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Abstract. In this paper, we explore a novel and ambitious knowledge-
transfer task, termed Knowledge Factorization (KF). The core idea of
KF lies in the modularization and assemblability of knowledge: given a
pretrained network model as input, KF aims to decompose it into several
factor networks, each of which handles only a dedicated task and main-
tains task-specific knowledge factorized from the source network. Such
factor networks are task-wise disentangled and can be directly assembled,
without any fine-tuning, to produce the more competent combined-task
networks. In other words, the factor networks serve as Lego-brick-like
building blocks, allowing us to construct customized networks in a plug-
and-play manner. Specifically, each factor network comprises two mod-
ules, a common-knowledge module that is task-agnostic and shared by all
factor networks, alongside with a task-specific module dedicated to the
factor network itself. We introduce an information-theoretic objective,
InfoMax-Bottleneck (IMB), to carry out KF by optimizing the mutual
information between the learned representations and input. Experiments
across various benchmarks demonstrate that, the derived factor networks
yield gratifying performances on not only the dedicated tasks but also
disentanglement, while enjoying much better interpretability and mod-
ularity. Moreover, the learned common-knowledge representations give
rise to impressive results on transfer learning. Our code is available at
https://github.com/Adamdad/KnowledgeFactor.

Keywords: Transfer learning · Knowledge factorization

1 Introduction

Over the past decade, deep neural networks (DNNs) have evolved to the de
facto a standard approach for most if not all computer vision tasks, yielding
unprecedentedly promising results. Due to the time- and resource-consuming
DNN training process, many developers have generously released their pretrained
models online, so that users may adopt these models in a plug-and-play manner
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Fig. 1. Illustration of (top) 3 types of Knowledge Distillation and (bottom) our
proposed Knowledge Factorization. (a) Single-Task Learning to Single-Task Learn-
ing (STL2STL) KD refers to distill a single-tasked student from a single-tasked teacher,
(b) Multi-Task Learning to Multi-Task Learning (MTL2MTL) KD stands for distilling
a multi-tasked student from a multi-tasked teacher and (c) Sub-Knowledge Distillation
distill a subset of the teacher’s knowledge to its student model.

without training from scratch. Nevertheless, pretrained DNNs often come with
heavy architectures, making them extremely cumbersome to be deployed in real-
world scenarios, especially resource-critical applications such as edge computing.
Numerous endeavors have thus been made towards reducing the sizes of DNNs,
among which one mainstream scheme is known as Knowledge Distillation (KD).
The goal of KD is to “distill” knowledge from a large pre-trained model known
as a teacher, to a compact model known as a student. The derived student is
expected to master the expertise of the teacher yet come with a much smaller
size, making it applicable to edge devices. Since the seminal work of [20], a series
of KD approaches have been proposed to strengthen the performances of student
models [47,51,66].

Albeit encouraging results achieved, KD has largely been treated as a black-
box procedure, in which the intrinsic knowledge flow process remains opaque.
Consequently, the derived student model may inherit the teacher’s task-wise
competence but unfortunately lacks interpretability, since it is unclear how and
what knowledge has been transferred to the student. In addition, as demon-
strated in Fig. 1(a) and (b), conventional KD assumes that teacher and student
models master homogeneous tasks or knowledge, which greatly limits its wide
applications. Even if it is allowed to distill a subset of knowledge from the teacher,
shown in Fig. 1(c), the problem setup of KD, by nature, overlooks the scalability
of the student. For example, given a versatile classification teacher pretrained
on ImageNet, if we are to learn two students, one handling cat-dog classification
and one handling cat-fish, we will have to carry out the KD twice; if, however,
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we are to learn all k-class classification students from a pool of 1, 000 classes, we
will have to conduct KD for

∑1000
k=1

(
1,000
k

)
= 21000 times, which is computational

intractable.
In this paper, we introduce a novel task, termed Knowledge Factoriza-

tion (KF), that alleviates the aforementioned flaws of KD at a problem-setup
level. The core idea of KF regards the modularization and assemblability of
knowledge: given a pretrained teacher, KF decomposes it into several factor net-
works, each of which masters one specific knowledge factorized from the teacher,
while remaining disentangled with respect to others. Moreover, these factor net-
works are expected to be readily integratable, meaning that we may directly
assemble multiple factor networks, without any fine-tuning, to produce a more
competent multi-talented network. As shown in Fig. 1(d), those factor networks
can be organized into a open-sourced model hub. At the same time, users could
treat them as Lego-brick-like units of knowledge to build customized networks in
a plug-and-play fashion, thereby lending itself to great scalability. Furthermore,
the disentanglement property effectively enables the IP protection of network
knowledge: since the factor networks are learned in a disentangled manner, they
possess only task-specific knowledge, allowing the network owners to selectively
conduct knowledge transfer without leaking knowledge of other tasks.

Admittedly, the aims of KF are unarguably ambitious, since the factor net-
works are, again, expected to be modularized and readily integratable, and
meanwhile knowledge-wise disentangled and hence more interpretable. Notably,
despite orthogonal in expertise, these factor networks will inherit the common
knowledge shared by all tasks. As such, each factor network should be designed
to account for both the task-agnostic commonality and its task-relevant spe-
cialization, which in turn reduces the overall parameter overhead for KF. As
demonstrated in Fig. 1, given n types of knowledge, sub-KD requires an expo-
nential number of 2n models, each with S parameters, while KF reduces the
model number to a linear scale, with one full-sized common knowledge model
and n mini models, each with s parameter, where s � S.

To this end, we propose a dedicated scheme for conducting KF, that com-
prises two mechanisms, namely structural factorization and representation fac-
torization.

– Structural Factorization. Structural factorization decomposes the teacher
network into a set of factor networks with different functionalities. Each fac-
tor network comprises a shared common-knowledge network (CKN) and a
task-specific network (TSN). CKN extracts task-agnostic representations to
capture the commonality among tasks, whereas the TSN accounts for task-
specific information. Factor networks are trained to specialize in an individual
task via fusing task-agnostic and task-specific knowledge.

– Representation Factorization. Representation factorization disentangles
the shared knowledge and task-level representations into statistically inde-
pendent components. For this purpose, we introduce a novel information-
theoretical objective, termed InfoMax Bottleneck (IMB). It maximizes the
mutual information between input and the common features to encourage
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the lossless information transmission in CKN. Meanwhile, IMB minimizes
data-task mutual information to ensure that, the task features are only pre-
dictive for a specific task. Specifically, we derive a variational lower bound for
IMB to practically optimize this loss.

By integrating both mechanisms, we demonstrate in the experiments that
KF indeed achieves architecture-level and representation-level disentanglement.
Different from KD that transmits holistic knowledge in a black-box manner,
KF offers unique interpretability for the factor networks through the knowledge
transfer. Moreover, the learned common-knowledge representations facilitate the
transfer learning to unseen downstream tasks, as will be verified empirically in
our experiments.

Our contribution are therefore summarized as follows

– We introduce a novel knowledge-transfer task, termed Knowledge Factoriza-
tion (KF), which accounts for learning factor networks that are modularized
and interpretable. Factor networks are expected to be readily integratable,
without any retraining, to assemble multi-task networks.

– We propose an effective solution towards KF. Our approach decomposes a
pretrained teacher into factor networks that are task-wise disentangled.

– We design an InfoMax Bottleneck objective to disentangle the representation
between common knowledge and the task-specific representations, by exerting
control over the mutual information between input and representations. We
derive its variational bound for its numerical optimization.

– Our method achieves strong performance and disentanglement capability
across various benchmarks, with better modularity and transferability.

2 Related Work

Knowledge Distillation. Knowledge distillation (KD) [20] refers to the process
to transfer the knowledge from one model or an ensemble of models to a student
model. KD is originally designed for model compression [5,31,36,50,55,63], but it
has been found to be beneficial in other tasks like adversarial defense [46], domain
adaptation [15,43], continual learning [32,67] and amalgamate the knowledge
from multiple teachers [23,38,64]. Different from the common KD methods
that disseminates knowledge as a whole, we factorize the knowledge of a multi-
talented teacher to factor networks with disentangled representations.

Disentangled Representation Learning. It is often assumed that real-world
observations should be controlled by factors. Therefore, a recent line of research
argues the importance of finding disentangled variables in representation learn-
ing [4,13,35,44,48,62] while providing invariance in learning [1,14,22]. The dis-
entanglement are usually done through adversarial learning [10,34,40,58] or vari-
ational auto-encoder [7,19,26]. In this work, we aim to disentangle the task-
agnostic and task-related representation by optimizing the mutual information.
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Fig. 2. The overall framework of the proposed knowledge factorization. The factor net-
works are trained to mimic the prediction of the teacher. The CKN learns to maximize
the mutual information between input and its features, whereas the TSNs are dedicated
to minimizing the task-wise mutual information.

InfoMax Principle and Information Bottleneck. As one of the founda-
tions of machine learning, information theory has promoted a series of learn-
ing algorithms. InfoMax [33] is a core principle of representation learning that
encourages the mutual information should be maximized between multi-views or
between representation and input. This principle gave birth to the recent trend
on self-supervised learning [2,21,59] and contrastive learning [9,16,17,25,45,56].
On the contrary, Information Bottleneck (IB) [57] aims to compress the repre-
sentation while achieving realistic reconstruction results. In this study, we take
a unified view of the two principles in multi-task learning. Infomax guarantees
the learning of common knowledge across tasks, while IB promotes task-specific
knowledge for an individual task.

Multi-task Learning. Multi-task learning (MTL) is designed to train mod-
els that handle multiple tasks by taking advantage of the common information
among tasks. Some recent solutions explore on the decomposition between shared
and task-specific processing [24,39,68]. Unlike conventional methods, we decom-
pose a pre-training model into knowledge modules according to tasks.

3 Method

The essence of this work is to factorize a multi-task teacher into independent
students by posing fine-grained control of the information among teacher and
students. Figure 2 provides an overall sketch of our proposed KF. In what follows,
we first give a definition of knowledge factorization, and then introduce the
general procedure to decompose a teacher into factorized students.

3.1 Knowledge Factorization in Neural Network

We define Knowledge Factorization (KF) to be the process of subdividing a
teacher network into multiple factor networks, each of which possesses distinctive
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knowledge to handle one task. Formally, assume we have a multi-task dataset
D = {(xi, y

1
i , . . . , y

K
i )}, where each input sample x may take one of K different

labels {yj}Kj=1 sampled from the joint probability P (X,Y1, . . . , YK). With a loose
definition, we also deem the multi-classing as a special case for multi-tasking, by
considering each or a group of categories as a task. Given a multi-task teacher
model T that is able to predict K tasks simultaneously, KF aims to construct K
factor networks {Sj}Kj=1, each of which, again, tackles one task independently.

Specifically, we focus on decomposing the teacher knowledge into task-specific
and common representations, meaning that each factor network not only mas-
ters task-specific knowledge, but also benefits from a shared common feature
to make final predictions. To this end, we design two mechanisms to factor-
ize knowledge: structural factorization to decompose the teacher network into a
set of factor networks, as well as representation factorization to disentangle the
common features from task-specific features by optimizing mutual information.

3.2 Structural Factorization

The goal of structural factorization is to endow different sub-networks with func-
tional distinctions. Each factor networks is expected to inherit only a portion
of the knowledge from the teacher, and specializes in an individual task. Specif-
ically, a factor network Sj for the j-th task comprises two modular networks:
a Common Knowledge Network (CKN) SC(·;ΘSC

) which is shared across all
tasks, and a Task-specific Network (TSN) STj

(·;ΘSTj
) which is task-exclusive.

ΘSC
and ΘSTj

are the model parameters for CKN and TSN respectively. For
each input sample, SC is adopted to extract the task-agnostic feature z:

z = SC(x; ΘSC ). (1)

On the contrary, STj
learns the task-related knowledge tj from the input x, which

together with z is processed by a task head Hj to make the final prediction:

tj = STj (x; ΘSTj
); ŷj

S = Hj(z, t
j ; ΘHj ), (2)

which constrains each factor network Sj to share the same common knowledge
network but maintain the task-specific one to handle different tasks.

Intuitively, we expect that Sj only masters the knowledge about task j by
using the common knowledge z and tj . We accordingly define a structure factor-
ization objective L(j)

sf to enforce each single-task factor network to imitate the
teacher’s prediction while minimizing the supervised loss:

L(j)
sf = L(j)

sup + λktL(j)
kt , (3)

where L(j)
sup and L(j)

kt denote the supervised loss and the knowledge transfer loss
for the j-th task, respectively, and λkt is the weight coefficient. Notably, we
may readily adopt various implementations for each of the loss terms here. For
example, L(j)

sup may take the form of L2 norm for regression and cross-entropy
for classification, while L(j)

kt may take the form of soft-target [20], hint-loss [51],
or attention transfer [66]. More details can be found in the supplement.
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Structure factorization therefore enables us to construct new combined-task
models by assembling multiple networks without retraining. If, for example, a
3-category classifier is needed, we can readily integrate CKN and the correspond-
ing 3 TSNs from the pre-defined network pool. This property, in turn, greatly
improves the scalability of the model.

3.3 Representation Factorization

Apart from the functionality disentanglement, we hope that learned representa-
tions of the factor networks are statistically independent as well, so that each
sub-network masters task-wise disentangled knowledge. This means task-specific
features should only contain minimal information only related to a certain task,
while the common representation contains as much information as possible.

To this end, we introduce the Infomax Bottleneck (IMB) objective to opti-
mize the mutual information (MI) between features and input. For two random
variables X,Y , MI I(X,Y ) quantifies the “number information” that variable
X tells about Y , denoted by Kullback Leibler (KL) divergence between the joint
probability p(x,y) and the product of marginal distribution p(x)p(y):

I(X, Y ) = DKL

[
p(x, y)||p(x)p(y)

]
. (4)

In our problem, for each input sample x ∼ P (X), we compute its common knowl-
edge feature z ∼ P (Z) and the task-predictive representation tj ∼ P (Tj). Ulti-
mately, IMB attempts to maximize I(X,Z) so that common knowledge keeps as
much information of the input as possible, while minimize I(X,Tj) so that task
representations only preserve information related to the task. The representation
disentanglement can then be formulated as an optimization problem:

max I(Tj , Yj); s.t. I(X, Tj) ≤ ε1, −I(X, Z) ≤ ε2, (5)

where ε1 and ε2 are the information constraints we define. In order to solve Eq. 5,
we introduce two Lagrange multiplier α > 0, β > 0 to construct the function:

L(j)
I = I(Tj , Yj) + αI(X, Z) − βI(X, Tj). (6)

By maximizing the first term I(Tj , Yj), we ensure that the task representation tj

is capable to accomplish individual task j. I(X,Z) term encourages the lossless
transmission of information and high fidelity feature extraction for the CKN,
while minimizing I(X,Tj) enforces the only the task-informative representation
is extracted by TSN, thus de-correlate the task knowledge tj with the common
knowledge z. Unlike the convectional information bottleneck (IB) principle [57],
our proposed IMB attempts to maximize I(X,Z) [21,37,45], so that the CKN
learns a general representation z with high fidelity.

3.4 Variational Bound for Mutual Information
Due to the difficulty of estimating mutual information for continuous variables,
we derive a variational lower bound to approximate the exact IMB objective1:

L̂I = Ep(yj ,tj)
[log q(yj |tj)] + α

(
Ep(z,x)[log q(z|x)] + H(Z)

) − βEp(tj)

[
DKL[p(tj |x)||q(tj)]

]
, (7)

1 Due to space limitations, we only show the final formulations in the main body of
this paper. The derivations can be found in the supplementary material.
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where DKL denotes the KL divergence between two distributions and q(·)
denotes the variational distributions. We claim that LI ≥ L̂I , with the equality
acheived if and only if q(yj |tj) = p(yj |tj), q(z|x) = p(z|x) and q(tj) = p(tj).

For better understanding, we explain the meaning of each term, specify the
parametric forms of variational distribution and implementation details of Eq. 7.

Term 1. We maximize I(Tj , Yj) by maximizing its lower bound Ep(yj ,tj)

[log q(yj |tj)]. We set q(yj |tj) to Gaussian for regression tasks and the multi-
nomial distribution for classification tasks. Under this assumption, maximizing
Ep(yj ,tj)[log q(yj |tj)] is nothing more than minimizing the L2 norm or cross-
entropy loss for the prediction. q(yj |tj) is parameterized with another task head
Hj′ that takes tj as input and makes the task prediction. Notably, Hj′ is different
from Hj since Hj takes both z and tj as input.

Term 2. We maximize I(X,Z) by maximizing its lower bound
Ep(z,x)[log q(z|x)] + H(Z). We choose q(z|x) to be an energy-based function
that is parameterized by a critic function f(x, z) : X × Z → R

q(z|x) =
p(z)

C
ef(x,z), where C = Ep(z)

[
ef(x,z)]. (8)

Substituting q(z|x) into the second term gives us an unnormalized lower bound:

I(X, Z) ≥ Ep(z,x)[f(x, z)] − logEp(x)[C], (9)

The same bound is also mentioned in Mutual Information Neural Estimation
(MINE) [3]. Different from original MINE, in our implementation, we estimate
the I(X,Z) through a feature-wise loss between teacher and students. With a
slight abuse of notation, we refer zT = T (x)l ∈ R

dT and zC = SC(x)l ∈ R
dC

as the intermediate feature vectors from teacher and CKN at the l-th layer.
Given a pair of (zT , zC), f is defined as inner product of two vectors f(x, zC) =
〈zC , FFN(zT )〉, where FFN(·) : RdT → R

dC is a feed-forward network to align
the dimensions between zT and zC .

Term 3. Ep(tj)

[
DKL[p(tj |x)||q(tj)]

]
is the expected KL divergence between the

posterior p(tj |x) and the prior q(tj), which is a upper bound for I(X,Tj). We
minimize I(X,Tj) by minimizing Ep(tj)

[
DKL[p(tj |x)||q(tj)]

]
.

Following the common practice in variational inference [19,27], we set
the prior q(tj) as zero-mean unit-variance Gaussian. Besides, we assume the
p(tj |x) = N (μtj ,diag(σtj )) is a Gaussian distribution. Accordingly, we com-
pute the mean and variance for the task feature tj in each forward pass:

tj = STj (x; ΘSTj
); μtj = E[tj ], σ

2
tj = Var[tj ], (10)

Then, the KL divergence between p(tj |x) and q(tj) can be computed as:

DKL[p(tj |x)||q(tj)] =
1

2

L∑
l=1

(1 + log σ
(l)
tj

− (μ
(l)
tj

)2 − σ
(l)
tj

). (11)

The superscript denotes the l-th element of μtj and σtj .
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Training. We minimize the following overall loss to achieve both structural and
representation factorization between students:

min
ΘSC

,ΘSTj
,ΘHj

K∑
j=1

L(j)
sf − λIL(j)

I , (12)

where λI is weighting coefficient of the IMB objective.

4 Experiments

In this section, we investigate how factorization works to promote the perfor-
mance, modularity and transferability of the model. Defaultly, we set α = 1.0
and β = 1e−3, λI = 1 and λkt = 0.1. Due to the space limit, more hyper-
parameter settings, distillation loss, implementation details, data descriptions,
and definitions of the metrics are listed in supplementary material.

4.1 Factor Networks Make Strong Task Prediction

We conduct comprehensive experiments on synthetic and real-world classification
and multi-task benchmarks to investigate whether the factorized networks still
maintain competitive predictive performance, especially on each subtask.

Synthetic Evaluation. We first evaluate our KF on two synthetic imagery
benchmarks dSprites [41] and Shape3D [6]. Two datasets are both generated by
6 ground truth independent latent factors. We define each latent factor as a pre-
diction target and treat both datasets as multi-label classification benchmarks.
We compare our KF with 4 other baseline methods: single-task baseline, multi-
task baselines, MTL2MTL KD and MTL2STL KD. Single-task baseline denotes
training 6 single-task networks, while multi-task denotes that one model trained
to predict all 6 tasks. MTL2MTL KD distill a multi-tasked student, whereas
MTL2STL KD refers to distilling 6 single-tasked students. KF represents our
results with factor networks. We train a teacher network as 6-layer CNN model.
Besides, all students network encoders, including both the CKN and TSNs, are
parametrized by the 3-layer CNN. We take a random train-test split of 7:3 on
each dataset and report the ROC-AUC score on the test split.

Results. Figure 3 visualizes the bar plots for the ROC-AUC scores for our KF
and its KD opponents on two datasets. Though all method achieves a high AUC
score larger than 0.92 on both datasets, it is evident that our KF not only sur-
passes the multi-tasked baseline but also exceeds two distillation paradigms. In
addition, it is noted that multi-tasked models generally achieves better perfor-
mance than their single-task counterpart, revealing that the prediction perfor-
mance benefits from learning from multiple labels on two datasets.

Real Image Classification. We further evaluate our KF on two real image
classification CIFAR-10 [29] and ImageNet1K [52]. To apply factorization, we
construct two Pseudo-Multi-task Datasets by considering the category hierarchy.
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Fig. 3. Test ROC-AUC comparison on dSprites and Shape3D datasets.

Table 1. Test accuracy (%) comparison on CIFAR-10 between KD and KF. We report
mean ± std over 3 runs.

Teacher:Acc Student/CKN:Acc 1-Task KD 2-Task KD 1-Task KF 2-Task KF

ResNet-18:94.54 MBNv2:93.58 93.79± 0.17 92.59± 0.08 94.03± 0.23 94.41± 0.05

ResNet-18:94.54 94.72± 0.24 93.69± 0.11 95.04± 0.12 95.20± 0.04

WRN28-2:93.98 94.57± 0.13 93.71± 0.22 94.86± 0.17 94.77± 0.06

WRN28-2:93.98 MBNv2:93.58 94.14± 0.08 94.10± 0.03 94.34± 0.14 94.56± 0.10

ResNet-18:94.54 94.75± 0.22 94.22± 0.07 95.03± 0.12 95.12± 0.12

WRN28-2:93.98 94.02± 0.07 93.31± 0.12 94.59± 0.11 94.62± 0.13

WRN28-10:95.32 MBNv2:93.58 94.47± 0.31 94.10± 0.22 94.80± 0.15 94.97± 0.15

ResNet-18:94.54 95.28± 0.14 94.62± 0.09 95.40± 0.08 95.32± 0.05

WRN28-2:93.98 94.68± 0.14 94.11± 0.26 94.80± 0.07 95.03± 0.12

Table 2. Top-1 Accuracy (%) comparison on ImageNet.

Teacher:Acc Student/CKN:Acc 1-Task KD 1-Task KF 11-Task KF

ResNet-18:69.90 MBNv2:71.86 72.15 72.20 (+0.05) 72.52(+0.37)

ResNet-18:69.90 70.53 70.26(−0.27) 70.93(+0.40)

ResNet-34:73.62 MBNv2:71.86 72.58 72.95(+0.37) 73.12(+0.54)

ResNet-18:69.90 70.82 70.98(+0.16) 72.13(+1.31)

ResNet-50:76.55 MBNv2: 71.86 72.73 72.92(+0.19) 73.15(+0.42)

ResNet-18:69.90 71.12 71.14(+0.02) 72.20 (+1.08)

The 10 classes in CIFAR-10 can be divided into 6 animal and 4 vehicle cate-
gories. Similarly, ImageNet1K classes are organized using WordNet [42] synset
tree, with 11 super-classes. We accordingly construct the CIFAR-10 2-task and
ImageNet1K 11-task datasets, with each task considering one super-class.

On the single-task and pseudo-multi-task evaluations, we take a pretrained
classifier and distill or factorize its knowledge to single-task or pseudo-multi-task
students. Each pseudo-multi-task factor/distilled network only manages to pre-
dict the categories within one super-class, with the concatenated output serving
as the final prediction. We include ResNet-18 [18], WideResNet28-2 (WRN28-
2) [65] and WideResNet28-10 (WRN28-10) [65] as our teacher networks on
CIFAR-10; MobileNetv2 (MBNv2) [53], along with ResNet-18, WRN28-2 as
student or CKN backbone. On ImageNet1K evaluation, the teacher networks
are selected to be ResNet-18, ResNet-34 [18] and ResNet-50 [18], with MBNv2
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and ResNet-18 as student or CKN backbone. We select a lightweight backbone
MBNv2x0.5 to be TSNs. MBNv2x0.5 represents the width multiplier is 0.5.

Results. Table 1 and Table 2 provide the classification accuracy comparison
between single-task or pseudo-multi-tasked KD and our proposed KF over 3 runs.
Though both approaches improve the baselines under the single-task setting, we
note that KD fails to improve the results on the pseudo-multi-tasked evaluation.
We also do not report the 11-task KD results on ImageNet because the accuracy
is generally lower than 20%. Notably, we observed that the imbalanced labeling
causes the deterioration in training: when one network only masters one super-
class and the rest of the classes are treated as negative samples, the distilled
networks are prone to make low-confident predictions in the end. In comparison,
KF has a CKN shared across all tasks, which considerably alleviates the imbal-
ance problem in conventional KD. For example, factor networks obtained by
11-Task KF improve the performance of ResNet18-KD on ImageNet over 1.08%
and 1.31% when learning from ResNet-50 and ResNet-34. On other evaluations,
KF consistently makes progress overall the normal KD, which suggests that the
factorization of task-specific and task-agnostic benefit the performance.

Multi-task Dense Prediction. Two multi-task dense prediction datasets are
also used to verify the effectiveness of KF, including NYU Depth Dataset
V2 (NYUDv2) [54] and PASCAL Context [11]. NYUDv2 dataset contains indoor
scene images annotated for segmentation and monocular depth estimation. We
include 4 tasks in PASCAL Context, including semantic/human part segmen-
tation, normal prediction, and saliency detection. We use the mean intersection
over union (mIoU), the angle mean error (mErr) and root mean square error
(rmse) are used to measure the prediction quality.

We include both the single-task and multi-task together with their
STL2STL/MTL2STL/MTL2MTL distilled models as our baselines. We adopt
the HRNet48 [61] and ResNet-50 DeepLabv3 as teacher and HRNet18 and
ResNet-18 DeepLabv3 as student or CNK. The TSN are set to MBNv2x0.5.
We use a smaller β = 1e−5. The networks are initialized with the ImageNet
pretrained weights.

Results. We show the evaluation results on NYUDv2 and PASCAL datasets in
Table 3 and Table 4. On NYUDv2, the multi-task baselines are generally better-
performed than its single-task competitors. On the contrary, in the PASCAL
experiments of HRNet48, ResNet18 and ResNet50, the performance of multitask
baseline has largely degraded. It reveals the negative transfer problem in MTL
that the joint optimization of multiple objective might cause the contradiction
between tasks, thus leading to undesirable performance reduction.

The same problem remains when comparing MTL2MTL-KD to STL2-STL-
KD in Table 4, where the MTL teacher is inferior to STL ones. Our factor
networks automatically resolve this problem, because different TSNs are struc-
turally and representationally independent. As a result, KF achieved strong stu-
dent performance compared to other baselines.
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Table 3. Performance comparison on the NYUDv2 dataset.

Method Teacher Student/CKN Seg. (mIoU)↑ Depth (rmse)↓
Single-task – HRNet18 27.37 0.612

Multi-task – HRNet18 37.59 0.641

Single-task – HRNet48 48.19 0.556

Multi-task – HRNet48 48.92 0.578

STL2STL-KD HRNet48 HRNet18 39.27 0.603

MTL2MTL-KD HRNet48 HRNet18 38.02 0.604

MTL2STL-KD HRNet48 HRNet18 39.04 0.601

Ours HRNet48 HRNet18 40.78 0.592

Single-task – ResNet-18 38.07 0.652

Multi-task – ResNet-18 39.18 0.623

Single-task – ResNet-50 44.30 0.625

Multi-task – ResNet-50 44.78 0.602

STL2STL-KD ResNet-50 ResNet-18 39.76 0.633

MTL2MTL-KD ResNet-50 ResNet-18 39.98 0.623

MTL2STL-KD ResNet-50 ResNet-18 40.60 0.621

Ours ResNet-50 ResNet-18 41.33 0.615

Table 4. Performance comparison on the PASCAL dataset.

Method Teacher Student/CKN Seg.(mIoU)↑ H.Part(mIOU)↑ Norm.(mErr)↓ Sal.(mIOU)↑
Single-task – HRNet18 51.18 64.10 14.54 56.08

Multi-task – HRNet18 54.61 62.40 14.77 66.07

Single-task – HRNet48 60.92 67.15 14.53 68.12

Multi-task – HRNet48 55.93 67.06 14.31 67.08

STL2STL-KD HRNet48 HRNet18 52.63 64.98 14.49 60.72

MTL2MTL-KD HRNet48 HRNet18 52.02 60.33 14.63 65.45

MTL2STL-KD HRNet48 HRNet18 54.77 65.18 14.53 64.31

Ours HRNet48 HRNet18 56.65 66.83 14.44 67.05

Single-task – ResNet-18 64.75 58.68 13.95 65.59

Multi-task – ResNet-18 63.48 58.17 15.12 64.50

Single-task – ResNet-50 70.29 61.47 14.65 66.22

Multi-task – ResNet-50 68.04 63.05 14.88 65.65

STL2STL-KD ResNet-50 ResNet-18 66.10 59.43 14.19 66.33

MTL2MTL-KD ResNet-50 ResNet-18 61.31 60.14 14.73 62.45

MTL2STL-KD ResNet-50 ResNet-18 66.60 62.33 14.29 66.14

Ours ResNet-50 ResNet-18 67.18 61.09 14.31 66.83
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4.2 Factorization Brings Disentanglement

Given the distilled and factorized models in the previous section we measure a
set of disentanglement metrics and representation similarity to confirm that the
knowledge factorization captures the independent variables across tasks.

Disentanglement Evaluation Setup. We first validate the disentanglement
between factor models on dSprites [41] and Shape3D [6]. We measure 4 disentan-
glement metrics to quantify how well the learned representations summarize the
factor variables. Those metrics are disentanglement-completness-informativeness
(DCI) [12], Mutual information gap (MIG) [8], FactorVAE metric [26], and Sep-
arated Attribute Predictability (SAP) score [30]. Higher means better.

We compare our KF with 3 other baseline methods: single-task baseline,
multi-task baselines, and MTL2STL KD students, which has been introduced
in previous section. Following the evaluation protocol in [35], we adopt the con-
catenation of all average-pooled task-specific representations as our final feature
vector for evaluation and compute all scores on test set.

Results. Figure 4 illustrates the quantitative results of different disentanglement
metrics using box plots. First, we see that multi-task learning naturally comes
with disentangled representations, where MTL achieves a slightly higher score
than the STL. Another observation is that knowledge transfer methods like
KD and KF also help the model to find factors that are unappreciable for the
teachers. The features extracted by our factor networks generally score the best,
especially on the dSprites dataset, with an improvement over median of 0.47 and
0.09 on DCI and MIG scores. It is in line with our expectation that decomposing
the knowledge into parts leads to disentangled representations.

Representation Similarity. We further conduct representation similarity anal-
ysis using centered kernel alignment (CKA) [28] between teacher models, dis-
tilled models and our factorized models across 4 datasets, including dSprites,
Shape3D, CIFAR10 and NYUDv2. On each dataset, CKA is adopted to quan-
tifying feature similarity among (1) MTL teacher (2) MTL2MTL-KD student
(3) MTL2STL students and (4) Our CKN and TSNs. We compute linear kernel
CKA between all pairs of models at the last feature layer on test set. The model
architectures are described in the Appendix. The higher CKA index suggests
higher correlation between two networks.

Results. Figure 5 visualizes the CKA confusion matrix between all model pairs
on 4 tasks. We made the following observations. First, models mastering the
same subtask has high feature similarity. Second, our factorized TSN captures
more “pure” knowledge compared with MTL2STL students. On each heatmap,
the bottom left region has high similarity (in darker red), suggesting that the
conventional distilled models still maintains high similarity with its peers even
though they are trained on dedicated tasks. In comparison, factorized TSNs
achieve smaller similarities (in upper right region), again supporting our argu-
ment that factor networks capture the disentangled factors across tasks.
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Fig. 4. Disentanglement Metrics comparison between (1) Single-Task Baseline, (2)
Multi-Task Baseline, (3) KD, and (4) our proposed KF on dSprite (top) and
Shape3D (bottom) datasets. Each experiment is repeated over 10 runs.

Fig. 5. CKA representation similarity between distilled and factorized models.

4.3 Common Knowledge Benefits Transferring

We then finetune the factorized CKN on two downstream tasks to see if the
common knowledge facilities the transfer learning to unseen domains. We train
ResNet-18 networks with different initializations on Caltech-UCSD Birds (CUB-
200) [60] and MIT indoor scene (Scene) [49]. The trained models are then reestab-
lished as teachers to educate student networks like MBNv2 and ShuffleNetv2.

Results. Table 5 shows the transfer learning performance and distillation
accuracy using different pretrained weights. R18 w/ImageNet-CKN refers to
the ResNet-18 CKN factorized from ImageNet pretrained ResNet-18. Com-
pared with the original pretrained weights, ImageNet-CKN achieves substantial
improvement on both datasets. By reusing the finetuned ResNet-18 as teacher
network, we show in Fig. 5 that CKN serves as a better role model to educate
the student networks. It provides compelling evidence that common knowledge
factorized from the teacher network benefits the transfer learning to other tasks.
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Table 5. Finetuning performance and distillation accuracy with different pretrained
weights. R18 is the short for ResNet-18.

Teacher Student CUB-200 Scene

– R18 w/Rand init. 46.14 65.17

– R18 w/ImageNet 65.28 65.19

– R18 w/ImageNet-CKN 69.17 72.37

– MobileNetV2 w/Rand init. 48.80 64.59

R18 w/Rand init. MobileNetV2 w/Rand init. 54.18 66.78

R18 w/ImageNet MobileNetV2 w/Rand init. 61.30 66.40

R18 w/ImageNet-CKN MobileNetV2 w/Rand init. 64.25 70.94

– ShuffleNetv2 w/Rand init. 52.51 64.39

R18 w/Rand init. ShuffleNetv2 w/Rand init. 48.19 65.70

R18 w/ImageNet ShuffleNetv2 w/Rand init. 59.15 66.00

R18 w/ImageNet-CKN ShuffleNetv2 w/Rand init. 60.69 68.95

5 Conclusion

In this paper, we introduce a novel knowledge-transfer task termed Knowl-
edge Factorization. Given a pretrained teacher, KF decomposes it into task-
disentangled factor networks, each of which masters the task-specific and the
common knowledge factorized from the teacher. Factor networks may operate
independently, or be integrated to assemble multi-task networks, allowing for
great scalability. We design an InfoMax Bottleneck objective to disentangle the
common and task-specific representations by optimizing the mutual information
between input and representations. Our method achieves strong and robust per-
formance, and meanwhile demonstrates great disentanglement capability across
various benchmarks, with better modularity and transferability.
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