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Abstract. Unsupervised audio-visual source localization aims at local-
izing visible sound sources in a video without relying on ground-truth
localization for training. Previous works often seek high audio-visual
similarities for likely positive (sounding) regions and low similarities
for likely negative regions. However, accurately distinguishing between
sounding and non-sounding regions is challenging without manual anno-
tations. In this work, we propose a simple yet effective approach for Easy
Visual Sound Localization, namely EZ-VSL, without relying on the con-
struction of positive and/or negative regions during training. Instead,
we align audio and visual spaces by seeking audio-visual representa-
tions that are aligned in, at least, one location of the associated image,
while not matching other images, at any location. We also introduce a
novel object guided localization scheme at inference time for improved
precision. Our simple and effective framework achieves state-of-the-art
performance on two popular benchmarks, Flickr SoundNet and VGG-
Sound Source. In particular, we improve the CIoU on Flickr Sound-
Net from 76.80% to 83.94%, and on VGG-Sound Source from 34.60%
to 38.85%. Code and pretrained models are available at https://github.
com/stoneMo/EZ-VSL.

1 Introduction

When we hear a baby crying, we can localize the sound by finding the baby in the
room. This ability of visual sound source localization is possible due to the tight
association between visual and auditory signals in the natural world. In this work,
we aim to leverage this natural and freely available audio-visual association to
localize sound sources present in a video in an unsupervised manner, i.e. without
relying on manual annotations for sounding source locations.

Unsupervised visual localization of sound sources has attracted much atten-
tion in recent years [2,6,30]. To tackle this problem, recent approaches [2,6,17,
28,31] rely on direct audio-visual similarity in a learned latent space for local-
ization. These audio-visual similarities are used to construct likely sounding and
non-sounding regions in the image, and the models are learned by requiring the
audio representation to match visual representations pooled from likely sounding
regions while being dissimilar from those of different images [2,17,28], and/or
from non-sounding regions [6,31]. While these approaches have been shown to
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yield state-of-the-art performance in unsupervised visual sound localization, we
identify two major limitations.

First, the training objective presents a paradox. On one hand, accurate
regions of sounding objects are required in order to encourage audio represen-
tations to match the visual representations of the regions where the source is
located. On the other hand, since localization maps are obtained through audio-
visual similarities, accurate representations are required in order to identify the
regions containing the sounding objects. This paradox results in a complex train-
ing objective that is likely to contain many sub-optimal local minima, as the
model is required to bootstrap from its own localization ability.

Second, by solely relying on audio-visual similarity for localization, prior
work ignores the visual prior of likely audio sources. For example, even without
access to the audio signal, we know that most regions of an image, depicting for
example the floor, the sky, a table, or a wall, are unlikely to depict sources of
sound.

(a) Flick SoundNet (b) VGG Sound Sources

Fig. 1. Comparison of EZ-VSL with state-of-the-art methods on Flickr SoundNet [17]
(a) and VGG-SS [6]. All methods in (a) are trained on Flickr 144k, and those in (b)
on VGG Sound 144k.

To address these challenges, we propose a simple yet effective approach for
easy visual sound localization, namely EZ-VSL. Instead of relying on explicit
maps for sounding and non-sounding regions, we treat audio-visual correspon-
dence learning as a multiple instance learning problem. In other words, we pro-
pose a training loss that encourages the audio signal to be associated with, at
least, one location in the corresponding image, while not being associated with
any location from other images. Then, we introduce a novel object-guided local-
ization scheme at inference time that combines the audio-visual similarity map
with an object localization map from a lightweight pre-trained visual model,
which biases sound source localization predictions towards the objects in the
scene.

We evaluate our EZ-VSL on two popular benchmarks, Flickr SoundNet [17]
and VGG-Sound Source [6]. Extensive experiments show the superiority of our
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approach for unsupervised sound source visual localization. We also conduct
comprehensive ablation studies to demonstrate the effectiveness of each com-
ponent. Surprisingly, we found that the object prior alone, which does not even
leverage the audio for localization, already surpasses all prior work on both Flickr
and VGG-Sound benchmarks. We also demonstrate the superiority of the pro-
posed multiple instance learning objective for audio-visual matching compared
to prior approaches that rely on careful constructions of positive (sounding) and
negative (non-sounding) regions for training. Finally, we show that the visual
object prior and audio-visual similarity maps can be further combined into more
accurate predictions, surpassing the current state-of-the-art method by large
margins on both Flickr SoundNet and VGG Sound Sources. These results are
highlighted in Fig. 1.

Overall, the main contributions of this work can be summarized as follows:

✦ We present a simple yet effective multiple instance learning framework for
unsupervised sound source visual localization, which we call EZ-VSL.

✦ We propose a novel object-guided localization scheme that favors object
regions, which are more likely to contain sound sources.

✦ Our EZ-VSL successfully achieves state-of-the-art performance on two popu-
lar benchmarks, Flickr SoundNet and VGG-Sound Source.

2 Related Work

Audio-Visual Joint Learning. Several works [3,4,21–25,27,33,34] have been
proposed in recent year on audio-visual self-supervised learning to learn bimodal
representations from each other. SoundNet [4] applies a visual teacher network
to extract audio representations from untrimmed videos. The audio-visual corre-
spondence task [3] is introduced to learn both visual and audio representations in
an unsupervised way. Audio-visual synchronization objectives are also explored
for several tasks, such as speech recognition [1,32], audio-visual navigation [5],
visual sound source separation, and localization [10,12,14,30,35,36].

Besides these works, several methods adopt a weakly-supervised scheme to
solve audio-visual problems. For example, UntrimmedNet [34] uses a classifica-
tion module and a selection module for Multiple Instance Learning (MIL) to
perform audio-visual action localization. [33] also proposes in a hybrid atten-
tion network for audio-visual video parsing. In this work, however, we focus on
the sound source localization problem by learning audio-visual representations
jointly from unlabelled videos.

Audio-Visual Source Localization. Audio-Visual Source Localization aims
at localizing sound sources by learning the co-occurrence of audio and visual
features in a video. Early works [9,16,19] use shallow probabilistic models or
canonical correlation analysis to solve this problem. With the introduction of
deep neural networks, some approaches [17,26] were proposed to learn the audio-
visual correspondence via a dual-stream network and a contrastive loss. For
instance, DMC [17] adopts synchronous sets of clustering with respect to each
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modality for capturing audio-visual correspondences. Multisensory features [26]
are used to jointly learn visual and audio representations of a video through the
temporal alignment. Other methods [11,13,29,35,36] leverage the audio-visual
source separation as the target to achieve visual sound localization. Most of
these methods learn from global audio-visual correspondences. Although they
show qualitatively that the model is capable of localization, their localization
ability is not competitive to models that learn from localized correspondences.

Beyond the work discussed above, several relevant works have targeted the
visual source localization problem directly. Attention10k [30] developed an atten-
tion mechanism and a two-stream architecture with each modality to localize
sound sources in an image. Qian et al. [28] proposed a two-stage framework
to learn audio and visual representations with the cross-modal feature align-
ment in a coarse-to-fine way. Afouras et al. [2] introduced an attention-based
model with the optical flow to localize and group sound sources in a video. More
recently, LVS [6] added a hard sample mining mechanism to contrastive loss with
a differentiable threshold on the audio-visual correspondence map. Finally, Hard-
Pos [31] leveraged hard positives in contrastive learning for learning semantically
matched audio-visual information from negative pairs. Different from these base-
lines, we show that it is possible (and even preferable) to learn from a simplified
multiple-instance contrastive learning objective. We also propose a novel object
guided localization scheme to boost the visual localization performance of sound
sources.

Fig. 2. Illustration of the proposed method. The audio-visual feature extractor com-
putes global audio and localization visual features. Audio-visual alignment is learned
using a multiple instance contrastive learning objective. At inference time, we use
another visual encoder pre-trained on object recognition to compute object localization
maps, which are combined with audio-visual localization maps for the final prediction.
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3 Method

Given a video containing sound sources, our goal is to localize the sounding
objects within it without using manual annotations of their locations for training.
We propose a simple yet effective way for unsupervised sound source visual
localization, which we denote EZ-VSL.

3.1 Overview

Let D = {(vi, ai) : i = 1, . . . , N} be a dataset of paired audio ai and visual
data vi, where the sources of the sound audible in ai are assumed to be depicted
in vi. Following previous work [6,17], we first encode the audio and visual sig-
nals using a two stream neural net encoder, denoted as fa(·) and fv(·) for the
audio and images, respectively. The audio encoder extracts global audio repre-
sentations ai = fa(ai) and the visual encoder computes localized representations
vxy

i = fv(vxy
i ) for each (x, y) location. As shown in Fig. 2, audio and visual fea-

tures are then mapped into a shared latent space, where the similarity between
audio-visual representations can be computed for all locations. The audio-visual
models are then trained to minimize a cross-modal multiple-instance con-
trastive learning loss, that encourages audio representation to be aligned with
the associated visual representations at least at one location. By optimizing this
loss, audio and visual signals are matched in the shared latent space, which can
then be used for localization. At inference time, we combine the learned audio-
visual similarities with object guided localization. We accomplish this using
a visual model pre-trained for object recognition. It should be noted that mod-
els pre-trained on ImageNet are already used to initialize the visual encoder for
VSL [2,6,17,28,30,31]. We use the same model to extract regions of the image
that are likely to contain objects (regardless of whether they are producing the
sound or not). The object maps are then integrated with audio-visual similarities
to enhance localization accuracy.

We now elaborate on the two main components of our work: the multiple
instance contrastive learning objective, and the object guided localization.

3.2 Audio-Visual Matching by Multiple-Instance Contrastive
Learning

Aligning audio and localized visual representations poses two main challenges.
First, the output of the audio and visual encoders are not necessarily compatible.
Second, most locations in the image do not depict the sound source, and so the
representations at these locations should not be aligned with the audio.

The first challenge can be easily addressed by projecting both audio and
visual representations into a shared feature space

v̂xy
i = Uvvi + bv ∀x, y, i and âi = Uaai + ba ∀i (1)

where Uv and Ua are projection matrices, and bv and ba bias terms.
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The second challenge requires to selectively match the audio representations
to the associated visual regions depicting the sound sources. Prior work [2,6,17,
28,30,31] explicitly computes an attention map for the likely sounding regions by
bootstrapping from current audio-visual similarities. The audio representations
are then required to match these sounding regions [17,28,30], and in some cases
to not match non-sounding regions from the same image [6,31]. As discussed
above, this leads to a paradox where accurate localization is required to learn
accurate audio-visual representations, which is required for localization in the
first place.

To simplify this framework, we propose to optimize a multiple instance con-
trastive learning loss. Each bag of visual features V (or bag of instances) spans
all locations within an image

Vi = {v̂xy
i : ∀x, y} ∀i ∈ D (2)

Audio representations ai are then required to be similar to at least one instance
in the corresponding positive bag Vi, while being dissimilar from all locations
in all negative bags Vj ∀j �= i. Specifically, we seek to maximize the alignment
between the audio and the most similar positive visual instance, through the
following loss function

La→v = − log
exp

(
1
τ maxv̂∈Vi

sim(âi, v̂)
)

∑
k exp

(
1
τ maxv̂∈Vk

sim(âi, v̂)
) (3)

where sim(v̂, â) = v̂T â/(‖v̂‖‖â‖) is the cosine similarity, and τ a temperature
hyper-parameter. Negative bags are obtained from other samples in the same
mini-batch. To train our models, we use a symmetric version of (3) by defining

Lv→a = − log
exp

(
1
τ maxv̂∈Vi

sim(v̂, âi)
)

∑
k exp

(
1
τ maxv̂∈Vi

sim(v̂, âk)
) , (4)

and optimizing the symmetric loss

L = La→v + Lv→a. (5)

During inference, the audio-visual localization map is computed as

SAV L
xy = sim(v̂xy, â) ∀x ∈ [1,W ], y ∈ [1,H]. (6)

3.3 Object-Guided Localization

At inference time, we propose a novel object-guided scheme for enhanced local-
ization. The input image is fed to a convolutional model fobj pre-trained on
ImageNet [8] without global pooling or the classification head, yielding a feature
map v′ = fobj(v) ∈ R

C×H×W . This model has the same architecture than the
visual encoder used for audio-visual localization and is initialized with the same
ImageNet pre-trained weights, but unlike the former, this model is never trained
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for audio-visual similarity. Hence, the feature map v′ contains zero information
about the accompanying audio. Instead, it can be used to define a localization
prior that favors the objects in the scene, regardless of whether these objects are
the sources of the sound or not. We then experimented with two possible solu-
tions to extract object-centric localization maps without any additional training.
The first obtains a 1000-way object class posterior P (o|v′

xy) by applying an Ima-
geNet pretrained classifier to each (x, y) location of v′. We then define the object
localization prior as

SCLS
xy = max

o
P (o|v′

xy). (7)

The second approach, perhaps less intuitive but more effective, relies on the fact
that fobj was trained on an object-centric dataset, and thus produces stronger
activations when evaluated on images of objects. With this intuition in mind,
we alternatively define the object localization prior as

SL1
xy = ‖v′

xy‖1. (8)

Note that in both cases, the object prior solely relies on a model fobj pre-trained
on ImageNet. We conduct no further training of fobj .

The audio-visual localization and object-centric maps are then linearly aggre-
gated into a final localization map SEZV SL

xy of the form

SEZV SL
xy = αSAV L

xy + (1 − α)SOBJ
xy ∀x, y, (9)

where SAV L
xy is the audio-visual similarity of map of (6), SOBJ

xy is the object
localization map (i.e., SCLS

xy in (7) or SL1
xy in (8)), and α is balancing term

that weights the contribution of the object prior and the audio-visual similarity
terms. In practice, since the two maps SAV L

xy and SOBJ
xy can have widely different

ranges of scores, we normalize them into a [0, 1] range before aggregation, i.e.,
Sxy = Sxy−minxy Sxy

maxxy Sxy−minxy Sxy
.

4 Experiments

We evaluated EZ-VSL on unsupervised visual sound source localization. Follow-
ing accepted practices [6,28,30], we used the Flickr SoundNet dataset [4] and
the recently proposed VGG-Sound dataset [7], and report the same evaluation
metrics as in [6,28,30]. Namely, we measure the average precision at a Consensus
Intersection over Union threshold of 0.5, a metric often simply denoted as CIoU.
We also measure the Area Under Curve (AUC).

4.1 Experimental Setup

Datasets. Flickr SoundNet includes 2 million unconstrained videos from Flickr.
From each video clip, a single image frame is extracted together with 20 s of
audio centered around it, to form the corresponding audio-visual pairs used for
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unsupervised learning. We also conduct experiments on VGG-Sound composed
of 200k video clips from 309 sound categories. Similar to the Flickr dataset, the
video is represented by a single frame as well as its audio. To enable direct
comparisons with existing work [2,6,28,30], we trained our models using subsets
of either 10k or 144k image-audio pairs.

Localization performance is measured on two datasets, the Flickr SoundNet
test set [30] and the more challenging VGG-Sound Sources test set [6]. The
former includes only 250 image-audio pairs for which the location of the sound
source has been manually annotated. The latter contains annotations for 5000
instances spanning 220 sounding objects categories.

Table 1. Localization performance on the Flickr SoundNet testset.

Method CIoU (%) AUC (%)

Attention10k [30] 43.60 44.90

CoarsetoFine [28] 52.20 49.60

AVObject [2] 54.60 50.40

LVS [6] 58.20 52.50

EZ-VSL (ours) 81.93 62.58

(a) Training set: Flickr 10k

Method CIoU (%) AUC (%)

Attention10k [30] 66.00 55.80

DMC [17] 67.10 56.80

LVS [6] 69.90 57.30

HardPos [31] 75.20 59.70

EZ-VSL (ours) 83.13 63.06

(b) Training set: Flickr 144k

Audio and Visual Pre-processing. The input to the visual encoder fv(·) are
images of resolution 224 × 224. During training, images are first resized to 246
along the shortest edge, and random cropping together with random horizontal
flipping is applied for data augmentation. At test time, images directly resized
into a 224 × 224 resolution without cropping.

The audio encoder fa(·) takes the log spectrograms extracted from 3 s of audio
extracted at a sample rate of 11025 Hz. The underlying STFT are computed
using approximately 50 ms windows with a hop size of 25 ms, resulting in an
input tensor of size 257×300 (257 frequency bands over 300 timesteps). No data
augmentations are applied during train or test time.

Audio and Visual Models. Both the visual and audio encoders are imple-
mented using the lightweight ResNet18 [15] as the backbone. Following prior
work [6,17,28], we initialized the visual model using weights pre-train on Ima-
geNet [8]. Unless otherwise specified, the audio and visual representations are
projected into a shared space of dimension 512.

The model is trained with a batch size of 128 on 2 GPUs. For efficiency, we
only use negatives from the local batch, i.e. we did not gather negatives from all
GPUs. This results in a negative set of 63 samples for the contrastive learning
objective of (3). The model is trained using the Adam optimizer [20] with a
learning rate of 1e − 4, and default hyper-parameters β1 = 0.9, β2 = 0.999. On
large datasets (144k or the full VGG-Sound database), the model is trained for
20 epochs. On smaller (10k) datasets, the model is trained for 100 epochs.
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Table 2. Localization performance on Flickr SoundNet and VGG-SS after training on
VGG-Sound 144k.

Training set Method Flickr-SoundNet VGG-SS

CIoU (%) AUC (%) CIoU (%) AUC (%)

VGG-Sound 144k Attention10k [30] 66.00 55.80 18.50 30.20

CoarsetoFine [28] - - 29.10 34.80

AVObject [2] - - 29.70 35.70

LVS [6] 73.50 59.00 34.40 38.20

HardPos [31] 76.80 59.20 34.60 38.00

EZ-VSL (ours) 83.94 63.60 38.85 39.54

4.2 Comparison to Prior Work

In this work, we propose a simple yet highly effective training framework for
visual sound source localization. To demonstrate the effectiveness of our app-
roach, EZ-VSL, we start by drawing direct comparisons to previous works [2,
6,28,30] on two popular benchmarks: Flickr SoundNet [17] and VGG-SS [6].
Results are reported in Tables 1 and 2 for models trained on Flickr SoundNet
and VGG-SS, respectively.

As can be seen, EZ-VSL outperforms prior work by large margins, establish-
ing new state-of-the-art results in all settings. On the Flickr test set, we observe
performance gains of 23.73% CIoU and 10.08% AUC when models are trained
on Flickr 10k, by 7.93% CIoU and 3.36% AUC when trained on Flickr 144k, and
by 7.14% CIoU and 4.4% AUC when trained on VGG-Sound 144k. Significant
gains can also be observed on the more challenging VGG-Sound Sources test set,
with EZ-VSL outperforming prior work by 4.25% CIoU and 1.34% AUC.

We highlight that these gains are obtained with a significantly simplified
training objective. For example, Attention10K [30] relies on the construction
of positive (sounding) regions for its visual attention mechanism, and both
LVS [7] and HardPos [31] require not only the construction of likely positive
(sounding) regions but also negative (non-sounding) regions. This highlights the
importance of a well-designed training framework that avoids imposing com-
plex region-specific constraints. Also, note that our method combines both the
novel multiple instance contrastive learning loss used for training and the novel
object-centric localization procedure used during inference. The effect of these
individual components will be studied below.

4.3 Open Set Audio-Visual Localization

To assess generalization, we evaluated the ability of EZ-VSL to generalize beyond
the categories of sound sources heard during self-supervised training. Following
previous work [6], we randomly sampled 110 categories from VGG-Sound for
training. We then evaluate our model on test samples from these heard cate-
gories, as well as on samples from another 110 unheard categories. Since unseen
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categories can be semantically related to the seen ones, we expect that good
representations to generalize to unseen categories as well. The results are shown
in Table 3. As can be seen, our approach outperforms LVS [6] by a significant
margin on both heard and unheard categories. In fact, unlike LVS, the perfor-
mance of our EZ-VSL model did not suffer by the presence of unheard sound
categories, achieving even slightly better performance on unheard classes than
on heard classes. This provides evidence for the stronger generalization ability
of EZ-VSL in an open set setting.

Table 3. Comparison results on VGG-SS for open set audio-visual localization trained
on 70k data with heard 110 classes.

Test class Method CIoU (%) AUC (%)

Heard 110 LVS [6] 28.90 36.20

EZ-VSL 37.25 38.97

Unheard 110 LVS [6] 26.30 34.70

EZ-VSL 39.57 39.60

4.4 Cross Dataset Generalization

To further evaluate generalization, we tested models across datasets. Specifically,
we tested the model trained on VGG-Sound on Flickr SoundNet, and test the
Flickr trained model on the VGG-SS test set. As can be seen in Table 4, our
approach outperforms the best previous method [6] when testing across datasets.

Table 4. Cross dataset generalization results of Flickr SoundNet and VGG-SS trained
on various training sets, including VGG-Sound 10k, 144k, Full and Flickr 10k, 144k.

Test set Training set Method CIoU (%) AUC (%)

Flickr SoundNet VGG-Sound 10k LVS [6] 61.80 53.60

EZ-VSL 78.71 61.56

VGG-Sound 144k LVS [6] 71.90 58.20

EZ-VSL 84.34 63.77

VGG-Sound Full LVS [6] 73.59 59.00

EZ-VSL 83.94 63.60

VGG-SS Flickr 10k LVS [6] 18.71 30.29

EZ-VSL 35.54 38.18

Flickr 144k LVS [6] 26.95 34.30

EZ-VSL 38.62 39.20
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4.5 Experimental Analysis

We conducted extensive ablation studies to explore the benefits of the two main
components of our approach: multiple instance contrastive learning (MICL) and
object-guided localization (OGL). We also conducted several parametric studies
to assess the impact of hyper-parameters such as the size of shared audio-visual
latent space, the audio-visual fusion strategy, or the balancing coefficient α used
for OGL. All experiments were trained on the VGG-Sounds full training set and
evaluated on Flickr-SoundNet and VGG-Sound Source (VGG-SS) test sets.

Disentangling the Benefits of MICL and OGL. We ablated the use of
MICL and OGL to verify their effectiveness. Models evaluated without MICL
only use the object guided localization maps extracted from the pre-trained
ResNet-18, without any further training. Models evaluated without OGL only
use the audio-visual localization (AVL) maps learned using MICL. We further
evaluate two strategies for OGL, namely, classification based OGL (CLS-OGL)
described in (7) and activation based OGL (L1-OGL) described in (8).

Results are shown in Table 5. Comparing the performance of each component
in isolation (first three rows of Table 5) to those in Table 2, we highlight that
both AVL and L1-OGL already surpass prior state-of-the-art (LVS [6]). The
strong performance of L1-OGL is especially noteworthy, as it does not even use
the audio. We attribute this result to two reasons. First, object regions are more
likely to depict sound sources. Second, the majority of test samples in both Flickr
and VGG-SS only contain a single sounding object in the scene. This is more
prevalent in Flickr but is still true for VGG-SS. As a result, the object prior
already provides strong localization results, outperforming all prior work. We
nevertheless improve over OGL, by combining it with audio-visual localization.

Table 5. Ablation study on the impact of audio-visual localization (AVL) maps and
two object-guided localization strategies (CLS and L1 prior) during inference.

AVL L1-OGL CLS-OGL Flickr SoundNet VGG-SS

CIoU (%) AUC (%) CIoU (%) AUC (%)

� 78.31 61.74 35.96 38.20

� 78.31 61.17 36.77 38.69

� 75.10 58.18 35.13 38.08

� � 81.93 62.50 38.58 39.59

� � 83.94 63.60 39.34 39.78

Among the two OGL strategies, L1-OGL was the most effective, and thus
used as the default strategy for EZ-VSL. We also evaluated the localization
performance for various values of the balancing coefficient α between AVL and
L1-OGL localization maps. The results in Fig. 3 show that both OGL and AVL
components are important for accurate localization, as α = 0 or α = 1 yields the
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worse performance. The optimal value of α for Flickr was 0.4 and for VGG-SS
was 0.5. α = 0.4 was used as the default for all experiments in this paper.

Dimensionality of Shared Audio-Visual Latent Space. The impact of the
latent space dimensionality is shown in Fig. 4. The models were trained on VGG-
Sound with latent space of size 32, 64, 128, 256, 512, 1024, 2048, 4096, and tested
on Flickr SoundNet and VGG-SS. Figure 4 shows that significantly reducing or
increasing the unimodal feature dimensionality (512) can have a negative impact
on performance.

Audio-Visual Matching Strategy During Training. The proposed EZ-VSL
method uses a max pooling strategy for measuring the similarity between the
global audio feature A and the bag of localized visual features V = {Vxy : ∀x, y},
i.e., using MaxPoolxy(sim(Vxy, A)). We validate this strategy by comparing two
alternatives. First, average pooling is a popular strategy for gathering responses
across instances in a bag [18]. We follow this approach and train a model that
seeks to match the global audio feature to the visual features at all locations, i.e.,
using sim(AvgPoolxy(Vxy), A). Second, prior work on audio-visual representation
learning [3,21,25,27] learn by matching global features. We also tested this class
of methods by training a model that pools the visual features before matching
to the audio, i.e., using sim(MaxPoolxy(Vxy), A).

The localization performance of all three strategies are reported in Table 6.
Since only audio-visual localization maps are impacted by the different training
strategies, we set α = 1 in this experiment to ignore object-guided localization
maps. As can be seen, the two alternative strategies failed to localize sounding
objects accurately. On one hand, matching global features lacks the ability to
learn localized representations. On the other hand, forcing the audio to match
the image at all locations is also inherently problematic, since most regions do
not contain a sounding object. The proposed approach achieves significantly
better localization performance. However, it assumes that there is at least one
sounding object visible in the image. While this is generally true in both VGG-
Sound and Flickr SoundNet training sets, further experiments on datasets with
non-visible sound sources would be required to assess the robustness of EZ-VSL
to this more challenging training scenario.

Fig. 3. Impact of α (trade-off between AVL and OGL) on EZ-VSL performance.

Multiple Sound Source Localization. Since complex scenes are known to be
more challenging for localization methods, the VGG-SS dataset provide a further
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Fig. 4. Impact of the output dimensionality on EZ-VSL performance.

Table 6. Impact of different audio-visual matching strategies during training on audio-
visual localization performance. Vxy denotes the visual embedding at location (x, y),
and A the global audio embedding. Only the audio-visual localization maps are eval-
uated in this experiment, without being merged with object-guided localization maps.

AV matching strategy Flickr SoundNet VGG-SS

CIoU (%) AUC (%) CIoU (%) AUC (%)

sim(MaxPoolxy(Vxy), A) 49.40 48.97 12.72 27.10

AvgPoolxy(sim(Vxy, A)) 33.33 37.56 6.03 19.44

MaxPoolxy(sim(Vxy, A)) 78.31 61.74 35.96 38.20

breakdown of test samples per the number of objects. As shown in Fig. 5, similar
to prior work, the performance of EZ-VSL does degrade as the scene becomes
more complex. However, EZ-VSL consistently outperform prior work regardless
of the number of objects.

4.6 Qualitative Results

To better understand the capabilities of the learned model, we show in Fig. 6
sound localization predictions of an EZ-VSL model trained on the VGG-SS 144k
dataset. As can be seen, the model is capable of accurately localizing a wide
variety of sound sources, showing high overlap with the ground-truth bounding
boxes. For example, in row 2, column 4, the model was able to identify that the
sound sources are the musical instruments and not the people playing them, or
that the sound source in row 3 column 2 is the dog (and not the man). We also
show failure cases in Fig. 7. We notice that the learned model often has trouble
predicting tight localization maps for small objects, or localizing the sound of
crowds, such as in stadiums.

Finally, we compare the final localization map with the object-guided map
and the audio-visual similarity map in Fig. 8. These results demonstrate the
effectiveness of combining object-guided and audio-visual localization in visual
sound localization.
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Fig. 5. Localization performance vs number of objects in the scene. Although all meth-
ods suffer as the number of objects increase, the proposed EZ-VSL consistently out-
performs prior work.

Fig. 6. Predicted localization maps on Flickr SoundNet test images.

Fig. 7. Failure cases of EZ-VSL. Typical cases which EZ-VSL still struggles to accu-
rately localize sound sources include small objects, or when sounds are not produced
by objects, such as the sound of crowds.
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Fig. 8. Sound source localization by OGL, AVL, and our EZ-VSL. Object-guided maps
tend to cover all objects in the scene; audio-video similarity maps often cover the
sounding object and some non-object regions; the final EZ-VSL map tends to better
focus on the sounding object.

5 Conclusion

In this work, we present the EZ-VSL, a simple yet effective approach for visual
sounds source localization, with no need to explicitly compute the negative
regions. Specifically, a simple cross-entropy loss is applied to learn the relative
correspondence between the visual and audio instances. Furthermore, we pro-
pose a novel object-guided localization scheme to mix the audio-visual joint map
and the object map from a lightweight pre-trained visual model for boosting the
performance of orientating sound sources in an image. Compared to previous
contrastive and non-contrastive baselines, our framework successfully achieves
state-of-the-art performance on two popular benchmarks, Flickr SoundNet and
VGG-Sound Source. Comprehensive ablation studies are conducted to show the
effectiveness of each component in our simple method. We also demonstrate
the significant advantage of our approach on the open set visual sounds source
localization and cross dataset generalization.
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