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Abstract. 3D point-clouds and 2D images are different visual represen-
tations of the physical world. While human vision can understand both
representations, computer vision models designed for 2D image and 3D
point-cloud understanding are quite different. Our paper explores the
potential of transferring 2D model architectures and weights to under-
stand 3D point-clouds, by empirically investigating the feasibility of the
transfer, the benefits of the transfer, and shedding light on why the
transfer works. We discover that we can indeed use the same architec-
ture and pretrained weights of a neural net model to understand both
images and point-clouds. Specifically, we transfer the image-pretrained
model to a point-cloud model by copying or inflating the weights. We find
that f inetuning the transformed image-pretrained models (FIP) with
minimal efforts—only on input, output, and normalization layers—can
achieve competitive performance on 3D point-cloud classification, beat-
ing a wide range of point-cloud models that adopt task-specific archi-
tectures and use a variety of tricks. When finetuning the whole model,
the performance gets further improved. Meanwhile, FIP improves data
efficiency, reaching up to 10.0 top-1 accuracy percent on few-shot classifi-
cation. It also speeds up the training of point-cloud models by up to 11.1x
for a target accuracy (e.g., 90% accuracy). Lastly, we provide an expla-
nation of the image to point-cloud transfer from the aspect of neural
collapse. The code is available at: https://github.com/chenfengxu714/
image2point.
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1 Introduction

Point-cloud is an important visual representation for 3D computer vision. It is
widely used in a variety of applications, including autonomous driving [3,6,81],
robotics [1,53,76], augmented and virtual reality [61,62,72], etc. However, a
point-cloud represents visual information in a significantly different way from a
2D image. Specifically, a point-cloud consists of a set of unordered points lying on
the object’s surface, with each point encoding its spatial x, y, z coordinates and
potentially other features such as intensity. In contrast, a 2D image organizes
visual features as a dense 2D RGB pixel array.

Due to the representation differences, 2D image and 3D point-cloud under-
standing are treated as two separate problems. 2D image models and point-cloud
models are designed to have different architectures and are trained on different
types of data. No efforts have tried to directly transfer models from images to
point-clouds.

Intuitively, both 3D point-clouds and 2D images are visual representations of
the physical world. Their low-level representations are drastically different, but
they can represent the same underlying visual concept. Furthermore, human
vision has no problem understanding both representations. To connect images
and point-clouds, previous works attempted to generate pseudo point-clouds by
estimating the depth of mono/stereo images [24,67,80]. However, depth esti-
mation from a single image is a challenging problem in computer vision, which
requires large-scale dense depth labels [58]. Estimating depth from stereo images
is easier but requires strict calibrated and synchronized stereo cameras, which
limits the data scale. Therefore, it is interesting to ask whether we could use
large-scale image models that were pretrained using supervised classification
datasets (e.g., ImageNet1K/ImageNet21K classification) for point-cloud under-
standing.

Remarkably, the answer to the question above is positive. As we show in
this work, 2D image models trained on image datasets can be transferred to
understand 3D point-clouds with minimal effort. As illustrated in Fig. 1, given
the commonly-used image-pretrained models, such as 2D ConvNets [27] and
vision transformers [17], we can easily convert them into various kinds of point-
cloud models. In particular, a pretrained 2D ConvNet or vision transformer can
be easily extended into a projection-based, voxel-based, or transformer-based
point-cloud model via copying weights or inflating weights [9].

In this paper, we primarily focus on 3D ConvNets inflated from 2D pre-
trained models. With the transformed point-cloud model (e.g., inflated 3D Con-
vNets), we add linear input and output layers to the network; and on a target
point-cloud dataset, we only finetune the input and output layers, and batch
normalization layers, while keeping the pretrained model weights untouched.
We call such partially-finetuned-image-pretrained models as FIP-IO+BN (fine-
tuning input, output, and BN layers). As we show, FIP-IO+BN can achieve
competitive performance up to 90.8% top-1 accuracy on the ModelNet 3D Ware-
house dataset, on top of ResNet50, outperforming previous point-cloud models
that adopt task-specific model architectures and tricks.
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Fig. 1. We investigate the feasibility of pretrained 2D image models transferring to
3D point-cloud models. For example, with filter inflation and finetuning the input,
output (classifier for classification task and decoder for semantic segmentation task),
and normalization layers, the transformed 2D ConvNets are capable of dealing with
point-cloud classification, indoor, and driving scene segmentation.

Even though incorporating pretrained models is useful for tackling down-
stream tasks, point-cloud models are typically trained from scratch. Based on
our discovery, we further investigate fully-finetuned-image-pretrained models
(termed as FIP-ALL). We observe that FIP-ALL brings significant improve-
ment on top of different kinds of point-cloud models transformed from image-
pretrained models. Besides, we also find that it generalizes to PointNet++ [55]
which is pre-trained on images by ourselves. Specifically, FIP-ALL outperforms
the training-from-scratch by a large margin on top of PointNet++, SimpleView,
ViT-B-16, and ViT-L-16, respectively. In addition to the performance gain, FIP-
ALL exhibits superior data efficiency with up to 10.0% accuracy improvement
in few-shot classification on the ModelNet 3D Warehouse dataset. Compared
with training-from-scratch, FIP-ALL also dramatically speeds up the training
by using 11.1 times fewer epochs to reach the same validation accuracy (e.g.,
90% accuracy).

Finally, we theoretically explore the relationship between transferring knowl-
edge between tasks of different modalities and neural collapse to shed light on
why the transfer works. The analysis is based on extending the framework pro-
posed in [19] and is provided in Appendix.

2 Related Work

2.1 Point-Cloud Processing Models

In this section, we list the most prominent approaches for processing point-
clouds.

The 3D convolution-based method is one of the mainstream point-cloud
processing approaches which efficiently processes point-clouds based on vox-
elization. In this approach, voxelization is used to rasterize point-clouds into
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regular grids (called voxels). Then, we can apply 3D convolutions to the pro-
cessed point-cloud. However, enamors empty voxels make lots of unnecessary
computations. Sparse convolution is proposed to apply on the non-empty vox-
els [13,18,64,66,78,85], largely improving the efficiency of 3D convolutions.

The projection-based method attempts to project a 3D point-cloud to a
2D plane and uses 2D convolution to extract features [5,38,63,69–71,75]. Specifi-
cally, bird-eye-view projection [37,79] and spherical projection [50,70,71,75] have
made great progress in outdoor point-cloud tasks.

Another approach is the point-based method, which directly processes the
point-cloud data. The most classic methods, PointNet [54] and PointNet++ [55],
consume points by sampling the center points, group the nearby points, and
aggregate the local features. Many works further develop advanced local-feature
aggregation operators that mimic the 3D convolution operation to structured
data [32,36,40–42,44,66,76].

2.2 Pretraining in 2D and 3D Computer Vision

Pretraining in 2D Computer Vision. is an effective approach using super-
vised [17,21], self-supervised [23,33], and contrastive learning [2,8,10,12,26,29].
After pretraining on a large amount of data, a 2D model requires less compu-
tational and data resources for finetuning in order to obtain competitive perfor-
mance on downstream tasks [7,11,28,34].

Pretraining in 3D Computer Vision. has been studied similarly as pretrain-
ing in 2D vision: both self-supervised and contrastive pretraining [31,65,73] show
promising results. 3D point-clouds are difficult to annotate, and there is no large-
scale annotated dataset available. To address this, previous works have tried
to use model pretraining to improve data efficiency [77]. Recent works [30,83]
explored using contrastive learning on point-clouds. Our work does not rely
on long-time pretraining. Instead, we can directly take large amounts of open-
sourced image-pretrained models for a variety of point-cloud tasks.

2.3 Cross-Modal Transfer Learning

Cross-Modal Transfer Learning. takes advantage of data from various
modalities [15,45,47,52,74]. For example, [43] proposed pixel-to-point knowledge
transfer (PPKT) from 2D to 3D which uses aligned RGB and RGB-D images
during pretraining. Our work does not rely on joint image-point-cloud pretrain-
ing. Instead, we directly transfer an image-pretrained model to a point-cloud
model with the simplest pretraining-finetuning scheme.

Some of the previous works for video and medical images [9,60] have adopted
the method of simply extending a pretrained 2D convolutional filter along time
or depth direction for transferring to 3D models. However, the domain gaps
between point-clouds and images are much more than that of videos/medical
images and images. Between language and image modalities, transfer learning
with minimal finetuning also shows a competitive performance [46,57].
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2.4 Neural Collapse

Neural collapse (NC) [25,51] is a recently discovered phenomenon in deep learn-
ing. It has been observed that during the training of deep overparameterized
neural networks for standard classification tasks, the penultimate layer’s fea-
tures associated with training samples belonging to the same class concentrate
around their class means. Essentially, [51] observed that the ratio of the within-
class variances and the distances between the class means converge to zero. In
addition to that, it has also been observed that asymptotically the class means
(centered at their global mean) are not only linearly separable, but are also
maximally distant and located on a sphere centered at the origin up to scaling,
and furthermore, that the behavior of the last-layer classifier (operating on the
features) converges to that of the nearest-class-mean decision rule.

Recently, [19] studied the relationship between neural collapse and trans-
fer learning. They studied a transfer learning setting, where we intend to solve
a target (classification) task, where only a limited amount of samples is avail-
able, so a model is pretrained and transferred from a source (classification) task.
They showed that neural collapse extends beyond training and generalizes also
to unseen test samples and new classes. In addition, it was shown that in the
presence of neural collapse in the new classes, training a linear classifier on top
of the learned penultimate layer requires only a few samples to generalize well.
However, their empirical and theoretical analysis assumes that the source and
target classes are i.i.d. samples (e.g., a random split of the classes in ImageNet).
This implies that the two tasks share the same modality. Therefore, we suggest
training an adaptor (e.g., a linear layer) along with retraining the normaliza-
tion parameters as part of the transfer process. Intuitively, the adaptor takes
samples of the second modality and translates them to representations that are
interpretable by the pretrained model, such that it produces feature embeddings
that are clustered into classes. In Appendix B, we extend the framework in [19]
to the case where the source and target tasks are of different modalities and
theoretically analyze it.

3 Converting a 2D Image Model to a 3D Point-Cloud
Model

In this paper, we primarily focus on the 3D sparse-convolution-based method
to process point-clouds, since it can be extended to a wide range of point-cloud
tasks. The other point-cloud models we use in this paper are byproducts of
copying the weights of 2D image models, for example, 2D ConvNets [27] or
vision transformers [17]. In this section, we provide an in-depth introduction to
how we transform the 2D ConvNets into 3D sparse ConvNets by inflation [9].

Inflating a 2D ConvNet into a 3D sparse ConvNet. As discussed in Sect. 2.1, we
consider a set of points, where each point is represented by its 3D coordinates
and additional features such as its intensity and RGB. We then voxelize/quantize
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these points into voxels according to their 3D space coordinates, following [13]. A
voxel’s feature is inherited from the point that lies within the voxel. If there are
multiple points associated with the same voxel, we average all points’ features
and assign the mean to the voxel. If there is no point in the voxel, then we simply
set the voxel’s feature to 0. With sparse convolution, the computation on empty
voxels can be skipped.

Given a pretrained 2D ConvNet, we convert it to a 3D ConvNet that takes 3D
voxels as input. The key element of this procedure is to convert 2D convolution
filters to 3D, i.e., constructing 3D filters with the weights directly inherited from
2D filters. A 2D convolutional filter can be represented with a 4D tensor of shape
[M,N,K,K], representing output dimension, input dimension, and two spatial
kernel sizes, respectively. A 3D convolutional filter has an extra dimension, and
its shape is [M,N,K,K,K]. To better illustrate, we ignore the output and input
dimensions and only consider a spatial slice of the 2D filter with shape [K,K].
The simplest way to convert this 2D filter to 3D is to repeat the 2D filter K times
along a third dimension. This operation is the same as the inflation technique
used by [9] to initialize a video model with a pretrained 2D ConvNet.

Besides convolution, other operations such as downsampling, BN, and non-
linear activation can be easily migrated to 3D. Our 3D model inherits the archi-
tecture of the original 2D ConvNet, but we also add a linear layer as the input
layer and an output layer depending on the target task. For classification, we use
a global average pooling layer followed by one fully connected layer to get the
final prediction. For semantic segmentation, the output layer is a U-Net style
decoder [59]. The architecture of the input/output layers is described in more
detail in Appendix B.7.

A note on image-to-video transfer. It is noteworthy to mention that although
inflation is commonly used in video domains, image-to-point-cloud transfer is
fundamentally different. Even though videos and point-clouds are both 3D data,
they are represented with completely different visual modalities with different
distributions. Intrinsically, 3D point-clouds are represented as a sparse set of
points lying on object surfaces and parameterized by xyz-coordinates, while
videos are dense RGB arrays, where the two spatial arrays represent RGB images
and the temporal array reflects how images evolve through time. Point-clouds are
translation and rotation invariant or equi-variant, while for videos, the spatial
and temporal dimensions are not interchangeable. In this paper, we surprisingly
find that with simple operations such as inflation, the image-pretrained mod-
els can be directly used for point-cloud understanding under the situation that
image and point-cloud are drastically different. The detailed experiments show-
ing the feasibility and utility, and the discussion of why it works from the aspect
of neural collapse are illustrated in Sect. 4 and Sect. 5, respectively.

4 Empirical Evaluation

To explore the image to point-cloud transfer, we study three settings: , (1) fine-
tuning input, output, and batch normalization layers (FIP-IO+BN), (2) fine-
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tuning the whole pretrained network (FIP-ALL), and optionally (3) partially-
finetuned-image-pretrained model, only finetuning input and output layers (FIP-
IO). Under the three settings, we extensively explore the feasibility of transfer-
ring the image-pretrained model for point-cloud understanding and its bene-
fits. The entire empirical evaluation is organized as four questions: (1) Can we
transfer pretrained-image models to recognize point-clouds? (Sect. 4.1) (2) Can
image-pretraining benefit the performance of point-cloud recognition? (Sect. 4.2)
(3) Can image-pretrained models improve the data efficiency on point-cloud
recognition? (Sect. 4.3) (4) Can image-pretrained models accelerate training
point-cloud models? (Sect. 4.4).

Datasets. We evaluate the transferred models on ModelNet 3D Warehouse clas-
sification [72], S3DIS indoor segmentation [1], and SemanticKITTI outdoor seg-
mentation [3] tasks. ModelNet 3D Warehouse is a CAD model classification
dataset that consists of point-clouds with 40 categories, and CAD models come
from 3D Warehouse [62]. In this benchmark, we only utilize x, y, z coordinates as
features. S3DIS is a dataset collected from real-world indoor scenes and includes
3D scans of Matterport Scanners from 6 areas. It provides point-wise annota-
tions for indoor objects like chair, table, and bookshelf, etc. SemanticKITTI
dataset from KITTI Vision Odometry [20] is a driving scene dataset. It provides
dense point-wise annotations for the complete 360◦C field-of-view of the deployed
automotive lidar, which is currently one of the most challenging datasets.

ResNet [27] series is used mostly throughout our experiments. Depending
on the experiments, ResNets are pretrained on Tiny-ImageNet, ImageNet-1K,
ImageNet-21K [16], and Fractal database (FractalDB) [34]. Our pretrained mod-
els are directly downloaded from various sources, with detailed links provided in
the Appendix. To study the benefits of using pretrained image models, we also
utilize PointNet++ [55], ViT [17], and SimpleView [22] as our baselines.

4.1 Can We Transfer Pretrained-Image Models to Recognize
Point-Clouds?

To evaluate the feasibility of transferring pretrained 2D image models to 3D
point-cloud tasks, we conduct experiments on top of the ResNet series since
there are abundant open-source pretrained ResNet available. In particular, we
convert 2D ConvNets into 3D ConvNets using the procedure described in Sect. 3.
We hypothesize that, if a pretrained 2D image model is capable of understanding
point-clouds directly, we can see a non-trivial performance by only finetuning
input and output layers of the transferred model. Further, as we gradually relax
the frozen parameters, finetuning BN parameters as well, the transferred model
can achieve better performance, even surpassing training-from-scratch.

We conduct two groups of experiments with FIP-IO and FIP-IO+BN, with
the results shown in Fig. 2. The first is to evaluate the performance as the train-
able parameters gradually increase. As shown in Fig. 2 (a), training no more
than 0.3 % (345.5 x fewer) of the whole parameters, the image pretraining
even beats the training-from-scratch (100 % trainable parameters). Specifically,
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Fig. 2. a) the left figure shows the trainable parameters ratio w.r.t top-1 accuracy on
ModelNet 3D Warehouse dataset. b) the right figure shows the performance of FIP-IO
and FIP-IO+BN on top of ResNet50 pretrained on different datasets.

Table 1. ModelNet 3D Warehouse classification results (top-1 accuracy %) of fully-
finetuned-image-pretrained models (FIP-ALL) based on different pretrained models.
We include 2021 SOTAs, such as RSMix [39], Point Transformer (Point-Trans) [84],
DRNet [56], and PointCutMix [82], for comparison.

Method ResNet18 ResNet50 ResNet152 ResNet101×2

From Scratch 90.39 90.32 90.28 90.03

FIP-ALL on ImageNet1K 90.52 (+0.13) 90.92 (+0.60) 91.09 (+0.81) 90.52 (+0.49)

FIP-ALL on ImageNet21K – 91.05 (+0.73) – –

Method PointNet++(SSG) ViT-B-16 ViT-L-16 SimpleView

From Scratch 90.34 84.27 83.48 93.3

FIP-ALL on ImageNet1K 91.22 (+0.88) – – 93.8 (+0.50)

FIP-ALL on ImageNet21K – 87.77 (+3.50) 87.66 (+4.18) –

Method RSMix Point-Trans DRNet PointCutMix

From Scratch 93.5 93.7 93.1 93.4

ResNet152 FIP-IO+BN with ImageNet1K pretraining improves training-from-
scratch by 0.16 points, and ResNet50 FIP-IO+BN with ImageNet21K pretrain-
ing improves 0.48 points. Meanwhile, FIP-IO reaches a non-trivial performance.
ResNet50 FIP-IO pretrained on ImageNet1K achieves 81.20 % top-1 accuracy,
only 9.12 points worse than training-from-scratch with approximately 0.1 %
trainable parameters.

Furthermore, to investigate the effect of different datasets, as shown in
the right figure of Fig. 2, we inflate ResNet50 pretrained from different image
datasets, including Tiny-ImageNet, ImageNet1K, ImageNet21K, FractalDB1K,
and FractalDB10K, then evaluate on the ModelNet 3D Warehouse.

We discover that, even if we only finetune the input and output layers while
keeping the image-pretrained weights frozen, the FIP-IO pretrained from Ima-
geNet1K, FractalDB1K, and FractalDB10K achieves competitive performance.
Specifically, ResNet50 FIP-IO with ImageNet1K pretraining outperforms 3D
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Table 2. Indoor scene and outdoor scene segmentation results (mIoU %) of fully-
finetuned-image-pretrained Model (FIP-ALL). In this table, all image-pretrained mod-
els are pretrained on ImageNet1K.

Method S3DIS (mIoU %) SemanticKITTI (mIoU %)

PointNet++(SSG) ResNet18 HRNetV2-W48 ResNet18

From Scratch 52.45 55.09 44.12 64.75

FIP-ALL on ImageNet1K 55.01 (+2.56) 56.62 (+1.53) 47.53 (+3.41) 65.57 (+0.82)

Table 3. Comparison with PointContrast [73] on the ModelNet 3D Warehouse. Point-
Contrast provides two different pretrained models with using PointInfoNCE loss and
Hardest Contrastive loss, respectively.

From scratch PointInfoNCE Hardest contrastive ImageNet1K pretrain (Ours)

89.95 90.24 (+0.29) 90.15 (+0.20) 90.88 (+0.93)

ShapeNet [72] and DeepPano [61], which were the state-of-the-arts in 2015, by
4.2 and 3.6 points respectively in top-1 accuracy on ModelNet 3D Warehouse.
More importantly, with ImageNet21K pretrained model, ResNet50 FIP-IO+BN
surpasses training-from-scratch by 0.48 points, even beating a variety of well-
known methods including PointNet [54], MVCNN [63], etc..

Notably, we find out the answer to “Can we transfer pretrained-image models
to recognize point-clouds?”: Yes. The pretrained 2D image models can be directly
used for recognizing point-clouds. Surprisingly, the pretraining dataset is not
restricted to natural but also synthetic images like those in FractalDB1K/10K.

4.2 Can Image-Pretraining Benefit Point-Cloud Recognition?

From the previous subsection, we find unexpectedly that the image-pretrained
model can be directly used for point-cloud understanding. In this subsec-
tion, we investigate whether the image-pretrained model is helpful to improve
the performance of point-cloud tasks. We use different baselines, includ-
ing voxelization-based method (simply ResNet), point-based method (Point-
Net++ [55]), projection-based method (SimpleView [22]), and current popu-
lar transformer-based method (ViT-B-16 and ViT-L-16 [17]), and fully finetune
them on three point-cloud datasets: classification on ModelNet 3D Warehouse,
scene segmentation on S3DIS and SemanticKITTI, as shown in Table 1 and
Table 2.

For PointNet++, we use ImageNet1K to pretrain: we break each image into
pixels and regard it as a point-cloud. For ViT, we directly use the open-source
pretrained model and finetune it on ModelNet 3D Warehouse. All the imple-
mentation details are illustrated in Appendix A.

Table 1 presents performance on ModelNet 3D Warehouse dataset. We
observe that FIP-ALL improves all baselines steadily and significantly. Besides,
pretraining brings more improvements to deeper models. For example, ResNet18
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can only be improved by 0.13% top-1 accuracy, but pretraining on ImageNet1K
leads to 0.81 points top-1 accuracy improvement on top of ResNet152. More-
over, larger pretrained datasets also lead to better performance. Specifically,
ResNet50 FIP-ALL from ImageNet21K can reach 91.05% top-1 acc, with 0.73
points improvement over training-from-scratch. Such FIP-ALL significantly out-
performs a series of well-known methods such as [35,40,54,55,63,68].

We also explore FIP-ALL on different architectures, as shown in the second
group of Table 1. In particular, FIP-ALL on top of PointNet++, ViT-B-16, ViT-
L-16, and SimpleView with image dataset pretraining improve the training-from-
scratch by 0.88, 3.50, 4.18, 0.50 points, respectively. Especially for the current
superior baseline in image recognition, ViT-B-16 and ViT-L-16, the improved
performance is quite significant, revealing the huge potential of using image-
pretrained models for point cloud recognition.

For the challenging indoor and outdoor scene segmentation, using Ima-
geNet1K pretrained models (FIP-ALL on ImageNet1K) also improve the
training-from-scratch consistently, as shown in Table 2. PointNet++ (resp.
ResNet18) pretrained on ImageNet1K outperforms the training-from-scratch by
2.56 points (resp. 1.53 points) mIoU on S3DIS dataset. For SemanticKITTI, we
utilize the commonly used projection-based method with 2D ConvNet HRNet.
With ImageNet1K pretraining, we observe 3.41 points mIoU improvement, a
large margin in such a challenging task. Since HRNetV2-W48 has rich pre-
trained models, we finetune Cityscapes pretrained HRNetV2-W48 and observe
this enhances more (5.25% mIoU improvement over training from scratch). Even
for the ResNet18 with a high from-scratch performance of 64.75% mIoU, the
ImageNet1K pretraining can also bring 0.82 points mIoU improvement.

Finally, we compare the performance gain with the well-known point-cloud
self-supervised method PointContrast [73], as presented in Table 3. We use the
same model architecture and finetuning recipe, and the only difference is the
pretraining weights. Note that the model architecture used in PointContrast
does not have corresponding open-sourced image-pretrained weights, so we pre-
train it by ourselves on ImageNet1K, with the standard ImageNet training recipe
provided by Pytorch. We can observe that image-pretraining on ImageNet1K sig-
nificantly boosts the training-from-scratch by 0.93 points, surpassing the Point-
Contrast by at least 0.64 points.

Therefore, the answer to “Can image-pretraining benefit point-cloud recog-
nition” is: Yes. Image-pretraining can indeed improve point-cloud recognition,
generalize to a wide range of backbones, and benefit multiple challenging tasks.

4.3 Can Image-Pretrained Models Improve the Data Efficiency
on Point-Cloud Recognition?

Data efficiency is essential in point-cloud understanding due to the huge labor
of collecting and annotating point-cloud data. In this subsection, we investigate
whether the image-pretrained model can help to improve the data efficiency by
conducting few-shot setting experiments, including 1-shot, 5-shot, and 10-shot.
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Table 4. Few-shot experiments on top of different ResNets on the ModelNet 3D Ware-
house dataset. We conduct 3 trials for each setting and results are as mean ± std.

Few-shot ResNet18 ResNet50 ResNet152

(from scratch/FIP-ALL)

10-shot 72.2±0.8/73.2±0.6 (+1.0) 71.7±0.7/74.1±0.8 (+2.4) 69.8±1.1/73.9±0.4 (+4.1)

5-shot 63.7±1.6/66.6±0.8 (+2.9) 62.4±1.1/66.0±2.2 (+3.6) 59.4±0.8/66.5±0.9 (+7.1)

1-shot 26.8±4.4/36.8±0.6 (+10.0) 28.1±0.4/34.1±0.2 (+6.0) 23.3±4.3/33.2±1.3 (+9.9)

Table 5. Semi-supervised distillation experiments on top of ResNet34 on the ModelNet
3D Warehouse dataset.

Few-shot From scratch PointInfoNCE Hardest contrastive ImageNet1K
pretrain
(Ours)

10-shot 72.2 74.6 (+2.4) 74.6 (+2.4) 74.9 (+2.7)

5-shot 61.9 65.1 (+3.2) 65.9 (+4.0) 66.0 (+4.1)

1-shot 29.2 39.0 (+9.8) 37.2 (+8.0) 41.1 (+11.9)

In detail, for each class (ModelNet 3D Warehouse involves 40 classes), we ran-
domly choose a few point-clouds as training data and still evaluate on the whole
test set. We compare the results between training-from-scratch and FIP-ALL
pretrained on the ImageNet1K dataset. The experimental results are shown in
Table 4. We observe that FIP-ALL dramatically surpasses training-from-scratch
on the low data regime (1-shot): pretraining on ImageNet1K brings 10.0, 6.0, and
9.9 points top-1 accuracy improvement for ResNet18, ResNet50, and ResNet152,
respectively. For 5-shot and 10-shot settings, using ImageNet1K pretraining can
still consistently improve the performance.

Furthermore, inspired by previous work [11] which proposed big self-
supervised models are strong semi-supervised learners in 2D image recognition,
we borrow the idea and propose an image-pretrained model is also a strong
semi-supervised learner in point-cloud recognition. We also compared the image-
pretrained model with the self-supervised pretrained model in this experiment.
Specifically, we first take pretrained models from the previous self-supervised
pretraining method PointContrast [73]. PointContrast provides two ScanNet [14]
pretrained models of architecture ResNet34 trained with hardest-contrastive loss
and PointInfoNCE loss. Then, we finetune PointContrast on 1/5/10 shot of
the labeled ModelNet 3D Warehouse dataset and regard it as a teacher model.
Finally, we distill the teacher model to a randomly initialized student model. In
detail, we pass in the rest of unlabeled ModelNet 3D Warehouse dataset and
1/5/10 shot of the labeled dataset into the teacher model to generate pseudo
labels. We use softmax MSE loss as consistency loss between student model out-
puts and pseudo labels. When the data instance is labeled, we add an additional
cross entropy loss as a class criterion between student output and the label.
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Fig. 3. The curves of validation accuracy w.r.t training epoch. We compare the results
between training-from-scratch and FIP-ALL on the ImageNet1K, on top of ResNet18,
ResNet50, and ResNet152, respectively.

To show the effectiveness of the image-pretrained model, we repeat the above
experiment, only replacing self-supervised pretrained models with ResNet34
ImageNet1K pretrained models. Results are reported in Table 5. We observe
that image-pretrained ResNet34 consistently outperforms PointContrast, and
improves the baseline by a large margin with 11.9, 4.1, and 2.7 points on 1-shot,
5-shot, and 10-shot, respectively. The results in Table 5 show that an image-
pretrained model is indeed a strong semi-supervised learner in point-cloud recog-
nition.

However, in both Table 4 and Table 5, we observe that as the amount of train-
ing data increases, the performance increases. Therefore, our answer to”Can
image-pretrained models improve the data efficiency on point-cloud recogni-
tion?” is: Yes. Image-pretrained models can improve the data efficiency on point-
cloud recognition, especially on low data regime. Although when the training
data increases, performance gain becomes marginal.

4.4 Can Image-Pretrained Models Accelerate Point-Cloud
Training?

We also investigate whether the image-pretrained model can accelerate training
on the point-clouds. The results are shown in Fig. 3.

We discover that, after training only one epoch on ModelNet 3D Warehouse
dataset, FIP-ALL pretrained on ImageNet1K achieves very impressive perfor-
mance, yet the performance of training-from-scratch is still low. For instance,
after the first epoch, ResNet50 (resp. ResNet152) with training from scratch
achieves 28.48% (resp. 13.94%) top-1 accuracy while ResNet50 (resp. ResNet152)
with ImageNet1K pretraining reaches 80.11% (resp. 79.34%) top-1 accuracy.
Moreover, to reach 90% top-1 accuracy, a non-trivial performance, FIP-ALL sig-
nificantly accelerates the training by 2.14x (28 vs. 60 epoch), 11.1x (11 vs. 122
epoch), 2.95x (19 vs. 56 epoch) over training-from-scratch, on top of ResNet18,
ResNet50, and ResNet152, respectively.

Therefore, our answer to “Can image-pretrained models accelerate point-
cloud training?” is still positive. The image-pretrained models can significantly
accelerate the training speed of point-cloud tasks.
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Fig. 4. tSNE visualization and class-distance normalized variance of fine-tuned models
on train and validation split of ModelNet 3D Wharehouse dataset. FIP-IO+BN on
ImageNet1K/21K are the same models in Fig. 2.

5 Neural Collapse in Cross-Modal Transfer

In this section, we provide an explanation of why the image to point-cloud
transfer works based on the recently observed phenomenon called neural col-
lapse [25,51]. [19] in depth studied the relationship between neural collapse
and transfer learning between two classification tasks of the same modality
(image domain). Similar to this work, we focus on transferring pretrained models
between domains of different modalities, i.e., from images to point-clouds.

As illustrated in Sect. 4, we can transfer image-pretrained models to the
point-cloud domain. This motivates us to question whether the phenomenon
of neural collapse generalization [19] (see Sect. 2.4) is also evident in our case.
Following [19], we explore the relationships between neural collapse and image-
to-point transfer by calculating the class-distance normalized variance (CDNV).
Informally, the CDNV measures the ratio between the within-class variances of
the embeddings and the squared distance of their means (see Appendix B.6 for
details). We measure the CDNV of the fine-tuned model on both train and test
data of the point-cloud domain. Since neural collapse is essentially a clustering
property of features learned by neural networks, we further examine the neural
collapse using tSNE visualizations. The results are summarized in Fig. 4.

We observe that with finetuning much fewer (345.5x fewer) parameters in
ResNet50 pretrained on ImageNet1K, both class-distance-normalized-variance
and the clustering of tSNE are worse than training-from scratch, but still show
relatively obvious clustering phenomenon. However, when we use the ResNet50
pretrained on ImageNet21K, the top-1 accuracy, and CDNV are significantly
improved. More importantly, CDNV of ImageNet1K pretrained ResNet50 and
ImageNet21K pretrained ResNet50 is lower than 1. This observation indicates
although the image domain and point-cloud domain are quite different, the phe-
nomenon of neural collapse generalization [19] still exists in their transfer. More
results and analysis are illustrated in Appendix B.6.
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Moreover, the interesting discovery pushes us to think about the reason of
cross-modal transfer having neural collapse. Inspired by [19], we briefly explain
below. More detailed theoretical proof is presented in Appendix C.

Theoretical idea. In this work, we focused on the problem of transferring knowl-
edge between two tasks (source and target) consisting of two different modalities
with different classes. Therefore, in the theoretical analysis, we have two sepa-
rate modes of generalization: between classes and between modalities. In order to
model this problem, we assume that the target and source tasks are decomposed
of i.i.d. classes that are samples of two different distributions D1 and D2 (each
stands for a different domain/modality). Each class is defined by a distribution
over samples (e.g., samples of dog images). Given a target task (consisting of
a set of randomly selected classes P1, . . . , Pk ∼ D1), the pretrained model is
evaluated after training an adaptor and a linear classifier on top of it. Its overall
performance is measured in expectation over the selection of target tasks.

To capture the similarity between the two domains, we assume there exists
an invertible mapping F between the classes that preserves the density of the
two distributions, namely, P̂c = F (Pc) ∼ D2 for Pc ∼ D1. To characterize the
similarity between the classes coming from D1 and D2, we further assume that
the classes Pc and P̂c share a ‘mutual representation space’ from which the class
label can be recovered. The shared space is given by two simple functions g∗ and
g̃∗ for which the distance between g∗ ◦ Pc and g̃∗ ◦ P̂c is small (in expectation
over Pc ∼ D1). By utilizing tools from the theory of Unsupervised Domain
Adaptation [4,48,49], we translate the performance of a pretrained model on
randomly selected target tasks into its expected error on randomly selected tasks
with classes from D2. Then, in order to bound this error, we use Proposition 5
in [19] that relates the error and the degree of neural collapse of the pretrained
model on randomly selected classes from D2. Finally, according to Propositions
1 and 2 in [19], this quantity can be upper bounded by the degree of neural
collapse of the pretrained model on the source train data.

6 Conclusions

In this work, we use finetuned-image-pretrained models (FIP) to explore the
feasibility of transferring image-pretrained models for point-cloud understand-
ing and the benefits of using image-pretrained models on point-cloud tasks. We
surprisingly discover that, with simply transforming a 2D pretrained ConvNet
and minimal finetuning—input, output, and batch normalization layer (FIP-IO
or FIP-IO+BN), FIP can achieve very competitive performance on 3D point-
cloud classification, beating a wide range of point-cloud models that adopt a
variety of tricks. Moreover, we find that when finetuning all the parameters of
the pretrained models (FIP-ALL), the performance can be significantly improved
on point-cloud classification, indoor and outdoor scene segmentation. Fully fine-
tuned models generalize to most of the popular point-cloud methods. We also
find that FIP-ALL can improve the data efficiency on few-shot learning and
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accelerate the training speed by a large margin. Additionally, we explore the
relationships between neural collapse and cross modal transferring for our case,
and shed light on why it works based on neural collapse. Compared with previ-
ous works that seek improvements from designing architectures and pretraining
only on point-cloud modality, our work is not limited by the architecture design
and the small-scale point-cloud dataset. We believe that image pretraining is one
of the solutions to the bottleneck of point-cloud understanding and hope this
direction can inspire the research community.
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