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Abstract. We address the problem of retrieving in-the-wild images with
both a sketch and a text query. We present TASK-former (Text And
SKetch transformer), an end-to-end trainable model for image retrieval
using a text description and a sketch as input. We argue that both input
modalities complement each other in a manner that cannot be achieved
easily by either one alone. TASK-former follows the late-fusion dual-
encoder approach, similar to CLIP [35], which allows efficient and scal-
able retrieval since the retrieval set can be indexed independently of the
queries. We empirically demonstrate that using an input sketch (even
a poorly drawn one) in addition to text considerably increases retrieval
recall compared to traditional text-based image retrieval. To evaluate
our approach, we collect 5,000 hand-drawn sketches for images in the
test set of the COCO dataset. The collected sketches are available a
https://janesjanes.github.io/tsbir/.

1 Introduction

Cross-modal retrieval [44] is a retrieval problem where the query and the set of
retrieved objects take different forms. A representative problem of this class is
Text-Based Image Retrieval (TBIR), where the goal is to retrieve relevant images
from an input text query. TBIR has been studied extensively, with recent interest
focused on transformer-based models [36]. A core component of a cross-modal
retrieval model is its scoring function that assesses the similarity between a text
description and an image. Given a text description, retrieving relevant images
then amounts to finding the top k images that achieve the highest scores.

While a text description is suitable for describing qualitative attributes of
an object (e.g., object color, object shape) in TBIR, it can be cumbersome
when there is a need to describe multiple objects or a complex shape. Consider
the query “This flower is red and wavy” in Fig. 1 as an example. This query
alone can match red flowers of a wide range of shapes. Further, with multiple
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Fig. 1. We present TASK-former, a Text And SKetch transformer based method for
image retrieval. We demonstrate that the presence of a sketch input, even a poorly
drawn one, helps narrow down the set of retrieved images to ones that match the joint
description provided by the sketch and the text query. Retrieval results are from our
model trained on Flower102 dataset [29].

objects, it becomes necessary to describe their relative positions, making the
task too cumbersome to be practical. These limitations naturally led to a related
thread of research on Sketch-Based Image Retrieval (SBIR), where the goal is to
retrieve images from an input sketch [13,31,32,37,38,47,50]. Compared to text,
specifying object positions with a hand-drawn sketch is relatively easy.

Recent works on SBIR tend to focus on a specific set of retrievable images. For
instance, [38] considers object based retrieval: each image has only one object
centered in the image. Compared to [38], [47] allows a more free-form sketch
input, but from a single category e.g., shoes. While suitable for an e-commerce
product search, searching from an arbitrarily drawn sketch, also known as in-
the-wild SBIR, was not studied in [47]. In-the-wild image retrieval is the problem
we tackle in this work.

In-the wild SBIR presents two challenges. Firstly, there is semantic ambiguity
in a sketch drawn by a non-artist user. To a non-artist, it takes effort to draw
a sketch which sufficiently accurately represents the desired image to retrieve.
While adding details to the sketch would naturally narrow down the candidate
image set, to a non-artist user, the extra effort required to do so may outweigh
the intended convenience of SBIR. Ideally the retrieval system should be able
to extract relevant information from a poorly drawn sketch. Secondly, the few
publicly available SBIR datasets contain only either images of single objects
[38,47], or images describing single concepts [18]. These images are different from
target images in in-the-wild image search, which may contain multiple objects
with each belonging to a distinct category.

In this work, we address these two challenges in in-the-wild image retrieval
by proposing to use both a sketch and a text query as input. The (optional) input
sketch is treated as a supplement to the text query to provide more information
that may be difficult to express with text (e.g., positions of multiple objects,
object shapes). In particular, we do not require the input sketch to be drawn
well. As will be seen in our results, when coupled with a text query, an extra input
sketch (even a poorly drawn one) can help considerably narrow down the set of
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candidate images, leading to an increase in retrieval recall. We show that both
input modalities can complement each other in a manner that cannot be easily
achieved by either one alone. To illustrate this point concretely, two example
queries can be found in Fig. 1 where dropping one input modality would make it
difficult to retrieve the same set of images. This idea directly addresses the first
challenge of in-the-wild SBIR – sketch ambiguity.

Combining two input modalities is made possible with our proposed simi-
larity scoring model, TASK-former, which follows the late-fusion dual-encoder
approach, and allows efficient retrieval (see Fig. 2 for the model and our training
pipeline). Our proposed training objective comprises 1) an embedding loss (to
learn a shared embedding space for text, sketch, and image); 2) a multi-label
classification loss (to allow the model to recognize objects); and 3) a caption
generation loss (to encourage a strong correspondence between the learned joint
embedding and text description). Crucially, training our model only requires
synthetically generated sketches, not human-drawn ones. These sketches are
generated from the target images, and are further transformed by appropri-
ate augmentation procedures (e.g., random affine transformation, dropout) to
provide robustness to ambiguity in the input sketch. The ability of our model
to make use of synthetically generated sketches during training addresses the
second challenge of in-the-wild SBIR – lack of training data. We show that our
model is robust to sketches with missing strokes (Fig. 5), and is able to generalize
and operate on human-drawn input sketches (Fig. 4).

Our contributions are as follows.

1. We present TASK-former (Text And SKetch transformer), a scalable, end-to-
end trainable model for image retrieval using a text description and a sketch
as input.

2. We collect 5000 hand-drawn sketches for images in the test set of COCO
[27], a commonly used dataset to benchmark image retrieval methods. The
collected sketches are available at https://janesjanes.github.io/tsbir/.

3. We empirically demonstrate (in Sect. 4) that using an input sketch (even
with a poorly drawn one) in addition to text helps increases retrieval recall,
compared to the traditional TBIR where only a text description is used as
input.

2 Related Work

Sketch Based Image Retrieval (SBIR) There are several works that tackle SBIR
[13,31,32,38,47]. The works of [10,13,28,31,42] consider zero-shot SBIR where
retrieving from unseen categories is the focus. Zhang et al. [48] tackles SBIR using
only weakly labeled data. Fine-grained SBIR of a restricted set of images (e.g.,
from a single category) is studied in [32,33,39]. An interactive variant of SBIR
was considered in [8] where images are retrieved on-the-fly as an input sketch is
being drawn. They propose a form of sketch completion system for SBIR based
on user’s choice of image cluster to refine the retrieval results. Bhunia et al. [3]
present a reinforcement learning based pipeline for SBIR and allows a retrieval

https://janesjanes.github.io/tsbir/
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Fig. 2. Overview of our model and the training pipeline. ViT is the vision transformer
[12], and ⊕ represents an element-wise addition. We extend CLIP [35] to incorporate
additional sketch input from user. We add two auxiliary tasks: multi-label classifica-
tion (Lc) and caption generation (Ld). Our objective losses are explained in Sect. 3.2.
We encourages the network to learn a discriminative representation to simultaneously
distinguish at the instance level and at the category level, both of which are crucial for
a successful retrieval.

even before the sketch is completed. Being able to retrieve relevant images even
with incomplete sketch information is an important aspect of SBIR. In this work,
we achieved this by supplementing the (incomplete) sketch with an input text
description.

Text-Based Image Retrieval (TBIR). The problem of retrieving images based on
a text description is closely related to the ability to learn a good representation
between these two different domains. Previous successes in TBIR relied on the
cross attention mechanism (a specific form of early fusion) to learn the similarity
between text and images [24,26,49]. It is generally believed that, compared to
a late fusion model, an early fusion model can offer more capacity for modeling
a complex scoring function owing to its non-factorized form [1,46]. Interestingly
however the recently proposed CLIP [35], a late fusion model, is able to achieve
comparable TBIR results on COCO to existing early fusion models. This feat
is impressive and is presumably due to the use of a large proprietary dataset
of text-image pairs crawled from the Internet. The representation learned by
CLIP is incredibly rich, and correlates well with human perception on image-
text similarity as observed in [17].

Similar to CLIP, ALIGN [20] also proposes a similar contrastive training
scheme on a large-scale data. Fine-tuning from a pre-trained network in ALIGN
is able to achieve state-of-the-art (SOTA) accuracy of 59.9% in retrieving a single
correct image based on text description in the COCO image retrieval benchmark
(karphathy split).1. In our work, we opt to use the pre-trained CLIP network to
initialize our network for training.
1 More recently, Microsoft team also presented T-Bletchley [41] with a similar pipeline.
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Image Retrieval with Multi-modal Queries. Using text and image as queries for
image retrieval has been explored extensively in the literature, for example as a
textual instruction for a desired modification of the query image [6,11,16,40,43].
Jia et al. [20] demonstrate that it is possible to directly combine representations
of the two input modalities (text and image in this case) with a simple element-
wise addition, for the purpose of image retrieval with maximum inner product
search. In our work, we take this insight and combine the representation of sketch
and text inputs in the same way. Using a sketch as input which is further supple-
mented by additional information (such as a classification label) has also been
studied in Sketch2Tag [45] and Sketch2Photo [5]. Instead of sketch, [4] explores
using fine grain association between mouse trace and text description for image
retrieval. Surprisingly, combining sketch and full text description as queries for
image retrieval has been relatively under explore despite its potential usefulness.
[9,15,21] explore the benefit of training with both sketch and text inputs for the
purpose of improving image retrieval performance for each modality separately.
Only [21] demonstrate examples of retrieving with both sketch and text inputs
by linearly combining their score during test time. Note that unlike ours, the
proposed loss function of [21] does not explicitly consider interactions between
sketch and text inputs, since the goal is to simply improve retrieving with each
modality separately. Further to find the similarity between a sketch and a given
image, the proposed method of [21] requires that the image be first converted to
a sketch via edge detection. This conversion would incur a loss of information
such as the color. The proposed method also requires a conversion of image into
sketch via edge detection, and would lose color information which is not ideal.
While [21] is one of the most related works to our work, we are unfortunately not
able to obtain the data used, or the trained model for a quantitative comparison.

3 Proposal: TASK-former

TASK-former can be considered an extension of the training pipeline proposed in
CLIP [35]. We start with the same network architectures and contrastive learning
as in CLIP, but modify them and add additional loss terms to allow the use of
both a sketch and an input text query. Specifically, we include two additional
auxiliary tasks: multi-label classification and caption generation. Our motivation
is to improve the learned embedding space so as to achieve the following goals.

1. Discriminate between the positive and negative pairs;
2. Distinguish objects of different categories; and
3. Contain sufficient information to reconstruct the original text caption from

embeddings of an image and its sketch.

We achieve these goals via CLIP’s symmetric cross entropy, multi-label clas-
sification objective, and caption generation objective, respectively. While these
three objectives appear to seek conflicting goals (e.g., the classification loss might
encourage discarding class-invariant information, whereas the image captioning
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loss would suffer less if all describable details are kept), we observe that combin-
ing them with appropriate weights can lead to gains in performance for image
retrieval as shown in Table 2.

We start by describing our model and training pipeline in Sect. 3.1, and
describe the three aforementioned loss terms in Sect. 3.2.

3.1 Model and Training Pipeline

Our pipeline is summarized in Fig. 2. Each input query consists of 1) a hand-
drawn sketch, and 2) a text description of desired target images. We use the
same image and text encoder architecture as described in CLIP [35] in order to
leverage networks that have been the pre-trained with large-scale training data.
This choice is in accord with the common practice of using, for instance, an
ImageNet pre-trained network for various vision tasks. We use CLIP’s publicly
available pre-trained model ViT-B/16, in which the image encoder is based on
the Vision Transformer [12] which we found to be the best performer for our
task. For the details of the network architecture of each encoder that we use,
please refer to CLIP [35] and ViT [12].

There are three encoders in our pipeline for: 1) input sketch, 2) input text
description, and 3) a candidate retrieved image. The output embeddings from
the sketch and the text encoders are combined together and used for contrastive
learning with the image embedding as the target. We explore several options
for combining features in Sect. 4.1. Since images and sketches are in the same
domain (visual), we use the same architecture for them (ViT-B/16 pre-trained
on CLIP). We also found that the performance is much better when sharing
weight parameters across the sketch and the image encoders. Yu et al. [47] also
observed similar results where the Siamese network performs significantly better
than heterogeneous networks for the SBIR task. It was speculated that weight
sharing is advantageous because of relatively small training datasets. This expla-
nation may also hold in our case as well given the complexity of our task. For
classification, we feed each embedding to two additional fully connected layers
with ReLU activation.

Additionally, we also train a captioning generator from the embeddings of
sketches and images using a transformer based text decoder. This decoder is an
autoregressive language model similar to GPT decoder-only architecture [36].
We use absolute positional embedding, with six stacks of decoder blocks, each
with eight attention heads. More details can be found in the supplementary
materials.

3.2 Objective Function

Our objective function consists of three main components: symmetric cross
entropy, asymmetric loss for multi-label classification, and auxiliary caption gen-
eration.

Embedding Loss (Le). To learn a shared embedding space for text, image and
sketch, we follow the contrastive learning objective from CLIP [35], which use a
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form of InfoNCE Loss as originally proposed in [30] to learn to match the right
image-text pairs as observed in the batch. This proxy task is accomplished via
a symmetric cross entropy loss over all possible pairs in each batch, effectively
maximizing cosine similarity of each matching pair and minimizing it for non-
matching ones. We add the sketch as an additional query, and replace the text
embedding in CLIP with our combined embedding constructed by summing the
text and sketch embeddings.

Classification Loss (Lc). For classification, we consider this as a multi-label
classification problem as each image can belong to multiple categories. We fol-
low a common practice in multi-label classification, which frames the problem
as a series of many binary classification problems. We use object annotation
available in the datasets as ground truth. Specifically, we use Asymmetric Loss
For Multi-Label Classification (ASL Loss), proposed in [2]. The loss is designed
to help alleviate the effect of the imbalanced label distribution in multi-label
classification.

Auxiliary Caption Generation (Decoder Loss, Ld). For caption gener-
ation, the decoder attempts to predict the most likely token given the accu-
mulated embedding and the previous tokens. The decoded output tokens are
then compared with the ground truth sentences via the cross entropy loss∑T

t log(pt|p1, . . . , pt−1), where T is the maximum sequence length.
Our final objective is given by a weighted combination of all the loss terms.

We refer to supplementary materials for our hyperparameter choices.

3.3 Sketch Generation and Data Augmentation

During training, we synthetically generate sketches using the method proposed
in [25]. In general the method produces drawings similar to human sketches. The
synthesized sketches are however in exact alignment with their source images,
which would not be the case in sketches drawn by humans. To achieve invariance
to small misalignment, we further apply a random affine transformation on the
synthetic sketch as an augmentation. We also apply a similar transformation to
the image (with different random seeds). Introducing this misalignment is crucial
for the network to generalize to hand-drawn input sketches at test time.

To help deal with partial sketches at test time, we also randomly occlude
parts of each sketch. We randomly replace black strokes with white pixel. The
completion level of each synthesized sketch in the training set is between 60%
to 100%

Evaluation with Sketch-Text-Image Tuples. Since our approach retrieves images
with sketches and text, evaluating our approach naturally requires an annotated
dataset where each record contains a hand-drawn sketch, a human-annotated
text description, and a source image. SketchyCOCO [14] fits this description
and is a candidate dataset. However, the dataset was constructed by having the
sketches drawn first based on categories. The sketch for each category was then
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pasted into their supposed areas based on incomplete annotation (not all objects
were annotated). As a result, the sketch in each record may poorly represent the
image because 1) each category contains the same sketch, 2) the choice of which
object to draw is based on categories, rather than human judgement of what
is salient in each particular image. More related is the dataset mentioned in
[21] which provides 1,112 matching sketch/image/text of shoes. However, the
dataset is not yet available at the time of writing. Also worth mentioning is
[34], which also proposes a dataset containing synchronized annotation between
text description and the associated location (in a form of mouse trace) in the
image. However, we argue that a line drawing sketch represents more than just
the location of the objects; even a badly drawn sketch can provide information
such as shape, details, or even relative scale. Owing to lack of an appropriate
evaluation dataset, we construct a new benchmark by collecting hand-drawn
sketches for images in the COCO image retrieval benchmark. These images are
in the COCO 5k split from [22], which is widely used to evaluate text based
image retrieval methods. As part of our contributions, the collected data will be
made publicly available. We describe the sketch collection process in the next
section.

3.4 Data Collection: Sketching from Memory

We collect sketches for COCO 5k via Amazon Mechanical Turk crow sourcing
platform (AMT). We follow the split from [22], which has been widely used as
benchmark for text based image retrieval. The test set contains 5000 images
which are disjoint from the training split.

To solicit a sketch, we first show the participant (Turker) the target image for
15 s, before replacing it with a noise image. This is to mimic the typical scenario
at deployment time where we there is no concrete reference image, but instead
only a mental image of a retrieval target. The participant is then asked to draw
a sketch from memory. In the instructions, we ask the participants to draw as
if they are explaining the image to a friend but using a sketch. We do not put
any restrictions on how the sketch has to be drawn, other than no shading. The
participants are free to draw any parts of the image they think are important
and distinctive enough to be included in the sketch. The sketches are collected
in SVG (a vector format), and contain information of all individual strokes. In
experiments, we use this information to randomly drop individual strokes to test
the robustness of our approach to incomplete input sketches (see Fig. 5). As a
sanity check, we also ask the participants to put one or two words describing the
image in an open-ended fashion.

From the results, we manually filter out sketches that are not at all represen-
tative of the target image (e.g., empty sketch, random lines, wrong object). Our
only criteria is that each sketch has to be recognizable as describing the target
image (even if only remotely recognizable). Our goal is not to collect complete or
perfect sketches, but to collect in-the-wild sketches, which may be poorly drawn,
that can be used along side the text description to explain image.
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Fig. 3. Example retrieved images from TASK-former, randomly selected from our
benchmark. Each query consists of a text description (shown at the top of each block,
and an input sketch (at the top left of each block). In each case, the image that forms a
matching pair to the sketch is highlighted with a green border. See Sect. 3.4 for details
on how we collect human drawn sketches for images in the evaluation set. (Color figure
online)

4 Results and Discussion

For quantitative evaluation, we calculate Recall@K, which is the fraction of times
that the target image is included in the top-K retrieved images. We evaluate on
COCO [27]; a commonly used datasets for language based image retrieval. We
use the same data split as proposed in [22]. Specifically, COCO’s evaluation set
contains 5,000 images. Each image is annotated with multiple captions, and we
additionally add a sketch to each image. For COCO, we collect hand drawn
sketch as described in 3.4.

Implementation Details. We use Adam [23] as the optimization method to train
the model. Training hyperparameters are set in accordance with Open Clip [19]
with the initial learning rate set to 10−5. To provide robustness to incomplete
input, for each (text query, sketch, image) training tuple, we set a 20% proba-
bility to drop either the sketch (replaced with a white image) or the text query
(replaced with an empty text). We demonstrate the robustness of our model
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Table 1. Recall@{1, 5, 10} of state-of-the-art methods on COCO dataset. We use our
collected hand-drawn sketches for evaluation. Among ALIGN, and CLIP, only CLIP
has released pre-trained model. Our TASK-former is initialized for training with this
CLIP model.

Type Method Input R@1 R@5 R@10

Early fusion Uniter [7] Text 0.529 0.799 0.880

Early fusion OSCAR [26] Text 0.575 0.828 0.898

Dual encoders ALIGN [20] (fine-tuned) Text 0.599 0.833 0.898

Dual encoders CLIP [35] (fine-tuned) Text 0.518 0.811 0.891

Dual encoders TASK-former (ours) (Text, Sketch) 0.609 0.847 0.917

to incomplete input in Sect. 4.2. Code to reproduce our results will be made
publicly available.

For evaluation, our model TASK-former is initialized with the publicly
released CLIP model (ViT-16) [35], a text-based image retrieval model. Table 1
compares Recall@{1, 5, 10} of our method and that of current state-of-the-
art approaches on text based image retrieval: Uniter, OSCAR, and ALIGN as
reported in [7,20,26], respectively. To provide a fairer comparison, we further
finetune the publicly released CLIP model (ViT-16) on COCO.2 We observe that
our method is able to achieve a considerably higher recall than other methods,
and CLIP in particular, owing in part to the use of a sketch as a supplemen-
tal input to text. Our method can retrieve the correct image with recall@1 of
60.9%, compared to using text alone, which achieves 51.8% on the same CLIP
architecture (ViT-16).

At the time of writing, models for ALIGN and T-Bletchley have not been
released. Both methods have been shown to perform better than CLIP on text
based image retrieval, and without any early fusion of text and image. We note
that both ALIGN and T-Bletchley can be used as part of our framework by
simply replacing the pre-trained encoders for text and image.

4.1 Ablation Study

In this section, we seek to understand the effect of each of our proposed loss
functions (Le, Lc, Ld), as described in Sect. 3. Baselines used as part of this
ablation study are:

– CLIP zero shot. Recall@K that has been reported in [35] for zero-shot
image retrieval. We note that their best model for the reported results (ViT-
L/14@336px) is not available publicly.

2 Note that this baseline makes use of our best-effort implementation and training.
We do not have access to the official training code and there is no reported result
on using a fine-tuned CLIP on an image retrieval dataset.
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Table 2. Results from our abalation study as described in Sect. 4.1. We construct
variants of our proposed method by selectively including only some training losses.
These are denoted by Le, Le + Lc, and Le + Lc + Ld (see Sect. 3.2). Sketch and text
inputs are combined by adding their embeddings. For “Feature max” and “Feature con-
cat”, the embeddings are combined by coordinate-wise maximum, and concatenation,
respectively, and the full objective is used.

Method R@1 R@5 R@10

CLIP (zero shot) 0.378 0.624 0.722

Ours: Le 0.493 0.748 0.836

Ours: Le + Lc 0.509 0.764 0.850

Ours: Le + Lc + Ld 0.527 0.778 0.862

Ours: Feature max 0.443 0.704 0.804

Ours: Feature concat 0.357 0.650 0.768

Ours (final) 0.609 0.847 0.917

– Ours: Le (ablated TASK-former). We start adding a sketch as an additional
query, as shown in Fig. 2. The only objective in this baseline is to correctly
classify the correct matching pair between the query (sketch+text) and the
image via symmetric cross entropy loss.

– Ours: Le + Lc (ablated TASK-former). In this baseline, we add the multi-
label classification loss term in the objective.

– Ours: Le + Lc + Ld (ablated TASK-former). In this baseline, we add both
classification loss and decoder loss

For the above three baselines, text and sketch embeddings are combined by
adding them, as described in Fig. 2. We further compare two additional ways to
combine sketch and text embeddings: coordinate-wise maximum, and concate-
nation:

– Ours: Feature max (ablated TASK-former). Embeddings from sketch and
text are combined using element-wise max.

– Ours: Feature concatenate (ablated TASK-former). Embeddings from
sketch and text are concatenated, and projected into the same dimension
as embedding from image.

We use the full objective (i.e., Le + Lc + Ld) for the above two variants.

– Ours (final) This is our complete model trained with the full objective
(Le +Lc +Ld). We augment training sketches and images with random affine
transformation, randomly remove parts of each sketch (as describe in Sect. 3)
and train for 50 epochs.

Except for the final model, we train each baseline for 10 epoches. For ablation
study, we simplify the training by only performing simple augmentation (random
cropping and flipping).
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Fig. 4. Some retrieved images by our model when using only a sketch query, only a
text query, and with both queries at the same time. Our model is robust to missing
input: when only one input modality is present, it can still retrieve relevant image,
albeit suboptimally. We observe that the presence of an input sketch clearly helps rank
the most relevant image higher.

Table 2 reports recalls of each baselines. Both Lc and Ld further improve the
retrieval performance compare to our baseline with only embedding loss (Le).
Surprisingly, our experiment also show that a simple element wise addition leads
to the best performance compare to element wise max, and concatenation. We
hypothesize that direct combination of the sketch and text embedding implicitly
helps with feature alignment, compare to concatenate them.

4.2 Robustness to Missing Input

One key benefit of our pipeline is the ability to retrieve image even when missing
one of the input modalities (sketch or text). We accomplish this by adding a
query drop-out augmentation which replaces either the sketch or text with an
empty sketch or an empty string. This ensures the network can operate even
when no sketch or text description is given. Figure 4 shows the results breaking
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Sketch completeness 100% 80% 60% 40% 20% 0%

R@1 .615 .609 .602 .582 .515 .458
R@5 .883 .876 .870 .843 .833 .776

R@10 .947 .926 .940 .923 .916 .870

Fig. 5. Recall@{1, 5, 10} of TASK-former, averaged over 300 randomly sampled (text
query, sketch, image) tuples in the COCO dataset. For each test instance, we vary
the completeness of the sketch, where completeness level x% is defined as the original
sketch with only x% of all strokes randomly chosen. Candidate retrievable images are
the full COCO test set of 5k. The completeness 0% corresponds to using only text as
input. We observe that even with a small fraction of strokes retained (e.g., 20%), there
is gain in recall compared to using only text as input (i.e., 0% sketch completeness)

down into querying with sketch only, querying with text only, and querying with
both modalities. We emphasize that sketch based image retrieval is particularly
challenging for unconstrained, in-the-wild images with multiple objects and no
fixed categories. In spite of that, our network can retrieve reasonably relevant
results for sketch query alone, all without requiring any hand drawn sketch
during training.

Nevertheless, we find that using the sketch or text as a sole input is often
sub-optimal for image retrieval in this setup. A combination of sketch and text
can provide a more complete picture of the target image, leading to an improve
performance. For instance, in the first example of Fig. 4, it can be difficult to
draw a brown desk with sketch alone, but this can be included easily with text
description.

4.3 Sketch Complexity and Retrieval Performance

In this section, we investigate the effect of varying the level of sketch details on
the retrieval performance. We sample 300 sketches from our collected COCO
hand-drawn sketches, and randomly subsample strokes to keep only 20% to
100%. Table 5 shows the recall performance on each level of sketch complexity.
We observe a large gain near the lower end of the completeness level, with a
diminishing gain as the completeness level increases. In particular, this suggests
that even a poorly drawn sketch helps in retrieving more relevant images. We
observe that reducing the sketch completeness level from 100% to 60% only
slightly decreases recall.
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Table 3. Retrieval performance of our model as measured by recall@{1, 5, 10} when
both a complete sketches, and text queries are inputted to the model. Words in each text
query are sub-sampled to investigate the effect of incomplete input text on retrieval.

Text completeness R@1 R@5 R@10

0% 0.099 0.195 0.257

20% 0.316 0.545 0.640

40% 0.357 0.613 0.708

60% 0.446 0.710 0.813

80% 0.530 0.807 0.884

100% 0.607 0.866 0.930

4.4 On the Effect of Text Completeness

In Sect. 4.3, we investigate the effect of an incomplete input sketch on the
retrieval recall. The goal of this section is to provide an analogous analysis on
the effect of an incomplete text input. We sample 300 records of from our col-
lected COCO dataset. Each record consists of three objects: a sketch, a text
description, and an image. For each text description, we vary its degree of com-
pleteness by randomly subsampling x% (for a number of values of x) of the
tokens (words), while keeping its corresponding sketch intact. Table 3 shows the
resulted retrieval recall for each degree of text completeness. We observe that
compared to when no text query is given as an input (0%), recall@1 increases
from 0.099 to 0.316 when only 20% of tokens are included. The gain in recall
diminishes as more tokens are added.

5 Limitations and Future Work

Figure 3 shows the potentials of our retrieval model. However, it also reveals some
examples of when our method fails to retrieve the target image. For example,
in the forth row, the network is unable to retrieve the correct image (with blue
jacket and black horse). This is likely due to the confusion with the color (both
black and blue color are in the text description). While the network does place
images with both black and blue color closer to the query embedding, it is
unable to find the target image with black horse, and blue jacket within the
top 10 results. This shows the current limitation of the model in understanding
complicated text description.

Beyond these examples, we generally observe that the network suffers when
the sketch is not representative of the target image. For example, the difference
in scale and location can contribute to incorrect retrieval results (sixth row of
Fig. 3). Designing a model that is more tolerant to scale mismatch will be an
interesting topic for future research. On the text encoder, automatically aug-
menting the text query to be more concrete by leveraging text augmentation
techniques also deserves further attention.
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