method [8,
18,34] that does not require the model of the system to be completely specified.
In fact, not every combination of event is feasible in an enforcement model, for
instance due to the constraints of the environment (e.g., it is not possible to
pause an app that is already paused).

We use HSI since it works well to reveal implementation errors, such as
erroneous next-states, extra/missing states, etc. In a nutshell, HSI supports the
generation of tests that cover every transition in the model and that check the
identity of the state reached by each transition to ensure that the implementation
of the model is correct.

Fig. 2. Test case generation with Test4Enforcers.

HSI exploits the notions of transition cover, to cover all the transitions, and
separating families, to check the identity of the states reached by each transition.
Informally, a transition cover P for an automaton A is a set of input sequences,
including the empty sequence ε, that exercises all the transitions in A (every
transition must occur as the last element of at least an input sequence). A
separating family H includes an element Hi for each state si of the mode. The
element Hi is a set input sequences that can be executed to distinguish the state
si from the other states of the system (that is, the outputs observed by executing
the sequences of inputs in Hi from si are different from the ones produced by
any other state of the system).

The final set of test sequences are obtained by concatenating each element
tci in the transition coverage set P with every input sequence in the separating

Non-functional Testing of Runtime Enforcers in Android 325

family associated with the state reached after executing tci. Namely, if tci reaches
state si, the elements in the separating family Hi are concatenated to tci to
obtain the final set of test sequences (note that the prefix ti must be executed
multiple times, depending on the number of elements in Hi). This process may
generate redundant combinations that are filtered out from the final set of input
sequences to be exercised.

In our example, this process generates the following sequences to be covered
with test cases:

activity.onPause()req,
activity.onPause()req activity.onPause()req,
camera.open()req activity.onPause()req,
camera.open()req activity.onPause()req activity.onPause()req,
camera.open()req camera.release()req activity.onPause()req

GUI Ripping with Tracing . GUI Ripping is an exploration strategy that can
be used to explore the GUI of an app under test with the purpose of building a
state-based representation of its behavior [26]. GUI ripping generates the state-
based model of the app under test by systematically executing every possible
action on every state encountered during the exploration, until a given time or
action budget expires. Our implementation of Test4Enforcers targets Android
apps and uses DroidBot [19] configured to execute actions in a breadth-first
manner to build the state-based model.

A state s of the app under test is represented by its visible views s = {vi|i =
1 . . . n}. Each view vi is defined by a set of properties vi = {pi1, . . . , pik}, with
each property being a key-value pair. For instance, EditText is an Android view
for entering text and it has properties such as clickable, to specify if the view
reacts to click events, and text to store the text present in the view.

Operations that change the set of visible views (e.g., because an activity is
closed and another one is opened) or the properties of the views (e.g., because
some text is entered in an input field) change the state of the app. DroidBot
uses the following set of actions Aapp during GUI ripping: touch and long touch,
which execute a tap and a long tap on a clickable view, respectively; setText,
which enters a pre-defined text inside an editable view; keyEvent, which presses
a navigation button; and scroll, which scrolls the current window.

The state-based representation of the execution space produced by GUI Rip-
ping includes all the visited states and the executed actions. Test4Enforcers
enriches the model generated by GUI ripping with the information reported by
a tracer, which associates each transition with a sequence of methods belonging
to the enforcer’s alphabet, if executed during the transition between state. The
state-based model thus shows both the UI interactions that can be executed on
the app, their effect on the state of the app, and the internal events that are
activated when they are executed.

326 O. Riganelli et al.

Figure 3 shows an excerpt of the model obtained by running the ripping
activity on the fooCam app3 while considering the alphabet of the enforcer shown
in Fig. 1. For simplicity, we represent the states with the screenshots of the
app. The labels above transitions represent UI interactions, while the labels
below transitions, when present, represent events in the alphabet of the enforcer
collected by the monitor. For instance, when the KeyEvent(Back) UI interaction
is executed and the app moves from the state MainActivity to the state Launcher,
the sequence of internal events camera.release() activity.onPause() is observed.

Fig. 3. Excerpt of a model derived with GUI Ripping.

Concrete Test Case Generation . Generating concrete (i.e., executable) test
cases consists of finding the sequences of GUI interactions that cause the execu-
tion of the desired sequences of events belonging to the alphabet of the enforcer,
as identified by the HSI method. To this end, Test4Enforcers exploits both the
augmented model derived with GUI ripping and the sequences generated with
the HSI method. In particular, Test4Enforcers aims to generate a test suite that
contains a test case for each target sequence of events generated with the HSI
method. These tests are identified by searching for a path in the GUI model
that covers the sequence under consideration according to the annotations on
the transitions. For instance, if the sequence to be covered is camera.open()
camera.release() activity.onPause() and the GUI model is the one in Fig. 3, the
sequence TouchEvent(Allow) TouchEvent(Allow) KeyEvent(Back) is identified
as the concrete test to execute. In fact, the execution of the identified UI events
is expected to produce the desired internal computation (based on the labels on
the transitions).

If there is at least one path in the GUI model that covers the sequence under
consideration, the corresponding test case is generated. Since a path derived from
the model is not necessarily feasible, Test4Enforcers identifies the 10 shortest
paths that cover the target sequence and executes them sequentially until it is

3 fooCam is a HDR camera app that can take multiple shots with different exposure
settings. The app is available on the Google Play Store at the following link: https://
play.google.com/store/apps/details?id=net.phunehehe.foocam2&hl=EN.

https://play.google.com/store/apps/details?id=net.phunehehe.foocam2&hl=EN
https://play.google.com/store/apps/details?id=net.phunehehe.foocam2&hl=EN

Non-functional Testing of Runtime Enforcers in Android 327

able to exercise the target sequence. If the right test is found, a differential oracle
is embedded in the test case. A differential oracle is an oracle that determines the
correctness of a test execution by comparing two executions of the same test on
two different programs. In our case, the compared programs are the app with and
without the enforcer deployed. Test4Enforcers injects two different differential
oracles: the transparent-enforcement oracle and the actual-enforcement oracle.

A test is assigned with the transparent-enforcement oracle when the test
must produce the same result if executed on both the apps with and without the
enforcer in place. In other words, the exercised sequence does not require any
change performed by the enforcer. For instance, the sequence camera.open()
camera.release() activity.onPause() is not altered by the enforcer in Fig. 1 and
thus the transparent-enforcement oracle is used to determine the correctness of
the test that covers this sequence, that is, no behavioral differences must be
observed when this sequence is executed in both the app without and the app
with the enforcer.

A test is assigned with the actual-enforcement oracle when the test must pro-
duce a different outcome when executed on the app with and without the enforcer
in place. In other words, the tested sequence corresponds to a path that requires
the intervention of the enforcer. For instance, the sequence camera.open() activ-
ity.onPause() causes the intervention of the enforcer shown in Fig. 1, which out-
puts the extra event camera.release(). The test corresponding to that sequence
is thus labeled as producing the same result until the activity.onPause() event,
and a potentially different result afterwards, and the actual-enforcement oracle
is embedded in the test.

3.2 Test Execution

The test execution step aims to automatically identify, if present, any problem
introduced by the enforcer in the target app. The transparent-enforcement and
actual-enforcement oracles can detect functional misbehaviors. Here we describe
how Test4Enforcers can detect non-functional problems, performance degrada-
tions in particular, introduced by enforcers.

Test execution requires three inputs: 1) The enforcer implementation that
must be tested; 2) One or more apps to be used to concretely test the enforcer;
and 3) The automatic test suites generated in the previous step to exercise the
enforcer’s behavior.

The output is a list of KPIs whose values indicate performance degradation
when the enforcer is active. As shown in Fig. 4, this step performs two main
activities: i) Test Execution, which runs the test suite that exercises the enforcer
behaviour and collects the KPI values from executions with and without the
enforcer, and ii) Performance Comparison, which identifies performance degra-
dation by comparing the KPI values obtained with and without the enforcer.

Test Execution . This activity runs the automatic test suite and collects KPI
values about the performance of the running app. Specifically, we used profiler
tools [3,5] that come with Android Studio [6] and allow us to obtain KPIs on

328 O. Riganelli et al.

APP

Test Executor

Test Cases
Runtime
Enforcer

Test Executor

Performance
comparator

Performance
degradation

KPIsKPIs

Fig. 4. Detection of non-functional programs with Test4Enforcers.

CPU, memory, network, and energy usage. The test suite is executed ten times
to compute stable median values not affected by outliers for each KPI.

The execution of the test suite is performed by two instances of the Test
Executor components, which can be executed either sequentially or in parallel
(e.g., on a cloud infrastructure). One instance runs the test suite on the unaltered
version of the app under test, to collect KPIs about the app’s performance
when no enforcer is deployed. The collected values represent the baseline for the
detection of performance degradation. The other instance of the Test Executor
runs the test suite on the app enriched with the software enforcer, to collect data
about the potential degradation of the performance.

Performance Comparison . The performance comparison activity interprets
the results produced by Test Execution and reports any performance degrada-
tion. We currently support four non-functional performance characteristics [14]:
responsiveness, launch time, memory consumption, and energy consumption.
The reported performance degradations depend on some thresholds and param-
eters whose default values can be changed by users according to the specific
context. We report below the values we used in our evaluation.

Responsiveness refers to the ability of a mobile app to respond to user itera-
tions in a timely manner. A highly responsive app improvers the user satisfaction,
since users prefer to not wait for too long when interacting with an app. On the
other hand, an app with poor responsiveness can have a negative impact on user
experience and its success on the market. Consequently, the enforcer should not
negatively impact responsiveness.

In the case of Android apps, response times of less than 200 ms is known
to not negatively impact user satisfaction [37], while delays that last almost a

Non-functional Testing of Runtime Enforcers in Android 329

second do not significantly affect users but can be recognized by users, while
longer delays have a clearly negative impact on the user experience.

By measuring the CPU usage time in event handler methods, we can measure
the response time to GUI events. If any UI interaction requires more than 200
ms [37] to be served only when the enforcer is active, a poor responsiveness
caused by the enforcer is reported to the user.

Launch time is another KPI analyzed by Test4Enforcers. It represents the
amount of time necessary to boot the app. During start-up, the app initializes
all its components, including initializing objects, creating and initializing activ-
ities, inflating the layout, and drawing the app for the first time. This is the
first performance characteristic that a user is exposed to. Since from the first
usage, users normally expect a short launch time, otherwise, the experience and
satisfaction might be negative. The launch time is considered to be excessive
when it exceeds 5 s, as reported in the Android documentation [2].

To detect any degradation of this performance characteristic, Test4Enforcers
measures the time the app needs to produce the first frame. If the value of this
KPI exceeds 5 s only when the enforcer is active then a degradation of the startup
time caused by the enforcer is reported to developers.

Memory consumption is another important performance characteristic for
mobile apps as these are running on devices with limited resources. For instance,
a memory leakage can lead to performance degradation due to the frequent
triggering of the garbage collection process. These slowdowns can then evolve
into freezes and even app crashes. In order to be able to detect a degradation
in memory consumption, we analyze KPIs that can give information regard-
ing the memory usage and report a degradation when the execution with the
enforcer introduces an overhead of more than 5% compared to the baseline with-
out enforcer.

Power consumption is a crucial characteristic of mobile systems. Running an
enforcer with abnormal power consumption can drastically reduce battery life,
affecting the user experience. Therefore, it is very important to solve problems of
energy inefficiencies introduced by enforcers. To detect energy hotspots and bugs
introduced by enforcers, Test4Enforcers collects and analyzes KPI values regard-
ing battery usage, and reports a degradation when execution with the enforcer
introduces more than 5% overhead compared to baseline without enforcers.

4 Evaluation

We evaluated the capability of Test4Enforcers to capture performance degrada-
tions introduced by faulty enforcers. In particular, we addressed the following
research question: Can Test4Enforcers detect actual performance bugs?

To investigate this research question, we selected fooCam as the app under
test. It is a camera app that can automatically take multiple successive shots
with different exposure settings. FooCam has been already used in previous
works about API misuses [23,31,32].

330 O. Riganelli et al.

The enforcer used to validate the effectiveness of Test4Enforcers in detecting
performance bugs is an implementation of the enforcement model shown in Fig. 1
that has been tested to have no functional bugs [13].

To evaluate the performance of Test4Enforces, we injected bugs that can
cause performance degradation into the source code of the enforcer. In particu-
lar, we injected 4 bugs that affect the main non-functional performance charac-
teristics of mobile apps [14]:

– A responsiveness bug that introduces a delay in reacting to GUI events.
– An app startup bug that delays the loading of the app’s initial screen.
– A CPU hog bug that executes some CPU intensive tasks that significantly

increase memory consumption.
– A memory leak bug that executes tasks that allocate memory without releas-

ing it.

Figure 5 shows the boxplots that compare the collected values of the KPIs,
one for each performance characteristic validated by Test4Enforcers. The three
boxes in each plot shows the distribution of values obtained when the app is
executed without the enforcer (label w/o enforcer), with the correct enforcer
(label with enforcer) and with the faulty enforcer (label with faulty enforcer).
Each box represents a population of 10 samples obtained by running the same
test case 10 times.

Figure 5a shows the values obtained for the Estimated Power Use KPI, which
calculates the app’s power consumption. We can notice that the enforcer has
a small impact on energy consumption, which confirms the suitability of the
enforcement technology on the power perspective. The faulty enforcer instead
introduces the battery usage by more than 14%, which can be detected by
Test4Enforcers when comparing the collected KPIs.

Figure 5b shows the values of the KPI “Total Propotional Set Size” (PSS),
which represents the RAM used by the app. Test4Enforcers can detect the prob-
lem introduced by the faulty enforcer since memory consumption is increased by
more than 5%, while it is not the case when the correct enforcer is introduced. In
this case, we could notice a difference in memory consumption since the enforcer
has to collect and store information about the status of the system. However,
the memory overhead is below 5%.

Figures 5c and 5d report the collected values for launch time and responsive-
ness. The red lines in these plots represent the threshold values (5 s and 200
milliseconds) that should not be passed, as reported in the literature and dis-
cussed in the previous section. Results show that the correct enforcers introduce
a marginal overhead in launch time and responsiveness, while the faulty enforcers
introduce a performance degradation that could be automatically detected.

In conclusion, Test4enforcers was always able to stimulate the behavior of the
enforcers and correctly evaluates their performance, helping developers timely
identifying performance bugs.

Non-functional Testing of Runtime Enforcers in Android 331

(a) Estimated Power Use (b) Total Proportional Set Size

(c) Time to Initial Display (d) GUI Event Handler Execution Time

Fig. 5. Comparison of KPIs in executions without enforcer, with enforcer, and with
faulty enforcer. (Color figure online)

5 Related Work

Runtime enforcement is a powerful technique that enforces the behaviour spec-
ified by a set of correctness policies on a running system. In particular, run-
time enforcement strategies modify executions assuring that policies are satis-
fied despite the potentially incorrect behavior of the monitored software [12,15].
Runtime enforcement has been applied in multiple domains, including mobile
apps [10,11,29,31] operating systems [35], web-based applications [25], control
systems [17], and cloud systems [9]. Among these many domains, in this paper
we focus on the Android environment, which has been already considered in
the work by Falcone et al. [11], who studied how to enforce privacy policies by
detecting and disabling suspicious method calls, and more recently by Riganelli
et al. [30–32], who studied how to augment classic Android libraries with proac-
tive mechanisms that can automatically suppress and insert API calls to enforce
resource usage policies.

While runtime enforcement strategies focus on the definition of models and
strategies to specify and implement the enforcers, Test4Enforcers is complemen-
tal to this effort, since it derives the test cases that should be executed on apps
with and without the enforcers to verify the correctness and performance of the

332 O. Riganelli et al.

implemented enforcer. In particular, performance is a crucial issue especially in
mobile systems that have limited resources.

Performance testing refers to the execution of test cases to evaluate the
behavior of an application with respect to performance aspects, such as respon-
siveness or efficiency [27]. Despite the large number of approches aimed at
automating functional testing in mobile apps [16], studies highlight the lack
of approaches that include performance testing [22,28]. Developers depend on
manual testing and analysis to detect performance bugs [21] by using tools for
profiling and debugging their applications [4,14]. Test4Enforcers automates the
performance testing of runtime enforcers in mobile devices by automatically
generating and executing test cases that interact with an app’s GUI in order to
verify both the behavior and performance of an enforcer.

Verification and Validation of runtime enforcement concerns with checking
that the software enforcer is indeed delivering the intended behavior. In fact,
although the enforcer is meant to correct the behavior of a monitored software,
the enforcer itself might still be wrong and its activity might compromise the
correctness of the system rather than improving it. A recent work in this direction
is the one by Riganelli et al. [33] that provides a way to verify if the activity
of multiple enforcers may interfere. The proposed analysis is however entirely
based on the models and the many problems that might be introduced by the
actual software enforcers cannot be revealed with that approach. Test4Enforcers
provides a complemental capability, that is, it can test if the implementation of
the enforcer behaves as expected once injected in the target system.

6 Conclusion and Future Work

Software enforcers can be effectively used to modify executions to ultimately
guarantee that correctness policies are satisfied. Since software enforcers are
active in the operational environment (e.g., in the end user environment), it is
compulsory to use dependable enforcers that cannot affect negatively the target
app. It is thus important to extensively validate enforcers before they can be
used.

In this paper we presented Test4Enforcers, which can be used to validate
the correctness of software enforcers on both a functional and non-functional
perspective. Early results show that the generated test cases can feasibly detect
problems, preventing the distribution of faulty enforcers.

Future work mainly concerns with experimenting Test4Enforcers with a
larger set of apps and enforcers, and collecting additional evidence about the
effectiveness of the approach.

Acknowledgements. We would like to thanks Alice Hoa Galli for her help with the
experiments.

Non-functional Testing of Runtime Enforcers in Android 333

References

1. Android Docs: Camera API (2020). https://developer.android.com/guide/topics/
media/camera

2. Android Docs: App startup time (2022). https://developer.android.com/topic/
performance/vitals/launch-time

3. Android Docs: dumpsys (2022). https://developer.android.com/studio/command-
line/dumpsys

4. Android Docs: Profile your app performance (2022). https://developer.android.
com/studio/profile

5. Android Docs: The Android Profiler (2022). https://developer.android.com/
studio/profile/android-profiler

6. Android Docs: The Android Studio. https://developer.android.com/studio (2022)
7. Belli, F., Beyazıt, M., Endo, A.T., Mathur, A., Simao, A.: Fault domain-based

testing in imperfect situations: a heuristic approach and case studies. Software
Qual. J. 23(3), 423–452 (2015)

8. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 3, 178–187 (1978)

9. Dai, Y., Xiang, Y., Zhang, G.: Self-healing and hybrid diagnosis in cloud comput-
ing. In: Proceedings of the International Conference on Cloud Computing (Cloud-
Com) (2009)

10. Daian, P., Falcone, Y., Meredith, P.O., Serbanuta, T., Shiriashi, S., Iwai, A., Rosu,
G.: Rv-android: Efficient parametric android runtime verification, a brief tuto-
rial. In: Proceedings of the International Conference on Runtime Verification (RV)
(2015)

11. Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for
android applications with RV-Droid. In: Proceedings of the International Con-
ference on Runtime Verification (RV) (2012)

12. Falcone, Y.: You should better enforce than verify. In: Proceedings of the Interna-
tional Conference on Runtime Verification (RV) (2010)

13. Guzman, M., Riganelli, O., Micucci, D., Mariani, L.: Test4enforcers: Test case
generation for software enforcers. In: Proceedings of the International Conference
on Runtime Verification (RV) (2020)

14. Hort, M., Kechagia, M., Sarro, F., Harman, M.: A survey of performance optimiza-
tion for mobile applications. IEEE Trans. Softw. Eng. (2021)

15. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime moni-
tors? a survey. Comput. Sci. Rev. 6(1), 27–45 (2012)

16. Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T.F., Klein, J.: Automated testing of
android apps: a systematic literature review. IEEE Trans. Reliability (2019)

17. Lanotte, R., Merro, M., Munteanu, A.: Runtime enforcement for control system
security. In: Proceedings of the Computer Security Foundations Symposium (CSF)
(2020)

18. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996)

19. Li, Y., Ziyue, Y., Yao, G., Xiangqun, C.: Droidbot: a lightweight ui-guided test
input generator for android. In: Proceedings of the International Conference on
Software Engineering Companion (ICSE) (2017)

20. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4, 2–16 (2005)

https://developer.android.com/guide/topics/media/camera
https://developer.android.com/guide/topics/media/camera
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/studio/command-line/dumpsys
https://developer.android.com/studio/command-line/dumpsys
https://developer.android.com/studio/profile
https://developer.android.com/studio/profile
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio

334 O. Riganelli et al.

21. Linares-Vasquez, M., Vendome, C., Luo, Q., Poshyvanyk, D.: How developers
detect and fix performance bottlenecks in android apps. In: Proceedings of the
International Conference on Software Maintenance and Evolution (ICSME) (2015)

22. Linares-Vásquez, M., Moran, K., Poshyvanyk, D.: Continuous, evolutionary and
large-scale: a new perspective for automated mobile app testing. In: Proceedings
of the International Conference on Software Maintenance and Evolution (ICSME)
(2017)

23. Liu, J., Wu, T., Yan, J., Zhang, J.: Fixing resource leaks in android apps with
light-weight static analysis and low-overhead instrumentation. In: Proceedings of
the International Symposium on Software Reliability Engineering (ISSRE) (2016)

24. Luo, G., Petrenko, A., Bochmann, G.V.: Selecting test sequences for partially-
specified nondeterministic finite state machines. In: Proceedings of the IFIP WG
6.1 International Workshop on Protocol Text Systems (1995)

25. Magalhães, J.a.P., Silva, L.M.: Shõwa: A self-healing framework for web-based
applications. ACM Trans. Autonomous Adaptive Syst. 10(1), 4:1–4:28 (2015)

26. Memon, A.M., Banerjee, I., Nguyen, B.N., Robbins, B.: The first decade of gui rip-
ping: Extensions, applications, and broader impacts. In: Proceedings of the Work-
ing Conference on Reverse Engineering (WCRE) (2013)

27. Molyneaux, I.: The art of application performance testing: from strategy to tools.
“O’Reilly Media, Inc.” (2014)

28. Muccini, H., Di Francesco, A., Esposito, P.: Software testing of mobile applica-
tions: challenges and future research directions. In: Proceedings of the International
Workshop on Automation of Software Test (AST) (2012)

29. Riganelli, O., Micucci, D., Mariani, L.: Healing data loss problems in android
apps. In: Proceedings of the International Workshop on Software Faults (IWSF),
co-located with the International Symposium on Software Reliability Engineering
(ISSRE) (2016)

30. Riganelli, O., Micucci, D., Mariani, L.: Increasing the reusability of enforcers with
lifecycle events. In: Proceedings of the International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISOLA) (2018)

31. Riganelli, O., Micucci, D., Mariani, L.: Policy enforcement with proactive libraries.
In: Proceedings of the IEEE/ACM International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS) (2017)

32. Riganelli, O., Micucci, D., Mariani, L.: Controlling interactions with libraries in
android apps through runtime enforcement. ACM Trans. Autonomous Adaptive
Syst. 14(2), 8:1–8:29 (2019)

33. Riganelli, O., Micucci, D., Mariani, L., Falcone, Y.: Verifying policy enforcers. In:
Proceedings of the International Conference on Runtime Verification (RV) (2017)

34. Sidhu, D.P., Leung, T.K.: Formal methods for protocol testing: a detailed study.
IEEE Trans. Software Eng. 15(4), 413–426 (1989)

35. Sidiroglou, S., Laadan, O., Perez, C., Viennot, N., Nieh, J., Keromytis, A.D.:
ASSURE: automatic software self-healing using rescue points. In: Proceedings
of the International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (2009)

36. Statista: Number of apps available in leading app stores as of 2022
(2022). https://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/

37. Yang, S., Yan, D., Rountev, A.: Testing for poor responsiveness in android applica-
tions. In: Proceedings of the International Workshop on the Engineering of Mobile-
Enabled Systems (MOBS) (2013)

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

Automata Learning Meets Shielding

Martin Tappler1,2, Stefan Pranger1, Bettina Könighofer1(B), Edi Muškardin2,1,
Roderick Bloem1,2, and Kim Larsen3

1 Graz University of Technology, Graz, Austria
martin.tappler@ist.tugraz.at,

{stefan.pranger,roderick.bloem,bettina.koenighofer}@iaik.tugraz.at
2 TU Graz-SAL DES Lab, Silicon Austria Labs, Graz, Austria

edi.muskardin@silicon-austria.com
3 Aalborg University, Aalborg, Denmark

kgl@cs.aau.dk

Abstract. Safety is still one of the major research challenges in rein-
forcement learning (RL). In this paper, we address the problem of how to
avoid safety violations of RL agents during exploration in probabilistic
and partially unknown environments. Our approach combines automata
learning for Markov Decision Processes (MDPs) and shield synthesis in
an iterative approach. Initially, the MDP representing the environment is
unknown. The agent starts exploring the environment and collects traces.
From the collected traces, we passively learn MDPs that abstractly rep-
resent the safety-relevant aspects of the environment. Given a learned
MDP and a safety specification, we construct a shield. For each state-
action pair within a learned MDP, the shield computes exact probabilities
on how likely it is that executing the action results in violating the spec-
ification from the current state within the next k steps. After the shield
is constructed, the shield is used during runtime and blocks any actions
that induce a too large risk from the agent. The shielded agent continues
to explore the environment and collects new data on the environment.
Iteratively, we use the collected data to learn new MDPs with higher
accuracy, resulting in turn in shields able to prevent more safety viola-
tions. We implemented our approach and present a detailed case study
of a Q-learning agent exploring slippery Gridworlds. In our experiments,
we show that as the agent explores more and more of the environment
during training, the improved learned models lead to shields that are
able to prevent many safety violations.

Keywords: Automata learning · Shielding · Markov Decision
Processes

1 Introduction

Nowadays systems are increasingly autonomous and make extensive use of
machine learning. The tremendous potential of autonomous, AI-based systems

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 335–359, 2022.
https://doi.org/10.1007/978-3-031-19849-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_20

336 M. Tappler et al.

is contrasted by the growing concerns about their safety [11]. Their huge com-
plexity makes it infeasible to formally prove their correctness or to cover the
entire input space of a system with test cases. An especially challenging problem
is ensuring safety during the learning process [21]. In model-free reinforcement
learning (RL) [34], an agent aims to learn a task through trial-and-error via
interactions with an unknown environment. While the model-free RL approach
is very general as well as scalable and has successfully been applied in various
challenging application domains [20], the learning agent needs to explore unsafe
behavior in order to learn that it is unsafe.

Shielding [4] is a runtime enforcement technique that applies correct-by-
construction methods to automatically compute shields from a given safety
temporal logic specification [5] and a model that captures all safety-relevant
dynamics of the environment. Shields have been categorized into post-shields
and pre-shields. Post-shields monitor the actions selected by the agent and over-
write any unsafe action with a safe one. Pre-shields are implemented before the
agent and block, at every time step, unsafe actions from the agent (also referred
to as action masking). Thus, the agent can only choose from the set of safe
actions. In this paper, we use pre-shielding since this setting allows the agent
maximal freedom in exploring the environment.

In the non-probabilistic setting [6], shields guarantee that the safety speci-
fication will never be violated, working under the assumption that a complete
and faithful environmental model of the safety-relevant dynamics is available.
Shielding in the probabilistic setting [19], which is the standard setting in RL,
assumes to have an environmental model in form of a Markov decision process
(MDP) available. Given such an MDP M and a safety specification ϕ, the shield
computes how likely it is that executing an action from the current state will
result in violating ϕ within a given finite horizon. At any state s, an actions a is
called unsafe if executing a incurs a probability of violating ϕ within the next
k steps greater than a relative threshold λ w.r.t. the optimal safety probability
possible in s. The resulting shield prohibits safety violations that can be pre-
vented by planning ahead k steps into the future. Shielding requires a complete
and accurate environmental model, but it is rarely the case that such a model is
available. However some data about the environment often exists, for example,
a RL agent collects data by exploring the environment.

Automata learning [1,17,38] is a well-established technique to automatically
learn automata models of black-box systems from observed data. The data used
for automata learning is usually given in the form of observation traces, which
are sequences of observations of the environment’s state and actions chosen by
the agent. Passive MDP learning [23,24] is able to learn MDP models from a
multiset of sampled observation traces. Thus, the learned MDP depends on the
given sampled traces.

Our Approach. In this paper, we consider the setting of RL in an initially
unknown environment. The goal is to reduce safety violations during the explo-
ration phase of the RL-agent by combining passive MDP learning with proba-
bilistic shielding in an iterative approach. Initially, the MDP representing the

Automata Learning Meets Shielding 337

environment is unknown. During runtime, the agent collects observation traces
while exploring the environment. After having a large enough initial multiset
of traces, we first transform the sequences of observed states in the traces into
observations, which include only the safety-relevant information, using a suitable
abstraction function. The abstract traces are then used to learn a first estimate
of the safety-relevant MDP. From this initial MDP and a given safety specifica-
tion, we construct an initial shield. After the shield is constructed, the agent is
augmented with the shield, i.e., the shield blocks unsafe actions from the agent
and the agent can pick from the set of safe actions. The newly collected traces
are added to the multiset of all traces. After collecting a predefined number of
new traces, our approach learns a new safety-relevant MDP from the multiset
of all collected traces and creates a new shield.

At every iteration, the shield is built from an MDP that approaches more
and more the real MDP underlying the environment modulo the abstraction
to safety-relevant observations. Thus, the resulting shields are getting more
informed and prevent the agent from entering more safety-critical situations.

Outline. The rest of the paper is structured as follows. We present the related
work in Sect. 2 and discuss the relevant foundations in Sect. 3. We present our
approach for safe learning via shielding and automata learning in Sect. 4. We
present our experimental results in Sect. 5 and conclude in Sect. 6.

2 Related Work

We combine automata learning and probabilistic verification to create safety
shields in our approach. Early work on such combinations has been performed
by Cobleigh et al. [10], who propose to learn assumptions for compositional
reasoning. More closely related to our work is black box checking by Peled et
al. [31], where they present a technique for model checking of deterministic black-
box systems. Learning-based testing by Meinke and Sindhu [26] follows a similar
approach of incremental learning of hypothesis models and model checking of
these hypotheses. In previous work [3], we proposed a technique inspired by
black box checking for probabilistic reachability checking of stochastic black-
box systems. As in this paper, we applied IOAlergia [23,24] to learn MDPs.
Rather than computing safety shields from learned MDPs, we computed policies
to satisfy reachability objectives. We also proposed a technique for L∗-based
learning of MDP [35], which may serve as a basis for RL and shielding. In this
paper, we combine stochastic learning and abstraction with respect to safety-
relevant features to improve RL. Nouri et al. [30] also apply abstraction on
traces with respect to properties of the system under consideration in order to
learn abstract probabilistic models. In contrast to us, they aim to improve the
runtime of statistical model-checking and they learn Markov chains that are not
controllable via inputs.

Recently, various authors have proposed combinations of automata learning
and reinforcement learning [13,14,18,42]. By learning finite-state models, such
as so-called reward machines, they provide additional high-level structure for

338 M. Tappler et al.

RL. This enables RL when rewards are non-Markovian, i.e., the gain depends
not only on the current state and action, but on the path taken by the agent.
DeepSynth [16] follows a similar approach to improve RL with sparse rewards.
Related to these approaches, Muskardin et al. [29] propose a combination of
reinforcement learning and automata learning to handle partial observability,
i.e., non-Markovian environments.

Fu and Topcu [12] presented an approach for a learning-based synthesis of
policies for MDPs w.r.t. temporal logic specifications that are probably approx-
imately correct. In contrast to us, they assume the topology of the MDP to be
known, so that only transition probabilities need to be learned.

Alshiekh et al. [4] proposed shielding for RL. Jansen et al. [19] proposed
the first method to compute safety shields using a bounded horizon in MDPs.
Giacobbe et al. [15] applied the same technique on 31 Atari 2600 games. The
approach was further extended by Könighofer et al. [22]. Instead of analyzing the
safety of all state-action pairs ahead of time, the approach uses the time between
two successive decisions of an agent to analyze the safety of actions on the fly.
Pranger et al. [33] proposed an iterative approach to shielding that updates the
transition probabilities of the MDP based on observed behavior and computes
new shields in regular intervals. To construct our shields, we use the approach
proposed by Jansen et al. [19]. Similarly to Pranger et al. [33], we iteratively
construct new shields, but do not rely on a known topology of the MDP.

As in our approach, Waga et al. [40] use automata learning to dynamically
construct shields during runtime. The main difference to our work is that they
assume that the environment behaves deterministically, whereas we allow prob-
abilistic environmental behavior which is the standard assumption in reinforce-
ment learning.

3 Preliminaries

Basics. Given a set E, we denote by Dist(E) the set of probability distributions
over E, i.e. for all μ in Dist(E) we have μ : E → [0, 1] such that

∑
e∈E μ(e) = 1.

In Sect. 4, we apply two randomized functions coinFlip and randSel. The function
coinFlip is defined by P(coinFlip(p) = �) = p and P(coinFlip(p) = ⊥) = 1 − p
for p ∈ [0, 1]. The function randSel samples an element e from a given set E
according to uniform distribution, i.e., ∀e ∈ E : P(randSel(E) = e) = 1

|E| .

3.1 Markov Decision Processes and Reinforcement Learning

Definition 1. A Markov decision process (MDP) is a tuple 〈S, s0,A,P〉
where S is a finite set of states, s0 ∈ S is the initial state, A is a finite set of
actions, and P : S × A → Dist(S) is the probabilistic transition function.

For all s ∈ S the available actions are A(s) = {a ∈ A | ∃s′,P(s, a)(s′)
= 0}
and we assume |A(s)| ≥ 1. We associate an MDP M with a reward function
R : S × A × S → R.

Automata Learning Meets Shielding 339

Traces. A finite path ρ through an MDP is an alternating sequence of states and
actions, i.e. ρ = s0a1s1 · · · an−1sn−1ansn ∈ s0 × (A×S)∗. The set of all paths of
an MDP M is denoted by PathM. We refer to a path augmented with the gained
reward as a reward trace τ = s0a1r1s1 · · · sn−1anrnsn with ri = R(si−1, ai, si).
In the remainder of the paper, we treat reward traces also as sequences of triples
(ai, ri, si) comprising an action, the gained reward, and the reached state.

Policies. A memoryless policy defines for every state in an MDP a probability
distribution over actions. Given an MDP M = 〈S,A, s0,P〉, a memoryless policy
for M is a function σ : S → Dist(A). A memoryless deterministic policy σ : S →
A is a function over action given states.

Reinforcement Learning. An RL agent learns a task through trial-and-error
via interactions with an unknown environment. The agent takes actions and
receives feedback in form from observations on the state of the environment and
rewards. The goal of the agent is to maximize the expected accumulated reward.

Typically, the environment is modeled as an MDP M = 〈S, s0,A,P〉 with
associated reward function R. At each step t of a training episode, the agent
receives an observation st. It then chooses an action at+1 ∈ A. The environment
then moves to a state st+1 with probability P(st, at+1)(st+1). The reward is
determined with rt+1 = R(st, at+1, st+1). We refer to negative rewards rt < 0
as punishments. The return ret = Σ∞

t=1γ
trt is the cumulative future discounted

reward, where rt is the immediate reward at time step t, and γ ∈ [0, 1] is the
discount factor that controls the influence of future rewards. The objective of the
agent is to learn an optimal policy σ� : S → A that maximizes the expectation
of the return, i.e. maxσ∈Σ Eσ(ret). A training episode ends after a maximum
episode length of tmax steps.

Q-learning is one of the most established RL algorithms. The Q-function for
policy σ is defined as the expected discounted future reward gained by taking an
action a from a state s and following policy σ thereafter. Tabular Q-learning [41]
uses the experience (st, at, rt, st+1) to learn the Q-function Q�(s, a) correspond-
ing to an optimal policy σ�(s, a). The update rule is defined as

Q(si, ai+1) ← (1 − α) · Q(si, ai+1) + α(ri+1 + γ · max
a∈A

(Q(si+1, a))),

where α is the learning rate and γ is the discount factor.

Definition 2. A deterministic labeled MDP ML = 〈S, s0,A,P, L〉 is an
MDP with a labeling function L : S → O mapping states to observations from a
finite set O. The transition function P must satisfy the following determinism
property: ∀s ∈ S,∀a ∈ A : δ(s, a)(s′) > 0 ∧ δ(s, a)(s′′) > 0 implies s′ = s′′ or
L(s′)
= L(s′′).

In this paper, we use passive automata learning to compute abstract MDPs
of the environment in the form of deterministic labeled MDPs. These MDPs
represent safety-related information only and will not be used for RL but for
shielding. Therefore, there is no need to use rewards in combination with deter-
ministic labeled MDPs.

340 M. Tappler et al.

Given a path ρ in a deterministic labeled MDP ML. Applying the label-
ing function on all states of a path ρ results in a so called observation trace
L(ρ) = L(s0)a1L(s1) · · · an−1L(sn−1)anL(sn). Note that due to determinism, an
observation trace L(ρ) uniquely identifies the corresponding path ρ.

3.2 Learning of MDPs

We learn deterministic labelled Markov decision processes (MDPs) via IOAler-
gia [23,24], which is an adaptation of Alergia [8]. IOAlergia takes a multi-
set To of observation traces as input and first constructs a tree representing the
observation traces, by merging common prefixes. The tree has edges labeled with
actions and nodes that are labeled with observations. Each edge corresponds to
a trace prefix with the label sequence that is visited by traversing the tree from
the root to the edge. Additionally, edges are associated with frequencies that
denote how many traces in To have the trace corresponding to an edge as a
prefix. Normalizing these frequencies would already yield tree-shaped MDP.

For generalization, the tree is transformed into an MDP with cycles through
an iterated merging of nodes. Two nodes are merged if they are compatible, i.e.,
their future behavior is sufficiently similar. For this purpose, we check whether
the observations in the sub-trees originating in the nodes are not statistically
different. The parameter εAlergia controls the significance level of the applied
statistical tests. If a node is not compatible with any other potential node, it is
promoted to an MDP state. Once all potential pairs of nodes have been checked,
the final deterministic labeled MDP is created by normalizing the frequencies
on the edges to yield probability distributions for the transition function P. In
this paper, we refer to this construction as MDP learning and we denote calls to
IOAlergia by M = IOAlergia(To, εAlergia), where M is the deterministic
labeled MDP learned from the multiset of observation traces To.

3.3 Shielding in MDPs

Specifications and Model Checking. We consider specifications given in the
safety fragment of linear temporal logic (LTL) [5]. For an MDP M and a safety
specification ϕ, probabilistic model checking employs linear programming or
value iteration to compute the probabilities of all states and actions of the M to
satisfy an ϕ. Specifically, the probabilities ηmax

ϕ,M : S×N → [0, 1] or ηmin
ϕ,M : S×N →

[0, 1] give for all states the maximal (or minimal) probability over all possible
policies to satisfy ϕ, within a given number of steps. For instance, a safety
property ϕ = G(¬Sunsafe) could encode that a set of unsafe states Sunsafe ∈ S
must not be entered. Then ηmax

ϕ,M(s, h) is the maximal probability to not visit
Sunsafe from state s ∈ S in the next h steps.

Shield Construction. Given an MDP M, a safety specification ϕ, and a finite
horizon h, the task of the shield is to limit the probability to violate the safety
specification ϕ within the next h steps.

Automata Learning Meets Shielding 341

For any state s ∈ S and action a ∈ A(s), the safety-value valϕ,M(s, a, h) is
computed which gives the maximal probability to stay safe from s after executing
a, i.e.,

valϕ,M(s, a, h) = ηmax
ϕ,M(P(s, a), h − 1).

The optimal safety-value optvalϕ,M(s) of s is the maximal safety value of any
action a in state s within the next h − 1 steps, i.e.,

optvalϕ,M(s, h) = max
a∈A(s)

valϕ,M(s, a, h) = ηmax
ϕ,M(P(s, a), h − 1).

An action a in s is unsafe if the safety value of a is lower than the optimal
safety-value by some threshold λsh, i.e., an action a in state s is unsafe iff

valϕ,M(s, a, h) < λsh · optvalϕ,M(s, h).

We refer to actions that are not unsafe as safe actions.
The task of the shield is to block any unsafe action from the agent, thereby

restricting the set of available actions A(s) to the set of safe actions. A shield is
a relation π : S → 2A(s) allowing at least one action for any state.

4 Learned Shields for Safe RL

In this section, we present our iterative approach for safe reinforcement learning
via automata learning and shielding. We first discuss the setting in which the RL
agents operates and give our problem statement. Then we give an overview of
our approach. Finally, we discuss the individual steps of our approach in detail.

4.1 Setting and Problem Statement

Setting. We consider an RL agent acting in an unknown environment that can
be modeled as an MDP M = 〈S, s0,A,P〉 with an associated reward function
R : S×A×S → R. However, since the environment is unknown at the beginning
of the learning phase, the agent has no knowledge about the structure of M.

We assume that the safety critical properties are given in form of an LTL
formula ϕ. Without knowledge about the safety-relevant dynamics of the envi-
ronment, it is not possible to prohibit violating ϕ while the RL agent is exploring
the environment.

During the exploration phase of the RL agent, a multiset of reward traces
is collected. We assume to have an observation function Z : S → O given that
maps any state s ∈ S states to a safety-relevant observation o ∈ O.

Problem Statement. Consider the setting as discussed above. The goal of our
approach is to use the available data from the environment in form of collected
traces and the given safety specification to prevent safety violations if possible.

342 M. Tappler et al.

interact
with

environment

(1, 1) · r, (2, 1), 0 · r, (3, 1),−1 · · ·u, (4, 5), 0
(1, 1) · r, (2, 1), 0 · u, (2, 2), 0 · · · r, (5, 3), 10
(1, 1) · u, (1, 2), 0 · u, (1, 3), 1 · · · d, (1, 1), 0

collect
traces

(S,A) Q(s,a)
(1,1),right 2.3
(4,3),left 0.5
(5,2),right 9.6

.

Q-Table

q0 q1

q2

{floor} {pit-below}

{pit}

right : 1

left : 0.1

down : 1

abstract & learn

estimate Q

σ

compute
shield

derive
policy

block
unsafe
actions

a safe and ε-greedy policy

Fig. 1. Iterative safe reinforcement learning via learned shields.

4.2 Overview of Iterative Safe RL via Learned Shields

Our approach combines automata learning, shielding, and reinforcement learning
in an iterative manner. Our approach performs niter iterations. At the first
iteration with i = 1, we start from an empty multiset of reward traces T = ∅,
an initial learned M 0 with a single state and a self-loop for any action, and an
initial shield π 0 that allows at every step any action.

At each iteration i of n iterations, our approach works as follows:

Step 1 - Exploration. The RL agent explores the environment to learn the
optimal policy. At each iteration i, the agent trains for a number of nepisodes.
The agent is augmented by a shield π i−1 that restricts its available actions.
The learned MDP M i−1 is simulated in parallel during the exploration.
Each training episode yields a reward trace τ that is added to the multiset of
all collected traces T , i.e., T ′ = {τ} � T .

Step 2 - MDP Learning. After executing nepisodes episodes, we learn a deter-
ministic labeled MDP M i from T .

Step 3 - Shield Construction. Using M i, a given specification ϕ, and a
finite horizon h, we compute a shield π i and continue in Step 1.

Automata Learning Meets Shielding 343

Figure 1 provides a graphical overview of the proposed approach. Based on
this figure, we discuss the individual steps of our approach in detail. For each
iteration 1 ≤ i ≤ niter our approach performs the following steps.

Step 1 - Exploration. The agent interacts with an unknown stochastic
environment M = 〈S, s0,A,P〉, depicted by a maze. The agent picks actions
that are considered to be safe by the current shield and receives observations of
the state of the environment and rewards. At iteration i, we have given the set of
collected reward traces T , the learned MDP M i−1 = 〈S , s 0,A ,P , L〉, and
the current shield π i−1. Each episode resets the environment and starts in a
fixed initial state s0 ∈ S for M and s 0 ∈ S for M . At every step t, the agent
observes st ∈ S. Based on the observed label Z(st), the learned MDP M i−1

moves to state s t. We give in Sect. 4.3 the details on how to simulate M i.
The shield determines the set of safe actions A = π i−1(s t) and sends it

to the agent. The agent selects a next action at+1 ∈ A (s). The environment
executes at+1 and sends the agent a reward rt+1 and state observation st+1.
Based on (st, at+1, rt+1, st+1), the agent performs a policy update. Figure 1 rep-
resents the learned Q-function of the RL agent as a Q-table, from which we
derive an ε-greedy policy for training. Please note that our approach is general
and applicable to deep Q-learning as well as to tabular Q-learning.

A training episode ends after a maximal number of tmax steps. It may end
earlier in case of violating safety or performing the task that needs to be learned
(e.g., reaching a certain goal state). Each episode yields a reward trace τ =
s0a1r1s1 · · · sn−1anrnsn that is added to the multiset T of all collected traces,
i.e., T ′ = {τ} � T .

Step 2 - MDP Learning. After nepisodes training episodes, resulting in
a new reward trace per episode, we learn a new model of the environment
dynamics. Given the multiset of reward traces T observed while exploring the
environment, we abstract away all information in the traces that is not rel-
evant to safety. For each reward trace τ = s0a1r1s1 · · · sn−1anrnsn ∈ T , we
first discard the rewards to obtain a path ρ = s0a1s1 · · · sn−1ansn and second
apply the abstraction function Z to obtain an observation trace τo = Z(ρ) =
Z(s0)a1Z(s1) · · · Z(sn−1)anZ(sn). For example, the states in the path ρ may
represent the exact coordinates of the agent’s positions and distance measure-
ments. Relevant for safety might only be the distances. In such a case, the
abstraction function Z would abstract away the concrete position and only keep
the distances.

To compute the deterministic labeled MDP M i, we invoke IOAlergia by
calling IOAlergia(T0, εAlergia), where εAlergia is a parameter specifying the
significance level of statistical tests performed by IOAlergia.

Additionally, we make M i action-complete. During the training phase, we
propose to make M i with i < n action-complete by adding self-loop transitions
to all state-action pairs (s , a) where P (s , a) is not defined. That is, we
set for all such state-action pairs P (s , a) = {s �→ 1}. The rationale behind
this is that whenever an action’s effect is unknown, we assume that it leaves the
safety of the corresponding state unchanged.

344 M. Tappler et al.

Algorithm 1. A single RL training’s episode using a learned shield.
Input: Q-function Q, a learned deterministic labeled MDP M = 〈S , A , s 0, P , L〉,

exploration rate ε, safety shield π , environment with step and reset
Output: Updated Q-function Q
1: s ← s 0

2: s ← reset
3: t ← 0 � steps
4: while t < tmax do
5: A ← π (s) � safe actions for s
6: if coinFlip(ε) then
7: a ← randSel(A)
8: else
9: a ← argmaxa′∈A Q(s, a′)

10: r, s′ ← step(a) � step in environment
11: s ← s′ where P(s , a)(s′) > 0 and L(s′) = Z(s′) � step in learned MDP
12: UpdateQ(s, a, r, s′)
13: if s′ is a terminal state then
14: break
15: t ← t + 1

For the final shield π that will be used permanently after training, we pro-
pose a more conservative approach and to make M i with i = n action-complete
by adding a special sink state s¬ϕ that violates ϕ and adding transitions to s¬ϕ.
In the training phase, the resulting shield π would not be suitable since it would
prohibit exploration. For the exploration phase, however, the behavior of π may
be desirable since it blocks behavior that has not been explored sufficiently.

Step 3 - Shield Construction. The abstract MDP M i encodes the safety-
relevant information about the environment. We use M i, the safety specifica-
tion ϕ, and a finite horizon h, to compute the safety values of all state-action
pairs in M i. Based on a given relative threshold λsh, we compute a shield π i

which allows for any state all actions that are safe w.r.t. λsh and the optimal
safety value. After constructing the shield π i, the current shield of the agent is
set to π i. The agent continues to explore the environment and learn the optimal
strategy using π i (Step 1).

4.3 Details for Training Using Learned Shields

In this section we discuss a single RL episode of an agent augmented with a
learned shield in detail. The pseudocode is given in Algorithm 1. The RL agent
interacts with the environment through two operations: reset and step1.

reset: This operation resets the environment to a fixed initial state. This state
s0 from the unknown environment MDP is also returned from reset.

1 The convention of OpenAI gym [7].

Automata Learning Meets Shielding 345

step: The operation step(a) takes an action a and executes a causing a prob-
abilistic state transition. It returns a pair r, s′, where r is the reward gained
by performing a and s′ is the reached state when executing a.

The algorithm starts with initializing the learned MDP state as well as the
environment state (Line 1 and 2). Then we enter a loop in which the agent
performs a maximum of tmax steps.

The RL agent applies ε-greedy learning, i.e., it explores a random action
with probability ε and otherwise performs the optimal action according to the RL
agent’s current knowledge. Note that both, random exploration and exploitation,
are shielded, i.e., actions are chosen from the set of safe actions.

For every step, the shield provides a set of safe actions (Line 5). With prob-
ability ε, the RL agent selects a random safe action in Line 7. Otherwise, it
determines the currently optimal action in Line 9. The chosen action is executed
in Line 10. In Line 11, the state of M is updated. To conclude the training
step, we update the agent’s Q-table.

If the agents visits a terminal state, the loop terminates before performing
tmax steps (Line 13). A terminal state may, for instance, be reached by complet-
ing the task to be solved or by violating safety.

Execution Phase. After training, we use the same approach to execute an
agent, but with ε set to 0, such that only safe and optimal actions are executed.

5 Experiments

In our experimental evaluation, we evaluated our approach on 24 slippery grid-
world environments of varying shapes and sizes. We implemented a tabular Q-
learning agent that should learn to reach a given goal state quickly while staying
safe. We learn deterministic labeled MDPs using IOAlergia implemented in
AALpy [28]. The shields are created from the learned MDPs using the shield
synthesis tool Tempest [32]. In our experiments, we discuss the scalability of our
approach and its effectiveness by comparing the averaged gained reward during
training with and without learned shields.

Experimental Setup. All experiments have been executed on a desktop com-
puter with a 4× 2.70 GHz Intel Core i7-7500U CPU, 7.7 GB of RAM running
Arch Linux.

Availability. An implementation of our framework for iterative safe RL via
learned shields is available online, together with several examples and detailed
execution instructions to reproduce our results2. The implementation includes a
shielded tabular Q-learning agent written in Python.

Usability. Our prototype implementation allows users to easily perform their
own experiments. AALpy’s IOAlergia implementation has a simple text-based
interface and Tempest uses the well-established PRISM MDP format that is

2 https://github.com/DES-Lab/Automata-Learning-meets-Shielding.

https://github.com/DES-Lab/Automata-Learning-meets-Shielding

346 M. Tappler et al.

also supported by AALpy, as well as a property language similar to PRISM and
Storm. Furthermore, our prototype implementation can be easily extended. The
tools, AALpy and Tempest, can be used as black boxes. Therefore, there is no
need to know the implementation details of these tools. The only caveat is that
Tempest is easiest to use through a Docker container.

5.1 Case Study Subjects

Gridworlds. We used three types of parameterized gridworlds, the smallest
instances are depicted in Fig. 2, Fig. 3 and Fig. 4. Each gridworld has a dedicated
start tile and a goal tile, marked by Entry and Goal on the left-hand side of the
figures. A gridworld might also have intermediate-goal tiles. If a tile is marked as
pit, then this tile marks an unsafe location and the agent is not allowed to visit
this tile. Black tiles represent walls that restrict movement but are not safety
critical. Additionally, each tile has a terrain, denoted by lowercase letters on the
right-hand side of the figures. If a tile is “slippery”, the tile is labeled with an
arrow and grey gradients on the left-hand side of the figures. If an agent tries to
move from a slippery tile, the intended movement of the agent might be altered
into the direction of the arrow with a specific tile-dependent probability. The
length of arrows corresponds to the probability of slipping. That is, a long arrow
pointing downward left means that the agent is very likely to slip either to the
left or downwards. Additionally, every tile has (x, y) coordinates.

Gridworld Shapes. Next, we discuss each of the three gridworld shapes briefly,
where Figs. 2, 3 and 4 show the smallest gridworld of each shape. To get insights
into how the state space affects learning, we vary each type of gridworld in size
by creating eight versions of increasing size.

– zigzag: In the zigzag gridworlds illustrated in Fig. 2, we have pairs of pit tiles
located in alternation at the bottom and the top of the map with a fixed
distance between adjacent pit pairs. The goal is placed so that the agent
could move along a straight line from left to right, but it would travel across
slippery tiles next to the pits. The shield thus helps to avoid these dangerous
tiles to perform zigzag walks to the goal.

– slippery shortcuts: The slippery shortcuts gridworlds illustrated in Fig. 3 are
similar to the zigzag maps in that the agent could take shortcuts across slip-
pery tiles next to pits. In this case, the probability of unsuccessful moves
decreases with increasing distance from the pits. Hence, an optimal policy
has to find a balance between taking risks and gaining higher reward due to
shorter paths.

– walls: In the walls gridworlds illustrated in Fig. 4, the agents must find a way
from the start to the goal by navigating around walls and pits that block the
shortest paths. There are fewer slippery tiles.

Reinforcement Learning. We implemented a tabular Q-learning agent. The
agent’s task is to navigate from start to goal by moving into one of the four
cardinal directions at each time step.

Automata Learning Meets Shielding 347

pit pit

pit pit

Entry

Goal

E

c

c

c

c

c

d

a

c

d

a

c

c

c

c

e

b

d

e

b

d

e

G

c

Fig. 2. The smallest of the zigzag gridworlds.

pit pit

pit pit

Entry

Goal

g

g

g

g

g

E

g

g

b

b

b

a

g

c

c

c

a

d

c

c

c

c

a

d

e

e

c

c

a

a

d

e

f

c

b

b

d

e

f

c

c

g

e

e

f

c

c

g

g

G

g

g

c

g

Fig. 3. The smallest of the slippery shortcut gridworlds.

pit pit

pitEntry

Goal

E

a

a

c

d

a

a

c

c

d

a

a

c

c

c

a

a

c

c

c

a

a

c

c

c

a

a

c

c

c

a

a

c

c

c

a

a

c

c

c

d

a

G

c

c

Fig. 4. The smallest of the wall gridworlds.

Every training episode, the agent collects reward traces of the form τ =
(x0, y0), a1, r1, (x1, y1) . . . an, rn, (xn, yn) with xi and yi representing the x and
y coordinates of the tiles. The set of available actions comprises of the four
actions {left, right, up, down} to move into the corresponding direction. The
reward function of the agent is defined as follows:

– If the agent reaches the goal within less than tmax steps, it receives a reward
of +100. Additionally, reaching the goal ends the training episode.

– If the agent reaches a tile with a pit, it receives a punishment of −100 and
the training episode ends.

– Additionally, the agent receives a reward of −0.5 per step.
– Gridworlds might have intermediate goal states that are rewarded with +20

but do not terminate the episode.

We use the following learning parameters for all experiments: The tabular
Q-learning agent was trained with a learning rate of α = 0.1, a discount factor
of γ = 0.9, and an initial exploration rate of ε = 0.4 throughout all experiments.

348 M. Tappler et al.

We chose an exponential epsilon decay of ε′ = 0.9999 · ε with an update after
every learning episode.

MDP Learning. To get the observations for MDP learning, we perform an
abstraction over the states via the function Z. Given a concrete state (x, y), the
function Z((x, y)) maps to a pair (terr,Pit), where terr is the terrain of the tile
at (x, y) and Pit is a set of propositions denoting whether a pit is located in the
neighboring tiles in each of the four cardinal directions.

For example, if the agent is at the coordinate (1, 0) in Fig. 2, with the origin
of coordinates on the bottom left, the abstract observation would be Z((1, 0)) =
(c, {pit-right}). The terrain is c and there is a pit on the right.

Shield Construction. In all experiments, visiting a pit represents a safety
violation. This property can be represented in LTL as follows: ϕ = G(¬pit).
Using this specification ϕ and a deterministic labeled MDP M , we compute a
shield π using a relative threshold λsh = 0.95 and a finite horizon of h = 2. Thus,
for any given state, the resulting shield π allows an action a if the probability
of not falling into a pit within the next 2 steps is at least 0.95 · α, with α being
the probability of not falling into a pit when taking the optimal action a′.

5.2 Experimental Results

In the following, we report on the performance of RL agents augmented with
learned shields compared to the performance of unshielded RL agents.

To account for the stochastic nature of the environment and RL, we repeat
every experiment 30 times. For each experiment, the number of iterations is set
to niter = 30, the number of training episodes per iteration is nepisodes = 1000,
and the maximal length of a training episode is set to tmax = 200 steps.

To evaluate the learned policies, we execute the policies at various stages
throughout training and compare their performance. For every iteration, i.e.,
after every 1000th training episode, we evaluate the intermediate policies of the
agents by setting the exploration rate ε to 0 and performing 1000 episodes.
Over these 1000 episodes, we compute the average cumulative reward of the
intermediate policy. We refer to this value as return. For shielded agents, their
corresponding shields are used during the intermediate executions for evaluation.

Figure 5, Fig. 7, and Fig. 9 show plots of the results of this evaluation, where
the x-axes display the episodes and the y-axes display the return. The average
performance of the shielded agents is represented by a thick green line, whereas a
thick red line represents the average performance of unshielded agents. The light
green and light red areas depict the range between the minimum and maximum
performance of the shielded and the unshielded agents, respectively. Figure 6,
Fig. 8, and Fig. 10 depict the number of safety violations throughout training,
where the x-axes display the episodes and the y-axes display the number of times
the agent visited a pit. The average number of safety violations of the shielded
agents are represented by a thick green line, whereas a thick red line represents
the average number of safety violations of unshielded agents. The light green and
light red areas depict the range between the minimum and maximum number

Automata Learning Meets Shielding 349

0 10k 20k 30k

−100
−50

0
50

Zigzag 1

0 10k 20k 30k

−100
−50

0
50

Zigzag 2

0 10k 20k 30k

−100
−50

0
50

Zigzag 3

0 10k 20k 30k

−100
−50

0
50 Zigzag 4

0 10k 20k 30k

−100
−50

0
50 Zigzag 5

0 10k 20k 30k

−100
−50

0
50 Zigzag 6

0 10k 20k 30k

−100
−50

0
50 Zigzag 7

0 10k 20k 30k

−100
−50

0
50 Zigzag 8

Fig. 5. The return gained by intermediate policies throughout reinforcement learning
in the zigzag gridworlds. The x-axes display the return and the y-axes display the
episodes at which policies are evaluated. The green plots represent shielded perfor-
mance, whereas the red plots represent unshielded performance.

of safety violations of the shielded and the unshielded agents, respectively. In
the following, we discuss the results from the experiments with the different
gridworld shapes.

5.3 Zigzag Gridworlds

We start by discussing the performance of the RL agents in the zigzag gridworlds;
see Fig. 2 for the smallest such environment. Figure 5 shows the return, and Fig. 6
shows the number of safety violations at various stages of RL.

The experiments in Fig. 5 show almost identical returns and number of safety
violations for shielded and unshielded agents for the three smallest gridworld
instances. Starting with the fourth-smallest gridworld, shielded RL performs
better on average. Initially, during the first episodes of both RL configurations,
the average return is approximately −100, which is the penalty for falling into
a pit. This means that the agent consistently falls into pits in the early stages
of learning. After approximately 7 iterations, i.e., at episode 7000, the shielded
agents start to reach the goal states, which leads to an increase in the return

350 M. Tappler et al.

0 10k 20k 30k
0

500

1,000 Zigzag 1

0 10k 20k 30k
0

500

1,000 Zigzag 2

0 10k 20k 30k
0

500

1,000 Zigzag 3

0 10k 20k 30k
0

500

1,000 Zigzag 4

0 10k 20k 30k
0

500

1,000

Zigzag 5

0 10k 20k 30k
0

500

1,000

Zigzag 6

0 10k 20k 30k
0

500

1,000

Zigzag 7

0 10k 20k 30k
0

500

1,000

Zigzag 8

Fig. 6. The number of safety violations throughout RL in the zigzag gridworlds. The
x-axes display the number of violations and the y-axes display the episodes at which
the policies are evaluated. The green plots represent the number of violations under the
shielded policies, whereas the red plots represent the same under unshielded policies.

and a decrease in the number of safety violations. Unshielded agents need about
twice the time to reach the goal location. Similar observations can be made for
the next larger environments Zigzag 5 and Zigzag 6, too. For the two largest
zigzag gridworlds, unshielded RL fails to consistently reach the goal after 30, 000
training episodes. These two environments require relatively long paths to be
traversed and the gained rewards are sparse. Hence, learned safety shields may
benefit RL in environments with sparse rewards, where safety violations may
prevent the agents from visiting states that give a positive reward. The decreases
in the number of safety violations, as shown in Fig. 6, match the observations on
the performance increases illustrated in Fig. 5.

On the negative side, note that the growth of the return is steeper for
unshielded RL. For example, considering the environment Zigzag 4, it takes
about 10000 episodes to reach an average return greater than 0 in the shielded
case and it takes 15000 episodes in the unshielded case. Hence, there are 3000
episodes between first reaching the goal and reaching it more consistently for
shielded RL, whereas unshielded RL only requires 1000 episodes to make this
jump in performance.

Automata Learning Meets Shielding 351

0 10k 20k 30k
−100

0

100 Slippery 1

0 10k 20k 30k

−100

0

100 Slippery 8

Fig. 7. Return gained by intermediate policies throughout RL in the slippery shortcuts
gridworlds. The x-axes display the return and the y-axes display the episodes at which
policies are evaluated. Green plots: shielded agent, red plots: unshielded agent.

0 10k 20k 30k
0

500

1,000 Slippery 1

0 10k 20k 30k
0

500

1,000 Slippery 8

Fig. 8. The number of safety violations throughout RL in the slippery shortcuts grid-
worlds. The x-axes display the number of violations and y-axes display the episodes
at which the policies are evaluated. Green plots: shielded agent, red plots: unshielded
agent.

Furthermore, consider the range between the minimum and the maximum
return that is depicted by the shaded areas in the figures. The minimum return
of unshielded RL is often lower than the minimum return of shielded RL even
though it performs better on average. There is more variance in the return
obtained by shielded RL. Also, the range between the minimum and the maxi-
mum number of safety violations is high for Zigzag 8 until the end of training.
This could result from learning of MDPs that do not sufficiently capture safety-
relevant information. We leave a closer investigation to future work.

5.4 Slippery Shortcuts Gridworlds

Next, we examine the performance of shielded and unshielded RL in the slippery
shortcuts gridworlds illustrated in Fig. 3. Figure 7 shows the average returns,
and Fig. 8 shows the number of safety violations gained by RL agents through-
out learning. In contrast to the zigzag gridworlds, there is hardly any difference
between the shielded and the unshielded configurations for any size of the envi-
ronment, neither for the return nor for the number of safety violations. Therefore,
we only printed the instances of slippery 1 and slippery 8 to safe space. Moreover,
there is very little variability, as the minimum and maximum returns (safety vio-
lations) are very close to their average. Hence, performance is mostly governed
by RL and shielding has little influence. In these environments, the agents suc-
ceed in finding safe paths without requiring assistance from a shield. This may
result from the pits being farther away from optimal paths, as compared to the
zigzag gridworlds.

352 M. Tappler et al.

0 10k 20k 30k
−100

0

100

Wall 1

0 10k 20k 30k
−100

0

100

Wall 2

0 10k 20k 30k

−100

0

100

Wall 3

0 10k 20k 30k

−100

0

100 Wall 4

0 10k 20k 30k

−100

0

100 Wall 5

0 10k 20k 30k

−100

0

100 Wall 6

0 10k 20k 30k

−100

0

100 Wall 7

0 10k 20k 30k

−100

0

100 Wall 8

Fig. 9. Return gained by intermediate policies throughout RL in the walls gridworlds.
The x-axes display the return and the y-axes display the episodes at which policies are
evaluated. Green plots: shielded agent, red plots: unshielded agent.

5.5 Wall Gridworlds

In the following, we discuss the experiments performed on the walls gridworlds
of Fig. 4. Figure 9 shows the returns, and Fig. 10 shows the number of safety vio-
lations gained at different stages of learning. As for the zigzag gridworlds, we see
hardly any difference between shielded and unshielded RL for the three smallest
environments, whereas shielded RL performs better in the larger environments.
Unlike before, however, there is less variability in the performance and number
of safety violations of shielded RL. In Fig. 4, we can see that the slippery tiles
are farther away from the optimal route, which is also true for the larger walls
gridworlds. As a result, learned MDPs do not need to be as accurate with respect
to probability estimations for effective shields to be created. Especially for the
largest example, Wall 8, shielding improves performance and reduces the num-
ber of safety violations considerably. It takes about 18000 episodes to learn a
policy that consistently reaches the goal in all 30 repetitions of the corresponding
experiments. In contrast, unshielded RL fails to consistently find a good policy
even after 30000 episodes.

Finally, let us investigate a potential reason for performance improvements
resulting from shielding or the absence thereof. In Fig. 11, we show the size of

Automata Learning Meets Shielding 353

0 10k 20k 30k
0

500

1,000 Wall 1

0 10k 20k 30k
0

500

1,000 Wall 2

0 10k 20k 30k
0

500

1,000 Wall 3

0 10k 20k 30k
0

500

1,000 Wall 4

0 10k 20k 30k
0

500

1,000 Wall 5

0 10k 20k 30k
0

500

1,000 Wall 6

0 10k 20k 30k
0

500

1,000

Wall 7

0 10k 20k 30k
0

500

1,000

Wall 8

Fig. 10. The number of safety violations throughout RL in the walls gridworlds. The
x-axes display the number of violations and y-axes display the episodes at which the
policies are evaluated. Green plots: shielded agent, red plots: unshielded agent.

learned MDPs compared to the size of the walls environments, i.e., the num-
ber of tiles in every environment. Since the environment size is constant in an
experiment, it is shown as a black straight line. The learned MDP size, mea-
sured in the number of states, generally increases throughout the learning due
to more information getting available. It can be seen that for the first three envi-
ronment sizes, the final learned MDPs are slightly larger than the environment.
Hence, these MDPs cannot represent the environments and their safety-relevant
features more efficiently than a Q-table. The fact that learned MDPs are even
larger than the environments from which they are learned results from two prop-
erties of our learning setup. First, MDPs learned by IOAlergia only converge in
the large sample limit to the true underlying MDPs [24]. There are no guarantees
for MDPs learned from finite amounts of data. Second and more importantly,
abstraction introduces non-determinism, while MDP learning basically performs
a determinization of the resulting non-deterministic MDP. This determinization
causes the number of states to increase, similar to the construction of belief
MDPs from partially observable MDPs [9].

When the environment is larger than the learned MDP modeling safety-
relevant features of the environment, shielding improves RL performance. This

354 M. Tappler et al.

0 10k 20k 30k
0

100

200

300 Wall 1

0 10k 20k 30k
0

100

200

300 Wall 2

0 10k 20k 30k
0

100

200

300 Wall 3

0 10k 20k 30k
0

100

200

300 Wall 4

0 10k 20k 30k
0

100

200

300 Wall 5

0 10k 20k 30k
0

100

200

300 Wall 6

0 10k 20k 30k
0

100

200

300

Wall 7

0 10k 20k 30k
0

100

200

300

Wall 8

Fig. 11. Average size of learned MDPs for the walls gridworlds (x-axes) plotted in
green compared to the size of the environment plotted as a black line. The y-axes
display the episode at which the MDP size was measured.

holds for all environments from Wall 4 throughout Wall 8. Comparing Fig. 9
or Fig. 10 with Fig. 11, we can see that the larger the size difference between
the environment and the learned MDP is, the larger the performance impact or
reduction in the number of safety violations.

5.6 Discussion

We conclude this section with a discussion of the main results of our experi-
ments and some insights that we gained. Our results show that learned shields
can improve RL performance as illustrated by our first and third set of experi-
ments. In the first case of the zigzag gridworlds, the agent has to traverse along
tiles located closely to pits in order to reach the goal. Therefore, a shield is
able to prevent many safety violations. In the case of the walls gridworlds, we
observed that learning shields especially pays off when the learned safety MDP is
much smaller than the complete environment. We will explore this connection in
future work, as it may enable scaling to larger environments. Deep reinforcement
learning can efficiently solve tasks in complex environments, such as, computer

Automata Learning Meets Shielding 355

games [27], while we can abstract away non-safety-relevant details to learn small
MDPs for shielding.

In the slippery shortcut gridworlds, we observed that shielding does not nec-
essarily improve performance. It seems easier for the agent to infer through RL
how to navigate safely than in the other examples.

6 Conclusion

We presented an approach for iterative safe reinforcement learning via learned
shields. At runtime, we learn environmental models from collected traces and
continuously update shields that prevent safety violations during execution. RL
with learned shields comprises three steps: (1) An RL agent exploring the envi-
ronment, protected by a shield, and collecting abstracted experiences, which
represent safety-information about the environment. (2) Learning a determin-
istic labeled MDP from the collected data of the RL agent. (3) Synthesizing a
shield from such an MDP.

In contrast to most previous work on shielding, which commonly requires
abstract environment models, the proposed approach is model-free and there-
fore applicable in black-box environments. We learn environment models solely
from experiences of the RL agent. The agent can also infer its policy using a
model-free approach, such as, Q-learning [41]. The downside is that we cannot
enforce absolute safety. In order to learn safety-relevant information, the agent
needs to experience some safety violations. Despite this limitation, our evaluation
shows that in most cases, RL with learned shields converges more quickly than
unshielded RL. Since optimal policies in our experiments should inflict hardly
any safety violations, faster convergence implies that shielded agents run into
fewer safety violations.

In future work, we will explore RL with learned shields in environments of
larger size, where we aim to combine deep RL with MDP learning. Our intu-
ition is that we can generally represent safety-relevant environmental features
concisely with an MDP over abstract observations. We expect this to be true
even if, for instance, the agent perceives its environment by processing high-
resolution images. In addition to other (deep) RL techniques, we will explore
different automata learning techniques. For instance, we could integrate RL more
directly into active automata learning of stochastic system models [35,37]. By
learning timed automata [2,25,36,39], we could extend learning-based shielding
to systems with time-dependent behaviour.

Acknowledgments. This work has been supported by the “University SAL Labs”
initiative of Silicon Austria Labs (SAL) and its Austrian partner universities for
applied fundamental research for electronic based systems. Additionally, this project
has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 956123 - FOCETA.

356 M. Tappler et al.

References

1. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

2. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed
automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 1

3. Aichernig, B.K., Tappler, M.: Probabilistic black-box reachability checking
(extended version). Formal Methods Syst. Des. 54(3), 416–448 (2019)

4. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the 32nd International
Conference on Artificial Intelligence, AAAI 2018, New Orleans, Louisiana, USA,
February 2–7, 2018, vol. 32, pp. 2669–2678. AAAI Press (2018). https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/17211

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
6. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: runtime

enforcement for reactive systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 533–548. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 51

7. Brockman, G., et al.: OpenAI gym. CoRR arXiv:abs/1606.01540 (2016)
8. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a

state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

9. Cassandra, A.R., Kaelbling, L.P., Littman, M.L.: Acting optimally in partially
observable stochastic domains. In: Hayes-Roth, B., Korf, R.E. (eds.) Proceedings
of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, July
31 - August 4, 1994, Volume 2. pp. 1023–1028. AAAI Press/The MIT Press (1994).
http://www.aaai.org/Library/AAAI/1994/aaai94-157.php

10. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

11. Corsi, D., Marchesini, E., Farinelli, A.: Formal verification of neural networks for
safety-critical tasks in deep reinforcement learning. In: de Campos, C.P., Maathuis,
M.H., Quaeghebeur, E. (eds.) UAI. Proceedings of Machine Learning Research, vol.
161, pp. 333–343 (2021). https://proceedings.mlr.press/v161/corsi21a.html

12. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control
with temporal logic constraints. In: Fox, D., Kavraki, L.E., Kurniawati, H. (eds.)
Robotics: Science and Systems X, University of California, Berkeley, USA, 12–16
July 2014 (2014). http://www.roboticsproceedings.org/rss10/p39.html

13. Furelos-Blanco, D., Law, M., Russo, A., Broda, K., Jonsson, A.: Induction of sub-
goal automata for reinforcement learning. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1007/978-3-662-46681-0_51
http://arxiv.org/1606.01540
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
http://www.aaai.org/Library/AAAI/1994/aaai94-157.php
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://proceedings.mlr.press/v161/corsi21a.html
http://www.roboticsproceedings.org/rss10/p39.html

Automata Learning Meets Shielding 357

USA, February 7–12, 2020, pp. 3890–3897. AAAI Press (2020). https://ojs.aaai.
org/index.php/AAAI/article/view/5802

14. Gaon, M., Brafman, R.I.: Reinforcement learning with non-Markovian rewards.
In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7–12, 2020, pp. 3980–3987.
AAAI Press (2020). https://ojs.aaai.org/index.php/AAAI/article/view/5814

15. Giacobbe, M., Hasanbeig, M., Kroening, D., Wijk, H.: Shielding atari games
with bounded prescience. In: Proceedings of the 20th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2021, Virtual Event,
United Kingdom, 3–7 May, 2021, pp. 1507–1509. ACM (2021). https://doi.org/10.
5555/3463952.3464141

16. Hasanbeig, M., Jeppu, N.Y., Abate, A., Melham, T., Kroening, D.: Deepsynth:
automata synthesis for automatic task segmentation in deep reinforcement learn-
ing. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, 2–9 February 2021, pp. 7647–7656. AAAI Press (2021).
https://ojs.aaai.org/index.php/AAAI/article/view/16935

17. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

18. Icarte, R.T., Waldie, E., Klassen, T.Q., Valenzano, R.A., Castro, M.P., McIlraith,
S.A.: Learning reward machines for partially observable reinforcement learning. In:
Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8–14, 2019, Vancouver, BC, Canada. pp. 15497–15508 (2019). https://proceedings.
neurips.cc/paper/2019/hash/532435c44bec236b471a47a88d63513d-Abstract.html

19. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields (invited paper). In: Konnov, I., Kovács, L. (eds.)
31st International Conference on Concurrency Theory, CONCUR 2020, Septem-
ber 1–4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp. 3:1–
3:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/
10.4230/LIPIcs.CONCUR.2020.3

20. Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey.
IEEE Trans. Intell. Transp. Syst. (2021)

21. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 290–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4 16

22. Könighofer, B., Rudolf, J., Palmisano, A., Tappler, M., Bloem, R.: Online shielding
for stochastic systems. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A.,
Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 231–248. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76384-8 15

23. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learn-
ing Markov decision processes for model checking. In: Fahrenberg, U., Legay, A.,
Thrane, C.R. (eds.) Proceedings Quantities in Formal Methods, QFM 2012, Paris,

https://ojs.aaai.org/index.php/AAAI/article/view/5802
https://ojs.aaai.org/index.php/AAAI/article/view/5802
https://ojs.aaai.org/index.php/AAAI/article/view/5814
https://doi.org/10.5555/3463952.3464141
https://doi.org/10.5555/3463952.3464141
https://ojs.aaai.org/index.php/AAAI/article/view/16935
https://doi.org/10.1007/978-3-319-96562-8_5
https://proceedings.neurips.cc/paper/2019/hash/532435c44bec236b471a47a88d63513d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/532435c44bec236b471a47a88d63513d-Abstract.html
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-76384-8_15

358 M. Tappler et al.

France, 28 August 2012. EPTCS, vol. 103, pp. 49–63 (2012). https://doi.org/10.
4204/EPTCS.103.6

24. Mao, H., et al.: Learning deterministic probabilistic automata from a model check-
ing perspective. Mach. Learn. 105(2), 255–299 (2016). https://doi.org/10.1007/
s10994-016-5565-9

25. Mediouni, B.L., Nouri, A., Bozga, M., Bensalem, S.: Improved learning for stochas-
tic timed models by state-merging algorithms. In: Barrett, C., Davies, M., Kah-
sai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 178–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57288-8 13

26. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5 11

27. Mnih, V., et al.: Playing atari with deep reinforcement learning. CoRR
arXiv:abs/1312.5602 (2013)

28. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 67–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5 5

29. Muskardin, E., Tappler, M., Aichernig, B.K., Pill, I.: Reinforcement learn-
ing under partial observability guided by learned environment models. CoRR
arXiv:abs/2206.11708 (2022)

30. Nouri, A., Raman, B., Bozga, M., Legay, A., Bensalem, S.: Faster statistical model
checking by means of abstraction and learning. In: Bonakdarpour, B., Smolka, S.A.
(eds.) RV 2014. LNCS, vol. 8734, pp. 340–355. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11164-3 28

31. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang.
Comb. 7(2), 225–246 (2002). https://doi.org/10.25596/jalc-2002-225

32. Pranger, S., Könighofer, B., Posch, L., Bloem, R.: TEMPEST - synthesis tool for
reactive systems and shields in probabilistic environments. In: Hou, Z., Ganesh,
V. (eds.) ATVA 2021. LNCS, vol. 12971, pp. 222–228. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88885-5 15

33. Pranger, S., Könighofer, B., Tappler, M., Deixelberger, M., Jansen, N., Bloem,
R.: Adaptive shielding under uncertainty. In: 2021 American Control Conference,
ACC 2021, New Orleans, LA, USA, 25–28 May, 2021, pp. 3467–3474. IEEE (2021).
https://doi.org/10.23919/ACC50511.2021.9482889

34. Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press (1998). https://www.worldcat.org/
oclc/37293240

35. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L∗-based
learning of markov decision processes (extended version). Formal Aspects Comput.
33(4–5), 575–615 (2021). https://doi.org/10.1007/s00165-021-00536-5

36. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning
timed automata from tests. In: André, É., Stoelinga, M. (eds.) FORMATS 2019.
LNCS, vol. 11750, pp. 216–235. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29662-9 13

37. Tappler, M., Muškardin, E., Aichernig, B.K., Pill, I.: Active model learning
of stochastic reactive systems. In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM
2021. LNCS, vol. 13085, pp. 481–500. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92124-8 27

38. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://
doi.org/10.1145/2967606

https://doi.org/10.4204/EPTCS.103.6
https://doi.org/10.4204/EPTCS.103.6
https://doi.org/10.1007/s10994-016-5565-9
https://doi.org/10.1007/s10994-016-5565-9
https://doi.org/10.1007/978-3-319-57288-8_13
https://doi.org/10.1007/978-3-642-21768-5_11
http://arxiv.org/1312.5602
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
http://arxiv.org/2206.11708
https://doi.org/10.1007/978-3-319-11164-3_28
https://doi.org/10.1007/978-3-319-11164-3_28
https://doi.org/10.25596/jalc-2002-225
https://doi.org/10.1007/978-3-030-88885-5_15
https://doi.org/10.23919/ACC50511.2021.9482889
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1007/s00165-021-00536-5
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-92124-8_27
https://doi.org/10.1007/978-3-030-92124-8_27
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606

Automata Learning Meets Shielding 359

39. Verwer, S., de Weerdt, M., Witteveen, C.: A likelihood-ratio test for identifying
probabilistic deterministic real-time automata from positive data. In: Sempere,
J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 203–216. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1 17

40. Waga, M., Castellano, E., Pruekprasert, S., Klikovits, S., Takisaka, T., Hasuo, I.:
Dynamic shielding for reinforcement learning in black-box environments. CoRR
arXiv:abs/2207.13446 (2022)

41. Watkins, C.J.C.H., Dayan, P.: Technical note q-learning. Mach. Learn. 8, 279–292
(1992). https://doi.org/10.1007/BF00992698

42. Xu, Z., et al.: Joint inference of reward machines and policies for reinforcement
learning. In: Beck, J.C., Buffet, O., Hoffmann, J., Karpas, E., Sohrabi, S. (eds.)
Proceedings of the Thirtieth International Conference on Automated Planning and
Scheduling, Nancy, France, 26–30 October, 2020, pp. 590–598. AAAI Press (2020).
https://ojs.aaai.org/index.php/ICAPS/article/view/6756

https://doi.org/10.1007/978-3-642-15488-1_17
http://arxiv.org/2207.13446
https://doi.org/10.1007/BF00992698
https://ojs.aaai.org/index.php/ICAPS/article/view/6756

Safe Policy Improvement in Constrained
Markov Decision Processes

Luigi Berducci(B) and Radu Grosu

CPS Group, TU Wien, Vienna, Austria

luigi.berducci@tuwien.ac.at

Abstract. The automatic synthesis of a policy through reinforcement
learning (RL) from a given set of formal requirements depends on the
construction of a reward signal and consists of the iterative application
of many policy-improvement steps. The synthesis algorithm has to bal-
ance target, safety, and comfort requirements in a single objective and to
guarantee that the policy improvement does not increase the number of
safety-requirements violations, especially for safety-critical applications.
In this work, we present a solution to the synthesis problem by solving its
two main challenges: reward-shaping from a set of formal requirements
and safe policy update. For the first, we propose an automatic reward-
shaping procedure, defining a scalar reward signal compliant with the
task specification. For the second, we introduce an algorithm ensuring
that the policy is improved in a safe fashion, with high-confidence guar-
antees. We also discuss the adoption of a model-based RL algorithm to
efficiently use the collected data and train a model-free agent on the
predicted trajectories, where the safety violation does not have the same
impact as in the real world. Finally, we demonstrate in standard control
benchmarks that the resulting learning procedure is effective and robust
even under heavy perturbations of the hyperparameters.

Keywords: Reinforcement learning · Safe policy improvement ·
Formal specification

1 Introduction

Reinforcement Learning (RL) has become a practical approach for solving com-
plex control tasks in increasingly challenging environments. However, despite the
availability of a large set of standard benchmarks with well-defined structure and
reward signals, solving new problems remains an art.

There are two major challenges in applying RL to new synthesis problems.
The first, arises from the need to define a good reward signal for the problem.
We illustrate this challenge with an autonomous-driving (AD) application. In
AD, we have numerous requirements that have to be mapped into a single scalar
reward signal. In realistic applications, more than 200 requirements need to be
considered when assessing the course of action [14]. Moreover, determining the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 360–381, 2022.
https://doi.org/10.1007/978-3-031-19849-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_21

Safe Policy Improvement in Constrained Markov Decision Processes 361

relative importance of the different requirements is a highly non-trivial task. In
this realm, there are a plethora of regulations, ranging from safety and traffic
rules to performance, comfort, legal, and ethical requirements.

The second challenge concerns the RL algorithm with whom we intend to
search for an optimal policy. Considering most of the modern RL algorithms,
especially model-free policy-gradient methods [53], they require an iterative
interaction with the environment, from which they collect fresh experiences for
further improving the policy. Despite their effectiveness, a slight change in the
policy parameters could have unexpected consequences in the resulting perfor-
mance. This fact often results in learning curves with unstable performances,
strongly depending on the tuning of hyperparameters and algorithmic design
choices [28]. The lack of guarantees and robustness in the policy improvement
still limits the application of RL outside controlled environments or simulators.

In this paper, we tackle the two problems mentioned above by proposing a
complete design pipeline for safe policies: from the definition of the problem to
the safe optimization of the policy (Fig. 1). We discuss how to structure the prob-
lem from a set of formal requirements and enrich the reward signal while keeping
a sound formulation. Moreover, we define the conditions which characterize a
correct-by-construction algorithm in this context and demonstrate its realizabil-
ity with high-confidence off-policy evaluation. We propose two algorithms, one
model-free and one model-based, respectively. We formally prove that they are
correct by construction and evaluate their performance empirically.

Fig. 1. Overall RL pipeline to solve formally-specified control tasks.

2 Motivating Example

We motivate our work with a cart-pole example extended with safety, target, and
comfort requirements, as follows: A pole is attached to a cart that moves between
a left and a right limit, within a flat and frictionless environment. The environ-
ment has a target area within the limits and a static obstacle hanging above the
track. We define five requirements for the cart-pole, as shown in Table 1.

We aim to teach the cart-pole to satisfy all requirements. The system is
controlled by applying a continuous force to the cart, allowing the left and right
movements of the cart-pole with different velocities. In order to reach the goal
and satisfy the target requirement Req1, the cart-pole must do an uncomfortable

362 L. Berducci and R. Grosu

Table 1. Cart-pole example – informal requirements.

Req ID Description

Req1 The cart shall reach the target in bounded time

Req2 The pole shall never fall from the cart

Req3 The pole shall never collide with the obstacle

Req4 The cart shall never leave the left/right limits

Req5 The cart shall keep the pole balanced within a comfortably small angle
as often as possible

and potentially unsafe maneuver: since moving a perfectly balanced pole would
result in a collision with the obstacle, thus violating the safety requirement Req3,
the cart-pole must lose balancing and pass below it. Furthermore, if the obstacle
is too large, or the cart does not apply enough force once passing the obstacle,
it may not be able to reach the target without falling, thus violating the safety
requirement Req2. A sequence of pictures showing the cart-pole successfully
overcoming the obstacle in the environment is depicted in Fig. 2.

Fig. 2. A cart-pole overcomes a hanging obstacle.

Observe that not all requirements have the same importance for this task.
We regard the safety requirements as fundamental constraints on the agent’s
behavior. A safety violation compromises the validity of the entire episode. The
target requirement expresses the main objective, and its completion is the agent’s
reason to be. Finally, comfort requirements are secondary objectives that should
be optimized as long as they do not interfere with the other two classes of
requirements. In the remainder of this paper, we will use this motivating example
to illustrate the steps that lead to the proposed methodology.

3 Related Work

Safety is a well-known and highly-researched problem in the RL community, and
the related literature is wide [11,23]. Many different definitions and approaches
have emerged over the years, so we will first clarify the interpretations of safety
that we adopt. Much work considers safety as the property of the trained policy,
determining whether the agent satisfies a set of constraints. They either try to

Safe Policy Improvement in Constrained Markov Decision Processes 363

converge to a safe policy at the end of the training [2,5,10,15], or try to ensure
safety during the entire training process [4,16,18,45,51,54,56,64].

Placing ourselves in a design perspective, we consider safety as a property
of the RL algorithm instead. By safety, we mean that a safe algorithm will not
return a policy with performance below a given threshold, with high probability
guarantees. Building on this interpretation, we will later define the conditions
for correct-by-construction RL algorithms. In the following, we review the main
approaches relevant to our contribution.

Safe Policy Improvement. Early representative of these algorithms are
CPI [34,46] that provide monotonically improving updates at the cost of enor-
mous sample complexity. More recently, [52] introduced TRPO, the first policy-
gradient algorithm which builds on trust-region methods to guarantee policy
improvement. However, its sound formulation must be relaxed in practice for
computational tractability. The class of algorithms more relevant for our work is
based on off-policy evaluation [47,57]. Seminal works in this field is HCPI [58,59]
that use concentration inequalities [40] to define high-confidence lower bounds on
the importance sampling estimates [47] of the policy performance. More recently,
this class of algorithms has been shown to be part of the general Seldonian frame-
work [60]. We build on this formalism to define our approach and differ from
the existing work by proposing a novel interface with a set of formally specified
requirements, and propose Daedalus-style solutions [58] to tackle the problem of
iterative improvement in an online setting.

Policy Evaluation with Statistical Model Checking. Statistical guaran-
tees on the policy evaluation for some temporal specification is commonly solved
with statistical model checking (SMC) [3,35]. Recent works have proposed SMC
for evaluating a NN decision policy operating in an MDP [24]. However, while
SMC relies on collecting a large number of executions of the policy in the envi-
ronment and hypothesis testing for providing performance bounds, our off-policy
setting tackles a different problem. In off-policy evaluation, the model of the envi-
ronment is generally unknown and we cannot deploy the decision policy in the
environment because it could be costly or dangerous. Unlike SMC, we cannot
directly collect statistics with the decision policy. Conversely, we try to approx-
imate the expected performance using data collected by another policy.

RL with Temporal Logic. Much prior work adopts temporal logic (TL)
in RL. Some of it focuses on the decomposition of a complex task into
many sub tasks [33,61]. Other on formulations tailored to tasks specified in
TL [21,29,31,36]. Several works use the quantitative semantics of TL (i.e., STL
and its variants) to derive a reward signal [7,32,37]. However, they describe the
task as a monolithic TL specification and compute the reward on complete [37]
or truncated trajectories [7]. In this work, we use HPRS, introduced in [9] to
mitigate the reward sparsity and subsequent credit-assignment problem, which
combines the individual evaluation of requirements into a hierarchically-weighted
reward, capturing the priority among the various classes of requirements.

364 L. Berducci and R. Grosu

Multi-objective RL. Multi-objective RL (MORL) studies the optimization of
multiple and often conflicting objectives. MORL algorithms learn single or mul-
tiple policies [38,50]. There exist several techniques to combine multiple reward
signals into a single scalar value (i.e., scalarization), such as linear or non-linear
projections [8,42,62]. Other approaches formulate structured rewards by impos-
ing or assuming a preference ranking on the objectives and finding an equilib-
rium among them [1,22,55,65]. [13] proposes to decompose the task specification
into many requirements. However, they do not consider any structured priority
among requirements and rely on the arbitrary choice of weights for each of them.
In general, balancing between safety and performance shows connections with
MORL. However, we focus on the safety aspects and how to guarantee safety
below a certain threshold with high probability. These characteristics are not
present in MORL approaches.

Hierarchically Structured Requirements. The use of partially ordered
requirements to formalize complex tasks has been proposed in a few works.
The rulebook formalism [14] represents a set of prioritized requirements, and
it has been used for evaluating the behaviors produced with a planner [14], or
generating adversarial testing scenarios [63]. In [48], a complementary inverse
RL approach proposes learning dependencies for formal requirements starting
from existing demonstrations. Conversely, we use the requirements to describe
our task and define a Constrained MDP, and then focus on the design of a safe
policy-improvement algorithm.

Model-Based Reinforcement Learning. Among the first representatives of
model-based RL algorithms is PILCO [19], which learned a Gaussian process for
low-dimensional state systems. More recent works showed that it is possible to
exploit expressive neural-networks models to learn complex dynamics in robotics
systems [41], and use them for planning [17] or policy learning [30]. In the context
of control from pixel images, world models [25] proved that it is possible to
learn accurate dynamic models for POMDPs by using noisy high-dimensional
observations instead of accurate states. Their application in planning [27], and
later in policy learning [26], have achieved the new state-of-the-art performance
in many benchmarks and were recently applied to real-world robots [12].

4 Preliminaries

4.1 Reinforcement Learning

Reinforcement Learning (RL) aims to infer an intelligent agent’s policy that takes
actions in an environment in a way that maximizes some notion of expected
return. The environment is typically modeled as a Markov decision process
(MDP), and the return is defined as the cumulative discounted reward.

Safe Policy Improvement in Constrained Markov Decision Processes 365

Definition 1. A Markov Decision Process (MDP) is a tuple M = (S,A, p,R, γ),
where S is a set of states; A is a set of possible actions; p : S ×A×S → [0, 1] is
a transition probability function (where p(st+1|at, st) describes the probability of
arriving in state st+1 if action at was taken at state st); R : S ×A×S → R is a
deterministic reward function, assigning a scalar value to a transition; γ ∈ [0, 1]
is the discount factor that balances the importance of achieving future rewards.

In RL, one aims to find a policy π : S×A → [0, 1] which maps states to action
probabilities, such that it maximizes the expected sum of rewards collected over
episodes (or trajectories) τ :

π� = arg max
π

Eτ∼μ(·|π)

[∞∑

t=0

γtR(st, at, st+1)
]
,

where μ(τ |π) represents the distribution over episodes observed when sampling
actions from some policy π, and τ ∼ μ(·|π) denotes an episode that was sampled
from this distribution.

Conventional RL approaches do not explicitly consider safety constraints
in MDPs. Constrained MDPs [6] extend the MDP formalism to handle such
constraints, resulting in the tuple M = (S,A, p,R,C, γ, d), where C : S × A ×
S → R is a cost function and d ∈ R is a cost threshold. We aim to teach the
agent to safely interact with the environment. More concretely, considering the
episodes τ ∼ μ(·|π), the expected cumulative cost must be below the threshold
d; that is, the constraint is Eτ∼μ(·|π)

[∑∞
t=0 γtC(st, at, st+1,)

] ≤ d. Formally, the
constrained optimization problem consists of finding π� such that:

π� = arg max
π

Eτ∼μ(·|π)

[∞∑

t=0

γtR(st, at, st+1,)
]

subject to Eτ∼μ(·|π)

[∞∑

t=0

γtC(st, at, st+1,)
] ≤ d

We denote the expected cumulative discounted reward and cost as V π and
V π

C , respectively. When dealing with multiple constraints, we use Ci, di, and V π
Ci

to denote the i-th cost function, its threshold, and expected cumulative cost.

4.2 Hierarchical Task Specifications

Requirements Specification. In [9], we formally define a set of expressive
operators to capture requirements often occurring in control problems. Con-
sidering atomic predicates p

.= f(s)≥ 0 over observable states s∈ S, we extend
existing task-specification languages (e.g., SpectRL [33]) and define requirements
as:

ϕ
.= achieve p | conquer p | ensure p | encourage p (1)

Commonly, a task can be defined as a set of requirements from three basic
classes: safety, target, and comfort. Safety requirements, of the form ensure p, are

366 L. Berducci and R. Grosu

Table 2. Cart-pole example – formalized requirements.

Req Id Formula Id Formula

Req1 ϕ1 conquer d(x, G) = 0

Req2 ϕ2 ensure |θ| ≤ θmax

Req3 ϕ4 ensure d(x, O) > 0

Req4 ϕ3 ensure |x| ≤ xlim

Req5 ϕ5 encourage |θ| ≤ θcomf

naturally associated to an invariant condition p. Target requirements, of the form
achieve p or conquer p, formalize the one-time or respectively the persistent
achievement of a goal within an episode. Finally, comfort requirements, of the
form encourage p, introduce the soft satisfaction of p, as often as possible,
without compromising task satisfaction.

Let T be the set of all finite episodes of length T . Then, each requirement
ϕ induces a Boolean function σ : T →B evaluating whether an episode τ ∈T
satisfies the requirement ϕ. Formally, given a finite episode τ of length T , we
define the requirement-satisfaction function σ as follows:

τ |= achieve p iff ∃i ≤ T, τi |= p

τ |= conquer p iff ∃i ≤ T,∀j ≥ i, τj |= p

τ |= ensure p iff ∀i ≤ T, τi |= p

τ |= encourage p iff true

We explain below the proposed evaluation of comfort requirements. In our
interpretation, they represent secondary objectives, and their satisfaction does
not alter the truth of the evaluation. In fact, as long as the agent is able to safely
achieve the target, we consider the task satisfied. For this reason, the satisfaction
of comfort requirement always evaluates to true. To further clarify the proposed
specification language, we formalize the requirements for the running example.

Example 1. Consider the motivating cart-pole example. Now let us give the for-
mal specification of its requirements. The state is the tuple (x, ẋ, θ, θ̇), where
x is the position of the cart, ẋ is its velocity, θ is the angle of the pole to the
vertical axis, and θ̇ is its angular velocity. We first define: (1) the angle θmax of
the pole at which we consider the pole to fall from the cart; (2) the maximum
angle θcomf of the pole that we consider to be comfortable; (3) the world limit
xlim; (4) the position G of the goal; (5) the set of points O defining the static
obstacle; and (6) a distance function d between locations in the world (e.g.,
euclidean distance), that, with a slight abuse of notation, we extend to measure
the distance between the cart position and a set of points. Then, the task can
be formalized with the requirements reported in Table 2.

Safe Policy Improvement in Constrained Markov Decision Processes 367

Task as a Partially-Ordered Set. We formalize a task by a set of formal
requirements Φ, assuming that the target is unique and unambiguous. Formally,
Φ = ΦS 	 ΦT 	 ΦC such that:

ΦS := {ϕ |ϕ .= ensure p}
ΦC := {ϕ |ϕ .= encourage p}
ΦT := {ϕ |ϕ .= achieve p ∨ ϕ

.= conquer p}
The target requirement is required to be unique (|ΦT | = 1).

We use a very natural interpretation of importance among the class of require-
ments, which considers decreasing importance from safety, to target, and to com-
fort requirements. Formally, this natural interpretation of importance defines a
(strict) partial order relation ≺ on Φ as follows:

ϕ ≺ ϕ′ iff (ϕ ∈ ΦS ∧ ϕ′ ∈ ΦS) ∨ (ϕ ∈ ΦT ∧ ϕ′ ∈ ΦC)

The resulting pair (Φ,≺) forms a partially-ordered set of requirements and
defines our task. Extending the semantics of satisfaction to a set, we consider a
task accomplished when all of its requirements are satisfied:

τ |= Φ iff ∀ϕ ∈ Φ, τ |= ϕ. (2)

5 Contribution

In this section, we present the main contribution of this work: a correct-by-
construction RL pipeline to solve formally-specified control tasks. First, we for-
malize a CMDP from the set of requirements, providing the intuition behind
its sound formulation. Then, we describe the potential-based reward proposed
in [9] that we use to enrich the learning signal and still benefit from correctness
guarantees. Finally, we present an online RL algorithm that iteratively updates
a policy while maintaining the performance for safety requirements.

5.1 Problem Formulation

The environment is considered a tuple E = (S,A, p), where S is the set of states,
A is the set of actions, and p(st+1|st, at) is its dynamics, that is, the probability
of reaching state s′ by performing action a in state s. Given a task specification
(Φ,≺), where Φ = ΦS 	 ΦT 	 ΦC , we define a CMDP M = (S,A, p,R,C, γ, d) by
formulating its reward R and cost functions Ci to reflect the semantics of (Φ,≺).

We consider episodic tasks of length T , where the episode ends when the
task satisfaction is decided: either through a safety violation, a timeout, or the
goal achievement. When one of these events occurs, we assume that the MDP is
entering a final absorbing state sf , where the decidability of the episode cannot
be altered anymore. The goal-achievement evaluation depends on the target
operator adopted: for achieve p the goal is achieved when visiting at time t ≤T
a state st such that st |= p; for conquer p the goal is achieved if there is a time
i≤ T such that for all i≤ t ≤ T , st |= p.

368 L. Berducci and R. Grosu

We adopt a straightforward interface for safety requirements, requiring the
cost function Ci(s, a, s′) to be a binary indicator of the violation of the i-th safety
requirement φi ∈ ΦS when entering s′ from s: 0 if the current state satisfies
φi and 1 if the current state violates φi. We bound the expected cumulative
discounted cost by di, a user-provided safety threshold that depends on the
specific application considered:

V π
Ci

= Eτ∼μ(·|π)[
T∑

t=0

γtCi(st, at, st+1)] ≤ di

The choice of this cost function promotes simplicity, requiring users to only
be able to detect safety violations and relieving them from the burden of defining
more complex signals. Moreover, the resulting cost metric V π

Ci
reflects the failure

probability discounted over time by the factor γ and makes the choice of the
threshold di more intuitive by interpreting it in a probabilistic way.

We complete the CMDP formulation by defining a sparse reward, incentiviz-
ing goal achievement. Let p be the property of the unique target requirement.
Then, for safe transitions 〈st, at, st+1〉, we define the following reward signal:

R(st, at, st+1) =
{

1 if st+1 |= p
0 otherwise

The rationale behind this choice is that the task’s satisfaction depends on
the satisfaction of safety and target requirements. In the same way, the reward
R incentives safe transitions to states that satisfy the target requirement, and
the violation of any safety requirements terminates the episode, precluding the
agent from collecting any further reward. It follows that R incentives to reach
the target and stay there as long as possible, in the limit until T .

5.2 Reward Shaping

We additionally define a shaped reward with HPRS [9] to provide a dense train-
ing signal and speed-up the learning process. Since we consider a CMDP and
model the safety requirements as constraints, we restrict the HPRS definition to
target and comfort requirements.

We consider predicates p(s) .= f(s)≥ 0, where the value f(s) is bounded in
[m,M] for all states s. Let f−(s)= min(0, f(s)) and Φtc = ΦT 	 ΦC . We use the
continuous normalized signal r(ϕ, s) = 1 − f−(s)

m to define the potential shaping
function Ψ as follows:

Ψ(s) =
∑

ϕ∈Φtc

⎛

⎝
∏

ϕ′∈Φtc:ϕ′≺ϕ

r(ϕ′, s)

⎞

⎠ · r(ϕ, s)

This potential function is a weighted sum over all scores r(ϕ, s) for target
and comfort requirements, where the weights are determined by a product of
the scores of all specifications that are strictly more important (hierarchically)
than ϕ. Crucially, these weights adapt dynamically at every step.

Safe Policy Improvement in Constrained Markov Decision Processes 369

Corollary 1. The optimal policy for the CMDP M ′, where its reward R′ is
defined as below:

R′(st, at, st+1) = R(st, at, st+1) + γΨ(st+1) − Ψ(st) (3)

is also an optimal policy for the CMDP M with reward R.

The corollary stated in [9] follows by the fact that Ψ is a potential function
(i.e., depends only on the current state) and by the results in [43]. This result
remark that the proposed reward shaping is correct since it preserves the policy
optimality of the CMDP M .

The proposed hierarchical-potential signal has a few crucial characteristics.
First, it is a potential function and can be used to augment the original reward
signal without altering the optimal policy of the resulting CMDP. Second, it
is a multivariate signal that combines target and comfort objectives with mul-
tiplicative terms. A linear combination of them, as typical in multi-objective
scalarization, would assume independence among objectives. Consequently, any
linear combination would not be expressive enough to capture the interdepen-
dence between requirements. Finally, the weights dynamically adapt at every
step according to the satisfaction degree of the requirements.

5.3 Safe Policy Improvement in Online Setting

This section presents an online RL algorithm that uses a correct-by-construction
policy-improvement routine. While this approach is general enough to be used
on any CMDP, we use it with the shaped reward signal and costs presented in
the previous section.

At each iteration, the algorithm performs a correct-by-construction refine-
ment of the current policy π, with high probability. This means that, with high
probability, the algorithm returns a policy π′ whose safety performance is not
worse than that of π. Since we are working in a model-free setting, with access
to only a finite amount of off-policy data, we can define correct-by-construction
only up to certain confidence δ. Below is the formal definition.

Definition 2. Let M be a CMDP with cost functions Ci for i ∈ [1, k], π a
policy, and Dn ∼ μ(·|π) a finite dataset of experiences collected with π. A policy-
improvement routine A is correct-by-construction if for any δ:

π′ = A(π,Dn, δ) s.t. Pr(
k∧

i=1

V π′
Ci

≤ V π
Ci

) ≥ 1 − δ

Having defined what correct-by-construction means, we describe how we can
build an update mechanism to prevent the deployment of an unsafe policy.

370 L. Berducci and R. Grosu

High-Confidence Off-Policy Policy Evaluation. Before releasing a policy
π′ for deployment in the environment, we need to estimate its safety performance
using a set of trajectories Dn collected with the previous deployed policy π. We
assume to know a threshold ρ+, being either an acceptable upper bound for the
cost in our application or an estimate of the performance of the last deployed
policy π. We aim to evaluate a candidate policy π′ and check if its expected
cumulative costs are below the thresholds with a probability of at least 1− δ.

We use importance sampling to produce an unbiased estimator of ρ(π′) over
a trajectory τ collected by running π. The estimator is defined as

ρ̂(π′|τ, π) =
|τ |∏

t=1

π′(at|st)
π(at|st)

(|τ |∑

t=1

γtC(st, at, st+1)
)

Computing the importance weighted returns gives us unbiased estimators of
the safety performance [47]. The mean over estimators from n trajectories in Dn

is also unbiased, ρ̂ = 1
n

∑n
i ρ̂(π′|τi, π). However, we want to provide statistical

guarantees regarding the resulting value. We use the one-sided Student-t test to
obtain a 1 − δ confidence upper bound on ρ̂.

Let ρ̂i be the i-th unbiased estimator obtained by importance sampling, the
Student-t test defines:

ρ̂ =
1
n

n∑

i

ρ̂i,

σ =

√√
√
√ 1

n − 1

n∑

i

(ρ̂i − ρ̂)2

and proves that with probability 1 − δ that:

ρ ≤ ρ̂ +
σ√
m

t1−δ,n−1

where t1−δ,n−1 is the (1 − δ)100 percentile of the Student’s t distribution with
n−1 degrees of freedom. Under the assumption of normally distributed ρ̂, which
is a reasonable assumption [57] for large n by central limit theorem (CLT), we
use the Student’s t-test to obtain a guaranteed upper bound on ρ. If the upper
bound is below the threshold ρ+, we can release the current policy π in the
environment because we know that its expected cumulative cost is not higher
than ρ+ with probability at least 1 − δ.

Safe Model-Free Policy Improvement (SMFPI). Among the most suc-
cessful approaches in model-free optimization are policy gradient methods [53].
They update the policy by estimating the policy gradient over a finite batch of
episodes Dn. A typical gradient estimator for a policy πθ parametrized by θ is

ĝ = E(st,at)∈Dn

[∇θ log πθ(at|st)Ât

]

Safe Policy Improvement in Constrained Markov Decision Processes 371

where Ât is an estimator of the advantage function and, in its simplest form,
corresponds to the discounted cumulative return.

The main limitation of these approaches is due to the on-policy nature of
policy gradient methods. At each policy update, they must collect new data by
interacting with the environment to compute the gradients. Reusing the same
trajectories to perform many updates is not theoretically justified and can per-
form catastrophic policy updates in practice. The first algorithm we propose,
SMFPI, directly uses this policy-gradient update and estimates the return as
the sum of the shaped rewards, as presented in the previous section. The fol-
lowing subsection discusses a model-based solution to improve data efficiency by
learning a dynamics model.

Safe Model-Based Policy Improvement (SMBPI). Model-based algo-
rithms are known to be more sample efficient than model-free ones. The data
collected over the training process can be used to fit a dynamics model that
serves as a simulator of the real environment.

Despite the variety of model-based approaches, we use the dynamics model
for training a model-free agent on predicted trajectories, reducing the required
interactions with the real environment. The dynamics model is reusable over
many iterations, and for this reason, we consider it a data-efficient alternative.

Learning the Dynamics. We consider the problem of learning an accurate dynam-
ical model. Traditional approaches use Bayesian models (e.g., GPs) [19] for
their efficiency in low-data regimes, but training on a large dataset and high-
dimensional data is prohibitive. Modern literature in deep RL [17] suggests that
using an ensemble of neural networks can produce competitive performance with
scarce data and efficiently scale to large-data regimes.

Since we intend to represent a potentially stochastic state-transition function,
capturing the noise of observations and process, we train a model to parametrize
a probability distribution. We assume a diagonal Gaussian distribution model pθ

and let a neural network predict the mean μθ(s, a) and the log standard deviation
log σθ(s, a). Instead of learning to predict the following state st+1 = pθ(st, at),
we train our dynamics model to predicts the change with respect to the current
state Δst+1 = pθ(st, at) [20,41].

However, training on scarce data may lead to overfitting and extrapolation
errors in the area of the state-action space that are not sufficiently supported
by the collected experience. A common solution to prevent the algorithm from
exploiting these regions consists of adopting an ensemble of models {pθi

}m
i=1.

With this ensemble representing a finite set of plausible dynamics of our system,
we predict the state trajectories and propagate the dynamics uncertainty by
shooting N particles from the current state st. At each timestep, we uniformly
sample one of the ensemble’s models. The choice of the ensemble size (i.e., the
number m of dynamics models) is crucial to capture the uncertainty in the under-
lying stochastic dynamics adequately. While a small ensemble might introduce
a significant model bias in policy optimization, a large ensemble increases the
computational and memory cost for learning and storing the models.

372 L. Berducci and R. Grosu

Policy Optimization with Learned Dynamics. The dynamical model defines an
MDP that approximates the real environment. This provides a simulator from
which we can sample plausible trajectories without harmful interaction.

Starting from true states sampled from our buffer of past experiences, we
generate predictions using the dynamical model ŝt+1 ∼ pθ(ŝt, at), for action
at ∼ π(ŝt). We assume the reward function rt = R(ŝt, at, ŝt+1) and the cost
functions ci,t = Ci(ŝt, at, ŝt+1) to be known. In general, the learned model could
predict them, so in the following, we refer to the predictive model as able to
generate state, reward and costs, i.e., (st+1, rt, ci,t) ∼ pθ(st, at).

Considering the predicted trajectories over a finite horizon H, we use model-
free RL to train the policy. This approach is agnostic to the specific algorithm
adopted. We consider two approaches for dealing with safety:

1. Pessimistic Reward. We alter the MDP transitions when visiting unsafe states
(where the cost exceeds the threshold). In this case, the system enters an
absorbing state where it repeatedly collects a high penalty −C.

2. Constrained optimization. We define the unconstrained Lagrangian objective

V (π) −
C∑

i=1

λiVCi
(π)

for some multiplier λi. Using gradient-based optimization, we iteratively
update the policy parameters and the dual variables λi.

Correct-by-Construction RL Algorithms. Having introduced various algo-
rithmic solutions to tackle the policy optimization process, we report the pseu-
docode of the complete algorithm in Algorithm 1.1. Then, we state an important
result derived from adopting high-confidence off-policy evaluation.

Theorem 1. Algorithm 1.2 (SMFPI) and Algorithm 1.3 (SMBPI) are correct-
by-construction policy-improvement routines.

Proof. Using the results from high-confidence off-policy evaluation litera-
ture [59], we demonstrate that each policy π′ returned by SMFPI or SMBPI
has expected cost less than or equal to the expected cost of the initial policy π
with probability at least 1 − δ. If π′ = π, then the condition is trivially satis-
fied, so let us assume π′ to be a different policy. According to the algorithm, π′

satisfies:
ρi ≤ ρi

+, ∀i ∈ [1, k]

By definition of ρi using Student-t test and confidence δ
k , and under the assump-

tion of normally-distributed cost sample means, we know that for each i:

Pr
(
V π′

Ci
≤ V π

Ci

) ≥ 1 − δ

k

and equivalently that

Pr
(
V π′

Ci
> V π

Ci

)
<

δ

k

Safe Policy Improvement in Constrained Markov Decision Processes 373

Using the Union Bound, we finally show that the probability of the event in
which at least one of the costs violates the correctness condition is at most δ.

Pr
(k∨

i=1

V π′
Ci

> V π
Ci

)
<

k∑

i=1

Pr
(
V π′

Ci
> V π

Ci

)
= δ

This statement is equivalent to the following condition which concludes the proof.

Pr
(k∧

i=1

V π′
Ci

≤ V π
Ci

) ≥ 1 − δ.

Algorithm 1.1. Safe Policy Optimization
Require: Initial policy π, confidence δ for policy improvement

Initialize prediction model pθ, empty buffer D and Dtest

for N epochs do
Collect data with π in environment:

D = D ∪ {(st, at, st+1, rt, c
1
t , ..., c

k
t , log π(at|st))}t

Estimate safety performance of current policy ρi
+(π), ∀i ∈ [1, k]

Optimize policy with SPI (Algorithm 1.2 or 1.3):

π = SPI(π, D, ρ+, δ)

end for
return π

Algorithm 1.2. Safe Model-free Policy Improvement (SMFPI)
Require: Initial policy π, data D ∼ μ(·|π), safety thresholds ρi

+, confidence δ
π′ = π
Split D into Dtrain and Dtest.
for L epochs do

Perform g policy updates of policy π′ with data Dtrain

Upper bound costs: ∀i = 1..k , ρi(π′) = HCOPE(π′, Dtest, δ/k)
if ∀i ∈ [1, k] ρi ≤ ρi

+ then
return π′

end if
end for
return π {no better policy found}

6 Experiments

In this section, we provide an empirical evaluation of the proposed approach.
Since it relies on two distinct contributions, the shaping reward and the

374 L. Berducci and R. Grosu

Algorithm 1.3. Safe Model-based Policy Improvement (SMBPI)
Require: Initial policy π, data D ∼ μ(·|π), safety thresholds ρi

+, confidence δ
Initialize or reuse predictive model pθ

Empty model buffer Dmodel

π′ = π
Split D into Dtrain and Dtest.
for L epochs do

Fit dynamics model pθ on dataset Dtrain

θ ← arg max
θ

E[log pθ(s
′, r, c|s, a)]

Collect h-step predicted trajectories with π′ and store in Dmodel

Perform g policy updates of policy π′ with data Dmodel

Upper bound costs: ∀i = 1..k , ρi(π′) = HCOPE(π′, Dtest, δ/k)
if ∀i = 1..k ρi ≤ ρi

+ then
return π′

end if
end for
return π {no better policy found}

correct-by-construction policy improvement, we structure the experiments in
two phases to evaluate each component in isolation.

6.1 Automatic Reward Shaping from Task Specification

We evaluate the proposed reward shaping against two standard RL benchmarks:
(1) The cart-pole environment, which has already been presented as a motivat-
ing example; (2) The bipedal-walker, whose main objective is to move forward
towards the end of the field without falling. We formulate one safety, one target,
and four comfort requirements for the bipedal walker.

Aiming to evaluate the automatic reward shaping process from formal task
specifications, we benchmark HPRS against two prior approaches using tempo-
ral logic. To formalize the task in a single specification, we consider it as the
conjunction of safety and target requirements. The baselines methods to shape
a reward signal are the following:

– TLTL [37] specifies tasks in a bounded (Truncated) LTL variant, equipped
with an infinity-norm quantitative semantics [39]. The quantitative evaluation
of the episode is used as a reward. We employ the RTAMT monitoring tool
to compute the episode robustness [44].

– BHNR [7] specifies tasks in a fragment of STL with the filtering semantics
of [49]. The reward uses a sliding-window approach to produce more frequent
feedback to the agent: at each step, it uses the quantitative semantics to
evaluate a sequence of H states.

Safe Policy Improvement in Constrained Markov Decision Processes 375

Since each reward formulation has its scale, comparing the learning curves
needs an external, unbiased assessment metric. To this end, we introduce a policy-
assessment metric (PAM) F , capturing the logical satisfaction of various require-
ments. We use the PAM to monitor the learning process and compare HPRS to
the baseline approaches (Fig. 3).

Let Φ = ΦS 	 ΦT 	 ΦC be the set of requirements defining the task. Then,
we define F as follows:

F (Φ, τ) = σ(ΦS , τ) + 1
2σ(ΦT , τ) + 1

4σavg(ΦC , τ)

where σ(Φ, τ)∈ {0, 1} is the satisfaction function evaluated over Φ and τ . We also
define a time-averaged version for any comfort requirement ϕ = encourage p,
as follows:

σavg(ϕ, τ) =
|τ |∑

i=1

1(si |= p)
|τ | .

Its set-wise extension computes the average over the set.

Corollary 2. Consider a task (Φ,≺) and an episode τ . Then, the following
relations hold for F :

F (Φ, τ) ≥ 1.0 ↔ τ |= ΦS , F (Φ, τ) ≥ 1.5 ↔ τ |= Φ

Fig. 3. Performance evaluation with respect to the Policy Assessment Metric (PAM).
This external metric is not used in training but to provide a sound evaluation of the
requirements and accounting for the different rewards scales. The threshold indicates
the task satisfaction (dashed line), as explained in Corollary 2. All the curves report
mean and standard deviation over five seeds.

376 L. Berducci and R. Grosu

6.2 Safe Policy Improvement in Online Setting

We evaluate the Safe Policy Improvement on a simple cart-pole task, where the
agent target is to remain close to the goal location while keeping the pole safely
balanced for an episode of 200 steps. We benchmark the proposed algorithm
SMFPI with Vanilla Policy Gradient (VPG), which performs unconstrained
updates based on the gradient estimates. We consider two scenarios of hyper-
parameter configurations, respectively with a favorable and unfavorable value
of the learning rate (LR). Figure 4 shows the performance as the mean and

Fig. 4. Performance for cumulative reward and cost violations under different hyper-
parameter configurations with learning rate (LR) 0.025 and 0.25. The aggregated per-
formance in the first two rows indicates the mean and standard deviation over five
runs. The last row shows the running cost estimate on the current batch for each of
the five runs.

Safe Policy Improvement in Constrained Markov Decision Processes 377

standard deviation of expected return and cost, aggregated over many runs. We
also report a running estimate of the expected cost for each run to compare the
oscillation of cost during the iterative policy updates.

Under a favorable hyperparameter setting LR = 0.025, we can observe that
both algorithms iteratively increase the expected return and decrease the
expected cost. As expected, VPG converges faster to the optimal value. However,
under the unfavorable hyperparameter setting LR = 0.25, the unconstrained pol-
icy update of VPG leads to high variance in the statistics and catastrophic oscil-
lation in the cost per run. Conversely, SMFPI shows a good policy improvement
and much lower variance in the learning curve due to a more conservative pol-
icy update. We also observe a monotonic decrease in expected cost, empirically
demonstrating the effectiveness of the proposed approach. We observe small sta-
tistical fluctuations in the estimated cost per run, which could depend on two
factors: (1) Online estimation of the cost on the current batch of data, (2) Use of
δ = 0.05, which guarantees a safe update up to certain confidence. When the cur-
rent batch contains few samples, the variance of the visualized cost estimate is
high. However, SMFPI does not update the policy in small-data regimes because
it cannot guarantee the improvement with sufficient confidence.

In this experiment, we show that the proposed algorithm is effective for safely
learning a decision policy. Starting from a random policy, SMFPI can iteratively
update the policy until it reaches the optimal return value without showing any
drop in expected cost. Its performance is robust to different hyperparameters
settings, which plays a critical role in modern deep RL algorithms. Compared
with unconstrained RL algorithms under optimal hyperparameters, the conver-
gence of SMFPI is slower. However, finding the correct hyperparameters by trial
and error is not always an option in critical applications.

7 Conclusion and Future Work

In this work, we presented a policy-synthesis pipeline, showing how to formalize
a CMDP, starting from a set of formal requirements describing the task. We
further enrich the reward with a potential function that does not alter the pol-
icy optimality under the standard potential-based shaping. We further define
correct-by-construction policy-improvement routines and propose two online
algorithms, one model-free and one model-based, to solve the CMDP starting
from an unsafe policy. Using high-confidence off-policy evaluation, we can guar-
antee that the proposed algorithms will return an equally good or improved pol-
icy with respect to the safety constraints. We finally evaluate the overall pipeline,
combining reward shaping and correct-by-construction policy improvement, and
show empirical evidence of their effectiveness. The proposed algorithm is robust
under different hyperparameters tuning, while unconstrained baselines perform
updates that deteriorate the safety performance and preclude the algorithm from
converging to optimal performances.

Compared with previous approaches that mainly focus on a batch setting,
we propose to use high-confidence off-policy evaluation online. In future work,
we intend to investigate the proposed model-based approach regarding data effi-
ciency and scalability of off-policy evaluation in an online setting. We plan to

378 L. Berducci and R. Grosu

extend the benchmarks with more complex tasks, targeting robotics applica-
tions and autonomous driving, study the convergence property more in-depth,
and characterize the eventual distance to the optimal policy.

Acknowledgement. Luigi Berducci is supported by the Doctoral College Resilient
Embedded Systems. This work has received funding from the Austrian FFG-ICT
project ADEX.

References

1. Abels, A., Roijers, D., Lenaerts, T., Nowé, A., Steckelmacher, D.: Dynamic weights
in multi-objective deep reinforcement learning. In: International Conference on
Machine Learning, pp. 11–20. PMLR (2019)

2. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017.
Proceedings of Machine Learning Research, vol. 70, pp. 22–31. PMLR (2017).
http://proceedings.mlr.press/v70/achiam17a.html

3. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. (TOMACS) 28(1), 1–39 (2018)

4. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. CoRR arXiv:1708.08611 (2017)

5. Altman, E.: Constrained markov decision processes with total cost criteria:
Lagrangian approach and dual linear program. Math. Methods Oper. Res. 48(3),
387–417 (1998)

6. Altman, E.: Constrained Markov decision processes, vol. 7. CRC Press (1999)
7. Balakrishnan, A., Deshmukh, J.V.: Structured reward shaping using signal tem-

poral logic specifications. In: 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 3481–3486 (2019). https://doi.org/10.1109/
IROS40897.2019.8968254

8. Barrett, L., Narayanan, S.: Learning all optimal policies with multiple criteria. In:
Proceedings of the 25th International Conference on Machine Learning, pp. 41–47
(2008)

9. Berducci, L., Aguilar, E.A., Ničković, D., Grosu, R.: Hierarchical potential-based
reward shaping from task specifications. arXiv (2021). https://doi.org/10.48550/
ARXIV.2110.02792

10. Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods. Aca-
demic press (2014)

11. Brunke, L., et al.: Safe learning in robotics: From learning-based control to safe
reinforcement learning. CoRR arXiv:2108.06266 (2021)

12. Brunnbauer, A., et al.: Latent imagination facilitates zero-shot transfer in
autonomous racing. arXiv preprint arXiv:2103.04909 (2021)

13. Brys, T., Harutyunyan, A., Vrancx, P., Taylor, M.E., Kudenko, D., Nowé, A.:
Multi-objectivization of reinforcement learning problems by reward shaping. In:
2014 International Joint Conference on Neural Networks (IJCNN), pp. 2315–2322.
IEEE (2014)

14. Censi, A., et al.: Liability, ethics, and culture-aware behavior specification using
rulebooks. In: International Conference on Robotics and Automation, ICRA 2019,
Montreal, QC, Canada, May 20–24, 2019, pp. 8536–8542 (2019)

http://proceedings.mlr.press/v70/achiam17a.html
http://arxiv.org/abs/1708.08611
https://doi.org/10.1109/IROS40897.2019.8968254
https://doi.org/10.1109/IROS40897.2019.8968254
https://doi.org/10.48550/ARXIV.2110.02792
https://doi.org/10.48550/ARXIV.2110.02792
http://arxiv.org/abs/2108.06266
http://arxiv.org/abs/2103.04909

Safe Policy Improvement in Constrained Markov Decision Processes 379

15. Chow, Y., Ghavamzadeh, M., Janson, L., Pavone, M.: Risk-constrained reinforce-
ment learning with percentile risk criteria. CoRR arXiv:1512.01629 (2015)

16. Christiano, P.F., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep
reinforcement learning from human preferences. In: Guyon, I., von Luxburg,
U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4–9, 2017, Long
Beach, CA, USA, pp. 4299–4307 (2017). https://proceedings.neurips.cc/paper/
2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html

17. Chua, K., Calandra, R., McAllister, R., Levine, S.: Deep reinforcement learning
in a handful of trials using probabilistic dynamics models. Advances in neural
information processing systems 31 (2018)

18. Dalal, G., Dvijotham, K., Veceŕık, M., Hester, T., Paduraru, C., Tassa, Y.: Safe
exploration in continuous action spaces. CoRR arXiv:1801.08757 (2018)

19. Deisenroth, M., Rasmussen, C.E.: Pilco: A model-based and data-efficient approach
to policy search. In: Proceedings of the 28th International Conference on machine
learning (ICML-11), pp. 465–472. Citeseer (2011)

20. Deisenroth, M.P., Fox, D., Rasmussen, C.E.: Gaussian processes for data-efficient
learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37(2),
408–423 (2013)

21. Fu, J., Topcu, U.: Probably approximately correct MDP learning and con-
trol with temporal logic constraints. In: Fox, D., Kavraki, L.E., Kurniawati, H.
(eds.) Robotics: Science and Systems X, University of California, Berkeley, USA,
July 12–16, 2014 (2014). https://doi.org/10.15607/RSS.2014.X.039. http://www.
roboticsproceedings.org/rss10/p39.html

22. Gábor, Z., Kalmár, Z., Szepesvári, C.: Multi-criteria reinforcement learning. In:
Shavlik, J.W. (ed.) Proceedings of the Fifteenth International Conference on
Machine Learning (ICML 1998), Madison, Wisconsin, USA, July 24–27, 1998, pp.
197–205. Morgan Kaufmann (1998)

23. Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learn-
ing. J. Mach. Learn. Res. 16, 1437–1480 (2015). http://dl.acm.org/citation.cfm?
id=2886795

24. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep Statis-
tical Model Checking. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS,
vol. 12136, pp. 96–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50086-3 6

25. Ha, D., Schmidhuber, J.: World models. arXiv preprint arXiv:1803.10122 (2018)
26. Hafner, D., Lillicrap, T., Ba, J., Norouzi, M.: Dream to control: Learning behaviors

by latent imagination. arXiv preprint arXiv:1912.01603 (2019)
27. Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., Davidson, J.:

Learning latent dynamics for planning from pixels. In: International Conference on
Machine Learning, pp. 2555–2565. PMLR (2019)

28. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep
reinforcement learning that matters. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

29. Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines
for high-level task specification and decomposition in reinforcement learning. In:
International Conference on Machine Learning, pp. 2107–2116. PMLR (2018)

30. Janner, M., Fu, J., Zhang, M., Levine, S.: When to trust your model: Model-based
policy optimization. Advances in Neural Information Processing Systems 32 (2019)

http://arxiv.org/abs/1512.01629
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
http://arxiv.org/abs/1801.08757
https://doi.org/10.15607/RSS.2014.X.039
http://www.roboticsproceedings.org/rss10/p39.html
http://www.roboticsproceedings.org/rss10/p39.html
http://dl.acm.org/citation.cfm?id=2886795
http://dl.acm.org/citation.cfm?id=2886795
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-50086-3_6
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1912.01603

380 L. Berducci and R. Grosu

31. Jiang, Y., Bharadwaj, S., Wu, B., Shah, R., Topcu, U., Stone, P.: Temporal-logic-
based reward shaping for continuing reinforcement learning tasks. In: Proceedings
of the AAAI Conference on Artificial Intelligence 35(9), pp. 7995–8003, May 2021.
https://ojs.aaai.org/index.php/AAAI/article/view/16975

32. Jones, A., Aksaray, D., Kong, Z., Schwager, M., Belta, C.: Robust satisfaction of
temporal logic specifications via reinforcement learning (2015)

33. Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement
learning from logical specifications. CoRR arXiv:2106.13906 (2021)

34. Kakade, S., Langford, J.: Approximately optimal approximate reinforcement learn-
ing. In: Proceedings of 19th International Conference on Machine Learning. Cite-
seer (2002)

35. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

36. Li, X., Ma, Y., Belta, C.: A policy search method for temporal logic specified rein-
forcement learning tasks. In: 2018 Annual American Control Conference (ACC),
pp. 240–245 (2018)

37. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3834–3839 (2017). https://doi.org/10.1109/IROS.2017.8206234

38. Liu, C., Xu, X., Hu, D.: Multiobjective reinforcement learning: a comprehensive
overview. IEEE Trans. Syst. Man Cybern. Sys. 45(3), 385–398 (2015). https://doi.
org/10.1109/TSMC.2014.2358639

39. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

40. Massart, P.: Concentration inequalities and model selection: Ecole d’Eté de Prob-
abilités de Saint-Flour XXXIII-2003. Springer (2007)

41. Nagabandi, A., Kahn, G., Fearing, R.S., Levine, S.: Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In: 2018
IEEE International Conference on Robotics and Automation (ICRA), pp. 7559–
7566. IEEE (2018)

42. Natarajan, S., Tadepalli, P.: Dynamic preferences in multi-criteria reinforcement
learning. In: Proceedings of the 22nd International Conference on Machine Learn-
ing, pp. 601–608 (2005)

43. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: Proceedings of the Sixteenth Inter-
national Conference on Machine Learning, pp. 278–287. Morgan Kaufmann (1999)

44. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

45. Phan, D.T., Paoletti, N., Grosu, R., Jansen, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. CoRR arXiv:1908.00528 (2019)

46. Pirotta, M., Restelli, M., Pecorino, A., Calandriello, D.: Safe policy iteration. In:
International Conference on Machine Learning, pp. 307–315. PMLR (2013)

47. Precup, D.: Eligibility traces for off-policy policy evaluation. Computer Science
Department Faculty Publication Series, p. 80 (2000)

48. Puranic, A.G., Deshmukh, J.V., Nikolaidis, S.: Learning from demonstrations using
signal temporal logic in stochastic and continuous domains. IEEE Robot. Autom.
Lett. 6(4), 6250–6257 (2021). https://doi.org/10.1109/LRA.2021.3092676

https://ojs.aaai.org/index.php/AAAI/article/view/16975
http://arxiv.org/abs/2106.13906
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1109/TSMC.2014.2358639
https://doi.org/10.1109/TSMC.2014.2358639
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-030-59152-6_34
http://arxiv.org/abs/1908.00528
https://doi.org/10.1109/LRA.2021.3092676

Safe Policy Improvement in Constrained Markov Decision Processes 381

49. Rodionova, A., Bartocci, E., Nickovic, D., Grosu, R.: Temporal logic as filtering. In:
Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control, pp. 11–20 (2016)

50. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective
sequential decision-making. J. Artif. Int. Res. 48(1), 67–113 (2013)

51. Saunders, W., Sastry, G., Stuhlmüller, A., Evans, O.: Trial without error: Towards
safe reinforcement learning via human intervention. CoRR arXiv:1707.05173 (2017)

52. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy
optimization. CoRR arXiv:1502.05477 (2015)

53. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

54. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, multi-agent, reinforcement
learning for autonomous driving. CoRR arXiv:1610.03295 (2016)

55. Shelton, C.: Balancing multiple sources of reward in reinforcement learning. In:
Leen, T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Process-
ing Systems, vol. 13. MIT Press (2001)

56. Thananjeyan, B., et al.: Recovery RL: safe reinforcement learning with learned
recovery zones. IEEE Robotics Autom. Lett. 6(3), 4915–4922 (2021). https://doi.
org/10.1109/LRA.2021.3070252

57. Thomas, P., Theocharous, G., Ghavamzadeh, M.: High-confidence off-policy eval-
uation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29
(2015)

58. Thomas, P., Theocharous, G., Ghavamzadeh, M.: High confidence policy improve-
ment. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Confer-
ence on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp.
2380–2388. PMLR, Lille, France, 07–09 Jul 2015. https://proceedings.mlr.press/
v37/thomas15.html

59. Thomas, P.S.: Safe reinforcement learning (2015)
60. Thomas, P.S., Castro da Silva, B., Barto, A.G., Giguere, S., Brun, Y., Brunskill,

E.: Preventing undesirable behavior of intelligent machines. Science 366(6468),
999–1004 (2019)

61. Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Teaching multiple
tasks to an rl agent using ltl. In: Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, pp. 452–461 (2018)

62. Van Moffaert, K., Drugan, M.M., Nowé, A.: Scalarized multi-objective reinforce-
ment learning: novel design techniques. In: 2013 IEEE Symposium on Adap-
tive Dynamic Programming and Reinforcement Learning (ADPRL), pp. 191–199
(2013). https://doi.org/10.1109/ADPRL.2013.6615007

63. Viswanadha, K., Kim, E., Indaheng, F., Fremont, D.J., Seshia, S.A.: Parallel and
multi-objective falsification with Scenic and VerifAI. In: Feng, L., Fisman, D.
(eds.) RV 2021. LNCS, vol. 12974, pp. 265–276. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88494-9 15

64. Wilcox, A., Balakrishna, A., Thananjeyan, B., Gonzalez, J.E., Goldberg, K.: LS3:
latent space safe sets for long-horizon visuomotor control of iterative tasks. CoRR
arXiv:2107.04775 (2021)

65. Zhao, Y., Chen, Q., Hu, W.: Multi-objective reinforcement learning algorithm for
mosdmp in unknown environment. In: 2010 8th World Congress on Intelligent
Control and Automation, pp. 3190–3194 (2010). https://doi.org/10.1109/WCICA.
2010.5553980

http://arxiv.org/abs/1707.05173
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1610.03295
https://doi.org/10.1109/LRA.2021.3070252
https://doi.org/10.1109/LRA.2021.3070252
https://proceedings.mlr.press/v37/thomas15.html
https://proceedings.mlr.press/v37/thomas15.html
https://doi.org/10.1109/ADPRL.2013.6615007
https://doi.org/10.1007/978-3-030-88494-9_15
https://doi.org/10.1007/978-3-030-88494-9_15
http://arxiv.org/abs/2107.04775
https://doi.org/10.1109/WCICA.2010.5553980
https://doi.org/10.1109/WCICA.2010.5553980

Runtime Verification Meets Controller
Synthesis

Shaun Azzopardi , Nir Piterman , and Gerardo Schneider(B)

University of Gothenburg, Gothenburg, Sweden
{shaun.azzopardi,nir.piterman,gerardo.scheider}@gu.se

Abstract. Reactive synthesis guarantees correct-by-construction con-
trollers from logical specifications, but is costly—2EXPTIME-complete
in the size of the specification. In a practical setting, the desired con-
trollers need to interact with an environment, but the more precise the
model of the environment used for synthesis, the greater the cost of
synthesis. This can be avoided by using suitable abstractions of the envi-
ronment, but this in turn requires appropriate techniques to mediate
between controllers and the real environment. Runtime verification can
help here, with monitors acting as these mediators, and even as activa-
tors or orchestrators of the desired controllers. In this paper we survey
literature for combinations of monitors with controller synthesis, and
consider other potential combinations as future research directions.

Keywords: Reactive synthesis · Controllers · Runtime verification ·
Monitors

1 Introduction

Developing programs correctly is difficult, always requiring iteratively finding
and repairing bugs. The traditional formal solution is model checking, which
can be employed to confirm the correctness of programs with respect to some
specification (often in linear temporal logic). Recently, significant effort has
instead gone into reactive synthesis, the study and development of techniques
that automatically produce correct-by-construction programs from LTL specifi-
cations [19,25,26]. See, for example, [13] for an introduction to reactive synthesis.

In the setting of an adversarial environment, where certain goals are desired,
reactive synthesis techniques can be used to determine if these goals are always
achievable and if the answer is positive, to construct a program that achieves
these goals. This kind of program is called a controller, and both the goals and
the environment are usually described in linear temporal logic (LTL).

Unfortunately, practical considerations can make this costly—already for
LTL specifications the problem is 2EXPTIME-complete [26]. In what concerns

This research is funded by the ERC consolidator grant D-SynMA under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No.
772459).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 382–396, 2022.
https://doi.org/10.1007/978-3-031-19849-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_22&domain=pdf
http://orcid.org/0000-0002-2165-3698
http://orcid.org/0000-0002-8242-5357
http://orcid.org/0000-0003-0629-6853
https://doi.org/10.1007/978-3-031-19849-6_22

Runtime Verification Meets Controller Synthesis 383

cost, on the other hand, formal verification allows one to verify whether an exist-
ing system satisfies the desired specification, at a cheaper price (e.g., PSPACE-
complete for model checking of LTL [28]). This is even more true for runtime
verification on single execution prefixes at runtime [18]. However, reactive synthe-
sis is still more alluring, since it promises to solve the problem of automatically
developing a controller for whatever the environment does, when possible, at
least in a theoretical setting—the price is worth paying.

Applying reactive synthesis in a practical setting however may not be easy.
One problem is that a desired controller may need to interact with systems whose
full representation in LTL can be very large, the size of which is a parameter
to the 2EXPTIME-complete complexity of reactive synthesis. This problem can
be handled by using appropriate abstractions of the environment. For example,
if the environment is at times engaged in a process that requires several actions
in sequence, but the reactive synthesis problem is only interested in the point
this process ends, then we can do with only one proposition that is true when
the process ends. This avoids the need to have a proposition for every possi-
ble state of the environment. However, applying such high-level controllers in
practical settings requires an interface with the real environment that adapts
real-world events to the expected higher-level, abstract events. In literature we
find monitors used in such a manner.

Monitors are objects that observe a system. In runtime verification they are
used to output, given a certain execution prefix, whether the system currently
satisfies or violates a certain property [18]. Synthesising such monitors is cheap
but when combined with reactive synthesis they open up the possibility to solve
problems not expressible in LTL (see Sect. 3), or at least to reduce the size (and
thus cost) of the reactive synthesis problem. Essentially, their use can be to
abstract away parts of specification, to reduce the synthesis problem to a kernel
of the original specification.

In literature we find several ways in which monitors are used thusly. In this
paper we set out to survey these combinations, mostly based on our own experi-
ence and contributions in this line. More concretely, we classify the approaches
found in literature as according the following:

i) Monitors to identify what guarantee should start holding and when (Sect. 3);
ii) Monitors for environment assumptions (Sect. 4); and
iii) Monitors as orchestrators between controllers (Sect. 5).

Before presenting these, in the next section we give some brief background
to runtime verification and reactive synthesis, and after in Sect. 6 we consider
and propose other combinations providing future directions for research, and we
give our concluding remarks in Sect. 8.

384 S. Azzopardi et al.

2 Background

We give a brief background on runtime verification and reactive synthesis, with
a running example of a monitor and a reactive synthesis problem.

2.1 Runtime Verification

Runtime verification (RV) is a lightweight verification technique, consolidated in
between informal non-exhaustive techniques like testing and formal static veri-
fication techniques like model checking, static verification and theorem proving.
In a way, RV is understood to be a good complementary approach surmounting
the weaknesses of those techniques.

RV techniques allow the construction of monitors for the execution of software
systems in order to ensure the validity of a given property, or the detection of its
violation, at runtime [15,18]. These monitors can be constructed from higher-
level formal specifications, usually LTL, but also from more operational and
more expressive symbolic automata.

q0start q1 q2

inUse ∧ inUseFor < n
inUseFor ++

inUse ∧ inUseFor ≥ n

¬inUse ∧ unused < m
unused ++

inUse
unused = 0

¬inUse ∧ unused ≥ m

Fig. 1. Monitor that checks that the room has been in use for n time steps, after which
when there is a period of m time steps where the room is empty it flags.

Symbolic automata monitors are finite-state automata, with internal vari-
ables. Rather than labelling transitions by events, these automata’s transitions
are labelled by propositional guards over events and internal variables, and
actions on the internal variables. This allows succinct program-like specifications,
leaving it up to the writer how much information to encode in the control-flow
and how much to make symbolic.

An example is the monitor illustrated in Fig. 1. This monitor represents oper-
ationally some implementation that, through sensors, detects when people are in
the room (inUse). Moreover, it deduces that the room needs cleaning depending
on how long the room has been in use and after that waits for enough time to
pass until the room no longer has any foot traffic (¬inUse). Reaching q2 is the
point at which the monitor identifies the room as being dirty, and thus ready to
be cleaned.

There are several variations on these monitors that include richer features,
like a notion of timers and communication over channels [11]. In runtime verifica-
tion they have been used to monitor programs written in different programming
languages, e.g., Java [11], and Solidity [4].

Runtime Verification Meets Controller Synthesis 385

INPUTS { ROOMCLEAN; INROOM; DOORLOCKED; }

OUTPUTS { GOTOROOM; LEAVEROOM; CLEAN; LOCKDOOR; }

ASSUMPTIONS {

G F (!GOTOROOM || INROOM);

G F (!LEAVEROOM || !INROOM);

G F (!(LOCKDOOR && INROOM && CLEAN) || ROOMCLEAN);

G ((DOORLOCKED && ROOMCLEAN) -> X ROOMCLEAN);

G ((!ROOMCLEAN && !CLEAN) -> X !ROOMCLEAN);

G ((!INROOM && !GOTOROOM) -> X !INROOM);

G ((INROOM && !LEAVEROOM) -> X INROOM);

G (LOCKDOOR -> X DOORLOCKED);

G (!LOCKDOOR -> X !DOORLOCKED);

}

GUARANTEES {

F (ROOMCLEAN && (X F !INROOM) && (X F !DOORLOCKED));

}

Fig. 2. Snippet in TLSF [16] format for the reactive synthesis of a cleaning robot.

2.2 Reactive Synthesis

Controllers are programs that control for a certain goal in the context of some
environment. Focusing on reactive controllers, the problem of reactive synthesis
is to construct controllers from linear temporal logic (LTL) specifications [26].
We assume familiarty with LTL, but for completeness, LTL is the language over
a set of atomic propositions AP , with negation, conjunction, the unary operator
next (X), and the binary operator until (U). The eventually operator (F) is often
used, where Fφ

def= trueUφ and the always (or globally) operator: Gφ
def= ¬F¬φ.

Specifications in reactive synthesis are of the form:

A → G,

where A is the assumption specification, restricting the way variables can be
controlled by the environment, and G, the guarantee specification, describing
behaviour the desired controller should induce. The environment is assumed to
be adversarial, and when for every possible environment behaviour the controller
can always ensure G then problem is said to be realisable, otherwise it is said to
be unrealisable and then no controller exists. This problem of LTL realizability
is known to be 2EXPTIME-complete [26].

Consider Fig. 2 as an example of a reactive synthesis problem for a robot
to clean a room. We have a partition of propositions into input (uncontrollable)
and output (controllable) propositions. The assumptions are an abstraction of
the robot’s environment and the effect of the robot’s actions (outputs) on the
environment. The guarantees require that a robot synthesised using this specifi-
cation will eventually clean the room, and then leave the room while leaving the
room unlocked. This problem is realisable: Fig. 3 shows a controller for it.

386 S. Azzopardi et al.

3 Monitoring for Guarantees

Monitors can be used to identify the point at which a certain property is satisfied
or violated. In reactive synthesis we often want to activate the obligation for
the controller to satisfy some guarantee once the environment behaves in some
way. In literature we find two ways in which monitors are exploited to aid this.
Initially, we look at our own work [5], that consider a priori monitors that
identify points where we require some guarantees. We also look into an approach
by Finkbeiner et al. [14], where guarantees become known only at runtime. In
that work monitors are used to ensure outstanding co-safety obligations arising
from the initially required guarantees hold even when requirements change at
runtime and a new controller needs to be generated and used.

Monitor Triggers. We start with an example, based on the cleaning robot exam-
ple. Consider we have an a priori precise notion of when the room is dirty and
needs cleaning, given as a program-like monitor, as illustrated in Fig. 1. Consider
the problem of finding a strategy for a cleaning robot to ensure a room is clean.
The question then is how to synthesise a strategy for a cleaning robot to ensure
the room is eventually cleaned whenever this obligation starts holding (at q2).

In [5] we propose to specify such problems with the combination of symbolic
monitors (M) and LTL (assumptions A and guarantees φ), in two ways: simple
triggering A → M : φ and triggering with repetition A → (M;φ)∗. The point
at which a monitor triggers the obligation to satisfy φ is clear, given appropriate
final states in M. However, an important aspect, is that it is not obvious at
which point a controller for φ should return back control to M. For general
LTL formulas there is no specific point at which an obligation is satisfied, e.g.,
an invariant Gφ′ would have to continue enforcing φ′ forever. However, for co-
safety formulas there is such a natural point: the end of a tight or satisfaction-
informative prefix (the dual of the violation-informative prefix of [17]). [5] gives a
2EXPTIME-complete algorithm to construct a controller that finishes executing
when such a point has been reached, remaining within the same complexity class
as reactive synthesis. Simply plugging in such a controller C for A → φ, with
M, results in (M; C)∗, a controller for the original formula.

This approach has limitations. Assumptions about the environment have
to be stateless, given the controller synthesis is done for A → φ. For stateful

q0

startstart

qF

000/1-00
011/-011
010/-011
001/1-00
101/0--0
111/-1-0

100/0--0
110/-1-0 010/-100

110/-1-0

Fig. 3. Cleaning robot controller, as given by Strix [19]—inputs (outputs) on left
(right)-hand side of transition labels, with 0 (1) at nth position for input (output)
denotes nth proposition in input (output) list (from Fig. 2) being false (true).

Runtime Verification Meets Controller Synthesis 387

assumptions one would have to reason about their state at points where the
monitor triggers, and at the point the required controller gives back control to the
monitor. Moreover, to have many such trigger constructs running in parallel is
problematic, since it does not allow to re-use the compositional synthesis method
we described, e.g. the synthesis of a controller for (M;φ) ∧ (M′;φ′) cannot be
delegated to just synthesising a controller for φ and for φ′ independently, but
requires synthesising both together.

On the other hand, properly abstracting the monitor in LTL (which is pos-
sible in this case) results in very large controllers even for small values of n and
m in the monitor. For example, setting n = m = 2 in M, and combined with
G appropriately, Strix [19], the state-of-art tool in LTL reactive synthesis, pro-
duces a controller with around four times the transitions as that of the symbolic
monitor and the tight controller for G. Moreover, this continues to increase as n
and m increases, while with our approach changing the value of the parameters
does not change the size of the final controller.

Obligation Monitors. In our work, there is an a priori description on when
an obligation is in effect, and of the obligated LTL requirement itself. These
may however both be relaxed. In general, reactive synthesis assumes that the
guarantees do not change at runtime. However this is not necessarily the case
in a practical setting—often requirements change and systems are taken offline.
Monitors have been used to aid the process of updating such obligations.

Finkbeiner et al. [14] consider the problem of live synthesis, where a system
may be replaced by another at runtime. They consider that at the point where
the replacement occurs, there may be outstanding obligations from the require-
ments of the first system that would be violated if it is simply replaced with a
synthesised controller for the new requirements. Instead, they require that the
new controller also satisfies these outstanding obligations. The problem then is
how to identify what the obligations are at the exact point of replacement.

For example, consider a setting where we want to re-assign the cleaning robot
to clean other room. If we do the handover between the old and new strategy
näıvely, the robot could leave the first room unclean. A more natural requirement
on this handover would ensure the robot achieves one last time its co-safety
requirements in the first room, before moving to the second room. For example,
consider a setting where we want to re-assign the cleaning robot to clean other
room. If we do the handover between the old and new strategy näıvely, the robot
could leave the first room unclean. A more natural requirement on this handover
would ensure the robot achieves one last time its co-safety requirements in the
first room, before moving to the second room.

Considering outstanding obligations as co-safety properties, Finkbeiner et
al. [14] use monitors to consider any remaining outstanding obligations. They
synthesise monitors at the same time as the original controller is synthesised,
that monitors for the remaining obligations given any execution prefix of the
controller. Then, when a system update must be effected then the new controller
is synthesised to also satisfy the obligations the monitor signals as outstanding.

388 S. Azzopardi et al.

In our example, if the cleaning robot has not yet managed to clean the room,
then the new strategy will take this into account and clean the room, unlock the
door, and leave the room, before leaving for its new mission. Similarly, if it has
cleaned the room but not yet unlocked the door and left the room, it will do so
before attempting the next mission.

Compare this also with the approach of [24], where additional specifications
are required for the transition between the new and old specifications. This work
also assumes additional signals that control the transition process.

4 Monitoring for Assumptions

As mentioned, commonly, a reactive synthesis problem has two parts: guarantees
(G) we wish a controller to control for in the context of some assumptions (A)
about the environment, i.e. the specification A =⇒ G. If the assumptions can
be invalidated by the controller then the specification becomes true, and the
controller has ‘won’ since the implication then becomes trivially true whatever
the controller does after. This is not always ideal. Often, we want to exclude
solutions to a reactive synthesis problem where the controller invalidates the
assumption, since it is not usually the intention of the designer. Excluding these
kinds of solutions usually requires expertise in modelling the environment in the
assumptions appropriately. There is however work to exclude these automati-
cally, e.g., for the GR(1) subset of LTL [20].

Moreover, reactive synthesis is adversarial, i.e., the environment is assumed
not to invalidate its own assumptions, but in a practical setting the real-world
environment may actually violate the constraints that were assumed. This may
be due to imprecise modelling or unpredicted changes that occur during the
lifetime of the system. Theoretically this is not problematic, since the controller
simply wins in this case. Practically this can be a problem—an assumption viola-
tion may go unnoticed and lead to a controller working based on information that
is not accurate. This can lead it to trying to fulfil a now impossible goal, resulting
in a waste of resources at best and at worst interfering with the goals of other
agents. In this setting, the controller would ideally halt or change its behaviour
once the environment no longer satisfies our original assumptions about it, for
which we can exploit monitors. Monitors for environment assumptions can be
run concurrently with the controller, stopping the controller (or taking other
actions) if an environment assumption is violated. We consider two works along
this direction.

Unmodelled Environment Behaviour. In a practical setting, the designer may
not give exact or even sound environment assumptions, but instead give a neces-
sary abstraction of the environment assumptions. This measure may be taken to
reduce complexity, or in the case that the environment model is not discrete or
expressible in LTL. In this case we do not fulfil our goals simply by the environ-
ment remaining within the bounds of our necessary version of the assumptions.
Here, having an environment assumption monitor running concurrently with the

Runtime Verification Meets Controller Synthesis 389

controller also can be useful, to signal possible failure of the controller, due to
unmodelled environment behaviour. This setting is considered by Zudaire et.al.
in [32], and described further below.

In a hybrid setting, a description of the environment and guarantees are given
in a language richer than LTL (e.g., with events carrying real numbers). To use
automatic reactive synthesis techniques entails discretising these descriptions,
and thus abstracting them. In this case, monitoring the LTL version of the
environment assumption may not be enough. For example, instead of describing
a sensor’s behaviour in detail, its LTL abstraction may simply be abstracted
with one boolean variable that is set as true when the sensor’s value is above a
certain value. However, at runtime a sensor may become miscalibrated due to
external factors (e.g., weather), although in the reactive synthesis problem we
may choose not to model this (since we may not necessarily be able to control
for the non-modelled factors).

In [32], Zudaire et al. handle the above problem by combining temporal task
planning with streaming runtime verification. Discrete task specifications are
enriched with an explicit representation of the assumptions about the continuous
world allowing, in this way, the monitoring of the validity of these assumptions,
and thus reacting to it accordingly. See [32] for an application of the technique
to three different scenarios in the context of Unmanned Aerial Vehicles.

In this case, instead of monitoring for the complete LTL abstraction, we
can monitor for a richer specification of the abstraction that captures the non-
modelled behaviour. This monitor can then be used to notify when realisability
of the concrete problem is no longer ensured, due to non-modelled factors. It can
also be used in a predictive manner, where the possibility of failure is detected
before it occurs and (continuous) control measures are taken to prevent it (e.g.,
recalibration of sensor is carried out when accuracy falls beneath a certain level,
before a collision occurs).

Unknown Environment. In another case, the environment may not be known. A
sound assumption to make here would be simply true, but this would make any
interesting goal unrealisable, given it puts no limitations on the environment.
However, there are techniques to identify environment assumptions for which a
goal is realisable (e.g., [7,8]). If these assumptions are reasonably minimal and
weak, they can be used to synthesise a controller for the goal that can work in a
number of settings. Moreover, in the general case, beliefs about the environment
may turn out to be false and at runtime unexpected behaviour may be exhibited.

Environment monitors in these cases can also be used to monitor for the
environment assumptions used for synthesis, but moreover they can be used at
runtime to adjust these assumptions. In this line of work, Wong et al. [30] pro-
pose that when a violation is detected, the environment behaviour at runtime
can be used to re-synthesise a new controller that takes this new behaviour into
account. Before this, if the assumption violation still allows progress, the con-
troller maintains safety and takes action to allow progress when the environment
returns to the expected behaviour.

390 S. Azzopardi et al.

5 Monitors as Orchestrators in Contextual Missions

In [22] Maoz and Ringert list three main challenges concerning the applica-
tion of reactive synthesis to the robotics domain. The first challenge concerns
the scalability of using high-level declarative specification languages like LTL.
Reasoning in LTL is not something developers are used to—they are used to
more imperative languages, while LTL specifications can quickly become very
complex. Moreover, writing appropriate assumptions (and guarantees) is an art
in and of itself, and inadequate assumptions can lead to problematic imple-
mentations, as discussed in the previous sections. The second challenge is the
need for techniques to abstract from time and complex data, to allow for more
tractable synthesis. The final challenge relates to having appropriate support for
the development process, e.g., a tool integrating both verification and testing
of the controller, to allow the developer to check the controller respects their
intentions, or techniques that allow re-using previous synthesis artefacts when
the specification evolves (to avoid full re-synthesis).

The use of monitors has been proposed to help tackle these challenges (see
an initial proposal by Mallozzi et al. in [21, Chap. 7]). In particular: (1) monitors
add a level of imperativeness to a specification (as we also saw in Section. 3); (2)
reasoning about time, data, and complex behaviour can be relegated to monitors,
while still being represented in a formal structure, amenable to verification; and
(3) the use of monitors as orchestrators between different guarantees/controllers
can allow different parts of a specification to be synthesised separately (with
some caveats). In this section we briefly describe an application of monitors with
reactive synthesis as described in [21, Chap. 7]—a framework using monitors as
orchestrators in robotic missions with contextual missions/guarantees.

Let us consider a very simple example: an robot (or agent here) needs to
clean rooms r1 and r2 (task 1) one after the other during the day, and rooms r3

and r4 (task 2) during the night (see Fig. 4). Switching between tasks happens
when the context switches (from day to night and vice-versa).

Synthesising a controller for the above simple example is within reach using
existing techniques, however the synthesis needs to be done at a global level and
not compositionally, thus a certain context’s task changing (e.g., the layout of
furniture in one room is changed) requires re-synthesis for the whole mission.
Ideally, when possible, one would want to synthesise only for the changed tasks.
Moreover, should the context not be expressible in LTL, appropriate abstrac-
tions (perhaps of time or complex data) would need to be used, adding to the
complexity of the problem.

However, in these kinds of specifications one can attempt to do better. Under
different contexts, the robot has different tasks, which suggests that it would
be useful if the controller for each tasks could be synthesised separately and
then integrated later somehow with appropriate logic for context monitoring.
This first solution is not without its problems thought: trying to do a certain
task may have an effect on the state of another tasks. In a monolitic reactive
synthesis approach this is handled smoothly (the controller is aware of the states
of every task), but attempting to do things compositionally requires extra work

Runtime Verification Meets Controller Synthesis 391

Fig. 4. A robot cleaning 4 regions. Fig. 5. A high-level representation of con-
textual robot missions for 2 contexts.

to transition smoothly between tasks. This however may be unavoidable when
the specification required goes beyond LTL, or involves large numbers of variables
such as to make the synthesis problem intractable.

For that, Mallozzi et al. in [21, Chap. 7] suggest an architecture and devel-
opment environment composed of the following key components:

1. Agents: The agent has tasks (LTL specifications), each associated with a
certain context (explained next). These tasks are achievable through appro-
priately synthesised controllers acting under different contexts1. They can
be automatically synthesised from LTL specifications, or other specification
languages like Spectra [23]. The authors also allow programs in general.

2. Contexts: One assumes a set of contexts (in the example here day or night),
and a function that determines the current context from some knowledge
about the current state of the world. For example contexts can be geograph-
ical, like the neighbourhood of a city the controller is currently in; or some-
thing more complex, like being in a certain neighbourhood at a certain time
of day. An important aspect is that context can change, i.e. the current con-
text depends on the current point in time, and the previous behaviour of the
environment and the system.

3. Recovery controllers: Agents have no control on which context they are in at
any time-step. Thus, when the context changes, they are expected to transi-
tion seamlessly to making progress in the task of the next context. However,
the state of the task of this next context may have changed since the last time
the agent was in that context (e.g., someone may have moved some things
around in a room), and thus the agent might need to do some recovery task
to either get the agent or the environment in a state where the agent can
continue where they left off (e.g., returning the things moved around to their
previous position). Similarly, before leaving a context, it is reasonable to pre-
specify that the agent leaves it in a safe state (e.g., turned off any lights).
Recovery controllers serve these purposes.

1 Some of these may be written manually, or provided a priori, and appropriately
model checked.

392 S. Azzopardi et al.

4. Transition controllers: This is activated after the recovery controller leaves
the state in the previous context in a sane state, and activates the recovery
controller to prepare the state of the new context for the agent to continue.

5. Orchestrator: This is in charge of notifying the controllers of the change in
context in the real-world, and triggering of the actual change in context in
the system, as illustrated in Fig. 5.

Such a framework integrates the use of reactive synthesis in a much richer
setting. Using runtime monitors as orchestrators (or context monitors) in this
case adds considerable power: one can easily write simple monitors with the
capabilities of counting, accumulating, computing averages, memorising current
states, etc., besides the fact of allowing for parameterised specifications. There is
then a tradeoff between the strong guarantees about what is synthesised and the
expressive power of the orchestration against the requirement to have to specify
recovery transitions However, this can be managed in this setting through the
use of verification, which is possible for domains beyond synthesis.

Note that [21, Chap. 7] only presents an ad hoc solution to the problem given
in Fig. 4 when contexts are given by propositional variables (“night” and “day”).
A more general solution along the lines of the architecture presented in (Fig. 5)
for more general contexts and that can handle dynamic changes, is still missing.

6 Other Potential Combinations

We have seen monitors used effectively alongside controllers in extending the
scope of reactive synthesis. In each of these uses of monitors, the interaction
between monitors and controllers is, however, very specific and limited. Limiting
interaction has its benefits—it preempts the need for reasoning about complex
interactive behaviour. However, it also prevents interesting deeper applications.
We consider further possible combinations here.

Concurrent Monitors and Controllers. We can imagine discrete environment
events that can be controlled by monitors, e.g., a monitor written in a rich lan-
guage can be used to monitor the continuous world to notify a discrete controller
about some event. Some approaches, as we saw in Sect. 4, simply ignore these
more complex specifications, and use complete restrictions of them (e.g., that
a sensor can never become miscalibrated), with a monitor attempting to take
care of their violation at a higher-layer. This approach however trades overall
correctness guarantees of the hybrid controller, for easier automatic synthesis,
since the monitor’s behaviour may be crucial for realisability of the full problem.

As a first step, we are currently exploring the incorporation of more program-
like descriptions of the environment (encoded as symbolic monitors) in a reactive
synthesis problem. This would allow including complex specifications or imple-
mentations of the environment in a reactive synthesis, and through an appropri-
ate (sound) abstraction-refinement loop automatically synthesising a controller.
This will reduce the current necessary abstraction decisions the developer would
have to do, while it extends the scope of reactive synthesis to richer domains.

Runtime Verification Meets Controller Synthesis 393

We are also considering the use of monitors to abstract away parts of a
given LTL formula that are purely about the environment. Such an approach
could enable to reduce a synthesis problem by replacing some sub-formula with
a new variable, and composing the controller for the abstracted formula with
the monitor for the removed sub-formula. The crucial aspect of this problem
is that assumptions about the new variable may need to be added to make
the abstract problem realisable, and in the worst case full knowledge of the
hidden sub-formula may be needed. For example, consider a co-safety formula
about the environment φ, if we have a guarantee G(φ =⇒ Fc), where c is a
controller event. If this is all we have, then replacing φ in the guarantee by a fresh
environment event e suffices, and the controller generated can be composed with
a monitor for φ (that outputs e at every step φ is tightly/informatively satisfied
[5]) to create a controller for the original problem.

Monitors for Discretising Data-Carrying Events. Another problem to be tackled
is that of controllers for specification that require more than a finite alphabet,
but also data-carrying events. Consider a standard arbiter example, where we
want every request to eventually be matched by a grant. A standard way of
specifying this in LTL is to not allow new requests in between a request and the
corresponding grant, given the limitations with regards to counting in LTL. A
more general specification would be able to index an incoming request, and check
that there is a grant with a matching index. Consider a monitor with a counter,
that decorates a given request with the current value of the counter, increases
the counter, and then triggers a controller to eventually perform the associated
grant. The controller can be parametrised with a number, such that the events
it generates are parametrised by this number, and the monitor can then activate
such a distinct controller each time a request comes in. Such a system has an
infinite alphabet, but re-uses simpler LTL reactive synthesis techniques.

Running controllers in parallel is not simple however. These controllers may
be sharing resources, and thus the synthesis from a grant specification needs
to be modified such that a controller is aware there may be other controllers
working in parallel. A monitor here can also be used to mediate between the
controllers. A controller only needs to be aware of its own version of the events
(tagged by some number), and that the same events with a different number
can occur. A näıve solution would seem to require the controller being aware of
the whole infinite alphabet, however a monitor can be used to turn any event
labelled by another number into a generic other event, that can still be enough
for realising a controller.

7 Related Work

Monitors have been used as enforcers of properties at runtime, where if a sys-
tem, acting as a shield [6]. This is done through suppression and/or insertion
of system events by the enforcer, ensuring the property holds at runtime. The
setting of these approaches is usually that of an existing system and a shield

394 S. Azzopardi et al.

that enforces some (co-)safety or infinite-renewal properties about the system.
Reactive synthesis of LTL is more general that LTL runtime enforcement, given
the limitations of monitoring with regards to liveness properties.

Runtime verification has been exploited in other contexts to manage the
expense or limitations of other techniques, e.g., static verification [1–3,9] and
testing [10]. Moreover it has found applications beyond the dynamic analysis of
software, see [27] for a survey.

Other work that combines in some way monitors with reactive synthesis is
by Maoz and Ringert. In [23] they consider a language that includes a notion
of monitors, but these become part of the specification to be controlled, not
benefiting from treating monitors separately. Ehlers and Finkbeiner consider a
monitoring approach where prefixes are classified into whether the specification
remains realisable or not, or has been violated or fulfilled [12]. Chou et al. do
something similar, but for linear stochastic systems [31].

An ad hoc combination of monitors with reactive synthesis is given in [29].
In that paper, Ulus and Belta use runtime monitors to check and enforce safety
properties (e.g., to avoid certain locations or collision for robots), while control
techniques enforce the high-level mission. Monitored properties are expressed as
regular expressions and past temporal logic formulas. Monitors are also used to
discard unsafe trajectories from a proposed set of trajectories.

8 Conclusions

Reactive synthesis provides strong guarantees, but becomes harder the more
precise and rich a specification language. In this paper we have seen how run-
time monitoring techniques have been used to increase the scope of reactive
synthesis without increasing the hardness, by relegating parts of an envisioned
system to a monitor. We have surveyed techniques in literature along these lines,
including our own previous work, and identified three main kinds of monitor-
synthesis synergies: monitors to identify or trigger obligations; monitors that
identify assumption violation; and monitors that act as orchestrators between
controllers.

We identified some promising possible combinations. One is the use of mon-
itors in parallel with controllers, where monitors can even correspond to some
general non-regular property of the environment, or to a sub-formula of the
LTL specification we want to synthesise. We have also described how monitors
can have more control by dynamically activating copies of the same controller,
possibly in parallel, and mediating between these (e.g., to allow use of shared
resources), and decorating of their outputs according to some scheme, to ensure,
for example, that the nth request is matched by a grant from the nth controller.

We hope the reader may find other novel and interesting ways to combine in a
systematic and useful way runtime verification and reactive controller synthesis.

Runtime Verification Meets Controller Synthesis 395

References

1. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: A specification language
for static and runtime verification of data and control properties. In: Bjørner, N.,
de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 108–125. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19249-9 8

2. Ahrendt, W., Chimento, M., Pace, G., Schneider, G.: Verifying data- and control-
oriented properties combining static and runtime verification: theory and tools.
Formal Methods Syst. Des. 51(1), 200–265 (2017). https://doi.org/10.1007/
s10703-017-0274-y

3. Azzopardi, S., Colombo, C., Pace, G.J.: A technique for automata-based
verification with residual reasoning. In: MODELSWARD 2020, pp. 237–248.
SCITEPRESS (2020). https://doi.org/10.5220/0008981902370248

4. Azzopardi, S., Ellul, J., Pace, G.J.: Monitoring smart contracts: ContractLarva
and open challenges beyond. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS,
vol. 11237, pp. 113–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03769-7 8

5. Azzopardi, S., Piterman, N., Schneider, G.: Incorporating monitors in reactive
synthesis without paying the price. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021.
LNCS, vol. 12971, pp. 337–353. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88885-5 22

6. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: - runtime
enforcement for reactive systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 533–548. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 51

7. Cavezza, D.G., Alrajeh, D., György, A.: Minimal assumptions refinement for real-
izable specifications. In: FormaliSE’20, pp. 66–76. ACM (2020). https://doi.org/
10.1145/3372020.3391557

8. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
147–161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 14

9. Chimento, J.M., Ahrendt, W., Pace, G.J., Schneider, G.: StaRVOOrS?: A tool
for combined static and runtime verification of Java. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 297–305. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23820-3 21

10. Chimento, M., Ahrendt, W., Schneider, G.: Testing meets static and runtime verifi-
cation. In: FormaliSE@ICSE’18, pp. 30–39. ACM (2018). https://doi.org/10.1145/
3193992.3194000

11. Colombo, C., Pace, G.J., Schneider, G.: LARVA – safer monitoring of real-time java
programs (tool paper). In: SEFM’09, pp. 33–37. IEEE Computer Society (2009)

12. Ehlers, R., Finkbeiner, B.: Monitoring realizability. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 427–441. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29860-8 34

13. Finkbeiner, B.: Synthesis of reactive systems. In: Esparza, J., Grumberg, O., Sick-
ert, S. (eds.) Dependable Software Systems Engineering, NATO Science for Peace
and Security Series - D: Information and Communication Security, vol. 45, pp.
72–98. IOS Press (2016). https://doi.org/10.3233/978-1-61499-627-9-72

14. Finkbeiner, B., Klein, F., Metzger, N.: Live synthesis. In: Hou, Z., Ganesh, V. (eds.)
ATVA 2021. LNCS, vol. 12971, pp. 153–169. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-88885-5 11

https://doi.org/10.1007/978-3-319-19249-9_8
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.5220/0008981902370248
https://doi.org/10.1007/978-3-030-03769-7_8
https://doi.org/10.1007/978-3-030-03769-7_8
https://doi.org/10.1007/978-3-030-88885-5_22
https://doi.org/10.1007/978-3-030-88885-5_22
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1145/3372020.3391557
https://doi.org/10.1145/3372020.3391557
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1145/3193992.3194000
https://doi.org/10.1145/3193992.3194000
https://doi.org/10.1007/978-3-642-29860-8_34
https://doi.org/10.1007/978-3-642-29860-8_34
https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.1007/978-3-030-88885-5_11
https://doi.org/10.1007/978-3-030-88885-5_11

396 S. Azzopardi et al.

15. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.)
VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69149-5 40

16. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Piskac, R., Dimitrova, R. (eds.) Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, 17–18 July, 2016. EPTCS, vol. 229, pp. 112–
132 (2016). https://doi.org/10.4204/EPTCS.229.10

17. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 17

18. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alg.
Prog. 78(5), 293–303 (2009)

19. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1–2), 3–36 (2020)

20. Majumdar, R., Piterman, N., Schmuck, A.-K.: Environmentally-friendly GR(1)
synthesis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
229–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 13

21. Mallozzi, P.: Designing Trustworthy Autonomous Systems. Ph.D. thesis, Chalmers,
Sweden (2020)

22. Maoz, S., Ringert, J.O.: On the software engineering challenges of applying reactive
synthesis to robotics. In: RoSE’18, pp. 17–22 (2018)

23. Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive systems.
Softw. Syst. Model. 20(5), 1553–1586 (2021). https://doi.org/10.1007/s10270-021-
00868-z

24. Nahabedian, L., Braberman, V.A., D’Ippolito, N., Honiden, S., Kramer, J., Tei,
K., Uchitel, S.: Dynamic update of discrete event controllers. IEEE Trans. Software
Eng. 46(11), 1220–1240 (2020). https://doi.org/10.1109/TSE.2018.2876843

25. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

26. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL’89, pp.
179–190. ACM Press (1989). https://doi.org/10.1145/75277.75293

27. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods in System Design, pp.
1–57, August 2019. https://doi.org/10.1007/s10703-019-00337-w

28. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985). https://doi.org/10.1145/3828.3837

29. Ulus, D., Belta, C.: Reactive control meets runtime verification: a case study of
navigation. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
368–374. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 21

30. Wong, K.W., Ehlers, R., Kress-Gazit, H.: Correct high-level robot behavior in
environments with unexpected events. In: Robotics: Science and Systems X (2014).
https://doi.org/10.15607/RSS.2014.X.012

31. Yoon, H., Chou, Y., Chen, X., Frew, E., Sankaranarayanan, S.: Predictive runtime
monitoring for linear stochastic systems and applications to geofence enforcement
for UAVs. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
349–367. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 20

32. Zudaire, S., Gorostiaga, F., Sánchez, C., Schneider, G., Uchitel, S.: Assumption
monitoring using runtime verification for uav temporal task plan executions. In:
ICRA 2021, pp. 6824–6830. IEEE (2021). https://doi.org/10.1109/ICRA48506.
2021.9561671

https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.1007/3-540-48683-6_17
https://doi.org/10.1007/978-3-030-17465-1_13
https://doi.org/10.1007/s10270-021-00868-z
https://doi.org/10.1007/s10270-021-00868-z
https://doi.org/10.1109/TSE.2018.2876843
https://doi.org/10.1007/11609773_24
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/978-3-030-32079-9_21
https://doi.org/10.15607/RSS.2014.X.012
https://doi.org/10.1007/978-3-030-32079-9_20
https://doi.org/10.1109/ICRA48506.2021.9561671
https://doi.org/10.1109/ICRA48506.2021.9561671

Assumption Monitoring of Temporal Task
Planning Using Stream Runtime

Verification

Felipe Gorostiaga1(B) , Sebastián Zudaire2 , César Sánchez1 ,
Gerardo Schneider3 , and Sebastián Uchitel4,5

1 IMDEA Software Institute, Madrid, Spain
felipe.gorostiaga@imdea.org

2 Instituto Balseiro - Univ. Nacional de Cuyo, San Carlos de Bariloche, Argentina
3 University of Gothenburg, Gothenburg, Sweden
4 Univ. de Buenos Aires, Buenos Aires, Argentina

5 Imperial College London, London, UK

Abstract. Temporal task planning uses formal techniques such as reac-
tive synthesis to guarantee that a robot will succeed in its mission. This
technique requires certain explicit and implicit assumptions and sim-
plifications about the operating environment of the robot, including its
sensors and capabilities. A robot executing a plan can produce a silent
mission failure, where the user may believe that the mission goals were
achieved when instead the assumptions were violated at runtime. This
entails that mitigation and remediation opportunities are missed.

Monitoring at runtime can detect complex assumption violations
and identify silent failures, but such monitoring requires the ability
to describe and detect sophisticated temporal properties together with
quantitative and complex data. Additional challenges include (1) ensur-
ing the correctness of the monitors and a correct interplay between the
planning execution and the monitors, and (2) that monitors run under
constrained environments in terms of resources.

In this paper we propose a solution based on stream runtime verifi-
cation, which offers a high-level declarative language to describe sophis-
ticated monitors together with guarantees on the execution time and
memory usage. We show how monitors can be combined with temporal
planning not only to monitor assumptions but also to support mitigation
and remediation in UAV missions. We demonstrate our approach both
in real and simulated flights for some typical mission scenarios.

1 Introduction

Specifying and developing sophisticated behavior of autonomous systems is a
notoriously difficult task. Formal methods is a very tempting approach to the

This work was funded in part by the Madrid Regional Government under project
“S2018/TCS-4339 (BLOQUES-CM)” and by a research grant from Nomadic Labs and
the Tezos Foundation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 397–414, 2022.
https://doi.org/10.1007/978-3-031-19849-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_23&domain=pdf
http://orcid.org/0000-0002-3478-3408
http://orcid.org/0000-0002-6532-5813
http://orcid.org/0000-0003-3927-4773
http://orcid.org/0000-0003-0629-6853
http://orcid.org/0000-0001-9352-1478
https://doi.org/10.1007/978-3-031-19849-6_23

398 F. Gorostiaga et al.

rigorous development of robots and other autonomous systems. Temporal task
planning consists of defining a task specification of complex robot behaviors, for
example, using a fragment of the linear temporal logic (LTL), as we do in this
paper. The LTL specification is then transformed into a system using controller
synthesis, which implements an operational strategy that guarantees to achieve
the desired task [7]. The limitations of current synthesis technology require sev-
eral modeling simplifications to be able to encode the robot, its environment
and the mission goals. Consequently, the correctness of the approach depends
not only on the correctness of the specification and the synthesis tools used, but
also on certain explicit and implicit assumptions about the robot’s operating
environment, sensors and capabilities. A robot executing a plan can silently fail
to fulfill the task if the assumptions are violated at runtime, leading the user
to mistakenly believe that a mission has been accomplished successfully, which
can have significant practical consequences. Sometimes the assumptions can fail
due to unforeseen circumstances. Also, the current synthesis technology that is
typically used for temporal planning requires a discretization and simplification
of the environment that may not always be respected at runtime.

Monitoring assumption violations at runtime can detect silent failures and
provide mitigation and remediation opportunities. In this paper we show how
temporal task planning can be combined with stream runtime verification (SRV)
to monitor both explicit and implicit assumptions on which those plans rely.
More concretely, we describe a method to detect and predict assumption viola-
tions at runtime to further improve the assurance of robotic behavior.

We use a language and system based on the SRV language Lola to describe
the monitors. Lola is a good language for this goal because:

– it has clean semantics,
– its expressive yet succinct syntax results in natural specifications,
– the language allows easy extensions (like new datatypes) and I/O of rich

events, and
– it allows the creation of predictive functions such as Kalman filters.

Additionally, Lola allows a theoretical analysis of monitor specifications, which
lets us calculate beforehand the constant amount of memory required to run
the monitors throughout the entire execution independently of the length of the
trace.

We integrate SRV and temporal task planning for two typical mission sce-
narios of an Unmanned Aerial Vehicle (UAV). We show a simplified architecture
of the interplay between the components from temporal task planning and run-
time verification in Fig. 1. The mission planning using temporal task problem
involves the description of both a temporal task specification and a Lola specifi-
cation. From these specifications we synthesize a controller and a monitor which
communicate with the motion planner, with the vehicle, and with each other
through sensors and actuators. We have implemented the UAV controller using
MAVLink [2] and we demonstrate our approach empirically both in real flights
using the Parrot AR.Drone 2.0 with an onboard mounted Raspberry Pi Zero W
and in flights simulated using the Software in the Loop ArduPilot Simulator [1],

Assumption Monitoring of Temporal Task Planning 399

Fig. 1. Architecture for SRV + UAV Temporal Planning.

applying offline and online monitoring. In this paper we focus on the Stream
Runtime Verification part of the approach, and we explain the specifications of
the properties to monitor. More details on the mission planning stage and the
interaction between the UAV controller and the monitors are available in [11].

The rest of the paper is structured as follows. Section 2 revisits stream
runtime verification and the language Lola. Section 3 explains the concept of
implicit assumptions and silent mission failures, presenting multiple examples.
Section 4 describes an empirical evaluation. Finally, Sect. 5 concludes.

2 The Stream Runtime Verification Language Lola

We briefly revisit stream runtime verification for synchronous streams. A syn-
chronous stream is a sequence of values from a data domain. We refer to the
value at the n-th position in a sequence z as z(n). For example, the sequence
altitude = [350, 360, 289, 320, 330] contains the successive values of the alti-
tude of an unmanned aerial vehicle. In this sequence altitude(0) = 350 and
altitude(2) = 289. This sequence can be obtained, for example, by sampling a
sensor of the UAV every five seconds.

Streams are typed using data theories, which are essentially sets of values and
interpreted function symbols. The function symbols are used to build stream
expressions, and are equipped with an associated implementation that allows
computing a result value once the values of the arguments are provided.

Lola is a synchronous SRV language. Specifications (or programs) in Lola
declare the relation between output streams (verdicts) and input streams (obser-
vations). In this paper we will use an implementation of Lola called HLola1

(see [5]) written in the purely functional language Haskell. The distinguishing
feature of HLola is that data theories are not decided a-priori and hard-wired in
the tool. Instead, HLola borrows (almost) arbitrary Haskell datatypes as data
1 HLola is available at https://github.com/imdea-software/hlola.

https://github.com/imdea-software/hlola

400 F. Gorostiaga et al.

theories in Lola [6] in a way that is transparent to the monitor engine. We will
introduce the language and the implementation concisely. See [3,4] for rigorous
formal descriptions of Lola and [5] for the implementation details of the tool
HLola.

2.1 LOLA Syntax and Semantics

Syntax. A Lola specification uses a set of stream variables which are used to
represent inputs and output streams. An output stream is defined by associating
it with a defining stream expression, which consists of:

– offsets v[k|d] where v is a stream variable of type D, k is an integer number
and d a value from D, and

– function applications f t1 . . . tn in which f is applied to stream expressions
t1, . . . , tn of the right types.

Constants are 0-ary function symbols. A stream variable v represents a stream
of values of the type of v. If v is an input stream, the values will be provided
incrementally, and if v is an output stream the values will be computed by
the monitor incrementally. An offset expression v[−1|d] captures the value of
sequence v in the previous position. If there is no previous instant, the value
d is returned instead. The particular case of an offset with k = 0 requires no
default value as the index is always guaranteed to be within the range of the
sequence, in which case we use v[now]. A Lola specification consists of a set
I of typed input stream variables, a set O of typed output stream variables,
and a set of defining equations, yi = ei, one per output variable yi ∈ O where
ei is a stream expression of the same type as yi. Note that expression ei can
use any stream variables from I and O, including yi. The defining equations
describe the relation between input and output streams. Note that functions f
used to build expressions do not need to know about time or offsets. Examples
of these function include ∧, ∨, +, vector multiplication, etc. At runtime, the
implementation of theses functions will provide values for the temporal engine
to evaluate. This is the essence of stream runtime verification where the temporal
reasoning and the algorithms to compute values are kept separate.

Example 1. The specification “the mean altitude in the last 3 instants”
can be expressed in Lola as follows, where denom calculates the num-
ber of instants that are taken into account to compute the average.

1 input Double altitude
2 output Double denom = min 2 denom[-1|0] + 1
3 output Double mean =
4 (altitude[-2|0] + altitude[-1|0] + altitude[now]) / denom[now]
5 output Bool ok_altitude = mean[now] < 400

Assumption Monitoring of Temporal Task Planning 401

In this specification I = {altitude} and O = {denom, mean, ok_altitude}. Also,
altitude, denom and mean are streams of Double values, while ok_altitude is a
stream of Bool values.

Semantics. Semantics of Lola specifications are given in terms of valuations.
A valuation ρ consists of the assignment of one sequence ρx for each stream
variable x, all of the same length. The semantics of Lola is defined in terms of
valuations of expressions �ex� as follows:

–For offsets: �v[i|c]�(j) =

{
ρv(j + i) if 0 ≤ j + i < L

c otherwise
–For functions: �f e1 . . . ek�(j) = f �e1�(j) . . . �ek�(j)

Note that f on the left hand side of the semantic definition of a function repre-
sents the syntactic representation of the function (the constructor of expressions)
while the f on the right hand side represents the function evaluator.

We say that a valuation ρ satisfies a Lola specification ϕ whenever every
output variable y satisfies its defining equation ey, i.e. when ρy = �ey�. See [4] for
a more rigorous explanation of valuations, where a simple graph traversal of the
specifications is used to guarantee correct semantics and to statically compute
bounds of the resources needed to perform the monitoring.

HLola: A Powerful Implementation of Lola. HLola is an implemen-
tation of Lola developed as an embedded language in Haskell with an extra
layer of syntactic facilities. This embedding, called lift deep embedding, extends
the notion of eDSL and is described in [3]. This implementation strategy allows
us to incorporate constructs from the host language Haskell into Lola, such as
let-bindings, where clauses, partial application, list comprehension, etc. We can
also use higher order to seamlessly define parametric streams, and we give access
to the modules system of Haskell to allow the separation of independent pieces of
code. An HLola specification can import an arbitrary Haskell module as well as
a Lola theory (the implementation of types and functions for a specific domain)
or library (auxiliary stream definitions of general purpose) with the directive use
at the beginning of the specification.

The powerful type system of Haskell ensures the type-correctness of a specifi-
cation as well as its syntactic well-formedness. Extra checks specific to the Lola
language such as the validity of the dependency graph are assessed by a routine
in the HLola engine prior to the monitor execution.

The main function that implements the monitoring algorithm is runSpec,
which takes an HLola specification and an input trace for every input stream
and returns the successive events of the output streams. As a by-product of
developing HLola as an eDSL in Haskell, the datatypes that constitute an
HLola specification and the function runSpec are defined in Haskell as well,
and as such can be lifted to become a theory ready to be used as a data theory

402 F. Gorostiaga et al.

of HLola itself. This has enabled the use of HLola specifications as a theory
from within the language [6].

We describe now this HLola feature, that simplifies specifications in many
occasions by allowing the evaluation of data as the result of the computation of a
monitor, in order to use the results in higher monitoring activities. We call this
feature nested monitoring or nested specifications. Nested specifications allow
spawning and executing monitors dynamically, collecting the result of a stream
in each invocation and using it as a value in the caller monitor. Defining an
inner specification involves giving it a name and adding an extra clause: return
x when y where x is a stream of any type and y is a Boolean stream. The type of
the stream x determines the type of the value returned when the specification
is invoked dynamically. Optionally, the definition of a nested specification can
require parameters, which can be different in each invocation. Once we have
defined a nested specification, we can execute it using the function runSpec from
the theory Lola, importing the theory and providing the necessary parameters
and lists of values for the input streams as lists of values of the corresponding
types, in the order in which they are defined in the nested specification.

When a nested specification with a return clause return x when y is executed,
the computation will return the value of the stream x at the first time y becomes
True, or the last value of x if y never holds in the execution. As a consequence, if
y becomes True in the middle of an execution, the monitor does not have to run
until the end to compute a value and can anticipate the result. This opens the
door to evaluate the nested specification incrementally and return the outcome
as soon as the outcome is definitive. If the specification contains no input stream,
then it is executed until the return stream becomes True.

Example 2. Consider the following specification, which calculates whether input
numeric streams p and q have crossed in the last 50 instants. We define a topmost
specification as follows:

1 use theory Lola
2 use innerspec crossspec
3 input Double p
4 input Double q
5 output [Double] last50 <Stream Double str> = let
6 prev = take 49 (last50 str[-1|[]])
7 in str[now] ++ prev
8 output Bool haveCrossed = let
9 ps = last50 p

10 qs = last50 q
11 in runSpec (crossspec ps[now] qs[now])

The output stream haveCrossed invokes the nested specification crossspec with
the lists of the last 50 events of p and q as inputs. We use the auxiliary Haskell
function take to keep the first 49 elements of the previous list in the variable
prev, to which we append the corresponding new value.

Assumption Monitoring of Temporal Task Planning 403

The inner specification uses the Haskell function signum –which returns −1,
0, or 1, indicating the sign of the argument– to check that the sign of the differ-
ence is maintained throughout the entire subtrace:

1 innerspec Bool crossspec
2 input Double p
3 input Double q
4 output Bool cross =
5 signum (p[now] - q[now]) /== signum (p[-1|p[now]] - q[-1|q[now]])
6 return cross when cross

Note that the inner monitor returns as soon as the signals are detected to cross.

3 Implicit Assumptions and Silent Mission Failures

Temporal task planning using reactive synthesis requires a discrete description
of the goal (and the world in which the system will operate). Creating discrete
domains for complex continuous environments requires introducing assumptions
regarding the relation between the discrete abstraction and the intention in the
real world that typically includes continuous variables. Thus, the objective in
the real world can be informally described as “ARW implies GRW” (where ARW
represents the assumptions in the real world and GRW represents the mission
goal in the real world). Reactive synthesis solves this problem by using discrete
goals and assumptions AD → GD. The correctness of the solution is based on
two additional assumptions: “ARW implies AD” and “GD implies GRW”, in other
words that the discrete assumptions hold in the real world and that accomplish-
ing the discrete goals imply accomplising the mission in the real world.

We refer to ARW and the last two implications as implicit assumptions. A
silent mission failure occurs when a system fails to achieve its goals GRW but
ARW does not hold either. As a consequence the implication “ARW implies GRW”
is satisfied, making it impossible for the system user to distinguish if GRW holds
or if ARW did not hold.

3.1 Handling Assumption Violations

We show two scenarios in which we combine temporal task planning and Stream
Runtime Verification

(A) Flagging assumption violations after a mission concludes in order to detect
silent failures.

(B) Triggering recovery measures online, such as replanning or mission abortion,
immediately upon an assumption violation using quantitative streams in
specifications to facilitate plan adjustment2.

2 The complete discrete event control problems and assumption used to synthesise
plans and monitors, and the data obtained from the real and simulated flights dis-
cussed in this section is available at http://mtsa.dc.uba.ar.

http://mtsa.dc.uba.ar

404 F. Gorostiaga et al.

We now discuss these separately by describing two missions.

SRV for Offline Monitoring. The first mission uses SRV for assumption
monitoring and logging. This is a search and rescue mission with a no-fly zone,
with the instruction of landing when the target is found. The monitor processes
the incoming events and monitors and logs assumption violations alongside the
associated relevant information, which can then be used offline for mission post-
hoc analysis.

In this mission we monitor two assumptions. The first assumption checks
that the UAV never enters the no-fly zone, and, if it does, measures the degree
of violation as the distance inside the no-fly zone. The second assumption ensures
that the area sensed when entering a zone covers the zone completely.

The first assumption can be easily monitored by calculating for each input
position reading, the depth inside the no-fly zone, returning Nothing if the UAV
is not within a forbidden zone.

There are several ways one could monitor the second assumption. In this
specification we monitor a stronger property that requires the attitude and posi-
tion of the vehicle to be within certain bounds. Since these data measurements
may carry noise we include in the monitor specification a filtering phase that
implements a first order low-pass filter. Note that most cameras may require sev-
eral seconds to capture a high resolution image, specially on low-end hardware.
For this reason, it is necessary to monitor that the filtered attitude and position
is within the required bounds for every instant between the open_capture com-
mand and its corresponding response event, which is the time frame in which
a picture is being taken. Below we show an HLola specification that encodes
both assumptions.

1 use theory Geometry2D
2 use haskell Data.Maybe
3 use haskell Data.List
4 data Attitude = Attitude {yaw ::Double, roll ::Double, pitch ::Double}
5 data Target = Target {x :: Double, y :: Double, num_wp :: Double}
6 data Position = Position {x :: Double, y :: Double, alt :: Double}
7 type Vector = (Double, Double)
8 type Position = (Double, Double)
9 type Polygon = [(Double, Double)]

Assumption Monitoring of Temporal Task Planning 405

10 input Attitude attitude
11 input Vector velocity
12 input Position position
13 input Double altitude
14 input Target target
15 input [Polygon] noflypolys
16 input [String] events_within
17 output Bool all_ok_capturing = capturing[now] ‘implies‘
18 (height_ok[now] && near[now] && roll_ok[now] && pitch_ok[now])
19 output Bool flying_in_safe_zones = flying_in_poly[now] === Nothing
20 output (Maybe Polygon) flying_in_poly = let
21 position_in_poly = pointInPoly filtered_pos[now]
22 in find position_in_poly noflypolys[now]
23 output (Maybe Double) depth_into_poly = let
24 mSides = funmap polygonSides flying_in_poly[now]
25 distance_from_pos = shortestDist filtered_pos[now]
26 in funmap distance_from_pos mSides
27 where
28 shortestDist x = minimum (map distancePointSegment x)
29 funmap f Nothing = Nothing
30 funmap f (Just x) = Just (f x)
31 output Bool capturing = let
32 has_capture = "capture" ‘belongsto‘ events_within[now]
33 in has_capture || open_capture [-1|False]
34 output Bool open_capture =
35 lastIsCapture open_capture[-1|False] events_within[now]
36 where
37 lastIsCapture dflt [] = dflt
38 lastIsCapture _ xs = last xs == "capture"
39 output Double f_pos_component <(Position->Double) field> = let
40 tau = 0.6
41 _this = f_pos_component field
42 in (field position[now] + tau*(2*_this[-1|0] - _this[-2|0]/2))
43 / (1 + 1.5*tau)
44 output Double filtered_x = (f_pos_component x)[now]
45 output Double filtered_y = (f_pos_component y)[now]
46 output Double filtered_alt = (f_pos_component alt)[now]
47 output Position filtered_pos = (filtered_x[now], filtered_y[now])
48 output Bool near = distance filtered_pos[now] target[now] < 1
49 output Bool height_ok = filtered_alt[now] > 0
50 output Bool roll_ok = abs (roll attitude[now]) < 0.0523
51 output Bool pitch_ok = abs (pitch attitude[now]) < 0.0523

The specification imports geometric facilities from theory Geometry2D, and
Haskell libraries Data.Maybe and Data.List, and defines custom datatypes to
interpret the data from the UAV, in lines 1–9. The input streams of this spec-
ification, declared in lines 10–16 encompass the state of the UAV, the current

406 F. Gorostiaga et al.

target position, the no-fly zones and the onboard camera events to detect when
a picture is being captured. The output stream all_ok_capturing declared in
line 17 assesses that, whenever the vehicle is taking a picture, the height, roll
and pitch are acceptable and the vehicle is near the target location. The output
stream flying_in_safe_zones from line 19 reports if the UAV is flying outside
the forbidden regions. The stream flying_in_poly in line 20 partially applies
the function pointInpoly from the theory Geometry2D to the current position to
find and return the forbidden region in which the vehicle is flying, if any, using
the Haskell function find. The output stream depth_into_poly defined in line 23
takes the minimum of the distances between the vehicle position and every side
of the forbidden region inside of which the vehicle is flying, if any.

The intermediate stream capturing from line 31 expresses whether the UAV
is taking a picture, using the auxiliary stream open_capture declared in line
34. The streams filtered_alt and filtered_pos from lines 47 and 48 represent
the location and altitude of the UAV filtered to reduce noise from the sen-
sors, a procedure that is implemented generically by the parameterized stream
filtered_pos_component in line 40. The intermediate stream near declared in line
49 takes the distance from the vehicle location to its target and checks if it is
lower than 1. Finally, the streams height_ok, roll_ok, and pitch_ok from lines
49–51 calculate that the corresponding attitude of the vehicle is within certain
predefined boundaries.

A logger will store the values of all these streams whenever all_ok_capturing
is False to detect a silent failure and allow a post-hoc analysis.

SRV for Online Monitoring and Adaptation. In the second mission we
demonstrate how SRV can be used, beyond logging, to support remediation
actions during the flight by interacting with components of the UAV controller.
We ran an ordered patrol mission (as described in [8]) of three locations with
no-fly zones.

We built a monitor that uses quantitative data to predict the violation of
assumptions, enabling the possibility of reacting to anticipate and avoid the
faulty behavior before it occurs. To achieve this, the HLola monitor specifi-
cation encodes a simplified non-linear 2D model of a fixed-wing UAV and the
full extent of the waypoint guidance control algorithm of ArduPilot. Part of the
input to this monitor includes the current state of the system (position, attitude,
wind) and the list of waypoints for the current trajectory. The monitor uses this
input together with the non-linear model of the UAV and the guidance control
algorithms to produce, by means of simulation into the future, a prediction of
the UAV’s flight path.

We add an Extended Kalman Filter (EKF) to estimate in-flight a parame-
ter tau from the simplified UAV models, helping to diminish the error in the
predicted flight path. Other parameter identification techniques could be used
instead (e.g., least squares), but we aimed to show HLola’s ability to implement
state-of-the-art estimation algorithms.

Assumption Monitoring of Temporal Task Planning 407

The monitor produces an event to indicate that the monitor anticipates an
abnormal situation in the future:

– If the UAV is predicted to hit the target zone but far from its center point,
then a nearMiss event is produced.

– If the target zone is to be completely missed, an event goFailed is produced.
Our monitor is specified to hold its failure prediction for several time instants
before producing a goFailed, to allow the controller to attempt to correct the
airspeed.

– Finally, the monitor produces an event abnormalDrift when the predicted dis-
tance of the UAV to its intended location is beyond a threshold.

To utilize the output of our predictive monitors, the following three require-
ments are added to the mission plan:

(1) upon a nearMiss the UAV should reattempt to visit the location immediately,
(2) upon a goFailed the UAV should skip the location and move onto the next

location to patrol, and
(3) upon an abnormalDrift event, the UAV should abort mission and land.

We monitor two properties. The first property predicts how close to the
center of the target zone the UAV will pass, so that the UAV controller can
either abort the mission or try to correct the flight path based on the degree of
the error predicted.

The second property observes how the UAV is following the planned path by
predicting the estimated time of arrival and total flight distance. A significant
difference is likely to be due to wind conditions, which is not considered by
the plan. The monitor uses this estimated arrival time and distance to compute
the speed at which the vehicle is more likely to succeed in closely following the
trajectory, and the controller uses this information to change the speed of the
UAV accordingly.

Below we show the HLola specification that monitors both assumptions.

1 use theory Geometry2D
2 use theory SimulatedGuidance
3 use theory GuidanceTheory
4 use haskell Data.Either
5 use theory Lola
6 use innerspec simuguidance
7 type Matrix = [[Double]]

408 F. Gorostiaga et al.

8 input NonLinearData navigation_data
9 input Vector velocity

10 input Point position
11 input Point target
12 input Vector target_dir
13 output Double intersDistance = let
14 r0 = (position[now], velocity[now])
15 r1 = (target[now], target_dir[now])
16 in intersectionDistance r0 r1
17 output Double pi_controller =
18 saturate (21 + estimated_error[now] * 0.5 + err_int[now])
19 where
20 saturate x = if x<15 then 15 else if x>30 then 30 else x
21 output Double estimated_error =
22 21 - distance estim_data[now] / time estim_data[now]
23 output (Matrix, Double, Double) kfuStream = let
24 inroll = initial_roll navigation_data[now]
25 prev_iroll = initial_roll navigation_data[-1| navigation_data[now]]
26 dt = 0.05
27 dfltM = [[0.01,0],[0,0.01]]
28 kfp = kalman_filter_predict navigation_data[now] 1 tau[-1|0.5]
29 in
30 kalman_filter_update
31 matrix_kfiltered[-1| dfltM] prev_iroll tau[-1|0.5]
32 inroll kfp dt
33 output Matrix matrix_kfiltered =
34 fst3 kfuStream[now]
35 output Double tau = let
36 thd3 kfuStream [now]
37 output ([Point2], Double, Bool, Double, Double) simulated_guidance =
38 let wp_radius_wp = get_wp_radius_wp navigation_data[now]
39 in
40 runSpec (simuguidance navigation_data[now] tau[now] 200 wp_radius_wp)
41 where
42 get_wp_radius_wp (NLD _ wp_list _ _ n_wp radius_list _ _ _ _ _) =
43 filter farEnoughWP
44 (drop n_wp (zip3 wp_list radius_list (Nothing:map Just wp_list)))
45 farEnoughWP (_, _, Nothing) = True
46 farEnoughWP (nwp, _, Just prev_wp) = norm (nwp ‘minus‘ prev_wp)>0.01

Assumption Monitoring of Temporal Task Planning 409

47 output [Point2] simulated_guidance_wps = let
48 fst5 simulated_guidance[now]
49 output Estimation estim_data =
50 simulate_guidance tau[now] navigation_data[now]
51 output Double err_int = if isSaturated pi_controller[-1|21] then
52 err_int [-1|0] else err_int [-1|0] + estimated_error [now] * 0.03
53 where
54 isSaturated x = x==15 || x==30

The input streams are data about the state of the vehicle at every instant
(navigation_data, velocity and position) and its current target destination
(target and target_dir).

The output stream intersDistance of line 13 estimates how far from the
target location the UAV will pass, returning −1 if the UAV is actually moving
away from the target location. The output stream pi_controller shown in line
17 is used to control the UAV’s airspeed set-point, taking a reference velocity
of 21 meters per second and an estimation of the average UAV speed along
with the predicted flight path, generated from the predicted arrival time and
flight distance, which is calculated by the stream estim_data, declared in line 49.
The main idea is that in order to correctly follow the planned path one must
satisfy a constant turn radius assumption, which (for the UAV) translates into
constant ground-speed. When the UAV has tailwind, for a constant airspeed, it
will fly at a faster ground-speed than when it experiences headwind. Controlling
the ground-speed around a fixed value (by actuating on the airspeed set-point)
helps following the desired path more accurately.

The intermediate stream kfuStream shown in line 23 implements the EKF
at every instant, and the intermediate stream simulated_guidance from line 37
simulates the UAV trajectory based on the current navigation_data, the tau
(provided by the EKF and extracted in line 35), a maximum flight time of 200
and the target path, given by the list of its waypoints.

The function simulate_guidance from the theory GuidanceTheory uses a
nested specification simuguidance to simulate the trajectory of the UAV over
the current list of waypoints, which is captured in the input stream route.

1 innerspec ([Point2], Double, Bool, Double, Double) simuguidance
2 <NonLinearData nld><Double tau> <Double maxtime>
3 use theory GuidanceTheory
4 use theory Geometry2D
5 use theory Lola
6 use haskell Data.List.Extra
7 use innerspec simuinner

410 F. Gorostiaga et al.

8 type Route = (Point2, Double, Maybe Point2)
9 input Route route

10 output ReachStateType reaching_state = let
11 roll = reach_roll [-1|initial_roll nld]
12 yaw = reach_yaw [-1|initial_yaw nld]
13 distance = reach_distance [-1|0]
14 time = reach_time [-1|0]
15 pos = reach_pos [-1|initial_pos nld]
16 in
17 runSpec
18 (simuinner nld tau maxtime pos yaw roll time distance route[now])
19 output Bool reached_maxtime = reached_maxtime_field reaching_state[now]
20 output Double reach_time = reach_time_field reaching_state[now]
21 output Double reach_distance = reach_distance_field reaching_state[now]
22 output Double reach_yaw = reach_yaw_field reaching_state[now]
23 output Double reach_roll = reach_roll_field reaching_state[now]
24 output Point2 reach_pos = reach_pos_field reaching_state[now]
25 output [Point2] wps =
26 snoc wps[-1| []] reach_pos[now]
27 where
28 snoc ls x = ls ++ [x]
29 output Bool has_reached = reached_maxtime [-1|False]
30 output ([Point2], Double, Bool, Double, Double) ret =
31 (wps[now], reach_roll[now], reached_maxtime[now],
32 reach_time[now], reach_distance[now])
33 return ret when has_reached

The successive values of route are the linear trajectories that the UAV is
expected to go through. The monitor simuguidance will run until the route
is covered or until the maxtime is exceeded. For every part of the route,
simuguidance will spin up a second level nested specification simuinner to sim-
ulate successive small steps of the flight in a path between two waypoints.

1 innerspec ReachStateType simuinner <NonLinearData nld> <Double tau>
2 <Double maxtime> <Point2 dpos> <Double dyaw> <Double droll>
3 <Double dtime> <Double ddistance> <(Point2, Double, Maybe Point2) wps>
4 use theory GuidanceTheory
5 use theory Geometry2D
6 data ReachStateType = RST {
7 reached_maxtime_field :: Bool, reach_time_field :: Double,
8 reach_distance_field :: Double, reach_yaw_field :: Double,
9 reach_roll_field :: Double, reach_pos_field :: Point2 }

Assumption Monitoring of Temporal Task Planning 411

10 const dt = 0.05
11 const g = 9.8
12 const lim_roll_cd = 65 * pi / 180
13 const limit = sin lim_roll_cd
14 const NLD navl1_d _ navl1_p _ _ _ _ gamma vel_a vel_w _ = nld
15 const (dposx, dposy) = dpos
16 const (next_wp, wp_radius, mprev_wp) = wps
17 output Double time = step_time [-1|dtime]
18 output Double step_time = time[now] + dt
19 output Double yaw = step_yaw [-1|dyaw]
20 output Double step_yaw = let
21 yaw_dot = (g * (sin (roll[now]))) / vel_a
22 in yaw[now] + dt * yaw_dot
23 output Double posx = step_posx [-1|dposx]
24 output Double step_posx =
25 posx[now] + dt * (vel_a * sin yaw[now] + (vel_w * sin gamma))
26 output Double posy = step_posy [-1| dposy]
27 output Double step_posy =
28 posy[now] + dt * (vel_a * cos yaw[now] + (vel_w * cos gamma))
29 output Point2 pos = P posx[now] posy[now]
30 output Double roll = step_roll [-1|droll]
31 output Double step_roll = let
32 vel_g = (fst.get_ground_speed vel_w vel_a gamma) yaw[now]
33 hdg = (snd.get_ground_speed vel_w vel_a gamma) yaw[now]
34 gcp = guidance_control_parameters navl1_d navl1_p next_wp
35 prev_wp[now] vel_g hdg pos[now]
36 l1 = fst3 gcp
37 k_l1 = snd3 gcp
38 eta = thd3 gcp
39 demanded_roll = (asin.max (-limit).min limit)
40 ((k_l1 * vel_g * vel_g * sin eta) / (l1 * g))
41 in
42 (dt * demanded_roll + tau * roll[now]) / (tau + dt)
43 output Double distance = step_distance [-1|ddistance]
44 output Double step_distance = let
45 step_pos = (step_posx[now], step_posy[now])
46 in distance[now] + norm (step_pos ‘minus‘ pos[now])
47 output Point2 prev_wp = maybe pos[now] Leaf mprev_wp
48 output Bool reached_maxtime = time[now] >= maxtime && maxtime > 0
49 output Bool stop_simulation = let
50 vnwp = verify_next_waypoint next_wp wp_radius prev_wp[now] pos[now]
51 in reached_maxtime[now] || vnwp /== INTRAVEL
52 output ReachStateType ret = RST reached_maxtime[now] time[now]
53 distance[now] yaw[now] roll[now] pos[now]
54 return ret when stop_simulation

412 F. Gorostiaga et al.

(a) Mission trajectory (b) Memory consumption and wind

Fig. 2. Mission trajectory and flight data

Every execution of simuinner updates the UAV roll, yaw, and position, the
time consumed, and the distance reached in the simulation step. The nested
monitor simunner has no input stream and as a consequence it will execute
until stop_simulation becomes True. The monitor calculates the trajectory of
the UAV updating its position, distance traveled, roll, and yaw according to
simulation steps of 0.05 time units. The simulation stops when the maxtime is
reached, or when the UAV is no longer INTRAVEL and returns the latest state of
the UAV, along with the total time consumed and the information of whether
the maximum time was reached.

4 Empirical Evaluation

Our UAV control system (including the HLola monitors) was built for
MAVLink [2] complying aerial vehicles, and tested extensively on the ArduPilot
Software-In-The-Loop (SITL) simulator as in [9]. We have used this simulator
(see [10]) to seamlessly transition from simulation to actually flying a fixed-wing
vehicle based on a Pixhawk. The controller was run on a single Raspberry Pi.

To evaluate if the UAV entered no-fly zones during its mission using offline
monitoring, we have carried out real flights using the Parrot Ar.Drone 2.0 and
an onboard mounted Raspberry Pi Zero W, which we have used to log the flight
data. The HLola monitor used a constant amount of memory of around 13.4
megabytes during the whole post-flight analysis.

The mission that uses online monitoring to predict and correct the behavior
of the UAV was simulated on the ArduPlane SITL simulator, with a Raspberry
Pi 3B+ as the simulated hardware, just like in [10]. We show the actions taken
by the monitor during the patrol mission in Fig. 2(a). We have incremented the
simulated wind speed over time to mimic an adverse situation and trigger the
monitor, as we show in Fig. 2(b). By doing so, the second time the UAV travels
from A to B, the predicted arrival distance error rises over 100 m, triggering the

Assumption Monitoring of Temporal Task Planning 413

calculation of a new trajectory until one that guarantees the correct arrival of
the UAV to the location is found. After the second time C is visited, the wind is
too strong and the UAV is commanded to return to the launch point. Figure 2(b)
also illustrates the memory consumption of the monitor, which remains practi-
cally constant as expected (see [3] for details about the memory consumption of
HLola).

Our experiments show how we can monitor assumptions for UAV missions
using HLola with negligible interference with the main navigation system, in
particular with constant memory consumption and in constant time per event,
providing support for the hypotheses that motivated the use of SRV and HLola.

5 Conclusion

We have applied the infrastructure from Runtime Verification to monitor
assumptions in the context of temporal task planning, both offline for post-hoc
analysis and online to enable remediation actions.

We have been able to describe the assumptions with HLola, a very expres-
sive language for Stream Runtime Verification, using multi-level specifications
to predict the behavior of the vehicle using complex estimators. We have auto-
matically synthesized the monitors that collect and process sophisticated data,
generating rich verdicts while providing strong correctness and resource con-
sumption guarantees.

We are currently working on a deeper interplay of monitoring and planning
in an architecture that allows modular and flexible definitions of widely diverse
UAV missions, reusing monitors across different tasks, and leveraging on the
formal semantics and guarantees from the field of Stream Runtime Verification
to further improve the reliability of robots running temporal plans.

References

1. SITL/ardupilot simulator (software in the loop). http://ardupilot.org/. Accessed
20 Oct 2021

2. Atoev, S., Kwon, K., Lee, S., Moon, K.: Data analysis of the mavlink communica-
tion protocol. In: ICISCT 2017, pp. 1–3, November 2017

3. Ceresa, M., Gorostiaga, F., Sánchez, C.: Declarative stream runtime verification
(hLola). In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 25–43.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6_2

4. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Pro-
ceedings of the 12th International Symposium of Temporal Representation and
Reasoning (TIME’05), pp. 166–174. IEEE CS Press (2005)

5. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream
runtime verification. In: TACAS 2021. LNCS, vol. 12652, pp. 349–356. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_18

6. Gorostiaga, F., Sánchez, C.: Nested monitors: monitors as expressions to build
monitors. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 164–183.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_9

http://ardupilot.org/
https://doi.org/10.1007/978-3-030-64437-6_2
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/978-3-030-88494-9_9

414 F. Gorostiaga et al.

7. Kress-Gazit, H., Fainekos, G., Pappas, G.: Translating structured english to robot
controllers. Advanced Robotics 22, 1343–1359 (2008)

8. Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger, T.: Specification
patterns for robotic missions. IEEE Trans. Softw. Eng., 1 (2019)

9. d. S. Barros, J., Oliveira, T., Nigam, V., Brito, A.V.: A framework for the analysis
of uav strategies using co-simulation. In: SBESC 2016, pp. 9–15, November 2016

10. Zudaire, S.A., Garrett, M., Uchitel, S.: Iterator-based temporal logic task planning.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp.
11472–11478 (2020). https://doi.org/10.1109/ICRA40945.2020.9197274

11. Zudaire, S., Gorostiaga, F., Sánchez, C., Schneider, G., Uchitel, S.: Assumption
monitoring using runtime verification for UAV temporal task plan executions. In:
Proceedings of IEEE International Conference on Robotics and Automation (ICRA
2021). IEEE (2021)

https://doi.org/10.1109/ICRA40945.2020.9197274

Verification and Validation
of Concurrent and Distributed

Heterogeneous Systems

Verification and Validation of Concurrent
and Distributed Heterogeneous Systems

(Track Summary)

Marieke Huisman1 and Cristina Seceleanu2(B)

1 University of Twente, Enschede, The Netherlands
m.huisman@utwente.nl

2 Mälardalen University, Väster̊as, Sweden

cristina.seceleanu@mdu.se

Abstract. A major trend in computing during the last decade has been
the ubiquity of distributed, heterogeneous systems that make use of
multi-languages for implementation, or services delivered by IoT devices.
Since all distributed systems must, by their very nature, make use of
some form of concurrent programming, the latter becomes even more
challenging than traditionally, with the increase of hardware concur-
rency and sources of heterogeneity. In this context, developing reliable,
safe and secure distributed systems, without sacrificing performance, is
notoriously difficult. This requires novel models, logical notations, and
verification techniques, or extensions, improvements and combinations
of existing ones, to capture the behavior of such systems and provide
guarantees that they meet various specific requirements. The track on
Verification and Validation of Concurrent and Distributed Heterogeneous
Systems aims to present and discuss advances of formal methods appli-
cable to the assurance of different kinds of heterogeneous systems, as
well as new insights provided by validating the methods on real-world
case studies.

1 Motivation and Goals

Demands for computing power and better performance are only going to increase.
The cloud, mobile and IoT systems are all playing a role in creating big expec-
tations for enterprises, placing tremendous strain on developers that must man-
age a number of important—often conflicting—system properties, including
reliability, predictability, security and others, as well as complex interactions
among system components. This justifies the proliferation of frameworks and
tools intended to make the design and implementation of such heterogeneous
and distributed systems easier (e.g., Hadoop: https://hadoop.apache.org/docs/
current/, OpenCL: https://www.khronos.org/opencl/). Nevertheless, ensuring
that the latter are safe, and that their behavior remains predictable and correct,
lies on the “shoulders” of formal methods, via different tools and techniques
to reason about (heterogeneous) distributed systems [4,8,12,17] and concurrent
software [2,5,9,11,14,16].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 417–421, 2022.
https://doi.org/10.1007/978-3-031-19849-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_24&domain=pdf
https://hadoop.apache.org/docs/current/
https://hadoop.apache.org/docs/current/
https://www.khronos.org/opencl/
https://doi.org/10.1007/978-3-031-19849-6_24

418 M. Huisman and C. Seceleanu

Despite many existing results, questions such as: How can formal verifica-
tion techniques for concurrent systems be extended to ensure properties over
distributed objects?, How can one analyze multi-lingual distributed programs
efficiently?, How can one ensure properties of complex industrial concurrent soft-
ware?, or How can we capture, control and verify smart applications formally?
are still awaiting answers.

The Verification and Validation of Concurrent and Distributed Het-
erogeneous Systems (VVCDHS) track focuses on tackling the above ques-
tions, by presenting invited papers that propose models, techniques, and tools
for the rigorous description and analysis of concurrent and distributed systems
characterized by heterogeneity stemming from various sources, such as multi-
language programming, the need for adaptivity, the use of smart components,
or IoT applications, etc. The included contributions give a good overview of
the current state-of-the-art in the verification of heterogeneous concurrent and
distributed systems, and propose solutions to difficult problems related to log-
ics for distributed objects that evolve over time, modeling and verification of
systems that need to perform adaptations, modular verification of concurrent
algorithms, applying academic formal verification tools to industrial systems,
runtime verification of IoT device security of communication, and formal mod-
eling of systems-of-systems control. The track closes with a discussion on ways
in which we can leverage verification and validation techniques for concurrency
and distribution to tackle modern topics of heterogeneous and smart systems
assurance, including the scalability and industrial applicability of the formal
approaches.

Finally, we would like to express our deep gratitude to the ISoLA organizers,
in particular Prof. Tiziana Margaria and Prof. Bernhard Steffen, for their tena-
cious work to provide the infrastructure for our and other tracks, which allows
vivid and creative discussions among researchers and practitioners in different
communities, leading to new insights and perspectives of the techniques and
foundations of formal methods and their application.

2 Overview of Contributions

In An Efficient VCGen-based Modular Verification of Relational Properties [1],
the authors Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto, and Pascale
Le Gall propose a verification conditions generation (VCG) technique to prove
relational properties over a language with support for procedure calls and alias-
ing. The technique enables a modular approach to verification, allowing to use
relational properties as hypothesis in proving other relational properties. The
language is formalized in COQ, where the authors prove the main result, that
is, the verification conditions generated by the proposed VCG can be used to
prove relational properties, modularly.

In On Binding in the Spatial Logic for Closure Spaces [3], the authors Laura
Bussi, Vincenzo Ciancia, Fabio Gadducci, Diego Latella, and Mieke Massink
present a logic to express properties over objects distributed over space, and

Verification and Validation of Concurrent 419

evolving over time. The authors propose two different extensions of the spatial
logic for closure spaces, and its spatio-temporal variant, with spatial quantifi-
cation operators useful for reasoning about the existence of particular spatial
objects in a space, and the dynamic evolution of such spatial objects in time
and space. The expressiveness of the operators is illustrated via several repre-
sentative examples, out of which the leader election one shows that such logics
could even be useful to specify the correctness of distributed algorithms.

In An IoT Digital Twin for Cyber-Security Defence based on Runtime Ver-
ification [6], the authors Jorge David de Hoz Diego, Anastasios Temperekidis,
Panagiotis Katsaros, and Charalambos Konstantinou propose a security-decoup-
ling solution for IoT networked devices. The proposed solution deploys a security
module to the IoT device, and uses a Digital Twin (DT) to detect potentially
compromised packets communicated from either a remote device or a local pro-
cess. The approach provides information that one can use to mitigate potential
cyber-security attacks. The rule-based runtime verification implemented under
a security context assumption shows that, by isolating local traffic, the DT
monitor can detect and track threats occurring by unauthorized communica-
tion attempts.

In A thread-safe Term Library [7], the authors Jan Friso Groote, Maurice
Laveaux, and P.H.M. van Spaendonck present the design, implementation and
model checking of a new thread-safe Term library with several novel aspects
including the new busy-forbidden protocol, that is, a protocol with functionality
similar to the readers-writers lock, but with improvements aiming to make it
faster. The authors prove by model checking the key properties of the library,
which guarantee thread safety and liveness.

In ST4MP: A Blueprint of Multiparty Session Typing for Multilingual Pro-
gramming [10], the authors Sung-Shik Jongmans and José Proença provide a
multiparty session types (MPST) method to simplify the construction and anal-
ysis of distributed systems implemented in multiple programming languages. In
order to verify processes in such a heterogeneous setting, the authors gener-
ate API in multiple languages, by their newly introduced tool called ST4MP
“Session Types Fo(u)r Multilingual Programming”. The ST4MP approach so
far focuses on three languages: Java, Scala and Rust, which are widely used for
programming distributed systems.

In On Deductive Verification of an Industrial Concurrent Software Com-
ponent with VerCors [13], the authors Raúl E. Monti, Robert Rubbens, and
Marieke Huisman present their experience with verifying memory safety and
data race freedom in an industrial case study of a concurrent module of a tun-
nel control system written in Java. The employed tool is VerCors, a software
verification tool that requires annotating the code before carrying out verifica-
tion. Using VerCors led to discovering two concurrency bugs related to memory
access. The findings, as well as the underlying verification paradigm have been
presented to the industrial partner, and feedback has been collected. Based on
this feedback, the authors gain insight that could guide further improvement of
VerCors and the entire verification process also.

420 M. Huisman and C. Seceleanu

In Exploring a Parallel SCC Algorithm Using TLA+ and the TLC Model
Checker [18], the author Jaco van de Pol describes a case study on using the
TLA+ model checker to increase the understanding of Bloemen’s parallel SCC
decomposition concurrent algorithm. The paper explains how the algorithm and
correctness properties can be specified in TLA+ (both a naive version and an
improved version), and reports on findings. For ten concrete instances (two work-
ers on ten small graphs), the improved version of the specification satisfies the
correctness properties. The paper also explains that various further modifica-
tions of the improved specification violate the correctness properties, sometimes
unexpectedly.

In A Formal Model of Metacontrol in Maude [15], authors Juliane Päßler,
Esther Aguado, Gustavo Rezende Silva, Silvia Lizeth Tapia Tarifa, Carlos
Hernández Corbato, and Einar Broch Johnsen present an executable formal
model of a self-adaptive system based on metacontrol, by formalizing a smart
house-heating application in Maude. All the layers of the self-adaptive system of
systems have been captured, and the evaluation for different scenarios of envi-
ronment inputs and system failures has shown an improved performance of the
smart house system with respect to its requirements when the Metacontroller
performs architectural adaptation, when compared to the situation when the
system’s behavior is limited to one of the individual controllers.

References

1. Blatter, L., Kosmatov, N., Prevosto, V., Le Gall, P.: An efficient vcgen-based mod-
ular verification of relational properties. In: Margaria, T., Steffen, B. (eds.) ISoLA
2022. LNCS, vol. 13701, pp. 498–516. Springer, Cham (2022)

2. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. The VerCors Tool Set: Verification of Parallel and Concurrent Software, vol.
10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66845-1 7

3. Bussi, L., Ciancia, V., Gadducci, F., Latella, D., Massink, M.: On binding in the
spatial logic for closure spaces. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022.
LNCS, vol. 13701, pp. 479–497. Springer, Cham (2022)

4. Cai, S., Gallina, B., Nyström, D., Seceleanu, C.: Effective test suite design for
detecting concurrency control faults in distributed transaction systems. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 355–374. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03424-5 24

5. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9 9

6. de Hoz Diego, J.D., Temperekidis, A., Katsaros, P., Konstantinou, C.: An iot digital
twin for cyber-security defence based on runtime verification. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp. 556–574. Springer, Cham
(2022)

7. Groote, J.F., Laveaux, M., van Spaendonck, P.H.M.: A thread-safe term library.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp. 422–459.
Springer, Cham (2022)

https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-030-03424-5_24
https://doi.org/10.1007/978-3-662-44202-9_9

Verification and Validation of Concurrent 421

8. Hawblitzel, C., et al.: Ironfleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
pp. 1–17. ACM (2015)

9. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens. , F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: NFM
(2011)

10. Jongmans, S.-S., Proença, J.: St4mp: a blueprint of multiparty session typing for
multilingual programming. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS,
vol. 13701, pp. 460–478. Springer, Cham (2022)

11. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL, pp. 637–650. ACM (2015)

12. Krogh-Jespersen, M., Timany, A., Ohlenbusch, M.E., Gregersen, S.O., Birkedal,
L.: Aneris: a mechanised logic for modular reasoning about distributed systems.
In: ESOP 2020. LNCS, vol. 12075, pp. 336–365. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44914-8 13

13. Monti, R.E., Rubbens, R., Huisman, M.: On deductive verification of an industrial
concurrent software component with vercors. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2022. LNCS, vol. 13701, pp. 517–534. Springer, Cham (2022)

14. Müller, P., Schwerhoff, M., Summers, A.J.: Viper - a verification infrastructure for
permission-based reasoning. In: VMCAI (2016)

15. Päßler, J., Aguado, E., Silva, G.R., Tarifa, S.L.T., Hernández Corbato, C., Johnsen,
E.B.: A formal model of metacontrol in maude. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2022. LNCS, vol. 13701, pp. 575–596. Springer, Cham (2022)

16. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: PLDI, pp. 77–87. ACM (2015)

17. Sharma, R., Bauer, M., Aiken, A.: Verification of producer-consumer synchroniza-
tion in GPU programs. In: Proceedings of PLDI 2015, pp. 88–98. ACM (2015)

18. van de Pol, J.: Exploring a parallel scc algorithm using tla+ and the tlc model
checker. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp.
535–555. Springer, Cham (2022)

https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-44914-8_13

A Thread-Safe Term Library

(with a New Fast Mutual Exclusion Protocol)

Jan Friso Groote(B) , Maurice Laveaux , and P. H. M. van Spaendonck

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

{J.F.Groote,M.Laveaux,P.H.M.v.Spaendonck}@tue.nl

Abstract. Terms are one of the fundamental mathematical concepts
in computing. E.g. every expression characterisable by a context free
grammar is a term. We developed a thread-safe Term Library. The
biggest challenge is to implement hyper-efficient multi-reader/single-
writer mutual exclusion for which we designed the new busy-forbidden
protocol. Model checking is used to show both the correctness of the pro-
tocol and the Term Library. Benchmarks show this Term Library has
little overhead compared to sequential versions and outperforms them
already on two processors. Using the new library in an existing state
space generation tool, very substantial speed ups can be obtained.

Keywords: Term library · Mutual exclusion · Thread-safe · Model
checking

1 Introduction

A term is a common mathematical structure. Many concepts can be represented
as terms, such as programs, specifications and formulas. Many operations in
computing are term transformations, such as compilation. In computer science
a term is a far more commonly used concept than structures such as arrays,
lists or matrices. This makes it remarkable that terms are not a standard data
structure in common programming languages such as C++ and Java.

To our knowledge the first term library stems from the realm of program
transformations. In [2,4–6,17] an ATerm library of so called annotated terms has
been proposed, which contains terms with meta information. Stripping away all
bells and whistles from this ATerm format, a very plain and elegant term data
structure remains.

Our terms are defined in the standard way. We start out with a given set of
function symbols F where each function symbol f ∈ F has an arity arf . Each
constant function symbol, i.e. with arity 0, is a term. Given a function symbol
f ∈ F with arf > 0, and terms t1, . . . , tarf , the expression f(t1, . . . , tarf) is also
a term. These are the only two ways to construct a term.

Supported by projects 612.001.751 (NWO, AVVA) and 00795160 (TTW, MASCOT).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 422–459, 2022.
https://doi.org/10.1007/978-3-031-19849-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_25&domain=pdf
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0001-8732-7580
http://orcid.org/0000-0002-9536-1524
https://doi.org/10.1007/978-3-031-19849-6_25

A Thread-Safe Term Library 423

As an example, we provide terms where some constants represent variables.
We can have function symbols {0, 1, x, y,+} and have terms 0 + 1, x + 1 and
x + y. The ‘constants’ x and y allow for different operations than the constants
0 and 1, as it is natural to define a substitution operation for the constant x,
whereas that would be less natural for the constant 0. In a similar way, terms
with binders can be represented. For instance, in the term λx.t the λ is just a
binary function symbol and the first subterm is the variable x.

As in the ATerm library, terms are stored in a maximally shared way. Once
created, terms remain as stable structures in memory until they are garbage
collected. This leads to a smaller memory footprint, because equal terms are
only stored once. Comparing terms is also computationally cheap, as two terms
are equal iff they occupy the same address in memory. Also note that handing a
term over to another thread is also cheap, as only the address of the term needs
to be transferred. This avoids serialising and deserialising terms as done in [3].
A disadvantage is that subterms cannot be replaced. If a subterm needs to be
changed, the whole surrounding term must be reconstructed.

With a steadily increasing number of computational cores in computers, it
is desirable to have a parallel implementation of a term library. As terms have
a tree-like structure, one would expect concurrent tree algorithms, as provided
by the EXCESS project [30] or the PAM library [28], to be a useful solution.
However, these tree libraries concentrate on manipulating the trees themselves,
by adding and removing nodes, and rebalancing when required. This would not
allow maximal sharing of terms, which have to be static structures in memory.

Early attempts to create a thread-safe term library led to intriguing wait-free
algorithms [9,10,16]. The assumption was that thread synchronisation was the
root cause of performance issues, and this is avoided when algorithms are wait-
free. But this did not turn out to be entirely true. As the operations to create,
inspect and destroy terms occur frequently and are computationally very cheap, a
thread-safe implementation allows for hardly any overhead. Wait-free algorithms
are intricate and their overhead is deadly for performance in this case. The
same applies to the introduction of mutex variables surrounding construction,
inspection and deletion of terms.

Although the need and advantages of having terms that can be accessed
by multiple threads have already been stressed in the original publications, it
turns out to be hard to make a thread-safe term library that is competitive with
sequential implementations. This is most likely the reason that no thread-safe
term libraries exist, except for a non-published Java implementation [20].

In this article we present a thread-safe term library that is competitive with
sequential term libraries. We first observe that with some minor adaptations,
i.e., essentially introducing a Treiber stack [29] in a hash table, inspection and
construction of terms can happen concurrently. Secondly, we note that garbage
collection on the one hand, and construction/moving/copying of terms on the
other hand must be mutually exclusive, and construction happens far more often
than garbage collection.

424 J. F. Groote et al.

Therefore, we require a mutual exclusion algorithm with behaviour of a
readers-writer lock [26], where construction of terms can happen simultaneously
(=readers), and garbage collection (=writer) must be done in isolation. However,
standard readers-writer locks are too expensive. We designed the busy-forbidden
protocol that employs this asymmetric access pattern as well as the cache struc-
ture of modern processors. Obtaining access to construct a term only requires
access to two bits, virtually always available in the local cache of the current
processor. Besides this, we developed thread-safe term protection mechanisms,
either using atomic operations for reference counting, or by employing explicit
thread-local protection sets.

Experiments show that the new Term Library scales well and for practical
tasks it is already beneficial when only two processors are available. The solution
with a standard readers-writer lock and especially the Java implementation are
substantially slower than our implementation with the busy-forbidden protocol.

The correctness of thread-safe implementations is subtle. Therefore, we use
the mCRL2 model checking toolset [13] to design both the busy-forbidden pro-
tocol and the Term Library, and prove their correctness properties, before imple-
mentation. This turned out to be very effective, as we did not have to struggle
with obscure faults due to parallel behaviour in the algorithm. It is intended
that the new thread-safe Term Library will form the heart of the new release
of the mCRL2 toolset. The currently existing early prototype already achieves
speed ups of a factor 12 on 16 processors for a computationally intensive task,
namely state space generation, which is more than just promising.

2 The Term Data Structure

In [4,5] a term library has been proposed. A term is a very frequently used
concept within computer science. The original motivation for terms as a basic
data structure came from research in software transformation [6,17]. The model
checking toolset mCRL2 uses terms to represent all internal concepts, such as
modal formulas, transition systems and process specifications [13].

2.1 The External Behaviour of the Term Library

Terms are constructed out of functions symbols, or for short functions, from some
given set F . Each function f ∈ F has a number of arguments arf , generally called
the arity of f . A function symbol with arity 0 is called a constant.

Definition 1. Let F be a set of function symbols. The set of terms TF over F
is inductively defined as follows:

if f ∈ F, f has arity arf and t1, . . . , tarf ∈ TF , then f(t1, . . . , tarf) ∈ TF .

Simple numeric expressions are typical examples of terms. The function sym-
bols are 0, 1, 2, 3,+, ∗ where 0, 1, 2, 3 are constants and + and ∗ have arity 2. An
example of a term as a tree structure is given in Fig. 1.

A Thread-Safe Term Library 425

+

3 ∗

4 2

Fig. 1. The tree for
3 + 4 ∗ 2.

The term library in [4,5] allows to annotate terms,
hence the name ATerm, but we do not use this feature.
This original ATerm proposal also supported special terms
representing numbers, strings, lists and even ‘blobs’ con-
taining arbitrary data. We made our own implementation
of a term library where besides terms as defined in Defini-
tion 1, there are also facilities for lists and 64-bit machine
numbers. As these are in many respects the same as terms
constructed out of function symbols, we ignore lists and
numbers in this exposition.

From the perspective of a programmer terms are immutable maximally
shared tree structures in memory. This means that if two (sub)terms are the
same, they are represented by the same address in memory. The term library
provides essentially the following limited set of operations on terms:

Create. Given a function symbol f and terms t1, . . . , tarf construct a term
f(t1, . . . , tarf). This operation can fail when there is not enough memory.
Destroy. Indicate that a term t will not be accessed anymore by this thread.
Terms that are not accessed by any thread must ultimately be garbage collected.
Copy/move. Move or copy a term. This essentially means move or copy the
address of the term.
Argument. Obtain the i-th subterm ti of a term f(t1, . . . , tarf).
Function. Obtain the function symbol f of a term f(t1, . . . , tarf).
Equality. For terms t and u determine whether t and u are equal. Note that
due to maximal sharing this operation only requires constant time.

Due to the immutable nature of terms in memory it is not possible to simply
replace a subterm of a term. If a subterm must be changed, the whole surrounding
term must be copied. On the other hand terms are very suitable for parallel
programming. Threads can safely traverse protected terms in memory as the
treads can be sure that these terms will not change.

By storing terms as maximally shared trees, the only non trivial operations
on terms are the creation of a new term and the destruction of an existing
term. Given a function symbol f and subterms t1, . . . , tarf it must be determined
whether the term f(t1, . . . , tarf) already exists. This is done using a hash table.
If the term already exists, this term is returned. If not, a new term node labelled
with f pointing to the subterms t1, . . . , tarf must be made.

The typical usage pattern of terms is that they are visited very often obtain-
ing arguments or function symbols. Creation of a term is also a very frequent
operation, where in the majority of cases a term is created that already occurs
in the hash table. Only rarely a garbage collect is taking place.

2.2 Behavioural Properties of the Term Library

The Term Library guarantees the following properties, checked using model
checking, see Sect. 4.

426 J. F. Groote et al.

1. A term and all its subterms remain in existence at exactly the same address,
with unchanged function symbol and arguments, as long as it is not destroyed.

2. Two stored terms t1 and t2 always have the same non-null address iff they
are equal.

3. Any thread that is not busy creating or destroying a term, can always initiate
the construction of a new term or the destruction of an owned term.

4. Any thread that started creating a term or destroying a term, will eventually
successfully finish this task provided there is enough memory to store one
more term than those that are in use. But it is required that other threads
behave fairly, in the sense that they will not continually create and destroy
terms or stall other threads by busy waiting.

Note that the properties above imply some notion of garbage collection in the
sense that if a thread makes and destroys terms, and these are not garbage
collected, at some point no new terms can be created due to a lack of memory
and in that case property 4 above would be violated.

2.3 The Implementation of the Thread-Safe Term Library

Terms are implemented in the Term Library by storing them in a hash table.
Whenever a term with function symbol f and arguments t1, . . . , tarf is created,
the hash table is used to find out whether f(t1, . . . , tarf) already exists. If yes,
its current address is returned. If no, a new term f(t1, . . . , tarf), is inserted in
the hash table and its address is returned.

Another possible solution would be to use a CTrie [25] instead of the hash
table. However CTries main advantage, memory conservation, over performance,
makes it less suitable for our Term Library, which must be suitable to deal with
huge numbers of term manipulations in short time spans.

Terms in our Term Library can be constructed and accessed in parallel.
When a thread created a term, this term and all its subterms are immutable
and stored at fixed addresses in memory, and this means that any term can be
accessed safely by all threads that have not destroyed the term.

We have two ways to implement garbage collection in the thread-safe Term
Library, namely reference counting and the use of protection sets, which ensure
that non-destroyed terms remain in memory. Garbage collection is performed
by a single thread. Note that mark-and-sweep algorithms exist where creation
and destruction can be done simultaneously [10] but these are very complex. As
garbage collection is relatively fast, such advanced algorithms are not necessary.

In reference counting, each term has a reference count that is incremented by
one whenever a term is created or copied, and decremented by one if a thread
drops a reference to the term. Terms that are not in use anymore have a reference
count of zero and can be garbage collected. This can easily be performed by
visiting all terms, which are stored in traversable structures.

An alternative is to use term protection sets. Whenever a term is stored at
some address, this address is stored in a separate protection set, locally main-
tained by each thread. When the address is not used anymore for a term, it

A Thread-Safe Term Library 427

is removed from the set. As every address can only be stored once, a simple
hash table suffices to implement the protection set. Garbage collection consists
of marking all terms reachable via some protection set, and removing all others.

In the parallel setting changing reference counts or inserting/deleting
addresses in protection sets must be sequentially consistent meaning that they
cannot be rearranged in the programs. Changing reference counts must be atomic
and can lead to cache contention as the reference counts are accessible by all
threads. Operations on the protection sets are far more complex than changing
a reference count, but they are always local in a thread, and depending on the
style of programming need to be executed far less often than changing a reference
count. From the benchmarks we derive that protection sets are preferable.

If we only create terms, this can be done in parallel as well. We use a dedicated
hash table with a bucket list in the form of a linked list to check whether a term
already exists. If the term does not exist, it is added using a compare and swap
operation to the bucket list of the appropriate entry of the hash table. If in the
mean time another thread creates the same term, the compare and swap fails,
informing the thread that it has to inspect the hash table again to find out
whether the term came into existence. This is Treiber’s stack, which is sufficient
since terms are not simultaneously deleted from the bucket lists. Deletion only
occurs during garbage collection, and during garbage collection no new terms
are allowed to be constructed.

Accessing terms during garbage collection and rehashing is perfectly safe. But
it is not allowed to create or copy terms while garbage collection or rehashing is
going on. This requires a mutual exclusion protocol where either multiple threads
can create and copy terms simultaneously, which we call the shared tasks, or a
single thread can be involved in garbage collection or rehashing, which is called
the exclusive task.

This is the same as a readers-writer lock [26] where multiple readers or at
most one writer can access a shared resource. Reading is the shared task, and
writing is exclusive. As we observed that creating and copying terms is done
very frequently compared to garbage collection, shared access must be cheap and
exclusive access can be expensive. Most standard readers-writer locks require at
least one access to a common mutex variable for shared access which is so costly
that parallel implementations based on the readers-writer lock run on multiple
processors failed to outperform the sequential implementation. This observation
is supported by the benchmarks. We developed a completely new protocol, called
the busy-forbidden protocol serving our needs, which is described in the next
section.

Using the busy-forbidden protocol, a compare and swap to insert terms in
bucket lists for the hash table, the implementation of thread-safe Term Library
is pretty straightforward but delicate. Table 1 contains the code for creating and
destroying terms. In this code enter shared, leave shared, enter exclusive
and leave exclusive are part of the busy-forbidden protocol described in the
next section. The function h is a hash function that takes a function symbol f,
and subterms t1, . . . , tn, and calculates a possibly non-unique hash. The func-

428 J. F. Groote et al.

Table 1. Pseudocode description of the thread-safe Term Library.

create(thread p, symbol f, subterms t1, . . . , tn)
enter shared(p);
hash := h(f, t1, . . . , tn);
bucket := buckets[hash];
t := insert(bucket, f, t1, . . . , tn);
protect(p, t);
leave shared(p);
return t;

insert(bucket b, symbol f, subterms t1, . . . , tn)
old head, node := b.top;
do

if node.head represents f(t1, . . . , tn)
return node.head;

node := node.tail;
while (node �= NULL);
t := construct f(t1, . . . , tn);
if not cmpswap(b.top, old head, Node(t, old head))

destruct t;
return insert(b, f, t1, . . . , tn);

return t;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

destroy(thread p, term t)
unprotect(p);
possibly do GC(p)

GC(thread p)
enter exclusive(p);
forall t ∈ hash table

if not protected(t)
remove t;

leave exclusive(p);

tions protect, unprotect and protected refer to the protection mechanisms
described earlier, in which protected(t) will return true if and only if the term t
is protected by some thread. Besides this, each bucket b in the hash table contains
an atomic pointer b.top that allows atomic loads and an atomic compare-and-
swap operation cmpswap, which returns true if and only if successful. The call
GC(p) stands for doing a garbage collect by thread p.

Using an mCRL2 model of the behaviour of the Term Library, the behavioural
properties mentioned in Sect. 2.2 have been model checked. This is described in
Sect. 4.

3 The Busy-Forbidden Protocol

The busy-forbidden protocol is of independent interest. This protocol guarantees
that at most one thread can be in state Exclusive and if a thread is in state
Exclusive, no thread is in state Shared, and vice versa, if there are threads in
state Shared, then there is no thread in the state Exclusive. It behaves in a similar
way as a readers-writer lock [26], called a shared mutex in C++.

The busy-forbidden protocol is designed for the situation where shared access
is frequent whereas exclusive access is infrequent.

A Thread-Safe Term Library 429

Free

EnterS

LOE1 Shared

LeaveS
En
te
r

sh
ar
ed

ca
ll

No threads in
LOS or Exclusive

im
p
r o
ba
bl
e

A
t
le
as
t
1
th
re
ad

in
L
O
S

or
E
xc
lu
si
ve

E
n
t
e
r

s
h
a
r
e
d

r
e
t
u
r
n

Lea
ve

sha
red

cal
l

Leave

shared

return

EnterE

LOE2

LOSExclusive

LeaveE1

LeaveE2

En
te
r

ex
cl
us
iv
e

ca
ll

No threads in
LOE2, LOS, LeaveE1

or Exclusive im
p
ro
ba
ble

No threads in
LOE1 or Shared

E
n
t
e
r

e
x
c
l
u
s
i
v
e

r
e
t
u
r
n

Lea
ve

exc
lus

ive

cal
l

τ

im
p
r o
ba
bl
e

Leave

exclusive

return

LOE1 There are no threads
in or able to enter Exclusive.

Shared Shared access. No concurrent
access to Exclusive possible.

EnterS Entering shared.
LeaveS Leaving shared.

Free The thread is outside any
exclusive or shared section.

LeaveE2 Leaving exclusive.
EnterE Entering exclusive.

LeaveE1 Leaving exclusive. No threads
in or able to enter Exclusive.

LOE2 There are no threads in
or able to enter Exclusive.

Exclusive Exclusive access. There are
no threads in or able to enter
Exclusive or Shared.

LOS No threads in or able to enter
Exclusive or Shared.

Fig. 2. The external behaviour of the busy-forbidden protocol.

3.1 The External Behaviour of the Busy-Forbidden Protocol

We first look at the external behaviour of this protocol. As indicated above,
threads can request for shared or exclusive access by calling one of the two func-
tions enter shared and enter exclusive. The functions starting with leave
are used to indicate that access is no longer required.

We make the external behaviour more precise by modelling it as a state
automaton, actually obtained by the specification in mCRL2 used for verifi-
cation. From the perspective of a single thread, the behaviour is depicted in
Fig. 2. The calls are modelled by actions Enter/Leave shared/exclusive call.
Returning from the function is modelled by actions ending in return.

The centre state, marked Free, indicates that the thread is not involved in
the protocol. It is outside the shared and exclusive sections. Following the arrows
in a clockwise fashion, a thread obtains access. In the state EnterS the thread
requested shared access, and it will get it when there are no threads in the states
LOS or Exclusive. From the figure it is quite easy to see that the protocol indeed
satisfies the mutual exclusion constraints mentioned above.

We went to great length to ensure that the behaviour of Fig. 2 for multi-
ple threads is divergence-preserving branching bisimilar to the implementation
below [11,12]. This equivalence is equal to branching bisimulation, but it does
not remove τ -loops, i.e., loops of internal actions. It preserves not only safety

430 J. F. Groote et al.

but also liveness properties, and allows us to use this specification to verify the
Term Library.

The loop at EnterS occurs typically when another thread is in state Exclu-
sive for a lengthy period. The loop at LOE2 occurs when another thread is in
Shared and refuses to leave. The loop in LeaveE1 is required to obtain a con-
cise equivalent external behaviour. When the busy protocol is used as intended,
i.e., threads only use common accesses for a short time, and the implementation
uses the right internal scheduling, these loops rarely occur. They are therefore
marked improbable.

3.2 The Implementation of the Busy-Forbidden Protocol

The code for entering and leaving the exclusive sections is described in Table 2.
The busy-forbidden protocol is implemented by assigning to each thread two
atomic flags, called busy and forbidden. The flag busy indicates that the current
thread is in its shared section and can only be written to by this thread. The
flag forbidden indicates that some thread is having exclusive access.

Table 2. Pseudocode description of the busy-forbidden protocol.

enter shared(thread p)
p.busy := true;
while p.forbidden

p.busy := false;
if mutex.timed lock()

mutex.unlock();
p.busy := true;

1

2

3

4

5

6

7

8

enter exclusive(thread p)
mutex.lock();
while exists thread q with

¬q.forbidden
select thread r
r.forbidden := true;
if r.busy or sometimes

r.forbidden := false;

1

2

3

4

5

6

7

8

leave shared(thread p)
p.busy := false;

1

2

3

4

5

6

7

8

9

leave exclusive(thread p)
while exists thread q with

q.forbidden
select thread r
usually do

r.forbidden := false;
sometimes do

r.forbidden := true
mutex.unlock();

1

2

3

4

5

6

7

8

9

Besides the flags there is one generic mutual exclusion variable, called mutex.
The variable mutex can not only be locked and unlocked, but also provides a
timed lock operation timed lock(). It tries to lock the mutex, and if that fails
after a certain time, it returns false without locking it. The timed lock is only
important for performance, and can be replaced by a wait instruction or even
be omitted altogether.

When entering the shared section, a thread generally only accesses its own
busy and forbidden flags as forbidden is almost always false. These flags are

A Thread-Safe Term Library 431

only rarely accessed by other threads and therefore virtually always available
in the local cache of the processor executing the thread. In the rare case when
the forbidden flag is set, this thread backs off using mutex to try again later. In
principle the while-loop can be iterated indefinitely, giving rise to the internal
loop in state EnterS in the specification. Leaving the shared section consists of
only setting the busy flag of the thread to false.

Accessing the exclusive section is far more expensive. By using mutex, mutual
access to the exclusive section is obtained. Subsequently, the forbidden flag for
each thread p is set to true, unless the busy flag of thread p is set, as in this case
the forbidden flag must be set to false again.

There is a non immediately obvious scenario where one thread refuses to
leave the shared section, and two other threads p2 and p3 want to access the
shared and exclusive section, respectively. Thread p3 cannot obtain exclusive
access, but hence should not indefinitely block shared access for p2. Hence, p3

must set the forbidden flag of p2 to false if busy of p1 is true.
Without the sometimes part, which represents an arbitrary heuristic which

only rarely holds, the implementation is not divergence-preserving bisimilar to
the specification, as reading r.busy = false in line 9, once all other forbidden flags
have been set, leads to a state without an internal loop, which does not occur in
the specification. Without the sometimes part, a matching specification would
become substantially more complex exhibiting exactly when each forbidden flag
is set, rendering the specification far less abstract and hence making it less useful.

When leaving the exclusive section a thread resets all forbidden flags of
the other threads. If this is done in a predetermined sequence the divergence-
preserving branching bisimilar external behaviour becomes very complex, as this
sequence has an influence on the precise sequence other threads can enter the
shared section. By resetting and sometimes even setting the forbidden flag, a
comprehensible provably equal external behaviour is obtained, although it leads
to another τ -loop in the specification. Practically, re-resetting the flag is hardly
ever needed, certainly not for the Term Library. However, it is interesting to
further investigate the optimal use of the timing of mutex in enter shared, as
well as the optimal rate of occurrence of the sometimes instructions for generic
uses of the busy-forbidden protocol.

We modelled the specification and implementation of the busy-forbidden pro-
tocol in mCRL2 (see Sect. 4) and proved them divergence-preserving branching
bisimilar.

3.3 Behavioural Properties of the Busy-Forbidden Protocol

As an extra check we also formulate a number of natural requirements that
should hold for this protocol. These requirements have been verified by formu-
lating them as modal properties.

1. There should never be more than one thread present in the exclusive section.
2. There should never be a thread present in the exclusive section while one or

more threads are present in the shared section.

432 J. F. Groote et al.

3. When a thread requests to enter the shared section, it will be granted access
within a bounded number of steps, unless there is another thread in the
exclusive section.

4. When a thread requests to enter the exclusive section, it will be granted
access within a bounded number of steps, unless there is another thread in
the shared or in the exclusive section.

5. When a thread requests to leave the exclusive/shared section, it will leave it
within a bounded number of steps.

6. A thread not in the exclusive or shared section can instantly start to enter
the exclusive or shared section.

For properties 3, 4, and 5 granting access and leaving can be indefinitely post-
poned if other threads are entering and leaving exclusive and shared sections, or
when other threads are in the while loops, continuously writing forbidden and
busy flags. This means that the algorithm relies on fair scheduling of threads.

3.4 Existing Readers-Writer Locks

Common readers-writer locks, such as std::shared mutex in C++17 in MSVC,
use a mutual exclusion variable when entering and leaving the shared/reader
section. This leads to poor scalability and is one of the reasons why the usage
of readers-writer locks is often discouraged [7].

The readers-writer lock by Mellor-Crumney and Scott [23] reduces resource
contention by using a counter to keep track of the amount of current read-
ers and introducing a queue system in which threads only have to notify the
thread next in line when they leave the lock. This lock is further improved by
Krieger et al. [19] by reducing the amount of shared variables to a single pointer
and using a double-linked list instead of a queue such that reader threads can
leave the lock without having to wait for neighbouring readers to also be done
reading. However, the single shared pointer needs to be updated using a costly
compare-and-swap operation every time a thread enters the lock, which becomes
a bottleneck when multiple threads try to enter at the same time.

Lev et al. [21] provide several readers-writer lock algorithms aimed at improv-
ing scalability by significantly reducing resource contention through the use of a
tree-like data structure called C-SNZI. Lev et al. show that their algorithms out-
perform other readers-writer locks when the majority of accesses, i.e., ≥ 80%, are
read accesses. Concurrent read-accesses however still have resource contention
with a 100% read workload, whereas the busy-forbidden protocol has none. Thus,
this implies that the busy-forbidden protocol outperforms the C-SNZI based
algorithms for our use case.

3.5 Performance of the Busy-Forbidden Protocol

We have implemented the busy-forbidden protocol in C++ and assess its scalabil-
ity compared to that of the std::shared mutex by having threads repeatedly
enter and leave the shared/reader section or the exclusive/writer section. Each

A Thread-Safe Term Library 433

thread uses a random number generator to decide on which section to enter and
then leave, with a preset probability of 99.99% of a thread deciding to enter and
leave the shared/reader section. This probability was chosen as it corresponds
to that of a typical use case such as state space generation.

1 2 3 4 6 8
0

0.2
0.4
0.6
0.8
1 ·105

#threads

w
al
lc
lo
ck

ti
m
e
(m

s)

busy-forbidden
std::shared mutex

Fig. 3. Readers-writer lock benchmarks.

Figure 3 shows the wall clock
time of #threads threads enter-
ing and then leaving a random
section 109 times per thread.
The values displayed are the
averages of 5 different runs.
The measurements were taken
on an Intel i7-7700HQ pro-
cessor and the C++ code was
compiled using the MSVC19
compiler with the -O2 flag
enabled. The wall clock time
of std::shared mutex for more
than 4 threads is omitted from
the graph as it is too large to
nicely display.

We observe in Fig. 3 that the busy-forbidden protocol performs significantly
better than the std::shared mutex and costs only a minimal amount of over-
head. This can also be seen in Fig. 5 (a), discussed in Sect. 5, in which the
busy-forbidden protocol and std::shared mutex are used in combination with
our implementation of the parallel Term Library.

4 Modelling and Verifying the Algorithms

As parallel algorithms are hard to get correct, we made models of the busy-
forbidden protocol, of both specification and implementation, and the thread-
safe Term Library in the process modelling language mCRL2 and verified the
properties by formulating them in the modal mu-calculus [13]. The specification
model is a direct reflection of the external behaviour shown in Fig. 2. The result-
ing implementation models are a direct reflection of the pseudocode in Table 1
and 2. The formulas are a one to one translation of the requirements listed in this
article. For this reason, and for the reason of space, the models and formulas,
are not included in this article1.

Due to the nature of model checking, we only verify the models for finite
instances. We repeatedly found that when protocols or distributed systems are
erroneous, the problems already reveal themselves in small instances [14]. Used in
this way, model checking is so efficient that it can effectively be used within the
workflow of constructing software. The busy-forbidden protocol was modelled
and proven, before implementation commenced, and we did not run into any
problem with it during implementation.
1 All models and formulas can be found in Appendices B and C, respectively.

434 J. F. Groote et al.

A general equivalence proof has since been given for the specification and
implementation of the busy-forbidden protocol [27], using an extension of the
Cones and Foci method [8,15].

The correctness of the protocol and library have not been proven in general
for any number of threads and terms. Unfortunately, we do not know of any
effective method to prove modal formulas on models with a complexity such as
ours, either automatically or manually, for any number of threads and terms,
and consider this an important direction of research.

The model of the busy-forbidden protocol does not include the mutex.timed -
lock() statement as it is only important for performance. The sometimes key-
words are modelled as non-deterministic choices. The specification and imple-
mentation are proven to be divergence preserving branching bisimulation equiv-
alent, for up to 7 concurrent threads.

We transformed the six requirements discussed in Sect. 3.3 into modal logic
formulas, and verified them both on the specification and the implementation,
although the latter was not really necessary due to their equivalency. The equiv-
alence and properties were verified, both on the specification as well as on the
implementation model, for up to 7 threads. We uncovered a number of issues
and obtained various insights while doing the verification for 2 and 3 threads.
The verification with more threads, although increasingly time consuming, did
not lead to any additional insight.

The model is primarily concerned with the thread-safe creation and garbage
collection of terms, and therefore the typical term structure, where terms contain
subterms, is also not part of the model, and as such only uses terms with arity 0.
We use the equivalent specification model of the busy-forbidden protocol instead
of its implementation model, as it is significantly smaller. Furthermore, the model
of the Term Library does not include buckets or a hashing function. Instead the
hash table is modelled as a simple associative array, with atomic contains and
insert operations.

The four properties discussed in Sect. 2.2 are also translated into modal logic
and verified for finite instances. We have verified these properties for up to 3
threads, using 3 different terms and 4 possible addresses, giving us reasonable
certainty that the thread-safe Term Library works as intended. We were unable
to verify our properties on larger state spaces as they became too big to verify
automatically. For example the state space of the aforementioned setup with 4
threads instead of 3 has 129 billion states.

5 Performance Evaluation

We have implemented a sequential and a thread-safe version of the Term Library.
Both of these implementations are almost identical except for the synchroni-
sation primitives added to the thread-safe version where necessary, including
the busy-forbidden protocol. Furthermore, we have implemented both reference
counting and address protection sets as garbage collection strategies in both
implementations for comparison. We compare these with the sequential ATerm

A Thread-Safe Term Library 435

library as used in the mCRL2 toolset [13] and with a thread-safe Java imple-
mentation [20] of the Term Library used in tools such as Spoofax [18], which
was the only other thread-safe term library that we could find. All reported
measurements are the average of five runs with an AMD EPYC 7452 32-Core
processor, unless stated otherwise.

The results are listed in the plots in Figs. 4 and 5. In these plots the y-axis
indicates the wall clock time in seconds and the x-axis the number of threads
(#threads). The triangles are the thread-safe reference count implementation
and the squares the thread-safe set protection implementation. For the sequen-
tial versions we have circles for the reference count version, diamonds for the
protection set version and plusses for the original implementation. The results
for the sequential implementations are extended horizontally for easier compar-
ison. Finally, the dashed line indicates the thread-safe Java implementation and
the dotted line is our thread-safe implementation where the busy-forbidden pro-
tocol has been replaced by a std::shared mutex. This last implementation uses
protection sets.

In Fig. 4 we report three experiments, one per row, designed to obtain insight
in how the new thread-safe library performs for specific tasks. In the left column
all threads access the same shared term, whereas in the right column each thread
operates on its own term, but these distinct terms are stored in common data
structures and accessed via the hash table common for all threads.

In Fig. 4 (a) we measure how expensive it is to create a term in parallel. The
threads create a term t400 000 defined as follows. The term t0 is equal to a constant
c and ti is f(ti−1, ti−1) for a function symbol f of arity two, which is the most
common arity used in practice. Note that due to sharing, this term consists of
400 001 term nodes. In (b) each thread creates the term t400 000/#threads instead.
With each term starting with a unique constant per thread, creating a total of
400 000 + #threads term nodes.

In Figs. 4 (c) and (d) we measure the time it takes to create 1000/#threads
instances of the terms used in respectively (a) and (b). This measures the time
to create terms that are already present in the term library, and this essentially
boils down to a hash table lookup. In diagram (d) the Java results are left out
as Java consistently requires more than 100 s. In the lower diagram, i.e.(e), we
measure the time to perform 1000/#threads breadth-first traversals on a term
t20.

The traversals do not employ the shared structure, hence 221 − 1 terms are
visited per traversal. We observe that for this benchmark there is no difference
in timings between traversing the term t20 and traversing a unique term per
thread.

We conclude that our term library completely outperforms the Java imple-
mentation. For creating terms, the std::shared mutex is slower. For traversing
terms no locking is required, and therefore, no difference is observed. The dotted
line is hidden under the line with the boxes2. Except for creating new terms,
the term library clearly benefits from the extra processors, outperforming the

2 All benchmark results are listed in Appendix C.

436 J. F. Groote et al.

4 8 12 16 20 24 28 32
0

0.5

1

1.5

2

(a) Creating new terms (shared).

4 8 12 16 20 24 28 32
0

0.2

0.4

(b) Creating new terms (distinct).

4 8 12 16 20 24 28 32
0

20

40

60

(c) Creating existing terms (shared).

4 8 12 16 20 24 28 32
0

10

20

30

(d) Creating existing terms (distinct).

4 8 12 16 20 24 28 32
0

10

20

30

40

(e) Traversing terms (shared).

thread-safe (busy-forbidden,
reference count)
thread-safe (busy-forbidden,
protection set)
thread-safe (Java [20])
thread-safe (std::shared mutex)
sequential (reference count)
sequential (protection set)
sequential (original)

(f) Legend for all plots in Figures 4 and 5.

Fig. 4. Execution time (in seconds) plotted against number of threads.

A Thread-Safe Term Library 437

1 2 3 4 5 6 7 8
0

50

100

(a) Creating existing terms (shared, Intel).

4 8 12 16 20 24 28 32
0

20

40

60

80

(b) State space exploration.

Fig. 5. Additional experiments comparing execution times versus threads.

sequential libraries with two processors using protection sets. When creating new
terms, scaling goes reasonably well when beyond 12 processors. We observe in
Fig. 4 (c) that the reference counting implementation for a few threads is unex-
pectedly inefficient. In order to understand this, we retried the experiments on
an Intel i7-7700HQ processor, reported in Fig. 5 (a). Here, none of the anomalies
occur, and notably, Java even outperforms the std::shared mutex implementa-
tion with more than four threads. This is in line with our many other experiments
that compiler and processor have a large influence on such benchmarks.

The dedicated benchmarks are promising, but in order to get insight in the
behaviour of the Term Library in practical situations, we incorporated the Term
Library in the mCRL2 toolset and used it to generate the state space of the
1394 firewire protocol [22]. Essentially each thread picks an unexplored state
from a common state buffer, and using term rewriting, generates all states reach-
able from this state, putting them back in the buffer. With protection sets, two
threads are already sufficient to outperform all sequential implementations, and
scaling is very good, where with 16 threads, the state space is generated more
than 12 times faster. Reference counting is clearly a less viable option, which is
most likely due to the fact that often the same terms, such as true and false, are
accessed when calculating next states, leading to atomically changing the same
reference count often. Note that in this prototype, nothing has been done yet to
optimise thread access to the common state buffer, being simply protected by a
mutex.

A The mCRL2 Language and Modal Formulas

The models are written in mCRL2. This is a modelling language based on CCS
(Calculus of Communicating Processes) [24] and ACP (Algebra of Communicat-
ing Processes) [1]. It is based on atomic actions. Every occurrence of an atomic

438 J. F. Groote et al.

action causes a state change. Typically, calling a function, or returning from a
function, setting or reading a global variable are modelled by atomic actions.
Each action consists of a label and a possible set of data parameters, e.g., the
lock(p) action has p as a data parameter. The tau or hidden action τ has a special
status, as it is an action of which the occurrence cannot be observed directly.

Actions can be sequentially composed using the dot (‘·’) operator. Alternative
composition, where nondeterministically one of the options can be chosen, is
denoted using a plus (‘+’). The

∑
e:S operator denotes the application of the

(‘+’) operator over all elements of some set S. The if-then-else is written as
c→p�q where p is executed if c is true, otherwise the process q takes place.

Parallel composition is denoted by ‖ and allows the actions of two processes
to both interleave and occur simultaneously. Using the comm and allow opera-
tors, we can enforce that only specific actions can and must occur simultaneously.
For example, comm({a, b}→c},allow({c, d, e}, (d · a)||(b · e))) enforces that the
actions d and e can not occur simultaneously, while a and b must occur simul-
taneously with any other action, signified with c. As a result, d · c · e is the only
possible sequence of actions that can occur.

Recursive behaviour is denoted using equations, typically of the form X = p,
e.g., X = a·X is the process that can perform an infinite number of a’s. Similar
to actions, the process variables X can contain data parameters. A counter can
thus be described as C(n:N) = up·X(n+1). An important type of data parameter
that we use is a function. For example, the process variable Y (m : N → B) uses
a mapping m from natural numbers to booleans. The function update m[n �→ b]
specifies that m[n �→ b](k) equals b if k = n, and otherwise, it equals m(k).

The safety and liveness properties that we verify, are written in the modal
mu-calculus. These consist of conjunctions (∧), disjunctions (∨), implications
(→), negations (¬), quantification (∃,∀) and true and false, each with their
usual meaning. Besides this there is a modality 〈a〉φ that is valid if we can take
an action a after which φ holds. Similarly, the modality [a]φ holds iff after every
possible a action φ holds. The action a inside these modalities can also consist
of possibly multiple actions. This can be done through sequential composition
(·), choice (∪), intersection (∩) and complement (a). For example, the formula
〈a ∪ b〉true only holds if we can do some action that is neither a or b. The
expression true in a modality represents the set of all actions. Using Kleene’s
star on a set of actions, all sequences over the action in this set are expressed.
An often occurring pattern is [true∗]φ expressing that φ must hold in all states
reachable via a sequence of actions.

We can also write recursive formulas using the minimal fixed point operator
μX.φ and the maximal fixed point operator νX.φ. For example, the formula
νX.〈a〉X expresses that we must be able to perform action a after which the
same formula still holds. Thus this formula only holds if we can perform an
infinite amount of a actions. The difference between a minimal and a maximal
fixed point is that iteration through the fixed point variable must be bounded
in a minimal fixed point.

A Thread-Safe Term Library 439

A fixed point construction used in several properties is

νX.μY.([succes ∪ interrupt]Y ∧ [interrupt]X ∧ 〈true∗.succes〉true)

This says that an action succes will always occur within a finite amount of steps,
unless an action interrupt continuously occurs. But even in that case succes must
remain possible. This construction is useful for properties in which we state that
something must eventually happen given fair scheduling.

The fixed point operators also allow us to pass on parameters in the same
way we can do for process variables. This allows us, for example, to keep track
of the number of times that a given action has occurred. We discuss one such
fixed point operator in AppendixB.

B mCRL2 Specifications for the Busy-Forbidden
Protocol

In this section we give the formal mCRL2 specifications of the implementation
and the external behaviour, i.e., the specification, of the busy-forbidden proto-
col that are used to perform the model and equivalence checking. The process
specification given in Table 3 exactly matches the external behaviour shown in
Fig. 2. We define P to be the (finite) set of threads and we define S to be a data
set representing the set of states:

S = {Free, EnterS, LOE1, Shared, LeaveS,
EnterE, LOE2, LOS, Exclusive, LeaveE1, LeaveE2}

The mapping s maps each thread to their current state. Initially, s(p) = Free
for all p ∈ P . The conditions for performing transitions are the same as the
conditions in the diagram of the external behaviour.

Observe that we use a typewriter font (for example enter shared call) to
indicate visible actions and an italics font (for example storep) to indicate inter-
nal actions that will be hidden for divergence-preserving branching bisimulation
reductions.

The mCRL2 specification of the implementation is separated per function.
Entering the shared section is specified in Table 4 and leaving it in Table 5.
Entering the exclusive section is specified in Table 6 and leaving it in Table 7.

Note that we use actions to model the assignments to variables. For example
storep(Busy(p), true, p) corresponds to the assignment of true to p.busy in the
implementation pseudocode. The process algebra has no global variables and we
use an additional process and actions to read from and write to these variables.
For the atomic flags we introduce a struct F that is defined below to declare a
busy and a forbidden flag per thread.

sort F = struct Busy(P) | Forbidden(P)

440 J. F. Groote et al.

Table 3. Specification of the busy-forbidden protocol corresponding to Fig. 2.

BF(s : P → S) =
∑

p:P .(

(s(p) ≈ Free)

→ enter shared call(p).BF(s[p �→ EnterS])

+ (s(p) ≈ EnterS)

→ ((¬∃p′:P . s(p′) ∈ {LOS,Exclusive}) → τ.BF(s[p �→ LOE1])

	 improbable.BF(s))

+ (s(p) ≈ LOE1)

→ enter shared return(p).BF(s[p �→ Shared])

+ (s(p) ≈ Shared)

→ leave shared call(p).BF(s[p �→ LeaveS])

+ (s(p) ≈ LeaveS)

→ leave shared return(p).BF(s[p �→ Free])

+ (s(p) ≈ Free)

→ enter exclusive call(p).BF(s[p �→ EnterE])

+ (s(p) ≈ EnterE ∧ ¬∃p′:P . s(p′) ∈ {LOE2,LOS,Exclusive})

→ τ.BF(s[p �→ LOE2])

+ (s(p) ≈ LOE2)

→ improbable.BF(s)

+ (s(p) ≈ LOE2 ∧ ¬∃p′:P . s(p′) ∈ {LOE1,Shared})

→ τ.BF(s[p �→ LOS])

+ (s(p) ≈ LOS)

→ enter exclusive return(p).BF(s[p �→ Exclusive])

+ (s(p) ≈ Exclusive)

→ leave exclusive call(p).BF(s[p �→ LeaveE1])

+ (s(p) ≈ LeaveE1)

→ improbable.BF(s)

+ (s(p) ≈ LeaveE1)

→ τ.BF(s[p �→ LeaveE2])

+ (s(p) ≈ LeaveE2)

→ leave exclusive return(p).BF(s[p �→ Free]))

Table 8 shows the behaviour of the Busy and Forbidden flags for every thread
and the mutex variable. We model the ‘while’ construction in the pseudocode
by recursion and have added the improbable action to ensure equivalence mod-
ulo divergence-preserving branching bisimulation. When entering the exclusive
section, we use a set forbidden (and for leaving allowed) to keep track of the
threads whose forbidden flag have already been set to true (false when leaving).

Table 9 shows the specification for the behaviour of a thread. Each thread
repeatedly chooses (non-deterministically) to enter and leave either the shared or

A Thread-Safe Term Library 441

exclusive section. Finally, Table 10 contains the complete mCRL2 specification of
the various processes in a parallel composition and the necessary communication
to deal with the atomic flags and mutex.

As the next step, we transformed the six requirements discussed in Sect. 3.3
into modal logic formulas, and verified them on the specification. Note that
these properties are preserved by divergence-preserving branching bisimulation,
so verifying the implementation is not necessary. We discuss property 2 in detail
as an illustration of what such formulas look like. The informal description of
the property reads:

2. There should never be a thread present in the exclusive section while one or
more threads are present in the shared section.

The corresponding modal formula is shown in Table 12. We use a maximal fix-
point with two data parameters, namely nshared and nexclusive, both initially
0. The argument nshared indicates the number of threads present in the shared
section, and nexclusive the number in the exclusive section. At lines 2 through
5, we keep track of the amount of threads present in each section, updating the
variables after each respective action. At lines 6 through 11, we state that our
variables stay the same, after any action that is not one of the four aforemen-
tioned actions. Finally, at line 12, we state that threads are only allowed to be
either present in exclusive or are present in shared.

The formula for property 1 is shown in Table 11 and states that when a thread
enters the exclusive section, no other thread may enter that section till it leaves
the section. The formulas for properties 3 and 4 are presented in Tables 13 and 15
and use data parameters to count the number of threads in the exclusive section
or in any section respectively. Note that these are two subformulas with identical
structure for shared and exclusive sections respectively. Finally, properties 4
and 6 presented in Tables 14 and 16 use boolean parameters to keep track of
whether any thread is in the shared or exclusive sections, respectively. This is
more efficient than keeping track of the exact amount of threads.

The properties were verified for up to 7 threads. The specification model has
about three million states and the implementation model about 11 billion states.

442 J. F. Groote et al.

Table 4. mCRL2 specification for the implementation of enter shared.

EnterShared(p : P) =

enter shared call(p) .

TryBothFlags(p) .

enter shared return(p)

TryBothFlags(p : P) =

storep(Busy(p), true, p).(

loadp(Forbidden(p), true, p) .

storep(Busy(p), false, p).improbable.TryBothFlags(p)

+ loadp(Forbidden(p), false, p))

Table 5. mCRL2 specification for the implementation of leave shared.

LeaveShared(p : P) =

leave shared call(p) .

storep(Busy(p), false, p) .

leave shared return(p)

Table 6. mCRL2 specification for the enter exclusive function in Table 2.

EnterExclusive(p : P) =

enter exclusive call(p)

lockp(p) .

SetAllForbiddenFlags(p, ∅) .

enter exclusive return(p)

SetAllForbiddenFlags(p : P, forbidden : Set(P)) =

(∀p′:P .p ∈ forbidden)

→ internal

	 ∑
p′:P .storep(Forbidden(p′), true, p).(

loadp(Busy(p
′), false, p) .

SetAllForbiddenFlags(p, forbidden ∪ {p′})

+ loadp(Busy(p
′), true, p) .

storep(Forbidden(p′), false, p).improbable .

SetAllForbiddenFlags(p, forbidden \ {p′})

+ storep(Forbidden(p′), false, p).improbable .

SetAllForbiddenFlags(p, forbidden \ {p′}))

A Thread-Safe Term Library 443

Table 7. mCRL2 specification for the leave exclusive function in Table 2.

LeaveExclusive(p : P) =

leave exclusive call(p) .

AllowAllThreads(p, ∅) .

unlockp(p) .

leave exclusive return(p)

AllowAllThreads(p : P, allowed : Set(P)) =

(∀q:P .q ∈ allowed)

→ internal

	 ∑
p′:P .(

storep(Forbidden(p′), false, p) .

AllowAllThreads(p, allowed ∪ {p′})

+ storep(Forbidden(p′), true, p).improbable

AllowAllThreads(p, allowed \ {p′}))

Table 8. mCRL2 specifications for the atomic flags and the mutex.

Flags(flags : F → Bool) =
∑

f :F,p:P .(
∑

b:Bool .storef (f, b, p).Flag(flags[f �→ b])

+ loadf (f,flags(f), p).Flag(flags)

)

Mutex(locked : Bool) =
∑

p:P .(

locked

→ lockm(p).Mutex(true)

	 unlockm(p).Mutex(false))

Table 9. mCRl2 specification for a thread p interacting with the protocol.

Thread(p : P) =

EnterShared(p) .

LeaveShared(p) .

Thread(p)

+ EnterExclusive(p) .

LeaveExclusive(p) .

Thread(p)

444 J. F. Groote et al.

Table 10. mCRL2 specification for the busy-forbidden protocol.

allow({
store, load,

lock, unlock,

internal, improbable,

enter shared call, enter shared return,

leave shared call, leave shared return,

enter exclusive call, enter exclusive return,

leave exclusive call, leave exclusive return

}, comm({
storef |storep → store,

loadf |loadp → load,

lockm|lockp → lock,

unlockm|unlockp → unlock

},

Thread(p1) ||
.
.
.

Thread(p|P |) ||
Flags(λf :F.false) ||
Mutex(false)))

Table 11. Modal formula for property 1: “There should never be more than one thread
present in the exclusive section”.

[true∗]

[∃p∈P : enter exclusive return(p)]

[∃p∈P : leave exclusive call(p)
∗
]

[∃p∈P : enter exclusive return(p)]

false

Table 12. The modal formula for property 2: “There should never be a thread present
in the exclusive section while one or more threads are present in the shared section”.

νX(nshared : Nat = 0, nexclusive : Nat = 0).

(∀p:P .[enter shared return(p)]X(nshared + 1, nexclusive))

∧ (∀p:P .[enter exclusive return(p)]X(nshared, nexclusive + 1))

∧ (∀p:P .[leave shared call(p)]X(nshared − 1, nexclusive))

∧ (∀p:P .[leave exclusive call(p)]X(nshared, nexclusive − 1))

∧ [(∃p:P .enter shared return(p))

∩ (∃p:P .enter exclusive return(p))

∩ (∃p:P .leave shared call(p))

∩ (∃p:P .leave exclusive call(p))

]X(nshared, nexclusive)

∧ ¬(nexclusive > 0 ∧ nshared > 0)

A Thread-Safe Term Library 445

Table 13. Modal formula for property 3: “When a thread requests to enter the shared
section, it will be granted access within a bounded number of steps, unless there is
another thread in the exclusive section”.

νX(nexclusive : Nat = 0).

[∃p:P . enter exclusive call(p)]X(nexclusive + 1)

∧ [∃p:P . leave exclusive return(p)]X(nexclusive − 1)

∧ [(∃p:P . enter exclusive call(p))

∩ (∃p:P . leave exclusive return(p))

] X(nexclusive)

∧ ∀p:P .[enter shared call(p)]

νY (n′
exclusive : Nat = nexclusive).μZ(n′′

exclusive : Nat = n′
exclusive). (

[enter shared return(p)

∩ (∃p′:P . enter shared call(p′))

∩ (∃p′:P . enter exclusive call(p′))

∩ (∃p′:P . leave exclusive return(p′))

∩ improbable

] (((n′′
exclusive ≈ 0) =⇒ Z(n′′

exclusive))

∧ ((n′′
exclusive > 0) =⇒ Y (n′′

exclusive)))

∧ [∃p′:P . enter shared call(p′)]Y (n′′
exclusive)

∧ [∃p′:P . enter exclusive call(p′)]Y (n′′
exclusive + 1)

∧ [∃p′:P . leave exclusive return(p′)]Y (n′′
exclusive − 1)

∧ [improbable]Y (n′′
exclusive)

∧ 〈true∗.enter shared return(p)〉true)

Table 14. Modal formula for property 5: “When a thread requests to leave the exclu-
sive/shared section, it will leave it within a bounded number of steps”.

[true∗] ∀p:P .(

[leave shared call(p)]νX.μY.(

[leave shared return(p)

∩ (∃p′:P . enter exclusive call(p′))

∩ (∃p′:P . enter shared call(p′))

∩ improbable] Y

∧ [(∃p′:P . enter exclusive call(p′))

∪ (∃p′:P . enter shared call(p′))

∪ (improbable)] X

∧ 〈true∗.leave shared return(p)〉true)

∧ [leave exclusive call(p)]νX.μY.(

[leave exclusive return(p)

∩ (∃p′:P . enter exclusive call(p′))

∩ (∃p′:P . enter shared call(p′))

∩ improbable] Y

∧ [(∃p′:P . enter exclusive call(p′))

∪ (∃p′:P . enter shared call(p′))

∪ (improbable)] X

∧ 〈true∗.leave exclusive return(p)〉true))

446 J. F. Groote et al.

Table 15. Modal formula for property 4: “When a thread requests to enter the exclusive
section, it will be granted access within a bounded number of steps, unless there is
another thread in the shared or in the exclusive section”.

νX(nblocking : Nat = 0).

[∃p:P . enter exclusive call(p)]X(nblocking + 1)

∧ [∃p:P . enter shared call(p)]X(nblocking + 1)

∧ [∃p:P . leave shared return(p)]X(nblocking − 1)

∧ [∃p:P . leave exclusive return(p)]X(nblocking − 1)

∧ [(∃p:P . enter exclusive call(p))

∩ (∃p:P . leave exclusive return(p))

∩ (∃p:P . enter shared call(p))

∩ (∃p:P . leave shared return(p))

] X(nexclusive)

∧ ∀p:P .[enter exclusive call(p)]

νY (n′
blocking : Nat = nblocking).μZ(n′′

blocking : Nat = n′
blocking). (

[enter exclusive return(p)

∩ (∃p′:P . enter shared call(p))

∩ (∃p′:P . leave shared return(p))

∩ (∃p′:P . enter exclusive call(p′))

∩ (∃p′:P . leave exclusive return(p′))

∩ improbable

] (((n′′
blocking ≈ 0) =⇒ Z(n′′

blocking))

∧ ((n′′
blocking > 0) =⇒ Y (n′′

blocking)))

∧ [∃p′:P . enter shared call(p′)]Y (n′′
blocking + 1)

∧ [∃p′:P . leave shared return(p′)]Y (n′′
blocking − 1)

∧ [∃p′:P . enter exclusive call(p′)]Y (n′′
blocking + 1)

∧ [∃p′:P . (p′ �≈ p) ∧ enter exclusive return(p′)]Y (n′′
blocking − 1)

∧ [improbable]Y (n′′
exclusive)

∧ 〈true∗.enter exclusive return(p)〉true)

Table 16. Modal formula for property 6: “A thread not in the exclusive or shared
section can instantly start to enter the exclusive or shared section”.

∀p:P .νX(bshared : Bool = false, bexclusive : Bool = false).

[enter shared call(p)]X(true, bexclusive)

∧ [leave shared return(p)]X(false, bexclusive)

∧ [enter exclusive call(p)]X(bshared, true)

∧ [leave exclusive return(p)]X(bshared, false)

∧ [enter shared call(p)

∩ leave shared return(p)

∩ enter exclusive call(p)

∩ leave exclusive return(p)

] X(nshared, nexclusive)

∧ ((¬nshared ∧ ¬nexclusive) =⇒ (

〈enter exclusive call(p)〉true
∧ 〈enter shared call(p)〉true))

A Thread-Safe Term Library 447

C mCRL2 Specifications for the Term Library

In this section we give the formal mCRL2 specifications of the implementation
of the term library that is used to perform model checking. Creating a term is
specified in Table 17 and destroying a term in Table 18. In this model, the set P
corresponds to the set containing all threads, T to the set containing all terms
and A to the set containing all memory addresses. The set A⊥ = A ∪ {⊥} with
⊥ �∈ A contains the extra element ⊥ meaning no address or a NULL pointer. To
ensure finiteness and reduce the complexity of the model, the set T only contains
a finite amount of constants, i.e., terms of arity zero.

Table 17. mCRL2 specification for the create function shown in Table 1.

Create(p : P, t : T, lm : T → A⊥) =

create call(p, t) .

EnterShared(p) .

Create2(p, t, lm)

Create2(p : P, t : T, lm : T → A⊥) =
∑

a:A⊥ .(

containsp(t, a, p) .

(a ≈ ⊥)

→ ∑
a′:A . (

construct termp(t , a′ , p).(

insertp(t , a′ , true , p) .

Create3(p, t, lm, a′)

+ insertp(t, a′, false, p) .

destruct termp(t, a′, p) .

Create2(p, t, lm)))

	 Create3(p, t, lm, a))

Create3(p : P, t : T, lm : T → A⊥, a : A) =

protectp(t, a, p) .

LeaveShared(p) .

create return(p, t, a) .

Thread(p, lm[t �→ a])

First of all, we introduce processes EnterShared, LeaveShared, EnterExclusive
and LeaveExclusive to interact with the busy-forbidden specification BF spec-
ified in Table 3. To distinguish between the term library and the protocol all
actions such as enter shared call are split into action enter shared callbf

448 J. F. Groote et al.

for the protocol and enter shared callp for the term library. Finally, we have
the process MainMemory to model the main memory by keeping track of used
memory addresses, the process HashTable to model a hash table as an associa-
tive array, and process ReferenceCounter to track a reference counter for every
address (or term). Destroying a term is specified in Table 18, which uses the
same other processes as the creation function. Again, there are two separate
processes to model the behaviour of the while loop. In Table 19 the behaviour
of the main memory, the hash table and the reference counter are specified.

The specification in Table 20 models the behaviour of each thread. Each
thread repeatedly tries to either creates a term it does not yet know, or it destroys
a known term. Finally, Table 21 shows the complete specification including the
communication between various processes used to model the thread-safe term
library.

Table 18. mCRL2 specification for the destroy function shown in Table 1.

Destroy(p : P, t : T, lm : T → A⊥) =

destroy call(p, t) .

unprotectp(t, lm(t), p).(

skip

+ skip.GC(p)) .

destroy return(p) .

Thread(p, lm[t �→ ⊥])

GC(p : P) =

EnterExclusive(p) .

GC2(p, ∅)

GC2(p : P, checked : FSet(T)) =

(∀t:T .t ∈ checked)

→ LeaveExclusive(p)

	 ∑
t:T .(t �∈ checked) → (

containsp(t, ⊥, p) .

GC2(p, checked ∪ {t}
+

∑
a:A .containsp(t, a, p).(

protectedp(a, true, p) .

GC2(p, checked ∪ {t})

+ protectedp(a, false, p) .

destruct termp(t, a, p) .

deletep(t, p) .

GC2(p, checked ∪ {t})))

A Thread-Safe Term Library 449

To verify the model of the thread-safe term library we again specify a number
of modal formulas for the properties described in Sect. 2.2. The modal formula
for property 1 specified in Table 22 uses a mapping a from addresses to terms
and the finite set owners containing all threads that own/protect term t as data
parameters. If at any point in time a create(t) returns a different address than
the current address, then the term must not be owned by any thread. The modal
formula in Table 23 for property 2 uses the same constructs to check whether
terms on the same address are also equivalent.

The formula for property 3 shown in Table 24 uses a boolean parameter
busy to keep track of whether the thread p is creating (or destroying) a term.
Furthermore, the parameter known is a finite set containing all terms that thread
p knows. If at any point in time busy is false, then the process must be able to
start destroying any term in known and start creating any term not currently
in known. Finally, for property 4 the formula shown in Table 25 uses again the
construction which (under fairness) indicates that term creation and destruction
will finish within a finite number of steps. Note that the subformulas for creation
and destruction have an identical structure.

Table 19. mCRL2 specifications of the main memory, hash table and reference counters
used in the term library specification.

MainMemory(used : FSet(A)) =
∑

p:P,t:T,a:A .((a �∈ used)

→ construct termmm(t, a, p).MainMemory(used ∪ {a})

	 destruct termmm(t, a, p).MainMemory(used \ {a}))

HashTable(m : T → A⊥) =
∑

t:T,p:P .(

containsht(t, m(e), p).HashTable(m)

+
∑

a:A .(m(e) ≈ ⊥)

→ insertht(t, a, true, p).HashTable(m[e �→ a)

	 insertht(t, a, false, p).HashTable(m)

+ deleteht(t, p).HashTable(m[e �→ ⊥]))

ReferenceCounter(counter : A → Nat) =
∑

t:T,p:P . protectrc(t, a, p) .

ReferenceCounter(counter[a �→ counter(a) + 1]

+
∑

t:T,p:P . unprotectrc(t, a, p) .

ReferenceCounter(counter[a �→ counter(a) − 1]

+
∑

t:T,p:P . protectedrc(t, a, counter(a) �≈ 0, p) .

ReferenceCounter(counter)

450 J. F. Groote et al.

Table 20. mCRL2 specification of a thread p interacting with the term library.

Thread(p : P, lm : T → A⊥) =

(
∑

t:T .(lm(t) ≈ ⊥) → Create(p, t, lm))

+ (
∑

t:T .(lm(t) �≈ ⊥) → Destroy(p, t, lm))

Table 21. mCRL2 specification for the thread-safe term library.

allow({
construct term, destruct term,

contains, insert, delete,

protect, unprotect, protected,

skip, improbable,

enter shared call, enter shared return,

leave shared call, leave shared return,

enter exclusive call, enter exclusive return,

leave exclusive call, leave exclusive return,

create call, create return,

destroy call, destroy return

}, comm({
construct termmm|construct termp → construct term,

destruct termmm|destruct termp → destruct term,

containsht|containsp → contains,

insertht|insertp → insert,

deleteht|deletep → delete,

protectrc|protectp → protect,

unprotectrc|unprotectp → unprotect,

protectedrc|protectedp → protected,

enter shared callbf|enter shared callp → enter shared call,

enter shared returnbf|enter shared returnp → enter shared return,

leave shared callbf|leave shared callp → leave shared call,

leave shared returnbf|leave shared returnp → leave shared return,

enter exclusive callbf|enter exclusive callp → enter exclusive call,

enter exclusive returnbf|enter exclusive returnp → enter exclusive return,

leave exclusive callbf|leave exclusive callp → leave exclusive call,

leave exclusive returnbf|leave exclusive returnp → leave exclusive return },

Thread(p1) ||
.
.
.

Thread(p|P |) ||
MainMemory(∅) ||
HashTable(λt:T.⊥) ||
ReferenceCounter(λa:A. 0) ||
BF(λp:P.Free)))

A Thread-Safe Term Library 451

Table 22. Formulation of property 1: “A term and all its subterms remain in existence
at exactly the same address, with unchanged function symbol and arguments, as long
as it is not destroyed”.

∀t:T .νX(a : A⊥ = ⊥, owners : FSet(P) = ∅).
(∀p:P,a′:A.

[create return(p, t, a′)] (
X(a′, owners ∪ {p})

∧ (a �≈ a′ =⇒ owners ≈ ∅)))

∧ (∀p : P. [destroy call(p, t)]X(a, owners \ {p}))
∧ [∃p:P,a′:A.create return(p, t, a′)

∩ ∃p:P .destroy call(p, t)

] X(a, owners)

Table 23. Modal formula for property 2: “Two stored terms t1 and t2 always have the
same non-null address iff they are equal”.

∀a:A,t1:T .νX(t : T = t1, owners : FSet(P) = ∅).

(∀p:P,t2:T .

[create return(p, t2, a)] (

X(t2, owners ∪ {p})

∧ (t �≈ t2 =⇒ owners ≈ ∅)))

∧ (∀p:P . [destroy call(p, t)]X(t, owners \ {p}))

∧ [∃p:P,t′:T .create return(p, t′, a)

∩ ∃p:P .destroy call(p, t)

] X(t, owners)

Table 24. Modal formula for property 3: “Any thread that is not busy creating or
destroying a term, can always initiate the construction of a new term or the destruction
of an owned term, i.e., a term that this thread has exclusive access to”.

∀p:P . νX(busy : Bool = false, known : FSet(T) = ∅).

(¬busy) → (

(∀t:T .(t �∈ known) =⇒ [τ∗]〈τ∗.create call(p, t)〉true)
∧ (∀t:T .(t ∈ known) =⇒ [τ∗]〈τ∗.destroy call(p, t)〉true))

∧ [(∃t:T .create call(p, t))

∪ (∃t:T .destroy call(p, t))

] X(true, owned)

∧ (∀t:T . [∃a:A.create return(p, t, a)]X(false, owned ∪ {t}))

∧ (∀t:T . [destroy return(p, t)]X(false, owned \ {t}))

∧ [(∃t:T .create call(p, t))

∩ (∃t:T .destroy call(p, t))

∩ (∃t:T,a:A.create return(p, t, a))

∩ (∃t:T .destroy return(p, t))

] X(busy, owned)

452 J. F. Groote et al.

Table 25. Modal formula(s) for property 4: “Any thread that started creating a term
or destroying a term, will eventually successfully finish this task provided there is
enough memory to store one more term than those that are in use. But it is required
that other threads behave fairly, in the sense that they will not continually create and
destroy terms or stall other threads by busy waiting”.

([true∗]∀p:P,t:T .[create call(p, t)] νXc. μYc.(

∀p′:P .(p �≈ p′) =⇒
[(∃t′:T . create call(p′, t′))

∪ (∃t′:T . destroy call(p′, t′))

∪ improbable] Xc

∧ [(∃a:A. create return(p, t, a))

∩ (∃p′:P .(p �≈ p′) ∩ (∃t′:T . create call(p′, t′)))

∩ (∃p′:P .(p �≈ p′) ∩ (∃t′:T . destroy call(p′, t′)))

∩ improbable] Yc

∧ 〈true∗.∃a:A. create return(p, t, a)〉true))

∧
([true∗]∀p:P,t:T .[destroy call(p, t)] νXd. μYd.(

∀p′:P .(p �≈ p′) =⇒
[(∃t′:T . create call(p′, t′))

∪ (∃t′:T . destroy call(p′, t′))

∪ improbable] Xd

∧ [destroy return(p, t)

∩ (∃p′:P .(p �≈ p′) ∩ (∃t′:T . create call(p′, t′)))

∩ (∃p′:P .(p �≈ p′) ∩ (∃t′:T . destroy call(p′, t′)))

∩ improbable] Yd

∧ 〈true∗.destroy return(p, t)〉true))

D Benchmark Data

The benchmark tests and information shown in Figs. 4 and 5 are hard to read
exactly. Therefore, we repeat the corresponding precise benchmark numbers in
Table 28 up to and including Table 26. Each wall-clock time is measured in
seconds.

The measurements in Table 27 came from benchmarking performed on an
Intel i7-7700HQ processor. All other measurements were obtained through
benchmarking on an AMD EPYC 7452 32-Core processor.

The benchmark results in Table 28 were obtained by having each thread
create a term t400 000, with t0 being a constant, and ti+1 equal to f(ti, ti). No
garbage collection was performed during the benchmark. Note that only one copy
of the term is actually stored in memory. So, most threads wanting to construct
some term f(ti, ti) detect that the term already exists, and only need to return
its address, without actually creating it.

A Thread-Safe Term Library 453

The benchmark results in Table 29 were obtained by having each thread
create its own copy of the term t400 000/#threads, and measuring the wall-clock
time. Note that although each thread creates its own term, all terms are stored
in the data structures in an intermixed way. Note that as there is no sharing
here, each thread stores a full copy of the term in memory.

The benchmark results in Table 30 and 31 were obtained by measuring the
wall-clock time of creating 1000/#threads instances of the terms used in Table 28
and 29. Before we start measuring the wall-clock times, the terms and subterms
have already been inserted into the hash table, thus we are only measuring the
cost of performing repeated lookups in our hash table. The experiment reported
in Table 30 is the same as the one in Table 27, but the former is run on an AMD
EPYC 7452 processor whereas the latter uses an Intel i7-7700HQ processor.

The benchmark results in Table 32 were obtained by having each thread
perform 1000/#threads breadth-first traversals of the term t20 and measuring
the wall-clock time. The traversal does not make use of the shared structure
of terms, meaning that approximately 109 term nodes are visited. Similarly,
the benchmark results in Table 33 were obtained by having each thread per-
form 1000/#threads breadth-first traversals of a term t20 that is unique for each
thread.

We also measured the wall-clock time of the state space generation of the
1394 firewire protocol using a parallel prototype of the mCRL2 toolset. The
results are listed in Table 26.

Table 26. Wall-clock time for state space exploration.

#Threads 1 2 3 4 5 6 7 8 9 10 11

parallel reference counter 61.0 87.6 90.1 83.1 67.0 57.4 56.2 53.3 50.0 46.5 43.4

parallel protection set 62.8 31.7 21.5 16.5 13.4 11.2 9.79 8.67 7.78 7.15 6.54

sequential reference counter 60.0

sequential protection set 52.9

original aterm library 40.2

#Threads 12 13 14 15 16 17 18 19 20 21 22

parallel reference counter 43.3 41.4 38.8 38.1 37.3 35.5 35.2 35.2 33.9 33.2 32.5

parallel protection set 6.07 5.68 5.37 5.06 4.85 4.83 4.72 4.67 4.60 4.56 4.49

#Threads 23 24 25 26 27 28 29 30 31 32

parallel reference counter 31.7 31.3 30.8 29.4 28.7 28.1 28.0 27.9 27.0 26.6

parallel protection set 4.44 4.37 4.32 4.23 4.17 4.15 4.11 4.07 4.02 3.99

454 J. F. Groote et al.

Table 27. Wall-clock time for creating existing terms (shared, Intel).

#Threads 1 2 3 4 5 6 7 8

parallel reference counter 10.0 10.4 4.42 4.08 3.22 2.74 2.38 2.22

parallel protection set 5.68 3.09 2.36 1.60 1.52 1.30 1.14 1.02

sequential reference counter 4.61

sequential protection set 4.20

original aterm library 4.83

parallel java 130 73.0 50.4 40.5 32.1 29.5 28.5 29.2

std::shared mutex 10.3 38.1 42.1 41.0 40.7 41.7 42.7 46.2

Table 28. Wall-clock time for creating new terms (shared).

#Threads 1 2 3 4 5 6 7 8 9 10 11

parallel reference counter 0.03 0.11 0.22 0.14 0.26 0.34 0.28 0.29 0.39 0.51 0.53

parallel protection set 0.03 0.07 0.07 0.20 0.15 0.28 0.20 0.17 0.32 0.34 0.32

sequential reference counter 0.02

sequential protection set 0.02

original aterm library 0.01

parallel java 0.26 0.46 0.68 1.32 1.25 1.20 1.51 1.41 1.36 1.48 1.51

std::shared mutex 0.03 0.12 0.18 0.32 0.24 0.22 0.38 0.47 0.47 0.55 0.50

#Threads 12 13 14 15 16 17 18 19 20 21 22

parallel reference counter 0.51 0.59 0.50 0.54 0.49 0.53 0.54 0.48 0.5 0.48 0.52

parallel protection set 0.35 0.39 0.32 0.39 0.33 0.41 0.39 0.38 0.38 0.37 0.39

parallel java 1.40 1.51 1.44 1.43 1.38 1.67 1.77 1.87 1.77 1.78 1.85

std::shared mutex 0.58 0.62 0.63 0.67 0.72 0.74 0.76 0.79 0.83 0.83 0.88

#Threads 23 24 25 26 27 28 29 30 31 32

parallel reference counter 0.50 0.53 0.50 0.49 0.53 0.51 0.51 0.49 0.48 0.48

parallel protection set 0.43 0.37 0.39 0.41 0.39 0.39 0.42 0.44 0.39 0.41

parallel java 1.68 1.95 1.68 1.82 1.81 1.65 1.94 1.94 2.09 1.86

std::shared mutex 0.91 0.95 0.96 0.99 0.98 1.04 1.02 1.10 1.11 1.16

A Thread-Safe Term Library 455

Table 29. Wall-clock time for creating new terms (distinct).

#Threads 1 2 3 4 5 6 7 8 9 10 11

parallel reference counter 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.07 0.06 0.06 0.06

parallel protection set 0.03 0.05 0.03 0.04 0.03 0.03 0.04 0.05 0.05 0.05 0.06

sequential reference counter 0.02

sequential protection set 0.02

original aterm library 0.01

parallel java 0.26 0.25 0.28 0.26 0.28 0.28 0.28 0.35 0.33 0.35 0.32

std::shared mutex 0.03 0.04 0.04 0.05 0.10 0.04 0.04 0.09 0.09 0.09 0.09

#Threads 12 13 14 15 16 17 18 19 20 21 22

parallel reference counter 0.06 0.05 0.05 0.07 0.06 0.06 0.05 0.06 0.07 0.06 0.06

parallel protection set 0.05 0.06 0.06 0.05 0.06 0.07 0.06 0.05 0.06 0.06 0.06

parallel java 0.33 0.35 0.32 0.34 0.33 0.34 0.33 0.35 0.33 0.34 0.34

std::shared mutex 0.09 0.10 0.10 0.10 0.10 0.09 0.11 0.09 0.12 0.11 0.13

#Threads 23 24 25 26 27 28 29 30 31 32

parallel reference counter 0.07 0.06 0.05 0.06 0.06 0.07 0.07 0.07 0.06 0.06

parallel protection set 0.06 0.06 0.05 0.07 0.06 0.06 0.05 0.05 0.05 0.06

parallel java 0.37 0.34 0.35 0.35 0.37 0.35 0.34 0.34 0.35 0.34

std::shared mutex 0.13 0.11 0.14 0.09 0.15 0.18 0.15 0.13 0.16 0.13

Table 30. Wall-clock time for creating existing terms (shared).

#Threads 1 2 3 4 5 6 7 8 9 10 11

parallel reference counter 9.01 35.1 11.5 19.0 9.81 10.6 6.40 6.00 4.90 4.85 3.88

parallel protection set 4.07 2.51 1.66 1.39 1.07 0.96 0.81 0.75 0.67 0.59 0.53

sequential reference counter 4.01

sequential protection set 3.65

original aterm library 4.57

parallel java 104 136 106 103 91.7 84.2 75.5 71.1 64.5 61.6 57.5

std::shared mutex 6.51 14.2 15.1 15.1 18.7 20.7 22.0 33.3 28.1 25.4 24.5

#Threads 12 13 14 15 16 17 18 19 20 21 22

parallel reference counter 3.51 3.10 2.86 2.77 2.66 2.45 2.61 2.43 2.33 2.27 2.17

parallel protection set 0.49 0.46 0.43 0.41 0.40 0.39 0.37 0.36 0.35 0.32 0.31

parallel java 54.3 51.9 49.4 48.7 46.5 47.7 47.9 48.1 48.6 47.7 46.6

std::shared mutex 22.8 22.7 23.1 22.6 22.5 22.9 23.2 23.7 24.7 24.1 24.3

#Threads 23 24 25 26 27 28 29 30 31 32

parallel reference counter 2.16 2.10 2.08 2.04 2.03 1.97 1.82 1.87 1.81 1.81

parallel protection set 0.32 0.31 0.29 0.3 0.28 0.27 0.29 0.28 0.28 0.29

parallel java 45.9 45.4 45.8 44.9 44.8 42.4 42.4 42.9 42.1 42.1

std::shared mutex 24.7 24.4 25.0 25.1 25.4 25.5 26.0 26.7 27.5 28.3

456 J. F. Groote et al.

Table 31. Wall-clock time for creating existing terms (distinct).

#Threads 1 2 3 4 5 6 7 8 9 10 11

parallel reference counter 9.02 5.15 3.95 3.05 2.64 2.25 2.38 2.41 2.42 2.49 2.24

parallel protection set 3.96 2.66 2.58 2.44 2.27 1.76 1.92 1.86 1.95 1.91 1.79

sequential reference counter 4.02

sequential protection set 3.71

original aterm library 4.58

parallel java 106 212 218 227 260 266 274 276 295 272 287

std::shared mutex 6.46 13.8 15.5 15.7 18.3 18.5 24.6 33.2 26.9 25.0 23.7

#Threads 12 13 14 15 16 17 18 19 20 21 22

parallel reference counter 2.22 2.27 2.26 2.20 2.39 2.55 2.63 2.58 2.72 2.67 2.67

parallel protection set 1.78 1.76 1.77 1.75 1.81 1.82 1.97 2.05 2.04 2.07 2.07

parallel java 275 287 296 2912 281 286 280 284 294 292 314

std::shared mutex 22.7 22.4 22.9 22.6 22.2 22.7 23.2 23.8 24.7 24.1 24.1

#Threads 23 24 25 26 27 28 29 30 31 32

parallel reference counter 2.69 2.69 2.77 2.76 2.8 2.77 2.82 2.84 2.86 2.92

parallel protection set 2.07 2.10 2.15 2.05 2.12 2.11 2.17 2.22 2.27 2.22

parallel java 311 308 315 316 324 330 339 332 343 352

std::shared mutex 24.4 24.4 25.3 25.3 25.9 25.7 26.3 27.1 27.8 28.7

Table 32. Wall-clock time for traversing terms (shared).

#Threads 1 2 3 4 5 6 7 8 9 10 11

parallel reference counter 15.7 8.63 5.93 4.60 3.87 3.41 3.00 2.79 2.50 2.45 2.21

parallel protection set 16.7 8.90 6.07 4.66 3.93 3.37 3.01 2.80 2.55 2.41 2.34

sequential reference counter 16.8

sequential protection set 18.2

original aterm library 16.4

parallel java 34.6 34.5 36.0 36.7 36.1 33.6 30.9 28.4 26.4 25.0 22.9

std::shared mutex 16.2 8.71 5.95 4.54 3.86 3.34 3.01 2.74 2.53 2.40 2.29

#Threads 12 13 14 15 16 17 18 19 20 21 22

parallel reference counter 2.17 2.21 2.23 2.32 2.24 2.14 2.30 2.21 2.11 2.21 2.09

parallel protection set 2.28 2.21 2.30 2.35 2.21 2.26 2.35 2.25 2.33 2.28 2.21

parallel java 17.8 20.6 17.7 19.1 22.3 19.5 19.6 20.4 21.9 21.6 21.5

std::shared mutex 2.25 2.33 2.28 2.24 2.21 2.22 2.29 2.15 2.24 2.04 2.24

#Threads 23 24 25 26 27 28 29 30 31 32

parallel reference counter 2.17 2.18 2.13 2.07 2.06 2.09 2.06 2.05 2.13 2.10

parallel protection set 2.26 2.15 2.12 2.16 2.13 2.07 2.09 2.16 2.03 2.03

parallel java 17.6 19.2 18.4 20.6 22.7 20.8 18.5 22.5 23.6 19.4

std::shared mutex 2.24 2.12 2.18 2.05 2.05 2.2 2.16 2.17 2.02 2.07

A Thread-Safe Term Library 457

Table 33. Wall-clock time for traversing terms (distinct).

#Threads 1 2 3 4 5 6 7 8 9 10 11

parallel reference counter 18.4 9.61 6.41 4.93 4.10 3.56 3.14 2.88 2.63 2.51 2.34

parallel protection set 17.0 8.80 6.03 4.59 3.85 3.39 3.00 2.78 2.56 2.40 2.28

sequential reference counter 15.9

sequential protection set 18.3

original aterm library 17.4

parallel java 34.5 34.2 35.8 37.0 35.5 33.8 30.1 28.3 27.1 23.4 21.9

std::shared mutex 16.5 8.59 5.98 4.63 3.99 3.47 3.07 2.88 2.60 2.49 2.43

#Threads 12 13 14 15 16 17 18 19 20 21 22

parallel reference counter 2.36 2.33 2.33 2.28 2.24 2.19 2.26 2.22 2.16 2.20 2.11

parallel protection set 2.31 2.38 2.28 2.31 2.20 2.21 2.21 2.13 2.21 2.16 2.18

parallel java 21.1 17.5 20.9 17.3 18.7 20.8 23.0 18.4 21.6 23.0 22.8

std::shared mutex 2.56 2.52 2.50 2.41 2.32 2.25 2.4 2.37 2.25 2.34 2.39

#Threads 23 24 25 26 27 28 29 30 31 32

parallel reference counter 2.27 2.16 2.16 2.13 2.10 2.34 2.13 2.06 2.16 2.05

parallel protection set 2.27 2.15 2.16 2.17 2.12 2.08 2.11 2.10 2.06 2.04

parallel java 18.3 22.2 22.3 22.5 18.7 21.7 22.2 19.3 22.8 19.5

std::shared mutex 2.18 2.30 2.27 2.34 2.14 2.28 2.08 2.10 2.38 2.26

References

1. Baeten, J.C.M., Weijland, W.P.: Process Algebra, Cambridge Tracts in Theoretical
Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

2. Bergstra, J.A., Klint, P.: The ToolBus coordination architecture. In: Ciancarini, P.,
Hankin, C. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 75–88. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61052-9 40

3. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distributed
state-space generation. J. Log. Comput. 21(1), 45–62 (2011). https://doi.org/10.
1093/logcom/exp004

4. van den Brand, M., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient annotated
terms. Softw. Pract. Exp. 30(3), 259–291 (2000)

5. van den Brand, M., Klint, P.: ATerms for manipulation and exchange of structured
data: it’s all about sharing. Inf. Softw. Technol. 49(1), 55–64 (2007). https://doi.
org/10.1016/j.infsof.2006.08.009

6. van den Brand, M., Moreau, P.E., Vinju, J.: Generator of efficient strongly typed
abstract syntax trees in Java. IEE Proceedings - Software, vol. 152, pp. 70–78(8),
April 2005

7. Cantrill, B., Bonwick, J.: Real-world concurrency. Commun. ACM 51(11), 34–39
(2008). https://doi.org/10.1145/1400214.1400227

8. Fokkink, W., Pang, J., van de Pol, J.: Cones and foci: a mechanical framework for
protocol verification. Formal Methods Syst. Des. 29(1), 1–31 (2006). https://doi.
org/10.1007/s10703-006-0004-3

https://doi.org/10.1007/3-540-61052-9_40
https://doi.org/10.1093/logcom/exp004
https://doi.org/10.1093/logcom/exp004
https://doi.org/10.1016/j.infsof.2006.08.009
https://doi.org/10.1016/j.infsof.2006.08.009
https://doi.org/10.1145/1400214.1400227
https://doi.org/10.1007/s10703-006-0004-3
https://doi.org/10.1007/s10703-006-0004-3

458 J. F. Groote et al.

9. Gao, H., Groote, J.F., Hesselink, W.: Lock-free dynamic hash tables with open
addressing. Distrib. Comput. 18(1), 21–42 (2005). https://doi.org/10.1007/s00446-
004-0115-2

10. Gao, H., Groote, J.F., Hesselink, W.: Lock-free parallel and concurrent garbage
collection by mark&sweep. Sci. Comput. Program. 64(3), 341–374 (2007). https://
doi.org/10.1016/j.scico.2006.10.001

11. van Glabbeek, R.J., Luttik, S.P., Trcka, N.: Branching bisimilarity with explicit
divergence. Fundam. Informaticae 93(4), 371–392 (2009). https://doi.org/10.3233/
FI-2009-109

12. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.
233556

13. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Sys-
tems. MIT Press, Cambridge (2014). https://mitpress.mit.edu/books/modeling-
and-analysis-communicating-systems

14. Groote, J.F., Keiren, J.J.A.: Tutorial: designing distributed software in mCRL2. In:
Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 226–243.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0 15

15. Groote, J.F., Springintveld, J.: Focus points and convergent process operators: a
proof strategy for protocol verification. J. Log. Algebr. Methods Program. 49(1–2),
31–60 (2001). https://doi.org/10.1016/S1567-8326(01)00010-8

16. Hesselink, W., Groote, J.F.: Wait-free concurrent memory management by create
and read until deletion (CaRuD). Distrib. Comput. 14(1), 31–39 (2001). https://
doi.org/10.1007/PL00008924

17. de Jong, H.A., Olivier, P.: Generation of abstract programming interfaces from
syntax definitions. J. Logic Algebr. Program. 59(1), 35–61 (2004). https://doi.
org/10.1016/j.jlap.2003.12.002

18. Kats, L.C., Visser, E.: The spoofax language workbench: rules for declarative spec-
ification of languages and ides. SIGPLAN Not. 45(10), 444–463 (2010). https://
doi.org/10.1145/1932682.1869497

19. Krieger, O., Stumm, M., Unrau, R., Hanna, J.: A fair fast scalable rea, der-writer
lock. In: 1993 International Conference on Parallel Processing - ICPP 1993, vol. 2,
pp. 201–204 (1993). https://doi.org/10.1109/ICPP.1993.21

20. Lankamp, A.: https://github.com/cwi-swat/aterms/blob/master/shared-objects/
src/shared/SharedObjectFactory.java. Accessed 2021; Last Changed 16 Dec 2009

21. Lev, Y., Luchangco, V., Olszewski, M.: Scalable reader-writer locks. In: Proceed-
ings of the Twenty-First Annual Symposium on Parallelism in Algorithms and
Architectures. SPAA 2009, pp. 101–110. Association for Computing Machinery,
New York (2009). https://doi.org/10.1145/1583991.1584020

22. Luttik, S.P.: Description and formal specification of the link layer of P1394. In:
Lovrek, I. (ed.) Proceedings of the 2nd International Workshop on Applied Formal
Methods in System Design, pp. 43–56. University of Zagreb, Croatia (1997)

23. Mellor-Crummey, J.M., Scott, M.L.: Synchronization without contention. In: Pro-
ceedings of the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. ASPLOS IV, pp. 269–278. Associa-
tion for Computing Machinery, New York (1991). https://doi.org/10.1145/106972.
106999

24. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

https://doi.org/10.1007/s00446-004-0115-2
https://doi.org/10.1007/s00446-004-0115-2
https://doi.org/10.1016/j.scico.2006.10.001
https://doi.org/10.1016/j.scico.2006.10.001
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.1007/978-3-030-78089-0_15
https://doi.org/10.1016/S1567-8326(01)00010-8
https://doi.org/10.1007/PL00008924
https://doi.org/10.1007/PL00008924
https://doi.org/10.1016/j.jlap.2003.12.002
https://doi.org/10.1016/j.jlap.2003.12.002
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1109/ICPP.1993.21
https://github.com/cwi-swat/aterms/blob/master/shared-objects/src/shared/SharedObjectFactory.java
https://github.com/cwi-swat/aterms/blob/master/shared-objects/src/shared/SharedObjectFactory.java
https://doi.org/10.1145/1583991.1584020
https://doi.org/10.1145/106972.106999
https://doi.org/10.1145/106972.106999
https://doi.org/10.1007/3-540-10235-3

A Thread-Safe Term Library 459

25. Prokopec, A., Bronson, N., Bagwell, P., Odersky, M.: Concurrent tries with efficient
non-blocking snapshots. ACM SIGPLAN Not. 47, 151–160 (2012). https://doi.org/
10.1145/2145816.2145836

26. Raynal, M.: Concurrent Programming - Algorithms, Principles, and Foundations.
Springer, Cham (2013). https://doi.org/10.1007/978-3-642-32027-9

27. van Spaendonck, P.H.M.: Verification of the busy-forbidden protocol (using an
extension of the cones and foci framework) (2022). https://doi.org/10.48550/
ARXIV.2208.05334

28. Sun, Y., Blelloch, G.: Implementing parallel and concurrent tree structures. In:
Proceedings of the 24th Symposium on Principles and Practice of Parallel Pro-
gramming. PPoPP 2019, pp. 447–450. Association for Computing Machinery, New
York (2019). https://doi.org/10.1145/3293883.3302576

29. Treiber, R.: Systems Programming: Coping with Parallelism. International Busi-
ness Machines Incorporated, Thomas J. Watson Research (1986)

30. Umar, I., Anshus, O., Ha, P.: GreenBST: energy-efficient concurrent search tree.
In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp. 502–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43659-3 37

https://doi.org/10.1145/2145816.2145836
https://doi.org/10.1145/2145816.2145836
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.48550/ARXIV.2208.05334
https://doi.org/10.48550/ARXIV.2208.05334
https://doi.org/10.1145/3293883.3302576
https://doi.org/10.1007/978-3-319-43659-3_37

ST4MP: A Blueprint of Multiparty
Session Typing for Multilingual

Programming

Sung-Shik Jongmans1,2 and José Proença3(B)

1 Open University of the Netherlands, Heerlen, Netherlands
ssj@ou.nl

2 Centrum Wiskunde & Informatica (CWI), NWO-I, Amsterdam, Netherlands
3 CISTER, ISEP, Polytechnic Institute of Porto, Porto, Portugal

jose@proenca.org

Abstract. Multiparty session types (MPST) constitute a method to
simplify construction and analysis of distributed systems. The idea is that
well-typedness of processes at compile-time (statically) entails deadlock
freedom and protocol compliance of their sessions of communications at
execution-time (dynamically).

In practice, the premier approach to apply the MPST method in com-
bination with mainstream programming languages has been based on
API generation. However, existing MPST tools support only unilingual
programming (homogeneity), while many real-world distributed systems
are engineered using multilingual programming (heterogeneity).

In this paper, we present a blueprint of ST4MP: a tool to apply the
MPST method in multilingual programming, based on API generation.

1 Introduction

Construction and analysis of distributed systems is difficult. Challenges include:

– To implement protocols among roles/participants, by programming multi-
party sessions of communicating processes.

– To verify absence of communication errors, by proving deadlock freedom (i.e.,
the processes can always terminate or reduce) and protocol compliance (i.e.,
if the processes can terminate or reduce, then the protocol allows it).

Multiparty session types (MPST) [17,18] constitute a method to overcome these
challenges. The idea is visualised in Fig. 1:

1. First, a protocol among roles r1, . . . , rn is implemented as a session of pro-
cesses P1, . . . , Pn (concrete), while it is specified as a global type G (abstract).
The global type models the behaviour of all processes together, collectively,
from their shared perspective (e.g., “first, a number from Alice to Bob; sec-
ond, a boolean from Bob to Carol”).

2. Next, G is decomposed into local types L1, . . . , Ln by projecting G onto every
role. Every local type models the behaviour of one process alone, individually,
from its own perspective (e.g., for Bob, “first, he receives a number from Alice;
second, he sends a boolean to Carol).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 460–478, 2022.
https://doi.org/10.1007/978-3-031-19849-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_26&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_26

ST4MP: A Blueprint of Multiparty Session Typing 461

G

L1 L2 Ln

P1 P2 Pn

global type

projection

local types

type check

processes

Fig. 1. MPST method.

master worker 1 worker 2

this order

any order

Fig. 2. Master–workers protocol (Exam-
ple 1).

3. Last, absence of communication errors is verified by type-checking every pro-
cess Pi against local type Li. MPST theory guarantees that well-typedness at
compile-time (statically) implies deadlock freedom and protocol compliance
at execution-time (dynamically).

The following example demonstrates the MPST method.

Example 1. In the master–workers protocol, visualised in Fig. 2, first, the master
(mmm) tells n workers (www1, . . . ,wwwn) to perform work (Work), in that order; second,
the workers tell the master that they are done (Done), in any order.

The following global type specifies the protocol (n= 2):

G = mmm � www1 :Work . mmm � www2 :Work . (www1 � mmm:Done . end ‖|www2 � mmm:Done . end)

Global type p � q :t.G specifies the communication of a value of type ti through
the channel from role p to role q, followed by G. Global type G1‖|G2 specifies
the free interleaving of G1 and G2. Global type end specifies termination.

The following local types specify the master (n= 2) and a worker (any n):

Lmmm = mmmwww1 !Work . mmmwww2 !Work . (www1mmm?Done . end ‖|www2mmm?Done . end)
Lwwwi = mmmwwwi?Work . wwwimmm !Done . end

Local types pq !t.L and pq?t.L specify the send and receive of a value of type t
through the channel from role p to role q, followed by L. Local types L1‖|L2

and end are similar to the corresponding forms of global types. In general, a
local type Lr for role r is mechanically constructed by projecting a global type
G onto r, using a recursive function that traverses G’s structure. Roughly: every
communication in which r participates as sender is preserved as a send in Lr;
every communication in which r participates as receiver is preserved as a receive
in Lr; every communication in which r does not participate is omitted from Lr.

The following processes implement the master (n= 2) and a worker (any n):

Pmmm = mmmwww1 !work("grep -o -i foo file.txt | wc -l") .

mmmwww2 !work("grep -o -i bar file.txt | wc -l") .

(www1mmm? :Done . end‖|www2mmm? :Done . end)

Pwwwi = mmmwwwi?x:Work .

wwwimmm !do(x) . end

Processes pq !e.P and pq?x:t.P implement the send and receive of the value of
expression e (evaluated at the sender) through the channel from role p to role q

462 S.-S. Jongmans and J. Proença

global
type

local
types APIs processes

1. project
(auto)

2. encode
(auto)

3. use
(manual)

Fig. 3. Workflow of API generation (arrows 1–2 are performed automatically by the
tool; arrow 3 is performed manually by the programmer).

into variable x of type t (stored at the receiver), followed by P . Processes P1‖|P2

and end are similar to the corresponding forms of global/local types.
Lmmm and Lwwwi are projections of G. Furthermore, assuming that the return types

of work and do are Work and Done, Pmmm and Pwwwi are well-typed by Lmmm and Lwwwi :
roughly, the processes and the local types implement (in terms of concrete values
of data) and specify (in terms of abstract types of data) the same behaviour. ��

In practice, the premier approach to apply the MPST method in combina-
tion with mainstream programming languages has been based on API genera-
tion. The idea, conceived by Hu and Yoshida [19], is based on the insight that
local types can be encoded as application programming interfaces (API), such
that well-typed usage of the APIs at compile-time implies deadlock freedom and
protocol compliance at execution-time (cf. step 3 of the MPST method). The cor-
responding workflow is visualised in Fig. 3. API generation has been influential:
it is used in the majority of tools that support the MPST method, including
Scribble [19,20], its many dialects/extensions [7,23,25,28,30,32,39], νScr [38],
mpstpp [22], and Pompset [8]. The curious reader can glimpse at Fig. 12 for an
excerpt of the generated Scala API (following [8,19]) for the master–workers
protocol from Example 1.

Open Problem

So far, MPST tools based on API generation have been developed for a wide
range of languages, imperative and functional alike, including (in alphabetic
order): F# [30], F� [39], Go [7], Java [19,20,22], OCaml [38], PureScript [23],
Rust [25], Scala [8,32], and TypeScript [28]. However, none of the existing tools
is capable of generating APIs in multiple languages; they support only unilingual
programming (homogeneity), often leveraging special features of the host’s type
system to encode advanced MPST concepts (e.g., type providers in F# to encode
MPST-based refinement types [30]). In contrast, many real-world distributed
systems are engineered using multilingual programming (heterogeneity), where
some processes are implemented in one language, but others in another. This
open problem has not received due attention.

Figure 4a visualises a naive, seemingly simple/low-effort, solution: reuse an
existing MPST tool that can generate APIs in a single language L1, in combina-
tion with language bindings for languages L2, . . . ,Ln using wrapper libraries
as foreign function interfaces, to write processes in L1,L2, . . . ,Ln. Whereas
executing processes in this way is well-understood, verifying processes in this
way—the whole point of using API generation—is not. The key issue is that, to
enjoy deadlock freedom and protocol compliance as usual, the language bindings

ST4MP: A Blueprint of Multiparty Session Typing 463

should guarantee that well-typed usage of the wrappers in L2, . . . ,Ln implies
well-typed usage of the APIs in L1. Figure 4b visualises an alternative solution
that avoids this issue: use a new tool that can generate APIs in multiple lan-
guages L1, . . . ,Ln.

Contribution

In this paper, we present the ST4MP project. ST4MP is an acronym for “Ses-
sion Types Fo(u)r Multilingual Programming” and pronounced as “stamp”. The
aim of ST4MP is to develop a tool to apply the MPST method in multilingual
programming, based on API generation, according to the workflow in Fig. 4b.

Existing work focusses on the discovery/invention of new techniques for a
single language (e.g., by leveraging special features of the language’s type system
in generated APIs). In contrast, ST4MP focusses on the combination/integration
of existing techniques for multiple languages. That is, in ST4MP, we prioritise
“the (re)engineering of existing techniques” over “the science of new ones”.

In Sect. 2, we briefly summarise a basic version of MPST theory; it serves as
the foundation of ST4MP. In Sect. 3, we present a blueprint of the ST4MP tool,
including an overview of the ST4MP language. In Sect. 4, we discuss related work.
We emphasise that this paper focusses on the design of ST4MP; the implemen-
tation is work-in-progress, part of ongoing efforts, and presented in more detail
in a future paper. Moreover, in alignment with the “engineering first, science
second”-attitude behind ST4MP, we note that we do not present new techniques
in this paper: the blueprint of ST4MP is based on the combination/integration
of existing techniques. As a result, this paper can also be read as an introductory
article on API generation.

2 MPST Theory in a Nutshell

In this section, we summarise a basic version of MPST theory, based on the
more advanced version by Deniélou and Yoshida [10]; given the aim of this

global
type

local
types

APIs
(L1)

Wrappers
(L2, . . . ,Ln)

processesproject encode use

(a) Foreign APIs in languages L2, . . . , Ln

global
type

local
types

APIs
(L1, . . . ,Ln)

processesproject encode use

(b) Native APIs in languages L1, . . . , Ln

Fig. 4. Workflows of API generation for multilingual programming.

464 S.-S. Jongmans and J. Proença

paper, we omit orthogonal and/or more complicated features from this section
(e.g., dynamic channel creation, dynamic process creation, and delegation). Our
presentation in this section follows the top-down visualisation in Fig. 1.

2.1 Global Types

Let R = {alicealicealice,bobbobbob,carolcarolcarol,mmm,www, . . .} denote the set of all roles, ranged over by
p, q, r. Let T = {Unit, Bool, Nat, Work, Done, . . .} denote the set of all data types,
ranged over by t. Let G denote the set of all global types, ranged over by G:

G ::= p � q :{ti .Gi}1≤i≤n

∣
∣ G1 ⊕ G2

∣
∣ μX.G

∣
∣ X

∣
∣ end ⊕ ::= �

∣
∣ ·

Informally, these forms of global types have the following meaning:

– Global type p � q :{ti .Gi}1≤i≤n specifies the asynchronous communica-
tion of a value of type ti through the channel from role p to role q, followed
by Gi, for some 1 ≤ i ≤ n. As additional well-formedness requirements,
we stipulate: (1) p �= q (i.e., no self-communication); (2) ti �= tj , for every
1 ≤ i < j ≤ n (i.e., deterministic continuations). We omit the curly brackets
when n = 1.

– Global type G1‖|G2 specifies the parallel composition of G1 and G2 that
freely interleaves their communications. As an additional well-formedness
requirement [10], we stipulate comm(G1) ∩ comm(G2) = ∅ (i.e., distinct com-
munications in distinct subprotocols), where comm : G → 2R×R×T is a func-
tion that maps every global type to the communications that occur in it,
represented as triples of the form (p, q, t).

– Global type G1 · G2 specifies the sequential composition of G1 and G2.
– Global types μX.G and X specify a recursive protocol.
– Global type end specifies the empty protocol.

Example 2. The following global type specifies the master–workers protocol
(Example 1) with two extensions (worker i can tell worker i+ 1 to perform some
or none of the work on its behalf; the protocol is repeated):

G = μX . ((mmm � [www1,www2]:Work . www1 � www2 :{Work . www2 � www1 :Done . G′ , None . G′}) · X)

G′ = www1 � mmm:Done . end‖|www2 � mmm:Done . end

We write “mmm � [www1,www2]:Work” as a shorthand for “mmm � www1 :Work .mmm � www2 :Work”. ��

2.2 Local Types and Projection

Let † ∈ { ! , ?}. Let L denote the set of all local types, ranged over by L:
L ::= pq !{ti .Li}1≤i≤n

︸ ︷︷ ︸

send

∣
∣ pq?{ti .Li}1≤i≤n

︸ ︷︷ ︸

receive

∣
∣ L1 ⊕ L2

∣
∣ μX.L

∣
∣ X

∣
∣ end

These forms of local types are similar to the corresponding forms of global types.
Let G � r denote the projection of G onto r. Formally, � is the smallest func-

tion induced by the equations in Fig. 5. The projection of p � q :{ti .Gi}1≤i≤n

onto r depends on the contribution of r to the communication: if r is sender
(resp. receiver), then the projection specifies a send (resp. receive); if r does not

ST4MP: A Blueprint of Multiparty Session Typing 465

p q :{ti .Gi}1≤i≤n � r =

⎪⎪⎪⎨
⎪⎪⎪⎩

pq !{ti .(Gi � r)}1≤i≤n if p = r �= q

pq?{ti .(Gi � r)}1≤i≤n if p �= r = q

G1 � r if p �= r �= q and
G1 � r = · · · = Gn � r

(G1 ⊕ G2) � r =

⎧⎪⎪⎪⎨
⎪⎪⎪
end if: G1 � r = end = G2 � r

G2 � r if: G1 � r = end �= G2 � r

G1 � r if: G1 � r �= end = G2 � r

(G1 � r) ⊕ (G2 � r) if: G1 � r �= end �= G2 � r

µX.G r = µX.(G r) X r = X end r = end

Fig. 5. Projection of global types.

contribute to the communication, and if r has a unique continuation, then the
projection is that continuation. The latter means that r is insensitive to which
type was communicated (which, as a non-contributor to the communication, r
does not know). We note that projection is partial: if the projection of a global
type onto one of its roles is undefined, then the global type is unsupported. We
also note that, for simplicity and because it does not affect this paper, we use
the “plain merge” instead of the “full merge” [33].

Example 3. The following local types specify the master and the workers in the
extended master–workers protocol (Example 2):

L′
www1 = mmmwww1?Work . www1www2 !{Work . www2www1?Done . www1mmm !Done . end , None . www1mmm !Done . end}

L′
www2 = mmmwww2?Work . www1www2?{Work . www2www1 !Done . www2mmm !Done . end , None . www2mmm !Done . end}

Lmmm = μX . (LEx.1
mmm · X) Lwww1 = μX . (L′

www1 · X) Lwww2 = μX . (L′
www2 · X) ��

2.3 Processes and Typing Rules

Let V denote the set of all values, ranged over by v. Let X denote the set of all
variables, ranged over by x. Let E = V∪X∪· · · denote the set of all expressions,
ranged over by e. Let P denote the set of all processes, ranged over by P :
P ::= if e P1 P2

∣
∣ pq !e.P

∣
∣ pq?{xi :ti .Pi}1≤i≤n

∣
∣ P1 ⊕ P2

∣
∣ μX.P

∣
∣ X

∣
∣ end

Informally, these forms of processes have the following meaning:

– Process if e P1 P2 implements the conditional choice between P1 and P2.
– Process pq !e.P implements the send of the value of expression e through

the channel from role p to role q, followed by P . Asynchronous sends can be
combined with conditional choices to implement internal choices.

– Process pq?{xi :ti .Pi}1≤i≤n implements the receive of a value into variable xi

of type ti through the channel from role p to role q, followed by Pi (i.e., type
switch on the received value), for some 1 ≤ i ≤ n. Asynchronous receives can
be used to implement external choices. Thus, through an internal choice and
a reciprocal external choice, the sender can “select” a value of a particular
type to control whereto the receiver “branches off”.

466 S.-S. Jongmans and J. Proença

Γ � e : Γ � P1 : L Γ � P2 : L

Γ � if e P1 P2 : L
[If]

Γ � e : ti Γ � P : Li 1 ≤ i ≤ n

Γ � pq !e.P : pq !{ti .Li}1≤i≤n

[Send]

Γ, xi : ti � Pi : Li for every 1 ≤ i ≤ n

Γ � pq?{xi :ti .Pi}1≤i≤n : pq?{ti .Li}1≤i≤n

[Recv]

Γ � P : L

Γ � µX.P : µX.L
[Mu]

Γ � X : X
[Var]

Γ � end : end
[End]

Γ � P1 : L1 Γ � P2 : L2

Γ P1 P2 : L1 L2

[Par]
Γ � P1 : L1 Γ � P2 : L2

Γ P1 P2 : L1 L2

[Seq]

Fig. 6. Well-typedness of processes.

– Process P1‖|P2 implements the parallel composition of P1 and P2. We note
that P1‖|P2 is intended to implement one role (i.e., there is no communication
between P1 and P2); the only purpose of parallel composition is to allow the
sends and receives of P1 and P2 to be ordered dynamically at execution-time.

– Process P1 · P2 implements the sequential composition of P1 and P2.
– Processes μX.G and X implement a recursive role.
– Process end implements the empty role.

Let Γ e:t denote well-typedness of expression e by data type t in envi-
ronment Γ . Let Γ P :L denote well-typedness of process P by local type L
in environment Γ . Formally, is the smallest relation induced by the rules
in Fig. 6. Rule [SEND] states that a send is well-typed by pq !{ti .Li}1≤i≤n if,
for some 1 ≤ k ≤ n, the value to send is well-typed by tk and the continua-
tion is well-typed by Lk. Dually, rule [RECV] states that a receive is well-typed
by pq?{ti .Li}1≤i≤n if, for every 1 ≤ i ≤ n, the continuation is well-typed by
Li under the additional assumption that the received value is well-typed by ti.
Thus, a well-typed process needs to be able to consume all specified inputs, but
produce only one specified output.

Theorem 1. (Deniélou and Yoshida [10]). If G is a well-formed global type
in which roles r1, . . . , rn occur, and if Pi:(G � ri) for every 1 ≤ i ≤ n, then the
session of P1, . . . , Pn is deadlock-free and protocol-compliant with respect to G.

Example 4. The following processes implement the master and the workers in
the extended master–workers protocol (Example 2):

P ′
www1 = mmmwww1?x:Work . if delegate work(x)

{

www1www2 !x . www2www1?y:Done . www1mmm !y . end

www1www2 !none() . www1mmm !do(x) . end

P ′
www2 = mmmwww1?x:Work . www1www2?

{

y:Work . www2www1 !do(y) . www2mmm !do(x) . end

:None . www2mmm !do(x) . end

Pmmm = μX . (PEx.1
mmm · X) Pwww1 = μX . (P ′

www1 · X) Pwww2 = μX . (P ′
www2 · X) ��

ST4MP: A Blueprint of Multiparty Session Typing 467

UI

parser local type
generator

interpreter API
generator

G
G�r1

G�rn

G�r1

G�rn

1 n

project encode

Fig. 7. Architecture of the ST4MP tool.

3 Blueprint of ST4MP

In this section, we present the blueprint of the ST4MP tool (henceforth simply
called “ST4MP”). ST4MP is a tool to apply the MPST method in multilingual
programming, based on API generation, according to the workflow in Fig. 4b.
This section focusses on the design; the implementation is work-in-progress, part
of ongoing efforts, and presented in more detail in a future paper.

Figure 7 visualises the architecture of ST4MP: boxes represent components;
arrows represent data flow between them. The parser and the local type generator
correspond to arrow “project” in Fig. 4b, while the interpreter and the API
generator correspond with arrow “encode”. Next, we discuss the purpose of
every component in more detail, along with the main design decisions.

3.1 UI

As ST4MP aims to support multilingual programming, the purpose of the UI is
to offer a language-independent and cross-platform user interface.

The main design decision related to the UI has been to make it accessible and
usable through any contemporary browser, instead of through a separate plug-
in for a particular IDE/editor (to avoid the situation in which programmers are
forced to install software only to be able to use ST4MP). As a result, while
ST4MP is implemented in Scala, it is compiled to HTML-JavaScript-CSS. A
live snapshot is available at https://arca.di.uminho.pt/st4mp/, which is based
on our previous Pompset tool [8].

3.2 Parser

The purpose of the parser is to consume a global type in concrete syntax G as
input, written in the ST4MP language (henceforth simply called “ST4MP”),
and produce a global type in abstract syntax G as output (Sect. 2.1). The parser
also checks additional well-formedness requirements.

The main design decisions related to the parser have been:

– Use a language-independent notation for data types based on JSON (“Java-
Script Object Notation”) [6]. JSON is a domain-specific language for typed

https://arca.di.uminho.pt/st4mp/

468 S.-S. Jongmans and J. Proença

values; it has been widely adopted as a “text syntax that facilitates structured
data interchange between all programming languages” [6]. We use JSON also
to auto-serialise (i.e., convert binary data in one language into a common
textual exchange format) and auto-deserialise (i.e., convert back to binary
data, possibly in another language) inside generated APIs, as clarified shortly.

– Use a language-independent notation for global types based on Featherweight
Scribble [31]. Featherweight Scribble is a domain-specific language for global
types; it was chosen because it is a core fragment of Scribble [19,20] (and
its extensions [7,23,25,28,30,32,39]), which has been the premier language
to apply the MPST method in combination with mainstream programming
languages.

Let � range over identifiers in ST4MP (i.e., strings consisting of alphanumer-
icals). Let T and G range over data types and global types in ST4MP:

T ::= �(�1:T1, . . . , �n:Tn)
∣
∣ [T]

∣
∣ Number

∣
∣ String

∣
∣ Boolean

G ::= T from p to q;
∣
∣ choice at p { G1 } or · · · or { Gn }

∣
∣

par { G1 } and · · · and { Gn }
∣
∣ G1 G2

∣
∣ rec � { G }

∣
∣ continue �;

Informally, these forms have the following meaning:

– Data type �(�1:T1, . . . , �n:Tn) specifies an object, where � identifies the class
of the object, while �1:T1, . . . , �n:Tn identify n typed attributes of the object;
parentheses can be omitted when n= 0. Data type [T] specifies an array. The
remaining data types are self-explanatory.

– Global types in ST4MP follow closely our formalisation of global types in
Sect. 2.1; e.g., T from p to q; G denotes p � q :{T .G}. As additional well-
formedness conditions, we require: (1) every branch of choice at p start
with a communication in which p is the sender and the receiver is the same;
(2) if both �(�1:T1, . . . , �n:Tn) and �(�n+1:Tn+1, . . . , �n+m:Tn+m) are in a
global type, then �1:T1, . . . , �n:Tn = �n+1:Tn+1, . . . , �n+m:Tn+m (i.e., if �
identifies a class, then it must do so unambiguously).

Example 5. The ST4MP code in Fig. 8 specifies the extended master–workers
protocol (Example 2). ��

3.3 Local Type Generator

The purpose of the local type generator is to consume a global type G as input
and produce local types G � r1, . . . , G � rn as output, by projecting G onto every
role r1, . . . , rn that occurs in it (Sect. 2.2).

3.4 Interpreter

The purpose of the interpreter is to consume local types G � r1, . . . , G � rn

as input and produce transition-based models of their operational behaviour

ST4MP: A Blueprint of Multiparty Session Typing 469

Fig. 8. Extended master–workers protocol in ST4MP (Example 5).

�G � r1�, . . . , �G � rn� as output; APIs can subsequently be generated for such
models.

The main design decision related to the interpreter has been to support
two kinds of transition-based models—automata and pomsets—based on exist-
ing interpretation functions on local types [11,13]. To illustrate the idea, the
automaton interpretation of local types is summarised in Fig. 9, including an
example; the pomset interpretation is more complicated and explained in detail
elsewhere [8]. The reason to support two different models is that they have dif-
ferent advantages and, as such, can serve different purposes:

– The advantage of the automaton interpretation of local types is that it is
“total”: it is defined for all non-recursive local types and for all tail-recursive
local types. Another advantage is that the requirements to generate APIs for
automata are relatively low (i.e., no advanced type system features needed
and can be implemented, e.g., in Java [19]). The disadvantage is that the
automaton interpretation suffers from state explosion in the presence of par-
allel composition.

– The advantage of the pomset interpretation of local types is that it does
not suffer from state explosion (i.e., pomsets offer a more concise represen-
tation of concurrency than automata). The disadvantage is that the pomset
interpretation is “partial”: it is defined only for non-recursive local types
and top-level tail-recursive local types (i.e., of the form μX.(L · X), where
L is non-recursive) that are, moreover, choice-free. Another disadvantage is
that the requirements to generate APIs for pomsets are relatively high (i.e.,
advanced type system features are needed; e.g., match types in Scala [1,8]).

Example 7. Lmmm in Example 3 is both top-level tail-recursive and choice-free, so
it can be interpreted not only as an automaton (Example 6 in Fig. 9) but also
as a pomset (Cledou et al. [8]). In this way, state explosion can be avoided (i.e.,

470 S.-S. Jongmans and J. Proença

Let ΣΣΣ = {pq !t | p �= q} ∪ {pq?t | p �= q} denote the set of all type-level actions
alphab , ranged over by σ. Let A denote the set of all automata over ΣΣΣ, ranged over
by A. Formally, an automaton is a tuple (S, si, sf), where S denotes a set of states,
si, sf ∈ S denote the initial state and the final state, and : S × ΣΣΣ S denotes a
transition function.
Let L aut denote the interpretation of local type L as an automaton. Formally, aut

is the smallest function induced by the following equations:

end aut =

pq ti .Li}1≤i≤n aut =

A1

An

pq t1

pq tn

...

σ
11...

σ1k1...

σn1

σn
kn

s.t., for every 1 ≤ i ≤ n, Li aut = Ai

σi1...
σiki

L1 L2 aut = (S1 × S2, (s1i, s2i), (s1f , s2f))

s.t. ((s1, s2), σ) =

{
(s′

1, s2) if 1(s1, σ) = s′
1

(s1, s′
2) if 2(s2, σ) = s′

2

L1 · L2 aut = (S1 ∪ S2, s1i, s2f , 1̂ ∪ 2)

s.t. 1̂(s1, σ) =

{
s′
1 if 1(s1, σ) = s′

1 �= s1f

s2i if 1(s1, σ) = s′
1 = s1f

µX.(L1 · X) aut = (S1, s1i, s1f , 1̂) s.t. 1̂(s1, σ) =

{
s′
1 if 1(s1, σ) = s′

1 �= s1f

s1i if 1(s1, σ) = s′
1 = s1f

The interpretation of end is the automaton that accepts the empty language. The
interpretation of pq ti .Li}1≤i≤n is the automaton that accepts the language of words
that begin with pq ti and continue with a word accepted by the interpretation of Li;
the visualisation is intended to convey that the final states of the interpretations of
L1, . . . , Ln are “superimposed” to form a single new final state. The interpretations of
L1 L2 and L1 · L2 are the automata that accept the shuffle and the concatenation of
the languages accepted by the interpretations of L1 and L2.

Example 6. The following automata are the interpretations of L (left) and L 1 (right)
in the extended master-workers protocol (Example 3):

1 2 3

4

5
6

1 2

3

4

5

We note that state 6 (left) and state 5 (right) are unreachable. �	

Fig. 9. Interpreting local types as automata [11].

ST4MP: A Blueprint of Multiparty Session Typing 471

the automaton has O(2n) states in general, where n is the number of workers)
to reduce both the time to generate an API and the space to store it. ��

3.5 API Generator

The purpose of the API generator is to consume operational models �G �
r1�, . . . , �G � rn� as input and produce APIs api1, . . . , apin as output.

The underlying principle is that a process Pi is well-typed by local type G � ri

(Sect. 2) if, and only if, every possible sequence of sends and receives by Pi can
be simulated by a sequence of transitions of �G � ri�. The “trick” is to structure
the API in such a way that when the compiler successfully type-checks the API’s
usage, it has effectively computed a sequence of transitions of �G � ri� for every
possible sequence of sends and receives by Pi. The main technique to achieve
this is to represent every state of �G � ri� as an object (broadly construed),
and every transition as a method (broadly construed), such that every call of
method t on object s is well-typed if, and only if, the transition represented by
t is allowed in the state represented by s.

From the programmer’s perspective, to use the API, a function f needs to
be defined that consumes an “initial state object” s0 as input and produces a
“final state object” as output. Inside of f, initially, the only actions that can be
performed, are those for which a well-typed method call on s0 exists. When such
a method is called, an action is performed and a fresh “successor state object”
s1 is returned. Subsequently, the only actions that can be performed, are those
for which a well-typed method call on s1 exists. When such a method is called,
another action is performed, and another fresh “successor successor state object”
s2 is returned. This goes on until the final state object is returned (if any).

When a method call is not well-typed, it means that: (1) the transition is not
allowed in the state; (2) hence, the local type does not specify the action; (3)
hence, the action is not allowed in the protocol. As successor state objects become
available only after predecessor state objects are used, and assuming that every
state object is used exactly once, well-typed usage of the API implies protocol
compliance. Moreover, as a final state object must have been provided upon
termination, and assuming that there are no other sources of non-terminating or
exceptional behaviour, well-typed usage of the API also implies deadlock freedom.
We note that these two additional assumptions cannot be statically enforced in
many languages [7,19,22,28,30,32,38]: checking the first assumption requires a
form of substructural types, while checking the second assumption is generally
undecidable. However, the first assumption can be dynamically monitored using
lightweight checks at execution-time.1

The main design decisions related to the API generator have been to:

1 Thus, typically, the application of the MPST method using API generation is not
absolutely zero-cost in terms of overhead: while the vast majority of the work is done
statically, a bit of work is done dynamically. Previous experiments indicate that this
overhead is negligible in practice, though (e.g., [7]).

472 S.-S. Jongmans and J. Proença

JSON Scala

object � � �n n � �1 �n n (generated)
array

number (union type)
string

boolean

Fig. 10. Mapping between types in JSON and Scala.

– Support three languages initially: Java, Scala, and Rust. We selected Java
because it is one of the most-used languages today.2 We selected Scala and
Rust because their type systems have special features (match types in Scala
and ownership types in Rust) that can be leveraged in generated APIs.
We note that the combination of Java and Scala also presents original research
opportunities: as both languages are executed by the JVM, it is interesting to
investigate if special API generation techniques can be developed to leverage
the common runtime environment (e.g., to reduce communication latency
relative to TCP connections).

– Use TCP and JSON as language-independent mechanisms to transport
and represent data. That is, ST4MP will include code in every API to
create/configure the underlying TCP connections, plus code to (de)serialise
data to JSON values. To illustrate the idea, for Scala, the JSON mapping is
summarised in Fig. 10.

– Use existing techniques to generate APIs for transition-based models of local
types, namely those conceived by Hu and Yoshida [19] for automata (in Java,
Scala, and Rust) and Cledou et al. [8] for pomsets (in Scala). To illustrate the
idea, for automata in Scala, the former technique is summarised in Fig. 11,
including an example illustrated in Fig. 12; the latter technique is more com-
plicated and explained elsewhere [8].

Example 9. In the extended master-workers protocol, the master can be imple-
mented using the Scala API based on pomsets (to avoid state explosion); the
workers can be implemented in Java, Scala, and/or Rust based on automata. ��

4 Related Work

The idea to interpret local types as automata was conceived by Deniélou and
Yoshida [11,12], within the framework of communicating finite state machines
(CFSM) [5]. A central notion in this work is multiparty compatibility : it is used to
provide a sound and complete characterisation between global types and systems
(i.e., parallel compositions of automata that communicate through asynchronous

2 https://www.tiobe.com/tiobe-index/.

https://www.tiobe.com/tiobe-index/

ST4MP: A Blueprint of Multiparty Session Typing 473

Suppose that (S, si, sf) is the automaton interpretation of the local type for role r:

– Every state s ∈ S is represented as class 〈r〉 〈s〉 in the API, where 〈r〉 and 〈s〉 are
identifiers for r and s (and is a meaningless separator).

– Every transition (s, σ) is represented as a method of class 〈r〉 〈s〉 to perform
action σ and return an instance of class 〈r〉 (s, σ)〉.

If s has only !-transitions of the form (s, rq1 !t1) (s, rqn !tn), then:

Parameter of class 〈r〉 〈s〉 encapsulates the underlying communication infrastruc-
ture; it is used inside of every method to perform the “real send”. Parameter of
every method is the identifier of the receiver, parameter is the value to send, and
the return value is a successor state object. These methods mimic pq !e.P (Section 2.3).
If s has only ?-transitions of the form (s, p1r?t1) (s, pnr?tn), then:

Parameter i of method is the i-th continuation; it is called with the identifier of
the sender, the value to receive, and a successor state object after the “real receiv
This method mimics pq?{xi :ti .Pi}1≤i≤n (Section 2.3).
If s has both !-transitions and ?-transitions, an error is reported.

Example 8. The APIs in Figure 12 are generated for aut and aut in the ex-
tended master–workers protocol (Example 6 in Figure 9). We note that classes and

represent unreachable final states.
Furthermore, functions and in Figure 12. which use the generated APIs, are Scala
versions of P and P 1 (Example 4). We note that the two sends in the implementation
of the master cannot be swapped (i.e., first to worker 2, second to worker 1): the
resulting code would not be well-typed, indicating that the protocol is violated. We
also note that we omitted all type annotations for parameters in continuations; they
can be inferred by the compiler.

Fig. 11. Generating Scala APIs for automata.

channels). Multiparty compatibility was further studied and generalised in sub-
sequent work, to cover timed behaviour [4], more flexible choice [26], and non-
synchronisability [27].

The idea to represent automata as APIs was conceived by Hu and
Yoshida [19,20], for Java. The approach has subsequently been used in combi-
nation with numerous other programming languages as well, including F# [30],
F� [39], Go [7], OCaml [38], PureScript [23], Rust [25], Scala [32], and Type-
Script [28]. In many of these works, special features of the type system of “the
host” are leveraged to offer additional compile-time guarantees and/or support

474 S.-S. Jongmans and J. Proença

(a) Master

(b) Worker 1

Fig. 12. Generated Scala APIs and processes for the extended master–workers protocol
(Example 8 in Fig. 11).

ST4MP: A Blueprint of Multiparty Session Typing 475

MPST extensions. For instance, Neykova et al. and Zhou et al. use type providers
in F# and refinement types in F� to generate APIs that support MPST-based
refinement [30,39], while King et al. and Lagaillardie et al. use indexed monads
in PureScript and ownership types in Rust to support static linearity [23,25].

Alternative approaches (i.e., not based on API generation) to apply the
MPST method in combination with mainstream programming languages include
the work of Imai et al. [21] (for OCaml), the work of Harvey et al., Kouzapas
et al., and Voinea et al. [16,24,37] (for Java, using a typestate extension), and
the work of Scalas et al. [34,35] (for Scala, using an external model checker).
Furthermore, there exist approaches to apply the MPST method that rely on
monitoring and/or assertion checking at execution-time [2,3,9,15,29,30]. The
motivation is that in practice, some distributed components of a system might
not be amenable to static type-checking (e.g., the source code is unavailable),
but they can be dynamically monitored for compliance.

The idea to represent local types as pomsets was conceived by Guanciale and
Tuosto [13], in a continuation of earlier work on pomset-based semantics of global
types [36]. A key contribution of Guanciale and Tuosto is a sound procedure to
determine if a pomset interpretation of a global type is realisable as a collec-
tion of pomset interpretations of the global type’s projections. The PomCho
tool [14] supports analysis (including counterexample generation), visualisation,
and projection of pomsets. However, PomCho cannot generate APIs.

5 Conclusion

Multiparty session types (MPST) constitute a method to simplify construction
and analysis of distributed systems. In practice, the premier approach to apply
the MPST method in combination with mainstream programming languages
has been based on API generation. However, existing tools support only unilin-
gual programming (homogeneity), while many real-world distributed systems
are engineered using multilingual programming (heterogeneity). In this paper,
we presented a blueprint of ST4MP: a tool to apply the MPST method in mul-
tilingual programming, based on API generation.

Acknowledgements. Sung-Shik Jongmans: Netherlands Organisation of Scientific
Research (NWO): 016.Veni.192.103.
José Proença: This work was partially supported by National Funds through FCT/M-
CTES (Portuguese Foundation for Science and Technology), within the CISTER Unit
(UIDP/UIDB/04234/2020) and the IBEX project (PTDC/CCI-COM/4280/2021); also
by national funds through FCT and European funds through EU ECSEL JU, within
project VALU3S (ECSEL/0016/2019 - JU grant nr. 876852) – The JU receives sup-
port from the European Union’s Horizon 2020 research and innovation programme and
Austria, Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey.
Disclaimer: This document reflects only the author’s view and the Commission is not
responsible for any use that may be made of the information it contains.

476 S.-S. Jongmans and J. Proença

References

1. Blanvillain, O., Brachthäuser, J.I., Kjaer, M., Odersky, M.: Type-level program-
ming with match types. Proc. ACM Program. Lang. 6(POPL), 1–24 (2022)

2. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

3. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15375-4 12

4. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR.
LIPIcs, vol. 42, pp. 283–296. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2015)

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

6. Bray, T.: The JavaScript Object Notation (JSON) Data Interchange Format. RFC
7159, March 2014. https://doi.org/10.17487/RFC7159, https://www.rfc-editor.
org/info/rfc7159

7. Castro-Perez, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint APIs for
dynamically-instantiated communication structures. Proc. ACM Program. Lang.
3(POPL), 29:1–29:30 (2019)

8. Cledou, G., Edixhoven, L., Jongmans, S.S., Proença, J.: API generation for mul-
tiparty session types, revisited and revised using Scala 3. In: ECOOP. LIPIcs, vol.
222, pp. 27:1–27:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

9. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. Formal Methods Syst. Des. 46(3), 197–225 (2015)

10. Deniélou, P., Yoshida, N.: Dynamic multirole session types. In: POPL, pp. 435–446.
ACM (2011)

11. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

12. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2 18

13. Guanciale, R., Tuosto, E.: Realisability of pomsets. J. Log. Algebraic Methods
Program. 108, 69–89 (2019)

14. Guanciale, R., Tuosto, E.: Pomcho: a tool chain for choreographic design. Sci.
Comput. Program. 202, 102535 (2021)

15. Hamers, R., Jongmans, S.-S.: Discourje: runtime verification of communication
protocols in clojure. In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS, vol.
12078, pp. 266–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5 15

16. Harvey, P., Fowler, S., Dardha, O., Gay, S.J.: Multiparty session types for safe
runtime adaptation in an actor language. In: ECOOP. LIPIcs, vol. 194, pp. 10:1–
10:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.17487/RFC7159
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/978-3-030-45190-5_15

ST4MP: A Blueprint of Multiparty Session Typing 477

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

19. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

20. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 7

21. Imai, K., Neykova, R., Yoshida, N., Yuen, S.: Multiparty session programming with
global protocol combinators. In: ECOOP. LIPIcs, vol. 166, pp. 9:1–9:30. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

22. Jongmans, S.-S., Yoshida, N.: Exploring type-level bisimilarity towards more
expressive multiparty session types. In: Müller, P. (ed.) ESOP 2020. LNCS, vol.
12075, pp. 251–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44914-8 10

23. King, J., Ng, N., Yoshida, N.: Multiparty session type-safe web development with
static linearity. In: PLACES@ETAPS. EPTCS, vol. 291, pp. 35–46 (2019)

24. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo: a session type toolchain for Java. Sci. Comput. Program.
155, 52–75 (2018)

25. Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty session types
in rust. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134,
pp. 127–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 8

26. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232. ACM (2015)

27. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 6

28. Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-safe web programming
in typescript with routed multiparty session types. In: CC, pp. 94–106. ACM (2021)

29. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877–910 (2017)

30. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: CC, pp.
128–138. ACM (2018)

31. Neykova, R., Yoshida, N.: Featherweight scribble. In: Boreale, M., Corradini, F.,
Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and
Distributed Programming. LNCS, vol. 11665, pp. 236–259. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21485-2 14

32. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74, pp. 24:1–
24:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

33. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), 30:1–30:29 (2019)

34. Scalas, A., Yoshida, N., Benussi, E.: EFFPI: verified message-passing programs in
dotty. In: SCALA@ECOOP, pp. 27–31. ACM (2019)

35. Scalas, A., Yoshida, N., Benussi, E.: Verifying message-passing programs with
dependent behavioural types. In: PLDI, pp. 502–516. ACM (2019)

https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-21485-2_14

478 S.-S. Jongmans and J. Proença

36. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log.
Algebr. Methods Program. 95, 17–40 (2018)

37. Voinea, A.L., Dardha, O., Gay, S.J.: Typechecking Java protocols with [St]Mungo.
In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 208–224.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3 12

38. Yoshida, N., Zhou, F., Ferreira, F.: Communicating finite state machines and an
extensible toolchain for multiparty session types. In: Bampis, E., Pagourtzis, A.
(eds.) FCT 2021. LNCS, vol. 12867, pp. 18–35. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-86593-1 2

39. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4(OOPSLA), 148:1–
148:30 (2020)

https://doi.org/10.1007/978-3-030-50086-3_12
https://doi.org/10.1007/978-3-030-86593-1_2
https://doi.org/10.1007/978-3-030-86593-1_2

On Binding in the Spatial Logics
for Closure Spaces

Laura Bussi1,2, Vincenzo Ciancia1, Fabio Gadducci2, Diego Latella1,
and Mieke Massink1(B)

1 CNR-ISTI, Pisa, Italy
{l.bussi,v.ciancia,d.latella,m.massink}@isti.cnr.it

2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
fabio.gadducci@unipi.it

Abstract. We present two different extensions of the spatial logic for
closure spaces (SLCS), and its spatio-temporal variant (τSLCS), with spa-
tial quantification operators. The first concerns the existential quantifi-
cation on individual points of a space. The second concerns the quantifi-
cation on sets of points. The latter amounts to a form of quantification
over atomic propositions, thus without the full power of second order
logic. The spatial quantification operators are useful for reasoning about
the existence of particular spatial objects in a space, their spatial rela-
tion with respect to other spatial objects, and, in the spatio-temporal
setting, to reason about the dynamic evolution of such spatial objects
in time and space, including reasoning about newly introduced items. In
this preliminary study we illustrate the expressiveness of the operators
by means of several small, but representative, examples.

Keywords: Closure spaces · Spatial logics · Spatio-temporal logics ·
Binding · Propositional quantifiers

1 Introduction

The notion of space plays a crucial role in the heterogeneous design, implementa-
tion and use of distributed (computer) systems. Debates on the nature of space
date back to the ancient times of—and involve—Greek philosophers like Plato
and Aristotle. In modern mathematics, spaces are typically defined as sets (of
points) with some additional structure. This is the case, for instance, for topo-
logical spaces, where such additional structure captures a notion of “nearness”.

Modal logics have been used since a long time as a means for reasoning about
necessity and possibility, but also about (continuous) space. In fact, a topological
interpretation of the ♦ modality was proposed already in the thirties by Tarski
who later proved, together with McKinsey, that the simple modal logic S4 is

Research partially supported by the MIUR PRIN 2017FTXR7S IT-MaTTerS. The
authors are listed in alphabetical order; they contributed to this work equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 479–497, 2022.
https://doi.org/10.1007/978-3-031-19849-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_27&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_27

480 L. Bussi et al.

complete for interpreting ♦ as topological closure on Euclidean spaces, specifically
the reals (see e.g. [6] for a detailed account).

Unfortunately, topological spaces turn out to be rather restrictive since there
are structures that are useful to represent certain kinds of space but that are not
topologies, like, for instance, general graphs or heterogeneous structures includ-
ing both continuous and discrete notions of space. Consequently, in our work,
we consider a larger class of models, namely that of Čech closure spaces, a gen-
eralisation of topological spaces [20,33]. The relevant logics have been extended
accordingly. In [14,15] the Spatial Logic for Closure Spaces (SLCS) has been pro-
posed that has the same operators as S4—where the closure operator is denoted
by N , standing for “near”, instead of by ♦—plus a surrounded operator such
that a point satisfies Φ1 S Φ2 if it lays in a region that (i) consists of points all
satisfying Φ1 and (ii) is surrounded by points satisfying Φ2.

SLCS has been extended with temporal modalities in [12,13], giving rise to
a spatio-temporal logic to reason also on heterogeneous properties concerning
dynamic aspects of systems physically distributed in space. Spatial and spatio-
temporal model checking/monitoring algorithms have been proposed in [12–
15,28] and associated tools, among which VoxLogicA [5] and topochecker [9,16],
have been developed [5,12,13,21,22]. These, in turn, have been used in various
applications, such as bike-sharing [16], Turing patterns [28] and medical image
analysis [3–5,9]—where a digital image is interpreted as a regular grid, i.e. a
graph with an edge relation that models 2D pixel, or 3D voxel, adjacency (also
called an adjacency space). Recently, the approach has also been extended to
polyhedral models and polyhedral model checking [7,27], leading to the polyhe-
dral model checker PolyLogicA [7]. Notions of spatial bisimilarity have been
proposed as well, and their potential for model minimisation plays an important
role in the context of model-checking optimisation [17].

Despite their expressiveness, SLCS and its temporal extension are not suitable
for the expression of properties involving dynamic entities that may appear or
disappear over time. In order to reason about such entities, quantification has
been introduced in well-known temporal logics such as LTL [25] and CTL [29].
Furthermore, in order to reason about graphs whose topology may change over
time, combinations of temporal and graph logics have been proposed [1,19].

A different perspective on quantification is given by propositional quantifica-
tion, introduced in modal logics by Kripke [24] and thoroughly investigated in,
for instance, [8,23]. In the latter work, the object of quantification are proposi-
tions, and this allows one to reason about possible changes of properties holding
in a certain region. In the case of spatial model checking for medical image anal-
ysis we mentioned before, this kind of quantification can be useful, for instance,
to verify the occurrence of a new lesion in human organ tissue such as in the
brain. Introducing quantification may introduce complexity issues [2] and may
require the development of novel model checking tools and algorithms [30].

In the present paper, we present a preliminary investigation (ultimately
aimed at model checking applications in medical image analysis, such as in [5]),
by means of examples, on suitable extensions of SLCS, and its spatio-temporal

On Binding in the Spatial Logics for Closure Spaces 481

variant, with quantification operators and with a notion of fresh point creation.
We consider both quantification on points in the relevant space and quantification
on atomic propositions. The latter allows for the characterisation of properties
of sets of points, yet without involving the full power of second order logic.

The paper is organised as follows: Sect. 2 recalls some preliminary defini-
tions, including the “kernel logic” SLCS and its temporal extension τSLCS. Sect. 3
presents ∃xSLCS, the point quantification extension of SLCS, whereas the tempo-
ral variant thereof is presented in Sect. 4. The introduction of new points during
the evolution of a system is briefly discussed in Sect. 5. Section 6 shows an exten-
sion of SLCS with atomic predicate quantification. Finally, Sect. 7 presents a brief
discussion on this work and some lines of future work.

2 Preliminaries

Given a set X, we let P(X) denote the powerset of X. For function f : A → B,
a ∈ A, and b ∈ B, we let f [a �→ b] be defined as follows: f [a �→ b](x) � b, if
x = a, and f [a �→ b](x) � f(x) otherwise.

The main notion which our framework for modelling space is based on is that
of Čech Closure Spaces [33] that provide a convenient common framework for the
study of several different kinds of spatial models, including models of discrete
and continuous space [31]. More recently the notion of closure space has been
used in the context of Artificial Intelligence (see for example [20]). We briefly
recall several definitions and results on closure spaces, most of them from [20].

Definition 1 (Closure Space – CS). A closure space, CS for short, is a pair
(X, C) where X is a non-empty set (of points) and C : P(X) → P(X) is a
function satisfying the following axioms: (i) C(∅) = ∅; (ii) A ⊆ C(A) for all
A ⊆ X; and (iii) C(A1 ∪ A2) = C(A1) ∪ C(A2) for all A1, A2 ⊆ X. •

In the remainder of the paper, we consider only closure spaces (X, C) where
X is equipped with equality and x = x′ is decidable, for all x, x′ ∈ X. It is worth
pointing out that topological spaces coincide with the sub-class of CSs where C
satisfies the idempotence axiom C(C(A)) = C(A) (see [20,33] for details).

Definition 2 (Quasi-discrete CS – QdCS). A quasi-discrete closure space
is a CS (X, C) such that for all A ⊆ X it holds that C(A) =

⋃
x∈A C({x}). •

Given any relation R ⊆ X × X, define the function CR : P(X) → P(X) as
follows: for all A ⊆ X, CR(A) � A ∪ {x ∈ X | a ∈ A exists s.t. (a, x) ∈ R}. It is
easy to see that, for any R, CR satisfies the axioms of Definition 1 and so (X, CR)
is a CS. The following theorem is a standard result in the theory of CSs [20].

Theorem 1. A CS (X, C) is quasi-discrete if and only if there is a relation
R ⊆ X × X such that C = CR. 	

A notable example of quasi-discrete closure spaces that are not necessarily
topological spaces is that of general graphs, i.e. graphs where no restriction is
imposed on the edge relation. There are also closure spaces that are neither

482 L. Bussi et al.

quasi-discrete nor topological. An example of such spaces is a heterogeneous
space like the disjoint union of an Euclidean space—a topological space which
is clearly not quasi-discrete—with a quasi-discrete, but not topological, closure
space1. In the sequel, whenever a CS (X, C) is quasi-discrete, we use �C to denote
CR, and, consequently, (X, �C) to denote the closure space, abstracting from the
specification of R, when the latter is not necessary. We let �C denote CR−1 .

We use paths over QdCSs; we follow the tradition of topology and define
them based on the notion of continuous function.

Definition 3 (Continuous function). A continuous function from (X1, C1)
to (X2, C2) is a function f : X1 → X2 such that f∗(C1(A)) ⊆ C2(f∗(A)) for all
sets A ⊆ X1, where we let f∗(B) =

⋃
x∈B f(x). •

Should (X1, C1) be a QdCS, continuity coincides with just requiring that
f∗(C1({x})) ⊆ C2({f(x)}) for all x ∈ X1. So, let (N, Csucc) be the QdCS of natural
numbers, where succ is the successor relation, i.e. succ � {(m,n) |n = m + 1}.

Definition 4 (Quasi-discrete path in). A quasi-discrete path in (X, �C) is a
continuous function from (N, Csucc) to (X, �C). •

In the sequel we will consider only quasi-discrete paths. Below, we introduce
the notion of closure model. To that purpose, we assume that a set AP of atomic
propositions is given. In addition, the points of the model are often enriched
with suitable attributes, that can facilitate the definition of appropriate propo-
sitions, as briefly described below. Obvious examples of attributes are the red,
green and blue components of pixels, seen as RGB vectors—recording the colour
intensities—in digital images, when the latter are seen as adjacency spaces.

Definition 5 (Closure model – CM). Given a set of atomic propositions
AP, a set of attribute names A, and a set of attribute values AV , a closure
model, CM for short, is a tuple (X, C,A,V) consisting of a closure space (X, C),
a valuation A : X × A → AV , assigning to each point and attribute the value
of the attribute at that point, and a valuation V : AP → P(X) assigning to each
atomic predicate the set of points where it holds. •

All the definitions for CSs apply to CMs as well; thus, a quasi-discrete closure
model (QdCM for short) is a CM M = (X, �C,A,V) where (X, �C) is a QdCS.

2.1 SLCS: The Spatial Logic for Closure Spaces

We recall the kernel logic SLCS; in the present paper, we interpret it on QdCMs.

1 The disjoint union (X1, C1) + (X2, C2) of closure spaces (X1, C1) and (X2, C2) is
the closure space (X, C) whose set of points X is the disjoint union X1 + X2 �
{(x, 1) | x ∈ X1} ∪ {(x, 2) | x ∈ X2} while, for A ⊆ X1 + X2 we define C(A) �
{(x, 1) | x ∈ A1} ∪ {(x, 2) | x ∈ A2} with Aj � {x | (x, j) ∈ A} for j = 1, 2.

On Binding in the Spatial Logics for Closure Spaces 483

Definition 6 (Spatial Logic for Closure Spaces – SLCS). For p ∈ AP the
syntax of the logic is the following

Φ ::= p | ¬Φ | Φ ∧ Φ | �ρ Φ[Φ] | �ρ Φ[Φ]

Satisfaction M, x |= Φ of an SLCS formula Φ at point x ∈ X in QdCM M =
(X, �C,A,V) is defined by induction on the structure of formulas

M, x |= p ⇔ x ∈ V(p)
M, x |= ¬Φ ⇔ M, x |= Φ does not hold
M, x |= Φ1 ∧ Φ2 ⇔ M, x |= Φ1 and M, x |= Φ2

M, x |= �ρ Φ1[Φ2] ⇔ path π and index � exist s.t. π(0) = x and M, π(�) |= Φ1

and for all indexes j : 0 < j < � implies M, π(j) |= Φ2

M, x |= �ρ Φ1[Φ2] ⇔ path π and index � exist s.t. π(�) = x and M, π(0) |= Φ1

and for all indexes j : 0 < j < � implies M, π(j) |= Φ2

•
A point x satisfies formula �ρ Φ1[Φ2] if a point that satisfies Φ1 can be reached

from x, via a path whose internal points, if any, all satisfy Φ2. Conversely, x
satisfies formula �ρ Φ1[Φ2] if it can be reached from a point that satisfies Φ1, via
a path whose internal points, if any, all satisfy Φ2.

Note that, in the context of space, and in particular when dealing with notions
of directionality (e.g. one-way roads, public area gates), it is essential to be able
to distinguish between the concept of “reaching” and that of “being reached”. A
formula like �ρ (rescue-area ∧ ¬(�ρ danger-area)[true])[safe-corridor], given
a suitable interpretation of the atomic propositions, expresses the fact that, via
a safe corridor, a rescue area can be reached that cannot be reached from a
dangerous area. Such situations have no obvious counterpart in the temporal
domain, where there can be more than one future, like in the case of branching
time logics, but there is typically only one, fixed, past, i.e. the one that occurred2.

It is also worth noting that it is not always possible to define the reversed path
in CSs: indeed, while this is immediate in the case, for instance, of graphs, the
same idea is not applicable in continuous spaces, as, e.g., used in [7,27]. Thus,
for the sake of generality, the semantics for the “reach” and “being reached”
operators is given explicitly.

The standard derived operators ∨ and =⇒ will be used in the sequel:
Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2) and Φ1 =⇒ Φ2 ≡ ¬Φ1 ∨ Φ2. We recall here that the
proximity operator �N defined as M, x |= �N Φ ⇔ x ∈ �C({x′ ∈ X |M, x′ |= Φ}),
for QdCMs can be derived from the reachability one, namely �N Φ ≡ �ρ Φ[false];
similarly �N Φ ≡ �ρ Φ[false], with M, x |= �N Φ ⇔ x ∈ �C({x′ ∈ X |M, x′ |= Φ}).
In particular, �N coincides with the classical ♦ closure modality.

Finally, we recall that in [14,15] a surrounded operator S was introduced
such that a point x satisfies Φ1 S Φ2 if and only if it belongs to a set of mutually
connected points all satisfying Φ1 and this set is directly surrounded by points all
satisfying Φ2. In other words, no path rooted in x can leave the Φ1 area without
2 There are a few exceptions to this view of past-tense operators, e.g. [26,32].

484 L. Bussi et al.

passing by a point satisfying Φ2. It is worth noting that the surrounded operator
can be expressed using �ρ as follows: Φ1 S Φ2 ≡ Φ1 ∧ ¬�ρ(¬(Φ1 ∨ Φ2))[¬Φ2].

2.2 τSLCS: The Temporal Extension of SLCS

We recall here a temporal extension of SLCS, similar to the one presented
in [12,13], that provides a formal, unified framework for reasoning about both
spatial and temporal features of systems and their behaviour. The version of
SLCS defined in [12,13] is based on the proximity and surrounded operators,
both expressible in terms of reachability operators, as we have seen in Sect. 2.1.

For what concerns the satisfaction relation, now a spatio-temporal model M
(more simply, just a temporal model) is composed of a Kripke structure and a
family of closure models, one for each world of the Kripke structure.

Definition 7 (Temporal closure model - TCM). Given a set of atomic
propositions AP, a temporal closure model, TCM for short, is composed of a
Kripke structure K = (S, T)—with set of states (worlds) S and transition (acces-
sibility) relation T ⊆ S × S—and of a family {(X, C)s,Vs,As}s∈S of closure
models. We say that TCM M = ((S, T), {(X, C)s,Vs,As}s∈S) is conservative if,
for all s, s′ ∈ S, it holds Xs ⊆ Xs′ whenever (s, s′) ∈ T . •

All definitions for CMs extend also to TCMs; so, for instance, a quasi-discrete
temporal closure model, QdTCM for short, is a temporal closure model where
all closure models (i.e., one for each state s ∈ S) are quasi-discrete. Here, we
consider only conservative QdTCM3. This means that space can only grow when
time advances: i.e., the points of space can never be lost. This condition simpli-
fies the definition of spatio-temporal logics; we leave the investigation of non-
conservative models to future work. We recall the definition of temporal paths.

Definition 8. Given Kripke structure K = (S, T) and s ∈ S, a temporal path
rooted in s is a function τ : N → S such that τ(0) = s and (τ(i), τ(i + 1)) ∈ T
for all i ∈ N. For s ∈ S, Ts denotes the set of all temporal paths τ rooted in s. •

Note that the above definition implies that the relation T is total, which is
readily obtained by adding self-loops (s, s) whenever there is no s′ s.t. (s, s′) ∈ T .

Definition 9 (Spatio-Temporal Logic for Closure Spaces – τSLCS). For
p ∈ AP the syntax of the logic is the following

Φ ::= p | ¬Φ | Φ ∧ Φ | �ρ Φ[Φ] | �ρ Φ[Φ] | Aϕ | Eϕ

ϕ ::= XΦ | ΦU Φ

Given QdTCM M = (K, {(X, �C)s,Vs,As}s∈S), with K = (S, T), satisfaction
M, s, x |= Φ of a formula Φ in state s ∈ S and at point x ∈ Xs is defined by

3 In [12,13], the stronger condition Xs = Xs′ for all s, s′ ∈ S was required.

On Binding in the Spatial Logics for Closure Spaces 485

induction on the structure of formulas as given below

M, s, x |= p ⇔ x ∈ Vs(p)
M, s, x |= ¬Φ ⇔ M, s, x |= Φ does not hold
M, s, x |= Φ1 ∧ Φ2 ⇔ M, s, x |= Φ1 and M, s, x |= Φ2

M, s, x |= �ρ Φ1[Φ2] ⇔ path π in (X, �C)s and index � exist s.t.
π(0) = x and M, s, π(�) |= Φ1

and for all indexes j : 0 < j < � implies M, s, π(j) |= Φ2

M, s, x |= �ρ Φ1[Φ2] ⇔ path π in (X, �C)s and index � exist s.t.
π(�) = x and M, s, π(0) |= Φ1

and for all indexes j : 0 < j < � implies M, s, π(j) |= Φ2

M, s, x |= Aϕ ⇔ for all τ ∈ Ts it holds M, τ, x |= ϕ
M, s, x |= Eϕ ⇔ τ exists s.t. τ ∈ Ts and M, τ, x |= ϕ

M, τ, x |= X Φ ⇔ M, τ(1), x |= Φ
M, τ, x |= Φ1 U Φ2 ⇔ n exists s.t. n ∈ N and M, τ(n), x |= Φ2

and for all n′ ∈ N s.t. 0 ≤ n′ < n it holds
M, τ(n′), x |= Φ1

•
In the sequel we will often use the eventually operator F, that is derived from

U in the standard way: FΦ ≡ trueU Φ. In addition, we define the following
operator ag as derived from E and F as follows: agΦ ≡ ¬ E F¬Φ. Similarly, we
define eg as follows: egΦ ≡ ¬ A F¬Φ.

3 ∃xSLCS: Point Existential Extension of SLCS

We extend the logic presented in Sect. 2.1 with a point existential quantification
operator ∃γ. . To that purpose, we assume a denumerable set Γ of point vari-
ables, ranged over by γ, γ′, γ1 . . . Furthermore, we use the standard notion of
free occurrence of a (point) variable in a formula, with respect to quantifiers.
We also refine the syntax of the logic, by introducing a syntactic category E of
expressions on the attributes of points, and point equality, as specified below.

For set A of attribute names, set AC of attribute constants—which is
assumed to include boolean values, true and false, for which the usual boolean
operators are assumed defined— and set Γ of point variables, with a distin-
guished item this �∈ Γ , the abstract syntax for expressions E follows

E ::= c | a | γ = γ | γ = this | γ.a | this.a | f(E, . . . , E) (1)

where c ∈ AC, a ∈ A, γ ∈ Γ and f is the name of an n-ary function; f
can denote any standard function of attribute values, e.g., equality, for which a
standard semantics IF is assumed given. Similarly, we assume an interpretation
function IC for attribute constants that maps every attribute constant c to a
value IC(c) ∈ AV . The special item this will be used for referring to the point
on which the formula at hand—which the expression where this occurs is a
component of—is interpreted, as shown in Example 1 below.

486 L. Bussi et al.

Assertions are the subclass of expressions that evaluate to boolean values4. In
order to compute assertions we define below the valuation function E of expres-
sions E that extends function A in the expected way. Function E is defined using
an auxiliary variable assignment (partial) function μ : (Γ ∪ {this}) → X. We
let μ0 denote the assignment that is undefined for all elements of Γ ∪ {this}.
For all x ∈ X, c ∈ AC, a ∈ A, γ, γ1, γ2 ∈ Γ and μ : (Γ ∪ {this}) → X

Eμ(x, c) � IC(c)
Eμ(x, a) � A(x, a)
Eμ(x, γ1 = γ2) � μ(γ1) = μ(γ2)
Eμ(x, γ = this) � μ(γ) = μ(this)
Eμ(x, γ.a) � A(μ(γ), a)
Eμ(x, this.a) � A(μ(this), a)
Eμ(x, f(E1, . . . , En)) � IF (f)(Eμ(x,E1), . . . , Eμ(x,En)).

Definition 10 (∃xSLCS). The syntax of ∃xSLCS is the same as in Definition 6
with the addition of the following productions

Φ ::=E | ∃γ.Φ

The scope of γ in ∃γ.Φ is Φ. For every ∃xSLCS formula Φ, where no point
variable occurs free, satisfaction M, x |= Φ of Φ at point x ∈ X in QdCM
M = (X, �C,A,V) is defined as follows

M, x |= Φ ⇔ M, μ0[this �→ x], x ||= Φ

where relation ||= is defined below, by induction on the structure of the formulas

M, μ, x ||= p ⇔ x ∈ V(p)
M, μ, x ||= ¬ Φ ⇔ M, μ, x ||= Φ does not hold
M, μ, x ||= Φ1 ∧ Φ2 ⇔ M, μ, x ||= Φ1 and M, μ, x ||= Φ2

M, μ, x ||= �ρ Φ1[Φ2] ⇔ path π and index � exist s.t. π(0) = x and M, μ, π(�) ||= Φ1

and for all indexes j : 0 < j < � implies M, μ, π(j) ||= Φ2

M, μ, x ||= �ρ Φ1[Φ2] ⇔ path π and index � exist s.t. π(�) = x and M, μ, π(0) ||= Φ1

and for all indexes j : 0 < j < � implies M, μ, π(j) ||= Φ2

M, μ, x ||= E ⇔ Eμ(x, E) is true
M, μ, x ||= ∃γ.Φ ⇔ there is x′ ∈ X s.t. M, μ[γ �→ x′], x ||= Φ.

•

The universal quantifier operator is derived from the existential one, in the
usual way: ∀γ.Φ ≡ ¬∃γ.¬Φ.

Example 1. Suppose we are interested in the safety condition of a building where
(adjacent) rooms, corridors and stairs—collectively called “premises”—are con-
nected by means of doors that can be locked or unlocked. In particular, we
4 For the sake of notational simplicity, we refrain from giving an explicit syntactic

characterisation of assertions here.

On Binding in the Spatial Logics for Closure Spaces 487

consider a critical safety hazard the fact that there are premises with a concen-
tration of a certain substance in the air higher than a given threshold threshold
that are reachable from other premises, via unlocked doors, i.e. doors that can
accidentally be opened by unauthorized people. We can model the building as
a QdCM M = ((X, �C),V,A) where each element x ∈ X has an attribute,
sort, that can take as values those represented by the following constants:
room, corridor, stair, door ∈ AC. The topological requirement that premises
are connected one another via doors can be enforced by a requirement on �C and
A, namely, that for all x, y ∈ X

– if A(x, sort) �= IC(door) and y ∈ �C({x})\{x}, then A(y, sort) = IC(door);
– if A(y, sort) = IC(door) and x ∈ �C({y}) \ {y}, then A(x, sort) �= IC(door).

Moreover, every x ∈ X has an attribute concentration that can take nat-
ural numbers as values and is relevant only for elements representing rooms,
corridors and stairs. Finally, attribute status takes as values those represented
by locked, unlocked ∈ AC and is relevant only for doors. The hazardous situa-
tion can then be formalised by formula φ1, defined below, that states that there
is a location (i.e., room, corridor or stairs) from which premises can be reached,
via locations and unlocked doors, in which the substance concentration is higher
than the threshold

φ1 ≡ ∃γ.(¬(γ.sort = door) ∧ �ρ φ2 [φ3])

where
φ2 ≡ ¬(sort = door) ∧ concentration > threshold

φ3 ≡ (sort = door) ⇒ (status = unlocked).

Note the global nature of the formula: either all points in X satisfy it or none
does. In contrast, if we replace φ2 with φ′

2 defined below, we get a formula that
is satisfied by x ∈ X only if the unsafe location has the same sort as x

φ′
2 ≡ sort = this.sort ∧ concentration > threshold

•

Example 2. We consider the example proposed in [19] that falls in the category
of circle elimination games and is a sort of distributed leader survivor game. The
choice of the example is motivated by the large use of leader election protocols
in the area of distributed systems design and applications5.

A finite set of entities is given; the entities are connected through communi-
cation channels in such a way that a ring topology is formed. The game evolves

5 In line with [19], we are not interested in the algorithm(s) used for deciding the
winner of the game. We are only interested in providing a representation for the
configurations of the game and investigating properties of any such configuration,
as well as of the whole game, that can be expressed using the extensions of SLCS we
discuss in the present paper.

488 L. Bussi et al.

performing a series of elimination rounds. After each round the loser is elimi-
nated from the game: his neighbours should be connected in such a way that
the ring is closed and no longer includes the loser. The game ends when there is
only one entity left: the leader, that is, the winner of the game.

A session of the game can be represented as a sequence of graphs, each
graph modelling the situation at a given step of the game. For instance, the
graph G0 of Fig. 1a represents a configuration in which there are three agents—
the nodes n0, n1, n2—and three channels—the edges e0, e1, e2, with source and
target functions, s and t, defined as follows: sG0 = {e0 �→ n0, e1 �→ n2, e2 �→ n1}
and tG0 = {e0 �→ n1, e1 �→ n0, e2 �→ n2}. A final (correct) configuration is
represented by a graph with a single node, say n1—the (unique) winner—and a
single edge, say e, the source and target of which coincide with this node—i.e.
s(e) = t(e) = n1, namely a self-loop in n1 (Fig. 1c).

(a) (b) (c)

Fig. 1. (a) A configuration with three agents and three communication channels; (b) an
intermediate configuration in which n2 has been eliminated; (c) a configuration where
the leader (n1, in this case) has emerged.

We can represent a configuration in the game using a QdCM (X, �C,A,V), the
underlying binary relation of which is the empty relation (so that �C(A) = A for
all A ⊆ X) and where each x ∈ X can represent either an agent of the game or
a communication channel. To that purpose, we use again a sort attribute, that
takes as values those represented by node, edge ∈ AC. Finally, attributes source
and target—relevant only for elements of sort edge—yield the (unique identifier
of the) source and target node of an edge. Under the above assumptions, a leader
can be specified as follows

leader(γ) ≡ (γ.sort = edge) ∧ (γ.source = γ.target).

The game terminates correctly only if there is a unique leader. Unicity can
be specified as follows

correctNLeader(γ1, γ2) ≡ (leader(γ1) ∧ leader(γ2)) ⇒ (γ1 = γ2).

Thus a correct final configuration is one in which there is a unique leader, as
specified by the formula (∃γ.leader(γ)) ∧ (∀γ1.∀γ2.correctNLeader(γ1, γ2)).

On Binding in the Spatial Logics for Closure Spaces 489

The two requirements on the leader can obviously be expressed in a combined
way by the following formula: ∃γ1.(leader(γ1)∧(∀γ2.leader(γ2) =⇒ γ1 = γ2)).

We close the example noting that the same technique based on unique iden-
tifiers can be used for expressing properties about the size of a system (see page
191 of [19]). For instance a bound of two is expressed as follows

at − most − two ≡ ∀γ1.∀γ2.∀γ3.{γ1 = γ2 ∨ γ2 = γ3 ∨ γ3 = γ1}.

4 ∃xτSLCS: Point Existential Temporal Extension of SLCS

We extend the spatio-temporal logic presented in Sect. 2.2 with the point exis-
tential quantification operator ∃γ. introduced in Sect. 3. To that purpose, we
need to extend the valuation function E with an additional parameter for the
state where the evaluation has to be performed

Eμ(x, c, s) � IC(c)
Eμ(x, a, s) � As(x, a)
Eμ(x, γ1 = γ2, s) � μ(γ1) = μ(γ2)
Eμ(x, γ = this, s) � μ(γ) = μ(this)
Eμ(x, γ.a, s) � As(μ(γ), a)
Eμ(x, this.a, s) � As(μ(this), a)
Eμ(x, f(E1, . . . , En), s) � IF (f)(Eμ(x,E1, s), . . . , Eμ(x,En, s)).

Definition 11 (∃xτSLCS). The syntax of ∃xτSLCS is the same as in Defini-
tion 9 with the addition of the following productions

Φ ::=E | ∃γ.Φ

The scope of γ in ∃γ.Φ is Φ. For every ∃xτSLCS formula Φ, where no point
variable occurs free, satisfaction M, s, x |= Φ of Φ in state s ∈ S and at point
x ∈ Xs in QdTCM M = (K, {(X, �C)s,Vs,As}s∈S), with K = (S, T), is defined
as follows

M, s, x |= Φ ⇔ M, μ0[this �→ x], s, x ||= Φ

490 L. Bussi et al.

where relation ||= is defined below, by induction on the structure of the formulas

M, μ, s, x ||= p ⇔ x ∈ Vs(p)
M, μ, s, x ||= ¬Φ ⇔ M, μ, s, x ||= Φ does not hold
M, μ, s, x ||= Φ1 ∧ Φ2 ⇔ M, μ, s, x ||= Φ1 and M, μ, s, x ||= Φ2

M, μ, s, x ||= �ρ Φ1[Φ2] ⇔ path π in (X, �C)s and index � exist s.t.
π(0) = x and M, μ, s, π(�) ||= Φ1

and for all indexes j :
0 < j < � implies M, μ, s, π(j) ||= Φ2

M, μ, s, x ||= �ρ Φ1[Φ2] ⇔ path π in (X, �C)s and index � exist s.t.
π(�) = x and M, μ, s, π(0) ||= Φ1

and for all indexes j :
0 < j < � implies M, μ, s, π(j) ||= Φ2

M, μ, s, x ||= E ⇔ Eμ(x,E, s) is true
M, μ, s, x ||= ∃γ.Φ ⇔ there is x′ ∈ Xs s.t. M, μ[γ �→ x′], s, x ||= Φ
M, μ, s, x ||= Aϕ ⇔ for all τ ∈ Ts it holds M, μ, τ, x ||= ϕ
M, μ, s, x ||= Eϕ ⇔ τ exists s.t. τ ∈ Ts and M, μ, τ, x ||= ϕ

M, μ, τ, x ||= X Φ ⇔ M, μ, τ(1), x ||= Φ
M, μ, τ, x ||= Φ1 U Φ2 ⇔ n exists s.t. n ∈ N and M, μ, τ(n), x ||= Φ2

and for all n′ ∈ N s.t. 0 ≤ n′ < n it holds
M, μ, τ(n′), x ||= Φ1.

•

Example 3. Let us consider again the building of Example 1. We want to for-
malise the fact that whenever the building is in a hazardous situation, as specified
by formula φ1, it will recover from it. This is the same to say that there is no
evolution in the behaviour of the building where a situation is reached in which
φ1—expressing the hazardous situation—holds and in no future configuration
¬φ1 holds. This is formalised by φ4 as follows

φ4 ≡ ¬EF(φ1 ∧ ¬AF¬φ1)

or equivalently, using the eg derived operator

φ4 : ¬E F egΦ1

A stronger property is expressed by φ5 below where we also require that
eventually nowhere the concentration is above the threshold

φ5 ≡ ¬EF(φ1 ∧ ¬AF(¬φ1 ∧ AFφ6))

where φ6 ≡ ∀γ.safe(γ) and predicate safe is defined as follows

safe(γ) ≡ (¬(γ.sort = door)) ⇒ γ.concentration ≤ threshold.

•

On Binding in the Spatial Logics for Closure Spaces 491

Example 4. With reference to Example 2, now we consider a QdTCM M =
((S, T), {(X, �C)s,Vs,As}s∈S). In [19] the following properties are introduced

ψ1: for all departing paths, eventually there will be a leader (Example 4.2 on
page 185, property ψ1);
ψ2: there is an entity that, for all departing paths, will eventually become the
leader (Example 4.2 on page 185, property ψ2);
ψ3: for any evolution of the game, eventually there will be a state containing an
entity that will become the leader (Example 4.2 on page 185, property ψ3);
ψ4: any evolution, starting from any state, will lead to a state with (at least) a
leader (property p1 on pages 181 and 193).

In ∃xτSLCS property ψ1 can be expressed as ψ1 ≡ AF∃γ.leader(γ). Property
ψ2 is expressed by formula ψ2 ≡ ∃γ.AF leader(γ), while property ψ3 is expressed
by ψ3 ≡ AFψ2. Property ψ4 is expressed as

ψ4 ≡ ag A F(∃γ.leader(γ)).

In Example 2 we have shown a formula expressing existence and uniqueness
of the leader. The following formula enforces the property at the global level

AF(∃γ1.(leader(γ1) ∧ (∀γ2.leader(γ2) =⇒ γ1 = γ2))).

•

5 ∃τνxSLCS: Dealing with Fresh Point Names

In situations where the space can change (e.g., grow) during the computation,
it can be useful to quantify only over those paths where such a change takes
place. For instance, with reference to the leader election example (Example 2),
one might want to express that existence and unicity of the leader are preserved
whenever new entities enter the game (see Example 5 below). Similarly, it can
be useful to quantify only over those paths where no such changes take place.
In addition, in the first case, one might be interested requiring that all newly
introduced points satisfy a certain property or that such a property is indeed
satisfied by some of such new points. Therefore, we extend the spatio-temporal
logics presented in Sect. 2.2 with modalities Aν and Eν , quantifying over paths
where new points are introduced; in contrast, modalities Aν̄ and Eν̄ quantify over
paths where no new points are introduced.

In addition, we introduce the point quantified next unary operators X∀γ and
X∃γ ; the former universally quantifies over all new points whereas the latter
quantifies existentially over new points.

Definition 12 (∃τνxSLCS). The syntax of ∃τνxSLCS is the same as in Defini-
tion 11 with the addition of the following productions

Φ ::= Aν ϕ | Aν̄ ϕ | Eν ϕ | Eν̄ ϕ

492 L. Bussi et al.

ϕ ::=X∀γ Φ | X∃γ Φ

The scope of γ in X∀γΦ and in X∃γΦ is Φ. For every ∃τνxSLCS formula Φ, where
no point variable occurs free, satisfaction M, s, x |= Φ of Φ in state s ∈ S and
at point x ∈ Xs in QdTCM M = (K, {(X, �C)s,Vs,As}s∈S), with K = (S, T), is
defined as follows

M, s, x |= Φ ⇔ M, μ0[this �→ x], s, x ||= Φ

where relation ||= is defined by induction on the structure of the formulas as in
Definition 11, with the addition of the following equalities

M, μ, s, x ||= Aν ϕ ⇔ for all τ ∈ Ts s.t. Xτ(0) ⊂ Xτ(1) it holds M, μ, τ, x ||= ϕ

M, μ, s, x ||= Aν̄ ϕ ⇔ for all τ ∈ Ts s.t. Xτ(0) = Xτ(1) it holds M, μ, τ, x ||= ϕ

M, μ, s, x ||= Eν ϕ ⇔ there is τ ∈ Ts s.t. Xτ(0) ⊂ Xτ(1) and M, μ, τ, x ||= ϕ

M, μ, s, x ||= Eν̄ ϕ ⇔ there is τ ∈ Ts s.t. Xτ(0) = Xτ(1) and M, μ, τ, x ||= ϕ

M, μ, τ, x ||= X∀γ Φ ⇔ for all x′ ∈ Xτ(1) \ Xτ(0) it holds M, μ[γ �→ x′], τ(1), x′ ||= Φ

M, μ, τ, x ||= X∃γ Φ ⇔ there is x′ ∈ Xτ(1) \ Xτ(0) s.t. M, μ[γ �→ x′], τ(1), x′ ||= Φ.

•

With reference to the above definition, recall that for temporal path τ , Xτ(0)

is the current space and Xτ(1) is the space at the next step of the computation.

Example 5. With reference to Example 2, the fact that the existence and unicity
of the leader is preserved in the next time instant if a new element is added to
the game can be expressed now by the following formula

ξ ≡ AνX ((∃γ.leader(γ)) ∧ (∀γ1.∀γ2.correctNLeader(γ1, γ2))).

The requirement can be turned into an invariant in the expected way: ag ξ. The
following formula is true only if the number of entities keeps growing forever
during the evolution of the game: ¬E F Eν̄ F true. •

Example 6. Again with reference to Example 1, suppose that, due to new safety
& security rules, additional premises have to be added eventually. Obviously,
authorities will require that these new rooms, corridors or stairs have a con-
centration of the dangerous material that is less than the given threshold, as
formalised by the following formula: AF((EνX∃γsafe(γ))∧ (AνX∀γsafe(γ))), with
safe(γ) defined as in Example 3. •

6 ∃pSLCS: Predicate Existential Extension of SLCS

In this section, we extend the logic presented in Sect. 2.1 with an atomic propo-
sition existential quantification operator ∃v. . The operator we introduce quanti-
fies over atomic propositions in a rather syntactic way, since two different atomic
proposition symbols are not considered equal (not even if they denote the same
subset of points of the space). In this variant of SLCS, atomic propositions play
the role of labels or identities that can be associated to sets of points.

On Binding in the Spatial Logics for Closure Spaces 493

Although quantification operators have a wide applicability, we are par-
ticularly interested in applications in the field of medical imaging, and espe-
cially embedding known lesion tracking methods in the logical framework of
VoxLogicA. Lesion tracking is the labelling of different lesions of a patient along
the temporal axis (e.g., in longitudinal studies). In that context, it is required
that the same label is assigned to the same lesion in different temporal snapshots.
Several lesion tracking algorithms exist, aimed at different kinds of lesions. Since
the number of lesions found in a patient is unknown a priori, in order to model
the situation in our logical language, we intend to use atomic propositions to
denote such lesions by internal labels, so that one can express formulas such as
“there is a lesion x that outgrows all the other ones after one month”, and then
use x in other formulas, to better qualify the lesion x. We note in passing that
the identification of the motion of discrete regions alongside the temporal axis
is also the main topic of [20], where, notably, closure spaces are used as models.

Further examples include the analysis of video streams [11], in which different
entities may be labelled by non-logical primitives, ranging from simple connected
components labelling operations to machine-learning based methods. Similarly
to the lesion tracking example, it is not known at formula design time how many
entities exist in the analysed stream, and the identity of each entity is meant to
be denoted by (internal) atomic propositions.

To that purpose, we assume a denumerable set var of proposition variables,
ranged over by v, v′, v1 . . . For formula Φ, p ∈ AP and variable v we let Φ[p/v]
denote, as usual, the formula obtained by substituting all free occurrences of v in
Φ with p, where the notion of free occurrence is the standard one, with respect
to quantifiers. The substitution is performed syntactically: a variable occurrence
is thus replaced by a proposition name. This kind of syntactic quantification is
inspired by the work of Demri et al. on LTL with the freeze quantifier [18].

We refine the syntax of the logic by introducing a syntactic category of propo-
sition expressions P and an equality operator on proposition letters.

Definition 13 (∃pSLCS). For p ∈ AP and v ∈ Var the syntax of ∃pSLCS is the
same as in Definition 6 with the addition of the following productions

Φ ::= v | ∃v.Φ | P = P

P ::= p | v.

The scope of v in ∃v.Φ is Φ. For every ∃pSLCS formula Φ, where no proposition
variable occurs free, satisfaction M, x |= Φ of Φ at point x ∈ X in QdCM
M = (X, �C,A,V) is defined by induction on the structure of formulas as in
Definition 6, with the addition of the following equalities

M, x |= ∃v.Φ ⇔ there is atomic proposition p ∈ AP s.t. M, x |= Φ[p/v]
M, x |= P1 = P2 ⇔ P1 and P2 are the same atomic proposition.

•

494 L. Bussi et al.

Example 7. Consider model M = (X, �C,A,V), where X = {x1, x2, x3, x4, x5},
V(p) = {x1, x2, x3} and V(q) = {x3, x4, x5}, for p �= q. We can use the following
formula for overlap detection

η1 ≡ ∃v1.∃v2.v1 ∧ v2 ∧ ¬(v1 = v2).

Clearly, the formula η1 holds only in point x3, as V(q) ∩ V(p) = {x3}, assigning
p and q to v1 and v2, respectively. Thus we have that M, x3 |= η1 whereas
M, xj �|= η1 for j ∈ {1, 2, 4, 5}.

Example 8. In this example we show how ∃pSLCS formulas can be used to dis-
tinguish regions in a digital image based on their identity (which is not possible
in “classic” SLCS). Let us consider the image of Fig. 2a and let us assume that all
the points (pixels) belonging to a connected region of the same colour have been
labelled with the same label—this can easily be achieved by running a standard
algorithm for computing the connected components on the image. In terms of log-
ics, we can assume that such labels are elements of AP; without loss of generality,
let us call them 1, 2, 3, 4, 5, 6, 7, identifying each of the yellow, red and blue areas
in the image. In addition, we assume that all yellow pixels satisfy atomic propo-
sition yellow, and similarly for red and blue pixels and atomic propositions red
and blue, respectively. So, we assume {1, 2, 3, 4, 5, 6, 7, yellow, red, blue} ⊆ AP;
we also assume that atomic propositions 1, 2, 3, 4, 5, 6 and 7 are unknown to
users—for instance they are the result of the algorithm for computing connected
components mentioned above—so that they cannot use them explicitly in the
formulas. Under these assumptions, formula η2 below can be used to distinguish
the top-left yellow region from the bottom-left one

η2 ≡ yellow ∧ �ρ η3[yellow]

where

η3 ≡ yellow ∧ ∀v1.∀v2.((�ρ (v1 ∧ ¬blue)[blue] ∧ �ρ (v2 ∧ ¬blue)[blue]) =⇒ v1 = v2)

In fact, any point of the top-left yellow region satisfies η2, having v1 and v2

assigned to the label 3, which identifies the top red area, whereas no point of the
bottom-left yellow one satisfies it. Note also that there is no need to explicitly
mention red in the formula, as it is the only possible area satisfying ¬blue which
is reachable via a blue path. Finally, we can find the unique label identifying the
yellow top circle by mean of the formula

∃v.v ∧ η2

Example 9. With reference to Fig. 2b, let us assume a similar labelling schema as
for Example 8, with {1, 2, 3, 4, 5, 6, red, blue} ⊆ AP. It is easy to see that formula
η4 below distinguishes the points of any of the two red regions in the top from
those of the red one in the bottom of the image

η4 ≡ red ∧ �ρ η5[red]

On Binding in the Spatial Logics for Closure Spaces 495

Fig. 2. Two example images: interesting areas can be identified by means of atomic
propositions and the existential quantifier over propositions. Note that areas are not
treated as nodes and edges, rather as regions of adjacent pixels having colors red, yellow
and blue. (Color figure online)

where

η5 ≡ ∀v1.∀v2.v1 ∧ �ρ v2[blue] ∧ ¬(v1 = blue ∨ v2 = blue ∨ v1 = v2)

Any point of any of the two red regions in the top satisfies η4, whereas no
point of the red region in the bottom satisfies it.

7 Conclusions and Future Work

In this work we presented a preliminary investigation on binding in the setting
of spatial and spatio-temporal logic. Our aim was to provide an intuition of how
we can deal with identity of (groups of) points in a space by means of quantifiers.
We provided illustrative examples of how these can be used to express interesting
properties in different settings, i.e., when dealing with images and graphs, and
introduced a point quantified spatio-temporal logic for closure spaces. The exten-
sion of τSLCS with predicate binding is as expected, and is not introduced here
for reasons of space. Furthermore, while this preliminary investigation focuses
on conservative spatio-temporal models, in future work we plan to consider also
non-conservative ones, thus widening the set of possible application domains. We
note in passing that it is very likely that some of the presented logical constructs
can be expressed in more general formalisms such as first or second order logic, or
the modal μ-calculus. Although this may be the subject of future investigation,
we remark that our main aim is to investigate model checking algorithms for
the newly introduced extensions. Therefore, the study of fragments that admit
an efficient model checking algorithm is more immediate to our research line. In
particular, a major objective is to extend the tool VoxLogicA [5] with a suitable
implementation of the binding operator, in order to apply spatial model checking
to a larger set of case studies. In particular, we plan to exploit the computational
power of GPUs in order to achieve high efficiency via parallelisation, in a similar
way as done for standard operators in its variant VoxLogicA-GPU [10].

496 L. Bussi et al.

References

1. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic
for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-
Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71998-4 1

2. Bednarczyk, B., Demri, S.: Why propositional quantification makes modal logics
on trees robustly hard? In: LICS 2019, pp. 1–13. IEEE (2019)

3. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N.,
Semini, L. (eds.) FormaliSE@ICSE 2021, pp. 1–12. IEEE (2021)

4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image
analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865,
pp. 85–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-5 7

5. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0 16

6. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-
Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4 5

7. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink,
M.: Geometric model checking of continuous space. CoRR arXiv:abs/2105.06194
(2021)

8. Bull, R.A.: On modal logic with propositional quantifiers. J. Symb. Log. 34(2),
257–263 (1969)

9. Buonamici, F.B., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial logics
and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf.
22(2), 195–217 (2020)

10. Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on GPU. In:
Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 188–196.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0 12

11. Bussi, L., Ciancia, V., Gadducci, F., Latella, D., Massink, M.: Towards model
checking video streams using VoxLogicA on GPU’s. In: DataMod 2021. LNCS,
Springer, Cham (2022, to appear)

12. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. Int.
J. Softw. Tools Technol. Transf. 20(3), 289–311 (2018)

13. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6 24

14. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 18

15. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. J. Log. Methods Comput. Sci. 12(4) (2016)

https://doi.org/10.1007/978-3-540-71998-4_1
https://doi.org/10.1007/978-3-030-30985-5_7
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-1-4020-5587-4_5
http://arxiv.org/2105.06194
https://doi.org/10.1007/978-3-030-78089-0_12
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18

On Binding in the Spatial Logics for Closure Spaces 497

16. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

17. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: On bisimilarities for closure
spaces - preliminary version. CoRR arXiv:abs/2105.06690 (2021)

18. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3) (2009)

19. Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Counterpart semantics for a second-
order μ-calculus. Fund. Inform. 118(1–2), 177–205 (2012)

20. Galton, A.: A generalized topological view of motion in discrete space. Theoret.
Comput. Sci. 305(1–3), 111–134 (2003)

21. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci,
E.: Learning and detecting emergent behavior in networks of cardiac myocytes.
Commun. ACM 52(3), 97–105 (2009)

22. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Girard, A.,
Sankaranarayanan, S. (eds.) HSCC 2015, pp. 189–198. ACM (2015)

23. Holliday, W.H.: A note on algebraic semantics for S5 with propositional quantifiers.
Notre Dame J. Formal Log. 60(2), 321–332 (2017)

24. Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14
(1959)

25. Kröger, F., Merz, S.: First-order linear temporal logic. In: Kröger, F., Merz,
S. (eds.) Temporal Logic and State Systems, pp. 153–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68635-4 5

26. Kurtonina, N., de Rijke, M.: Bisimulations for temporal logic. J. Logic Lang.
Inform. 6(4), 403–425 (1997)

27. Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model. CoRR
arXiv:abs/2105.08708 (2021)

28. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. J. Log. Methods
Comput. Sci. 14(4) (2018)

29. Patthak, A., Bhattacharya, I., Dasgupta, A., Dasgupta, P., Chakrabarti, P.: Quan-
tified computation tree logic. Inf. Process. Lett. 82(3), 123–129 (2002)

30. Rensink, A.: Model checking quantified computation tree logic. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 110–125. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11817949 8

31. Smyth, M.B., Webster, J.: Discrete spatial models. In: Aiello, M., Pratt-Hartmann,
I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 713–798. Springer,
Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4 12

32. Stirling, C.: Modal and temporal logics. In: Abramsky, S., Gabbay, D., Maibaum,
T. (eds.) Handbook of Logic in Computer Science, pp. 477–563. Oxford University
Press, Oxford (1993)

33. Čech, E.: Topological spaces. In: Pták, V. (ed.) Topological Spaces, chap. III, pp.
233–394. Publishing House of the Czechoslovak Academy of Sciences/Interscience
Publishers, Wiley, Prague/London-New York-Sydney (1966). Revised edition by
Z. Froĺıc, M. Katětov. Scientific editor, V. Pták. Editor of the English translation,
C.O. Junge. MR0211373

https://doi.org/10.1007/978-3-319-47166-2_46
http://arxiv.org/2105.06690
https://doi.org/10.1007/978-3-540-68635-4_5
http://arxiv.org/2105.08708
https://doi.org/10.1007/11817949_8
https://doi.org/10.1007/978-1-4020-5587-4_12

An Efficient VCGen-Based Modular
Verification of Relational Properties

Lionel Blatter1,2 , Nikolai Kosmatov3,4(B) , Virgile Prevosto3 ,
and Pascale Le Gall5

1 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
lionel.blatter@mpi-sp.org

2 Max Planck Institute for Security and Privacy, 44799 Bochum, Germany
3 Université Paris-Saclay, CEA, List, 91120 Palaiseau, France

{nikolai.kosmatov,virgile.prevosto}@cea.fr
4 Thales Research and Technology, 91120 Palaiseau, France

5 CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
pascale.legall@centralesupelec.fr

Abstract. Deductive verification typically relies on function contracts
that specify the behavior of each function for a single function call. Rela-
tional properties link several function calls together within a single spec-
ification. They can express more advanced properties of a given function
or relate calls to different functions, possibly run in parallel. However,
relational properties cannot be expressed and verified directly in the tra-
ditional setting of modular deductive verification. Recent work proposed
a new technique for relational property verification that relies on a ver-
ification condition generator to produce logical formulas that must be
verified to ensure a given relational property. This paper presents an
overview of this approach and proposes important enhancements. We
integrate an optimized verification condition generator and extend the
underlying theory to show how relational properties can be proved in a
modular way, where one relational property can be used to prove another
one, like in modular verification of function contracts. Our results have
been fully formalized and proved sound in the Coq proof assistant.

1 Introduction

Modular deductive verification [19] is used to prove that every function f of a
given program respects its contract. Such a contract is, basically, an implication:
if the given precondition is true before a call to f and the call terminates1, the
given postcondition is true when f returns control to the caller. However, some
kinds of properties are not easily reducible to a single function call. Indeed, it
is often necessary to express a property that involves several functions, possibly
executed in parallel, or relates the results of several calls to the same function
for different arguments. Such properties are known as relational properties [6].
1 Termination can be either assumed (partial correctness) or proved separately (full

correctness) in a classical way [16]; for the purpose of this paper we can assume it.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 498–516, 2022.
https://doi.org/10.1007/978-3-031-19849-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_28&domain=pdf
http://orcid.org/0000-0001-9058-2005
http://orcid.org/0000-0003-1557-2813
http://orcid.org/0000-0002-7203-0968
http://orcid.org/0000-0002-8955-6835
https://doi.org/10.1007/978-3-031-19849-6_28

An Efficient VCGen-Based Modular Verification 499

//Command csum:
if x1 < x2 then {

x3 := x3 + x1;
x1 := x1 + 1;
call(ysum)

else skip

Relational property R1 between commands c1ω and c2ω:

{
x2〈1〉= x2〈2〉

}
// c1ω:
x1 := 1;
x3 := 0;
call(ysum)

〈1〉 ∼

// c2ω:
x1 := 0;
x3 := 0;
call(ysum)

〈2〉
{

x3〈1〉= x3〈2〉
}

Fig. 1. Recursive command csum, associated as a body with procedure name ysum, and
relational property R1 between two commands, denoted c1ω and c2ω, involving a call to
this procedure.

Examples of such relational properties include monotonicity (i.e. x ≤ y ⇒
f(x) ≤ f(y)), involving 2 calls, or transitivity (cmp(x, y) ≥ 0 ∧ cmp(y, z) ≥ 0 ⇒
cmp(x, z) ≥ 0), involving 3 calls. In secure information flow [3], non-interference
is also a relational property. Namely, given a partition of program variables
between high-security variables and low-security variables, a program is said to
be non-interferent if any two executions starting from states in which the low-
security variables have the same initial values will end up in a final state where
the low-security variables have the same values. In other words, high-security
variables cannot interfere with low-security ones.

Motivation. Lack of support for relational properties in verification tools was
already faced by industrial users (e.g. in [8] for C programs). The usual way
to deal with this limitation is to use self-composition [3,9,30], product pro-
grams [2] or other self-composition variants [31]. Those techniques are based
on code transformations that are relatively tedious and error-prone. Moreover,
they are hardly applicable in practice to real-life programs with pointers like
in C. Namely, self-composition requires that the compared executions operate
on completely separated (i.e. disjoint) memory areas, which might be extremely
difficult to ensure for complex programs with pointers. Modular verification of
relational properties is another important feature: the user may want to rely on
some relational properties in order to verify some other ones.

Example 1 (relational property). Figure 1 shows an example of a recursive com-
mand (that is, program) csum. We clearly distinguish the name and the body of
a procedure. The procedure named ysum is assumed to have command csum as
its body, so that csum recursively calls itself. Given three global integer variables
x1, x2 and x3, command csum adds to x3 (used as an accumulator) the sum
x1 + (x1 + 1) + · · · + (x2 − 1) if x1 < x2, and has no effect otherwise.

Figure 1 also shows an example of a relational property R1 (inspired by [2])
stating the equivalence of two commands c1

ω and c2
ω (assumed to be run on sepa-

rate memory states), which assign x1 and x3 before calling ysum. The relational
property is written here in Benton’s notation [6]: tags 〈1〉 and 〈2〉 are used to
distinguish the programs linked by the property. When variables of the linked
programs have the same names, such a tag after a variable name also helps
to distinguish the instance of the variable used in the relational precondition
and postcondition (written in curly braces, resp., on the left and on the right).

500 L. Blatter et al.

Property R1 states that if x2 has the same value before the execution of c1
ω and

before the execution of c2
ω, then x3 will have the same value after their execu-

tions. Indeed, c1
ω will compute in x3 the sum 1 + 2 + · · · + (x2 − 1), while c2

ω will
compute in x3 the sum 0 + 1 + 2 + · · · + (x2 − 1).

In this paper, we show how relational property R1 can be verified using
another relational property R3 linking two runs of csum rather than using a full
functional contract of csum. More precisely, R3 (that will be formally defined
below in Fig. 5) generalizes the situation of R1 and states that the resulting
value of x3 after two runs of csum will be the same if the initial state of the
second run is exactly one iteration of csum behind that of the first run. �	

Approach. Our recent work [11] proposed an alternative to self-composition that
is not based on code transformation or relational rules. It directly relies on a
standard verification condition generator (VCGen) to produce logical formulas
to be verified (typically, with an automated prover) to ensure a given relational
property. This approach requires no extra code processing (such as sequential
composition of programs or variable renaming). Moreover, no additional sepa-
ration hypotheses are required. The locations of each program are separated by
construction: each program has its own memory state. This approach has been
formalized on a minimal language L, representative of the main issues relevant
for relational property verification. L is a standard While language extended
with annotations, procedures and pointers. Notably, the presence of dereferences
and address-of operations makes it representative of various aliasing problems
with (possibly, multiple) pointer dereferences of a real-life language like C. An
example of a relational property for programs with pointers was given in [11].
We formalize the proposed approach and prove its soundness in the Coq proof
assistant [33]. Our Coq development2 contains about 3700 lines.

Contributions. We give an overview of the VCGen-based approach for relational
property verification (presented in [11]) and enhance the underlying theory with
several new features. The new technical contributions of this paper include:

– a Coq formalization and proof of soundness of an optimized VCGen for
language L, and its extension to the verification of relational properties;

– an extension of the framework allowing not only to prove relational properties,
but also to use them as hypotheses in the following proofs;

– a Coq formalization of the extended theory.

We also provide an illustrative example and, as another minor extension, add
the capacity to refer to old values of variables in postconditions.

Outline. Section 2 introduces the imperative language L used in this work. Func-
tional correctness is defined in Sect. 3. The extension of functional correctness
to relational properties is presented in Sect. 4. Then, we prove the soundness of
an optimized VCGen in Sect. 5, and show how it can be soundly extended to
verify relational properties in Sect. 6. Finally, we present related work in Sect. 7
and concluding remarks in Sect. 8.
2 Available at https://github.com/lyonel2017/Relational-Spec/.

https://github.com/lyonel2017/Relational-Spec/

An Efficient VCGen-Based Modular Verification 501

2 Syntax and Semantics of the Considered Language L

2.1 Locations, States, and Procedure Contracts

We denote by N = {0, 1, 2, . . . } the set of natural numbers, by N
∗ = {1, 2, . . . }

the set of nonzero natural numbers, and by B = {True,False} the set of Boolean
values. Let X be the set of program locations and Y the set of program (procedure)
names, and let x, x′, x1, . . . and y, y′, y1, . . . denote metavariables ranging over
those respective sets. We assume that there exists a bijective function N → X,
so that X = {xi | i ∈ N}. Intuitively, we can see i as the address of location xi.

Let Σ be the set of functions σ : N → N, called memory states, and let
σ, σ′, σ1, . . . denote metavariables ranging over Σ. A state σ maps a location to
a value using its address: location xi has value σ(i).

We define the update operation of a memory state set(σ, i, n), also denoted
by σ[i/n], as the memory state σ′ mapping each address to the same value as σ,
except for i, bound to n. Formally, set(σ, i, n) is defined by the following rules:

∀σ ∈ Σ, xi ∈ X, n ∈ N, xj ∈ X. i = j ⇒ σ[i/n](j) = n, (1)
∀σ ∈ Σ, xi ∈ X, n ∈ N, xj ∈ X. i = j ⇒ σ[i/n](j) = σ(j). (2)

Let Ψ be the set of functions ψ : Y → C, called procedure environments,
mapping program names to commands (defined below), and let ψ,ψ1, . . . denote
metavariables ranging over Ψ . We write bodyψ(y) to refer to ψ(y), the commands
(or body) of procedure y in a given procedure environment ψ. An example of a
procedure environment ψsum is given in Fig. 5, where bodyψsum

(ysum) = csum.
Preconditions (or assertions) are predicates of arity one, taking as param-

eter a memory state and returning an equational first-order logic formula. Let
metavariables P, P1, . . . range over the set P of preconditions. For instance, using
λ-notation, precondition P assessing that location x3 is bound to 2 can be defined
by P � λσ.σ(3) = 2. This form will be more convenient for relational properties
(than e.g. x3 = 2) as it makes explicit the memory states on which a property
is evaluated.

Postconditions are predicates of arity two, taking as parameters two memory
states and returning an equational first-order logic formula. Its two arguments
refer to the initial and the final state. For instance, postcondition Q assessing
that location x1 was incremented (that is, x1 = old(x1) + 1) can be defined in
λ-notation by Q � λσσ′. σ′(1) = σ(1) + 1. Let metavariables Q,Q2, . . . range
over the set Q of postconditions.

Finally, we define the set Φ of contract environments φ : Y → P × Q, and
metavariables φ, φ1, . . . to range over Φ. More precisely, φ maps a procedure
name y to the associated (procedure) contract φ(y) = (preφ(y),postφ(y)), com-
posed of a pre- and a postcondition for procedure y. As usual, a procedure con-
tract will allow us to specify the behavior of a single call to the corresponding
procedure, that is, if we start executing y in a memory state satisfying preφ(y),
and the evaluation terminates, the pair composed of the initial and final states
will satisfy postφ(y).

502 L. Blatter et al.

a : := n natural const.

| x location

| ∗ x dereference

| &x address

| a1 opa a2 arithm. oper.

b : := true | false Boolean const.

| a1 opb a2 comparison

b1 opl b2 b1 logic oper.

c : := skip do nothing

| x := a direct assignment

| ∗ x := a indirect assignment

| c1; c2 sequence

| assert(P) assertion

| if b then {c1} else {c2} condition

| while b inv P do {c1} loop

| call(y) procedure call

Fig. 2. Syntax of arithmetic and Boolean expressions and commands in L.

ξa n σ � n ξa xi σ � σ(i) ξa xi σ � σ(σ(i)) ξa &xi σ � i

Fig. 3. Evaluation of expressions in L (selected rules).

2.2 Syntax for Expressions and Commands

Let Ea, Eb and C denote respectively the sets of arithmetic expressions, Boolean
expressions and commands. We denote by a, a1, . . . ; b, b1, . . . and c, c1, . . .
metavariables ranging, respectively, over those sets. Syntax of arithmetic and
Boolean expressions is given in Fig. 2. Constants are natural numbers or Boolean
values. Expressions use standard arithmetic, comparison and logic binary opera-
tors, denoted respectively opa ::= {+,×,−}, opb ::= {�,=, . . . }, opl ::= {∨,∧}.
Since we use natural values, the subtraction is bounded by 0, as in Coq: if
n′ > n, the result of n − n′ is considered to be 0. Expressions also include
locations, possibly with a dereference or an address operator.

Figure 2 also presents the syntax of commands in L. Sequences, skip and
conditions are standard. An assignment can be done to a location directly or after
a dereference. Recall that a location xi contains as a value a natural number,
say v, that can be seen in turn as the address of a location, namely xv, so the
assignment ∗xi := a writes the value of expression a to the location xv, while
the address operation &xi computes the address i of xi. An assertion command
assert(P) indicates that an assertion P should be valid at the point where the
command occurs. The loop command while b inv P do c1 is always annotated
with an invariant P . As usual, this invariant should hold when we reach the
command and be preserved by each loop step. Command call(y) is a procedure
call. All annotations (assertions, loop invariants and procedure contracts) will
be ignored during the program execution and will be relevant only for program
verification in Sect. 5. Procedures do not have explicit parameters and return
values (hence we use the term procedure call rather than function call). Instead,
as in assembly code [23], parameters and return value(s) are shared implicitly
between the caller and the callee through memory locations: the caller must

An Efficient VCGen-Based Modular Verification 503

〈assert(P), σ〉 ψ
σ

ξa a σ = n

xi := a, σ
ψ

σ[i/n]

ξa a σ = n

xi := a, σ
ψ

σ[σ(i)/n]

〈bodyψ(y), σ1〉 ψ
σ2

call(y), σ1
ψ

σ2

Fig. 4. Operational semantics of commands in L (selected rules).

Procedure environment: ψsum � {ysum csum}

Hoare triple R2: ψsum :
{
True

}
csum old(x1) � old(x2) ⇒ old(x3) = x3

}

Relational
property R3:

ψsum :

x1〈2〉< x2〈2〉 ∧
x2〈1〉= x2〈2〉 ∧
x1〈1〉= x1〈2〉 + 1 ∧
x3 1 = x3 2 + x1 2

csum〈1〉 ∼ csum〈2〉
{

x3〈1〉= x3〈2〉
}

Fig. 5. A procedure environment ψsum associating procedure name ysum with its body
csum (see Fig. 1), a Hoare triple R2 for command csum, and a relational property R3

linking two runs of csum.

put/read the right values at the right locations before/after the call. Finally, to
avoid ambiguity, we group sequences of commands with { }.

2.3 Operational Semantics

Evaluation of arithmetic and Boolean expressions in L is defined by functions ξa

and ξb. Selected evaluation rules for arithmetic expressions are shown in Fig. 3.
Operations ∗xi and &xi have a semantics similar to the C language, i.e. deref-
erencing and address-of. Semantics of Boolean expressions is standard [36].

Based on these evaluation functions, we can define the operational semantics
of commands in a given procedure environment ψ. Selected evaluation rules are
shown in Fig. 4. As said above, both assertions and loop invariants can be seen
as program annotations that do not influence the execution of the program itself.
Hence, command assert(P) is equivalent to a skip. Likewise, loop invariant P
has no influence on the semantics of while b inv P do {c}.

We write � 〈c, σ〉 ψ→ σ′ to denote that 〈c, σ〉 ψ→ σ′ can be derived from
the rules of Fig. 4. Our Coq formalization, inspired by [29], provides a deep
embedding of L, with an associated parser, in files Aexp.v, Bexp.v and Com.v.

3 Functional Correctness

We define functional correctness in a similar way to the original Hoare triple
definition [19], except that we also need a procedure environment ψ, leading to a
quadruple denoted ψ : {P}c{Q}. We will however still refer by the term “Hoare
triple” to the corresponding program property, formally defined as follows.

Definition 1 (Hoare triple). Let c be a command, ψ a procedure environment,
and P and Q two assertions. We define a Hoare triple ψ : {P}c{Q} as follows:

ψ : {P}c{Q} � ∀σ, σ′ ∈ Σ. P (σ) ∧ (� 〈c, σ〉 ψ→ σ′) ⇒ Q(σ, σ′).

504 L. Blatter et al.

Informally, our definition states that, for a given ψ, if a state σ satisfies P
and the execution of c on σ terminates in a state σ′, then (σ, σ′) satisfies Q.

Example 2. Figure 5 gives an example of a Hoare triple denoted R2. �	

Next, we introduce notation CV (ψ, φ) to denote the fact that, for the given
ψ and φ every procedure satisfies its contract.

Definition 2 (Contract Validity). Let ψ be a procedure environment and φ
a contract environment. We define contract validity CV (ψ, φ) as follows:

CV (ψ, φ) � ∀y ∈ Y. ψ : {preφ(y)}call(y){postφ(y)}).

The notion of contract validity is at the heart of modular verification, since it
allows assuming that the contracts of the callees are satisfied during the verifica-
tion of a Hoare triple. More precisely, to state the validity of procedure contracts
without assuming anything about their bodies in our formalization, we will con-
sider an arbitrary choice of implementations ψ′ of procedures that satisfy the
contracts, like in the first assumption of Theorem1 below. This theorem, taken
from [1, Th. 4.2] and reformulated for L in [11], states that ψ : {P}c{Q} holds if
we can prove the contract of (the bodies in ψ of) all procedures in an arbitrary
environment ψ′ respecting the contracts, and if the validity of contracts of φ for
ψ implies the Hoare triple itself. This theorem is the basis for modular verifica-
tion of Hoare Triples, as done for instance in Hoare Logic [19,36] or verification
condition generation.

Theorem 1 (Recursion). Given a procedure environment ψ and a contract
environment φ such that the following two assumptions hold:

∀ψ′ ∈ Ψ. CV (ψ′, φ) ⇒ ∀y ∈ Y, ψ′ : {preφ(y)}bodyψ(y){postφ(y)},

CV (ψ, φ) ⇒ ψ : {P}c{Q},

we have ψ : {P}c{Q}.

We refer the reader to the Coq development, more precisely the results
recursive proc and recursive hoare triple in file Hoare Triple.v for a
complete proof of Theorem 1.

4 Relational Functional Correctness

Relational properties can be seen as an extension of Hoare triples. But, instead of
linking one program with two properties, the pre- and postconditions, relational
properties link n programs to two properties, called relational precondition and
relational postcondition. A relational precondition or assertion (resp., relational
postcondition) for n programs is a predicate taking a sequence of n (resp., 2n)
memory states and returning a first-order logic formula. Metavariables ̂P , ̂P ′, . . .
(resp., ̂Q, ̂Q′, . . .) range over the corresponding sets. As a simple example, the

An Efficient VCGen-Based Modular Verification 505

relational postcondition of R1 (written in Fig. 1 in Benton’s notation) can be
stated in λ-notation as follows: λσ1, σ2, σ

′
1, σ

′
2 . σ′

1(3) = σ′
2(3).

A relational property is a property about n programs c1, . . . , cn, stating that if
each program ci starts in a state σi and ends in a state σ′

i such that ̂P (σ1, . . . , σn)
holds, then ̂Q(σ1, . . . , σn, σ′

1, . . . , σ
′
n) holds, where ̂P is a relational precondition

and ̂Q is a relational postcondition. We formally define relational correctness
similarly to functional correctness (cf. Definition 1), except that we now use
sequences of commands and memory states. We abbreviate by (uk)n a sequence
of elements (uk)n

k=1 = (u1, . . . , un), where k ranges from 1 to n. If n ≤ 0, (uk)n

is the empty sequence denoted []. If n = 1, (u)1 is the singleton sequence (u).

Definition 3 (Relational Hoare Triple). Let ψ be a procedure environment,
(ck)n a sequence of n commands (n ∈ N

∗), ̂P and ̂Q relational pre- and post-
condition for n commands. The relational correctness of (ck)n with respect to ̂P

and ̂Q, denoted ψ : { ̂P}(ck)n{ ̂Q}, is defined as follows:

ψ : { ̂P}(ck)n{ ̂Q} �

∀(σk)n, (σ′
k)n. ̂P ((σk)n) ∧ (

n
∧

i=1

� 〈ci, σi〉
ψ→ σ′

i) ⇒ ̂Q((σk)n, (σ′
k)n).

For n = 1, this notion defines a Hoare triple. It also generalizes Benton’s
notation [6] for two commands: ψ : { ̂P}c1 ∼ c2{ ̂Q}. As Benton’s work mostly
focused on comparing equivalent programs, using symbol ∼ was quite natural.

Example 3. Relational property R3 introduced in Example 1 is formalized (in
Benton’s notation) in Fig. 5. Below, we will illustrate modular verification of
relational properties by deducing R1 from R3 and partial contract R2 of csum.

�	
We will now extend Theorem 1 to relational contract environments. A rela-

tional contract environment ̂φ maps a sequence of program names (yk)n to a
relational contract, composed of a relational pre- and postcondition, denoted
̂φ((yk)n) = (p̂re

̂φ((yk)n), ̂post
̂φ((yk)n)). Practical applications require only a

finite number of properties, so the relational contract can be assumed trivial for
all except a finite number of sequences. A relational contract environment gener-
alizes a contract environment, since a standard procedure contract is a relational
contract (for a sequence of exactly one element). Notice that ̂φ considers only
one relational property for a given sequence (yk)n: this is not a limitation since
several properties can be encoded in one contract. We define the set of relational
contract environments ̂Φ, and metavariables ̂φ, ̂φ0, ̂φ1, . . . will range over ̂Φ.

We introduce notation CVr(ψ, ̂φ) to denote the fact that all procedures
defined in ψ satisfy the relational contracts in which they are involved in ̂φ.

Definition 4 (Relational Contract Validity). Let ψ be a procedure environ-
ment and ̂φ a relational contract environment. We define CVr(ψ, ̂φ) as follows:

CVr(ψ, ̂φ) � ∀(yk)
n ∈ dom(̂φ), n > 0 ⇒ ψ : {p̂re

̂φ
((yk)

n)}(call(yk))
n
k=1{ ̂post

̂φ
((yk)

n)}.

506 L. Blatter et al.

Theorem 2 (Relational Recursion). Given a procedure environment ψ and
a relational contract environment ̂φ such that the following two assumptions hold:

∀ψ′ ∈ Ψ.CVr(ψ′, ̂φ) ⇒
∀(yk)n ∈ dom(̂φ), ψ′ : {p̂re

̂φ((yk)n)}(bodyψ(yk))n
k=1{ ̂post

̂φ((yk)n)},

CVr(ψ, ̂φ) ⇒ ψ : { ̂P}(ck)n{ ̂Q}

then we have ψ : { ̂P}(ck)n{ ̂Q}.

The Coq proof (which is a straightforward extension of the proof of Theo-
rem 1) is available in Rela.v, Theorem recursion relational.

5 Optimized Verification Condition Generator

A standard way [16] for verifying that a Hoare triple holds is to use a verification
condition generator (VCGen). In this section, we formalize a VCGen for Hoare
triples such that if all verification conditions that it generates are valid, then
the Hoare triple is valid according to Definition 1. The VCGen described in this
section is based on optimizations introduced in [15]. Such optimizations allow
the VCGen to return formulas whose size is linear with respect to the size of
the program itself, and are now part of any state-of-the-art deductive verifica-
tion tool. The key idea is to avoid splitting verification condition generation into
two separated sub-generation at each conditional. The definition is formalized in
Coq in the file Vcg Opt.v, where we also prove that the verification conditions
of this optimized VCGen imply those of the naive VCGen presented in [11]. This
will allow us to use the optimized VCGen (or more generally any VCGen satis-
fying the properties stated in Theorem3 below) for the verification of relational
properties as well (see Sect. 6).

5.1 Verification Condition Generator

When defining the naive VCGen in [11], we proposed a modular definition.
Namely, we divided it into three functions Tc, Ta and Tf . Here, we follow the
same approach for the optimized VCGen, using three new functions T �

c , T �
a ,

and T �
f :

– function T �
c generates the main verification condition, expressing that the

postcondition holds in the final state, assuming auxiliary annotations hold;
– function T �

a generates auxiliary verification conditions stemming from asser-
tions, loop invariants, and preconditions of called procedures;

– finally, function T �
f generates verification conditions for the auxiliary proce-

dures that are called by the main program, to ensure that their bodies respect
their contracts.

An Efficient VCGen-Based Modular Verification 507

�
c skip (σ, σ′, φ, f) � f(σ = σ′)

�
c xi := a (σ, σ′, φ, f) � f(σ′ = set(σ, i, ξa a))

�
c ∗xi := a (σ, σ′, φ, f) � f(σ′ = set(σ, σ(i), ξa a σ))

�
c assert(P) (σ, σ′, φ, f) � f(P (σ) ∧ σ = σ′)

�
c c0; c1 (σ, σ′, φ, f) � ∀σ′′, �

c c0 (σ, σ′′, φ, λp1.
�

c c1 (σ′′, σ′, φ, λp2.f(p1 ∧ p2)))
�

c if b then {c0} else {c1} (σ, σ′, φ, f) � �
c c0 (σ, σ′, φ, λp1.

�
c c1 (σ, σ′, φ, λp2.

f((b ≡ True ⇒ p1) ∧ (b ≡ False ⇒ p2))))
�

c call(y) (σ, σ′, φ, f) � f(preφ(y)(σ) ∧ postφ(y)(σ, σ′))
�

c while b inv inv do c (σ, σ′, φ, f) � f(inv σ inv σ′ (ξb b σ′))

Fig. 6. Definition of function T �
c generating the main verification condition.

Definition 5 (Function T �
c generating the main verification condition).

Given a command c, two memory states σ and σ′, a contract environment φ, and
a function f taking a formula as argument and returning a formula, function
T �

c returns a formula defined by case analysis on c as shown in Fig. 6.

State σ represents the state before executing the command, while σ′ repre-
sents the state after it. Intuitively, the argument that gets passed to f is the
formula that relates σ and σ′ according to c itself. Thus, if f is of the form
λp.p ⇒ Q(σ, σ′), as in Theorem 3 below, the resulting formula is a verification
condition for post-condition Q to hold.

For skip, which does nothing, both states are identical. For assignments, σ′

is simply the update of σ. An assertion introduces a hypothesis over σ but leaves
it unchanged. For a sequence, a fresh memory state σ′′ is introduced, and we
compose the VCGen. For a conditional, if the condition evaluates to True, we
select the condition from the then branch, and otherwise from the else branch.
Note that, contrary to the naive VCGen, we perform a single call to f , ensuring
the linearity of the formula.

The rule for calls simply assumes that before the call σ satisfies preφ(y)
and after the call σ and σ′ satisfy postφ(y). Finally, T �

c assumes that, for a
loop, both the initial state σ and the final one σ′ satisfy the loop invariant.
Additionally, in σ′ the loop condition evaluates to False. As for an assertion, the
callee’s precondition and the loop invariant are just assumed to be true; function
T �

a , defined below, generates the corresponding proof obligations.

Example 4. For c � if False then {skip} else {x1 := 2} we have:

T �
c �c�(σ, σ′, φ, λp. p ⇒ σ′(1) = 2) ≡

(False ≡ True ⇒ σ = σ′) ∧ (False ≡ False ⇒ σ′ = set(σ, 1, 2)) ⇒ σ′(1) = 2.

�	

508 L. Blatter et al.

Lemma 1 establishes a relation between functions T �
c and Tc: the formulas

generated by T �
c imply the formulas generated by Tc.

Lemma 1. Given a program c, a procedure contract environment φ, a memory
state σ and an assertion P , if we have ∀σ′ ∈ Σ, T �

c �c�(σ, σ′, φ, λp. p ⇒ P (σ′)),
then we have Tc�c�(σ, φ, P).

Proof. By structural induction over c. �	

�
a skip (σ, φ) � True

�
a x := a (σ, φ) � True

�
a ∗x := a (σ, φ) � True

�
a assert(P) (σ, φ) � P (σ)

�
a c0; c1 (σ, φ) � �

a c0 (σ, φ) ∧
∀σ′, �

c c0 (σ, σ′, φ, λp. p �
a c1 (σ′, φ))

�
a if b then {c0} else {c1} (σ, φ) � (ξb b σ′ �

a c0 (σ, φ)) ∧
(¬(ξb b σ′) �

a c1 (σ, φ))
�

a call(y) (σ, φ) � preφ(y)(σ)
�

a while b inv inv do {c} (σ, φ) � inv(σ)∧
(∀σ′, inv(σ′) ⇒ ξb b σ′ �

a c (σ′, φ)) ∧
(σ′σ′′, inv(σ′) �

c c (σ′, σ′′, φ, λp. p inv(σ′′)))

Fig. 7. Definition of function T �
a generating auxiliary verification conditions.

Definition 6 (Function T �
a generating the auxiliary verification condi-

tion). Given a command c, a memory state σ representing the state before the
command, and a contract environment φ, function T �

a returns a formula defined
by case analysis on c as shown in Fig. 7.

Basically, T �
a collects all assertions, preconditions of called procedures, as

well as invariant establishment and preservation, and lifts the corresponding
formulas to constraints on the initial state σ through the use of T �

c .
As for T �

c , the formulas generated by T �
a imply those generated by Ta.

Lemma 2. For a given program c, a procedure contract environment φ, and a
memory state σ, if we have T �

a �c�(σ, φ), then we have Ta�c�(σ, φ).

Proof. By structural induction over c. �	

Finally, we define the function that generates the conditions for verifying
that the body of each procedure defined in ψ respects its contract defined in φ.

An Efficient VCGen-Based Modular Verification 509

Definition 7 (Function T �
f generating the procedure verification con-

dition). T �
f takes as argument two environments ψ and φ and returns a formula:

T �
f (φ, ψ) � ∀y, σ, σ′. preφ(y)(σ) ⇒

T �
a �bodyψ(y)�(σ, φ) ∧ T �

c �bodyψ(y)�(σ, σ′, φ, λp.p ⇒ postφ(y)(σ, σ′)).

Finally, the formulas generated by T �
f imply those generated by Tf .

Lemma 3. For a given procedure environment ψ, and a procedure contract envi-
ronment φ, if we have T �

f (φ, ψ), then we have Tf (φ, ψ).

Proof. Using Lemmas 1 and 2. �	

The definition of the optimized VCGen and its link to the naive version can
be found in file Vcg Opt.v of the Coq development.

5.2 Hoare Triple Verification

Using the VCGen defined in Sect. 5.1, we can state the theorem establishing
how a Hoare Triple can be verified. The proof can be found in file Correct.v of
the Coq development.

Theorem 3 (Soundness of VCGen). Assume that we have T �
f (φ, ψ) and

∀σ. P (σ) ⇒ T �
a �c�(σ, φ),

∀σ, σ′. P (σ) ⇒ T �
c �c�(σ, σ′, φ, λp. p ⇒ Q(σ, σ′)).

Then we have ψ : {P}c{Q}.

Proof. By soundness of the naive VCGen [11, Th. 3] and Lemmas 1, 2, 3. �	

6 Modular Verification of Relational Properties

In this section, we propose a modular verification method for relational proper-
ties (defined in Sect. 4) using the optimized VCGen defined in Sect. 5 (or, more
generally, any VCGen respecting Theorem 3). First, we define the function T �

cr

for the recursive call of T �
c on a sequence of commands and memory states.

Definition 8 (Function T �
cr). Given a sequence of commands (ck)n and a

sequence of memory states (σk)n, a contract environment φ and a function f
taking as argument a formula and returning a formula, function T �

cr is defined
by induction on n for the basis (n = 0) and inductive case (n ∈ N

∗) as follows:

T �
cr ([], [], [], φ, f) � f(True),

T �
cr ((ck)n, (σk)n, (σ′

k)n, φ, f) �
T �

c �cn�(σn, σ′
n, φ, λpn. T �

cr ((ck)n−1, (σk)n−1, (σ′
k)n−1, φ, λpn−1. f(pn ∧ pn−1))).

510 L. Blatter et al.

Intuitively, like in Definition 5, the argument that gets passed to f is the
formula that relates the n pre-states (σk)n to the n post-states (σ′

k)n when
all (ck)n are executed. Again, if f is of the form λp.p ⇒ ̂Q((σk)n, (σ′

k)n), the
resulting formula is a verification condition for the relational postcondition ̂Q to
hold. More concretely, for n = 2, and f as above, we obtain:

T �
cr ((c1, c2), (σ1, σ2), (σ′

1, σ
′
2), φ, λp.p ⇒ ̂Q((σ1, σ2), (σ′

1, σ
′
2))) ≡

T �
c �c2�(σ2, σ

′
2, φ, λp2.T �

c �c1�(σ1, σ
′
1, φ, λp1.p2 ∧ p1 ⇒ ̂Q((σ1, σ2), (σ′

1, σ
′
2)))).

We similarly define a notation for the auxiliary verification conditions for
a sequence of n commands. Basically, this is the conjunction of the auxiliary
verification conditions generated by T �

a on each individual command.

Definition 9 (Function T �
ar). Given a sequence of commands (ck)n and a

sequence of memory states (σk)n, we define function T �
ar as follows:

T �
ar ((ck)n, (σk)n, φ) �

n
∧

i=1

T �
a �ci�(σi, φ).

A standard contract over a single procedure y can be used directly whenever
there is a call to y. For a relational contract over (yk)n, things are more com-
plicated: there is not a single program point where we can apply the relational
contract. Instead, we have to somehow track in the generated formulas all the
calls that have been made, and to guard the application of the relational contract
by a constraint stating that all the appropriate calls have indeed taken place. In
order to achieve that, we start by defining a notation for the conjunction of a
sequence of procedure calls and associated memory states:

Definition 10 (Functions Pcall and Ppred).

Pcall(y, σ, σ′, ψ) � � 〈call(y), σ〉 ψ→ σ′,

Ppred((yk)n, (σk)n, (σ′
k)n, ψ) �

n
∧

i=1

Pcall(yi, σi, σ
′
i, ψ).

Then, we can define function Tpr translating relational contracts into a logical
formula, using Ppred to guard its application with tracked calls.

Definition 11 (Function Tpr).

Tpr(̂φ, ψ) �
∀(yk)n, (σk)n, (σ′

k)n, n > 0 ⇒ Ppred((yk)n, (σk)n, (σ′
k)n, ψ) ⇒

p̂re
̂φ((yk)n)(σk)n ⇒ ̂post

̂φ((yk)n)(σk)n(σ′
k)n.

We now define function L to lift a relational procedure contract with an
associated tracked call predicate and reduce it to a standard contract.

L(̂φ, ψ) � λy.(λσ.p̂re
̂φ((y)1)(σ)1, λσσ′. ̂post

̂φ((y)1)(σ)1(σ′)1 ∧ Pcall(y, σ, σ′, ψ)).

An Efficient VCGen-Based Modular Verification 511

Finally, using function Tpr and L, we can define function T �
fr for generat-

ing the verification condition for verifying that the bodies of each sequence of
procedures respect the relational contract defined in ̂φ: thanks to L, each call
instruction will result in a corresponding Pcall occurrence in the generated for-
mula, so that it will be possible to make use of the relational contracts hypotheses
in Tpr when the appropriate sequences of calls occur.

Definition 12 (Function T �
fr).

T �
fr(̂φ, ψ) �

∀(yk)n, (σk)n, (σ′
k)n, ψ′, p̂re

̂φ((yk)n) ⇒ Tpr(̂φ, ψ′) ⇒

T �
ar ((body ψ(yk))n

k=1, (σk)n, L(̂φ, ψ′)) ∧
T �

cr ((bodyψ(yk))n
k=1, (σk)n, (σ′

k)n, L(̂φ, ψ′), λp.p ⇒ ̂post
̂φ((yk)n))).

Using functions T �
cr , T �

ar and T �
fr , we can now give the main result of this

paper, i.e. that the verification of relational properties with the VCGen is correct.

Theorem 4 (Soundness of relational VCGen). For any sequence of com-
mands (ck)n, contract environment ̂φ, procedure environment ψ, and relational
pre- and postcondition ̂P and ̂Q, if the following three properties hold:

T �
fr(̂φ, ψ), (3)

∀(σk)n, ψ′, ̂P ((σk)n) ∧ Tpr(̂φ, ψ) ⇒ T �
ar ((ck)n, (σk)n, L(̂φ, ψ′)), (4)

∀(σk)n, (σ′
k)n, ψ′, ̂P ((σk)n) ∧ Tpr(̂φ, ψ) ⇒

T �
cr ((ck)n, (σk)n, (σ′

k)n, L(̂φ, ψ′), λp. p ⇒ ̂Q((σk)n, (σ′
k)n)), (5)

then we have ψ : { ̂P}(ck)n{ ̂Q}.

In other words, a relational property is valid if all relational procedure con-
tracts are valid, and, assuming the relational precondition holds, both the aux-
iliary verification conditions and the main relational verification condition hold.
The corresponding Coq formalization is available in file Rela.v, and the Coq
proof of Theorem4 is in file Correct Rela.v.

Example 5. Consider ψ = ψsum and ̂φ which encodes R2 and R3. The relational
property R1 of Fig. 1 can now be proven valid in a modular way, using R2 and
R3, by the proposed technique based on Theorem 4 (see file Examples.v of
the Coq development). For instance, (5) becomes the formula of Fig. 8. There,
the relational precondition is given by (6), while the simplified (instantiated for
sequence (ysum, ysum)) translation of the relational contracts Tpr(̂φ, ψ) is given
by (7). Finally, (8) gives the main verification condition:

T �
cr ((c1ω, c2ω), (σ1, σ2), (σ′

1, σ
′
2), L(̂φ, ψ′), λp.p ⇒ σ′

1[3] = σ′
2[3]), where L(̂φ, ψ′) =

{ysum → (λσ. True, λσ, σ′. σ[1] � σ[2] ⇒ σ[3] = σ′[3] ∧ Pcall(ysum, σ, σ′, ψ′))}.

Long for a manual proof, such formulas are well-treated by solvers. �	

512 L. Blatter et al.

∀σ1, σ2, σ
′
1, σ

′
2, ψ.

σ1(1) = σ2(1) (6)

∧

(∀σ1, σ2, σ
′
1, σ

′
2.

Pcall(ysum, σ1, σ
′
1, ψ) ∧ Pcall(ysum, σ2, σ

′
2, ψ)∧

σ2(1) < σ2(2) ∧ σ1(2) = σ2(2)∧
σ1(1) = σ2(1) + 1 ∧ σ1(3) = σ2(3) + σ2(1)

⇒
σ′
1(3) = σ′

2(3))

(7)

⇒

∀σ′′
1 , σ′′′

1 , σ′′
2 , σ′′′

2 .

σ′′
1 = set(σ1, 1, 1) ∧ σ′′′

1 = set(σ′′
1 , 3, 0)∧

((σ′′′
1 (1) � σ′′′

1 (2) ⇒ σ′′′
1 (3) = σ′

1(3)) ∧ Pcall(ysum, σ′′′
1 , σ′

1, ψ))∧
σ′′
2 = set(σ2, 1, 0) ∧ σ′′′

2 = set(σ′′
2 , 3, 0)∧

((σ′′′
2 (1) � σ′′′

2 (2) ⇒ σ′′′
2 (3) = σ′

2(3)) ∧ Pcall(ysum, σ′′′
2 , σ′

2, ψ))

⇒
σ′
1(3) = σ′

2(3)

(8)

Fig. 8. Assumption (5) of Theorem 4 illustrated for property R1 of Fig. 1.

7 Related Work

Relational Property Verification. Significant work has been done on relational
program verification (see [26,27] for a detailed state of the art). We discuss below
some of the efforts the most closely related to our work.

Various relational logics have been designed as extensions to Hoare Logic,
such as Relational Hoare Logic [6] and Cartesian Hoare Logic [32]. As our app-
roach, those logics consider for each command a set of associated memory states
in the very rules of the system, thus avoiding additional separation assumptions.
Limitations of these logics are often the absence of support for aliasing or a
limited form of relational properties. For instance, Relational Hoare Logic sup-
ports only relational properties with two commands and Cartesian Hoare Logic
supports only k-safety properties (relational properties on the same command).
Our method has an advanced support of aliasing and supports a very general
definition of relational properties, possibly between several dissimilar commands.

Self-composition [3,9,30] and its derivations [2,14,31] are well-known
approaches to deal with relational properties. This is in particular due to their
flexibility: self-composition methods can be applied as a preprocessing step to
different verification approaches. For example, self-composition is used in com-
bination with symbolic execution and model checking for verification of voting

An Efficient VCGen-Based Modular Verification 513

functions [5]. Other examples are the use of self-composition in combination with
verification condition generation in the context of the Java language [13] or the
C language [9,10]. In general, the support of aliasing of C programs in these last
efforts is very limited due the problems mentioned earlier. Compared to these
techniques, where self-composition is applied before the generation of verifica-
tion conditions (and therefore requires taking care about separation of memory
states of the considered programs), our method can be seen as relating the con-
sidered programs’ semantics directly at the level of the verification conditions,
where separation of their memory states is already ensured, thus avoiding the
need to take care of this separation explicitly.

Finally, another advanced approach for relational verification is the transla-
tion of the relational problem into Horn clauses and their proof using constraint
solving [22,34]. The benefit of constraint solving lies in the ability to automati-
cally find relational invariants and complex self-composition derivations. More-
over, the translation of programs into Horn clauses, done by tools like Reve3,
results in formulas similar to those generated by our VCGen. Therefore, like our
approach, relational verification with constraint solving requires no additional
separation hypothesis in presence of aliasing.

Certified Verification Condition Generation. In a broad sense, this work contin-
ues previous efforts in formalization and mechanized proof of program language
semantics, analyzers and compilers, such as [7,12,18,20,21,24,25,28,29,35].
Generation of certificates (in Isabelle) for the Boogie verifier is presented in [28].
The certified deductive verification tool WhyCert [18] comes with a similar
soundness result for its verification condition generator. Its formalization fol-
lows an alternative proof approach, based on co-induction, while our proof relies
on induction. WhyCert is syntactically closer to the C language and the ACSL
specification language [4], while our proof uses a simplified language, but with a
richer aliasing model. Furthermore, we provide a formalization and a soundness
proof for relational verification, which was not considered in WhyCert or in [28].

Our previous work [11] presented a method for relational property verification
based on a naive VCGen. To the best of our knowledge, the present work is the
first proposal of modular relational property verification based on an optimized
VCGen for a representative language with procedure calls and aliases with a full
mechanized formalization and proof of soundness in Coq.

8 Conclusion

We have presented in this paper an overview of a method for modular verifica-
tion of relational properties using an optimized verification condition generator,
without relying on code transformations (such as self-composition) or making
additional separation hypotheses in case of aliasing. This method has been fully
formalized in Coq, and the soundness of recursive relational verification using

3 https://formal.kastel.kit.edu/projects/improve/reve/.

https://formal.kastel.kit.edu/projects/improve/reve/

514 L. Blatter et al.

a verification condition generator (itself formally proved correct) for a simple
language with procedure calls and aliasing has been formally established.

This work opens the door for interesting future work. Currently, for relational
properties, product programs [2] or other self-composition optimizations [31] are
the standard approach to deal with complex loop constructions. We expect that
user-provided coupling invariants and loop properties can avoid having to rely
on code transformation methods. Showing this in our framework is the next step,
before the investigation of termination and co-termination [17,34] for extending
the modularity of relational contracts.

References

1. Apt, K., de Boer, F., Olderog, E.: Verification of Sequential and Concurrent Pro-
grams. Texts in Computer Science, Springer, London (2009). https://doi.org/10.
1007/978-1-84882-745-5

2. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
J. Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011). https://doi.org/10.1017/
S0960129511000193

4. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language (2021). https://
frama-c.com/html/acsl.html

5. Beckert, B., Bormer, T., Kirsten, M., Neuber, T., Ulbrich, M.: Automated verifi-
cation for functional and relational properties of voting rules. In: Proceedings of
the 6th International Workshop on Computational Social Choice (COMSOC 2016)
(2016)

6. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on of Programming Languages (POPL 2004), pp. 14–25. ACM (2004). https://doi.
org/10.1145/964001.964003

7. Beringer, L., Appel, A.W.: Abstraction and subsumption in modular verification of
C programs. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 573–590. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 34

8. Bishop, P.G., Bloomfield, R.E., Cyra, L.: Combining testing and proof to gain
high assurance in software: a case study. In: Proc. of the 24th International Sympo-
sium on Software Reliability Engineering (ISSRE 2013), pp. 248–257. IEEE (2013).
https://doi.org/10.1109/ISSRE.2013.6698924

9. Blatter, L., Kosmatov, N., Le Gall, P., Prevosto, V.: RPP: automatic proof of
relational properties by self-composition. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10205, pp. 391–397. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54577-5 22

10. Blatter, L., Kosmatov, N., Le Gall, P., Prevosto, V., Petiot, G.: Static and dynamic
verification of relational properties on self-composed C code. In: Dubois, C., Wolff,
B. (eds.) TAP 2018. LNCS, vol. 10889, pp. 44–62. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92994-1 3

https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://frama-c.com/html/acsl.html
https://frama-c.com/html/acsl.html
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1007/978-3-030-30942-8_34
https://doi.org/10.1007/978-3-030-30942-8_34
https://doi.org/10.1109/ISSRE.2013.6698924
https://doi.org/10.1007/978-3-662-54577-5_22
https://doi.org/10.1007/978-3-662-54577-5_22
https://doi.org/10.1007/978-3-319-92994-1_3
https://doi.org/10.1007/978-3-319-92994-1_3

An Efficient VCGen-Based Modular Verification 515

11. Blatter, L., Kosmatov, N., Prevosto, V., Le Gall, P.: Certified verification of rela-
tional properties. In: ter Beek, M.H., Monahan, R. (eds.) iFM 2022. LNCS, vol.
13274, pp. 86–105. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
07727-2 6

12. Blazy, S., Maroneze, A., Pichardie, D.: Verified validation of program slicing. In:
Proceedings of the 2015 Conference on Certified Programs and Proofs (CPP 2015),
pp. 109–117. ACM (2015). https://doi.org/10.1145/2676724.2693169

13. Dufay, G., Felty, A., Matwin, S.: Privacy-sensitive information flow with JML. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 116–130. Springer,
Heidelberg (2005). https://doi.org/10.1007/11532231 9

14. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 502–529. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1 18

15. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: Proceedings of the 28th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2001), pp. 193–205. ACM (2001).
https://doi.org/10.1145/360204.360220

16. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposia in
Applied Mathematics. Mathematical Aspects of Computer Science, vol. 19, p. 19–
32 (1967). https://doi.org/10.1090/psapm/019/0235771

17. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-
paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38574-2 20

18. Herms, P.: Certification of a tool chain for deductive program verification. Ph.D
thesis, Université Paris Sud - Paris XI, January 2013. https://tel.archives-ouvertes.
fr/tel-00789543

19. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

20. Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2015), pp. 247–259.
ACM (2015). https://doi.org/10.1145/2676726.2676966

21. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018). https://doi.org/10.1017/S0956796818000151

22. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR - combining static verification and dynamic analysis. J. Autom. Reason. 60(3),
337–363 (2018). https://doi.org/10.1007/s10817-017-9433-5

23. Kip, I.: Assembly Language for x86 Processors, 7th edn. Prentice Hall Press, Hobo-
ken (2014)

24. Krebbers, R., Leroy, X., Wiedijk, F.: Formal C semantics: CompCert and the C
standard. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 543–548.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 36

25. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. J. Autom. Reason. 41(1), 1–31 (2008)

26. Maillard, K., Hritcu, C., Rivas, E., Van Muylder, A.: The next 700 relational
program logics. In: Proc. of the 47th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL 2020), vol. 4, pp. 4:1–4:33 (2020). https://doi.
org/10.1145/3371072

https://doi.org/10.1007/978-3-031-07727-2_6
https://doi.org/10.1007/978-3-031-07727-2_6
https://doi.org/10.1145/2676724.2693169
https://doi.org/10.1007/11532231_9
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1145/360204.360220
https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1007/978-3-642-38574-2_20
https://tel.archives-ouvertes.fr/tel-00789543
https://tel.archives-ouvertes.fr/tel-00789543
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1007/978-3-319-08970-6_36
https://doi.org/10.1145/3371072
https://doi.org/10.1145/3371072

516 L. Blatter et al.

27. Naumann, D.A.: Thirty-seven years of relational Hoare logic: remarks on its princi-
ples and history. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477,
pp. 93–116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6 7

28. Parthasarathy, G., Müller, P., Summers, A.J.: Formally validating a practical ver-
ification condition generator. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS,
vol. 12760, pp. 704–727. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-81688-9 33

29. Pierce, B.C., et al.: Logical Foundations. Software Foundations Series, vol. 1, Elec-
tronic Textbook (2018). http://www.cis.upenn.edu/∼bcpierce/sf

30. Scheben, C., Schmitt, P.H.: Efficient self-composition for weakest precondition cal-
culi. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
579–594. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 39

31. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-
tion. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 161–179.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 9

32. Sousa, M., Dillig, I.: Cartesian Hoare logic for verifying k-safety properties. In:
Proceedings of the 37th Conference on Programming Language Design and Imple-
mentation (PLDI 2016), pp. 57–69. ACM (2016). https://doi.org/10.1145/2908080.
2908092

33. The Coq Development Team: The Coq Proof Assistant (2021). https://coq.inria.
fr/

34. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 742–766. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 35

35. Wils, S., Jacobs, B.: Certifying C program correctness with respect to compcert
with verifast. CoRR arXiv:abs/2110.11034 (2021)

36. Winskel, G.: The Formal Semantics of Programming Languages - An Introduction.
Foundation of Computing Series. MIT Press, Cambridge (1993)

https://doi.org/10.1007/978-3-030-61470-6_7
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-030-81688-9_33
http://www.cis.upenn.edu/~bcpierce/sf
https://doi.org/10.1007/978-3-319-06410-9_39
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2908080.2908092
https://coq.inria.fr/
https://coq.inria.fr/
https://doi.org/10.1007/978-3-030-81685-8_35
http://arxiv.org/2110.11034

On Deductive Verification of an Industrial
Concurrent Software Component

with VerCors

Raúl E. Monti(B) , Robert Rubbens(B) , and Marieke Huisman

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{r.e.monti,r.b.rubbens,m.huisman}@utwente.nl

Abstract. This paper presents a case study where a concurrent mod-
ule of a tunnel control system written in Java is verified for memory
safety and data race freedom using VerCors, a software verification tool.
This case study was carried out in close collaboration with our indus-
trial partner Technolution, which is in charge of developing the tunnel
control software. First, we describe the process of preparing the code for
verification, and how we make use of the different capabilities of Ver-
Cors to successfully verify the module. The concurrent module has gone
through a rigorous process of design, code reviewing and unit and inte-
gration testing. Despite this careful approach, VerCors found two mem-
ory related bugs. We describe these bugs, and show how VerCors could
have found them during the development process. Second, we wanted to
communicate back our results and verification process to the engineers
of Technolution. We discuss how we prepared our presentation, and the
explanation we settled on. Third, we present interesting feedback points
from this presentation. We use this feedback to determine future work
directions with the goal to improve our tool support, and to bridge the
gap between formal methods and industry.

Keywords: Case study · Verification · Concurrency

1 Introduction

Software components for critical infrastructure should be kept to the highest
standards of safety and correctness. Traditional methods for acquiring high safety
standards include code reviewing and testing. These improve the reliability of
software, but do not and cannot guarantee the absence of bugs. Software is also
becoming more concurrent every year. The number of execution scenarios in
concurrent software is even greater than in classical sequential software, due to
interleaving and timing aspects. This makes code reviewing and testing even
less effective. Specifically, there are too many interleavings of multiple threads,
causing problematic interleavings to easily be missed during code reviewing and
testing. Furthermore, concurrency related bugs such as data races and race con-
ditions are intrinsically difficult to analyse with testing, since their effects are
c© The Author(s) 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 517–534, 2022.
https://doi.org/10.1007/978-3-031-19849-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_29&domain=pdf
http://orcid.org/0000-0002-6964-1426
http://orcid.org/0000-0002-5638-5945
http://orcid.org/0000-0003-4467-072X
https://doi.org/10.1007/978-3-031-19849-6_29

518 R. E. Monti et al.

platform dependent. For example, changing the OS of the system could cause
previously passing tests to fail, due to different scheduling policies. It is also
hard to test for specific interleavings. Hence, methods besides testing and code
reviewing are needed to achieve the highest standards of safety and correctness
in concurrent software.

To complement classical methods in the context of concurrent and critical
infrastructure software, we believe formal methods must be considered. In par-
ticular, formal methods that can deal with the concurrent context must be used.
In contrast to code review and testing, formal verification is exhaustive and can
formally guarantee the absence of bugs in different stages of the software devel-
opment cycle. Moreover, formal verification uses a standard semantics of the
language in question, which guarantees consistent behaviour across platforms.
Whenever platforms disagree, formal verification ensures that this difference is
accounted for in the code. These properties of formal verification makes software
more predictable, and hence safer.

Despite recent advances in software verification capabilities, the use of formal
methods in industry is still limited. We think that case studies that show the
successful application of formal methods will greatly contribute towards further
adoption of formal methods in industry in two ways. First, it showcases the
advances and capabilities of software verification tools to our industrial partners.
Second, it generates valuable feedback, with which we can improve our tools and
further adapt them to the software production cycle. This work discusses such
a case study, where we verify a safety critical software for tunnel traffic control
using our software verification tool VerCors.

VerCors is a deductive verifier, specialised in the verification of concurrent
software [4]. It supports Java, C, OpenCL, and a custom input language called
PVL. VerCors can prove several useful generic properties about programs, such
as memory safety and absence of data races. Additionally, VerCors can prove
functional correctness properties, such as “the sum of all integers in the array is
computed”. To verify programs with VerCors, the programs must be annotated
by the user, following a Design by Contract like approach. Annotations are
pre- and post-conditions of methods, specifying permissions to access memory
locations and functional properties about the program state. VerCors processes
the program and the annotations, and verifies if the program adheres to the
annotations by applying a deductive program logic optimised for reasoning about
concurrent programs. VerCors has been applied to concurrent algorithms [19,21,
22], and also to industrial code in earlier case studies [11,18].

This paper is the result of a close collaboration with Technolution [25],
a Dutch software and hardware development company located in Gouda, the
Netherlands, with a recorded experience in developing safety-critical industrial
software. It is also the next part in a series of papers to investigate the fea-
sibility of applying formal methods within the design and production process
of Technolution. For more information on the earlier parts, we refer the reader
to [11,18]. Finally, this paper is also an attempt to approach industrial partners
to collaborate on the broader goal of making deductive verification, and specifi-

On Deductive Verification of an Industrial Concurrent Software Component 519

cally VerCors, available for industrial practitioners. This collaboration is carried
out in the context of the VerCors Industrial Advisory Board, with the goal to
learn how to introduce deductive verification into the production cycle of soft-
ware, and to improve the tool and make it easier to use. Another important goal
of the VerCors Industrial Advisory Board is to make industrial partners aware
of the guarantees of formal verification, in contrast to the weaker guarantees of
testing based quality assurance. This paper discusses our efforts to communicate
our results and explain the verification process to the engineers at Technolution,
as well as their feedback on our approach.

In particular, we discuss the verification of software for a tunnel on a road
called the Blankenburgverbinding [3]. This tunnel and the hard- and software
supporting it will be responsible for funnelling thousands of cars every day. The
control software of this tunnel monitors and controls almost every aspect of the
tunnel, in both normal and calamity situations. Thus, in order to give some safety
guarantees to its daily users, it is highly important that the software conforms to
the requirements of the national regulations and to the specifications provided
by the engineers who design and develop it. To demonstrate how formal methods
can help here, we applied our software verification tool VerCors to a submodule
of the control software of the tunnel, in particular to analyse concurrency related
issues such as data races and memory safety.

To develop the tunnel software, Technolution followed an iterative V-model
approach. The customer handed in the requirements in form of a BSTTI doc-
ument [16] and LTS specifications. These were used to derive actual software
requirements via system decomposition and design. In addition to the custom
validation flow of the V-model, the customer also imposed requirements on
the development process. These included, but were not limited to, units being
inspected to verify that they implement their requirements via Fagan inspec-
tion performed by a developer not involved in creation and review of the code,
requirements-based testing at software module level (i.e. higher integration level
than units) using the MC/DC coverage approach, and UI-design based testing
at a software chain level (i.e. integration of multiple systems) with a process flow
approach.

This rigorous approach to software development resulted in them spotting
some unexpected behaviour in their tunnel software, where a certain condition
over the state snapshot of a component was evaluated differently at two spots
throughout which the snapshot should remain unchanged. Nevertheless, later
they could not reproduce this behaviour and, by the time we were given the
code to analyse, they had not been able to spot a bug that might explain this
behaviour. The code we received was already in testing phase. As can be seen
in this paper, we discovered concurrency related bugs in this code, which we
think were likely the cause of the unexpected behaviour. We show that VerCors
can effectively catch this kind of bugs, in production phase, by using simple
code annotations in the form of methods pre and post-conditions specifying the
memory access pattern of such methods.

520 R. E. Monti et al.

The goal of this particular study is three-fold. First we want to investigate
how much we can support the verification of industrial Java software with Ver-
Cors. Second, we want to focus this time on a concurrent piece of software and
on concurrency issues such as data races, for which our tool is specialised. Notice
that to exploit modern architectures, modern software is often concurrent, and
not many deductive verification tools can deal with this. Third, we want to inves-
tigate how our verification procedure can be improved for industrial adoption.
For this, we are particularly interested in the feedback from the Technolution
team with respect to the verification procedure we followed.

Contributions. In this paper we discuss the following:

– Details of the tunnel verification case study, such as the analysis workflow
and the problems we discovered.

– The process of communicating our results to Technolution.
– The feedback from Technolution and its engineers regarding our analysis and

our presentation of it.
– Future plans for VerCors and the analysis of concurrent industrial software.

Outline. Section 2 presents the background for this research, i.e., we describe
the tunnel software and architecture. We also explain how to use VerCors for
concurrent software verification. In Sect. 3 we discuss our process of verifica-
tion of the concurrent data manager module, we explain the bugs we spotted,
and we show how applying VerCors would have avoided these bugs. Section 4
describes the experience of explaining our procedure and reporting our results
to the engineers at Technolution, and their feedback. Section 5 describes our
own reflection and future directions towards our goal of improving VerCors for
industrial application. Additionally, we mention some broader goals for the for-
mal methods community. Finally, Sect. 6 summarises and concludes.

2 Background

In this section we describe the two technologies relevant to this paper. First,
we describe the system architecture of the tunnel software. Then, we describe
VerCors, the tool used for verification of Java code.

2.1 Tunnel System Architecture

In the Netherlands, the architecture of software for tunnels is regulated by
the Basic Specification of Technical Installations for Tunnels (BSTTI1). The
BSTTI [16] specifies that the architecture for tunnel software is strictly hierar-
chical. The system is summarised in Fig. 1.

At the top layer of this hierarchy are the human operators that operate the
system. These operators give commands to the system, and inspect the values
1 In Dutch: BasisSpecificatie Tunnel-Technische Installatie.

On Deductive Verification of an Industrial Concurrent Software Component 521

Operator

MMI

3B

LFV

Fig. 1. Informal overview of the architecture specified by the BSTTI.

of various sensors in the system, using the Human-Machine Interface (MMI2)
layer. The MMI processes these commands and forwards these to components of
the Control, Instruct, Guard (3B3) layer. The 3B layer and its components are
responsible for the high-level control of the physical subsystems of the tunnel.
Examples of 3B components are water drainage, lighting, and electricity systems.
As 3B components can be responsible for controlling entire subsystems, they also
have a degree of autonomy. The individual 3B elements communicate with com-
ponents in the Logical Function Fulfiller (LFV4) layer. Components in the LFV
layer abstract the communication with the sensors and actuators of the tunnel to
check and control them. Examples of these sensors and actuators are the smoke
sensors and fans, the lights, or the entrance barriers. They can be located at
various places in the tunnel and are connected to their LFV counterparts over
various kinds of network connections following different protocols.

According to the BSTTI [16], the system must follow these general principles:

– Control must flow from the human operator level to the LFV level.
– Communication must take place along the parent-child hierarchy outlined in

Fig. 1. Specifically, sideways communication between neighbouring 3B/LFV
components, or between 3B components and LFV components that have no
parent-child relation, must not take place.

These principles were prescribed because they make actions taken by the sys-
tem traceable. If the physical system takes a certain action, the strict hierarchy
allows tracing back to which component or decision caused the action. Note that
it might not always be a human who caused the action. Since 3B components
can have a degree of autonomy, it is possible that an autonomous action causes
a physical action to take place.
2 Man-Machine Interface.
3 Besturing, Bediening, Bewaking.
4 Logische Functie Vervuller.

522 R. E. Monti et al.

2.2 VerCors

VerCors [4] is a deductive verifier for concurrent programs. It supports Java,
C, OpenCL, and the Prototypal Verification Language (PVL). To make verifica-
tion of concurrent programs tractable, VerCors uses permission-based separation
logic [10]. This version of separation logic uses permissions to decide whether
threads can read or write shared data. A complete permission allows a thread
to write, but does not obligate it to. A fraction of a permission only allows a
thread to read. This ensures that at any given moment, there can only be one
writer, or many readers, but not both at the same time. We refer to a write
permission as “write” while we refer to a fractional read permission as “read”.
Fractions of permissions can be distributed between threads. When a thread no
longer needs a permission, fractions of a permission can be recombined into a
complete permission. In particular, permissions are never duplicated, ensuring
that there can only be at most one write permission.

Alternatively, permission fractions can also be represented as concrete num-
bers. In this case, a “write” permissions corresponds to a fraction of 1. A “read”
permission corresponds to any fraction between 0 and 1, such as 1

2 or 3
4 . Opera-

tionally, having a permission fraction bigger than 0 and smaller than 1 allows a
thread to read a memory location, but not write to it. In this work, we mostly
use the terms read and write, but in more complicated contracts, sometimes
the numerical form is required. For a more thorough introduction to permission-
based separation logic, we refer the reader to “Specification and Verification of
Multithreaded Object-Oriented Programs with Separation Logic” by Clément
Hurlin [12].

To prepare methods for analysis with VerCors, they need to be annotated
with pre- and post-conditions. Pre- and post-conditions are sometimes also
referred to as the contract of a method. Pre-conditions describe the permissions
a method needs from the caller, as well as any functional properties that must
hold when the method is called. Post-conditions indicate the permissions that a
method returns to the caller, as well as any functional properties that may be
assumed. For example, when an object is constructed, permissions to access the
fields of the object are returned by the constructor of the object. As a functional
property, the constructor can guarantee that all fields are zero-initialized.

In Listing 1 an example is shown of such permission annotations in Java. The
annotations are placed in comments and are highlighted. In the annotations, the
expression after the requires keyword specifies the pre-condition of the method.
In this case, permission is required for the total field of class C. The ensures
keyword indicates the postcondition. In this case, the permissions from the pre-
condition are returned to the caller of the add method, as well as the functional
property that total is incremented by x.

When verifying an individual method, methods that are called are not
re-verified, instead their pre-condition is established and their post-condition
assumed. This is called modular verification, and it ensures that the correct-
ness of a method does not depend on the implementation of other methods.
This means that it is easy to update method implementations without break-

On Deductive Verification of an Industrial Concurrent Software Component 523

1 class C {
2 int total;
3
4 //@ requires Perm(total , write);
5 //@ ensures Perm(total , write) ** total == \old(total) + x;
6 void add(int x) {
7 total += x;
8 }
9 }

Listing 1. Example usage of permissions in Java. Write permission is required in the
pre-condition of method add. Because of this, add can only be called when the caller
has write permission for total. Then, the field total is incremented by the value
x. Finally, the write permissions are returned via the post-condition, as well as the
functional property that total is incremented by x.

ing the correctness of other methods. If necessary, implementations of methods
can also temporarily be omitted, which can be useful for describing and enforc-
ing interfaces between independent teams, or when implementations are not yet
available.

3 Verification of the Concurrent Data Manager Module

When discussing our plans for collaboration with Technolution, the engineers
suggested as a case study their new control software for the Baak tunnel. For
this tunnel, they have developed a system that is responsible for controlling and
reporting on all critical and non-critical components, such as escape doors, fire-
prevention measures, water drainage systems, lighting, ventilation, etcetera. In
order to reduce the time spent in spotting a concurrent candidate module to
analyse, we agreed to meet a first time with an engineer, experienced with the
tunnel software, who could guide us through it.

In this first meeting the engineers from Technolution not only suggested a
set of modules to verify, but also pointed out a problem that they would like
us to consider, since it was most likely a concurrency issue. The system they
had built at that point was functional, behaved properly, and passed all tests.
However, sometimes, according to their data logs, certain status data would
unexpectedly change during execution of the system. These unexpected changes
were never problematic in realistic scenarios, so therefore they considered it
benign. However, it was still unexpected, and they would like to understand
why this happens.

As a first step, we decided to go through the code base and try to understand
the structure. We used a couple of meetings with the Technolution team to get
some guidance around the code. Also, several times we asked for further code to
inspect, such as supporting libraries of the system.

We found that the components of a tunnel can be quite diverse, and to cope
with that diversity, several layers of abstraction and interfacing code had been

524 R. E. Monti et al.

built into the tunnel software, which made it non-trivial to understand for us.
Nevertheless this was not a problem for our verification approach, as it is modular
at the level of methods, and annotating the code was straightforward. We ran
VerCors on the fly, while annotating the code, and even mocked some library
calls, by means of abstract methods and ghost code. We did have problems
with VerCors lacking support for some frequently used Java features, such as
inheritance and generics. Once we decided on the module to verify, the effort to
abstract from unsupported Java features and annotate the code was very little;
the annotations were trivial to us, and it took just an afternoon to reach the
conclusions. Moreover, due to the simplicity of the specification, VerCors was
able to verify the code in just a couple of seconds.

3.1 Event Loop Analysis

Receive child
component state

Processing
step 1

Processing
step N

Publish state
to parent

components

Fig. 2. The 3B function processing event loop.

We inspected the event loop of the main module, because most of the concur-
rent behaviour happens there. This involved peeling off the abstraction layers
of the event loop framework, which is responsible for receiving and dispatching
messages and executing each step of the processing loop of 3B components. This
process repeats until the main module is shut down. An illustration of the typical
processing loop of a 3B function can be found in Fig. 2. A processing loop starts
by obtaining the state of all the child components for this 3B function (first
rectangle in the figure). This state is then used to take control decisions along
several processing steps inside the loop (shaded rectangles in the figure). It is
here that the Technolution engineers where suspecting that something is wrong.
In particular, during this control decision period, this state must not change.
The suspicion was that somehow the state was being changed.

Continuing the explanation of Fig. 2, at the end of the loop our own state
is prepared and made available to the upper 3B functions in the hierarchy (see
Fig. 1 for clarification). In general, 3B functions and LFV components work
asynchronously. The communication of the state between LFVs and 3B functions
is managed by specialised data managers which need to synchronise the state of
these asynchronous elements at the start and end of the 3B function processing
loop. In a generic data manager of the event loop framework, we were able to
spot two problems through manual inspection of the source code.

Problem 1: Forbidden Data Sharing. The first problem was related to
aliasing between references to data structures representing the status of the
child components of a 3B function. To better understand this, let us look at

On Deductive Verification of an Industrial Concurrent Software Component 525

Fig. 3: each 3B function uses two copies of the data structure representing the
status of its child LFVs and 3B functions. One of these copies, the “internal”
copy, represents the internal knowledge that a 3B function has of its children.
It is used by the 3B function processor to make control decisions and should
remain unchanged during the time of a processing loop iteration, this is, along
the shaded steps in Fig. 2. On the other hand, the “dynamic” copy is updated
each time a status update message from a child component is received. These
messages arrive at any point during a processing loop iteration and the updates
are asynchronously applied. At the end of an event iteration, the dynamic copy
is used by the data manager to update the internal copy.

3B function
processor

Data manager Child com-
ponents

Internal data Dynamic data
Mutates Receives

Reads

Aliasing hazard

Sends

Fig. 3. Shared data snapshots.

It turns out that the data manager accidentally aliased both the internal
and the dynamic copies. This is a simple but common mistake, and in line with
the expectations of the Technolution engineers. The internal copy would then
change midway through a processing loop iteration whenever the dynamic copy
would receive an update.

As a verification exercise, we decided to annotate the data manager module in
order to demonstrate how we could have avoided this mistake by using VerCors.
Actually, we simplified the module for the sake of focusing on the interesting
aspects, and to avoid incompatibilities with our current support of the Java
language. We further discuss this in Sect. 5. As we expected, it turned out to
be straightforward to rule out this mistake. List. 2 shows a simplification of
the actual aliasing bug and the annotations we used. Lines 9 and 10 are the
preconditions specifying that we need permissions to write on internal and its
field value while we need to be able to read dynamic and its field value. Our
postconditions, at lines 11 and 12, specify that these permissions should also be
returned to the caller. We specify permissions to each of them separately, using
the separation conjunction (**), since they should correspond to two different
data structures.

At line 16, dynamic is assigned to internal. Therefore, internal.value
and dynamic.value represent the same memory location. At this point VerCors
complains about our postcondition. List. 3 shows the VerCors output for this

526 R. E. Monti et al.

1 class Data{
2 int value;
3 }
4
5 class Manager{
6 Data internal;
7 Data dynamic;
8
9 //@ requires Perm(internal , write) ** Perm(dynamic , read);

10 //@ requires Perm(internal.value , write) ** Perm(dynamic.value , write);
11 //@ ensures Perm(internal , write) ** Perm(dynamic , read);
12 //@ ensures Perm(internal.value , write) ** Perm(dynamic.value , write);
13 void sync() {
14 internal.value = dynamic.value;
15 ...
16 internal = dynamic;
17 }
18 }

Listing 2. Ruling out aliasing with VerCors

faulty case. The error message “PostConditionFailed:InsufficientPermission” at
line 11 indicates that we are missing permissions to access a memory location.
The brackets and dashes at lines 5 and 7 indicate where the problem lies: we do
not posses the amount of permission we want to ensure in the second half of line
12 of our code. In fact, we already gave up all the permission we had on this
memory location through its alias, in the first half of the same postcondition
line. After VerCors indicates something is wrong, the user must find out why
this is the case and spot the undesired aliasing.

After analysing this bug with the engineers involved in our case study, we
concluded that this aliasing would likely have been the reason of the unexpected
behaviour they had detected. It apparently had not affected the overall behaviour
of the system, but the reason why such a bug did not extend into a serious fault
was not clear. The enormous amount of execution scenarios due to interleaving
and timing aspects also makes it difficult to reproduce the immediate effects of
this bug. The bug should be fixed since we cannot exclude that it may, under
certain circumstances, trigger a major fault in the tunnel control system.

Problem 2: Internal Data Leakage. A second bug was spotted while anno-
tating this module for verification with VerCors. Another method of the module
was leaking a reference to a private field of the class. List. 4 illustrates this case.
This is not harmful on its own, but it is usually considered bad practice. This
may unintentionally allow a user of this class to concurrently access the field
without following its synchronisation regime, which may result in a data race.
Permission annotations in VerCors will not disallow acquiring the reference, but
the annotations will ensure that there is no way to access any fields of this ref-
erence without holding the necessary permissions. This restriction rules out any
data races.

On Deductive Verification of an Industrial Concurrent Software Component 527

1 Errors! (1)
2 === Manager.java ===
3 //@ requires Perm(internal.value , write) ** Perm(dynamic.value , write);
4 //@ ensures Perm(internal , write) ** Perm(dynamic , read);
5 [-------------------------
6 //@ ensures Perm(internal.value , write) ** Perm(dynamic.value , read);
7 -------------------------]
8 void sync() {
9 internal.value = dynamic.value;

10 ---
11 PostConditionFailed:InsufficientPermission
12 ===
13 === Manager.java ===
14 //@ requires Perm(internal.value , write) ** Perm(dynamic.value , write);
15 //@ ensures Perm(internal , write) ** Perm(dynamic , read);
16 [-------------
17 //@ ensures Perm(internal.value , write) ** Perm(dynamic.value , read);
18 -------------]
19 void sync() {
20 internal.value = dynamic.value;
21 ---
22 caused by
23 ===
24 The final verdict is Fail

Listing 3. VerCors output for alias spotting

1 class Manager{
2 private Data internal; // protected_by(this)
3
4 synchronized Data get_internal () {
5 return internal;
6 }
7 }

Listing 4. Reference to private data leakage

3.2 Discussion on the Discovered Bugs

The two bugs we found are typically overlooked by testing and manual inspec-
tion: their effects are triggered by very specific combinations of timings and
interleaving that are too complicated to cover by test cases. A manual inspec-
tion may mistakenly consider these usages to be safe, or overlook them while
searching for functional behaviour bugs instead of memory safety.

The effects of these bugs in a deployed system might be dangerous as it is hard
to claim they do not cause incorrect behaviour. To prove that they do not cause
incorrect behaviour, one would have to consider all possible interleavings of the
processes of the system. The difficulty of this inspection increases exponentially
when the number of concurrent processes and timing factors increases. In other
words, proving that the system is not affected by the bugs by manual inspection
is untractable.

Fortunately, the memory bugs we found are detectable with VerCors, by
annotating methods in a straightforward manner with the permissions they
require/ensure for the fields that they read/modify. An example of this can

528 R. E. Monti et al.

be found in the the pre- and post-conditions of List. 2. These annotations are
made compulsory by the tool, meaning that if they are not there the tool will
terminate with an error. If verification succeeds, then VerCors guarantees that
there is no data race in the code.

4 Results Presentation

In this section we describe our preparation process and presentation of the results
to the bigger team of engineers at Technolution, which included a broader group
than just those involved in the case study. We also describe our impressions of
the final presentation and discuss the most interesting feedback points from the
audience.

4.1 Presentation Design Process

After the case study was analysed by hand and translated to VerCors, we wanted
to present our findings to a bigger audience of engineers at Technolution. How-
ever, we had experienced in former meetings with the Technolution team that we
had not been able to effectively explain what VerCors checks, and how to anno-
tate programs for VerCors. Therefore, we agreed to be careful and first present
the results only to the Technolution team involved in the case study.

It turned out the initial presentation had several shortcomings, which we
discuss here, because we think they provide important general insights.

First, the initial presentation tried to explain several useful verification con-
cepts. For example, it discussed the benefits of fractional permissions, compared
to non-splittable ownership tickets. It also discussed the difference between anno-
tating only for memory safety, and annotating for functional properties as well.
This was done to show how we use VerCors. However, without a formal methods
background, the explanation of these tradeoffs is hard to follow. Additionally,
most of these concepts are not necessary in order to explain the basis of our
approach to verification of memory safety. The solution was to only focus on
this basis, which is: annotating code with permissions.

Second, the examples used in the initial presentation combined orthogonal
concepts to make the examples non-trivial. While engaging for experts, we found
out that this is bad for teaching how an approach works. This is especially
relevant in the context of a presentation, where the audience needs to understand
the slides quickly and explanations need to be short. The solution is to make
the examples more targeted. Even when discussing the fundamental basis of
our verification approach, each example should only highlight the one relevant
aspect of it. For instance, our final presentation contained a code example that
had exactly one error. The code example on the next slide added exactly one
annotation, consisting of only one permission, to resolve the error. Additionally,
examples from the initial presentation were split up such that each sub-example
fit on one screen with a large font. With each example presented in isolation and
using as few lines of code as possible, they were also easier to understand.

On Deductive Verification of an Industrial Concurrent Software Component 529

Third, some of the examples in the initial presentation contained concerns
unrelated to verifying concurrency, such as division by zero and rounding. The
solution was to ensure that no concerns appear in the example that are unrelated
to concurrency or memory safety, since we experienced that this would deviate
the attention of the audience to topics we are not interested in discussing.

For the particular case of Technolution, we found out that it was useful to
compare our approach with the Rust language, which was familiar to them [17].
This was actually suggested by the Technolution side during our presentation
preparation meetings. We also took care with how we phrased certain concepts.
Since there might be a difference between what we regard as a permission and
what an engineer regards as a permission, we had to ensure this was not a
problem from the beginning.

Finally, we made sure to clarify that we do not execute the code, but logically
analyse it. For this, we compared it to making a pen and paper proof. This is
needed to step away from the usual runtime verification approach of unit and
integration testing.

To summarise, we learned that a “good” formal methods presentation to a
non-formal audience should have at least the following properties:

– Introduce only key concepts of the formalism in question that are actually
needed to understanding the basic idea of the formalism.

– Examples should present only one new concept at a time. Combining orthog-
onal concepts into one example is not helpful.

– Examples must be short, to ensure they fit on one slide, can be interpreted
quickly by the audience, and also be explained quickly by the presenters.

– Examples must not contain unrelated concerns. The domain of the audience
might introduce concerns the presenters are not aware of. Therefore, experts
in the domain of the audience should be asked beforehand.

– Determine concepts the audience is already familiar with, and draw parallels
between those and the concepts in the presentation. However: take care that
the audience does not take this analogy too far, to avoid misunderstanding.
Avoiding reuse of terms from the audience domain can help.

Additionally, our overall approach consisted of several iterations of refining
the presentation using feedback of the smaller group. We think this helped us to
narrow down what the Technolution engineers would most likely be interested
in, what information would benefit them, and what information could be safely
discarded from the presentation. It also helped us to agree on the proper language
to transfer this knowledge. The drawback of this approach is that it is time
consuming, because the presentation had to be presented twice before the final
presentation. Furthermore, the feedback had to be documented by Technolution,
and also had to be processed by us. Nevertheless, we think that this process will
be quicker next time, due to reusing lessons learned in this case study.

530 R. E. Monti et al.

4.2 Presentation Conclusions

During and after the final presentation, several questions were asked and com-
ments were made, both by the presenters and the audience. We have collected
the most insightful and applicable ones below.

Testing Exceeds Verification in Short term Gains. During the presen-
tation it was mentioned that some teams do not even use testing to its fullest.
We agree with the observation that it is more beneficial for most projects to
first test 80% of their code base, before starting to consider formal verification.
Additionally, there are formal methods to enhance and/or multiply the test-
ing effort. Some examples are generation of test cases, mutation testing and
QuickCheck-like testing [6,13,26].

Annotation & Specification Culture. Speaking from the experience of the
Technolution engineers, it is impossible to ask engineers to write the annotations
needed to use VerCors, or formal verification tools in general. Engineers do not
even write comments that you would like to have in the general case. There-
fore, there is a big gap between the annotations engineers are willing to write,
and what verification tools require. This can be improved upon by the formal
verification tools, by having smarter tools, generating some annotations, having
design shorthands, and setting effective defaults. But, the difference is so big,
that to adopt formal verification tools widely, there also needs to be a culture
shift about commenting and annotating code.

Similarities to Rust. Most engineers have heard of or worked with Rust.
Verification tools can exploit this to lower the barrier for using verification tools,
and make them more easily understandable and adoptable.

Optimise for the Common Case. Related to Rust, an approach that the
engineers thought could be useful to verification tools is the “optimise for the
common case” approach. In this approach, tools optimise for the use case that
is most common in practice. For exceptional or unsafe use cases, alternative
syntaxes and escape hatches are added. Usually, these alternative syntaxes are
also more verbose, making non-standard code also visually distinct. Furthermore,
the general case should be safe and hard to get wrong. If applied successfully, we
expect that the usage of this approach could reduce the amount of annotation
needed for verification, improve the readability and decrease the unwillingness
of the programmer to follow the verification path.

Library Calls. Some engineers expressed concerns about not having contracts
for libraries that a team uses. It is true that if a library has no contracts, someone
needs to write them. However, it is not a problem that the source of the library
is not available due to modular verification (explained in Sect. 2.2). Additionally,

On Deductive Verification of an Industrial Concurrent Software Component 531

there are ways to reduce friction caused by these missing contracts. For example,
it is possible to create a central database of library contracts. For cases where
the specification for a library is not in the database, the specification language
could offer syntax for defining contracts for a library separately.

Why not Use Automatic Static Analysis Tools Instead? An engineer
pointed out that he had some experience with various static and automatic
analysis tools. They raised the valid question of why code should be annotated for
VerCors, when there are tools that can spot memory bugs without annotations.
Some examples of such tools are Klocwork [14], FindBugs [9], Coverity [8] and
SonarQube [24]. Our answer to this question is that these kind of static analysis
tools are not verification tools. Instead, they do a “best effort” analysis to find
patterns that may relate to bugs. This means such tools are not exhaustive, and
can report false positives and warnings which have to be manually inspected.
Verification tools, in contrast, give strong formal guarantees on the validity of the
queried property over the analysed system. In other words, given a specification
that faithfully models the desired behaviour, false positives are rare.

Additionally, code analysis tools often can be used in tandem. Therefore,
we think it can be beneficial for teams to use tools with different purposes at
different stages of development, or even simultaneously. This way the quality of
the final product can be maximised.

5 Future Research

Future research for the VerCors team will go in several directions.
One direction of research is to reduce the number of annotations required

before VerCors can be used. Currently, if there are no annotations in the code,
VerCors cannot make any assumptions about the code. However, for industrial
code, simple assumptions are often correct. For example, two fields on one object
usually do not contain the same reference. We expect that it will cost less effort
to annotate for the exceptions of the previous rule, than to annotate wherever it
applies. Additionally, research is already being done to see if some of the required
annotations can be generated instead.

Another direction of research is to improve the support of VerCors for Java
features such as inheritance and generics. Currently a manual translation to a
subset of Java is necessary to verify industrial Java code with VerCors, however
efforts are being made to improve the support [20,23].

Finally, we think future research of the formal methods community as a
whole should be about designing simpler specification languages which are closer
to the concepts and models of software development teams. We found that the
semantics of our specification terminology is distant from the intuition of the
engineers. The understandability of specification languages is a common problem
in the formal verification community. For example, consider Linear or Branching
time logics [15], µ-calculus [5] and other algebras commonly used to specify
designs in model checking. The learning curve of these languages is too steep

532 R. E. Monti et al.

and they become impractical for the daily use of a software engineer. Therefore
the next step has to be one of effective reduction: reducing the expressive power
of these languages down to a level where they can be easily understood, while
retaining enough power to check properties that are of interest to the engineers.
Progress is already being made on this with languages such as SALT [1] and
Sugar [2], and all the work surrounding the Bandera Specification Language
(BSL) [7].

6 Conclusion

We have applied VerCors to a submodule of tunnel control software. This soft-
ware contained a known benign but unexpected runtime behaviour, which lacked
an explanation. Through manual analysis, a bug and a weakness were found,
one of which is a possible explanation of the unexpected runtime behaviour. We
have communicated our results to the Technolution team and the Technolution
engineers through a carefully prepared presentation that underwent multiple
feedback rounds from the Technolution team. This allowed us to focus on the
information that is most useful to the engineers, and leave out the information
that is not directly necessary.

The results of this presentation are suggestions and insights from the engi-
neers of Technolution. For example, it was suggested that there are similari-
ties between Rust and our annotations which VerCors can exploit. It was also
suggested that there should be support for easily modelling contracts of soft-
ware libraries. Another observation we have made is that there is a large gap
between the annotations that must be written to apply VerCors, and the maxi-
mum amount of annotations engineers are typically willing to write. There was
also an observation from an engineer that, in the short term, proper testing
practices yield more benefits than formal verification does in the short term.

Finally, we have discussed future directions for our work, such as implement-
ing assumptions about the typical structure of industrial Java code in VerCors,
as well as adding more extensive support for the Java language in VerCors.

Acknowledgements. We thank Technolution for the opportunity to analyse their
code, their guidance and support.

References

1. Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for tem-
poral logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 757–775.
Springer, Heidelberg (2006). https://doi.org/10.1007/11901433 41

2. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The
temporal logic sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 363–367. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4 33

3. Welkom bij de Blankenburgverbinding. https://www.blankenburgverbinding.nl/.
Accessed 21 Jan 2022

https://doi.org/10.1007/11901433_41
https://doi.org/10.1007/3-540-44585-4_33
https://doi.org/10.1007/3-540-44585-4_33
https://www.blankenburgverbinding.nl/

On Deductive Verification of an Industrial Concurrent Software Component 533

4. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

5. Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. In: Handbook
of Model Checking, pp. 871–919. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8 26

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. SIGPLAN Not. 35(9), 268–279 (2000). https://doi.org/10.1145/
357766.351266

7. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: a language framework for express-
ing checkable properties of dynamic software. In: Havelund, K., Penix, J., Visser,
W. (eds.) SPIN Model Checking and Software Verification, 7th International
SPIN Workshop, Stanford, CA, USA, August 30–September 1, 2000, Proceedings.
LNCS, vol. 1885, pp. 205–223. Springer, Cham (2000). https://doi.org/10.1007/
10722468 13

8. Coverity. https://www.synopsys.com/software-integrity/security-testing/static-
analysis-sast.html. Accessed 18 May 2022

9. Findbugs. https://findbugs.sourceforge.net/. Accessed 18 May 2022
10. Haack, C., Huisman, M., Hurlin, C., Amighi, A.: Permission-based separation

logic for multithreaded java programs. Log. Methods Comput. Sci. 11(1) (2015).
https://doi.org/10.2168/LMCS-11(1:2)2015, https://lmcs.episciences.org/998

11. Huisman, M., Monti, R.E.: On the industrial application of critical software veri-
fication with VerCors. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12478, pp. 273–292. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61467-6 18

12. Hurlin, C.: Specification and Verification of Multithreaded Object-Oriented Pro-
grams with Separation Logic. Ph.D. thesis, Université Nice Sophia Antipolis (09
2009)

13. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/
TSE.2010.62

14. Klocwork. https://www.perforce.com/products/klocwork. Accessed 18 May 2022
15. Kropf, T.: Introduction to Formal Hardware Verification, 1st edn. Springer, Hei-

delberg (1999). https://doi.org/10.1007/978-3-662-03809-3
16. Landelijke Tunnelstandaard (National Tunnel Standard). http://publicaties.

minienm.nl/documenten/landelijke-tunnelstandaard. Accessed Apr 2022
17. Matsakis, N.D., Klock II, F.S.: The rust language. In: ACM SIGAda Ada Letters,

vol. 34, pp. 103–104. ACM (2014)
18. Oortwijn, W., Huisman, M.: Formal verification of an industrial safety-critical traf-

fic tunnel control system. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019.
LNCS, vol. 11918, pp. 418–436. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34968-4 23

19. Oortwijn, W., Huisman, M., Joosten, S.J.C., van de Pol, J.: Automated verification
of parallel nested DFS. In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS, vol.
12078, pp. 247–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5 14

20. Rubbens, R.: Improving Support for Java Exceptions and Inheritance in VerCors,
May 2020. http://essay.utwente.nl/81338/

https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1007/10722468_13
https://doi.org/10.1007/10722468_13
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://findbugs.sourceforge.net/
https://doi.org/10.2168/LMCS-11(1:2)2015
https://lmcs.episciences.org/998
https://doi.org/10.1007/978-3-030-61467-6_18
https://doi.org/10.1007/978-3-030-61467-6_18
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://www.perforce.com/products/klocwork
https://doi.org/10.1007/978-3-662-03809-3
http://publicaties.minienm.nl/documenten/landelijke-tunnelstandaard
http://publicaties.minienm.nl/documenten/landelijke-tunnelstandaard
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-45190-5_14
https://doi.org/10.1007/978-3-030-45190-5_14
http://essay.utwente.nl/81338/

534 R. E. Monti et al.

21. Safari, M., Huisman, M.: Formal verification of parallel prefix sum and stream
compaction algorithms in CUDA. Theoret. Comput. Sci. (2022). https://doi.org/
10.1016/j.tcs.2022.02.027

22. Safari, M., Oortwijn, W., Joosten, S., Huisman, M.: Formal verification of parallel
prefix sum. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM
2020. LNCS, vol. 12229, pp. 170–186. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-55754-6 10

23. Şakar, O.: Extending support for Axiomatic Data Types in VerCors, April 2020.
https://essay.utwente.nl/80892/

24. Sonarqube. https://www.sonarqube.org/. Accessed 18 May 2022
25. Technolution. https://www.technolution.eu. Accessed Apr 2022
26. Timmer, M., Brinksma, H., Stoelinga, M.: Model-based testing, NATO science for

peace and security series D: Information and Communication Security, vol. 30, pp.
1–32. IOS Press (2011). https://doi.org/10.3233/978-1-60750-711-6-1

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.tcs.2022.02.027
https://doi.org/10.1016/j.tcs.2022.02.027
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-55754-6_10
https://essay.utwente.nl/80892/
https://www.sonarqube.org/
https://www.technolution.eu
https://doi.org/10.3233/978-1-60750-711-6-1
http://creativecommons.org/licenses/by/4.0/

Exploring a Parallel SCC Algorithm

Using TLA+and the TLC Model Checker

Jaco van de Pol1,2(B)

1 Department of Computer Science, Aarhus University,
Åbogade 34, 8200 Aarhus, Denmark

jaco@cs.au.dk
2 University of Twente, DSI, Formal Methods and Tools,

P.O.-Box 217, 7500 AE Enschede, The Netherlands

Abstract. We explore a parallel SCC-decomposition algorithm based
on a concurrent Union-Find data structure. In order to increase confi-
dence in the algorithm, it is modelled in TLA+. The TLC model checker
is used to demonstrate that it works correctly for all possible interleav-
ings of two workers on a number of small input graphs.

To increase the understanding of the algorithm, we investigate some
potential invariants. Some of these are refuted, revealing that the algo-
rithm allows suboptimal (but still correct) executions. Finally, we inves-
tigate some modifications of the algorithm. It turns out that most mod-
ifications lead to an incorrect algorithm, as revealed by the TLC model
checker.

We view this exploration as a first step to a full understanding and a
rigorous correctness proof based on invariants or step-wise refinement.

Keywords: Parallel SCC algorithm · Concurrent Union-Find data
structure · PlusCal/TLA+ specification · TLC model checker

1 Introduction

This paper studies a parallel algorithm for the detection of Strongly Connected
Components (SCCs), which proceeds by sharing and merging partial SCCs that
are maintained in a concurrent Union-Find data structure [2,3]. Previous work
provided an informal correctness proof of the algorithm, and demonstrated a
good experimental parallel speedup, even for graphs with a few large SCCs.

In order to increase confidence in the correctness of the algorithm, and to
facilitate a detailed understanding, this paper presents a TLA+specification of
the algorithm. This is analysed in the TLA+-toolbox [7], mainly by means of
the TLC model checker [17]. The specification allows to check that for a limited
number of workers and a couple of small graphs, all fair executions terminate,
and all possible interleavings yield the correct SCC-decomposition.

In addition, to increase detailed understanding of the algorithm, we postu-
lated a number of additional assertions and invariants, several of which were
refuted by the model checker. The counter examples revealed some weird and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 535–555, 2022.
https://doi.org/10.1007/978-3-031-19849-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_30&domain=pdf
http://orcid.org/0000-0003-4305-0625
https://doi.org/10.1007/978-3-031-19849-6_30

536 J. van de Pol

suboptimal (but still correct) executions, in which work is being duplicated.
Finally, efforts to improve the algorithm failed, because the model checker dis-
covered that several subtle modifications to the algorithm lead to errors.

Context. SCC decomposition has numerous applications as a fundamental
building block in graph algorithms. We are mostly interested in applications
in formal methods, such as model checking LTL properties, preprocessing for
weak bisimulation reduction, and analysis of Markov chains. Since these meth-
ods are used for the verification of safety-critical systems, they must themselves
be guaranteed correct. At the same time, intricate parallel algorithms have been
designed, to scale the methods to realistic systems. To maximize parallel speed
up, locking mechanisms are avoided where possible. This makes the correct-
ness argumentation quite hard. This has led to the formal verification of several
model checking algorithms, like a full LTL model checker [6], a model checker
for Timed Automata [16], a sequential [12] and parallel algorithm [11] for Nested
Depth-First Search, and sequential SCC-decomposition algorithms [4,8]. We are
not aware of a formal verification of a parallel SCC algorithm.

There are many SCC decomposition algorithms. Tarjan provided the first
sequential linear-time algorithm [14]. The algorithm analysed in this paper is
closer to Dijkstra’s sequential SCC algorithm [5]. Since then, several distributed
SCC algorithms have been developed [1,10]. These algorithms apply to graphs
that are partitioned among several workers. This paper is concerned with paral-
lel SCC algorithms (multi-core parallelism), where the graph is in global, shared
memory so all workers have access to it. Typically, the workers share some infor-
mation on explored SCCs. Examples are the algorithm by Gavin Lowe [9] and
the algorithm by Étienne Renault [13]. These algorithms make different trade-
offs when two workers start working on the same SCC. For instance, one could
suspend one of the workers, or one could redo the whole SCC with a single
worker. This paper studies the algorithm from Vincent Bloemen, following the
presentation of his thesis [2], first published in [3]. The special feature of this
algorithm is that multiple workers can work on the same SCC, sharing partial
SCCs with each other. This is relevant for graphs with a few large SCCs.

2 Preliminaries

The SCC algorithm takes as input a rooted directed graph G = (V,E, v0), where
V is a finite set of nodes (states), E ⊆ V × V is the set of directed edges
(transitions), and v0 is the root (initial state). The algorithm works on-the-
fly (useful for model checking). It starts at v0 and discovers new E-successors
through a function next : V → 2V . We write v →∗ w if (v, w) is in the transitive-
reflexive closure of E. A subset S ⊆ V is strongly connected if for all v, w ∈ S,
v →∗ w. We call such S a partial SCC. A strongly connected component (SCC)
of G is a maximal subset that is strongly connected.

Partitions of a set can be maintained in the Union-Find data structure, which
is a forest where every element has a pointer to its parent in the same equiva-
lence class. The elements that point to themselves are the roots. One finds the

Exploring a Parallel SCC Algorithm 537

representative of an element by following the parent pointers to the root. Two
elements can be united by assigning the parent pointer of the root of one to the
root of the other. These operations run in amortized (near)-constant time [15].

2.1 A Parallel SCC Algorithm Based on Concurrent Union-Find

We first provide an informal explanation of the parallel SCC decomposition
algorithm based on concurrent Union-Find, following the presentation in the
PhD thesis of Vincent Bloemen [2], originally published in [3]. We present
the algorithm in a top-down fashion. The full original algorithm is included
in Appendix A for easy reference. We refer to the thesis for more detailed expla-
nations.

Main Procedure. The main procedure UFSCC (Algorithm 1) runs an inde-
pendent Depth-First-Search (DFS) for each worker p. A newly visited node v
is pushed on a worker-local stack Rp (line 7), which will contain states to be
merged in partial SCCs. There are two globally shared data-structures:

– A Union-Find forest, storing the current partitioning in partial SCCs
– A Cyclic List, enabling an enumeration over all nodes in a partial SCC

The DFS proceeds per partial SCC, rather than per node: From node v,
UFSCC is recursively called (line 12) for each “new” successor w of each node
v′ that is in the same partial SCC as v. The nodes v′ are picked from the Cyclic
List (line 8, 18). The calls to successors w are performed in random order (line
10), to encourage workers to operate on different parts of the graph.

If a worker has already visited some node in the partial SCC of w (but it is
not yet fully explored), a loop has been detected: In this case, v and w and all
intermediate nodes on the local stack Rp definitely belong to the same SCC, so
they can be united in the UF-forest (line 14–16). Note that this partial SCC is
not necessarily complete.

To find out if the partial SCC of successor w is either completely “explored”,
or if it was already “found” by worker p, or else if it is entirely “new” for worker
p, we maintain two more pieces of globally shared information. This information
applies to partial SCCs, so it is stored at the roots of the Union-Find forest.

– A UF-status, indicating if this partial SCC is completely explored,
– A bit set UF-workers, storing all workers that have found this partial SCC.

Based on the UF-status and the Worker set, the function MakeClaim (Algo-
rithm 2) can easily determine the status of a newly visited node. To establish
the status of a node a, it must first find the root of a (line 2), to obtain the
information on the partial SCC. MakeClaim has a side-effect: If a is newly vis-
ited, the worker set of the root is updated (line 8).1 This is a bit complicated,
since in the mean-time, other workers may have extended this partial SCC, so
the UF-root of a may have advanced. This is solved by the while loop (line 7–9),
after which p must be in the worker set of the UF-root of a.
1 Although not stated explicitly, this assignment is taken to be atomic.

538 J. van de Pol

Concurrent Union-Find Forest. We proceed to the explanation of the imple-
mentation of the UF-forest (Algorithms 3 and 4). The Find procedure (Algo-
rithm 3) simply follows the parent-pointers, until a self-loop is found, indicating
that we reached the root of this equivalence class. The path is shortened for
future calls.

To determine if a and b belong to the SameSet (Algorithm 3), we find their
roots and check if they are equal; if so, they definitely belong to the same SCC
(line 16). Since SameSet is a non-atomic operation, it can happen that the (com-
mon) root of a and b has advanced in between. If so, we repeat the whole pro-
cedure in the new situation (line 18). If not, we return False, since (at least at
some point during SameSet) a and b were in a different partial SCC.

The concurrent Unite function (Algorithm 4) is the most complicated. Given
the nodes a and b to unite, it will find their minimal root q and maximal root r
(line 11–15). The unite function has three tasks:

– The parent of q shall be r (the direction is fixed to avoid cycles);
– The union of the worker sets of q and r shall be stored at r;
– The cyclic lists of q and r shall be combined into a single cyclic list.

The main complication is that concurrent unites may happen. We avoid
intermediate updates to q by locking its root. The lock is implemented in the UF-
status (with values “Live”, “Lock” and “Explored”). LockRoot uses an atomic
Compare-And-Swap (CAS) to ensure that only one worker can hold the lock on
q. It also checks that the root of q has not been advanced in the meantime. If we
cannot lock q, the whole Unite-procedure is restarted (line 16). After obtaining
the lock on q, its parent pointer can be safely updated to r (line 20). Note that
q can never become a root, so there is no need to ever unlock its UF-status.

The cyclic lists must be merged as well. This is explained in the next sub-
section. Finally, we must store the union of the worker sets of r and q at the
new root. Another complication arises: In the meantime, the root of r may have
advanced! This is solved by the loop on line 21–24: We keep copying and uniting
the worker set of the most recent root of r and q, until r is its own root.

Cyclic List. We now explain the Cyclic List, which is used to enumerate all
nodes in a partial SCC. The cyclic list is implemented by a simple next-pointer.
Each node also has a list-status, which can be “Busy”, “Lock”, or “Done”. The
main operations are to enumerate the “Busy” elements of the list (PickFromList,
Algorithm 5), to remove elements from the list (RemoveFromList, Algorithm 5),
and to merge two cyclic lists (integrated in Unite, Algorithm 4, line 17–19).
Two auxiliary operations are to lock (LockList, Algorithm 4), and to unlock
(integrated in Unite, Algorithm 4, line 25–26) elements in the list.

Merging two cyclic lists (Algorithm 4) proceeds by locking a “Busy” element
from each list (line 17, 18), then swapping their two next-pointers (line 19), and
finally unlocking them (line 25–26). LockList traverses the cyclic list (line 6, 9)
and tries to “Lock” elements by a CAS-operation. If this succeeds, we return
the locked element. Otherwise, we simply give up and try the next element in
the list. Unlocking (line 25, 26) proceeds by assigning the list-status to “Busy”
again.

Exploring a Parallel SCC Algorithm 539

The RemoveFromList function (Algorithm 5) updates the list-status from
“Busy” to “Done” in a CAS operation (line 19). Note that “Locked” elements
cannot be removed, but are retried (line 18) as long they are locked. Removed
(“Done”) nodes are still part of the cyclic list. We keep them, since other workers
might still point to them, and they should be able to pick the next “Busy” node.

Finally, PickFromList (Algorithm 5) picks the next “Busy” node from the
cyclic list. Starting at node a, it waits until a is unlocked (busy waiting, line
2,4). If a is “Busy”, it can be returned (line 3). If a is “Done”, we proceed to
the next node, b (line 5). If a = b, the cyclic list must be empty, so the partial
SCC is completely explored. This is properly stored in the UF-status field of the
UF-root of a (line 8). A CAS operation is used, to ensure that only one worker
reports a newly discovered SCC (line 9). In this case, we return NULL, since
this SCC doesn’t contain a “Busy” node. Otherwise, we wait until b is unlocked
(busy-wait loop line 11–13). If b is “Busy”, we return it. If b is also “Done”, we
need to proceed with the next state in the cyclic list, c (line 14, 16). Finally, we
shorten the path a → b → c (skipping b, line 15) to avoid long chains of removed
nodes in the next call to PickFromList.

2.2 TLA+ and TLC

The underlying logic of TLA+ is simple, but powerful. The formalism is first-
order predicate logic, where (untyped) variables range over sets (in the sense
of ZF). TLA+ comes with a library of predefined sets and standard operators
on them, including natural numbers, functions, sequences, and the definitions of
(linear time) temporal logic.

A system specification consists of a collection of state variables, and the
definition of an initial predicate (on state variables) and a next-state predicate
(on state variables and their primed variants). A TLA+ specification is completed
by weak (or strong) fairness assumptions, to ensure that there is some progress.

The PlusCal language allows the specification of algorithms using a simple
programming language with assignments, if-then-else statements, while-loops,
recursive procedures, and (fair) parallel composition. Atomicity is specified by
adding program labels that serve as interleaving points. As a result, the PlusCal
specification of the UFSCC algorithm follows the original pseudocode rather
closely. Specifications in PlusCal are automatically translated to TLA+.

Given the specification, one creates a finite model by fixing the number of
workers, and fixing a particular input graph. We used the TLC model checker
to prove that all interleavings allowed by the algorithm terminate and lead to a
correct SCC decomposition. The TLC model checker supports parallel compu-
tation, symmetry reduction, and stores visited states on disk. TLC produces a
counter example trace when a property is violated. We used the Visual Studio
Code plug-in for TLA, for its great support to filter and navigate huge counter
examples. Also, managing multiple specifications and models is well-supported.

Proving correctness for all number of workers, or for each input graph, is
beyond the scope of model checking. We have not yet used the TLA proof checker,
which would require to specify inductive invariants for the UFSCC algorithm.

540 J. van de Pol

3 Modeling and Analysis Process

We constructed an initial specification (Sect. 3.1) of the UFSCC algorithm in Plus-
Cal, following the pseudocode (Appendix A) closely. We extended the specifica-
tion with properties to express its functional correctness, i.e. the detection of the
correct SCCs (Sect. 3.3). We added additional assertions to test some intuitions
about the algorithm. Since the state space was large, we started with random sim-
ulation runs to test these assertions for small graphs and a few workers. Later we
realized that the state space was actually infinite, due to recursive calls in busy-
waiting loops. We then made a second specification (Sect. 3.2), avoiding recursive
busy waiting. This allowed us to investigate the full state space.

We detected that some of the conjectured invariants did not hold (Sect. 4).
The counter-examples to these invariants show some suboptimal traces, that we
had not anticipated. However, we have not found traces that violate the overall
correctness of the algorithm. It is of course possible that errors would occur on
larger graphs, or with more workers. We also analysed some modifications of the
algorithm, most of which were incorrect, as detected by the model checker.

3.1 Initial Specification – Good for Simulation

The initial specification follows the pseudocode in a rather straightforward man-
ner. All in all, building the first executable model that covered the whole algo-
rithm only took around one full day. Since TLA+ is a rich specification language,
the global data structures UF (Union-Find forest) and CL (cyclic list) can be
modelled directly as mathematical functions. These globally shared variables are
declared and initialized as follows. Here init is the initial state of the graph, and
Workers is the set of worker identities, both specified in a separate model.

variables
UF = [n\in Nodes |-> [

parent |-> n,
workers |-> IF n=init THEN Workers ELSE {},
uf_status |-> "live"]];

CL = [n\in Nodes |-> [
next |-> n,
list_status |-> "busy"]];

All procedures in Appendix A could be easily formalised as PlusCal proce-
dures. As an example, we provide the Find-operation (Algorithm 3, line 1–4) in
PlusCal, below on the left. On the right, we show the procedure RemoveFromList
(Algorithm 5, line 17–18) in PlusCal, using a busy-wait loop and the macro CAS.
In PlusCal, a procedure cannot return a result. Instead, we declared thread-local
variables for the return value of each procedure (like returnFind below). In an
attempt to reduce the state space, we reset these global variables at the call
site, as soon as we have read the result (not shown here). Note that the labels
indicate interleaving points: All statements between two labels occur atomically.

Exploring a Parallel SCC Algorithm 541

procedure Find(a)
variable p;
{

f1: p := UF[a].p;
f2: if (p /= a)

{ call Find(p);
f3: UF[a].p := returnFind };

else
{ returnFind := p };

f4: return
}

procedure RemoveFromList(a) {
r1: while

(CL[a].stat/= "done")
{
CAS(CL[a].stat,"busy","done")
};

return
}

Main Procedure and Parallel Processes. The main procedure is UFSCC.
We use the “with”-construct from PlusCal to select an arbitrary successor w1

non-deterministically from the successors of v1, which is the element picked from
the cyclic list of v. Here next refers to the transitions in the input graph, which
is modeled in a separate model.

The whole system consists of a weakly-fair parallel composition over all Work-
ers (a constant set defined in a separate model), where each process executes
UFSCC from the initial state. Each worker maintains its Roots stack as a thread-
local variable, initialized as the empty sequence. We use weak fairness to avoid
that processes stutter for ever, violating termination of the algorithm.

procedure UFSCC(v)
variables v1, w, succ, ...

{
m1: Roots := <<v>> \o Roots;

call PickFromList(v);
m2: v1 := returnPick;
m3: while (v1 /= null) {

succ := next[v1];
m4: while (succ /= {}) {

with (w1 \in succ) {
w := w1;
succ := succ \ {w1} };

... } ... } ... }

fair process (W \in Workers)
variables
Roots = << >>,
returnFind, returnPick ;

{ main: call UFSCC(init); }

Atomicity. PlusCal uses program labels to specify atomicity: code between
two program labels is executed atomically; interleaving (and branching) can
only happen at program labels. We took the following modeling decision: To
ensure that every “atomic” block performs at most one global memory access,
we introduce a label (like f1) for each program statement with a global memory
access. PlusCal also requires labels for loops, procedure calls and returns, etc.

There are two exceptions to the rule:The first exception iswhen the pseudocode
insisted on atomic updates. For instance, line 23 in Algorithm 4 (Unite) states that

542 J. van de Pol

theworkersetmustbeupdatedatomically.So,despitethreeglobalmemoryaccesses,
we model this line with only one label in the TLA+ specification:

u11: UF[r].workers := UF[r].workers \union UF[q].workers;

In contrast, line 19 of the same algorithm tells that the pointer Swap happens
non-atomically. So this we modelled using multiple labels (i.e., breaking it in two
atomic pointer assignments), as shown on the left below.

The other exception is where the pseudocode uses CAS statements, which
we modeled by a macro, shown below on the right. Note that macros cannot
contain labels, so they are treated as atomic blocks by definition.

u8: tmp := CL[a].next;
CL[a].next := CL[b].next;

u9: CL[b].next := tmp;

macro CAS(x,old,new) {
returnCAS := (x=old);
if (returnCAS) { x:=new }

}

Deviations from the Original Algorithm. We made the following deviations
from the pseudocode when interpreting it in the specification:

– We slightly rearranged the code for esthetic reasons. For instance, we split
UF and CL in two data-structures. We also inlined the LockRoot procedure,
which was only called from one place in Unite.

– To simplify the main process, we did not model the initial assignment to the
worker set (Algorithms 1, line 3, 4), but instead, we did this in the initialisa-
tion of the UF data structure (as shown in the code above).

– Although not indicated explicitly, we took the worker set update in Make-
Claim (Algorithm 2) as an atomic update, similar to the update in Unite.

– Note that PickFromList returns NULL if the cyclic list is empty. This pro-
cedure is called: (i) From the main procedure UFSCC (Algorithm 1, line 8,
18); the while loop terminates when PickFromList returns NULL. (ii) From
LockList, but now the case that NULL is returned is not handled. To make
this an explicit assumption, we replaced line 7 in LockList (Algorithm 4) by
an assertion checking for NULL. We have not detected a violation of this
assertion.

3.2 Improved Specification – Good for Model Checking

The initial specification led to very large state spaces, even when run with only
2 workers on a graph with only 3 nodes. As a consequence, initially we could not
apply complete model checking, but only run simulations.

Busy Waiting in Recursion. Later, we realized that the state space was
actually infinite. The reason is that the pseudocode models busy-waiting loops
with recursion. For instance, the procedure LockList (Algorithm 4, l. 5–9) was

Exploring a Parallel SCC Algorithm 543

initially modeled as shown below (left). Note that if the CAS fails, we retry
locking the list by the recursive call at line 9. Recall that PlusCal is translated
to TLA+; the translation involves the introduction of a stack to model procedure
calls and recursion. Although the LockList procedure terminates (after the other
worker releases the lock), an unbounded number of executions of the loop can
happen in between, leading to an unbounded stack.2

Our remedy was to replace tail-recursive calls by goto-statements. Note that
the re-specification of LockList on the right below leads to a finite state space.
We replaced all tail-recursion by goto-statements, to reduce the state space.

procedure LockList(a)
variable s
{

l1: call PickFromList(a);
l2: s := returnPick;

assert s /= null;
CAS(CL[s].stat,

"busy", "lock");
l3: if (returnCAS) {

returnLock := s;
return

} else {
call LockList(s);

l4: return
}

} * 1st model: tail recursion

procedure LockList(a)
variable s
{

l1: call PickFromList(a);
l2: s := returnPick;

assert s /= null;
CAS(CL[s].stat,

"busy", "lock");
l3: if (returnCAS) {

returnLock := s;
return

} else {
a := s;
goto l1;

}
} * 2nd model: goto-loop

Replace Busy-Wait by Await. In a final attempt to reduce the state space,
we tried to avoid busy-wait loops at all, by using the await statement of PlusCal.
As an example, we show the start of the procedure PickFromList (Algorithm 5,
line 1–3). On the left we show the initial specification in PlusCal (we modelled
the do-while by a goto statement). On the right, we show the improved version,
where the busy-waiting loop with goto is replaced by the await-statement.

procedure PickFromList(a)
variable status, b, c, root;
{

pX: status := CL[a].stat;
if (status = "lock")

{ goto pX } else
if (status = "busy") {

returnPick := a;
p1: return

}; ... }

procedure PickFromList(a)
variable b, c, root ;
{

pX: await CL[a_P].stat /= "lock";
if (CL[a].stat = "busy") {

returnPick := a;
p1: return

};
...}

2 In this tail-recursive case, the translation could have avoided the use of a stack.

544 J. van de Pol

We have no formal justification for these modifications, but now at least the
state space of the algorithm for a fixed graph and set of workers is finite. For
2 workers and graphs of 4 nodes (like those in Appendix B), the state space is
around 2–15 Million nodes. For state spaces of this size, model checking is feasible
on a consumer-laptop and runs within a couple of minutes. For 3 workers on a
graph of only 3 nodes, the state space grew already to 67 Million nodes. This
becomes painful for larger graphs, but one could still fall back on simulation.

3.3 Specifying the Correctness Property and Other Assertions

Next to the specification of the system, we need to specify the correctness cri-
terion. The main claim is that UFSCC terminates, and upon termination the
Union-Find forest contains the graph partitioning in the correct SCCs. We spec-
ified and checked the expected SCCs for each model instance separately.

Model Instances. A model instance is specified in a separate configuration file.
The example below (left) shows a fragment of a model instance. It specifies a
graph of 4 nodes and 5 edges. Note that the sequence of edges can be interpreted
as a function from nodes to set of nodes. It can be easily checked that this graph
has two SCCs. Since our Union-Find structure always takes the largest node as
representative, we can specify the expected root for each node. These expected
SCCs will be used to express the correctness claim.

The model instance also provides a value to the set of workers. In the example
below (right), we introduce two workers w1 and w2 as distinct model constants.

Nodes == { 1,2,3,4 }
next == << {2}, {1,3}, {4}, {3} >>
init == 1
expected == << 2, 2, 4, 4 >>

CONSTANTS
w1 = w1
w2 = w2
Workers = {w1, w2}

Main Correctness Claim. For the main correctness claim, we define an oper-
ator (logical function) that computes the root of a node in the UF-forest in a
single snapshot. Note that this is quite different from the Find-procedure, which
does not work atomically (the UF forest can be modified by concurrent work-
ers) and has a side effect (path shortening). The ideal find operator is defined
recursively. Note that TLA+ allows that recursive operators are only partially
specified. In this case, if the UF-structure contained loops, the value of “find”
would not be defined everywhere.

RECURSIVE find(_)
find(n) == IF UF[n].parent=n THEN n ELSE find(UF[n].parent)

Correct == (\A w\in Workers : pc[w] = "Done") =>
(\A x\in Nodes : find(x) = expected[x])

Termination == <>(\A w \in Workers: pc[w] = "Done")

Exploring a Parallel SCC Algorithm 545

Given the logical find-operator and the expected SCCs, partial correctness
can be stated easily. In Correct above, we state that when all workers are done,
the root of every node in the graph is as expected. Note that this is an invariant
that trivially holds for all states, except those where all processes have finished.
The LTL property Termination indicates that all fair runs lead to a state where
all processes have returned from the initial UFSCC call. Together, Correct and
Termination (and the fact that the program doesn’t crash halfway due to a
type/value error) specify total correctness under weak fairness.

4 Findings from Model Checking Experiments

The specification in the previous section has a finite state space, given a fixed
input graph and a fixed number of workers. So in principle, the TLC model
checker can generate the full state space and explore if the algorithm works
correctly for all possible interleavings, and all possible graph traversals (recall
that the next successor is selected non-deterministically). The bad news is that
the state space could only be computed for rather small graphs and a few workers.
The good news is that the algorithm was correct for all instances that we tried.
We tried 2 workers on 10 graphs of 3–4 nodes, from various initial positions. See
Appendix B for an impression of a few input graphs.

This is insufficient information to conclude that the algorithm is also correct
for more workers on larger input graphs. The royal road to increase the confidence
in the algorithm would be to identify and prove a number of inductive invariants
that imply correctness. At the moment we don’t know the proper invariants of the
algorithm. The intermediate contribution of this work is to investigate a number
of potential invariants. It appears that several conjectured invariants actually
don’t hold, as revealed by some weird (but not wrong) executions (Sects. 4.2, 4.3).
This might diminish the confidence in the algorithm.

We also studied a number of modifications of the algorithm. These are partly
inspired by efforts to “restore” some conjectured invariants and avoid weird
executions, and partly by a wish to simplify or restructure the specification in
clear layers. In particular, we would wish to separate code at the UF level from
code at the CL level. We believe that this would facilitate a proof by step-wise
refinement. Currently, it is mainly the Unite-procedure that mixes the two levels.

Our findings indicate that most modifications made the algorithm wrong
(Sects. 4.1, 4.4). We don’t know if this should increase or decrease the confidence
in the algorithm: On the one hand, it shows that the correctness of the algorithm is
rather fragile, and one could imagine that the original algorithm fails on a slightly
different input graph. On the other hand, it shows that wrong algorithms can be
caught by model checking, even with 2 workers running on the 10 small input
graphs that we constructed. We will now discuss these findings in more detail.

4.1 Simplifying the Equivalence Check (SameSet)

Consider the procedure SameSet (Algorithm 3, l. 13–18). It finds the roots of a
and b. If the roots are equal, a and b clearly belong to the same set. The reverse

546 J. van de Pol

is actually not true in a concurrent setting! First of all, SameSet could return
False, even though a and b have been united in between by another worker. One
could argue that this result is correct, since SameSet should have returned False
if it had just been a bit faster. Still, at line 17, we only return False if the root
of a has not changed in the meantime. Otherwise, we start all over (l. 18).

The problem with this approach is that it seems complicated, it looks a-
symmetric (we don’t check if the root of b has changed), and it seems to relieve
the symptom rather than the cause of the problem: what if the root of a is
updated right after we check that it wasn’t updated in line 17?

For these reasons, we tried a simplification, replacing line 17 and 18 by just
returning “False”. However, this simple change leads to serious consequences:

– On some graphs, the modified UFSCC gave wrong answers, by merging dif-
ferent SCCs into a single one.

– On some graphs, the modified UFSCC crashed, by attempting to pop an
element from the empty Roots-stack.

The TLC model checker produces counter-examples, i.e. concrete runs of
the modified algorithm that lead to the problematic behaviour. Although these
traces get long, after some analysis they explained why these problems occur.

The disturbing situation in SameSet occurs when a and b are initially in the
same partition, but the root of this partition is updated in between finding the
root of a and b. In that case, the roots seems different, and a wrong result is
reported. In this sense, returning False directly after line 16 would result in a
SameSet procedure that is not even reflexive.

Now why is this problematic? The procedure SameSet is called by the main
procedure UFSCC while popping roots from the stack as long as the source and
target of the current transition v → w are not in the same set! (Algorithm 1, l.
14–16). The effect of the erroneous version of SameSet is that we keep popping
and uniting states from the Roots stack. This means that an SCC is either
merged with the previous SCC on the stack, or if there is no such SCC on the
stack, we try to pop from the empty stack!

We conclude that the complication in SameSet is necessary. As already
explained in [2], it guarantees to return True if and only if a and b are in the
same set at some point during the execution of SameSet. We believe that this
requirement can be formalized using the logical (ideal) find-operator as follows:
(
findpre(a) = findpre(b)

) ⇒ (
returnSame = True

) ⇒ (
findpost(a) = findpost(b)

)

4.2 Monotonicity of Worker Sets and Atomic Updates

The worker set is used to detect cycles in the graph: In UFSCC (Algorithm 1)
and MakeClaim (Algorithm 2), if a worker p explores an edge (v, w) and p already
occurs in the worker set of the root of w, then it ran into a cycle, and it can be
concluded that v and w are in the same SCC. Recall that the worker sets are
updated atomically in Unite (Algorithm 4, l. 23) and MakeClaim (Algorithm 2,
l. 8).

Exploring a Parallel SCC Algorithm 547

A reasonable conjecture is that these atomic updates ensure that the worker
sets are monotonically increasing. To challenge the specification, we check that
this property holds for atomic worker updates, but is violated if we update the
worker set in a non-atomic manner. The property is easily formalized as a TLA
property on all reachable transitions, as Monotonic1 below.

Monotonic1 == [][\A y\in Nodes :
UF[y].workers \subseteq UF[y].workers’]_<<UF>>

Monotonic2 == [][\A y\in Nodes :
UF[find(y)].workers \subseteq UF[find(y)].workers’]_<<UF>>

Indeed, this property holds with atomic updates, but it is violated by a
version of the specification with non-atomic updates. The model checker returns
an execution which boils down to the following well-known scenario: Assume
the worker set is X and it is extended concurrently by Y1 and Y2. With atomic
updates, the end result is (X ∪Y1)∪Y2 or (X ∪Y2)∪Y1, which denotes the same
set. With non-atomic updates, the workers can first both read X, and then one
writes X ∪ Y1 and subsequently the other writes X ∪ Y2. The second update
violates monotonicity, since the update from Y1 is lost.

Note that property Monotonic1 only looks at the worker set per node, while
the relevant information would check the worker set per partial SCC. We chal-
lenged the specification further with property Monotonic2, which states that for
every node, the worker set of its root node is increasing. Surprisingly, the model
checker returned an execution where this property is failing, even in the model
with atomic updates! After analysing the execution, the following scenario is
possible due to the order of steps in Unite (Algorithm 4, l. 20–23).

Assume worker w1 unites roots r and q, with worker set Wr and Wq. It first
updates the parent pointer of q to r. In a second step, it adds Wq to Wr. But
in between these steps the invariant is violated, since the worker set of q’s root r
is still Wr, suddenly missing elements from Wq. Assume that in between these
two steps, another worker w2 checks the worker set of a node v whose parent
points to q (in MakeClaim). Even though w2 might be in the worker set of q, it
is not yet in the worker set of r, the new root of v! The situation will be restored
soon by w1, but it is too late: w2 has already decided that its node v is “new”,
instead of recognizing that its partial SCC was already “found”.

Is this bad? Apparently, the violation of Monotonic2 doesn’t lead to a wrong
result. Still, it can lead to extra computations. If worker w2 doesn’t find itself
in the worker set of the root of node v, it will continue the search, potentially
revisiting a part of the graph unnecessarily. We tried to construct examples where
this behaviour could lead to wrong answers, but we didn’t succeed. Also, the
computation always terminated (there are only finitely many unites). However,
these examples led to discovery of violations of other expected properties, as
reported in Subsect. 4.3. Our attempts to improve the algorithm so that property
Monotonic2 holds failed, as reported in Subsect. 4.4.

548 J. van de Pol

4.3 Duplication on the Stack

Related to non-monotonicity of the worker sets, we investigated another prop-
erty that indicates duplication of work: this time, we check an assertion at the
beginning of the UFSCC loop that the node v that is pushed on the Roots-stack
R is not already on the stack. Indeed, this property was violated on the same
graphs that violated the Monotonicity2 property.

Two BSc students at AU, Jesper Steensgaard and Jonathan Starup, discov-
ered another reason that some nodes occur multiple times on the Roots stack:
UFSCC traverses all nodes v′ in the same partial SCC, and recurses on all their
successors w. This causes double work, since some of these successors belong to
the same SCC, and will only be removed from the cyclic list when we backtrack
from them. One could skip those successors w that belong to the current SCC.

4.4 Changing the Order of Updates During Unite

Finally, we tried some variants of the algorithm, changing the order of the steps
in the Unite procedure. After initialisation, Unite performs the following 5 steps:

1. It locks two elements in the cyclic lists (l. 17, 18)
2. It merges the cyclic lists (l. 19)
3. It updates the parent pointer (l. 20)
4. It updates the worker set of the root in a loop (l. 21–24)
5. It releases the list locks (l. 25–26)

Note that, since these steps don’t happen atomically, other workers might see
inconsistent states, where for instance the cyclic lists of two nodes are already
merged, but the two nodes are not yet the same according to the UF-forest.
Similarly, they could be the same, but the worker set has not yet been updated.
The “Locked” value of the UF-status and the CL-status are the only warning
signs for other workers that something might be wrong.

We tried several modifications of the order of these 5 steps. TLC discovered
problems for several reorderings, in particular it revealed concrete counter exam-
ples for (1, 2, 4, 3, 5), where the worker set is updated before the parent pointer.
We had hoped that this order would restore the monotonicity property.

TLC also reported concrete counter-examples to (3, 4, 1, 2, 5) and (1, 2, 5, 3,
4), where updating the UF-parent happens outside the region between locking
and unlocking the CL-nodes. We had hoped to minimize the locked region, to
potentially increase performance, and also to separate the CL-related code from
the UF-related code. Also, one would think that the CL-list locks only need to
protect updates to the CL-list, but this is apparently not true.

On the other hand, we found no concrete counter-examples to the modifica-
tion (1, 2, 3, 5, 4), so it seems that the update of the worker set can happen
outside the locked region. Moving the loop of lines 21–24 outside the locked
region could potentially give a performance speedup. Also, the order of updat-
ing the parent pointer and the cyclic list doesn’t seem to matter: We found no
counter-examples to (1, 3, 2, 4, 5) and (1, 3, 2, 5, 4). From our experiments, we
conclude that:

Exploring a Parallel SCC Algorithm 549

– The parent pointer must be updated before the worker set is updated.
– The update of the UF parent-pointer must happen inside the CL lock region.

If one violates the first requirement, as in (1, 2, 4, 3, 5), the following can
happen: Assume worker w1 starts at some node n1 and worker w2 finds out
that nodes n1 and n2 can be united. The new root will be n2, so worker w2

updates the worker set at n2 to {w1, w2} before it updates the parent pointer.
In the meantime, worker w1 now explores the edge from n1 to n2. It notices
that it already found (the SCC of) node n2 (since w1 is now in n2’s worker
set). However, n1 and n2 are not yet the same (since the parent pointer has not
yet been updated by w2). Hence, w1 starts popping the Roots stack, possibly
leading to spurious unites, or even to a crash due to popping from the empty
stack (TLC found both scenarios).

If one violates the second requirement by updating the parent pointer before
locking the list elements, as in (3, 4, 1, 2, 5), another worker might already
remove the elements that still must be locked in the cyclic list. In this case, Lock-
List (Algorithm 4) crashes due to the assertion triggered because PickFromList
(Algorithm 5) returns NULL.

If one violates the second requirement by updating the parent pointer after
unlocking the list elements, as in (1, 2, 5, 3, 4), it can happen that the last node
returned by PickFromList (Algorithm 5) has already an unlocked CL-status, but
its UF-status is still “Locked” instead of “Live”. But then the CAS-operation on
line 8 fails, so the UF-status of this node is never updated to “Explored”. When
backtracking in UFSCC and visiting the same node again through another path,
it is not “Explored” so it will be considered “Found” and UFSCC erroneously
starts popping from the Roots stack (Algorithm 1, l. 14–16).

This subtle error shows that the proper invariants of the algorithm should
somehow relate the UF-status and the CL-status, to avoid that UF-locked states
are returned by PickFromList.

5 Conclusion

In an attempt to understand a parallel SCC-detection algorithm based on a
concurrent Union-Find forest, and to increase the trust in its correctness, we
modeled the algorithm in TLA+ and analysed it for a number of small graphs
with the TLC model checker. The analysis revealed that the algorithm behaves
correctly for 2 workers on a couple of small graphs. This does not prove its
correctness, but it may increase confidence in its correctness.

We also showed that some natural invariants can be violated, leading to
suboptimal runs of the algorithm with some work duplication. This may reduce
the trust in the correctness, since such behaviour might violate the correctness
on larger graphs or with more workers (beyond the horizon of the model checker).
We did not find such examples, though. The original author was aware of possible
work duplication. It should not affect correctness and it occurs only with a small
probability. Avoiding it with extra locks could be even more costly. Experimental
evaluation has demonstrated good speedups of the current strategy [2,3].

550 J. van de Pol

Finally, we tried to increase our understanding and confidence by slight modi-
fications to the algorithm. The results are mixed. Some small modifications seem
to be possible without violating correctness. One of the suggested modifications
might even increase parallel speedup, by moving the loop to update the worker
set outside the locked region. We tried some other small modifications to main-
tain interesting invariants that could avoid duplicate work and keep worker-set
information monotonic. However, these modifications were erroneous and could
be refuted by small graphs. Apparently, larger modifications would be required
to maintain these invariants.

These experiments also reveal that the invariants needed for a full under-
standing and correctness proof of the algorithm will be quite complicated. We
hope that the scenarios revealed by model checking and reported in this work
will contribute to the discovery of the proper invariants and potentially to sim-
plifications of the algorithm. Of course, these simplifications should not decrease
the parallel performance of the algorithm. For instance, adding extra locks would
ease correctness reasoning, but at the expense of decreased parallel performance.

Acknowledgements. The author acknowledges the investigation by Jesper Steens-
gaard and Jonathan Starup, who found some suboptimal behaviours in the cyclic list
during their BSc talent-track project. The author is grateful to Stephan Merz for intro-
ducing him to TLA+ during an extended research visit at Nancy (France). The author
acknowledges useful discussions with Simon Thrane Hansen (AU) on simplifying the
model and help with the TLC model checker. Finally, he is grateful to Stephan Merz,
Vincent Bloemen, and the anonymous reviewers for useful feedback on a draft of the
paper.

A The Original Concurrent Union-Find SCC Algorithm

Here we present the original algorithm UFSCC, taken from the thesis of Vincent
Bloemen [2]. The pseudo-code is copied with consent of the author. We present
the algorithm top-down, in Algorithm 1–6.

Exploring a Parallel SCC Algorithm 551

Algorithm 1 Implementation of the UFSCC algorithm ([2], Alg. 9)

Algorithm 2 Determining the status of a state with the worker set ([2], Alg. 6)

552 J. van de Pol

Algorithm 3 Find and SameSet functions ([2], Alg. 5)

(we removed the Unite-function from Alg. 3, since it will be refined by Alg. 4)

Algorithm 4 The Unite procedure of the iterable union-find ([2], Alg. 8)

Exploring a Parallel SCC Algorithm 553

Algorithm 5 The cyclic-list part of the iterable union-find ([2], Alg. 7)

Algorithm 6 Atomic Compare and Swap instruction ([2], Alg. 4)

This algorithm is supposed to run in one atomic step.

B Example Input Graphs for SCC Algorithm

q0

q1 q2

q3

q0

q3q1 q2

q0 q1

q2q3

Above we show six small example input graphs on which we tested the TLA+

specification of the pseudocode in Appendix A. (The dotted lines are optional).

554 J. van de Pol

References

1. Barnat, J., Chaloupka, J., van de Pol, J.: Distributed algorithms for SCC decom-
position. J. Log. Comput. 21(1), 23–44 (2011). https://doi.org/10.1093/logcom/
exp003

2. Bloemen, V.: Strong connectivity and shortest paths for checking models. Ph.D.
thesis, University of Twente, July 2019. https://doi.org/10.3990/1.9789036547864

3. Bloemen, V., Laarman, A., van de Pol, J.: Multi-core on-the-fly SCC decompo-
sitiona. In: PPOPP, pp. 8:1–8:12. ACM (2016). https://doi.org/10.1145/2851141.
2851161

4. Chen, R., Cohen, C., Lévy, J., Merz, S., Théry, L.: Formal proofs of Tarjan’s
strongly connected components algorithm in Why3, Coq and Isabelle. In: ITP,
LIPIcs, vol. 141, pp. 13:1–13:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.ITP.201a9.13

5. Dijkstra, E.W.: Finding the maximum strong components in a directed graph. In:
Selected Writings on Computing: A Personal Perspective. Texts and Monographs
in Computer Science, Springer, New York (1982). https://doi.org/10.1007/978-1-
4612-5695-3

6. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A Fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 31

7. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. In: F-IDE@FM.
EPTCS, vol. 310, pp. 50–62 (2019). https://doi.org/10.4204/EPTCS.310.6

8. Lammich, P.: Verified efficient implementation of Gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) Interactive Theorem Proving.
ITP 2014, LNCS, vol. 8558. pp. 325–340. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08970-6 21

9. Lowe, G.: Concurrent depth-first search algorithms based on Tarjan’s algorithm.
Int. J. Softw. Tools Technol. Transf. 18(2), 129–147 (2016). https://doi.org/10.
1007/s10009-015-0382-1

10. McLendon-III, W., Hendrickson, B., Plimpton, S.J., Rauchwerger, L.: Finding
strongly connected components in distributed graphs. J. Parallel Distrib. Com-
put. 65(8), 901–910 (2005). https://doi.org/10.1016/j.jpdc.2005.03.007

11. Oortwijn, W., Huisman, M., Joosten, S.J.C., van de Pol, J.: Automated verification
of parallel nested DFS. In: TACAS 2020. LNCS, vol. 12078, pp. 247–265. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 14

12. Pol, J.C.: Automated verification of nested DFS. In: Núñez, M., Güdemann, M.
(eds.) FMICS 2015. LNCS, vol. 9128, pp. 181–197. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19458-5 12

13. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Variations on parallel
explicit emptiness checks for generalized Büchi automata. Int. J. Softw. Tools Tech-
nol. Transf. 19(6), 653–673 (2017). https://doi.org/10.1007/s10009-016-0422-5

14. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972). https://doi.org/10.1137/0201010

15. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM
31(2), 245–281 (1984). https://doi.org/10.1145/62.2160

https://doi.org/10.1093/logcom/exp003
https://doi.org/10.1093/logcom/exp003
https://doi.org/10.3990/1.9789036547864
https://doi.org/10.1145/2851141.2851161
https://doi.org/10.1145/2851141.2851161
https://doi.org/10.4230/LIPIcs.ITP.201a9.13
https://doi.org/10.1007/978-1-4612-5695-3
https://doi.org/10.1007/978-1-4612-5695-3
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.4204/EPTCS.310.6
https://doi.org/10.1007/978-3-319-08970-6_21
https://doi.org/10.1007/978-3-319-08970-6_21
https://doi.org/10.1007/s10009-015-0382-1
https://doi.org/10.1007/s10009-015-0382-1
https://doi.org/10.1016/j.jpdc.2005.03.007
https://doi.org/10.1007/978-3-030-45190-5_14
https://doi.org/10.1007/978-3-319-19458-5_12
https://doi.org/10.1007/978-3-319-19458-5_12
https://doi.org/10.1007/s10009-016-0422-5
https://doi.org/10.1137/0201010
https://doi.org/10.1145/62.2160

Exploring a Parallel SCC Algorithm 555

16. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer,
D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 61–78. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89960-2 4

17. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-319-89960-2_4
https://doi.org/10.1007/3-540-48153-2_6

An IoT Digital Twin for Cyber-Security
Defence Based on Runtime Verification

Jorge David de Hoz Diego1, Anastasios Temperekidis2,
Panagiotis Katsaros1,2(B), and Charalambos Konstantinou1

1 CEMSE Division, King Abdullah University of Science and Technology (KAUST),
Thuwal, Saudi Arabia

{jorge.diego,charalambos.konstantinou}@kaust.edu.sa
2 Department of Informatics, Aristotle University of Thessaloniki,

Thessaloniki, Greece
{anastemp,katsaros}@csd.auth.gr

Abstract. A security decoupling approach for IoT device communica-
tions is presented, based on a Digital Twin with runtime verification
capabilities. The solution proposed assumes that a local agent (secu-
rity module) can be deployed to the IoT device by the IoT server. The
runtime verification approach implemented in the Digital Twin detects
possible violations of protected communications from either a remote
device or a local compromised process and provides timely and valuable
information for countering a potential cyber-security attack. Moreover,
only a subset of the observed traffic needs to be monitored, which induces
negligible overhead and allows deploying the Digital Twin in IoT devices
with limited computational resources. Runtime verification was imple-
mented by adopting a rule-based approach for monitoring parametric
events, i.e. the packets that carry data.

Keywords: Security-by-design · IoT · Digital twin · Runtime
verification

1 Introduction

Security needs to be a top priority in the design of Internet-of-Things (IoT)
systems [1]. However, in IoT application development we are witnessing lately
a pervasive trend towards using third-party components [2], which complicates
the enforcement of security guarantees on IoT device communications and their
preservation after software updates to counter new cybersecurity threats [3,4].

This work was supported in part by King Abdullah University of Science and Technol-
ogy (Research Translation Funding REI/1/4851-01-01).
This research has been co-funded by the European Union and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Innovation,
under the call RESEARCH - CREATE - INNOVATE II (project code: T2EDK-02617).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 556–574, 2022.
https://doi.org/10.1007/978-3-031-19849-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_31&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_31

An IoT Digital Twin for Cyber-Security Defence 557

A promising perspective is a secure-by-design approach for IoT systems devel-
opment [5]. Such an approach builds security into the system by relying on secu-
rity modules to provide certain guarantees [6], while allowing the application
modules to interact transparently. Via proper security decoupling, the developer
does not need to know the inner mechanisms of the security modules used.

However, the aforementioned challenge cannot be tackled in a straightforward
manner, whereas functionality and reduced time to market are urgent priorities
to which manufacturers pay preference attention when designing software [7]. IoT
verticals are usually devised as a specific solution for a problem in response to a
detected market niche [8], while features of major importance, such as security
or interoperability, are not taken into due consideration. When new cyberse-
curity threats arise, fast-devised patches may eventually break interoperability
with third-party components [9] or applications. In other cases, the vulnerability
mitigation is delayed, due to the application dependence on unpatched or legacy
application programming interfaces (APIs) [10].

Secure (local or remote) communications usually rely on an API or frame-
work to provide necessary guarantees to application functions. Though the API is
intended to be stable in time, it may be subject to changes that trigger additional
application updates. Instead of this, we advocate an application-agnostic mod-
ularity paradigm through securing communications. According to the IoTsafe
security architecture [11,12] (Fig. 1), the security decoupled communication for
IoT devices can be achieved through a transparent proxification relying exclu-
sively on the network sockets API (see the socket proxy in the IoT device of
Fig. 1) that is very unlikely to change in the foreseeable future [13].

In this paper, we leverage this security decoupling concept and propose
deploying into the security architecture of the IoT device a digital twin (DT) for
the runtime verification of the IoT device communication. DTs are virtual mod-
els used to analyse and diagnose a system’s operation in real-time [14]. The role
of the DT in our case is to replicate the device communication and any changes
of it over time by keeping track of the security status of used sockets to detect
possible interference of communications from external devices/internal processes
that should not be allowed by the socket used. Unlike a Digital Shadow [15],
the DT can take immediate action when a situation is detected to update the
physical system accordingly. It relies on runtime verification of a small subset
of the traffic (packets rejected by the secure socket), which induces negligible
monitoring overhead, and makes the approach applicable to IoT devices that
are characterized by limited computational resources. This also contributes to
reducing the workload of any other DT in the server monitoring the status of
the network, as the DTs on the devices will induce only limited overhead in the
server, when a potentially harmful situation is detected.

The solution proposed supports an holistic evaluation of communication pro-
tocols in diverse deployments, as opposed to DTs in related literature [16–19].
Due to the security decoupling, the IoT device communications are securely
end-to-end forwarded by a local proxy through a virtual network space in the
server (shown as a dotted line rectangle in Fig. 1). Thus, the isolated communica-

558 J. D. de Hoz Diego et al.

Fig. 1. Security decoupled communications to allow digital twin (DT) monitoring and
control in IoT devices [12].

tions can use non-secure protocols, such as the constrained application protocol
(CoAP) instead of CoAP secure (CoAPs). Furthermore, it is easy to support the
transparent deployment of other DTs, specific to various IoT device types, due to
the safe use of unencrypted payloads by properly isolated communications. This
eliminates the need to deal with the protocol encryption mechanisms, separately
for each different IoT device and simplifies any required real-time operation
involving deep packet inspection [20].

Formal verification through runtime monitoring ensures the isolation required
for the communications to run securely, as per the operating system (OS)-driven
security context (SC) provided by IoTsafe. More concretely, we focus in this work
on a careful review of the workings of the static SCs in the IoT device, since
the operation in a dynamic server environment is based on these fundamen-
tal concepts as well. The runtime monitoring actions of the DT occur in the
agent deployed for security decoupled communications (Fig. 1), providing major
advantages in terms of limiting the monitoring overhead. The agent sets the SCs
locally in the device, and monitors any attempt of violating the isolation by any
remote machine or local process. The DT only has to process the rejected packets
derived from unauthorised traffic, therefore minimising the monitoring overhead.
Furthermore, this local computation alleviates the computing load of the DT in
the server, as the agent efficiently notifies only of the events subject to further
investigation. This agent can also take early mitigation actions, contributing to
considerably reducing the risks derived from a potential attack escalation.

The rest of the paper is structured as follows. Section 2 reviews related ini-
tiatives, research works, and discusses how our proposed solution compares with
them. In Sect. 3, we describe the security decoupling architecture and the role
of the DT for IoT device communications. Section 4 introduces our run-time
verification approach, for the communications in the IoT devices and presents
preliminary experimental results for a log obtained from a prototype implemen-
tation of the IoTsafe architecture. Finally, in Sect. 5, the paper concludes with a
critical overview of the current developments toward the operational deployment
of the solution proposed and its future research prospects.

An IoT Digital Twin for Cyber-Security Defence 559

2 Related Work

Most of the current cybersecurity issues are related to deficiencies in the applica-
tion programming and the lack of modularity. These defects, connected to soft-
ware architecture flaws, are prone to persist in the system for significant periods
of time, increasing the maintenance costs [21]. Software using low cohesion and
highly coupled modules is usually correlated with common bugs difficult to erad-
icate. Likewise, poorly coded modifications or work-around measures generate
patches, but without consideration of the software architecture’s original flaws,
those patches end up incurring technical debt [22]. This can lead to unstable
interfaces between modules, difficult to support in the mid-long term [23].

The relevance of adequate software design methodologies raises when con-
sidering the cost of addressing bugs at a post-product release stage. This may
account on average for more than 30x of the original cost of resolving the same
issue in design stages [24]. Furthermore, in security-related concerns, this cost
may rise up to 100× [25]. These figures could justify that outdated devices should
be decommissioned with new versions with better functionalities. However, the
European Union (EU) regulatory bodies, in pursuit of the recent Circular Econ-
omy Action Plan, have focused on “electronics, information and communication
technologies (ICT) as a priority for implementing the right to repair, including
the right to update obsolete software.” [26]. Thus, the manufacturers will have
to provide full support for their devices and promote a longer lifespan of the
products, or in case they become discontinued, such products should become
open-source [27].

One feasible strategy proposed to increase the lifetime of products in the
Circular Economy refers to the Servitization concept [28]. With this approach,
businesses are encouraged to provide services derived from their products. This
should contribute to prolonging their lifespan thanks to a renovated interest
in extending the support by leveraging software modularity. As an example,
captured from the EU RECLAIM project [29], complementary services can be
provided from legacy products after including new software modules: “software
modules can be installed in the machine itself, as a DT, and predictive models
about maintenance, degradation and quality can be built based on collected data,
and afterwards resold to the new customer” [30].

The EU Commission is aware of these challenges and fosters the modularity of
software to simplify the security certification of composited products [8,31]. The
software composability will depend on how these modules are interconnected [32]
while taking into account the context of use in force by regulations, such as
the Cybersecurity Act assurance levels [33]. This will allow an IoT device to
be composed of different (hardware and software) modules with a high degree
of independence from each other. If one module becomes insecure, it can be
replaced without affecting the others and the security of the entire device can be
re-certified with just a new certification of the new module. This has been put
into practice with Payment-Card-Industry [34] compliant payment methods, e.g.,
a payment kiosk is composed of different hardware and software. In this case,
the payment module is hardware and software independent from the rest of the

560 J. D. de Hoz Diego et al.

device, allowing a more inexpensive way of devising and maintaining payment
kiosks in hotels, rentals, grocery stores, etc., by reusing security modules.

Devices running DT for runtime verification are considered resilient systems
that can self-monitor, self-diagnose and, ultimately, self-heal [35]. In [36], the
authors apply this to satellites, to improve their protection against cyber attacks.
However, a DT of the complete system has to be operated on the ground and
requires a special security protocol for synchronization with the satellite. Extrap-
olation of this scheme to IoT environments may not be feasible because of the
associated costs. However, if modularity is applied, this would allow deploying
only the DTs of critical assets of the device for runtime verification.

Recent works in IoT security decoupling [11,12], demonstrate that it is fea-
sible to develop independent security modules able to operate transparently to
the core IoT device applications. This allows these applications, even legacy
ones no longer maintained and insecure, to delegate transparently major secu-
rity concerns into the security modules. Thus, the operation of the IoT device
application is facilitated in terms of communication and security, as the security
module can be managed independently from the application. This simplifies dis-
tributed architectures through scalability and resilience. New functionalities can
be added to the IoT device application without redesigning security modules.
Likewise, in the event of a failure or a new vulnerability, the security module can
be upgraded independently from the IoT device application, so that the system
continues to function as intended [37].

To improve cyber-resilience, these security modules can be supported by
reduced DTs specifically devised to provide runtime verification of the relevant
device communications. Conversely, despite applying DTs in diverse industrial
systems, only a few are destined for networking purposes. In [38], a holistic DT
architecture for the industrial IoT (IIoT) is presented, where the network compo-
nent is considered through the adoption of the concept of a network digital twin
(NDT). The main purpose of the NDT is to enable quick validation of network-
ing solutions in an industrial environment, since it is continuously linked to the
physical world from the early design stage to the production phase. The NDT
enables performing the what-if analysis. This allows operators to detect network
misconfigurations, bottleneck links, observe network performance in case of dis-
asters or predict future network behaviors under different events without impact
in the real world [39]. However, end-to-end holistic modeling of communication is
lacking, i.e., a deterministic model of the communications socket-to-socket. This
would facilitate further detailed analysis of situations in which the compromised
device attempts a local attack inside the device on other services. This would
contribute to early detection to prevent its spreading to other devices.

The scalability and modularity of a DT refer to twins of individual machines
or parts that can be combined to form a twin of a larger system, but there
are no works related to this [40]. This is in part due to the different formats,
protocols, and standards that prevent current DT tools to be integrated and
used simultaneously for a particular objective [41]. However, if the modularity
of the physical system is preserved in DTs, then standardization and software

An IoT Digital Twin for Cyber-Security Defence 561

independence should become feasible also in the DTs. This could allow the DT
of a particular infrastructure or device to be “shareable” with different infras-
tructures or devices. Thus, DTs should become affordable to IoT deployments
that currently operate without them and could benefit from their advantages.
In order to achieve this, we propose leveraging on security decoupling of the IoT
device application at a communication level [42], to allow a DT to monitor and
control its communications transparently through the agent devised for security
decoupling.

3 Digital Twin and Application-Agnostic Security
Modules for IoT Communication

3.1 IoTsafe Security Architecture

In Fig. 1, we present the IoT device in which the security decoupling is applied
for a communication of the IoT application (Process B) addressed to the agent.
Process B has delegated the security concerns of the communication protocol to
a security module featured by an agent of the server. This agent forwards securely
and transparently the communication to the server, while the local communi-
cations between Process B and the agent are isolated by an OS-driven static
security context (SC) configured by the agent through the network framework.

This approach embodies the modularity and independence features required
to allow portability and interoperability of the DT with other devices/systems.
To allow for a straightforward application-agnostic implementation, five condi-
tions are necessary, so that the kernel and its modules need no customization:

a. the agent must be application-agnostic and operate transparently to Pro-
cess B ;

b. the kernel must provide privilege separation, to allow Process B to run in a
different account to the rest of the processes;

c. the kernel will include a network framework with privilege separation;
d. the network framework must be capable to apply filtering and marking traffic

rules, following a stateful policy (responses are forwarded back), and
e. the marking rules must be applied to the traffic in the same order as entered

into the system and before the filtering rules.

These conditions are usually met by default in standard implementations of the
Linux kernel. In this scheme, the agent together with the network framework can
collect and process raw data of the ongoing communications. Later on, this infor-
mation can be exploited by other DTs on the server (Fig. 2). The predictability
of IoT devices behaviour is leveraged by the security decoupling module (agent)
and the network framework to limit the possible communications to only those
expected to occur under normal operation. Any unauthorised communication is
detected and rejected by the network framework and monitored and logged by
the DT in the agent.

562 J. D. de Hoz Diego et al.

Fig. 2. IoT device with security decoupling including a portable application-agnostic
DT agent for network security runtime verification.

3.2 Transparent Secure Communication with Security Decoupling

As it was previously explained, the security decoupling scheme of Fig. 2 does
not require any modification in the IoT application or custom kernel modules. It
exploits common functionalities available in POSIX-like systems, such as Linux
and some RTOS systems like FreeRTOS.

The setup of the SC by the agent to allow isolation in the IoT device com-
munication (Fig. 3) comprises the following steps [11,42]:

– The IoT device kernel boots and the first process to run is a super server
such as inetd [43] which will manage all privileged ports including the socket
proxy.

– The super server has a configuration that binds the socket proxy to prevent
any process but the agent to bind it.

– Once the agent is executed, it takes control of the socket and deploys through
it a socket proxy that securely forwards traffic back and forth to a particular
service of the IoT platform in the server infrastructure.

– During the booting process, the agent deploys some filtering and marking
rules to isolate the traffic between the Process B and the Socket Proxy by
protecting the local IP addresses to be used:

• (F1) Any traffic between a protected and a non-protected IP address is
discarded.

• (F2) Any traffic from inside the device to a local protected IP address
with TOS = 0 is discarded (TOS is the IP field Type-Of-Service).

• (M1) Any local traffic with destination a protected IP address is marked
with TOS = 0.

With these rules, any port using a protected IP, either privileged or ephemeral,
is virtually isolated. A process cannot send/receive packets in any port of the
protected local address, since those packets will contain a TOS!=0. This implies:

– An external device may mark its packets and send them to a local protected
socket, but F1 will discard them as protected addresses only can communicate
with a local protected address in the same device.

An IoT Digital Twin for Cyber-Security Defence 563

Fig. 3. Isolated communication between an IoT device user process (Process B) and a
local internal socket (Socket Proxy). The communication between Process B and the
IoT platform in the server is addressed transparently through the Socket Proxy, due
to a static SC that allows local communication inside the IoT device, while preserving
the isolation [11].

– An internal process may send packets to a local protected socket, but F2 will
discard them, since the default marking is TOS=0.

– An internal process may mark its packets with TOS!=0 and address them
to a local protected socket, but M1 will mark them with TOS=0 when they
leave the user space and enter the kernel space, and then discarded by F2.

An SC is defined (source of a traffic communication request, and destina-
tion socket of such a traffic request) by the Linux account running the appli-
cation. This SC allows communication from any process from the user account
to proceed to the protected destination socket. In Fig. 2, the SC is configured
as ConnIDUser B (Process B), Direct Proxy. This SC is referred to as ConnID
and implies that any traffic from any application ran by User B to the Direct
Proxy will be marked with TOS=ConnID (M2). Process B and Direct Proxy use
a protected local IP to communicate as follows (Fig. 3): Process B sends packets
to Socket Proxy (C1). These packets, even if marked, are set with TOS=ConnID
upon entering the kernel space through the ephemeral socket S2 (socket num-
bers used are those shown in Fig. 1). Such packets proceed (C2) through the
local interfaces to the socket proxy S6, and as they have a TOS=!0 they are suc-
cessfully addressed (C3) to their destination. Any response of the socket proxy
is allowed to be forwarded back, as the behaviour of the filtering and marking
rules of the network framework follow a state-full firewall policy. If Process B
uses a local IP not protected by the F1 rule, the traffic will be discarded upon
entering the kernel space.

The SC set by the agent through the network framework will allow only the
authorised traffic. All rejected packets by the kernel due to any unauthorised
communication can be monitored by the DT through the kernel log. This will
allow the DT to detect misconfigurations or attacks addressed to isolated sockets,
without a valid SC previously established to allow such communication.

564 J. D. de Hoz Diego et al.

The performance of this communication scheme and its overhead have
been thoroughly discussed for various scenarios utilizing SSH-based proxy tech-
niques [11]. The attainable bandwidth and the time required to complete diverse
load tests favor our scheme, when compared to the standard TLS/DTLS security
in scenarios with a realistic (not too small) communication payload. The results
also apply to constrained IoT devices communicating in environments with high
interference [12]. Regarding the latency, it is not significantly increased in high-
delay channels [44]. However, in low-delay environments, further elaboration is
required. The various implementations of SSH server/client provide different
results based on the technology they are built upon and their default param-
eters. For low latency scenarios, fine-tuning is required in aspects such as the
sliding window communication protocol implemented in SSH. Another possible
avenue of research is the latest transport protocol QUIC [45] over UDP and
its implementation in SSH [46], which can provide the improved performance
features we require.

3.3 Monitoring Testbed

In order to validate the correct isolation of the local communications, we designed
a monitoring testbed (Fig. 4) that consists of the following:

– Process B (IoT device application) will be featured by a program (Telnet
client) sending a random word every second to a mock local proxy of the IoT
platform service.

– The local mock socket proxy is featured with an echo server that mimics a
simple IoT platform by replying with the same word that Process B sends.

– This communication occurs in an SC {User2, Proxy, ConnID}
– User2 runs a Process B and has a user identifier (UID) of 102 that for sim-

plicity will match ConnID.
– The echo server runs at the local socket 127.0.0.1:7777.
– The only local IP address protected and reserved for communication through

security contexts is 127.0.0.1.

The testbed was conducted in a virtual machine running Centos 7 with a
Linux kernel 3.10.0. No modifications were applied to the system, kernel, or any
of its modules. The testbed starts with the agent protecting the local IP address
127.0.0.1 by complete isolation according to the rules F1, F2, and M1. Then, the
agent sets up the SC by including rule M2. The DT will monitor any rejected
packet by the kernel and this will allow determining the proper actions to address
the detected situation. The considered tests are the following:

– Test 1: A connection attempt from User1 to 127.0.0.1:7777 (S6) without a
valid SC.

– Test 2: A connection attempt from User1 to 127.0.0.1:ephemeral socket (S2)
without a valid SC. The ephemeral socket includes the port in use by the
client of the User2 account sending random payload to the echo server.

An IoT Digital Twin for Cyber-Security Defence 565

Fig. 4. Proposed testbed to monitor the isolation of the security context under different
scenarios.

– Test 3: A connection attempt from User2 to 127.0.0.1:7778 without a valid
SC.

– Test 4: A connection attempt from User2 to 127.0.0.1:ephemeral socket (S2)
without a valid SC. Even when User2 has an SC to communicate towards
127.0.0.1:7777, communicating to a socket opened by a process owned by the
same User2 is not allowed without the appropriate SC.

– Test 5: A connection attempt from User2 to 127.0.0.1:7777 from the unpro-
tected local IP address 127.0.0.2. Even when User2 has an SC to communicate
towards 127.0.0.1:7777, communicating from an unprotected socket (unpro-
tected IP address) is not allowed.

– Test 6: A connection attempt to 127.0.0.1:7777 from a public address
69.197.185.94. Public addresses are unprotected and the related traffic
addressed to/from a protected IP address is always discarded.

The tests ran in a loop with a pause every 5 s. The DT was monitoring
the rejected packets that may represent possible misconfiguration or attack
attempts. In the device, a set of other Linux services exist [47], and some of
them make use of the local IP address periodically. These programs were con-
sidered as possible threats in the tests and the system had to monitor their
activity.

In a real scenario in which the DT operates in an IoT device, the DT could
leverage the information inferred by the monitor to deploy timely countermea-
sures. The server side can further improve this initial response thanks to the
aggregated information of all DTs of the different IoT devices. Thus, the servers
could reliably support threat models such as STRIDE [48]. Likewise, implement-
ing this type of security-decoupled communication scheme may be considered a
special type of middleboxes [49], in which it is possible to leverage further infor-
mation derived from the unencrypted payload of the packets. Thus, the server-

566 J. D. de Hoz Diego et al.

side DT could also support a complementary threat-driven approach beyond the
network scope, such as OCTAVE [50].

4 Digital Twin for Runtime Verification of IoT Device
Communications

4.1 Formal Definition of the Runtime Verification Problem

We denote by ipadd ∈ DIP , a variable with values from the domain of IP
addresses DIP = {127.0.0.1, 127.0.0.2, 69.197.185.94, . . .} from/to which the
packets are communicated. Also, with p ∈ Dports we denote a variable repre-
senting a port from the domain of ports Dports = {7777, 7778, . . .} and with
u ∈ Duids a user, when Duids ∪{upr} denotes the domain of users, including the
privileged user upr.

A socket s ∈ DIP × Dports is defined as the pair (ipadd, p) of the IP address
ipadd and port p for which s has been created.

The following predicates (facts) are used:

– protected(ipadd) is true if ipadd is protected
– remote(ipadd) is true if ipadd is a remote IP address
– isolated(s) is true if s is isolated
– sc(ipadd, p, u) is true if a SC has been configured for the socket (ipadd, p) and

the user u ∈ Duids ∪ {upr}
– tainted(s) is true if s is tainted

The DT implements the following axioms, for all ipadd ∈ DIP and p ∈ Dports:

– protected(ipadd) → isolated((ipadd, p))
– ∀u, u′ ∈ Duids ∪ {upr}: sc(ipadd, p, u)∧ sc(ipadd, p, u′) →

(u = u′) ∨ ((u = upr) ∨ (u′ = upr))

The DT runtime monitor is formalized as a data automaton [51], a suitable
formalism for specifying runtime monitors for traces of data-carrying events.
Such events are given as tuples id(v1, . . . , vn) that consist of an event name id
and a list of values v1, . . . vn. If e ∈ Event is a data-carrying event, of the form
mentioned previously, then a trace σ ∈ Trace = Event� is a list of events.

The events monitored by the DT are:

– rejected(src, dst, spt, dpt, uid)
refers to a rejected packet originated from IP address src and source port
spt and sent to IP address dst and destination port dpt by the user uid

– SC(ip, port, uid)
refers to configuring a SC for the socket at the IP address ip and port port,
for the user uid

– protect(ip)
refers to configuring the IP address ip as protected

– socket(ip, port)
refers to configuring a socket at the IP address ip and port port

An IoT Digital Twin for Cyber-Security Defence 567

The states st ∈ State of a data automaton are parameterized with arbitrary
values given by expressions in an expression language, i.e. st = id(v1, . . . , vn).
Thus, the set of possible states may be infinite, depending on the value domains.

The states of our DT are parameterized by the socket identifiers, i.e. q0(s)
means that the socket s = (ipadd, p) is in q0. For any socket s, we can have one
of the following:

q0: ¬ isolated(s), which denotes the fact that s is initialized
q1: isolated(s) and ∀u ∈ Duids ∪{upr} : ¬ sc(ipadd, p, u), which denotes the fact

that s is initialized but no SC is enforced
q2: isolated(s) and ∃u ∈ Duids ∪ {upr} : sc(ipadd, p, u), which denotes the fact

that s is initialized and a SC is enforced

The behaviour of a data automaton is defined by transitions. Every such tran-
sition is specified as a pattern followed by :: to introduce a condition and then
by → to define one or more actions. When the pattern matches an event or a
state of the data automaton, all its formal parameters match the parameters of
the event/state. If the pattern matches and the condition evaluates to true, the
action(s) is/are executed, leaving the current state, unless it is an always state.
In the latter case, whenever a transition is executed out of the state, an implicit
self-loop keeps the state in memory to monitor further events.

When the error action happens, an error is reported that refers to the vio-
lation of the monitored property. For the DT, the error action happens, when
for some socket s:

tainted(s)

i.e. s becomes tainted. In this case, the DT deactivates s, enforces action A2 and
notifies the IoT server by sending the error trace. This includes only the events
(rejected packets) that contributed to the error, which is useful information to
potentially apply additional countermeasures and investigate the cyber-security
threat encountered.

The data automaton for the DT is formally represented by a labelled
transition system (S,Event,→, i, F), where S ⊆ State is the set of all pos-
sible states, Event is the set of parameterized events mentioned previously,
→⊆ S × (Event × B) × S is a transition relation, which defines transitions
from a state to another, as a result of an observed event, i ⊆ S is the set of
initial states (noted as init) and F ⊆ S the set of final states.

Hereafter, we specify the transitions of the DT data automaton, as it was
implemented using the rule-based runtime verification system LogFire [52]. Iso-
lated sockets of the device are represented as blocking sockets, i.e., sending and
receiving are mutually exclusive actions and only one communication per socket
is allowed [53,54].

monitor DTMonitor {
protect(ip) → protected(ip)

socket(ip,port) → q0(ip, port)

568 J. D. de Hoz Diego et al.

q0(ip, port) :: protected(ip) → q1(ip, port), A0

SC(ip,port,uid) → sc(ip, port, uid)

q1(ip, port) :: sc(ip, port,) → q2(ip, port), A1

rejected(src,dst,spt,dpt,uid) :: protected(src) ∧ (src, spt)
→ A2, error

rejected(src,dst,spt,dpt,uid) :: ¬protected(src) ∧ (dst, dpt)
→ if remote(src) then

if sc(dst, dpt,)
A3, q2(dst, dpt)

else
A3, q1(dst, dpt)

else
if sc(dst, dpt,)

A4, q2(dst, dpt)
else

A4, q1(dst, dpt)

q0(ip, port){
protected(ip) → ok

}
q1(ip, port){

sc(ip, port,) → ok
}

}
To easily follow the rules of the DTMonitor, we depict in Fig. 5 the parameterized
socket states in the example of Fig. 2, when a single SC is established1. The
actions A0 - A4 enforced by the DT are also explained, along with the inferred
information (S1 - S3) when a rejected packet is processed.

The behaviour of the DTMonitor includes a number of transitions for its
initial states that are by default considered as always states. It also includes
two transitions that are enabled only in the q0(ip, port) and q1(ip, port) states.
These transitions are used to update the parameterized state of a socket, i.e. to
leave from its current state.

4.2 Runtime Verification for the Monitoring Testbed

We present the results obtained by the DTMonitor, for the tests described in
Sect. 3.3. In all cases, the DTMonitor reports the event (rejected packet) mon-
itored and when a socket becomes tainted (error) it also reports the monitor
transitions that have lead to the error.

1 In case of a non-blocking isolated socket, in (1) and (2) the socket could send or
receive a packet independently of its current state.

An IoT Digital Twin for Cyber-Security Defence 569

Fig. 5. State diagram of the isolated sockets in the IoT device, for the case where only
a static SC is applied and the isolated sockets are set as blocking.

Test 1:
’reject("127.0.0.1","127.0.0.1","0x00","0x00","37700","7777","101")

rejected package prot ip

execute S3 & A2 ->uid:101 src:127.0.0.1 spt:37700 socketState:1

*** ERROR SOCKET TAINTED

[1] ’protect("127.0.0.1") --> ’Protected("127.0.0.1")

[3] ’socket("127.0.0.1","37700") --> ’Socket(0,"127.0.0.1","37700")

[3] ’socket("127.0.0.1","37700") --> ’Socket(1,"127.0.0.1","37700")

[12]’reject("127.0.0.1","127.0.0.1","0x00","0x00","37700","7777","101")

--> ’Fail("ERROR SOCKET TAINTED")

Test 2:
’reject("127.0.0.1","127.0.0.1","0x00","0x00","45492","46846","101")

rejected package prot ip

execute S3 & A2 ->uid:101 src:127.0.0.1 spt:45492 socketState:1

570 J. D. de Hoz Diego et al.

The monitor transitions to the error are omitted due to space limitations.

Test 3:
’reject("127.0.0.1","127.0.0.1","0x00","0x00","37704","7778","102")

rejected package prot ip

execute S3 & A2 ->uid:102 src:127.0.0.1 spt:37704 socketState:1

The monitor transitions to the error are omitted due to space limitations.

Test 4:
’reject("127.0.0.1","127.0.0.1","0x00","0x00","45496","46846","102")

rejected package prot ip

execute S3 & A2 ->uid:102 src:127.0.0.1 spt:45496 socketState:1

The monitor transitions to the error are omitted due to space limitations.

Test 5:
’reject("127.0.0.2","127.0.0.1","0x00","0x00","33637","7777","102")

rejected package prot ip

execute S3 & A4 -> uid:102 dst:127.0.0.1, dpt:7777 socketState:2

Test 6:
’reject("69.197.185.94","127.0.0.1","0x00","0x00","45575","7777","101")

rejected package prot ip

(execute S3 & A3 -> uid:101 dst:127.0.0.1, dpt:7777 socketState:2)

The DT operates successfully by monitoring only the rejected packets. Under
normal operation (with no rejected packets), this would imply that the overhead
is negligible. To validate this assumption, we ran the described tests for one
hour. A DT applied to all packets would have to monitor 26451 communication
events. The proposed DT implementation requires monitoring only 1689 events,
accounting for a reduction of 93% of the original overhead.

5 Conclusions and Future Work

IoT environments demand technical solutions to tackle security threats, but
without the detriment of any of the stakeholders involved. DT technology pro-
vides the means to monitor and control a distributed system, such as most IoT
deployments, but the particulars of each of the verticals involved, render the
adoption of DTs difficult, due to the inherent cost. Modularity applied to DTs
can provide portability and application-agnostic implementations that could ful-
fill the constraints of IoT deployments. To address this priority, we explore in
this paper the advantages of security decoupling approaches. In particular, we
focus on an application level to leverage the independence of the security mod-
ules (Agents) towards incorporating a DT there. A monitoring DT in an IoT
device with security-decoupled applications and modularity preserved, provides
multiple benefits when compared with standard DT implementations:

– A single DT for network runtime monitoring can fit multiple IoT devices and
applications implementing security decoupled strategies in communications.

An IoT Digital Twin for Cyber-Security Defence 571

– Monitoring of the entire network can be achieved in a distributed fashion
across the IoT ecosystem.

– Each device contributes to the network monitoring by detecting early any
unexpected situation or threat related to network communications or local
compromised applications behaving awkwardly.

– The overhead is dramatically reduced in the server thanks to this distributed
architecture based on agents. Ideally, the DTs of the agents only communicate
to the server the traffic related to unexpected situations preventing the server
from analysing all IoT devices’ activity logs in real-time.

To validate the correct isolation of communications in the IoT device’s
security-decoupled architecture, we have presented a DT for the runtime ver-
ification of sockets operating under a security context and a testbed considering
various scenarios. We concluded that the isolation of the local traffic is success-
ful and the DT monitor was able to detect and track the threats derived from
unauthorised communication attempts to the local protected IP or any of the
isolated sockets in the device. In a real scenario, this allows the DT to take coun-
termeasures autonomously to prevent a rapid escalation of the threat to other
devices/systems.

In future work, we will study the server counterpart of the security decou-
pling architecture. The analysis of the sockets operating in a system with a static
security context will be further elaborated to support the behaviour of multiple
dynamic security contexts. We will evaluate potential latency increments related
to proxied communications and feasible mitigating actions by tuning the proxy
parameters and transport protocols. We also expect substantial performance
improvements in the server-side DT, allowing real-time monitoring of any pos-
sible attack in the IoT network thanks to the achieved reduced overhead of this
work.

References

1. Arora, A., Kaur, A., Bhushan, B., Saini, H.: Security concerns and future trends of
internet of things. In: 2019 2nd International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT), vol. 1, pp. 891–896, July
2019

2. Mikkonen, T., Taivalsaari, A.: Software reuse in the era of opportunistic design.
IEEE Softw. 36(3), 105–111 (2019)

3. Thung, F., et al.: Automated deprecated-api usage update for android apps: how
far are we? In: 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 602–611 (2020)

4. Xenofontos, C., Zografopoulos, I., Konstantinou, C., Jolfaei, A., Khan, M.K., Choo,
K.-K.R.: Consumer, commercial, and industrial IOT (in)security: attack taxonomy
and case studies. IEEE Internet Things J. 9(1), 199–221 (2022)

5. Corser, G.: Internet of things (IoT) security best practices. IEEE Internet Ini-
tiative, Tech. Rep., 2017. https://standards.ieee.org/wp-content/uploads/import/
documents/other/whitepaper-internet-of-things-2017-dh-v1.pdf. Accessed 25 Apr
2022

https://standards.ieee.org/wp-content/uploads/import/documents/other/whitepaper-internet-of-things-2017-dh-v1.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/whitepaper-internet-of-things-2017-dh-v1.pdf

572 J. D. de Hoz Diego et al.

6. Maroof, U., Shaghaghi, A., Michelin, R., Jha, S.: iRECOVer: patch your IoT on-
the-fly. Futu. Gene. Comput. Syst. 132, 178–193 (2022) [Online]. https://www.
sciencedirect.com/science/article/pii/S0167739X22000589

7. Cheruvu, S., Kumar, A., Smith, N., Wheeler, D.M.: Conceptualizing the Secure
Internet of Things, pp. 1–21. Apress, Berkeley (2020), [Online]. https://doi.org/
10.1007/978-1-4842-2896-8 1

8. E. U. A. for Network and I. Security: IoT security standards gap analysis. mapping
of existing standards against requirements on security and privacy in the area of
IoT (v1.0). ENISA, Tech. Rep. (2018). https://www.enisa.europa.eu/publications/
cybersecurity-certification-eucc-candidate-scheme-v1-1.1. Accessed 25 Apr 2022

9. Mohd Aman, A.H., Yadegaridehkordi, E., Attarbashi, Z.S., Hassan, R., Park, Y.-
J.: A survey on trend and classification of internet of things reviews. IEEE Access
8, 111 763–111 782 (2020)

10. Anand, P., Singh, Y., Selwal, A., Singh, P.K., Felseghi, R.A., Raboaca, M.S.: IoVT:
Internet of vulnerable things? Threat architecture, attack surfaces, and vulnerabil-
ities in internet of things and its applications towards smart grids. Energies 13(18)
(2020). https://www.mdpi.com/1996-1073/13/18/4813

11. De Hoz Diego, J.D., Saldana, J., Fernández-Navajas, J., Ruiz-Mas, J.: IOTsafe,
decoupling security from applications for a safer IoT. IEEE Access 7, 29 942–29
962 (2019)

12. de Hoz Diego, J.D., Saldana, J., Fernández-Navajas, J., Ruiz-Mas, J.: Decoupling
security from applications in COAP-based IoT devices. IEEE Internet of Things
J. 7(1), 467–476 (2020)

13. Papastergiou, G., et al.: De-ossifying the internet transport layer: a survey and
future perspectives. IEEE Commun. Surveys Tutor. 19(1), 619–639, Firstquarter
(2017)

14. Grieves, M.: Digital twin: manufacturing excellence through virtual factory repli-
cation. Digital Twin Inst. Tech. Rep., March 2015

15. Bergs, T., Gierlings, S., Auerbach, T., Klink, A., Schraknepper, D., Augspurger,
T.: The concept of digital twin and digital shadow in manufacturing. Procedia
CIRP 101, 81–84 (2021), 9th CIRP Conference on High Performance Cutting.
[Online]. https://www.sciencedirect.com/science/article/pii/S2212827121006612

16. Eckhart, M., Ekelhart, A.: Towards security-aware virtual environments for digi-
tal twins. In: Proceedings of the 4th ACM Workshop on Cyber-Physical System
Security, series. CPSS 2018, pp. 61–72. Association for Computing Machinery, New
York (2018) [Online]. https://doi.org/10.1145/3198458.3198464

17. G.A. for Connected Industries and Automation. Using digital twins to integrate
5g into production networks. Tech. Rep. (2021). https://www.enisa.europa.eu/
publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1. Accessed
25 Apr 2022

18. Khan, L.U., Saad, W., Niyato, D., Han, Z., Hong, C.S.: Digital-twin-enabled 6g:
Vision, architectural trends, and future directions. IEEE Commun. Mag. 60(1),
74–80 (2022)

19. Zhao, L., Han, G., Li, Z., Shu, L.: Intelligent digital twin-based software-defined
vehicular networks. IEEE Netw. 34(5), 178–184 (2020)

20. Yuan, X., Wang, X., Lin, J., Wang, C.: Privacy-preserving deep packet inspection
in outsourced middleboxes. In: IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, pp. 1–9 (2016)

21. Cai, Y., Xiao, L., Kazman, R., Mo, R., Feng, Q.: Design rule spaces: a new model for
representing and analyzing software architecture. IEEE Trans. Softw. Eng. 45(7),
657–682 (2019)

https://www.sciencedirect.com/science/article/pii/S0167739X22000589
https://www.sciencedirect.com/science/article/pii/S0167739X22000589
https://doi.org/10.1007/978-1-4842-2896-8_1
https://doi.org/10.1007/978-1-4842-2896-8_1
https://www.enisa.europa.eu/publications/cybersecurity-
https://www.enisa.europa.eu/publications/cybersecurity-
https://www.mdpi.com/1996-1073/13/18/4813
https://www.sciencedirect.com/science/article/pii/S2212827121006612
https://doi.org/10.1145/3198458.3198464
https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1
https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1

An IoT Digital Twin for Cyber-Security Defence 573

22. Fairbanks, G.: Ur-technical debt. IEEE Softw. 37(4), 95–98 (2020)
23. Feng, Q., Kazman, R., Cai, Y., Mo, R., Xiao, L.: Towards an architecture-centric

approach to security analysis. In: 2016 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA), pp. 221–30, April 2016

24. Tassey, G.: The economic impacts of inadequate infrastructure for soft-
ware tesing. Tech. Rep. (2002). https://www.nist.gov/system/files/documents/
director/planning/report02-3.pdf, National Institute of Standards and Technol-
ogy. Accessed 25 Apr 2022

25. Kumar, S., Kaur, A., Jolly, A., Baz, M., Cheikhrouhou, O.: Cost benefit analysis
of incorporating security and evaluation of its effects on various phases of agile
software development. Math. Probl. Eng. 2021, 7837153, August 2021. [Online].
https://doi.org/10.1155/2021/7837153

26. D.-G. for Communication: Circular economy action plan. for a cleaner and more
competitive Europe. European Commission, Tech. Rep. (2019)

27. Calisto Friant, M., Vermeulen, W.J., Salomone, R.: Analysing European Union
circular economy policies: words versus actions. Sustain. Prod. Consump,
27, 337–353 (2021). [Online]. https://www.sciencedirect.com/science/article/pii/
S2352550920313750

28. Mastrogiacomo, L., Barravecchia, F., Franceschini, F.:Definition of a conceptual
scale of servitization: proposal and preliminary results. CIRP J. Manuf. Sci. Tech-
nol. 29, 141–156 (2020), New Research Advances on Product Service System
along the Lifecycle [Online]. https://www.sciencedirect.com/science/article/pii/
S1755581718300610

29. RE-manufaCturing and Refurbishment LArge Industrial equipMent: extending the
life of large industrial equipment. H2020 EU Grant agreement ID: 869884. 2019–
2023. https://cordis.europa.eu/project/id/869884 Accessed 25 Apr 2022

30. Alessandro Fontana, L.R., Leone, D., Barni, A.: Reclaim project D4.1: circular
economy driven lifetime extension strategies. EU Horizon 2020 grant 869884,
Tech. Rep. (2020). https://ec.europa.eu/research/participants/documents/
downloadPublic?documentIds=080166e5db5b6032&appId=PPGMS. Accessed 25
Apr 2022

31. E. U. A. for Network and I. Security: EUCC, a candidate cybersecurity
certification scheme to serve as a successor to the existing sog-is (v1.1.1).
Tech. Rep. (2021). https://www.enisa.europa.eu/publications/cybersecurity-certif
ication-eucc-candidate-scheme-v1-1.1. Accessed 25 Apr 2022

32. Hernandez-Ramos, J.L., Matheu, S.N., Skarmeta, A.: The challenges of software
cybersecurity certification [building security in]. IEEE Secur. Privacy 19(1), 99–
102 (2021)

33. ENISA: Regulation (eu) 2019/881 of the european parliament and of the council
of 17 April 2019 on ENISA (the European Union agency for cybersecurity) and
on information and communications technology cybersecurity certification (cyber-
security act). , Tech. Rep. (2019). https://eur-lex.europa.eu/eli/reg/2019/881/oj.
Accessed 25 Apr 2022

34. PCI Security Standards Council (2022). https://www.pcisecuritystandards.org/.
Accessed 26 May 2022

35. Francesco, F.: Digital twins as run-time predictive models for the resilience of
cyber-physical systems: a conceptual framework. Phil. Trans. R. Soc. A. 379, 2207
(2021)

https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf
https://doi.org/10.1155/2021/7837153
https://www.sciencedirect.com/science/article/pii/S2352550920313750
https://www.sciencedirect.com/science/article/pii/S2352550920313750
https://www.sciencedirect.com/science/article/pii/S1755581718300610
https://www.sciencedirect.com/science/article/pii/S1755581718300610
https://cordis.europa.eu/project/id/869884
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5db5b6032&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5db5b6032&appId=PPGMS
https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1
https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme-v1-1.1
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://www.pcisecuritystandards.org/

574 J. D. de Hoz Diego et al.

36. Hou, Z., Li, Q., Foo, E., Dong, J.S., de Souza, P.: A digital twin runtime verification
framework for protecting satellites systems from cyber attacks. In: 2022 26th Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS), pp.
117–122 (2022)

37. Mosleh, M., Dalili, K., Heydari, B.: Distributed or monolithic? A computational
architecture decision framework. IEEE Syst. J. 12(1), 125–136 (2018)

38. Kherbache, M., Maimour, M., Rondeau, E.: When digital twin meets network
softwarization in the industrial IoT: real-time requirements case study. Sensors
21,24 (2021). https://www.mdpi.com/1424-8220/21/24/8194

39. Almasan, P., et al.: Digital twin network: opportunities and challenges. (2022)
[Online]. arXiv:2201.01144

40. Liu, Y.K., Ong, S.K., Nee, A.Y.C.: State-of-the-art survey on digital twin imple-
mentations. Adv. Manuf. 10(1), 1–23 (2022). https://doi.org/10.1007/s40436-021-
00375-w

41. Qi, Q., et al.: Enabling technologies and tools for digital twin. Digital twin towards
smart manufacturing and Industry 4.0. J. Manuf. Syst. 58, 3–21. (2021) [Online].
https://www.sciencedirect.com/science/article/pii/S027861251930086X

42. de Hoz Diego, J.D.: Secure communication method and system using network
socket proxying. U.S. patent 11 050. Tech. Rep. (2021). https://patentscope.wipo.
int/search/en/detail.jsf?docId=US328388155. Accessed 25 Apr 2022

43. Inetd - the super server. Tech. Rep. (2020). BSD System Manager’s Manual.
https://www.freebsd.org/cgi/man.cgi?query=inetd. Accessed 25 Apr 2022

44. de Hoz, J.D., et al.: Leveraging on digital signage networks to bring connectiv-
ity IOT devices. Tecnia 26(1), 89–100 (2016). [Online]. https://zaguan.unizar.es/
record/95466?ln=en

45. Iyengar, M.T.J.: [RFC 9000] QUIC: A UDP-based multiplexed and secure trans-
port. Internet Engineering Task Force, Tech. Rep., May 2021. [Online]. https://
datatracker.ietf.org/doc/rfc9000/

46. Bider, D.: QUIC-based UDP transport for secure shell. Internet Engineering
Task Force, Tech. Rep., December 2020. [Online]. https://datatracker.ietf.org/doc/
html/draft-bider-ssh-quic-09

47. The cPanel & WHM Service Daemons (2021): https://docs.cpanel.net/knowledge-
base/cpanel-product/the-cpanel-service-daemons/. Accessed 26 May 2022

48. Praerit Garg, L.K.: The stride threat model. Microsoft, Tech. Rep., 12
2009. [Online]. https://docs.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v=cs.20)

49. Carpenter, S.B.B.: [RFC 3234] middleboxes: taxonomy and issues. Internet Engi-
neering Task Force, Tech. Rep., 02 2002. [Online]. https://www.rfc-editor.org/rfc/
rfc3234

50. Octave forte: establish a more adaptable and robust risk program. The Software
Engineering Institute, Tech. Rep., June 2020. [Online]. https://resources.sei.cmu.
edu/library/asset-view.cfm?assetid=643959

51. Havelund, K.: Monitoring with data automata. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014. LNCS, vol. 8803, pp. 254–273. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45231-8 18

52. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transfer 17(2), 143–170 (2015)

53. accept(2). Linux Programmer’s Manual, Tech. Rep. (2021). https://man7.org/
linux/man-pages/man2/accept.2.html. Accessed: 25 Apr 2022

54. connect(2). Linux Programmer’s Manual, Tech. Rep. (2021). https://man7.org/
linux/man-pages/man2/connect.2.html. Accessed 25 Apr 2022

https://www.mdpi.com/1424-8220/21/24/8194
http://arxiv.org/abs/2201.01144
https://doi.org/10.1007/s40436-021-00375-w
https://doi.org/10.1007/s40436-021-00375-w
https://www.sciencedirect.com/science/article/pii/S027861251930086X
https://patentscope.wipo.int/search/en/detail.jsf?docId=US328388155
https://patentscope.wipo.int/search/en/detail.jsf?docId=US328388155
https://www.freebsd.org/cgi/man.cgi?query=inetd
https://zaguan.unizar.es/record/95466?ln=en
https://zaguan.unizar.es/record/95466?ln=en
https://datatracker.ietf.org/doc/rfc9000/
https://datatracker.ietf.org/doc/rfc9000/
https://datatracker.ietf.org/doc/html/draft-bider-ssh-quic-09
https://datatracker.ietf.org/doc/html/draft-bider-ssh-quic-09
https://docs.cpanel.net/knowledge-base/cpanel-product/the-cpanel-service-daemons/
https://docs.cpanel.net/knowledge-base/cpanel-product/the-cpanel-service-daemons/
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.rfc-editor.org/rfc/rfc3234
https://www.rfc-editor.org/rfc/rfc3234
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=643959
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=643959
https://doi.org/10.1007/978-3-662-45231-8_18
https://doi.org/10.1007/978-3-662-45231-8_18
https://man7.org/linux/man-pages/man2/accept.2.html
https://man7.org/linux/man-pages/man2/accept.2.html
https://man7.org/linux/man-pages/man2/connect.2.html
https://man7.org/linux/man-pages/man2/connect.2.html

A Formal Model of Metacontrol in Maude

Juliane Päßler1 , Esther Aguado2 , Gustavo Rezende Silva3 ,
Silvia Lizeth Tapia Tarifa1(B) , Carlos Hernández Corbato3 ,

and Einar Broch Johnsen1

1 University of Oslo, Oslo, Norway
{julipas,sltarifa,einarj}@ifi.uio.no

2 Universidad Politécnica de Madrid, Madrid, Spainpg
e.aguado@upm.es

3 Technical University of Delft, Delft, The Netherlands
{g.rezendesilva,c.h.corbato}@tudelft.nl

Abstract. Nowadays smart applications appear in domains span-
ning from commodity household applications to advanced underwater
robotics. These smart applications require adaptation to dynamic envi-
ronments, changing requirements and internal system errors Metacontrol
takes a systems of systems view on autonomous control systems and self-
adaptation, by means of an additional layer of control that manipulates
and combines the regular controllers. This paper develops a formal model
of a Metacontrol architecture. We formalise this Metacontrol architecture
in the context of an autonomous house heating application, enabling
different controllers to be dynamically combined in order to meet user
requirements to a better extent than the individual controllers in iso-
lation. The formal model is developed in the Maude rewriting system,
where we show results comparing different scenarios.

1 Introduction

There is an emerging development of “smart” applications in an increasing num-
ber of domains, ranging from commonplace IoT-based household applications to
advanced underwater robotics. A key to this smartness is the applications’ abil-
ity to flexibly adapt to variability in their operational conditions. Control theory
and recent AI-based methods enable the development of different domain con-
trollers that adapt to variability in the physical environment by combining sensor
data and a diversity of models to determine the output of the system actuators,
achieving great performance and a degree of system-level autonomy for different
requirements. This is called first-order self-adaptation [15]. However, varying user
requirements and internal system variability due to faults or emergent behaviour
in systems that comprise multiple controllers pose additional second-order adap-
tation challenges [15]. Self-adaptive systems with multiple points of view and
methodologies have been proposed from the software community to develop

This work was supported by the European Union’s Horizon 2020 Framework Pro-
gramme through the MSCA network REMARO (Grant Agreement No. 956200) and
the ROBOMINERS project (Grant Agreement No. 820971).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 575–596, 2022.
https://doi.org/10.1007/978-3-031-19849-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_32&domain=pdf
http://orcid.org/0000-0001-8515-1809
http://orcid.org/0000-0002-7860-9030
http://orcid.org/0000-0001-5253-9241
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0001-6094-4917
https://doi.org/10.1007/978-3-031-19849-6_32

576 J. Päßler et al.

software systems that meet the previous adaptation requirements. These sys-
tems have been commonly conceptualised following the MAPE-K schema [6,18]
that stands for Monitor, Analyse, Plan, and Execute based on Knowledge.

Metacontrol is a layered framework for achieving autonomy, independently
of the application and the system; i.e., it takes a very structured system of sys-
tems view on the self-adaptation problem. It adds an additional layer of control
that manipulates and combines the domain controllers to fulfil different combi-
nations of requirements or to ensure resilience by enabling the overall application
to adapt to changes in the underlying system such as, e.g., broken devices. Thus,
Metacontrol enables extensible self-adaptation for autonomous systems that can
accommodate new user requirements or new functionality to an application, by
addressing only second-order adaptation based on application-independent rea-
soning. For this purpose, its MAPE-K loop is driven by knowledge that adheres
to TOMASys [13] (the Teleological and Ontological Model of Autonomous Sys-
tems metamodel), which aims to provide the necessary concepts for modelling
the functional knowledge of autonomous systems [16].

In this paper, we formalise a Metacontrol architecture for a smart house,
detailing an autonomous house heating application. This use case is inspired
by the work of Arcaini et al. [2] on a model of concurrent MAPE-K controllers
(but not of Metacontrol), using abstract state machines [5]. Our main focus
here is on the logical structure of architectures based on Metacontrol; i.e., the
model captures the input assumed to be available to the different layers of the
control structure and the control decisions that the different layers make. We
develop models of independent controllers for the house heating application and
show that each of these is able to maintain some of the given user requirements,
but not the overall combined requirements. These models are then extended
with a Metacontrol layer that, by dynamically combining the different existing
controllers, is able to meet the requirements to a greater extent.

The formalisation is realised in Maude [12], a tool to develop and analyse
executable models in rewriting logic. Rewriting Logic is a flexible framework
combining computation and logic in which systems can be modelled with low
representational distance [19]. In this paper, we use simulations in Maude to
analyse the performance of the controllers with respect to the user requirements
in fairly predictable environments; in future work, we plan to expand our model
to analyse the additional responsiveness that seems achievable by exploiting a
Metacontrol layer in less predictable environments by means of model checking
techniques.

The main contributions in this paper are:

– an executable formal model of a system of systems Metacontrol architecture
developed in the Maude rewrite tool;

– a use case of autonomous layered control for a smart house heating applica-
tion, which we use to explain and illustrate the formal model; and

– we show how the formal model can be used to analyse the developed meta-
control designs with respect to user requirements.

A Formal Model of Metacontrol in Maude 577

<<Managing System>>
Metacontroller

Monitor

Analyze Plan

ExecuteKB

<<Managed System>>
domain controllers

sensors actuators

<<Environment>>
home

Fig. 1. The metacontrol framework.

requirement

type
Objective Function

measured

requiressolves

type
Function

Grounding

estimated requires

solves

Function
Design

Quality
Attribute Component

Fig. 2. Elements of TOMASys.

2 Background

2.1 Metacontrol

Metacontrol [13] gives systems the capability to perform self-adaptation in order
to maintain their functionalities at an expected performance, in the presence
of external disturbances, faults, and unexpected behaviour. Thus, Metacontrol
enables an increased level of autonomy and reliability in a system.

Metacontrol is realised by adding an extra control layer that closes a feedback
loop with the original system, monitoring, and adapting the original system
through architectural reconfiguration when necessary. According to the MAPE-
K model for self-adaptive systems, this results in the separation of the system into
two distinct layers or subsystems: the managing system, whose main element is a
reusable metacontroller, and the managed system, which is the original system.

For the metacontroller to be application independent, it exploits engineering
knowledge at runtime. System engineers model relevant information about how
the system works following the TOMASys metamodel [13], and this model forms
the basis for the knowledge base (KB), which drives the Metacontrol MAPE-K
adaptation loop. All steps interact with the KB, storing additional information,
and retrieving system knowledge to facilitate decision making (see Fig. 1).

The monitor step is responsible for measuring so-called quality attributes
(discussed below) for the functionalities of the system. The analyse step is
responsible for deciding whether the managed system needs to reconfigure. For
this, it needs to decide whether the measured quality attributes meet the require-
ments of the current configuration of the managed system. When reconfiguration
is needed, the plan step is responsible for selecting a new configuration for the
managed system that potentially satisfies its requirements. The execute step is
responsible for carrying out the reconfiguration of the managed system.

Figure 2 shows a high-level representation of the TOMASys metamodel for
the Metacontrol functional layer, which is our focus in this paper. A function

578 J. Päßler et al.

represents an abstract functionality of the system, e.g., controlling the temper-
ature. A function design is an engineering design solution that solves a specific
function, e.g., a specific controller to control the temperature. An objective is a
concrete instance of a function that the system desires to achieve at runtime, e.g.,
maintaining the room temperature in the range 18 –22 ◦C. A function grounding
is the runtime instantiation of a function design that is selected to solve a spe-
cific objective. A quality attribute (QA) is a measurable property of a system
that is used to indicate how well the system satisfies its requirements, e.g., the
amount of energy that the temperature control system consumes. In TOMASys
there are required, expected, and measured QAs:

– required QAs capture quantitative requirements that a function should meet;
– estimated QAs are assumed for each function design as expected performance

values with respect to the corresponding quantitative requirements; and
– measured QAs are associated to function groundings to capture the current

performance with respect to the corresponding quantitative requirements.

2.2 Maude

Maude [12,22] is a specification and analysis system based on rewriting logic
(RL) [19]. While algebraic specification techniques [25] can be used to specify
the static structure of the system and the relations between the data, RL extends
an algebraic specification with transitions rules which capture the dynamic
behaviour of a system. In a rewrite theory (Σ,E,R), Σ defines the (ground)
terms tr as operators over sorts (which can be understood as types), E is a
set of equations that define equivalences between terms in Σ, and R is a set of
labelled rewrite rules.

Equational theories (Σ,E) are developed by first defining sorts st and func-
tions from a (possibly empty) list stlist of sorts to a given sort st:

sort st .
op f : stlist −→ st .

Terms tr are then built from functions in a sort-correct manner, and patterns t
are terms in which some functions are replaced by variables. Conditional equa-
tions in E, which express the equality of any terms that match given patterns
if a given condition holds, are specified by

ceq t = t′ if cond

where the matching substitution additionally applies to the condition. The con-
dition can be a conjunction of equalities between patterns. Maude assumes that
the equations form a terminating and confluent reduction system which is used
to represent equivalence classes by canonical terms (i.e., all terms can be reduced
to unique normal forms).

Rewrite theories (Σ,E,R) additionally specify conditional rewrite rules in R,
which express that a term matching a given pattern can transition into another
term if a condition holds, as follows:

A Formal Model of Metacontrol in Maude 579

Req. Name Description
R1 Morning water

heating
The water heater should be turned on in the morning.

R2 Minimise
dispersion

The system should avoid high dispersion states, i.e., window
wide open and strong heating together.

R3 Comfortable
temperature

The smart house temperature shall always be between a range
of comfortable temperatures.

R4 Air purity The heating system shall maintain a good air quality level.

Fig. 3. Requirements of the heating system. Here, the requirements R3 and R4 are
quantitative system properties which are monitored by the quality attributes.

crl [label] : t ⇒ t′ if cond .

Here, the condition is a conjunction of rewrites and equalities that must hold
for the rule to apply to a given term which matches t. Rewrite rules apply to
equivalence classes of terms; i.e., Maude uses the equations to reduce terms to
normal form in between rule applications. Therefore, when auxiliary functions
are needed, these can be defined in equational logic and thus evaluated in between
the state transitions [19].

When modelling executable systems, system components are typically mod-
elled by terms of suitable sorts, organised hierarchically in modules, and the
global state configuration is represented as a multiset of these terms [22]. An
object in a given state can have the form < Oid : Class | a1 : v1, . . . , an : vn >,
where Class is the class name, Oid the object identifier, and ai are attributes with
corresponding values vi. Given an initial configuration, the Maude tool supports
simulation and breadth-first search through reachable states, and model checking
of systems with a finite number of reachable states [12,22].

3 The Smart House Use Case

Act. Stat. Temp. Air Qu.

Heater
VH 1.23 -0.9
FH 0.615 -0.45
OFF 0 0

Water ON 0,3 -0,125
heater OFF 0 0

Window
O -2.0 2.0
HO -1.0 1.0
C 0 -0.125

Fig. 4. Assumed actuator effects on
temperature and air quality.

Let us consider a smart house with an
automatic heating system. This use case
was originally presented in [2]. Here, we
present a variation of the use case to moti-
vate a self-adaptive heating system that
includes various controllers that partially
fulfil the requirements and a metacon-
troller that turns the different controllers
on and off with the aim of improving the
system behaviour. The house consists of
a room with one window, one heater and
one water heater. Its intended behaviour
is specified through a set of requirements
defined in Fig. 3. The smart house system has various controllers that control

580 J. Päßler et al.

three actuators, the heater, the water heater, and the window, and it has a tem-
perature sensor (a thermometer), an air quality sensor, and a global clock to
keep track of time.

The heater can be set to very hot VH, fairly hot FH or OFF, the water
heater to ON or OFF, and the window to open O, half open HO, or closed C.
A thermometer measures the temperature as a float value, where a comfortable
temperature ranges over values between (and including) 18 and 22 ◦C. An air
quality sensor measures the air quality as a float value, where a good level is
represented by a value ≥ 0. The clock ranges over integer values from 1 to 24,
and changes in a round-robin manner to represent discrete time units as time
advances during a 24-hour day. We define all time units between, and including,
6 and 12 to be MORNING and all other time units as NOT MORNING.

In Fig. 4 we model the impact that the state of the actuators has on the
temperature and air quality. For every time step, the total impact on the tem-
perature and air quality is calculated as the sum of the effects of each actuator.
The temperature of the smart house is also affected by the environment, e.g., the
outside temperature, which varies depending on the time of the day. We further
consider additional variability of the environment (see the online material).

3.1 The Controller Layer

The operation of the smart house system is based on controllers that receive
readings from the temperature and air quality sensors as well as the clock value
as input. Depending on the sensor readings and whether it is morning or not,
the active controller selects a status for each actuator. The controller’s goal is
to fulfil some of the requirements displayed in Fig. 3 by changing the state of
the actuators. The smart house heating system has four controllers: a controller
that prioritises temperature (comfort controller), a controller that prioritises air
quality (eco controller), and two degraded controllers, which only act upon one
of the heaters, using only two of the three actuators in the smart house.

The controllers have policies based on rules to decide upon the state of the
actuators, depending on the inputs (temperature, air quality, and clock), and
assuming that the actuators’ effect on the temperature and air quality in the
room are as the presented in Fig. 4.

The comfort controller uses all actuators and has a strong preference for
comfort temperature. Its control policy is defined to meet to a certain degree
the requirements in Fig. 3: (1) a policy stricter than R3: reach and maintain
the desired comfort temperature measurements as a priority, even if that means
slightly worse air purity measurements, and (2) R1: the water heater is always
on in the morning.

The controller policy is depicted as a decision diagram in Fig. 5. The nodes
represent the temperature T , clock CLK, air quality AQ, and window W . The
edges represent the status of each node. The leaves represent the desired state of
the actuators, as described in Fig. 4, in the order: heater, water heater, and win-
dow. Note that the controllers check whether the temperature is within 19.0 ◦C

A Formal Model of Metacontrol in Maude 581

T<19 T>21

T

AQ≥1 AQ<1

AQ

19≤T≤21

MORNING NOT
MORNING

CLK

NOT
MORNING

MORNING

CLK

NOT
MORNING

MORNING

CLK

AQ≥1 AQ<1

AQ

OFF, OFF, C

NOT
OPENOPEN

W

VH, OFF, HOVH, OFF, O

VH, ON, C OFF, OFF, O

OFF, ON, C

NOT
OPEN

OPEN

W

FH, ON, HOVH, ON, O

FH, ON, C OFF, ON, O

Fig. 5. Decision diagram for the comfort controller, where the leaf nodes indicate the
controller’s decision for the state of the heater, water heater and window.

and 21.0 ◦C and whether the air quality is above 1, so they use different values
than the ones defined in the system requirements. This was done to create some
buffer during which the controllers can react before the temperature and air
quality pass the thresholds of 18.0 ◦C and 22.0 ◦C, respectively 0. Based on the
decision tree, we can already observe that some requirements of Fig. 3 are not
met, as the controller prioritises a comfortable temperature. In particular, some
rules violate R2 since the controller uses the very hot heater state VH and the
open window state O together.

The eco controller uses all actuators and has a strong preference for air
purity. Its control policy is defined to meet to a certain degree the requirements
in Fig. 3: (1) a policy stricter than R4: reach and maintain the desired air purity
measurements as a priority, even if it means a slightly worse comfortable tem-
perature measurements, (2) R1: the water heater is always on in the morning,
(3) an extension of R2: if the temperature is high and it is morning, only reduce
the temperature with the window half open to avoid losing heat too quickly.

Degraded controllers are defined for each heater that may break, so the
degraded controllers can be used when that happens. Degraded controller A
assumes that the heater is broken and therefore always OFF. Degraded controller
B assumes that the water heater is broken and therefore always OFF.

Decision diagrams, similar to the one showed in Fig. 5, are included for the
remaining controllers in the online repository1.

1 The full model of the smart house Metacontrol architecture, including all scenarios
and results, is available at https://github.com/remaro-network/Maude Metacontrol.

https://github.com/remaro-network/Maude_Metacontrol

582 J. Päßler et al.

<<component>>
H

<<component>>
WH

<<component>>
W

type

solves

requires requires requires requires

<<function>>
fnObj

<<function design>>

QAestcomf

CT

QAestcomf

AP

fdcomf

: 0.7

: 0.4

<<function design>>

QAesteco
CT

QAesteco
AP

fdeco

: 0.5

: 0.7

<<function design>>

QAestdegr
CT

QA estdegr
AP

fddegrA

: 0.3

: 0.2

<<function design>>
fddegrB

QAestdegr
CT

QA estdegr
AP

: 0.3

: 0.2

<<objective>>

QAreq
CT

QAreq
AP

: 0.3
: 0.2

Obj

Fig. 6. Elements of the smart house TOMASys metamodel.

4 The Metacontrol Layer for the Smart House Use Case

In this section we present the Metacontrol layer for the smart house use case,
modelling R3 and R4 in Fig. 3 as an abstract functionality of the system that
the metacontroller aims to maintain. The overall system includes all the con-
trollers presented in Sect. 3.1. The comfort controller prioritises R3 over R4,
while the policy of the eco controller does the opposite. In case a heater breaks,
the degraded controllers can be used. The adaptation problem that the meta-
controller solves is configuring the smart house application by selecting at each
instant the best controller to perform both R3 and R4.

4.1 The TOMASys Metamodel

The quantitative requirements R3 and R4 are captured in the TOMASys meta-
model, as explained in Sect. 2.1. Figure 6 provides an overview of the TOMASys
model for this use case.

Function. Requirements R3 and R4 can be represented as a function fn: use
a controller to keep the smart house temperature and air quality at a desired
level. Observe that in the general case, the metacontroller can operate based on
different functions that depend on different quality attributes at the same time.

Quality Attributes. To quantify the extent to which the system satisfies the
requirements R3 and R4, we use the quality attributes QACT (comfortable tem-
perature) and QAAP (air purity). These quality attributes occur as required

A Formal Model of Metacontrol in Maude 583

quality attributes in the objective, as estimated quality attributes in the func-
tion designs, and as measured quality attributes in the function grounding, and
will be further discussed in the respective paragraphs.

Objective. An objective is a concrete instance of the function fn. A desired
range for the temperature and a good level for the air quality are given by the
objective Obj: keep the smart house temperature between (and including) 18
and 22 ◦C and the air quality ≥ 0. To evaluate whether an objective has been
fulfilled, the metacontroller uses minimum thresholds for each quality attribute,
such thresholds are denoted as required quality attributes QAreq

CT and QAreq
AP .

These values also reflect the priorities that are set in the system. The higher the
value, the higher the priority. For the smart house use case, we want to prioritise
comfortable temperature; therefore QAreq

CT > QAreq
AP , see Fig. 6. We denote this

objective as Obj(QAreq
CT , QAreq

AP). Observe that, in general, there is one objective
for each function since the objective is an instance of a function.

Function Design. We denote each function design in Fig. 6 as

fdid(QAestid
CT , QAestid

AP ,Cmpid) ,

where

– id is one of the identifiers of the controllers,
– QAest

CT and QAest
AP are estimated quality attribute values for comfortable tem-

perature and air purity, and
– Cmp ⊆ {heater,waterheater,window} are required components.

Function Grounding. If a controller is selected, we ground its function design.
This instance is then called function grounding. In the function grounding, we
store the measured quality attributes QAmeas

CT and QAmeas
AP that reflect the degree

to which the quality attributes are fulfilled at the moment.
If one of the actuators fails or the measured quality attribute values are lower

than the required ones, then the function grounding will be marked as in error,
which will trigger reconfiguration in the metacontroller. This includes grounding
a (new) function design.

Quality Attribute Values. Figure 6 includes the required and estimated val-
ues for the quality attributes used in the use case. The function design fdcomf

captures the goal of the comfort controller: to prioritise a comfortable tempera-
ture in the room and then, if the temperature is good enough, try to maintain
a reasonable air quality, thus QAestcomf

CT > QA
estcomf

AP . The function design fdeco

focuses on a good air quality, therefore QAesteco
CT < QAesteco

AP .
For simplicity all degraded controllers have the same estimated values in our

model, which are assumed to be lower than the estimated values for the other
controllers, and prioritise room temperature.

584 J. Päßler et al.

All the above elements are used by the metacontroller to decide when to
switch between the different controllers, so that the system does its best to meet
both requirements R3 and R4.

4.2 Metacontrol Operation

We now detail the operation of the metacontroller, following the MAPE-K loop,
where the knowledge base of the MAPE-K loop includes all the elements and
relationships among the elements defined in Sect. 4.1.

Monitor. During the monitor step, the metacontroller uses some collected logs
in the system to calculate the current measured values of the quality attributes.
In particular, we assume that the heating system has a log for the temperature
values in the room T = t0, t1, . . . , tn and a log for the air quality values in
the room A = a0, a1, . . . , an, where ti, ai ∈ Q for all i = 0, . . . , n. They were
retrieved from the sensors every time step 0, . . . , n, where n is the current time
step. Let N ∈ N be the size of the time window that we want to consider for
the computation of the current values of the quality attributes. We now decide
whether a temperature ti is considered to be a comfortable temperature. Let
CT : Q −→ {0, 1} be defined as

CT(ti) =

{
1 if 19.1 ≤ ti ≤ 21.5,

0 otherwise.
(1)

The measured quality attribute QAmeas
CT for comfortable temperature is then

given by the function QAmeas
CT : N × Q

n −→ [0, 1], defined as follows:

QAmeas
CT (N,T) =

∑n
i=(n−N) CT(ti)

N
. (2)

We compute the measured air purity as a function AP : Q −→ {0, 1}, defined
as:

AP(ai) =

{
1 if ai ≥ 0.7,

0 otherwise.
(3)

The measured quality attribute QAmeas
AP for air purity is then given by a function

QAmeas
AP : N × Q

n −→ [0, 1], defined as follows:

QAmeas
AP (N,A) =

∑n
i=(n−N) AP(ai)

N
. (4)

Observe that the thresholds for comfortable temperature and air purity in CT
and AP differ from the system requirements in Sect. 3. This difference anticipates
the adaptation that will be done the metacontroller. Finally, if n < N , we only
consider the first n time steps in both QAmeas

CT and QAmeas
AP .

A Formal Model of Metacontrol in Maude 585

Analyse. During the analysis step, the metacontroller first checks whether one
of the actuators is in error. If yes, then the current function grounding is marked
to be in error. If all actuators work, the metacontroller compares the measured
quality attribute values QAmeas

CT and QAmeas
AP with the required QA values in

the objective Obj(QAreq
CT , QAreq

AP). If at least one measured QA value is lower
than the respective required QA value, then the current function grounding is
marked to be in error. The QAs that have a lower measured than required value
are marked as underachieved. For example, if QAmeas

CT = 0.2, then QACT is
marked as underachieving since QAreq

CT = 0.3, see Fig. 6.

Plan. If the metacontroller marked the function grounding to be in error, then
during the planning step the metacontroller needs to select a new function
design to ground. In the case where both quality attributes are underachieved,
the objective Obj(QAreq

CT ,QAreq
AP) prioritises the QA for comfortable temperature

since QAreq
CT > QAreq

AP .
Assuming that the system is at time step n, we define availablen as the set of

function designs that are available at time step n, i.e., the set of function designs
whose required components only contain components that are not broken. Fur-
thermore, we define poorQAn as the set of QAs that are underachieved at time
step n. The planning step in the metacontroller acts slightly different depending
on two cases:

Case 1: The metacontroller only needs to look at the required components to
choose a function design. In our particular scenario, this is the case in which
either the heater or the water heater is failing.
In this case availablen ⊆ {fddegrA, fddegrB}. Since in our scenario only one of
the heaters can be broken, availablen will have exactly one element, which
the metacontroller chooses to be grounded in the execute step.

Case 2: The metacontroller needs to look into the QAs that are marked as
underachieved. In our particular scenario, this is the case in which all the actu-
ators are working normally. Thus, availablen consists of all function designs.
In this case poorQAn ⊆ {QACT , QAAP }. Observe that poorQAn contains at
least one element. Let QAx ∈ poorQAn be the QA with the highest priority
in poorQAn. The metacontroller searches for the function design in availablen
with the highest estimated value for QAx, i.e., the function design with iden-
tifier i such that for all function designs in availablen with identifier j it holds
that QAesti

x ≥ QAestj
x .

Execute. During the execute step, the chosen function design is grounded and
the controller associated with this function design is activated, triggering execu-
tion in the controller layer as described in Sect. 3.1.

586 J. Päßler et al.

1 op 〈 Scheduler | Status : : 〉 : ScheduleComp Bool Scheduler .
2 op 〈 : Clock | Timesteps : : : : 〉
3 : Oid Timesteps Time TVPList TVPList Clock .
4 op 〈 : Thermometer | Degrees : 〉 : Oid Temperature Thermometer .
5 op 〈 : Airquality | Value : 〉 : Oid AirqualityStatus Airquality .
6 op 〈 : Heater | 〉 : Oid Attribute Heater .
7 op 〈 : Waterheater | 〉 : Oid Attribute Waterheater .
8 op 〈 : Window | 〉 : Oid Attribute Window .
9 op 〈 : ComfortController | Selected : 〉 : Oid Selected ComfortController .

10 op 〈 : EcoController | Selected : 〉 : Oid Selected EcoController .
11 op 〈 : DegradedContrA | Selected : 〉 : Oid Selected DegradedContrA .
12 op 〈 : DegradedContrB | Selected : 〉 : Oid Selected DegradedContrB .
13 op 〈 Environment | Version : 〉 : Nat Environment .

Fig. 7. Selected objects of the smart house heating system, modelled in Maude.

5 Modelling the Smart House Use Case in Maude

We now describe the Maude model of the metacontrolled smart house applica-
tion, including all elements described in Sects. 3 and 4. A multiset Configuration
is used to represent the components of the Metacontrol ecosystem, as suggested
in Sect. 2.2. A Configuration contains all objects that are crucial for the model
of the smart house, detailed in the sequel. Figures 7 and 11 give the syntax of a
selection of these objects. The full model can be found in the online repository.

5.1 Model Dynamics

The following elements model the execution of the entire self-adaptive system,
as described in Fig. 1.

Scheduler is an object of sort Scheduler (see Fig. 7, Line 1) that captures the
MAPE-K loop and ensures that rules are applied in the correct order, according to
Fig. 8. It keeps track of which sets of rules can be applied, using the attribute Sta-
tus, and schedules which components can apply rules. The attribute RuleApplied
indicates whether one of the rules in the active set has already been applied. The
scheduler object is present in all rules. A rule can only be applied if the scheduler
object has the right value in the attribute Status, and if the attribute RuleApplied
is false, e.g., see the rule in Fig. 9. The scheduler makes the model deterministic.
However, different configurations will trigger different rules inside the sets.

Time is modelled with an object of sort Clock (see Fig. 7, Line 2) that captures
the passage of time in the system, which works together with a rule for modelling
how time advances. It has attributes

– Timesteps: a natural number representing the current time step in the system,
– Time: the current time, and
– TVPList: a list of (Timestep, Float)-pairs.

A Formal Model of Metacontrol in Maude 587

Fig. 8. The order in which the different set of rules are applied.

After each time step, a pair representing the current time step and temperature
(air quality) is added to the temperature log TempLog (respectively to the air
quality log AqLog). As described in Sect. 3, we assume that one time step is one
hour, so the time is computed as the current time steps modulo 24. Furthermore,
a sort TimedConfiguration is introduced. It is used in certain rules to ensure that
rules are applied to the full global state configuration and not only to subsets. If
the scheduler indicates that the time should advance, then a rule that increases
the Timesteps by one, computes the new Time and adds new pairs to TempLog
and AqLog is applied.

5.2 The Smart House Model

In this section, we present the model of the managed system, as displayed in
Fig. 1 and described in Sect. 3.

Thermometer models the measurement of the current temperature in the
room. An object of sort Thermometer (see Fig. 7, Line 4) has the attribute Tem-
perature that is a float value that reflects the current temperature in the smart
house.

Air quality sensor models the measurement of the current air quality value
in the room. An object of sort Airquality (see Fig. 7, Line 5) has the attribute
AirqualityStatus that is a float value that reflects the current air quality value in
the smart house.

Actuators have an object identifier Oid and a multiset of Attributes (see Fig. 7,
Lines 6–8). Thus, the attributes that are necessary for an actuator are not explic-
itly specified. However, each actuator should have exactly one instance of the
following attributes:

– Status: can be of sort HeaterStatus, WaterheaterStatus or WindowStatus,
depending on the actuator, and represents the current status of the actu-
ator;

– EffectTemp: the effect of the actuator on the temperature, specified as a float
value;

– EffectAQ: the effect of the actuator on the air quality, specified as a float
value; and

– Broken: indicates whether the actuator is broken or not.

See Fig. 4 for further details about the effect of the actuators on the temperature
and air quality.

588 J. Päßler et al.

1 crl [CContrTempOkAqOk] :
2 〈 H : Heater | A 〉 〈 WH : Waterheater | A1 〉 〈 W : Window | A2 〉
3 〈 T : Thermometer | Degrees : DG 〉 〈 AQ : Airquality | Value : AQS 〉
4 〈 C : Clock | Timesteps : TS, Time : TI, TempLog : TL, AqLog : AL 〉
5 〈 CC : ComfortController | Selected : true 〉
6 〈 Scheduler | Status : ContrChange, RuleApplied : false 〉
7 ⇒
8 (msg hOff from CC to H)(msg whOff from CC to WH)(msg closed from CC to W)
9 〈 H : Heater | A 〉 〈 WH : Waterheater | A1 〉 〈 W : Window | A2 〉

10 〈 T : Thermometer | Degrees : DG 〉 〈 AQ : Airquality | Value : AQS 〉
11 〈 C : Clock | Timesteps : TS, Time : TI, TempLog : TL, AqLog : AL 〉
12 〈 CC : ComfortController | Selected : true 〉
13 〈 Scheduler | Status : ContrChange, RuleApplied : true 〉
14 if morning(TI) ==false / /
15 /

hot(DG) ==false cold(DG) ==false
aqok(AQS) ==true .

Fig. 9. A rule for the comfort controller in Maude (coloured text highlights changed
or new elements).

Physics. If the scheduler indicates that the temperature and air quality should
be changed, then a rule is applied to change them according to the status of
the actuators and the time, as specified in Sect. 3. We also implemented three
different ways the environment can influence the temperature and air quality in
the room, where two of them do not only depend on the time of the day, but also
on the time step. The environment behaviour can be selected via the attribute
Value of the object Environment (see Fig. 7, Line 13).

5.3 The Controller Layer

The controllers, defined in Sect. 3.1, are modelled as objects; the attribute
Selected indicates if a controller is currently active (see Fig. 7, Lines 9–12).

The policies of the controllers are captured as rules. If a controller is active
and the scheduler indicates that the controller should apply a rule, then the
appropriate rule, which aims to change the status of the actuators, is applied.
However, if an actuator is broken, its status should not be changed. We use
a sort Msg for passing messages from a controller to an actuator, defined as
opmsg from to : ActuatorStatus Oid Oid → Msg . A broken actuator will not
change its status when consuming the message. Otherwise it will change its
status to the desired one.

The Maude model has rules that cover all the cases of the decision diagrams
of the controllers. A sample rule for the comfort controller, given in Fig. 9, cap-
tures a path in the decision diagram of Fig. 5. This rule is applied when it is
not morning and the temperature and air quality are OK. The pattern on the
left hand side of the rule describes a configuration with the involved actua-
tors, sensors, controllers. The scheduler has status ContrChange and a RuleAp-
plied attribute with value false. The rule creates three messages and changes the
attribute RuleApplied to true, which ensures that the controller only applies one

A Formal Model of Metacontrol in Maude 589

1 rl [AnalyseDegA] :
2 〈 H : Heater | Broken : yes, A 〉
3 〈 MC : Metacontroller | MetaLog : ML 〉
4 〈 Scheduler | Status : MCAnalyse, RuleApplied : false 〉
5 〈 ErrorPropagation | FgError : false, QaCtError : B, QaApError : B1,
6 ActError : AIE 〉
7 CONF
8 ⇒
9 〈 H : Heater | Broken : yes, A 〉

10 〈 MC : Metacontroller | MetaLog : ML 〉
11 〈 Scheduler | Status : MCAnalyse, RuleApplied : true 〉
12 〈 ErrorPropagation | FgError : true, QaCtError : false, QaApError : false,
13 ActError : heater 〉
14 deselect(CONF)

Fig. 10. A rule for the metacontroller in Maude. The rule is applied when the heater
is broken (coloured text highlights changed or new elements).

rule per time step. The rule uses auxiliary functions; e.g., the function morning
determines whether the current time is between 6 and 12 o’clock, cold, the func-
tions cold and hot whether it is cold (i.e., less than 19.0 ◦C) or hot (i.e., more
than 21.0 ◦C), and the function aqok whether the current air quality is above
1.0.

5.4 The Metacontrol Layer

We now present the model of the managing system, as shown in Fig. 1 and
described in Sect. 4.

Metacontroller is captured by an object of sort Metacontroller (see Fig. 11,
Line 1). The attribute MetaLog contains a list of pairs (Timestep, Value), where
Value can be Eco, Comf, DegA, or DegB. At a time step i, the metacontroller
might switch between controllers. If so, it adds a pair (i, Ci) to the MetaLog,
where Ci represents the controller which has been activated.

A sample rule of the metacontroller in Maude is displayed in Fig. 10. This
rule is part of the set of rules for the analysis step. The rule is applied when the
heater is broken to propagate the error and to signal in the Metacontrol layer
that the system needs reconfiguration. Note that the curly brackets around the
configuration enforce that this rule can only be applied to the configuration as
a whole. The pattern on the left hand side of the rule describes a configuration
with a broken heater, all the necessary components used by the metacontroller,
as well as the whole configuration CONF which is not further specified. The
scheduler has status MCAnalyse and a RuleApplied attribute with value false. The
ErrorPropagation object has a FgError attribute with value false, QaCtError and
QaApError attributes with arbitrary boolean values, and an attribute ActError
with an arbitrary list of actuators as value. The rule changes the RuleApplied

590 J. Päßler et al.

1 op 〈 : Metacontroller | MetaLog : 〉 : Oid MetaLog Metacontroller .
2 op 〈 RequiredQAs | requQaCT : requQaAP : 〉 : Rat Rat Objective .
3 op 〈 : QaComfTemp | 〉 : Oid QaAttributes QaComfTemp .
4 op 〈 : QaAirPurity | 〉 : Oid QaAttributes QaAirPurity .
5 op 〈 : FDContr | 〉 : Oid FDAttributes FunctionDesign .
6 op 〈 ErrorPropagation | FgError : QaCtError : QaApError : ActError : 〉
7 : Bool Bool Bool ActuatorList InError .

Fig. 11. Selected objects used by the metacontroller in Maude.

attribute to true, which ensures that only one analyse rule can be applied every
time step. Furthermore, it changes the attribute FgError to true because the
function grounding is in error, the attributes QaCtError and QaApError to false,
and the attribute ActError to heater because the heater is broken. Lastly, it uses
the auxiliary function deselect to deselect the currently active controller.

Quality Attributes can be required, expected and measured QAs, see Sect. 4.1.
They occur in different parts of the model in Maude. The required QA values
are captured in an object of sort Objective (see Fig. 11, Line 2), where requQaCT
and requQaAP are the required QA values for comfortable temperature and
air purity, respectively. The expected QA values are captured in the function
designs (described later). The measured QA values are captured in objects of
sort QaComfTemp and QaAirPurity (see Fig. 11, Lines 3–4), where QaAttributes
is a multiset sort of attributes. Each quality attribute should include each of the
following attributes exactly once:

– Consider: a natural number that reflects how many time steps should be con-
sidered for the computation of the quality attribute;

– Past: a list of Boolean values recording CT (ti) in QaComfTemp and AP (ai)
in QaAirPurity, defined in Eqs. 1 and 3, for each time step i;

– Status: the current value of the quality attribute, computed according to Eq. 2
for QaComfTemp and according to Eq. 4 for QaAirPurity;

– QaComputed: a Boolean value that indicates whether the QA was computed
in the current time step.

The rules that update the attribute Past and compute the new measured QA
values are applied. when enabled by the scheduler.

Function design objects of sort FunctionDesign are defined for every controller
Contr, where FDAttributes is a multiset sort of attributes (see Fig. 11, Line 5).
Function design objects include the following attributes:

– ConContr: the Oid of the controller connected to this function design;
– ExpQaCT: the expected QA value for comfortable temperature;
– ExpQaAP: the expected air purity QA value; and
– RequActuators: a list of required actuators.

A Formal Model of Metacontrol in Maude 591

Controllers
NoViol IntViol

Tmp. AirQu. Total Tmp. AirQu. Total
Comfort 0 48 48 0.00 16.45 16.45
Eco 29 0 29 15.19 0.00 15.19
Metacontroller 10 14 24 4.815 4.65 9.465

Fig. 12. Collected metrics from running Scenario 1 in Maude.

Function grounding is represented implicitly. Error propagation happens
when certain actuators are in error and when quality attributes are under-
achieved. This is captured with an object of sort InError (see Fig. 11, Lines 6
and 7), where the Boolean values indicate whether the function grounding, the
QA comfortable temperature, or the QA air purity are in error, and ActError is
a (possibly empty) list of actuators that are in error.

An Analyse rule is applied before a Plan rule, when enabled by the scheduler.
The rules follow the procedure described in Sect. 4.2.

6 Evaluating the Executable Model of the Smart House

This section reports on simulation experiments to evaluate the performance of
the controllers and the impact of adding the Metacontrol framework to the sys-
tem using the developed Maude model. The experiments consist of running the
Maude model of the smart house for 200 time steps, measuring relevant metrics,
and comparing how the system behaves with the comfort and eco controllers,
and with the Metacontrol layer. The experiments were done for the following
scenarios: (1) all actuators are working, (2) the heater breaks at time step 75,
and (3) the water heater breaks at time step 75. The experiments were also
repeated for two other variations of the environment, which gave similar results
to the ones reported in the paper. Note that given an initial configuration, the
model is deterministic due to the round-robin scheduling policy and the simplifi-
cation of the variability in the environment. Therefore, one simulation is enough
to capture the behaviour of the system in the different scenarios.

The requirements R3 and R4 reported in Fig. 3 are instantiated as follows:
We assume that a comfortable temperature is between 18 and 22 ◦C and a good
air quality level is above 0. The results obtained for Scenario 1 are summarised
in Figs. 12, 13, and 14, respectively, where we considered an initial temperature
of 19 ◦C and an initial air quality of 1.3. We collect metrics that measure the
following: NoViol counts how many time steps the requirements R3 and R4

presented in Fig. 3 are violated. If, for example, the air quality drops below 0
for 2 time steps, NoViol will be equal to 2. IntViol sums up the severity of the
violation with respect to the thresholds. If for example the air quality is –0.5
in time step 1, –1 in time step 2, and 0 in time step 3, it would result in an
intensity of violation of –1.5. The collected metrics are shown in Fig. 12.

Figures 13 and 14 show that the comfort controller does not violate R3, but
violates R4, and the eco controller violates R3, but not R4. When Metacontrol is

592 J. Päßler et al.

Fig. 13. The evolution of temperature for Scenario 1.

Fig. 14. The evolution of air quality for Scenario 1.

used, both requirements are violated, but the number of times and the intensity
of the violations are lower than when the comfort or eco controllers are used
in isolation. Similar results were also obtained with the Metacontrol layer for
Scenarios 2 and 3. Further experiments injected variability in the environment,
where the metacontroller still performed better than the comfort and eco con-
troller in Scenario 1 and at least as good as the comfort controller in Scenarios
2 and 3. All the experiments can be reproduced following the instructions in the
online repository.

The results show that for the smart house use case, the additional Metacon-
trol layer, as modelled in this work, allowed the smart house system to adapt
and improve its performance in all the experiments reported in this section.

A Formal Model of Metacontrol in Maude 593

7 Related Work

Multiple works have addressed formal models of self-adaptive systems in the con-
text of providing assurances [24]. ActivFORMS [17] is a self-adaptation approach
that explicitly uses formal models at runtime in the form of timed automata to
promote adaptation, thus ensuring that the properties verified at design time are
guaranteed at runtime. Compared with Metacontrol, ActivFORMS requires to
develop the entire system, i.e. first and second order self-adaptation, using for-
mal methods, while Metacontrol allows to leverage existing domain controllers.
ENTRUST [9] is a generic methodology to design reliable self-adaptive software
and its associated assurance cases, based on developing verifiable models, such
as the automata in ActivFORMS, to check if they satisfy certain properties,
such as that the controllers are deadlock free. Our work relates to ActivFORMS
and ENTRUST regarding the development and verification of the self-adaptive
system models. Our aim is to use Maude to formally model Metacontrol archi-
tectures and use it to analyse their properties.

The analysis of self-adaptive systems has been addressed using various formal
methods. For example, an abstract modelling framework based on automata is
introduced in [3], several papers [10,14,21] use (a subclass of) Petri nets to
model self-adaptive systems, and a domain specific language has been proposed
to support compositional verification of self-adaptive cyber-physical systems [4].

In our work, we took inspiration from the work of Arcaina et al. [2] on mod-
elling MAPE-K feedback loops with Abstract State Machines, which introduced
the Smart House Case Study that we adapted in our paper. However, the con-
trollers they considered in their work correspond to the managed system in our
paper; i.e., they model the control level rather than the Metacontrol level con-
sidered in our work. Furthermore, they consider a scenario in which multiple
controllers can be active at the same time, which differs from our work which
only considered the Metacontrol level activating and deactivating different con-
trollers. Thus, they considered a different form of adaptation than in our work.
Their work is further developed, for example, in [1].

Maude has previously been used to formalise and study reflection. In par-
ticular, rewriting logic allows a universal theory of reflection [11], which is also
supported by Maude. Maude has also been used to formalise and study reflection
in actor models using a “Russian dolls” architecture [20], especially in the context
of reflective middleware [23]. Bruni et. al. [7] proposed a conceptual framework
for self-adaptation that they realised in Maude [8]. Their work resembles ours in
using a layered model of self-adaptation by means of MAPE-K feedback loops,
but differs from ours in that they use a white box approach for implementing
self-adaptation, whereas Metacontrol uses a black box approach.

8 Conclusion and Future Work

In this paper, we present the first executable formal model of a self-adaptive sys-
tem based on Metacontrol. The use of Maude has allowed us to model a use case

594 J. Päßler et al.

based on the smart house use case by Arcani et al. [2], including all the layers in
such a self-adaptive system of systems, from the physics of the environment, via
the first-order adaptation layer formed by the sensors, actuators and controllers,
to the second-order adaptation layer defined by the Metacontrol architecture.
The results presented in Sect. 6 for different scenarios of environment inputs and
system failures validate our model of second-order self-adaptation with Metacon-
trol. They show an improved performance of the smart house system with respect
to its requirements when the metacontroller performs architectural adaptation
using the alternative controllers, compared to when the system’s behaviour is
limited to one of the individual controllers.

We highlight that the goal of this work is not to model the best controllers
in the market, but to demonstrate that for scenarios where there are different
controllers with specific advantages and limitations, Metacontrol can be used
to capture and exploit this knowledge in order to improve the overall system
performance. However, the potential to improve performance is deeply dependent
on how well-designed the TOMASys metamodel is, especially the QAs.

In this paper, we have used simulations to analyse the benefits of Metacon-
trol in scenarios with fairly deterministic environments. In future work, we plan
to use stronger analysis techniques, such as model checking and the exploration
of what-if scenarios, to verify safety as well as liveness properties of the Meta-
control layer’s abilities for self-adaptation in more unpredictable environments.
For example, it would be interesting to verify properties related to the respon-
siveness and coverage; e.g., the Metacontrol layer’s ability to always eventually
regain correct behaviour, the maximal delay in this process, and whether the
choice of active controllers will always fluctuate or eventually stabilise. Our long
term goal is to analyse Metacontrol under assumptions about the managed sys-
tem, and identify minimal requirements to the managed system such that the
Metacontrol layer can guarantee desired overall correctness properties. A first
step in this direction will be to generalise the formal model of the Metacontrol
framework by replacing the executable models of the managed system and its
environment by declarative specifications of their behaviour.

From the perspective of the design of the Metacontrol framework, our work
on the Maude model has already provided insights into the current limitations
of both the Metacontrol self-adaptation reasoning based on the TOMASys con-
ceptual model and its execution model. In future work, we plan to extend the
TOMASys metamodel to evaluate and prioritise conflicting requirements. Fur-
thermore, we plan to explore the use of behavioural specifications of system
components, as discussed above, to enrich the knowledge base of the Metacon-
trol architecture and integrate predictive analyses by means of formal models in
the Metacontrol’s self-adaptation layer.

A Formal Model of Metacontrol in Maude 595

References

1. Arcaini, P., Mirandola, R., Riccobene, E., Scandurra, P.: MSL: a pattern language
for engineering self-adaptive systems. J. Syst. Softw. 164, 110558 (2020). https://
doi.org/10.1016/j.jss.2020.110558

2. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst. 11,
1–35 (2016)

3. Borda, A., Koutavas, V.: Self-adaptive automata. In: Proceedings of the 6th Con-
ference on Formal Methods in Software Engineering (FormaliSE 2018), pp. 64–73.
ACM, June 2018. https://doi.org/10.1145/3193992.3194001

4. Borda, A., Pasquale, L., Koutavas, V., Nuseibeh, B.: Compositional Verification
of self-adaptive cyber-physical systems. In: Proceedings of the 13th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2018), pp. 1–11, May 2018

5. Börger, E., Stärk, R.F.: Abstract state machines. A method for high-level system
design and analysis. In: Boca, P., Bowen, J., Siddiqi, J. (eds.) Formal Methods:
State of the Art and New Directions. Springer, London (2003). https://doi.org/10.
1007/978-1-84882-736-3 3

6. Brun, Y., et al.: engineering self-adaptive systems through feedback loops. In:
Cheng, Betty H. C.., de Lemos, Rogério, Giese, Holger, Inverardi, Paola, Magee,
Jeff (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp.
48–70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

7. Bruni, Roberto, Corradini, Andrea, Gadducci, Fabio, Lluch Lafuente, Alberto,
Vandin, Andrea: A conceptual framework for adaptation. In: de Lara, Juan, Zis-
man, Andrea (eds.) FASE 2012. LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28872-2 17

8. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. Sci. Comput. Pro-
gram. 99, 75–94 (2015). https://doi.org/10.1016/j.scico.2013.11.043

9. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2017)

10. Camilli, M., Capra, L.: Formal specification and verification of decentralized self-
adaptive systems using symmetric nets. Discrete Event Dyn. Syst. 31(4), 609–657
(2021). https://doi.org/10.1007/s10626-021-00343-3

11. Clavel, M.: Reflection in Rewriting Logic: Metalogical Foundations and Metapro-
gramming Applications. CSLI Publications, Stanford (2000)

12. Clavel, M., et al. (eds.): All About Maude - A High-Performance Logical Frame-
work, How to Specify, Program and Verify Systems in Rewriting Logic, LNCS, vol.
4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

13. Corbato, C.H.: Model-based self-awareness patterns for autonomy. Ph.D. thesis,
Universidad Politécnica de Madrid (2013)

14. Fakhir, M.I., Kazmi, S.A.R.: Formal specification and verification of self-adaptive
concurrent systems. IEEE Access 6, 34790–34803 (2018). https://doi.org/10.1109/
ACCESS.2018.2849821

15. Garlan, D.: The unknown unknowns are not totally unknown. In: Proceedings
of the International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2021), pp. 264–265. IEEE, May 2021. https://doi.org/
10.1109/SEAMS51251.2021.00047

https://doi.org/10.1016/j.jss.2020.110558
https://doi.org/10.1016/j.jss.2020.110558
https://doi.org/10.1145/3193992.3194001
https://doi.org/10.1007/978-1-84882-736-3_3
https://doi.org/10.1007/978-1-84882-736-3_3
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-28872-2_17
https://doi.org/10.1016/j.scico.2013.11.043
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/ACCESS.2018.2849821
https://doi.org/10.1109/ACCESS.2018.2849821
https://doi.org/10.1109/SEAMS51251.2021.00047
https://doi.org/10.1109/SEAMS51251.2021.00047

596 J. Päßler et al.

16. Hernández, C., Bermejo-Alonso, J., Sanz, R.: A self-adaptation framework based
on functional knowledge for augmented autonomy in robots. Integr. Comput. Aided
Eng. 25(2), 157–172 (2018)

17. Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation.
In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2014), pp. 125–134. ACM (2014)

18. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

19. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebraic Methods Program.
81(7–8), 721–781 (2012). https://doi.org/10.1016/j.jlap.2012.06.003

20. Meseguer, José, Talcott, Carolyn: Semantic models for distributed object reflection.
In: Magnusson, Boris (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7 1

21. Mian, N.A., Ahmad, F.: Modeling and analysis of MAPE-K loop in Self Adaptive
Systems using Petri Nets. Int. J. Comput. Sci. Netw. Secur (IJCSNS) 17, 6 (2017)

22. Ölveczky, P.C.: Designing Reliable Distributed Systems - A Formal Methods App-
roach Based on Executable Modeling in Maude. Springer London (2017). https://
doi.org/10.1007/978-1-4471-6687-0

23. Venkatasubramanian, N., Talcott, C., Agha, G.A.: A formal model for reason-
ing about adaptive QoS-enabled middleware. ACM Trans. Softw. Eng. Methodol.
13(1), 86–147 (2004)

24. Weyns, D., et al.: Perpetual assurances for self-adaptive systems. In: de Lemos,
Rogério, Garlan, David, Ghezzi, Carlo, Giese, Holger (eds.) Software Engineering
for Self-Adaptive Systems III. Assurances. LNCS, vol. 9640, pp. 31–63. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-74183-3 2

25. Wirsing, M.: Algebraic specification. In: Handbook of Theoretical Computer Sci-
ence, vol. B: Formal Models and Sematics, pp. 675–788. Elsevier and MIT Pres,
London (1990)

https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1007/3-540-47993-7_1
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-3-319-74183-3_2

Author Index

Abbas, Houssam 264
Adelt, Julius 299
Aguado, Esther 575
Ahrendt, Wolfgang 3, 106, 174
Amilon, Jesper 7
Azzopardi, Shaun 382

Barbanera, Franco 205
Berducci, Luigi 360
Blatter, Lionel 498
Bloem, Roderick 335
Bonakdarpour, Borzoo 264
Bordis, Tabea 242
Bussi, Laura 479

Ciancia, Vincenzo 479
Cleophas, Loek 141
Cok, David R. 29
Corbato, Carlos Hernández 575
Cordy, Maxime 279
Coto, Alex 205

Dam, Khanh Huu The 279
de Hoz Diego, Jorge David 556
Din, Crystal Chang 188
Dubslaff, Clemens 220
Duchene, Fabien 279

Ernst, Gidon 45

Gadducci, Fabio 479
Given-Wilson, Thomas 279
Gorostiaga, Felipe 397
Groote, Jan Friso 422
Grosu, Radu 360
Gurov, Dilian 7, 174

Havelund, Klaus 65
Herber, Paula 3, 299
Huisman, Marieke 3, 417, 517

Johansson, Moa 174
Johnsen, Einar Broch 188, 575
Jongmans, Sung-Shik 460

Kamburjan, Eduard 188
Katsaros, Panagiotis 556
Kittelmann, Alexander 242
Knapp, Alexander 45
Köhl, Maximilian A. 220
Könighofer, Bettina 335
Konnov, Igor 88
Konstantinou, Charalambos 556
Kosmatov, Nikolai 498
Kuppe, Markus 88

Lanese, Ivan 205
Larsen, Kim 335
Latella, Diego 479
Laveaux, Maurice 422
Le Gall, Pascale 498
Leavens, Gary T. 29
Legay, Axel 279
Leucker, Martin 141
Lidström, Christian 7

Mariani, Leonardo 320
Massink, Mieke 479
Merz, Stephan 88
Micucci, Daniela 320
Monti, Raúl E. 517
Murray, Toby 45
Muškardin, Edi 335

Nayak, Satya Prakash 149
Neider, Daniel 149
Niehage, Mathis 299

Pace, Gordon J. 106
Päßler, Juliane 575
Piterman, Nir 382
Pranger, Stefan 335
Prevosto, Virgile 498
Proença, José 460

Remke, Anne 299
Riganelli, Oliviero 320
Rossi, Davide 205
Rubbens, Robert 517

598 Author Index

Rümmer, Philipp 174
Runge, Tobias 242

Sánchez, César 397
Santen, Thomas 124
Schaefer, Ina 141, 242
Schlatte, Rudolf 188
Schneider, Gerardo 382, 397
Seceleanu, Cristina 417
Silva, Gustavo Rezende 575

Tappler, Martin 335
Tarifa, S. Lizeth Tapia 188

Tarifa, Silvia Lizeth Tapia 575
Temperekidis, Anastasios 556
ter Beek, Maurice H. 141
Tuosto, Emilio 205

Uchitel, Sebastián 397
Ulbrich, Mattias 3

van de Pol, Jaco 535
van Spaendonck, P. H. M. 422

Zimmermann, Martin 149
Zudaire, Sebastián 397

	 Introduction
	 Organization
	 Contents – Part I
	SpecifyThis - Bridging Gaps Between Program Specification Paradigms
	SpecifyThis – Bridging Gaps Between Program Specification Paradigms
	1 Introduction
	2 Summary of Contributions
	References

	Deductive Verification Based Abstraction for Software Model Checking
	1 Introduction
	2 Overview of the Verification Approach
	3 Deductive Verification and Frama-C
	4 Model Checking and TLA
	4.1 The TLA Framework
	4.2 Translating Code and Contracts into TLA

	5 Contracts as a Unifying Theory
	5.1 An Abstract Contract Theory
	5.2 Deductive Verification in the Abstract Contract Theory
	5.3 Procedure-Modular Verification with TLA
	5.4 Contract Based System Design

	6 Preliminary Evaluation
	6.1 Simple File Open-Close Example
	6.2 Simplified Industrial Example

	7 Conclusion
	References

	Abstraction in Deductive Verification: Model Fields and Model Methods
	1 Introduction
	2 Logical Encoding of Local Computations
	3 Encoding Heap Access and Update—Previous and Related Work
	3.1 Notation
	3.2 Heaps as Maps
	3.3 Arrays
	3.4 Embedding in SMT

	4 Model Fields and Model Methods
	5 Simple Example
	6 Using Model Methods
	7 Encoding Model Methods
	8 Contrast and Conclusion
	References

	A Hoare Logic with Regular Behavioral Specifications
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Preliminaries and Notation
	3.2 Regular Behavioral Specifications
	3.3 Programs and Behavioral Correctness
	3.4 Hoare Logic Proof Rules

	4 Tool Support in SecC
	4.1 Specification Syntax
	4.2 Verification Engine

	5 Case Studies
	5.1 Case Study: Regular Expression Matching
	5.2 Case-Study: VerifyThis Casino Challenge
	5.3 Discussion

	6 Related and Alternative Approaches
	7 Conclusion
	References

	Specification-Based Monitoring in C++
	1 Introduction
	2 Related Work
	3 Overview
	4 The Specification Language
	4.1 Events
	4.2 A Simple State Machine
	4.3 Some Alternative Monitors
	4.4 Monitoring Events that Carry Data
	4.5 Referring to the Past
	4.6 A Complex Property
	4.7 The Complete Grammar

	5 Usage
	6 Implementation
	7 Experiment
	7.1 Setting Up the Experiment
	7.2 Result and Interpretation

	8 Conclusion
	A Visualization of Monitors
	References

	Specification and Verification with the TLA+ Trifecta: TLC, Apalache, and TLAPS
	1 Introduction
	2 Specifying Termination Detection
	3 Verification by Model Checking and Theorem Proving
	3.1 Finite-State Model Checking Using tlc
	3.2 Bounded Model Checking with Apalache
	3.3 Theorem Proving Using tlaps

	4 Safra's Algorithm for Termination Detection
	5 Analyzing Safra's Algorithm
	5.1 Model Checking Correctness Properties
	5.2 Safra's Algorithm Implements Termination Detection
	5.3 Proving Correctness Using tlaps

	6 Conclusion
	References

	Selective Presumed Benevolence in Multi-party System Verification
	1 Introduction
	2 Smart Contracts, Solidity and Reentrancy
	3 Semantics of Solidity and Handling of Callbacks
	4 Presumption of Benevolence
	4.1 Presuming Benevolence of Oneself
	4.2 Presuming Benevolence of a Static Group
	4.3 Presuming Benevolence of a Dynamic Group

	5 Collaborative Malicious Behaviour
	6 Conclusions
	References

	On the Pragmatics of Moving from System Models to Program Contracts
	1 Introduction
	2 The PGP Server Hagrid
	3 The Alloy Model
	4 From Alloy to VCC Contracts
	4.1 Precondition and Framing Analysis
	4.2 Translation to Annotated C
	4.3 Contract Augmentation

	5 Discussion
	References

	X-by-Construction Meets Runtime Verification
	X-by-Construction Meets Runtime Verification
	1 Motivation
	2 Aim
	3 Contributions
	3.1 CbC: Robustness, Co-piloting, and Digital Twinning
	3.2 CbC and RV: Configurable and Cyber-Physical Systems
	3.3 XbC: Security, Resilience, and Consumption Properties
	3.4 CbC and RV: Reinforcement Learning and Synthesis

	References

	Robustness-by-Construction Synthesis: Adapting to the Environment at Runtime
	1 Introduction
	2 Preliminaries
	3 Adaptive Strategies
	3.1 Definitions
	3.2 Computing Adaptive Strategies

	4 Strongly Adaptive Strategies
	4.1 Bad Moves
	4.2 Motivating Example
	4.3 Definitions
	4.4 Existence of Strongly Adaptive Strategies
	4.5 Computing Strongly Adaptive Strategies

	5 Conclusion
	References

	TriCo—Triple Co-piloting of Implementation, Specification and Tests
	1 Introduction
	1.1 Triple Co-piloting at a Glance

	2 Emerging Trends in Software Technology
	2.1 Code Synthesis Through Large Language Models
	2.2 Automated Test Case Generation
	2.3 Specification Synthesis
	2.4 Formal Software Verification

	3 The TriCo Methodology
	3.1 Envisaged Workflow
	3.2 Use Cases
	3.3 Envisaged Technology

	4 Research Efforts Required for TriCo
	5 Turning Vision into Reality
	References

	Twinning-by-Construction: Ensuring Correctness for Self-adaptive Digital Twins
	1 Introduction
	2 Twinned-by-Construction Systems
	3 Twinning-by-Construction and Temporal Properties
	4 The Digital Thread as a Temporal Property
	5 Related Work
	6 Conclusion
	References

	On Formal Choreographic Modelling: A Case Study in EU Business Processes
	1 Introduction
	2 Background
	3 Legal Provisions
	4 Formal Models
	5 From BPMN to Global Choreographies
	6 Conclusions and Future Work
	References

	Configurable-by-Construction Runtime Monitoring
	1 Introduction
	2 The Quest of Configurable Runtime Monitoring
	2.1 Feature-Oriented Example
	2.2 Challenges
	2.3 This Paper

	3 Configurable Automata-Based Monitoring
	3.1 Preliminaries
	3.2 Featured Monitors
	3.3 Synthesizing Featured Monitors
	3.4 Concise Featured Monitors

	4 Configurable Stream-Based Monitoring
	4.1 Preliminaries
	4.2 Configurable Lola
	4.3 Family-Based Specification Analysis

	5 Concluding Remarks
	References

	Runtime Verification of Correct-by-Construction Driving Maneuvers
	1 Introduction
	2 Workflow by Example
	3 Modeling and Verifying Maneuvers with Hybrid Mode Automata
	3.1 Formalization of Hybrid Mode Automata
	3.2 Verification Based on Differential Dynamic Logic

	4 Runtime Verification of HMA Models
	4.1 Generating Monitor Conditions for Runtime Verification
	4.2 Simulation

	5 Evaluation
	5.1 Case Studies and Setup
	5.2 Results and Insights

	6 Related Work
	7 Conclusion
	References

	Leveraging System Dynamics in Runtime Verification of Cyber-Physical Systems
	1 Introduction
	2 Preliminary Concepts
	2.1 Signal Model
	2.2 Signal Temporal Logic (STL) ch16mn04

	3 Exploiting Knowledge of System Dynamics
	3.1 Motivating Example
	3.2 System Model
	3.3 Knowledge of Signal Dynamics
	3.4 Using Partial Knowledge

	4 Monitoring Distributed CPS
	4.1 Distributed CPS Architecture
	4.2 Additional Challenges in the Distributed Setup

	5 Using Verified Dynamics
	6 Conclusion
	References

	Automated Repair of Security Errors in C Programs via Statistical Model Checking: A Proof of Concept
	1 Introduction
	2 Background and Related Work
	2.1 Essentials of Statistical Model Checking
	2.2 Trace Execution Properties
	2.3 Probabilistic Verification
	2.4 SMC Tools

	3 Illustrative Example
	3.1 SMC-Based Validation
	3.2 Using Traces for Automated Program Repair

	4 Designing a Repair Agent
	4.1 A SMC-Based Program Repair Algorithm

	5 Implementation and Experimental Results
	5.1 Experimental Results

	6 Conclusions and Future Work
	References

	Towards Safe and Resilient Hybrid Systems in the Presence of Learning and Uncertainty
	1 Introduction
	2 Background
	2.1 Reinforcement Learning (RL)
	2.2 Simulink and the RL Toolbox
	2.3 Differential Dynamic Logic
	2.4 Transformation from Simulink to dL
	2.5 Stochastic Hybrid Model
	2.6 Signal Temporal Logic
	2.7 Learning Optimal Decisions for Stochastic Hybrid Systems

	3 Related Work
	4 Combining Deductive and Quantitative Analyses
	4.1 An Intelligent Water Distribution System
	4.2 Formal Verification of Safety and Resilience
	4.3 Resilient Scheduling Under Uncertainty

	5 Evaluation
	5.1 Deductive Verification
	5.2 Quantitative Analysis

	6 Conclusion
	References

	Non-functional Testing of Runtime Enforcers in Android
	1 Introduction
	2 Background
	2.1 Runtime Policy
	2.2 Policy Enforcement Models

	3 Test4Enforcers
	3.1 Test Case Generation
	3.2 Test Execution

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Automata Learning Meets Shielding
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Markov Decision Processes and Reinforcement Learning
	3.2 Learning of MDPs
	3.3 Shielding in MDPs

	4 Learned Shields for Safe RL
	4.1 Setting and Problem Statement
	4.2 Overview of Iterative Safe RL via Learned Shields
	4.3 Details for Training Using Learned Shields

	5 Experiments
	5.1 Case Study Subjects
	5.2 Experimental Results
	5.3 Zigzag Gridworlds
	5.4 Slippery Shortcuts Gridworlds
	5.5 Wall Gridworlds
	5.6 Discussion

	6 Conclusion
	References

	Safe Policy Improvement in Constrained Markov Decision Processes
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Preliminaries
	4.1 Reinforcement Learning
	4.2 Hierarchical Task Specifications

	5 Contribution
	5.1 Problem Formulation
	5.2 Reward Shaping
	5.3 Safe Policy Improvement in Online Setting

	6 Experiments
	6.1 Automatic Reward Shaping from Task Specification
	6.2 Safe Policy Improvement in Online Setting

	7 Conclusion and Future Work
	References

	Runtime Verification Meets Controller Synthesis
	1 Introduction
	2 Background
	2.1 Runtime Verification
	2.2 Reactive Synthesis

	3 Monitoring for Guarantees
	4 Monitoring for Assumptions
	5 Monitors as Orchestrators in Contextual Missions
	6 Other Potential Combinations
	7 Related Work
	8 Conclusions
	References

	Assumption Monitoring of Temporal Task Planning Using Stream Runtime Verification
	1 Introduction
	2 The Stream Runtime Verification Language Lola
	2.1 Lola Syntax and Semantics

	3 Implicit Assumptions and Silent Mission Failures
	3.1 Handling Assumption Violations

	4 Empirical Evaluation
	5 Conclusion
	References

	Verification and Validation of Concurrent and Distributed Heterogeneous Systems
	Verification and Validation of Concurrent and Distributed Heterogeneous Systems (Track Summary)
	1 Motivation and Goals
	2 Overview of Contributions
	References

	A Thread-Safe Term Library
	1 Introduction
	2 The Term Data Structure
	2.1 The External Behaviour of the Term Library
	2.2 Behavioural Properties of the Term Library
	2.3 The Implementation of the Thread-Safe Term Library

	3 The Busy-Forbidden Protocol
	3.1 The External Behaviour of the Busy-Forbidden Protocol
	3.2 The Implementation of the Busy-Forbidden Protocol
	3.3 Behavioural Properties of the Busy-Forbidden Protocol
	3.4 Existing Readers-Writer Locks
	3.5 Performance of the Busy-Forbidden Protocol

	4 Modelling and Verifying the Algorithms
	5 Performance Evaluation
	A The mCRL2 Language and Modal Formulas
	B mCRL2 Specifications for the Busy-Forbidden Protocol
	C mCRL2 Specifications for the Term Library
	D Benchmark Data
	References

	ST4MP: A Blueprint of Multiparty Session Typing for Multilingual Programming
	1 Introduction
	2 MPST Theory in a Nutshell
	2.1 Global Types
	2.2 Local Types and Projection
	2.3 Processes and Typing Rules

	3 Blueprint of ST4MP
	3.1 UI
	3.2 Parser
	3.3 Local Type Generator
	3.4 Interpreter
	3.5 API Generator

	4 Related Work
	5 Conclusion
	References

	On Binding in the Spatial Logics for Closure Spaces
	1 Introduction
	2 Preliminaries
	2.1 SLCS: The Spatial Logic for Closure Spaces
	2.2 SLCS: The Temporal Extension of SLCS

	3 xSLCS: Point Existential Extension of SLCS
	4 xSLCS: Point Existential Temporal Extension of SLCS
	5 xSLCS: Dealing with Fresh Point Names
	6 pSLCS: Predicate Existential Extension of SLCS
	7 Conclusions and Future Work
	References

	An Efficient VCGen-Based Modular Verification of Relational Properties
	1 Introduction
	2 Syntax and Semantics of the Considered Language L
	2.1 Locations, States, and Procedure Contracts
	2.2 Syntax for Expressions and Commands
	2.3 Operational Semantics

	3 Functional Correctness
	4 Relational Functional Correctness
	5 Optimized Verification Condition Generator
	5.1 Verification Condition Generator
	5.2 Hoare Triple Verification

	6 Modular Verification of Relational Properties
	7 Related Work
	8 Conclusion
	References

	On Deductive Verification of an Industrial Concurrent Software Component with VerCors
	1 Introduction
	2 Background
	2.1 Tunnel System Architecture
	2.2 VerCors

	3 Verification of the Concurrent Data Manager Module
	3.1 Event Loop Analysis
	3.2 Discussion on the Discovered Bugs

	4 Results Presentation
	4.1 Presentation Design Process
	4.2 Presentation Conclusions

	5 Future Research
	6 Conclusion
	References

	Exploring a Parallel SCC Algorithm
	1 Introduction
	2 Preliminaries
	2.1 A Parallel SCC Algorithm Based on Concurrent Union-Find
	2.2 TLA+ and TLC

	3 Modeling and Analysis Process
	3.1 Initial Specification – Good for Simulation
	3.2 Improved Specification – Good for Model Checking
	3.3 Specifying the Correctness Property and Other Assertions

	4 Findings from Model Checking Experiments
	4.1 Simplifying the Equivalence Check (SameSet)
	4.2 Monotonicity of Worker Sets and Atomic Updates
	4.3 Duplication on the Stack
	4.4 Changing the Order of Updates During Unite

	5 Conclusion
	A The Original Concurrent Union-Find SCC Algorithm
	B Example Input Graphs for SCC Algorithm
	References

	An IoT Digital Twin for Cyber-Security Defence Based on Runtime Verification
	1 Introduction
	2 Related Work
	3 Digital Twin and Application-Agnostic Security Modules for IoT Communication
	3.1 IoTsafe Security Architecture
	3.2 Transparent Secure Communication with Security Decoupling
	3.3 Monitoring Testbed

	4 Digital Twin for Runtime Verification of IoT Device Communications
	4.1 Formal Definition of the Runtime Verification Problem
	4.2 Runtime Verification for the Monitoring Testbed

	5 Conclusions and Future Work
	References

	A Formal Model of Metacontrol in Maude
	1 Introduction
	2 Background
	2.1 Metacontrol
	2.2 Maude

	3 The Smart House Use Case
	3.1 The Controller Layer

	4 The Metacontrol Layer for the Smart House Use Case
	4.1 The TOMASys Metamodel
	4.2 Metacontrol Operation

	5 Modelling the Smart House Use Case in Maude
	5.1 Model Dynamics
	5.2 The Smart House Model
	5.3 The Controller Layer
	5.4 The Metacontrol Layer

	6 Evaluating the Executable Model of the Smart House
	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

