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Abstract. Image-based visual-language (I-VL) pre-training has shown
great success for learning joint visual-textual representations from large-
scale web data, revealing remarkable ability for “zero-shot” generali-
sation. This paper presents a simple but strong baseline to efficiently
adapt the pre-trained I-VL model for video understanding tasks, with
minimal training. Specifically, we propose to optimise a few random vec-
tors, termed as “continuous prompt vectors”, that convert video-related
tasks into the same format as the pre-training objectives. In addition, to
bridge the gap between static images and videos, temporal information
is encoded with lightweight Transformers stacking on top of frame-wise
visual features. Experimentally, we conduct extensive ablation studies
to analyse the critical components. On ten public benchmarks of action
recognition, action localisation, and text-video retrieval, across closed-
set, few-shot, and zero-shot scenarios, we achieve competitive or state-of-
the-art performance to existing methods, despite optimising significantly
fewer parameters. Due to space limitation, we refer the readers to the
arXiv version at https://arxiv.org/abs/2112.04478.

1 Introduction

While the research in computer vision has mainly focused on tackling particular
tasks, the grand goal towards human-level perception has always been to learn
general-purpose visual representation, that can solve various problems with min-
imal tunings. Towards such a goal, recent work for training image-based visual-
language (I-VL) models has shown promising progress. For example, CLIP [60]
and ALIGN [30] learn the joint representation for image and text with simple
noise contrastive learning, greatly benefiting from the rich information in text
descriptions, e.g. actions, objects, human-object interactions, and object-object
relationships. As a result, these pre-trained I-VL models have demonstrated
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remarkable “zero-shot” generalisation for various image classification tasks. Cru-
cially, the data used to train these powerful I-VL models can simply be crawled
from the Internet at scale, without any laborious manual annotation. It is there-
fore reasonable to believe, with the growing computation, larger datasets will be
collected, and more powerful models will be trained in the near future.

Given this promise, one question naturally arises: how can we best exploit the
ability in the powerful I-VL models, and effectively adapt it to solve novel vision
tasks of interest? One possible solution would be to finetune the image encoder
end-to-end on the downstream tasks, however, since each task needs to finetune
and save its own set of parameters, we end up developing hundreds of models for
hundreds of individual tasks. Even more problematic, discarding the text encoder
loses the model’s ability for “zero-shot” generalisation, thus the resultant model
can only work for a fixed set of pre-determined categories. Alternatively, as
shown in CLIP [60], given properly designed “prompts”, the model is able to
work on a variety of downstream tasks including “zero-shot”, with classifiers
being dynamically generated by the text encoder, from category names or other
free-form texts. The prompts here are handcrafted close templates to facilitate
classifier generation, so that novel tasks can be formulated in the same format
as pre-training objectives, effectively closing the gap between pre-training and
downstream tasks. One remaining issue is, such handcrafted prompts require
extensive expert knowledge and labor, limiting the use for efficient adaptation.

In this paper, we continue the vein of prompt-based learning [39,40], with
the goal of exploring a comprehensive and strong baseline to adapt I-VL models
for efficient video understanding. We here focus on the resource-hungry video
tasks, for three reasons: 1) From the data perspective, comparing to image-text
pairs, video-text pairs are harder to collect, and may suffer from misalignment
issues [25]; 2) Solving video tasks demands more computational power. Given
the same budget, training on image-text pairs enables the model to learn more
diversity, making it more cost-effective to understand video with I-VL models;
3) Videos are composed of frame sequences, establishing temporal dependencies
on powerful image-based models is a natural choice.

Specifically, we consider a simple idea by prepending/appending a sequence
of random vectors, termed as “continuous prompt vectors”, to the textual input.
These prompt vectors consist entirely of free parameters that do not correspond
to any real concrete words, and the subsequent layers of the text encoder will
attend these vectors, as if they were a sequence of “virtual tokens” to generate the
corresponding classifier or embedding. During training, we freeze the weights of
the I-VL text encoder, and the gradients are back-propagated to optimise these
learnable prompt vectors. Consequently, a single copy of the visual backbone
is able to perform various video tasks, with the minimal number of trainable
parameters for each task. To further exploit the video temporal information, we
also append lightweight Transformers on top of frame-wise visual representation.
As a result, the various video tasks can be formulated under the same umbrella,
i.e. to maximise the similarity matching between visual and textual embeddings,
with texts being action category names or fine-grained descriptions.
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To summarise, building on scalable and powerful I-VL models, we first pro-
pose a simple baseline for efficient and lightweight video understanding, by
learning task-specific prompt vectors, which facilitates possible future research in
action recognition, action localisation, and text retrieval; We extensively evaluate
on ten public benchmarks, across closed-set, few-shot, and zero-shot scenarios,
thoroughly dissect critical components; Lastly, despite training only a few free
parameters, i.e. several prompt vectors and two Transformer layers, in the closed-
set scenario, we achieve competitive or state-of-the-art performance to existing
methods. In the few-shot and zero-shot scenarios, we significantly outperform all
previous methods on seven popular benchmarks, sometimes by over 10% gains.

2 Related Work

Joint Visual-Textual Learning. In the literature, [57] has explored the con-
nection between images and words using paired text documents, and [17,75]
proposed to jointly learn image-text embeddings with the category name anno-
tations. Recently, CLIP [60], ALIGN [30] and FILIP [81] have further scaled up
the training with large-scale web data. Using simple noise contrastive learning,
it is shown that powerful visual representation can be learnt from paired image-
caption. In video domains, similar idea has also been explored for representation
learning [52] and video retrieval [1,38,53]. In this paper, we establish baselines
on steering the pre-trained CLIP model to video understanding tasks, the same
technique should be applicable to other I-VL models as well.

Prompting refers to designing proper “instructions” that the pre-trained lan-
guage model can understand, and generate desired outputs, using a few exam-
ples as demonstrations. Given properly handcrafted prompt templates, GPT-
3 [6] has shown strong few-shot or zero-shot generalisations. However, such
handcrafted templates require extensive expert knowledge, limiting the flexibil-
ity. Later work proposes to automate prompt engineering by searching discrete
prompts [22,33,62,63], and continuous prompts [39,40]. This work considers to
search continuous prompts for steering I-VL models to tackle various video tasks.

Video Action Recognition. Effective architecture research has gone through
rapid developments, from two-stream networks [16,66,71] to more recent single
stream RGB networks [3,10,14,15,70,76]. With the help of abundant data [9],
recognition accuracy has been steadily improved. In addition, data-efficient
learning has been explored: few-shot and zero-shot action recognition. Specifi-
cally, few-shot recognition makes only a few training samples available from each
action category. [91–93] proposed compound memory networks to match and
rank videos; [8,13,59] used GANs, dynamic time warping, and CrossTransformer
to synthesize or align examples for novel categories. While zero-shot recognition
requires to generalise towards action categories that are unseen during train-
ing. One typical idea lies in learning a common representation space shared
by seen and unseen categories, such as attributes space [19,29,47], semantic
space [5,20,28,41], synthesizing features [54], using objects to create common
space [51].
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Fig. 1. Framework Overview. We prepend/append several learnable prompt vec-
tors to the CLIP text encoder to generate action classifiers or embeddings; adopt a
lightweight Transformer on top of the CLIP image encoder for temporal modeling.
During training, both the image and text encoders are kept frozen. By optimising
task-specific prompt vectors and temporal Transformer, we efficiently adapt CLIP to
various video understanding tasks: action recognition, retrieval, and localisation, across
closed-set, few-shot, and zero-shot scenarios.

Video Action Localisation aims to detect and classify actions in untrimmed
long videos. In general, there are two popular detection paradigms: the two-stage
paradigm [11,34,44,46,65,69,73,77,88] first localises class-agnostic action pro-
posals, which covers correct segments with high recall, then classifies and refines
each proposal. The one-stage paradigm [7,35,45,58,82,84] combines localisation
and classification, i.e. densely classifies each frame into actions or background.

Concurrent Work. Several recent papers [21,31,86,89,90] also explore prompt
learning for efficient transfer from pre-trained CLIP to downstream image tasks.
In the video domains, [50,72] propose to end-to-end finetune CLIP on individual
video tasks, e.g. action recognition and retrieval. In contrast, we favor efficient
adaptation from image to video, present the first yet simple approach on prompt
learning, to establish strong and wide baselines for video understanding.

3 Method

Our goal is to efficiently steer a pre-trained Image-based Visual-Language model
(I-VL) to tackle novel downstream tasks, which we term as model adaptation.
Here, we consider resource-hungry video understanding, i.e. action recognition,
action localisation, and text-video retrieval. To be self-contained, in Sect. 3.1,
we briefly review the pre-training and inference of I-VL models; in Sect. 3.2, we
describe the proposed prompt learning and temporal modeling.
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3.1 Image-Based Visual-Language Model

Pre-training. Given N (image, text) pairs in one batch, the feature embeddings
for image and text are computed with two individual encoders, and a dense
cosine similarity matrix is calculated between all N possible (image, text) pairs.
The training objective is to jointly optimise the image and text encoders, by
maximizing the similarity between N correct pairs of (image, text) associations,
while minimizing the similarity for N × (N −1) incorrect pairs by a symmetrical
cross-entropy over the dense matrix, i.e. noise contrastive learning.

Note that, both encoders contain a tokeniser for converting image patches
or language words to vectors. In particular, the input images are divided into
patches and flattened into vectors, also called “visual tokens”; while the input
texts are converted into vectors (“textual tokens”) by a trainable look-up table.

Inference. Once trained, the I-VL model can be deployed for image classifica-
tion tasks on open vocabulary (zero-shot generalisation), with the corresponding
visual classifiers being generated from the text encoder Φtext, which resembles
the idea of hypernetwork [24]. For example, to classify an image as cat or dog,
the classifiers (ccat and cdog) can be generated as:

ccat = Φtext(tokeniser(“this is a photo of [cat]”))
cdog = Φtext(tokeniser(“this is a photo of [dog]”))

and “this is a photo of [·]” is a handcrafted prompt template, which has shown
to be effective for image classification [60].

Discussion. Despite the tremendous success on “zero-shot” image classification,
the I-VL model has also shown to be sensitive to the handcrafted prompt tem-
plate, clearly posing limitations on its efficient adaptation for novel downstream
tasks, where the expert knowledge might be difficult to condense or unavailable.
Therefore, we consider to automate such prompt design procedures, exploring
efficient approaches to adapt the pre-trained image-based visual-language model
for novel downstream tasks, with minimal training.

3.2 Prompting CLIP for Video Understanding

In general, we believe that prompt learning on I-VL models will shine in video
tasks, for two main reasons: 1) Video tasks are resource-hungry. From the data
perspective, video-text pairs are harder to collect than image-text pairs. From
the computation perspective, given the same budget, training on image-text pairs
enables the model to learn more diversity. Thus, it is more cost-effective to train
large-scale I-VL models, and prompt them for efficient video understanding. 2)
Videos are composed of frame sequences, establishing temporal dependencies on
powerful image-based models is a natural and economical choice (Fig. 1).

Next, we start by formulating the problem scenario and notations; then intro-
duce the idea for efficient model adaptation through prompt learning; lastly, we
augment the I-VL image encoder via temporal modeling, disambiguating the
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actions that require temporal reasoning. Among the I-VL models, CLIP [60] is
the publicly available milestone, we hence base this research on it, but the same
technique should be applicable to other I-VL models as well.

Problem Scenario. Given a video dataset that consists of training and vali-
dation sets, D = {Dtrain,Dval}, e.g. Dtrain = {(V1, y1), . . . , (Vn, yn)}. The video
Vi ∈ R

T×H×W×3 can range from seconds (recognition and retrieval), to minutes
long (localisation). Respectively, yi either refers to one of the Ctrain action labels
in the text format for recognition, e.g. yi = ‘archery’; or dense action category
labels of T timestamps for localisation, e.g. yi ∈ R

T×Ctrain ; or fine-grained text
descriptions for retrieval, e.g. yi = ‘fry the onion in a pan’.

In the closed-set scenario, the action categories for training and evaluation
are the same, i.e. Ctrain = Cval; while in the zero-shot case, the action categories
for training and evaluation are disjoint, i.e. Ctrain ∩ Cval = ∅.

Model Adaptation by Learning Prompts. The goal here is to steer pre-
trained CLIP to perform various video tasks with minimal training. In specific,
we strive for efficient model adaptation by prepending/appending a sequence of
continuous random vectors (“prompt vectors”) with the textual tokens. While
training, both the image and text encoders of CLIP are kept frozen, and the
gradients will flow through the text encoder to only update the prompt vec-
tors. Ultimately, these learnable vectors end up constructing “virtual” prompt
templates that can be understood by the text encoder, and to generate desired
classifiers or query embeddings, as detailed below.

(a) Action Recognition considers to classify the video clip or snippet into one
of action categories. To generate the action classifier, we construct the “virtual”
prompt template via feeding the tokenised category name into the pre-trained
text encoder Φtext, for instance:

carchery = Φtext(a1, . . . ,tokeniser(“archery”), . . . , ak)

cbowling = Φtext(a1, . . . ,tokeniser(“bowling”), . . . , ak)

where ai ∈ R
D denotes the i-th prompt vector, consisting of several learnable

parameters, and D is the vector dimension. carchery refers to the generated clas-
sifier for the action of “archery”. Note that, the prompt vectors {ai} are shared
for all action categories, thus they are only task-specific.

(b) Action Localisation considers to localise and classify actions in untrimmed
long videos. Here, we adopt the two-stage paradigm [11,87] to first detect poten-
tial class-agnostic action proposals (detailed in Sect. 4.1), and followed by per-
forming action classification on these detected proposals.

(c) Text-Video Retrieval considers to jointly learn visual and textual embed-
dings that pair the video and its corresponding textual description. In contrast
to action recognition, where a video snippet is coarsely labeled by an action cat-
egory, the text description in video retrieval contains more fine-grained details,
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usually a sentence. We here similarly tokenise the entire sentence, and feed the
tokenised results to the text encoder with learnable prompt vectors, to generate
the query embedding for each sentence.

(d) Summary. Generally speaking, learning prompts for model adaptation
offers the following benefits: 1) As both classification and retrieval can be tackled
with one framework, with classifiers or query embeddings generated from text,
either category names or free-form descriptions, all tasks can utilise one shared
backbone, yet achieve competitive performance (Sect. 4); 2) Adapting to novel
tasks only requires to optimise several prompt vectors, facilitating the few-shot
problem (Table 3); 3) It enables to make better use of abundant training data,
and further generalise beyond the closed-set categories (Table 4 and 6).

Temporal Modeling. As for pre-training, CLIP has thoroughly relied on the
(image, text) pairs, posing clear pros on cons. On the one hand, the training data
can be easily crawled from the web, which enables to learn much richer contents
under a given compute constraint. However, on the other hand, it ignores the
temporal component of the visual scene, and struggles to recognise the dynamic
events, e.g. push or pull, open or close. In this section, we bridge this image-to-
video gap with a simple and lightweight temporal modeling module.

To be specific, we upgrade the CLIP image encoder Φimage into a video one
Φvideo, by attaching a Transformer Encoder on top of frame-wise features from
the frozen image encoder:

vi = Φvideo(Vi) = Φtemp({Φimage(Ii1), . . . ,Φimage(IiT )})

where Φtemp refers to temporal modeling module, which is a multi-layer Trans-
former Encoder, consisting of Multi-head Self-attention, Layer Norm, and MLPs.
To indicate the temporal order, we also add learnable temporal positional encod-
ing onto image features. vi ∈ R

T×D is dense feature embeddings of T frames.

Training Loss. Given a batch of (video, text) training pairs, the visual stream
ends up with dense frame-wise feature embeddings (vi); while for the textual
stream, depending on the considered downstream tasks, it ends up with a set of
action classifiers (ci ∈ Caction) or textual query embeddings (ci ∈ Cquery).

For action recognition and text-video retrieval, we further compute the video-
snippet-level feature by taking the mean pooling of the dense features:

vi = Φpool(vi) ∈ R
1×D (1)

For action localisation, we take the mean pooling of the dense features within
each detected action proposal, to obtain the proposal-level feature. And for sim-
plicity, we also denote this proposal-level feature as vi.

During training, we jointly optimise the textual prompt vectors and tempo-
ral Transformer, such that the video snippet (proposal) features and its paired
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Table 1. Ablation study for closed-set action recognition. Baseline-I denotes
the “zero-shot” CLIP inference with the handcrafted prompt template (“a photo of
[·].”). Baseline-II is the standard practice for training linear probe on the CLIP image
encoder. TFM is the number of temporal Transformer layers.

Model Prompt Temporal K-400 K-700

TOP1 TOP5 AVG TOP1 TOP5 AVG

Baseline-I [60] Hand-craft ✗ – – – – – 52.4

Baseline-II [60] ✗ ✗ – – – – – 66.1

A0 2+X+2 ✗ 65.4 88.7 77.1 56.3 81.9 69.1

A1 4+X+4 ✗ 66.1 89.0 77.6 56.6 82.4 69.5

A2 8+X+8 ✗ 67.9 90.0 79.0 57.4 83.0 70.2

A3 16+X+16 ✗ 68.8 90.1 79.5 57.8 83.1 70.5

A4 16+X+16 1-TFM 75.8 92.9 84.4 64.2 87.3 75.8

A5 16+X+16 2-TFM 76.6 93.3 85.0 64.7 88.5 76.6

A6 16+X+16 3-TFM 76.9 93.5 85.2 64.8 88.4 76.6

A7 16+X+16 4-TFM 76.8 93.5 85.2 64.9 87.9 76.4

classifier or textual query embedding emit the highest similarity score among
others. This is achieved with a simple NCE loss:

L = −
∑

i

(
log

exp(vi · ci/τ)∑
j

exp(vi · cj/τ)
)

(2)

Note that, both vi and cj have been L2-normalised here, and τ refers to the
temperature hyper-parameter for scaling. In this way, various video tasks are for-
mulated under the same umbrella, we therefore effectively close the optimisation
objective gap between CLIP pre-training and video understanding.

4 Experiments

We experiment 3 fundamental video tasks, across 10 standard datasets. In
Sect. 4.2, we conduct ablation studies on action recognition. In Sect. 4.3 and 4.4,
we further benchmark on action localisation and text retrieval.

4.1 Implementation Details

The image and text encoders are adopted from pre-trained CLIP (ViT-B/16).
Prompt vectors and temporal Transformer are both initialized with N (0, 0.01).
All video frames are pre-processed to 224×224 spatial resolution, the maximum
number of textual tokens is 77, vector dimension D = 512 and τ is set to 0.07.

For action recognition, all the videos are decoded to 30 fps, and each video is
sampled 16 frames with a random frame gap (gap ∈ {1, 2, 3, 4, 5, 6, 10, 15}) [71].
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Table 2. Comparison on closed-set action recognition. On all datasets, our
model performs comparably to existing methods, training far fewer parameters.

Method HMDB-51 UCF-101 K-400 K-700

TOP1 TOP5 TOP1 TOP5 TOP1 TOP5 TOP1 TOP5

I3D [10] 74.3 – 95.1 – 71.6 90.0 58.7 81.7

S3D-G [76] 75.9 – 96.8 – 74.7 93.4 – –

R(2+1)D [70] 74.5 – 96.8 – 72.0 90.0 – –

TSM [43] – – – – 74.7 – – –

R3D-50 [26] 66.0 – 92.0 – – – 54.7 –

NL-I3D [74] 66.0 – – – 76.5 92.6 – –

X3D-XXL [14] – – – – 80.4 94.6 – –

TimeSformer-L [3] – – – – 80.7 94.7 – –

Ours (A5) 66.4 92.1 93.6 99.0 76.6 93.3 64.7 88.5

The temporal positional encodings consist of each frame’s index and the frame
sampling gap (video playing speed). For video retrieval, we utilise the 16-frame
input with a random frame gap (gap ∈ {10, 15, 30}). The model is optimised
using AdamW [49] with a learning rate of 10−4, and a batch size of 64 videos.

For action localisation, we follow the two-stage paradigm: class-agnostic pro-
posal detection and proposal classification. To obtain high-quality action propos-
als, we first divide the entire video into equal-frame segments; then use the CLIP
image encoder with one Transformer layer to extract frame-wise embeddings;
finally feed these embeddings to the off-the-shelf proposal detectors [42,80]. Note
that, our method is flexible to the choice of proposal detectors, and we do not
innovate on such candidate proposal procedures. To generate proposal classifiers,
we adopt the same implementation as for action recognition.

4.2 Action Recognition

Datasets and Metrics. HMDB-51 [37] contains 7k videos of 51 categories.
Its standard split is 3570 training videos, and 1530 testing videos. UCF-101 [67]
contains 13k videos spanning 101 categories. The standard split is 9537 training
videos and 3783 testing videos. Kinetics-400 [36] (K-400) covers around 230k
10-second video clips sourced from YouTube. Kinetics-700 [9] (K-700) is simply
an extension of K-400, with around 650k video clips. For evaluation metrics, we
report the standard TOP1 and TOP5 accuracy, and the average of the two.

Closed-set Action Recognition is the common scenario, where the model is
trained and evaluated on videos from the same categories, i.e. Ctrain = Cval. For
comprehensive comparisons, we here adopt the standard splits of four datasets.
• Ablation Studies are conducted on two largest benchmarks. Table 1 presents the
results for prompt learning and temporal modeling. The prompt here follows the
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Table 3. Comparison on few-shot action recognition. Baseline-I refers to the
“zero-shot” CLIP inference with handcrafted prompts. CALL refers to the case where
the method is evaluated on all action categories of the corresponding dataset, rather
than only 5-way classification, e.g. 400 categories for K-400.

Method K-shot N-way Prompt Temporal UCF-101 HMDB-51 K-400

CMN [91] 5 5 – – – – 78.9

TARN [4] 5 5 – – – – 78.5

ARN [85] 5 5 – – 83.1 60.6 82.4

TRX [59] 5 5 – – 96.1 75.6 85.9

Baseline-I [60] – 5 Hand-craft ✗ 91.9 68.9 95.1

Ours 5 5 � ✗ 98.3 85.3 96.4

5 5 � � 97.8 84.9 96.0

Baseline-I [60] – CALL Hand-craft ✗ 64.7 40.1 54.2

Ours 5 CALL � ✗ 77.6 56.0 57.1

5 CALL � � 79.5 56.6 58.5

format of [a1, .. , ak,X, ak+1, .. , a2k]. Note that, although we prepend and append
the equal number of prompt vectors, the optimisation can perfectly learn to
ignore any of these vectors, thus, we do not ablate other prompt formats.

As the baselines, we compare with the official results reported in the orig-
inal CLIP [60]. Specifically, Baseline-I refers to the “zero-shot” inference with
handcrafted prompt templates (“a photo of [·].”), and Baseline-II denotes the
standard practice for training linear classifiers on top of the pre-trained CLIP
image encoder with the considered downstream datasets.

Generally speaking, training more text prompt vectors brings consistent
improvements on both TOP1 and TOP5 accuracy; In addition, adding tem-
poral modeling also brings immediate benefits, with average gains of 4.9% and
5.3% on K-400 and K-700. However, it gives diminishing returns as more Trans-
former layers are added. Overall, all the results suggest that, both the prompt
learning and temporal modeling are essential. While comparing with Baseline-I,
the A3 model demonstrates a performance boost of 18.1%, clearly showing the
benefits of learning prompt vectors over handcrafted ones. Moreover, even with
fewer trainable parameters (only 16K), the A3 model also surpasses Baseline-II,
with 4.4% gains, showing the superiority of prompting adaptation.

For all the following action recognition experiments, we inherit the best prac-
tice from the ablation studies, i.e. prepend/append 16 prompt vectors to cate-
gory names, and only use two Transformer layers (5M parameters) for temporal
modeling, for its best trade-off on performance and computational cost.
• Comparison to SOTA. Table 2 compares our method with existing state-of-
the-art approaches on four popular action recognition benchmarks. Overall, on
all datasets, our model performs comparably with the competitors, although we
only need to train far fewer parameters (around 5M), i.e. two Transformer layers
and several prompt vectors, advocating efficient model adaptation.
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Table 4. Ablation study for zero-shot action recognition on K-700. The model
is trained on 400 action categories and evaluated on the other 300 disjoint categories.
Baseline-I refers to the results from the CLIP zero-shot evaluation.

Model Prompt Temporal TOP1 TOP5 AVG

Baseline-I [60] Hand-craft ✗ 52.4 77.3 64.9

B0 4+X+4 ✗ 57.4 83.3 70.4

B1 8+X+8 ✗ 57.7 82.6 70.2

B2 16+X+16 ✗ 58.4 82.6 70.5

B3 32+X+32 ✗ 57.5 84.6 71.1

B4 16+X+16 1-TFM 47.9 76.8 62.4

B5 16+X+16 2-TFM 45.5 75.4 60.5

B6 16+X+16 3-TFM 45.6 75.2 60.4

Few-Shot Action Recognition aims to classify videos with only a few training
samples, in this section, we benchmark on two different settings. The first part
follows the previous literature [8,59,85], that is, evaluates the standard K-shot,
N -way classification; while the second one considers a more challenging setting
that classifies all categories with K-shot support samples. As baselines, in both
settings, we use the “zero-shot” CLIP inference with handcrafted templates.
• 5-Shot-5-Way Setting. For fair comparisons, this setting adopts the publicly
accessible few-shot splits. Specifically, for HMDB-51 and UCF-101, we follow [85]
to collect 10 and 21 testing action categories respectively; while for K-400, we
follow [59,91] to collect 24 testing categories, each containing 100 videos. During
training, we sample 5 categories (ways) from the above data, with 5 videos
(shots) from each category, and utilise the remaining data for evaluation. To
ensure the statistical significance, we conduct 200 trials with random samplings.

Table 3 presents the average TOP1 accuracy for three datasets. Our method
(with/without temporal modeling) outperforms all previous methods by a large
margin, around 10% on HMDB-51 and K-400, showing the superiority.
• 5-Shot-C-Way Setting. Here, we further consider a more challenging scenario:
scaling the problem up to classifying all action categories in the dataset with only
5 training samples per category, for example, CALL = 400 for K-400, CALL = 101
for UCF-101. Specifically, on each dataset, we sample 5 videos (shots) from the
training set for each category, to form the few-shot support set, and then measure
performance on the corresponding standard testing set.

For this experiment setting, we conduct 10 random sampling rounds, and also
record the average TOP1 accuracy in Table 3. Comparing to the 5-way classifica-
tion, the C-way setting is clearly more challenging, our model (with/without tem-
poral modeling) still shows promising results. While comparing to the Baseline-I,
our performance gains on both UCF-101 and HMDB-51 are around 15%.

Zero-Shot Action Recognition refers to the novel scenario, where videos for
training and validation are from different action categories, i.e. Ctrain ∩ Cval = ∅.
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Table 5. Comparison on closed-set action localisation. Baseline-III adopts the
same first-stage proposal detector as our method, but uses the original CLIP with
handcrafted prompts as the second-stage proposal classifier. AVG is the average mAP
in [0.3:0.1:0.7] on THUMOS14, and [0.5:0.05:0.95] on ActivityNet1.3.

Method Date Modality THUMOS14 ActivityNet1.3

0.3 0.4 0.5 0.6 0.7 AVG 0.5 0.75 0.95 AVG

CDC [64] 2017 RGB+Flow 40.1 29.4 23.3 13.1 7.9 22.8 45.3 26.0 0.2 23.8

TALNET [11] 2018 RGB+Flow 53.2 48.5 42.8 33.8 20.8 39.8 38.2 18.3 1.3 20.2

DBS [23] 2019 RGB+Flow 50.6 43.1 34.3 24.4 14.7 33.4 – – – –

A2NET [80] 2020 RGB+Flow 58.6 54.1 45.5 32.5 17.2 41.6 43.6 28.7 3.7 27.8

GTAD [79] 2020 RGB+Flow 66.4 60.4 51.6 37.6 22.9 47.8 50.4 34.6 9.0 34.1

BSN++ [68] 2021 RGB+Flow 59.9 49.5 41.3 31.9 22.8 41.1 51.3 35.7 8.3 34.9

AFSD [42] 2021 RGB+Flow 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4

TALNET [11] 2018 RGB 42.6 – 31.9 – 14.2 – – – – –

A2NET [80] 2020 RGB 45.0 40.5 31.3 19.9 10.0 29.3 39.6 25.7 2.8 24.8

Baseline-III 2022 RGB 36.3 31.9 25.4 17.8 10.4 24.3 28.2 18.3 3.7 18.2

Ours 2022 RGB 50.8 44.1 35.8 25.7 15.7 34.5 44.0 27.0 5.1 27.3

Specifically, we split K-700 into two parts, with Ctrain = 400 categories for training,
and the remaining Cval = 300 categories for evaluation.

As a baseline, we evaluate the CLIP with handcrafted prompt templates. As
reported in Table 4, our model achieves 6.0% gains on TOP1 accuracy over the
Baseline-I, showing the effectiveness of prompt learning for zero-shot recognition.
Interestingly, the number of learnable prompt vectors does not make a difference,
and adding temporal modeling diminishes the performance gain. We conjecture
this is because the additional Transformer layer could specialise on the training
set, thus harming the generalisation towards unseen action categories.

Conclusion and Discussion. Among all recognition benchmarks, we have
demonstrated the effectiveness of prompt learning and temporal modeling.
For closed-set recognition, even without temporal modeling, learnable prompts
clearly surpass the handcrafted ones, and linear probe settings. While comparing
to state-of-the-art methods, despite training far fewer parameters, our model still
shows competitive performance. For few-shot recognition, model adaptation by
prompt learning really shines, outperforming all previous methods significantly.
Lastly, for zero-shot recognition, textual prompts enable to make better use of
abundant training data, and further improve the generalisation beyond the seen
categories.

4.3 Action Localisation

Datasets and Metrics. THUMOS14 [32] covers 413 untrimmed sports videos
from 20 action categories, with an average of 15 instances per video. The stan-
dard split is 200 training videos and 213 validation videos. ActivityNet1.3 [27]
has around 20k untrimmed videos of 200 action categories. The standard split is
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Table 6. Results of zero-shot action localisation. Baseline-III uses the same pro-
posal detector as our method, but adopts the original CLIP with handcrafted prompts
as the proposal classifier. Our model is trained on 75% (or 50%) action categories and
tested on the remaining 25% (or 50%) action categories.

Method Train v.s Test THUMOS14 ActivityNet1.3

0.3 0.4 0.5 0.6 0.7 AVG 0.5 0.75 0.95 AVG

Baseline-III 75% v.s 25% 33.0 25.5 18.3 11.6 5.7 18.8 35.6 20.4 2.1 20.2

Ours 75% v.s 25% 39.7 31.6 23.0 14.9 7.5 23.3 37.6 22.9 3.8 23.1

Baseline-III 50% v.s 50% 27.2 21.3 15.3 9.7 4.8 15.7 28.0 16.4 1.2 16.0

Ours 50% v.s 50% 37.2 29.6 21.6 14.0 7.2 21.9 32.0 19.3 2.9 19.6

10, 024 training videos and 4, 926 validation videos. We evaluate with the mean
Average Precision (mAP) at various IoU thresholds. For THUMOS14, the IoU
set is [0.3 : 0.1 : 0.7]; as for ActivityNet1.3, the IoU set is [0.5 : 0.05 : 0.95].

Closed-Set Action Localisation is the commonly adopted setting, where the
model is trained and tested on videos of the same categories, i.e. Ctrain = Cval.
For fair comparisons, we use the standard dataset splits as in the literature.

Table 5 reports the results. As a baseline, we adopt the same first-stage pro-
posal detector, but utilise the original CLIP with handcrafted prompts (“this is
an action of [·]”) for the second-stage proposal classifier. On both datasets, our
model significantly outperforms the Baseline-III. While comparing to other exist-
ing methods that use pre-trained RGB stream, our method also demonstrates
superior performance, with around 5.2% and 2.5% gains on average mAP.

Zero-Shot Action Localisation refers to the novel scenario, where the action
categories for training and testing are disjoint. As we are not aware of any exist-
ing benchmarks on this challenging scenario, we initiate two evaluation settings:
one is to train with 75% categories and test on the left 25% categories; the other
is to train with 50% categories and test on the left 50% categories. To ensure
statistical significance, we conduct 10 random samplings for data splits.

Table 6 shows the average performance. As proposals are class-agnostic, the
key of two-stage localisation is the proposal classifier. For comparisons, we also
implement the baseline, which uses the same proposal detector as our model, but
classifies action proposals using original CLIP with handcrafted prompts. In both
settings, our model shows superior performance than the Baseline-III. However,
when comparing with closed-set, the zero-shot performance drops dramatically.
Note that, such drop now comes from two sources: one is the recall drop from the
first-stage class-agnostic proposals, and the other comes from the second-stage
classification errors. See the supplementary materials for complete ablations.
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Table 7. Results of text-video retrieval. E2E denotes if the model has been trained
end-to-end. Baseline-IV denotes the original CLIP model with text query näıvely
encoded, i.e. without using any prompt. As these methods are pre-trained on different
datasets with variable sizes, it is unlikely to make fair comparisons.

Method E2E MSRVTT(9K) LSMDC DiDeMo SMIT

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

CE [48] ✗ 21.7 51.8 12.4 28.5 16.1 41.1 – –

MMT [18] ✗ 24.6 54.0 13.2 29.2 – – – –

TT-CE+ [12] ✗ 29.6 61.6 17.2 36.5 21.6 48.6 – –

Baseline-IV ✗ 31.2 53.7 11.3 22.7 28.8 54.6 39.3 62.8

Ours ✗ 36.7 64.6 13.4 29.5 36.1 64.8 66.6 87.8

Frozen [2] � 31.0 59.5 15.0 30.8 34.6 65.0 – –

CLIP4Clip [50] � 44.5 71.4 22.6 41.0 43.4 70.2 – –

4.4 Text-Video Retrieval

Datasets and Metrics. MSRVTT [78] contains 10, 000 videos and 200, 000
captions. We train on “Training-9K” split [18], and test on “test 1k-A” [83] of
1, 000 clip-text pairs. LSMDC [61] contains 118, 081 videos of 2 to 30 sec-
onds. We train on 7, 408 validation videos, and evaluate on another 1, 000
videos. DiDeMo [1] contains 10, 464 videos annotated with 40, 543 sentences.
SMIT [55] contains more than 500k videos randomly chosen from M-MiT train-
ing set [56], and 10k validation videos. We evaluate with the average recall at K
(R@K).

Results. Table 7 presents text-retrieval results on four benchmarks. Note that,
we here only employ 8 learnable prompt vectors, i.e. [4+X+4]. This is because
the pre-trained CLIP text encoder takes limited number of textual tokens up to
77, whereas the retrieval query can be long. For the cases where the tokenised text
query is longer than the maximum supported length of CLIP, we simply truncate
the sequence to fit our specified pattern, as such cases are few in practice.

While comparing with the Baseline-IV that denotes the results from the orig-
inal CLIP with näıvely-encoded text queries, our proposed prompt learning and
temporal modeling demonstrate clear benefits on all three benchmarks. Com-
paring with the existing approaches that are specifically targeting on text-video
retrieval, our proposed method can still perform competitively, although it only
requires to optimise several prompt vectors, along with two Transformer layers.
Note that, as these methods are usually pre-trained on different datasets with
variable sizes, this is by no means to make fair comparisons.

5 Conclusion

Building on CLIP, this paper constructs wide and strong baselines for efficient
video understanding, with the simple idea of learning lightweight prompt vectors
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and temporal Transformer. We evaluate on 10 popular benchmarks from: action
recognition, action localisation, and text-video retrieval. Thorough comparisons
and ablations are conducted to analyse the critical components. In the closed-
set scenario, despite training only a few free parameters, we achieve competitive
performance to the modern state-of-the-art methods. In few-shot and zero-shot
scenarios, we significantly outperform existing methods on 7 public benchmarks.
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