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Abstract. Semantic segmentation of LiDAR point clouds is an impor-
tant task in autonomous driving. However, training deep models via con-
ventional supervised methods requires large datasets which are costly to
label. It is critical to have label-efficient segmentation approaches to scale
up the model to new operational domains or to improve performance on
rare cases. While most prior works focus on indoor scenes, we are one
of the first to propose a label-efficient semantic segmentation pipeline
for outdoor scenes with LiDAR point clouds. Our method co-designs an
efficient labeling process with semi/weakly supervised learning and is
applicable to nearly any 3D semantic segmentation backbones. Specifi-
cally, we leverage geometry patterns in outdoor scenes to have a heuristic
pre-segmentation to reduce the manual labeling and jointly design the
learning targets with the labeling process. In the learning step, we lever-
age prototype learning to get more descriptive point embeddings and
use multi-scan distillation to exploit richer semantics from temporally
aggregated point clouds to boost the performance of single-scan models.
Evaluated on the SemanticKITTI and the nuScenes datasets, we show
that our proposed method outperforms existing label-efficient methods.
With extremely limited human annotations (e.g ., 0.1% point labels),
our proposed method is even highly competitive compared to the fully
supervised counterpart with 100% labels.

1 Introduction

Light detection and ranging (LiDAR) sensors have become a necessity for most
autonomous vehicles. They capture more precise depth measurements and are
more robust against various lighting conditions compared to visual cameras.
Semantic segmentation for LiDAR point clouds is an indispensable technology as
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Fig. 1. We compare LESS with Cylinder3D [68] (our fully-supervised counterpart),
ContrastiveSceneContext [23], SQN [24], OneThingOneClick [33], and ReDAL [55] on
the SemanticKITTI [4] and nuScenes [5] validation sets. The ratio between labels used
and all points is listed below each bar. Please note that all competing label-efficient
methods mainly focus on indoor settings and are not specially designed for outdoor
LiDAR segmentation.

it provides fine-grained scene understanding, complementary to object detection.
For example, semantic segmentation help self-driving cars distinguish drivable
and non-drivable road surfaces and reason about their functionalities, like park-
ing areas and sidewalks, which is beyond the scope of modern object detectors.

Based on large-scale public driving-scene datasets [4,5], several LiDAR
semantic segmentation approaches have recently been developed [9,50,59,62,68].
Typically, these methods require fully labeled point clouds during training. Since
a LiDAR sensor may perceive millions of points per second, exhaustively labeling
all points is extremely laborious and time-consuming. Moreover, it may fail to
scale when we extend the operational domain (e.g ., various cities and weather
conditions) and seek to cover more rare cases. Therefore, to scale up the system,
it is critical to have label-efficient approaches for LiDAR semantic segmenta-
tion, whose goal is to minimize the quantity of human annotations while still
achieving high performance.

While there are some prior works studying label-efficient semantic seg-
mentation, they mostly focus on indoor scenes [3,11] or 3D object parts [6],
which are quite different in point cloud appearance and object type distri-
bution, compared to the outdoor driving scenes (e.g ., significant variances in
point density, extremely unbalanced point counts between common types, like
ground and vehicles, and less common ones, such as cyclists and pedestrians).
Besides, most prior explorations tend to address the problem from two indepen-
dent perspectives, which may be less effective in our outdoor setting. Specifi-
cally, one perspective is improving labeling efficiency, where the methods resort
to active learning [34,47,55], weak labels [44,54], and 2D supervision [53] to
reduce labeling efforts. The other perspective focuses on training, where the
efforts assume the partial labels are given and design semi/weakly supervised
learning algorithms to exploit the limited labels and strive for better perfor-
mance [20,33,34,44,60,61,66].
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This paper proposes a novel framework, label-efficient semantic segmentation
(LESS), for LiDAR point clouds captured by self-driving cars. Different from
prior works, our method co-designs the labeling process and the model learn-
ing. Our co-design is based on two principles: 1) the labeling step is designed
to provide bare minimum supervision, which is suitable for state-of-the-art
semi/weakly supervised segmentation methods; 2) the model training step can
tap into the labeling policy as a prior and deduce more learning targets. The pro-
posed method can fit in a straightforward way with most state-of-the-art LiDAR
segmentation backbones without introducing any network architectural change
or extra computational complexity when deployed onboard. Our approach is
suitable for effectively labeling and learning from scratch. It is also highly com-
patible with mining long-tail instances, where, in practice, we mainly want to
identify and annotate rare cases based on trained models.

Specifically, we leverage a philosophy that outdoor-scene objects are often
well-separated when isolating ground points and design a heuristic approach to
pre-segment an outdoor scene into a set of connected components. The compo-
nent proposals are of high purity (i.e., only contain one or a few classes) and
cover most of the points. Then, instead of meticulously labeling all points, the
annotators are only required to label one point per class for each component. In
the model learning process, we train the backbone segmentation network with
the sparse labels directly annotated by humans as well as the derived labels based
on component proposals. To encourage a more descriptive embedding space, we
employ contrastive prototype learning [18,29,33,48,63], which increases intra-
class similarity and inter-class separation. We also leverage a multi-scan teacher
model to exploit richer semantics within the temporally fused point clouds and
distill the knowledge to boost the performance of the single-scan model.

We evaluate the proposed method on two large-scale autonomous driving
datasets, SemanticKITTI [4] and nuScenes [5]. We show that our method signif-
icantly outperforms existing label-efficient methods (see Fig. 1). With extremely
limited human annotations, such as 0.1% labeled points, the approach achieves
highly competitive performance compared to the fully supervised counterpart,
demonstrating the potential of practical deployment.

In summary, our contribution mainly includes:

– Analyze how label-efficient segmentation of outdoor LiDAR point clouds dif-
fers from the indoor settings, and show that the unbalanced category distri-
bution is one of the main challenges.

– Leverage the unique geometric structure of LiDAR point clouds and design
a heuristic algorithm to pre-segment input points into high-purity connected
components. A customized labeling policy is then proposed to exploit the
components with tailored labels and losses.

– Adapt beneficial components into label-efficient LiDAR segmentation and
carefully design a network-agnostic pipeline that achieves on-par performance
with the fully supervised counterpart.

– Evaluate the proposed pipeline on two large-scale autonomous driving
datasets and extensively ablate each module.
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2 Related Work

2.1 Segmentation Networks for LiDAR Point Clouds

In contrast to indoor-scene point clouds, outdoor LiDAR point clouds’ large
scale, varying density, and sparsity require the segmentation networks to
be more efficient. Many works project the 3D point clouds from spherical
view [2,10,12,27,30,39,43,58] (i.e., range images) or bird’s-eye-view [45,65] onto
2D images, or try to fuse different views [1,19,31]. There are also some works
directly consuming point clouds [8,14,25,52]. They aim to structure the irregu-
lar data more efficiently. Zhu et al . [68] employ the voxel-based representation
and alleviate the high computational burden by leveraging cylindrical partition
and sparse asymmetrical convolution. Recent works also try to fuse the point
and voxel representations [9,50,62,64], and even with range images [59]. All of
these works can serve as the backbone network in our label-efficient framework.

Table 1. Point distribution across the most common and rarest categories
of SemanticKITTI [4] and nuScenes [5]. Numbers are normalized by the sample
quantity of bicycles.

Dataset Vegetation Road Building Car Motorcycle Person Bicycle

SemanticKITTI 1606 1197 799 257 2 2 1

nuScenes 867 2242 1261 270 3 16 1

2.2 Label-Efficient 3D Semantic Segmentation

Label-efficient 3D semantic segmentation has recently received lots of atten-
tion [17]. Previous explorations are mainly two-fold: labeling and training.

As for labeling, several approaches seek active learning [34,47,55], which
iteratively selects and requests points to be labeled during the network train-
ing. Hou et al . [23] utilize features from unsupervised pre-training to choose
points for labeling. Wang et al . [53] project the point clouds to 2D and leverage
2D supervision signals. Some works utilize scene-level or sub-cloud-level weak
labels [44,54]. There are also several approaches using rule-based heuristics or
handcrafted features to help annotation [20,37,51].

As for training, Xie et al . [23,57] utilize contrastive learning for unsupervised
pre-training. Some approaches employ self-training to generate pseudo-labels [33,
44,60]. Lots of works use Conditional Random Fields (CRFs) [20,33,34,61] or
random walk [66] to propagate labels. Moreover, there are also works that utilize
prototype learning [33,66], siamese learning [44,61], temporal constraints [36],
smoothness constraints [44,47], attention [54,66], cross task consistency [44], and
synthetic data [56] to help training.

However, most recent works mainly focus on indoor scenes [3,11] or 3D object
parts [6], while outdoor scenarios are largely under-explored.
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3 Method

In this section, we present our LESS framework. Since existing label-efficient seg-
mentation works typically address domains other than autonomous driving, we
first conduct a pilot study to understand the challenges in this novel setting and
introduce motivations behind LESS (Sect. 3.1). After briefly going over our LESS
framework (Sect. 3.2), we dive into the details of each part (Sects. 3.3 to 3.6).

3.1 Pilot Study: What Should We Pay Attention To?

Previous works [23,33,44,47,53,54,61,66] on label-efficient 3D semantic segmen-
tation mainly focused on indoor datasets, such as ScanNet-v2 [11] and S3DIS [3].
In these datasets, input points are sampled from high-quality reconstructed
meshes and are thus densely and uniformly distributed. Also, objects in indoor
scenarios typically share similar sizes and have a relatively balanced class distri-
bution. However, in outdoor settings, input point clouds demonstrate substan-
tially higher complexity due to the varying point density and the ubiquitous
occlusions throughout the scene. Moreover, in outdoor driving scenes, the sam-
ple distribution across different categories is highly unbalanced due to factors
including occurring frequency and object size. Table 1 shows the point distribu-
tion over two autonomous driving datasets, where the numbers of road points
are 1,197 and 2,242 times larger than that of bicycle points, respectively. The
extremely unbalanced distribution adds extra difficulty for label-efficient seg-
mentation, whose goal is to only label a tiny portion of points (Fig. 2).
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Fig. 2. Pilot study: performances (IoU) of
the most common and rarest categories.
Models are trained with 100% of labels and
0.1% of labels (in terms of points or scans) on
SemanticKITTI [4].

We conduct a pilot study
to further examine this chal-
lenge. Specifically, we train a
state-of-the-art semantic segmen-
tation network, Cylinder3D [68],
on the SemanticKITTI dataset
with three intuitive setups: (a)
100% labels, (b) randomly anno-
tating 0.1% points per scan, and
(c) randomly selecting 0.1% scans
and annotating all points for
the selected scans. The results
are shown in Sect. 4.2. Without
any special efforts, “0.1% ran-
dom points” can already achieve
a mean IoU of 48.0%, compared
to 65.9% by the fully supervised
version. On common categories, such as car, road, building, and vegetation, the
performances of the “0.1% label” models are close to the fully supervised model.
However, on the underrepresented categories, such as bicycle, person, and motor-
cycle, we observe substantial performance gaps compared to the fully supervised
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model. These categories tend to have small sizes, appear less frequently, and are
thus more vulnerable when reducing the annotation budget. However, they are
still critical for many applications such as autonomous driving. Moreover, we
find that “0.1% random points” outperforms “0.1% random scans” by a large
margin, mainly due to its label diversity.

These observations inspire us to rethink the existing paradigm of label-
efficient segmentation. While prior works typically focus on either efficient label-
ing or improving training approaches, we argue that it can be more effective
to address the problem by co-designing both. By integrating the two parts, we
may cover more underrepresented instances with a limited labeling budget, and
exploit the labeling efforts more effectively during network training.

3.2 Overview

Our LESS framework integrates pre-segmentation, labeling, and network train-
ing. It can work with most existing LiDAR segmentation backbones without
changing their network architectures or inference latency. As shown in Fig. 3,
our pipeline takes raw LiDAR sequences as input. It first employs a heuristic
method to partition the point clouds into a set of high-purity components (Sect.
3.3). Instead of exhaustively labeling all points, annotators only need to quickly
label a few points for each component proposal (e.g ., one point label for each
class that appears). Besides the human-annotated sparse labels, we derive other
types of labels so as to train the network with more context information (Sect.
3.4). During the network training, we employ contrastive prototype learning to
realize a more descriptive embedding space (Sect. 3.5). We also boost the single-
scan model by distilling the knowledge from a multi-scan teacher, which exploits
richer semantics within the temporally fused point clouds (Sect. 3.6).

Raw LiDAR Point 
Cloud Sequences

Heuristic 
Pre-segmentation

Proposed Components

Human Labeling

Weak
Labels

Sparse 
Labels

Propagated 
Labels

Multi-Scan 
Teacher Model

Pseudo Labels

Single-Scan 
Student Model(a) (b) (c) (d)

Fig. 3. Overview of our LESS pipeline. (a) We first utilize a heuristic algorithm to
pre-segment each LiDAR sequence into a set of connected components. (b) Examples
of the proposed components. Different colors indicate different components. For clear
visualization, components of ground points are not shown. (c) Human annotators only
need to coarsely label each component. Each color denotes a proposed component, and
each click icon indicates a labeled point. Only sparse labels are directly annotated by
humans. (d) We then train the network to digest various labels and utilize multi-scan
distillation to exploit richer semantics in the temporally fused point clouds. (Color
figure online)
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3.3 Pre-segmentation

We design a heuristic pre-segmentation to subdivide the point cloud into a col-
lection of components. Each resulting component proposal is of high purity,
containing only one or a few categories, which facilitates annotators to coarsely
label all the proposals, i.e., one point label per class (Sect. 3.4). In this way,
we can derive dense supervision by disseminating the sparse point-wise anno-
tations to the whole components. Since modern networks can learn the seman-
tics of homogeneous neighborhoods from sparse annotations, spending lots of
annotation budgets on large objects may be futile. Our component-wise coarse
annotation is agnostic to the object size, which benefits underrepresented small
objects.

For indoor scenarios, many prior arts [20,33,47] leverage the surface normal
and color information to generate super voxels and assume that the points within
each super voxel share the same category. These approaches, however, might not
generalize to outdoor LiDAR point clouds, where the surface can be noisy and
color information is not available. Since the homogeneity assumption is hard to
hold, we instead propose to lift this constraint and allow each component to
contain more than one category.

Unlike indoor scenarios, objects in outdoor scans are often well-separated
after detecting and isolating the ground points. Inspired by this philosophy,
we design an intuitive approach to pre-segment each LiDAR sequence, which
includes four steps: (a) Fuse overlapping scans. We first split a LiDAR
sequence into sub-sequences, each containing t consecutive scans. We then fuse
the scans of each sub-sequence based on the provided ego-poses. In this way, we
can label the same instance across overlapping scans at one click. (b) Detect
ground points. While the ground surface may not be flat at the full-scene scale,
we assume for each local region (e.g ., 5 m × 5 m), the ground points can be fitted
by a plane. We thus partition the whole scene into a uniform grid according to
the xy coordinates, and then employ the RANSAC algorithm [15] to detect the
ground points for each local cell. Since the ground points may belong to differ-
ent categories (e.g ., parking zone, sidewalk, and road), we regard the ground
points from each local cell as a single component instead of merging all of them.
We allow a single ground component to contain multiple classes, and one point
per class will be labeled later. (c) Construct connected components. After
detecting and isolating the ground points, the remaining objects are often well-
separated. We build a graph G, where each node represents a point. We connect
every pair of points (u, v) in the graph, whose Euclidean distance is smaller than
a threshold τ . We then divide the points into groups by calculating the connected
components for the graph G. Due to the non-uniform point density distribution
of the LiDAR point clouds, it is hard to use a fixed threshold across different
ranges. We thus propose an adaptive threshold τ(u, v) = max(ru, rv)×d to com-
pensate for the varying density, where ru and rv are the distances between the
points and the sensor centers, and d is a pre-defined hyper-parameter. (d) Sub-
divide large components. After step (c), there usually exist some connected
components covering an enormous area (e.g ., buildings and vegetation), which
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are prone to include some small objects. To keep each component of high purity
and facilitate network training, we subdivide oversized components to ensure
each component is bounded within a fixed size. Also, we ignore small compo-
nents with only a few points, which tend to be noisy and can lead to excessive
component proposals.

In practice, we find our pre-segmentation generates a small number of com-
ponents for each sequence. The component proposals cover most of the points,
and each component tends to have high purity. These open up the possibility of
quickly bootstrapping the labeling from scratch. Moreover, unlike other meth-
ods [20,33,47] relying on various handcrafted features, our method only utilizes
the simple geometrical connectivity, allowing it to generalize to various scenarios
without tuning lots of hyper-parameters. Please refer to Sect. 4.4 for statistics of
the pre-segmentation results and the supplementary material for more details.

3.4 Annotation Policy and Training Labels

Instead of meticulously labeling every point, we propose to coarsely annotate
the component proposals. Specifically, for each component proposal, an anno-
tator needs to first skim through the component and then label only one point
for each identified category. Figure 3 (c) illustrates an example where the pre-
segmentation yields three components colored in red, blue, and green, respec-
tively. Because the blue component only has traffic-sign points, the annotator
only needs to randomly select one point to label. The green component is sim-
ilar, as it only contains road points. In the red component, there is a bicycle
lying against a traffic sign, and the annotator needs to select one point for
each class to label. By coarsely labeling all components, we are unlikely to miss
any underrepresented instances, as the proposed components cover the major-
ity of points. Moreover, since the number of components is orders of magnitude
smaller than that of points and our coarse annotation policy frees annotators
from carefully labeling instance boundaries (required in the labeling process to
build SemanticKITTI [4] dataset), we are thus able to reduce manual labeling
costs.

Based on the component proposals, we can obtain three types of labels.
Sparse labels: points directly labeled by annotators. Although only a tiny sub-
set of points are labeled, sparse labels provide the most accurate and diverse
supervision. Weak labels: classes that appear in each component. Weak labels
are derived based on human-annotated sparse labels within each component. In
the example of Fig. 3 (c), all red points can only be either bicycles or traffic
signs. We disseminate weak labels from each component to the points therein.
The multi-category weak labels provide weak but dense supervision and cover
most points. Propagated labels: for the pure components (i.e., only one cat-
egory appears), we can propagate the label to the entire component. Given the
effectiveness of our pre-segmentation approach, the propagated labels also cover
a wide range of points. However, since some categories may be easier to be sep-
arated and prone to form pure components, the distribution of the propagated
labels may be biased and less diverse than the sparse labels.
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We formulate a joint loss function by exploiting the three types of labels: L =
Lsparse + Lpropagated + Lweak, where Lsparse and Lpropagated are weighted cross-
entropy loss with respect to the sparse labels and propagated labels, respectively.
We utilize inverse square root of label frequency [35,38,69] as category weights
to emphasize underrepresented categories. Here, we calculate a cross-entropy loss
for each label type separately, because propagated labels significantly outnumber
sparse labels while sparse labels provide more diverse supervision.

Denote the weak labels as binary masks lij for point i and category j. lij = 1
when point i belongs to a component that contains category j. We exploit the
multi-category weak labels by penalizing the impossible predictions:

Lweak = − 1
n

n∑

i=1

log(1 −
∑

lij=0

pij) (1)

where pij is the predicted probability of point i, and n is the number of points.
Prior approaches [44,54] aggregate per-point predictions into component-level
predictions and then utilize the multiple-instance learning loss (MIL) [41,42] to
supervise the learning. Here, we only penalize the negative predictions without
encouraging the positive ones. This is because our network takes a single-scan
point cloud as input, but the labels are collected and derived over the temporally
fused point clouds. Hence, a positive instance may not always appear in each
individual scan, due to occlusions or limited sensor coverage.

3.5 Contrastive Prototype Learning

Besides the great success in self-supervised representation learning [7,21,40], con-
trastive learning has also shown effectiveness in supervised learning and few-shot
learning [18,26,46,49]. It can overcome shortcomings of the cross-entropy loss,
such as poor margins [13,26,32,63], and construct a more descriptive embedding
space. Following [18,29,33,48,63], we exploit the limited annotations by learning
distinctive class prototypes (i.e., class centroids in the feature space). Without
pre-training, a contrastive prototype loss Lproto is added to Sect. 3.4 as an aux-
iliary loss. Due to the limited annotations and unbalanced label distribution,
only using samples within each batch to determine class prototypes may lead
to unstable results. Inspired by the idea of momentum contrast [21], we instead
learn the class prototypes Pc by using a moving average over iterations:

Pc ← mPc + (1 − m)
1
nc

∑

yi=c

stopgrad(h(f(xi))) (2)

where f(xi) is the embedding of point xi, h is a linear projection head with vector
normalization, stopgrad denotes the stop gradient operation, yi is the label of
xi, nc is the number of points with label c in a batch, and m is a momentum
coefficient. In the beginning, Pc are initialized randomly.
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The prototype loss Lproto is calculated for the points with sparse labels and
propagated labels within each batch:

Lproto =
1
n

n∑

i

−wyi
log

exp(h(f(xi)) · Pyi
/τ)∑

c exp(h(f(xi)) · Pc/τ)
(3)

where h(f(xi)) ·Pyi
indicates the cosine similarity between the projected embed-

ding and the prototype, τ is a temperature hyper-parameter, n is the number
of points, and wyi

is the inverse square root weight of category yi. Lproto aims
to learn a better embedding space by increasing intra-class compactness and
inter-class separability.

3.6 Multi-scan Distillation

We aim to learn a segmentation network that takes a single LiDAR scan as
input and can be deployed in real-time onboard applications. During our label-
efficient training, we can train a multi-scan network as a teacher model. It applies
temporal fusion of multiple scans and takes the densified point cloud as input,
compensating for the sparsity and incompleteness within a single scan. The
teacher model is thus expected to exploit the richer semantics and perform better
than a single-scan model. Especially, it may improve the performance for those
underrepresented categories, which tend to be small and sparse. After that, we
distill the knowledge from the multi-scan teacher model to boost the performance
of the single-scan student model.

Specifically, for a scan at time t, we fuse the point clouds of neighboring
scans at time {t + iΔ; i ∈ [−2, 2]} (Δ is a time interval) using the ego-poses of
the LiDAR sensor. To enable a large batch size, we use voxel subsampling [67]
to normalize the fused point cloud to a fixed size. Labels are then fused accord-
ingly. Besides the spatial coordinates, we also concatenate an additional channel
indicating the time index i of each point. The teacher model is trained using the
loss functions introduced in Sects. 3.4 and 3.5.

The student model shares the same backbone network and is first trained
from scratch in the same way as the teacher model except for the single-scan
input. We then fine-tune it by incorporating an additional distillation loss Ldis.
Specifically, following [22], we match student predictions with the soft pseudo-
labels generated by the teacher model via a cross-entropy loss:

Ldis = −T 2

n

n∑

i

∑

c

exp(uic/T )∑
c′ exp(uic′/T )

log

(
exp(vic/T )∑
c′ exp(vic′/T )

)
(4)

where uic and vic are the predicted logits for point i and category c by the teacher
and student models respectively, and T is a temperature hyper-parameter. A
higher temperature is typically used so that the probability distribution across
classes is smoother, and the distillation is thus encouraged to match the negative
logits, which also contain rich information. The cross-entropy is multiplied by
T 2 to align the magnitudes of the gradients with existing other losses [22].
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Please note that the idea of multi-scan distillation may only be beneficial for
our label-efficient LiDAR segmentation setting. For the fully supervised setting,
all labels are already available and accurate, and there is no need to leverage the
pseudo labels. For the indoor setting, all points are sampled from high-quality
reconstructed meshes, and there is no need for a multi-scan teacher model.

4 Experiments

We employ Cylinder3D [68], a recent state-of-the-art method for LiDAR seman-
tic segmentation, as our backbone network. We utilize ground truth labels to
mimic the obtained human annotations, and no extra noise is added. Please refer
to the supplementary material for more implementation and training details.

We evaluate the proposed method on two large-scale autonomous driving
datasets, SemanticKITTI [4] and nuScenes [5]. SemanticKITTI [4] is collected
in Germany with 64-beam LiDAR sensors. The (sensor) capture and annota-
tion frequency 10 Hz. It contains 10 training sequences (19k scans), 1 validation
sequence (4k scans), and 11 testing sequences (20k scans). 19 classes are used for
segmentation. nuScenes [5] is collected in Boston and Singapore with 32-beam
LiDAR sensors. Although the (sensor) capture frequency 20 Hz, the annotation
frequency is 2 Hz. It contains 700 training sequences (28k scans), 150 validation
sequences (6k scans), and 150 testing sequences (6k scans). 16 classes are used
for segmentation. For both datasets, we follow the official guidance [4,5] to use
mean intersection-over-union (mIoU) as the evaluation metric.

4.1 Comparison on SemanticKITTI

We compare the proposed method with both label-efficient [23,24,33,55] and fully
supervised [1,12,16,27,31,50,58,65,68] methods. Please note that all compet-
ing label-efficient methods mainly focus on indoor settings and are not specially
designed for outdoor LiDAR segmentation. Among them, ContrastiveSC [23]
employs contrastive learning as unsupervised pre-training and uses the learned
features for active labeling, ReDAL [55] also employs active labeling, OneThin-
gOneClick [33] proposes a self-training approach and iteratively propagate the
labels, and SQN [24] presents a network by leveraging the similarity between neigh-
boring points. We report the results on the validation set. Since ContrastiveSC [23]
and OneThingOneClick [33] are only tested on indoor datasets in the original
paper, we adapt the source code published by the authors and train their mod-
els on SemanticKITTI [4]. For other methods, the results are either obtained from
the literature or correspondences with the authors.

Table 2 lists the results, where our method outperforms existing label-efficient
methods by a large margin. With only 0.1% sparse labels (as defined in Sect. 3.4),
it even completely match the performance of the fully supervised baseline Cylin-
der3D [68], which demonstrates the potential of deployment into real applica-
tions. By checking the breakdown results, we find that the differences between
methods mainly come from the underrepresented categories, such as bicycle,
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Table 2. Comparison on the SemanticKITTI validation set. Cylinder3D [68]
is our fully supervised counterpart. Cylinder3D� is our re-trained version with our
proposed prototype learning and multi-scan distillation.

Method Annot. mIoU Car Bicycle Motorcycle Truck Other-vehicle Person Bicyclist Motorcyclist Road Parking Sidewalk Other-ground Building Fence Vegetation Trunk Terrain Pole Traffic-sign

SqueezeSegV3 [58] 100% 52.7 86 31 48 51 42 52 52 0 95 47 82 0 80 47 83 53 72 42 38

PolarNet [65] 53.6 92 31 39 46 24 54 62 0 92 47 78 2 89 46 85 60 72 58 42

MPF [1] 57.0 94 28 55 62 36 57 74 0 95 47 81 1 88 53 86 54 73 57 42

S-BKI [16] 57.4 94 34 57 45 27 53 72 0 94 50 84 0 89 60 87 63 75 64 45

TemporalLidarSeg [12] 61.3 92 43 54 84 61 64 68 0 95 44 83 1 89 60 85 64 71 59 47

KPRNet [27] 63.1 95 43 60 76 51 75 81 0 96 51 84 0 90 60 88 66 76 63 43

SPVNAS [50] 64.7 97 35 72 81 66 71 86 0 94 48 81 0 92 67 88 65 74 64 49

AMVNet [31] 65.2 96 49 65 89 55 71 86 0 96 54 83 0 91 62 88 67 74 65 49

Cylinder3D [68] 65.9 97 55 79 80 67 75 86 1 95 46 82 1 89 53 87 71 71 66 53

Cylinder3D� 66.2 97 48 72 94 67 74 91 0 93 44 79 3 91 60 88 70 72 63 53

ReDAL [55] 5% 59.8 95 30 59 63 50 63 84 1 92 39 78 1 89 54 87 62 74 64 50

OneThingOneClick [33] 0.1% 26.0 77 0 0 2 1 0 2 0 63 0 38 0 73 44 78 39 53 25 0

ContrastiveSC [23] 0.1% 46.0 93 0 0 62 45 28 0 0 90 39 71 6 90 42 89 57 75 54 34

SQN [24] 0.1% 52.0 93 8 35 59 46 41 59 0 91 37 76 1 89 51 85 61 73 53 35

LESS (Ours) 0.1% 66.0 97 50 73 94 67 76 92 0 93 40 79 3 91 60 87 68 71 62 51

SQN [24] 0.01% 38.3 83 0 22 12 17 15 47 0 85 21 65 0 79 37 77 46 67 44 12

LESS (Ours) 0.01% 61.0 96 33 61 73 59 68 87 0 92 38 76 5 89 52 87 67 71 59 46

motorcycle, person, and bicyclist. Existing label-efficient methods, which are
mainly designed for indoor settings, suffer a lot from the highly unbalanced sam-
ple distribution, while our method is remarkably competitive in those underrep-
resented classes. See Fig. 4 for further demonstration. OneThingOneClick [33]
fails to produce decent results, which is partially due to its pure super-voxel
assumption that does not always hold in outdoor scenes. As for the 0.01% anno-
tations setting, the performance of SQN [24] drops drastically to 38.3%, whereas
our proposed method can still achieve a high mIoU of 61.0%. For completeness,
we also re-train Cylinder3D [68] with our proposed prototype learning and multi-
scan distillation. We find that the two strategies provide marginal gain in the
fully-supervised setting, where all labels are available and accurate.

4.2 Comparison on nuScenes

We also compare the proposed method with existing approaches on the
nuScenes [5] dataset and report the results on the validation set. Since the
author-released model of Cylinder3D [68] utilizes SemanticKITTI for pre-
training, here, we report its result based on training the model from scratch
for a fair comparison.

Fig. 4. Qualitative examples on the SemanticKITTI [4] (first row) and
nuScenes [5] (second row) validation sets. Please zoom in for the details. Red rect-
angles highlight the wrong predictions. Our results are similar to the fully supervised
counterpart, while ContrastiveSceneContext [23] produces worse results on underrep-
resented categories (see persons and bicycles). Please note that, points in two datasets
(with different density) are visualized in different point size for better visualization.
(Color figure online)
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Table 3. Comparison on nuScenes
validation set. Cylinder3D [68] is our
fully supervised counterpart.

Method Anno. mIOU(%)

(AF)2-S3Net [9] 100% 62.2

SPVNAS [50] 74.8

Cylinder3D [68] 75.4

AMVNet [31] 77.2

RPVNet [59] 77.6

ContrastiveSC [23] 0.2% 63.5

LESS (Ours) 0.2% 73.5

ContrastiveSC [23] 0.9% 65.5

LESS (Ours) 0.9% 74.8

Table 4. Ablation study on the
SemanticKITTI validation set. All
variants use 0.1% sparse labels.

Pre- Weak Propa. Proto. Multi-scan mIoU

seg. labels labels learning distillation (%)

✗ ✗ ✗ ✗ ✗ 48.1

✓ ✗ ✗ ✗ ✗ 59.3

✓ ✓ ✗ ✗ ✗ 61.6

✓ ✗ ✓ ✗ ✗ 62.2

✓ ✓ ✓ ✗ ✗ 63.5

✓ ✓ ✓ ✓ ✗ 64.9

✓ ✓ ✓ ✓ ✓ 66.0

For other fully-supervised methods [9,31,50,59], the results are either obtained
from the literature or correspondences with the authors. Since no prior label-
efficient work is tested on the nuScenes [5] dataset, we adapt the source code
published by the authors to train ContrastiveSceneContext [23] from scratch.

We want to point out that points in
the nuScenes dataset are much sparser than
those in SemanticKITTI. In nuScenes, only
2 scans per second are labeled, while in
SemanticKITTI, 10 scans per second are
labeled. Due to the difference of sensors (32-
beam vs. 64-beam), the number of points per
scan in nuScenes is also much smaller (26k vs.
120k). See the right inset for the comparison
of two datasets (fused points for 0.5 s). Con-
sidering the sparsity of the original ground
truth labels, here we report the 0.2% and 0.9%
annotation settings.

Table 3 shows the results, where our proposed method outperforms Con-
trastiveSceneContext [23] by a large margin. With only 0.2% sparse labels, our
result is also highly competitive with the fully-supervised counterpart [68].
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Table 5. Statistics of the pre-segmentation and labeling. Only sparse labels are
directly annotated by humans.

Statistics SemanticKITTI nuScenes

One-category components 68.6% 80.6%

Two-category components 23.8% 14.9%

Components with more than two categories 7.6% 4.5%

Average number of categories per component 1.40 1.25

Coverage of sparse labels 0.1% 0.2%

Coverage of propagated labels 42.0% 53.6%

Coverage of weak labels 95.5% 99.0%

Table 6. Comparison of various annotation policies on SemanticKITTI. All
methods utilize 0.1% annotations and the same backbone network [68]. The fourth
column indicates the number of sparse labels (and propagated labels) for an underrep-
resented category (i.e., motorcycle). Multi-scan distillation is not utilized here. The
IoU results are calculated on the validation set.

Annotation policy Pre-seg- mIoU #labels for IoU (%) of

mentation (%) motorcycle motorcycle

Randomly sample points ✗ 48.1 943 22.2

Randomly sample scans ✗ 35.6 548 0.0

Active labeling [23] ✗ 54.2 456 36.7

Uniform grid partition ✓ 61.4 1024 (76k) 61.3

Geometric partition [28,33] ✓ 61.9 1190 (294k) 64.0

LESS (Ours) ✓ 64.9 1146 (933k) 72.3

4.3 Ablation Study

Table 4 shows the ablation study of each component. The first row is the
result of training with 0.1% random point labels. By incorporating the pre-
segmentation, we spend the limited annotation budget on more underrepresented
instances, thereby significantly increasing mIoU from 48.1% to 59.3%. Derived
from the component proposals, weak labels and propagated labels complement
the human-annotated sparse labels and provide dense supervision. Compared to
multi-category weak labels, propagated labels provide more accurate supervision
and thus lead to a slightly higher gain. Both contrastive prototype learning and
multi-scan distillation further boost the performance and finally close the gap
between LESS and the fully-supervised counterpart in terms of mIoU.

4.4 Analysis of Pre-segmentation and Labeling

By leveraging the unique geometric structure and a careful design, our pre-
segmentation works well for outdoor LiDAR point clouds. Table 5 summarizes
some statistics of the pre-segmentation and labeling results. For both datasets,
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Fig. 5. Improving segmentation with multi-scan distillation. The multi-scan
teacher leverages the richer semantics via temporal fusion to accurately segment the
bicycle and ground, which provides high-quality supervision to enhance the single-scan
model.

Table 7. Results of the multi-scan distillation on the SemanticKITTI vali-
dation set. 0.1% annotations are used.

Single-scan (before) Multi-scan teacher Single-scan (after)

mIoU Bicycle mIoU Bicycle mIoU Bicycle

64.9% 45.6% 66.8% 51.5% 66.0% 49.9%

only less than 10% of the components contain more than two categories, which
validates that our pre-segmentation generates high-purity components. The high
“coverage of propagated labels” indicates that we thus deduce a good amount of
“free” supervision from the pure components. The low “coverage of sparse labels”
shows that annotators indeed only need to label a tiny portion of points, thus
reducing human effort. The “coverage of weak labels” confirms that the proposed
components can faithfully cover most points. Furthermore, the consistent results
across two distinct datasets verify that our method generalizes well in practice.

Table 6 shows the comparison of different annotation policies (i.e., how to
use the labeling budget). The first two baselines are introduced in Sect. 3.1,
“active labeling” utilizes the features from contrastive pre-training to actively
select points [23], “uniform grid partition” uniformly divides the fused point
clouds into a grid according to the xy coordinates and treats each cell as a
component, “geometric partition” extracts handcrafted geometric features and
solves a minimal partition problem [28,68]. All of them are trained with the same
backbone Cylinder3D [68]. The first three methods employ no pre-segmentation
and are trained with Lsparse only. The other approaches utilize our labeling policy
(i.e., one label per class for each component) and are trained with additional
Lpropagated, Lweak, and Lproto. As a result, their performances are much higher
than the first three methods. We also report the number of labels and the IoU
for an underrepresented category. We see that our policy leads to more useful
supervisions and higher IoUs for underrepresented categories.

4.5 Analysis of Multi-scan Distillation

Table 7 and Fig. 5 show the results of multi-scan distillation. The teacher model
exploits the densified point clouds via temporal fusion and thus performs better
than the single-scan model (even compared to the fully supervised single-scan
model). Through knowledge distillation from the teacher model, the student
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model improves a lot in the underrepresented classes and completely matches
the fully supervised model in mIoU.

5 Conclusion and Future Work

We study label-efficient LiDAR point cloud semantic segmentation and propose
a pipeline that co-designs the labeling and the model learning and can work
with most 3D segmentation backbones. We show that our method can utilize
bare minimum human annotations to achieve highly competitive performance.

We have shown LESS is an effective approach for bootstrapping labeling
and learning from scratch. In addition, LESS is also highly compatible for effi-
ciently improving a performant model. With the predictions of an existing model,
the proposed pipeline can be used for annotators to pick and label component
proposals of high-values, such as underrepresented classes, long-tail instances,
classes with most failures, etc. We leave this for future exploration.
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