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Abstract. Large-scale Bundle Adjustment (BA) requires massive mem-
ory and computation resources which are difficult to be fulfilled by exist-
ing BA libraries. In this paper, we propose MegBA, a GPU-based dis-
tributed BA library. MegBA can provide massive aggregated memory by
automatically partitioning large BA problems, and assigning the solvers
of sub-problems to parallel nodes. The parallel solvers adopt distributed
Precondition Conjugate Gradient and distributed Schur Elimination,
so that an effective solution, which can match the precision of those
computed by a single node, can be efficiently computed. To accelerate
BA computation, we implement end-to-end BA computation using high-
performance primitives available on commodity GPUs. MegBA exposes
easy-to-use APIs that are compatible with existing popular BA libraries.
Experiments show that MegBA can significantly outperform state-of-
the-art BA libraries: Ceres (41.45%), RootBA (64.576x) and DeepLM
(6.769x) in several large-scale BA benchmarks. The code of MegBA is
available at: https://github.com/MegviiRobot/MegBA.

1 Introduction

Bundle Adjustment (BA) is the foundation for many real-world 3D vision appli-
cations [20,31], including structure-from-motion and simultaneous-localization-
and-mapping. A BA problem minimises the re-projection error between camera
poses and map points. The error is a non-linear square function, and it is min-
imised through iterative methods, such as Gauss-Newton (GN) [34], Leverberg-
Marquardt (LM) [25] and Dog-Leg [29]. In each iteration, a BA library differ-
entiates the errors with respect to solving states and constructs a linear system
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which is solved by optimisation algorithms, such as Cholesky decomposition [4]
and Precondition Conjugate Gradient (PCG) [9].

Large-scale BA is increasingly important given the recent rise of city-level
high-definition maps for autonomous driving [3,21,22,24] and indoor maps for
augmentation reality [28,33,38]. A structure-from-motion application, for exam-
ple, can produce massive images [2,15], resulting in billions of points and obser-
vations to be adjusted. Such a BA problem is orders of magnitude larger than
those in conventional vision applications [32,39].

Existing BA libraries (e.g., g20 [12] and Ceres [1]) however provide insuffi-
cient support for large-scale BA. We observe several reasons: (i) Existing libraries
focus on single-node execution, and they lack algorithms to distribute computa-
tion. They thus cannot provide massive aggregated memory that is the key for
large-scale BA. Even though there are algorithms, such as RPBA [26], DPBA [6]
and STBA [39], which explore distributed BA. These algorithms adopt approzi-
mation which can adversely affect the precision of found solutions. (ii) Existing
BA libraries are designed for CPU architectures, and they under-utilise GPUs
which is particularly useful for large-scale BA. Even though there are systems,
such as PBA [36], to accelerate BA with GPUs. They leave key BA opera-
tions un-accelerated (e.g., error differentiation and linear system construction).
DeepLM [16] offloads error differentiation into GPUs through PyTorch, but the
performance is often sub-optimised.

In this paper, we propose MegBA, a novel GPU-optimised distributed library
for large-scale BA. The design of MegBA makes several contributions:

(1) Distributed BA algorithms. MegBA provides a large amount of aggre-
gated memory by distributing BA computation to multiple nodes. To this end, we
propose a generic BA problem partitioning method. This method leverages a key
observation in BA problems: BA problems are often expressed as graphs where
nodes represent points/cameras, and edges represent the associations between
cameras and points. MegBA can thus automatically partition the graphs based
on edges, and ensure each sub-graph has an equal number of edges (with an aim
of achieving load balancing). MegBA further assigns sub-graphs to distributed
nodes and merges the local solutions to sub-graphs. To ensure that distributed
BA can offer the precision as those computed by single-node BA libraries, we
propose the distributed PCG algorithm and the distributed Schur elimination
algorithm. These two algorithms synchronise the states of solvers on parallel
nodes, and the synchronisation is realised using NCCL.

(2) GPU-Optimised BA computation. MegBA thoroughly optimise BA com-
putation for GPUs, thus providing massive computation power for large-scale
BA. Computation-intensive operators (e.g., inverse, inner project, etc.) are imple-
mented as Single-Instruction-Multiple-Data (SIMD) operators. MegBA store data
in JetVector, a data structure that stores BA data in SIMD-friendly vectors, and
JetVector minimises data serialisation cost between CPUs and GPUs. To minimise
data movement cost which could block GPU execution, MegBA has algorithms that
can predict the GPU memory usage of BA, thus pre-fetching BA data if possible.
It exposes easy-to-use APIs that are compatible with g2o and Ceres. Ceres and g2o
applications can be thus easily ported to MegBA.
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Weevaluate the performance of MegBA onservers and each server has§ NVIDIA
V100 GPUs. Experiments with public large BA datasets (i.e., Final-13682 [2]) show
that MegBA canout-perform Ceresbyupto41.45x,andRootBA [7]byupto64.576 %,
indicatingthe benefits of optimising BA computation for GPUs. We further compare
MegBA with DeepLLM [16],a GPU-based BA library. MegBA out-performs DeepLM
by 5.213x on4 GPUs. With8 GPUs, MegBA out-performs DeepLM by 6.769 x , mak-
ing MegBA the state-of-the-art BA library on GPUs.

To evaluate the scalability of MegBA, we construct an extremely large synthetic
BA dataset whichismodelled after by the BA problemswehaveinreal-world applica-
tions. This dataset contains 80 million observations, 2.76 x larger than Final-13682.
DeepLM and RootBA incur out-of-memory error and cannot handle such a dataset.
On the contrary, MegBA can solve this BA problem in 216.26 s by distributing BA
computation to 8 GPUs, which is 23.54 x faster than Ceres.

2 Related Work

This section describes the related work of MegBA. g2o0 [12] and Ceres [1] are
exact BA libraries that can compute high-accuracy solutions to BA problems.
These libraries are designed for using parallel CPU cores, and they cannot use
GPUs. These libraries also fail to provide distributed execution, which makes
them suffer from out-of-memory issues in solving large-scale BA problems.

Approximated BA algorithms can substantially speed up BA, though often
come withacompromisein the quality of BA solutions. PBA [36]islimited torunona
singledevice.v/BA [8]replaced Schur Complement withamemory-efficientnullspace
projection of Jacobian, thus improving its performance with single-precision float
numbers.iSAM[18]andiSAM2[17]exploitstatesordering;whileICE-BA [23]exploits
the states in temporal orders. Though fast in speed, approximated BA algorithms
modify the original BA problems, which adversely affect the quality of BA solutions.
Asaresult, commercial 3D vision software, such as PIX4D" usually avoid any form of
approximation and adopt exact BA librariesif possible.!

Distributed BA libraries have been recently designed for large-scale BA.
Anders Eriksson et al. [10] present consensus-based optimisation which leverages
proximal splitting. Runze Zhang et al. [37] purpose an Alternating Direction
Method of Multipliers to distribute the optimisation problem. Later RPBA [26],
DPBA [6], STBA [39] partition the BA problems based on ADMM. These
ADMM-based systems incur massive redundant computation on distributed
devices, making them sometimes under-perform single-node libraries. Further,
their users must manually partition BA problems, resulting in sub-optimal dis-
tributed performance. BA-Net [30] and DeepLM [16] leverages GPUs to speed
up BA. They however rely on PyTorch to use GPU, which incurs non-trivial per-
formance overheads when using GPU and extra memory copies. Decentralised
SLAM libraries, such as DEDV-SLAM [5], often solve approximated BA prob-
lems on distributed robots, then they merge local solutions. However, the merged
solution is not equivalent to the original global BA problem.

! https:/ /www.pix4d.com/.


https://www.pix4d.com/

718 J. Ren et al.

GPU 1

S | SIMD-based data structures | | Memory-efficient runtime |

Jacobian linear system Distributed
— computation construction PCG
Y K

\
]
]
]
]
]
!
]
AN Y
! Yes
H allreduce allreduce
9
3 GPU 2 » Converge? ==
Edge-based ! . (¢ N\
partitioning 1 H Jacobian linear system Distributed No
= computation construction PCG
]
]
|

| SIMD-based data structures || Memory-efficient runtime |
Sub-problems g J

BA problem

Fig. 1. MegBA overview. @ MegBA partitions a BA problem based on edges. BA
sub-problems are in the same size, and they are dispatched to distributed GPUs. Each
GPU computes Jacobians @, constructs a linear system @, and solve the linear system
using the distributed PCG algorithm @. The communication involved in linear system
construction and distributed PCG is implemented using allreduce operations. Step @,
©, and @ are executed iteratively until @ convergence criteria has been met.

Custom hardware and algorithms are useful in accelerating BA [14].
GBP [27] uses a neural processing unit (i.e., GraphCore IPU) to speed up BA;
but the limited availability of IPU makes GBP difficult to be used as a general
solution. Practitioners also propose an approximated BA solver tailored for facial
capture [11], and this solver cannot be used for arbitrary BA problems such as
structure-from-motion.

3 Preliminaries

This section introduces the preliminaries of MegBA. A BA problem can be
expressed as a graph, and its solving is realised an iterative process which min-
imises a non-linear square error objective function:

r* = argrr;in E ezjzi,jei’j, (1)

where e; ; is the constraint (i.e. error or graph edge) between state (i.e. param-
eters or graph nodes) x; and x;, X, ; is an information matrix.

Solving Eq. 1 is equivalent to iteratively updating the incremental amount
Az, given by the linear system HAx = g, upon the current state x until
convergence. The Hessian matrix H = J? £J for GN method and H = J* XJ +
A for LM method, the residual vector g equals to —J7 X7, J is the Jacobian
of the error e with respect to current state x.

To solve BA problems, BA libraries can use Schur Complement (SC):

23[)- 11
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where B and C' are block diagonal and they are related to camera-camera and
point-point edges, respectively. E refers to edges between camera and point. v
and w refer to the residual vectors for camera and point states.

Solving H Az = g is equivalent to compute the incremental update for states
related to cameras Ax. by solving an alternative linear system, called Reduced
Camera System (RCS)

[B—- EC 'E"|Ax, =v - EC 'w, (3)
and followed by a substitution Ax. into
Az, =C (w - ETAa:C> , (4)

to get the update for 3D map points.

BA libraries solve linear systems using either direct methods or iterative
methods. Direct methods, such as Gaussian-Elimination, LU, QR, and Cholesky
Decomposition, return optimised solution of & in one pass. They however suffer
from O(n?®) time and O(n?) space complexity, making them only suitable for
small-scale BA problems. On the contrary, iterative methods, such as PCG [31],
are suitable for large-scale BA problems. Specifically, PCG replaces the explicit
computation of EC 'ET with multiple iterative sparse matrix-vector opera-
tions. It reduces the space complexity to O(n), thus saving memory.

4 MegBA Design

This section introduces the design of MegBA. A key design goal of MegBA is to
transparently distribute the solving of a given BA problem to multiple nodes,
thus addressing the memory wall of a single node.

Figurel presents an overview of the distributed execution of MegBA. A
MegBA user declares a BA problem as a graph. MegBA can automatically par-
tition the BA problem based on edges with an aim of each BA sub-problem to
have an even number of edges @. Specifically, each GPU first @ computes the
Jacobian (i.e. differentiation of the edge for the node), and then @ construct
the linear system, and finally, @ apply PCG to compute the update for adjust-
ing the current BA sub-problem. The PCG intermediate state is synchronised so
that MegBA can eventually solve the shared global BA problem. The BA update
step is iteratively performed until a user-defined convergence criterion is met @.
Notably, the BA computation on each GPU is implemented as SIMD operations
which can best utilise GPUs (The details of SIMD-friendly data structure and
the memory-efficient runtime are given in Sect. 5)

4.1 Edge-Based Partitioning Method

We focus on partitioning the Hessian matrix produced in BA. For example, in
a BA dataset with 80M edges, a Hessian matrix H consume over 50G memory,
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leading to over 99.9% storage to be allocated to E and E’. We want to have
a generic method that partitions the Hessian matrix in a BA problem. This
method needs to assign each parallel device with a part of the matrix E and
ET preferably in equal sizes. The partitioning needs to guarantee that the global
solution merged from local solutions is equivalent to the one computed using a
single node. This equivalence property is the key to ensuring a high-precision
solution found by MegBA.

At the high level, MegBA achieves distributed BA using two major compo-
nents: (i) a method that can divide a BA problem into sub-problems, and (ii) an
algorithm that can coordinate distributed PCG algorithms to solve sub-problems
in parallel. Our partitioning method is based on a key observation in BA prob-
lems: the non-zero blocks in E and ET are corresponding with edges, i.e., the
i-th row j-th column non-zero block in E is computed by e; ;, we can partition
edges based on the number of available GPUs, and each GPU only store part
of these non-zero blocks (We provide an example to illustrate the partitioning
process in the supplementary materials).

Assume there are K GPUs, given a BA problem, we tile edges to a vector

e=[...e;j...]T, then we partition it to several blocks e = [e] el ... e%]T.
The Jacobian J could be partitioned into several blocks:
de T 4. T 17 T 7T 71T
J=2 = dal deat st~ (g gf IR (5)

Assuming identity information matrix is given here, Hessian H can be par-
titioned:

K K
H=J"J =) JiJy=) H;. (6)
k=1 k=1
To perform Schur elimination, we represented Hj, as sub-blocks:
| Bk E
A= [Ef CJ' @

Matrix blocks in Eq. 2 have the following equivalent forms in the edge-based
partition setting: B = 22{:1 By, E = Zle E,, ET = 22{:1 E], and C =
Zszl C). The number of non-zero parameter blocks in E or ET equals the
number of edges. Notably, the sub-matrices By and C, have the same number
of non-zero elements as B and C, respectively. Since we store matrices in the
Compressed Sparse Row (CSR) format, each GPU only stores % non-zero blocks
in E and ET. The blocking strategy greatly alleviates the problem that E and
ET are too large to be stored on a single device.

By applying the above partition method for Eq. 2, an equivalent distributed
version can be formulated as follow:

K
g:fJTr:f[JlTJQT...Jf(][rlTTQT...r%}]T:—ZJgr. (8)
k=1
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Algorithm 1. Distributed BA

Input: BA initial state x = [:BFT :vg]T, vector of edges ex, and local GPU rank k
Output: Optimised state x
1: while BA Convergence Criteria not satisfied do

2 ri=er(x),Jr =der(x)/dx /* Residual and Jacobian */
3: {g; gk =JL T, [vi wi] = —Jiry /* Hessian and Constant vector */
k k

4: B = allreduce(By), C = allreduce(Cl,),
v = allreduce(vy), w = allreduce(wy,)

/* B:Zf{:IB’U C:Z£1Ci¢U:Zf{:1virw:Z£1wi ¥

5: ap = EkC_l'w

6: «a = allreduce(ay) /* Zfil a; */
T g=v—« /* Constant vector in Equation 3 */
8 Az, =DPCG(0,B,Ey, EF . C,g,k) /* Update x. using Algorithm 2 */
9: B, =EfAx,

10: B = allreduce(B;,) JESE B/
11: Az, =C '(w - ) /* Increment of x, */
122 xz.=z.+ Az, xp =z, + Axp /* Update state */

13: end while
14: return z = [z} 21"

4.2 Distributed BA Algorithm

By far we have partitioned a BA problem and assigned sub-problems to all GPUs.
In the following, we will discuss how does MegBA coordinates the solving of sub-
problems in a distributed manner.

Algorithm 1 introduces the overall distributed BA algorithm in MegBA. The
distributed BA algorithm takes as initial state and partitioned edges as described
in Sect.4.1. We use JecVector to compute the Jacobian and residual (Line 2).
JetVector is a novel data structure to represent BA data in a SIMD format, it
can make full use of the hardware characteristics of GPU (e.g. coalesced memory
loading) to do auto-differentiation over millions of edges in parallel. We give a
more detailed illustration in Sect.5.1. Then we build a linear system (Line 3).
We perform allreduce on diagonal-blocks and constant vector (Line 4) before
solving the linear system because the size of diagonal-blocks and constant vector
is small and they would be used several times in the following procedures.

We then compute constant vector in Eq.3 (Line 5-7) and solve the linear
system by using a distributed PCG (DPCG) algorithm (Line 8). Notably, we
do necessary allreduce in the DPCG algorithm to guarantee DPCG output the
same result as non-distributed PCG solver does in solving Eq. 3, further imple-
mentation details will be shown in Sect.4.3. After solving the linear system in
Eq. 3, we compute the increment of ,, following Eq. 4 (Line 9-11). Once we have
computed the increment Az, and Az, we update the state x. and x,, (Line 12).
If it doesn’t satisfy the convergence criteria we will start another loop; otherwise,
we will return the optimised state x.
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Algorithm 2. Distributed PCG (DPCGQG)

Input: Initial state 2°, matrix block B, E, EF, C of H}, constant vector b, and
local GPU rank k

Output: Solution z for linear system [B — EC'ET]x = b, where E = 25{:1 E;
and ET =YK E;

1: v =b - DSE(z?, B, E;, E{,C™ ' k) /* Algorithm 8 */
2:n=0

3: while Convergence Criteria not satisfied do

4: z"=B7 '

5. pt=r"Tz"

6: if n > 1 then

e ﬁn — pn/pn—l

8: pt=2z"+6"p"

9:  else
10: pt=2z"
11:  end if
12:  q" =DSE(p",B,E;,EL,C™ ' k) /* Algorithm 3 */

13: an — p'n/pann

14: "=z 4+ o p"
15:  r"tl =" —qng™ !
16: n=n+1

17: end while

18: return z="

Algorithm 3. Distributed Schur Elimination (DSE)

Input: Vector x, matrix B, Ey, EY,C ™!, and local GPU rank k
Output: Schur elimination result [B — EC~'E]z, where E = Y% E;, ET =

X, B

1: ar = Ef:c

2: a = allreduce(ay) /* Zfil a; %/
3: b=C"'a

4: Cir = Ekb

5: ¢ = allreduce(cy) /* Zfil ci ¥/
6: d = Bx

7: return d —c

4.3 Distributed PCG

We then discuss how to distribute the PCG algorithm in BA, shown in Algo-
rithm 1. This algorithm first constructs a linear system defined in Eq. 2. It then
solves Eq.3 and computes increment following Eq.4. It finally uses the incre-
ments update state x, and tested if a convergence criterion has been met. To
guarantee that the distributed BA algorithm achieves the convergence perfor-
mance, we make Algorithm 1, named DPCG, return the same result as the
non-distributed linear solver.

In the following, we describe the execution of DPCG. DPCG takes BA initial
state ¥, matrix block B, Ej, Eg, C of Hy, constant vector b as input and
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output solution z for linear system [B — EC~'E”]z = b, where E = 25:1 E;
and ET = 25:1 E}.. The procedures of DPCG using Schur elimination is sim-
ilar to single-node PCG. Notably, the coefficient matrix of the linear system
to be solved is Schur complement. The matrix-vector multiplication operations
(Line 1, 12 in Algorithm 2) is thus the multiplication between Schur complement
and vector. The difference between distributed compared with non-distributed
setting is that DPCG only assign Ej and Ef rather than the complete matrices
E and ET to GPU k, so we need to guarantee operations that use Ej and Eg
have the same output compared with using E and ET, these operations happen
when doing Schur elimination (Line 1, 12).

Our key idea of computing Schur elimination in a distributed manner is that:
the summation of matrix-vector multiplication is the same as the result matrix
summation multiplies vector, i.e., Zle(Ekv) = Zszl(Ek)v. We compute an
intermediate vector (Line 1) and reduce it (Line 2), then we compute interme-
diate vectors sequentially (Line 3, 4). We perform all-reduce operation over the
intermediate vector (Line 5) and compute another intermediate vector (Line 6.
After those procedures, we do subtraction to the last two intermediate vectors
and output the final result. The result would be the same as computing the
complete Schur complement [B — EC ™' E|] then multiplying it with vector a.

4.4 Complexity Analysis

In the end, we present the complexity analysis of MegBA. Assume that MegBA
is given m cameras, n points, and k observations and we often have k > m,n,
the time complexity for building the linear system is O(m +n+ k) and the time
complexity for each iteration of the conjugate gradient is O(m +mn+ k). Assume
we distribute the problem to K GPUs, on each GPU, the time complexity for
building the linear system is O(m + n + k/K) and the time complexity for
each iteration of the conjugate gradient is O(m +n + k/K). The ring all-reduce
communication time complexity of each conjugate gradient iteration is O(m+n).
In summary, the total complexity of MegBA is O(m +n + k/K).

5 MegBA Implementation

This section describes the implementation of MegBA. There are several goals
of our implementation: (i) We want to use as many SIMD operations as possi-
ble because both computation and memory operations on GPU are essentially
SIMD-friendly. (ii) We want to optimise the memory efficiency of MegBA, thus
avoiding memory allocation and deallocation; (iii) We want to implement the
APIs of MegBA that are fully compatible with existing popular BA libraries:
g20 and Ceres. In the following, we highlight how MegBA achieves these imple-
mentation goals.
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5.1 SIMD-Friendly Data Structures

JetVector is a novel data structure to perform auto-differentiation over millions
of edges. Compared to conventional BA data structure: Jet implemented in
Ceres, JetVector represents a list of Jets (i.e., Array-of-Structure) as a single
data object where Jet’s data fields: data and grad across all items are represented
as single arrays (i.e., Array-within-Structure). When we perform mathematical
operations on JetVector, we will start as many GPU threads as the elements in
it, every GPU thread process one element. Because data and grad are stored in
the structure of Array-within-Structure, the memory transactions are coalesced
and make it easy to reach a high memory throughput. The detailed structure
layout of JecVector could be found in supplementary materials.

Besides JetVector, other parts of MegBA are also implemented as SIMD-
friendly data structures. The construction of linear system (Line 3 in Algo-
rithm 1) uses L1 cache on GPU to store Jacobian blocks in a SIMD manner.
The DPCG algorithm includes a lot of matrix/vector operations which also be
benefited from the SIMD structure. A full list of SIMD operations implemented
in MegBA can be found in supplementary materials.

5.2 Memory-Efficient Runtime

BA computation involves massive objects to be allocated in GPU memory. To
avoid expensive memory allocation [19], we leverage a key observation in BA
computation: The automatic differentiation works on GPU buffers that are in
the same size across BA iterations. By monitoring the sizes of GPU buffers used
in the forward pass of differentiating the BA errors, we can predict the sizes of all
memory buffers involved in future BA iterations. Based on this observation, we
can pre-allocate these memory buffers in a memory pool, thus avoiding calling
the CUDA driver to allocate memory during runtime.

5.3 Easy-to-Use APIs

The APIs of MegBA comprises of two major components:

(i) Declaring BA problems. Following the API convention of g20 and Ceres,
a BA problem in MegBA is declared a graph that contains nodes and edges.
The MegBA nodes describe the 3D coordinates or the poses of cameras and
these nodes can be directly imported from g2o and Ceres applications. The
MegBA edges are error functions that can be written using the Eigen library [13],
identical to Ceres. A MegBA user can build a large BA problem by adding BA
nodes and edges (using the g2o-equivalent addEdge and addNode functions).
(ii) Choosing BA solvers. MegBA also support users to choose solvers
given the characteristics of their BA problems. The default solver is the SIMD-
optimised DPCG which can automatically use multiple GPUs. Given a small-
scale BA problem where intrinsic parallelism is not sufficient, MegBA provides
users with the CPU-optimised CHOLMOD solver [4].
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6 Experimental Evaluation

We conduct a comprehensive evaluation with MegBA. The evaluation comprises
of BAL [2], 1IDSfM [35], and a large synthetic dataset modelled after a city-scale
BA application we have in production. The dataset statistic is shown in Table 1.
Due to the page limit, this section only presents the results with BAL [2], and
we put the results of 1IDSfM and the synthetic dataset in the supplementary
materials.

We compare MegBA with four baselines: (i) Ceres [1] (version 2.0) is the most
popular BA library that can efficiently use massive CPU cores, (ii) g2o0 [12] is a
lightweight CPU-based BA library, (iii) RootBA [7] is a recent CPU-based BA
library that uses Nullspace-Marginalization in place of Schur Complement, and
(iv) DeepLM [16] is the state-of-the-art GPU-based BA library (2021), and it
was shown to out-perform other popular BA libraries: STBA [39] and PBA [36]
(We provide comparison results between PBA and MegBA in the supplementary
materials).

Table 1. Dataset statistics.

Benchmark | Dataset #Points | #0Observations
BAL Trafalgar-257 65132 225911
Ladybug-1723 156502 678718
Dubrovnik-356 226730 | 1255268
Venice-1778 993923 | 5001946
Final-13682 4456117 | 28987644
Synthesised | Synthesised-20000 80000 | 80000000
1DSfM Alamo-577 140080 816891
Ellis_Island-233 9210 20500
Gendarmenmarkt-704 76964 268747
Madrid_Metropolis-347 44479 195660
Montreal Notre_Dame-459 | 151876 811757
Notre_Dame-548 224153 | 1172145
NYC_Library-334 54757 211614
Piazza_del_Popolo-336 29731 150161
Piccadilly-2292 184475 798085
Roman_Forum-1067 223844 | 1031760
Tower_of_London-484 126648 596690
Trafalgar-5052 327920 | 1266102
Union_Square-816 26430 90668
Vienna_Cathedral-846 154394 495940
Yorkminster-429 100426 376980
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We run experiments on a server that has 80 Intel Xeon 2.5 GHz CPU cores,
8 Nvidia V100 GPUs and 320GB memory. The GPUs are inter-connected using
NVLink 2.0. We use 64-bit floating points (FP64) unless otherwise specified.

6.1 Overall Performance

We first evaluate the overall performance of MegBA, Ceres, g20, RootBA, and
DeepLM. MegBA uses from 1 to 8 GPUs, and CPU-based algorithms use 16
threads. We measure the Mean Squared Error (MSE) in pixels over time.

Figure 2 shows the evaluation results. In the Venice-1778 dataset (Fig. 2(a)),
MegBA achieves the best performance with 8 GPUs, while DeepLM can only
use a single GPU. MegBA completes with 3.34s while Ceres, RootBA, g20 uses
319.0, 73.94, and 890.6 s, respectively. It shows the substantial speed-up (95.5x,
22.1x, and 266.6x), which indicates the benefits of fully exploiting GPUs to
accelerate BA computation. For GPU-based BA libraries, MegBA can complete
with 11.96s while DeepLM spent 24.44s, showing the effectiveness of imple-
menting full vectorisation for BA on a single GPU. With more GPUs, MegBA
out-performs DeepLM by 7.316x, which reflects the necessity of adopting mul-
tiple GPUs.

Thanks to the vectorisation and distributed BA designs, MegBA becomes the
state-of-the-art in the large BA dataset (i.e., Final-13682). As shown in Fig. 2(b),
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Fig.2. Mean Squared Error over Time. MegBA-X-Y refers to X GPUs while
-a refers to auto-differentiation Jacobian and -m refers to analytical differentiation
Jacobian. Ceres/RootBA/g20-X refers to X CPU threads.
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Table 2. Small-scale experiments We only report the results of MegBA with a
GPU because the datasets in this table are small. MSE is the final Mean Squared Error
(pizels), Time is BA duration, and Mem is the memory in GB.

Trafalgar-257 Ladybug-1723 Dubrovnik-356

MSE | Time Mem | MSE | Time Mem | MSE | Time Mem
Ceres-16 0.434 | 8.160 |1.659|0.562 | 34.50 |2.093|0.393  116.0 2.550
DeepLM 0.434 3.820 | 1.445|0.573 3.930 |2.144 | 0.396 6.119 | 2.693
g20-16 0.434 | 21.69 |1.358|1.961 |140.7 1.866 | 0.394 | 94.39 2.308

RootBA-16 | 0.433 | 3.307 | 1.468 | 0.562 7.050 |2.423|0.393 | 78.16 3.942
MegBA-1-a | 0.438 1.364 | 1.270 | 0.560 0.932 |2.450 | 0.411 3.640 | 3.940
MegBA-1-m | 0.438 1.148 | 1.010 | 0.560 0.774 | 1.660 | 0.411 3.263 | 2.480

Table 3. Large-scale experiments.

Venice-1778 Final-13682

MSE | Time Mem | MSE | Time | Mem
Ceres-16 0.334 | 319.0 5.9830.749 | 916.0 |26.08
DeepLM 0.333 | 24.44 |6.2560.751 |149.6 |14.89
g20-16 0.335 | 890.6 5.999 | 1.061 | 13161 |36.89
RootBA-16 |0.337 | 73.94 |14.14|0.773 | 1,427 |263.2
MegBA-1-a [0.333 | 11.96 13.68 | OOM | OOM | OOM
MegBA-2-a | 0.333 7.133 |14.51 | OOM | OOM | OOM
MegBA-4-a |0.333 4.767 |16.76 | 0.748 |28.70 |81.03
MegBA-8-a | 0.333 3.340 | 22.61/0.748 |22.10 |89.74
MegBA-1-m | 0.333 | 10.92 |7.870 OOM | OOM | OOM
MegBA-2-m | 0.333 6.618 |8.6930.748 | 50.57 |43.60
MegBA-4-m | 0.333 4.617 |10.95/0.748 |26.46 | 47.33
MegBA-8-m | 0.333 3.014 | 16.79 | 0.748 | 20.68 | 56.06

MegBA completes in 22.10s, while DeepLM uses 149.6s (6.769x speed-up),
Ceres uses 916s (41.45x speed-up), g2o0 uses 13161s (595.5x speed-up), and
RootBA uses 1427 s seconds (64.57x speed-up). In other datasets (Fig. 2(c)-(e)),
we observe similar speed-up achieved by MegBA, indicating the general effec-
tiveness of our proposed approaches. We omit the discussion of these datasets,
and their results are reported in Table 2.

6.2 Scalability

Table 3 further provides the detailed experimental results to show the scalability
of MegBA, Ceres and DeepLM. In the Venice-1778 dataset, MegBA can con-
sistently improve its performance by adding GPUs (from 11.96s to 3.34s if we
increase the number of GPUs from 1 to 8). In addition, the large dataset (Final-
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Table 4. Performance with 32-bit and 64-bit floating points.

Venice-1778 Final-13682

MSE |Time |Mem |MSE |Time | Mem
MegBA-1-a(FP32) 0.334 | 2.620 |8.300| OOM | OOM | OOM
MegBA-1-a(FP64) | 0.333 |11.96 |13.68| OOM | OOM | OOM
MegBA-1-m(FP32) | 0.333 | 2.065 |4.821]0.750 |11.82 |24.51
MegBA-1-m(FP64) | 0.333 |10.92 |7.870| OOM | OOM | OOM
MegBA-2-a(FP32) |0.333 | 1.903 |8.447|0.750 | 11.04 |42.48
MegBA-2-a(FP64) |0.333 | 7.133 |14.51 | OOM | OOM | OOM
MegBA-2-m(FP32) | 0.333 | 1.353 |5.541|0.750 |5.133 |25.63
MegBA-2-m(FP64) | 0.333 | 6.618 |8.693|0.748 | 50.57 |43.60
MegBA-4-a(FP32) [0.333 | 1.680 |10.50|0.749 |4.804 |45.28
MegBA-4-a(FP64) |0.333 | 4.767 |16.76|0.748 |28.70 |81.03
MegBA-4-m(FP32) | 0.334 | 1.274 |7.598|0.748 |4.279 |28.43
MegBA-4-m(FP64) | 0.333 | 4.617 |10.95|0.748 |26.46 |47.33
MegBA-8-a(FP32) | 0.334 | 1.622 |16.02]0.748 |8.973 | 52.15
MegBA-8-a(FP64) |0.333 | 3.340 |22.60|0.748 |22.10 |89.74
MegBA-8-m(FP32) | 0.333 | 1.271|12.99|0.747 | 7.582 | 35.31
MegBA-8-m(FP64) | 0.333 | 3.014 |16.79|0.748 |20.68 |56.06

13682) can better show the scalability of MegBA. By increasing the number of
GPUs from 4 to 8, the time can be reduced to 22.10s.

6.3 Floating Point Precision

The accuracy of solving a BA problem is sensitive to the choice of floating point
precision (i.e., 32-bit vs. 64-bit floating points). We further evaluate MegBA in
all datasets with 32-bit and 64-bit floating points, and we report the results of
Venice-1778 and Final-13682 in Table 4. Other datasets show consistent results
and we omit them here. In the dataset of Final-13682, with 4 GPUs, MegBA
(FP32) can complete in 4.804s and MegBA (FP64) can complete in 28.70s,
while both of them are reaching the same MSE. This shows the exactness of
the distributed BA algorithm in MegBA. Even with lower precision, MegBA can
reach the same MSE as double-precision; but offering 5.97x speed up, making
MegBA (FP32) be the state-of-the-art in Final-13682.

7 Conclusion

We present MegBA, a novel GPU-based distributed BA library. MegBA has a set
of algorithms that enables automatically distributing BA computation to parallel
GPUs. It has a group of SIMD-optimised data structures, and a memory-efficient
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runtime, making MegBA capable of fully utilising a GPU. MegBA has high-
level and compatible APIs, making it quickly become a popular open-sourced
BA library. Experimental results show that MegBA can out-perform SOTA BA
libraries by orders of magnitudes in several large-scale BA benchmarks.
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