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Abstract. Training a deep learning model with artificially generated
data can be an alternative when training data are scarce, yet it suffers
from poor generalization performance due to a large domain gap. In this
paper, we characterize the domain gap by using a causal framework for
data generation. We assume that the real and synthetic data have common
content variables but different style variables. Thus, a model trained on
synthetic dataset might have poor generalization as the model learns the
nuisance style variables. To that end, we propose causal invariance learn-
ing which encourages the model to learn a style-invariant representation
that enhances the syn-to-real generalization. Furthermore, we propose a
simple yet effective feature distillation method that prevents catastrophic
forgetting of semantic knowledge of the real domain. In sum, we refer to our
method as Guided Causal Invariant Syn-to-real Generalization that effec-
tively improves the performance of syn-to-real generalization. We empiri-
cally verify the validity of proposed methods, and especially, our method
achieves state-of-the-art on visual syn-to-real domain generalization tasks
such as image classification and semantic segmentation.

1 Introduction

While deep neural networks have shown their great capability on various com-
puter vision tasks, the majority of them count on a sufficient amount of training
data with qualified labels. However, obtaining data or labels is expensive or
difficult. Thus, a manually generated training dataset can be an alternative to
the shortage or absence of training data. Also, by using the computer graphics
engine [18,30,32], one can obtain labels without any cost of human labor [16,39].

However, training with synthetic data cannot fully replace the real training
data as they suffer from poor generalization performance in the real domain.
Many previous works explain the reason for inferior performance by the existence
of a large domain gap [29,42] which makes the model overfits to the synthetic
domain. In this paper, we break down the domain gap between the synthetic and
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real data by using the causal model. We build a causal model that an image is
generated from two latent variables: style variables such as texture and content
variables such as shape. We assume that the synthetic and real data differ in
style variables while having common content variables that are relevant to the
downstream tasks. Furthermore, we also assume that the model learns the task-
irrelevant style variables, therefore exhibiting poor generalization on the real
domain. The recent studies [1,17] show that convolutional neural networks tend
to rely on texture rather than shape which supports our claim.

To that end, we propose causal invariant learning for syn-to-real generaliza-
tion by promoting causal invariance loss to learn style-invariant representation.
Our method is related to the contrastive learning method, which learns represen-
tation by aligning positive pairs. We apply data augmentation to generate a pair
of images with the same content but different style variables, then align their
distributions of representations to achieve style-invariance. Our loss function is
similar to that of [15,34,46,50], where those methods are for other than syn-to-
real generalization such as self-supervised learning or knowledge distillation.

Furthermore, many methods show that using real-domain guidance with Ima-
geNet pre-trained model for regularization is effective for syn-to-real generaliza-
tion [5,6]. Chen et al. [6] utilized the knowledge distillation loss by re-using the
pre-trained ImageNet classifier and Chen et al. [5] used intermediate features of
the ImageNet pre-trained network to compute negative samples in contrastive
learning. Those methods posit that the ImageNet classification is strongly cor-
related to the syn-to-real generalization performance. Instead, we propose to
directly guide the model by simply regularizing the feature distance with the
ImageNet pre-trained model, yet the key is to extract the semantic knowledge by
using self-attention pooling. We empirically show that the simple guidance loss
with self-attention pooling successfully guides the model to localize the object
in the image, and helps the syn-to-real generalization.

In summary, we propose Guided Causal Invariant Syn-to-real Generalization
(GCISG), where we propose causal invariance loss that helps to learn style-
invariant features and guidance loss with self-attention pooling that helps extract
semantic information from ImageNet pre-trained neural network. Our contribu-
tions are listed below:

– By adopting the causal framework for a syn-to-real setup, we propose causal
invariance loss which regularizes the model to learn a style-invariant repre-
sentation that is relevant to syn-to-real generalization.

– We present a simple and effective guidance loss that guides the model with
real-domain guidance from ImageNet pre-trained model by utilizing self-
attention pooling.

– We empirically show that our method significantly outperforms competing
syn-to-real generalization methods on various vision tasks such as image clas-
sification, semantic segmentation, and object detection.

2 Related Work
Domain Generalization. The domain generalization problem aims to train
on the source domain and generalize to an unseen target domain. The biggest
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Fig. 1. Overall demonstration of proposed GCISG. There are two branches: 1) the
guidance loss that preserves semantic information from ImageNet pre-trained model by
using self-attention pooling, and 2) the causal invariance loss that learns style-invariant
representation using contrastive learning framework.

concern of domain generalization is that there is a large domain gap between
source and target domains, which deteriorates the performance. Therefore, many
methods proposed an adversarial learning framework to match the feature distri-
butions with a prior distribution [24] or diversify the style of the source domain
to enhance the generalization [44,47]. Others focused on the effect of batch nor-
malization on domain generalization. Pan et al. [33] showed that using instance
normalization can boost the generalization, and RobustNet [10] used instance
selective whitening to improve the robustness. Recent studies showed that using
the knowledge from the real domain is effective for syn-to-real domain general-
ization problems [5,6,9], and our work is concurrent to those approaches.

Contrastive Learning and Style Invariance. Recently, contrastive learning
with multi-view data augmentation has shown their efficacy in self-supervised
representation learning [4,19,31,45] and domain generalization [28]. Our con-
trastive learning objective is similar to that of SEED [15], ReSSL [50], and
RELIC [31], while SEED uses the contrastive objective to distill the represen-
tational knowledge on smaller networks, and ReSSL and RELIC are for self-
supervised representation learning. Remark that CSG [5] also uses contrastive
learning for syn-to-real generalization, while it is different from ours as they
compute contrastive loss across ImageNet pre-trained networks, while ours aim
to learn style-invariant representation on the synthetic data.

Learning with Guidance. Training a model by guidance with a pre-trained
model’s knowledge is not only effective for syn-to-real generalization but also
for various machine learning tasks such as knowledge distillation [21,43] and
incremental learning [2,25]. In syn-to-real generalization or adaptation, models
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are enforced to retain the knowledge from the ImageNet pre-trained networks by
minimizing the feature distance [9], matching the outputs of ImageNet classifica-
tion [6], or using the contrastive learning objective [5]. Similarly, the knowledge
distillation methods use similar tactics to compress the knowledge from bigger
networks to smaller ones [41,46]. And for incremental learning, similar methods
were used to prevent catastrophic forgetting [36].

Our method uses self-attention pooled feature minimization to guide the
model to enhance the generalization on a real domain. Transferring the knowl-
edge by using attention has been also studied for knowledge distillation [48], and
incremental learning [13]. While Chen et al. [5] used attention pooling for syn-to-
real generalization, there are differences in that they pool features for contrastive
learning, while our objective directly minimizes the distance between them.

3 Proposed Method

3.1 Causal Invariance for Syn-to-Real Generalization

Fig. 2. Causal graph for synthetic and
real data.

We consider a causal model for synthetic
and real data generation. In Fig. 2, we
assume that the synthetic data Xsyn is
generated from the content variable C and
style variable Ssyn, and a real data Xreal

is generated from the content variable C
and style variable Sreal. Thus, we claim
that the domain gap occurs because of the
difference between the latent style vari-
ables of the two domains. We also assume
that the task label Y is only dependent on
the content variable. Those assumptions
give us insight into why the model shows
inferior generalization when solely trained
with synthetic data: the model learns nuisance style variables irrelevant to the
task. Also, a previous study [17] corroborates our hypothesis that the convolu-
tional neural networks are biased toward texture (i.e. the style variable).

If one can extract style-invariant or content-preserving representation from
the synthetic data, the model can enhance its generalization capability in the
real domain. Thus, our goal is to extract style-invariant representation which is
useful in the generalization on the real domain. To that end, we propose causal
invariant syn-to-real generalization which is composed of two folds: first, we
further diversify the style variable by using a strong data augmentation module
such as RandAugment [12], and second, we use a contrastive learning framework
to learn style-invariant representations.

In Fig. 1, for the synthetic training model fs, we attach projector hs to
project onto a smaller dimension. For projector, we use two-layer multi-layer
perceptron (MLP) as used in many contrastive representation learning frame-
works [4,7]. Let us denote the encoder by gs = hs ◦ fs and we build target
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encoder ḡs = hi ◦ f̄s, while hi is the initial state of projector hs. The weights of
f̄s are updated by the exponential moving average of the weight of the encoder
fs. Given a synthetic data x, let x1 and x2 be the two augmented views of x.
Denote z1 = gs(x1)/‖gs(x1)‖2 ∈ R

d and z̄2 = ḡs(x2)/‖ḡs(x2)‖2 ∈ R
d be the out-

puts of each encoder and target encoder with �2 normalization. To achieve stable
causal invariance, we aim to match the distributions of z1 and z̄2 with enough
amount of support samples, which is a similar approach to prior works in other
tasks [15,31,50]. We pertain support samples Q ∈ R

K×d, and aim to minimize
the probabilistic discrepancy between the relational distributions p(z1;Q) and
p(z̄2;Q).

pτ (z;Q)[k] :=
exp

(
z�qk/τ

)

∑K
k′=1 exp (z�qk′/τ)

, (1)

where qk is the k-th component of support samples Q and τ > 0 is a temperature
hyperparameter. Then we define the causal invariance loss between z1 and z̄2 by
the cross-entropy loss between the relation similarities as following:

�CI(z1, z̄2) = −
K∑

k=1

pτ̄ (z̄2;Q)[k] log
(
pτ (z1;Q)[k]

)
, (2)

where we use distinct τ, τ̄ > 0 to regulate the sharpness of distributions. For com-
putational efficiency, we symmetrically compute between z̄1 = ḡs(x1)/‖ḡs(x1)‖2
and z2 = gs(x2)/‖gs(x2)‖2, and the total causal invariance loss for a data x is
given by

LCI(x) =
1
2
�CI(z1, z̄2) +

1
2
�CI(z2, z̄1). (3)

The support samples Q are managed by a queue, where we enqueue the outputs
of the target encoder at each iteration, and dequeue the oldest ones. We set
K to 65536 to ensure the relational distribution contains sufficient information
to learn style-invariant representations. Remark that the temperature parameter
greatly affects the stability of the learning with causal invariance loss. Generally,
we choose τ̄ to be smaller than τ , so that the target distribution is sharper.

Dense Causal Invariant Learning for Semantic Segmentation. For the
semantic segmentation task, an image contains various objects and semantic
features. Therefore, we use dense causal invariance loss where we compute the
loss over the patches of the representations. Following the method in [5], we
crop the feature maps into Nl patches and pass them forward to the projector
to compute causal invariance loss on each cropped representation:

LCI−Dense(x) =
1
Nl

Nl∑

n=1

1
2
�CI (z1,n, z̄2,n) +

1
2
�CI (z2,n, z̄1,n) , (4)

where each zi,n, z̄i,n is the encoder output of n-th feature map. In our experi-
ments, we use Nl = 8 × 8.
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Fig. 3. (a) Example images of channel, global average, width and height pooled feature
map. (b) Mechanism of self-attention pooling for guidance loss.

3.2 Guided Learning for Syn-to-Real Generalization

In this section, we present a simple, yet effective method to guide a model with
real-domain guidance from the ImageNet-pretrained model by using feature dis-
tillation. In contrast to previous approaches such as ASG [6] and CSG [5], our
method does not require any task-specific information or complicated loss func-
tion.

Pooled Feature Distillation. For a data x, let fs(x), fr(x) ∈ R
C×H×W be

the feature map of an intermediate convolutional layer of ImageNet pre-trained
network fr and training network fs. Then it is straightforward to minimize the
squared distance between the feature maps fs(x) and fr(x) for guidance loss
to retain the knowledge of fr as much as possible while learning task-related
knowledge from the synthetic data. To design the guidance loss, there are two
opposite concepts that must be considered: rigidity and plasticity. The rigidity
is on how much the model can retain the knowledge of fr, and the plasticity
accounts for the flexibility of the model to learn from the synthetic domain.

While the direct minimization with the feature maps has high rigidity, it has
low plasticity that the model cannot sufficiently learn task-related knowledge
with synthetic data. Douillard et al. [14] showed that by using an appropriate
pooling operator, the model can balance the rigidity and plasticity to conduct
incremental learning. Similarly, we use the pooling operator to extract sufficient
information from the feature maps and balance the rigidity and plasticity to
improve syn-to-real generalization.

In Fig. 3(a), we list various pooling methods that we consider in this paper.
Let P be such pooling operators in Fig. 3(a), then the guidance loss is given by
the �2 distance between the normalized pooled feature maps of fs(x) and fr(x):

LG(x;P ) =
∥
∥
∥
∥

P (fs(x))
‖P (fs(x))‖2 − P (fr(x))

‖P (fr(x)‖2

∥
∥
∥
∥

2

2

(5)
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Improved Guidance by Self-attention Pooling. Alternatively, we propose
self-attention pooling based guidance loss which improves syn-to-real general-
ization. The self-attention pooling captures semantically important features by
multiplying the importance weight on each feature map. Therefore, the guidance
with self-attention pooling allows the model to learn the semantically impor-
tant feature that fr focuses on. The self-attention pooling is demonstrated in
Fig. 3(b). Let v ∈ R

C×W×H be a feature map, then the attention map a ∈ R
W×H

is computed by the normalization on the global average pooling of v:

a[w, h] =
∑C

c=1 v[c, w, h]g[c]
∑W

w′=1

∑H
h′=1

∑C
c=1 v[c, w′, h′]g[c]

, (6)

where g[c] = 1
HW

∑W
w=1

∑H
h=1 v[c, w, h] is global average pooling of v. Then the

self-attention pooling operator Pa outputs an importance-weighted feature map
with weights given by the attention map:

Pa(v)[c] =
W∑

w=1

H∑

h=1

v[c, w, h]a[w, h]. (7)

Then our final guidance loss with self-attention pooling operator Pa is given by

LG(x;Pa) =
∥
∥
∥
∥

Pa(fs(x))
‖Pa(fs(x))‖2 − Pa(fr(x))

‖Pa(fr(x)‖2

∥
∥
∥
∥

2

2

(8)

The empirical analysis on the effect of pooling on the guidance loss is explored
in Sect. 4.2.

3.3 Guided Causal Invariant Syn-to-Real Generalization

In this section, we present the overall description of our method for syn-to-real
generalization, which we refer to Guided Causal Invariant Syn-to-real general-
ization (GCISG). Given a task loss Ltask that takes synthetic data x with corre-
sponding label y, the GCISG adds guidance loss LG that regularizes the model
to retain the semantic knowledge of ImageNet pre-trained model and causal
invariance loss LCI to achieve style-invariant representation that promotes gen-
eralization on a real domain. Thus, the overall loss is computed by following:

L(x) = LTask(x, y) + λGLG(x) + λCILCI(x). (9)

Remark that our GCISG framework is agnostic to tasks, as guidance loss and
causal invariance loss are computed in an unsupervised manner.
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Stage-Wise Loss Computation. The causal invariance loss LCI and the guid-
ance loss LG can be computed for each intermediate layer. Denote f (l) to be l-th
layer of the neural network, (e.g. the block layers of ResNet [20]), then the
GCISG is computed for each layer by following:

L(x) = LTask(x, y) +
∑

l

λ
(l)
G L(l)

G (x) +
∑

l

λ
(l)
CI L(l)

CI (x). (10)

In Sect. 4.2, we conduct an ablation study on the effect of choosing layer.

4 Experiments

In this section, we empirically validate the effectiveness of our method on vari-
ous syn-to-real generalization tasks. We report the performance of a synthetic-
trained model in the unseen real domain for evaluation. Furthermore, we analyze
the model with various auxiliary evaluation metrics to support our claims.

Evaluation Metrics for Causal Invariance. To quantify the style-invariance
of a representation, we introduce match rate (M), which evaluates the consis-
tency of a model on images that have the same semantics but different styles. For
each image, we generate another stylized image and check if it produces the same
output as the original one. Formally, we report the match rate by the number
of consistent samples out of the number of the entire validation set. To generate
stylized images, we use photometric transforms such as Gaussian blurring and
color jittering as done in [10].

EvaluationMetrics forGuidance. We present two different measures to quan-
tify the quality of guidance from the ImageNet pre-trained model. First, we bring
the linear classification layer of the pre-trained ImageNet model and attach it to
the synthetic-trained model. Then we report the ImageNet validation accuracy
(AccIN) by inferring on the ImageNet validation dataset. Second, we evaluate the
similarity between ImageNet pre-trained model and the synthetic-trained model
by using centered kernel alignment (CKA) similarity [23]. Here, the high ImageNet
validation accuracy demonstrates that our model avoids the catastrophic forget-
ting of the task information, and the high CKA similarity proves the preservation
of representational knowledge of a real pre-trained model. For the computation
of CKA similarity, we collect the features of the penultimate layers of the Ima-
geNet pre-trained model and synthetic-trained model on the validation dataset.
The detailed implementations are in the supplementary material.

4.1 Image Classification

Datasets. We demonstrate the effectiveness of GCISG on VisDA-17 [35] image
classification benchmark. The synthetic training set consists of the images ren-
dered from 3D models with various angles and illuminations. The real validation
set is a subset of MS-COCO [27]. Each dataset contains the same 12 object cate-
gories.
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Table 1. Top-1 accuracy (%) on
VisDA-17 (VisDA) and ImageNet (IN)
validation datasets of various syn-to-
real generalization methods. All meth-
ods used ResNet-101 as a base archi-
tecture.

Method AccVisDA AccIN

Oracle on ImageNet 53.3 77.4

Vanilla L2 distance 56.4 49.1

ROAD [49] 57.1 77.4

SI [9] 57.6 53.9

ASG [6] 61.1 76.7

CSG [5] 64.1 73.8

GCISG 67.5 75.4

Table 2. Top: Comparison with CSG and
oracle on ImageNet by evaluation metrics
for invariance (M) and guidance (AccIN,
CKA). The oracle freezes the backbone
and fine-tune the classification head. Bot-
tom: Effects of LG and LCI in GCISG.

Method LG LCI AccVisDA M AccIN CKA

Oracle ✗ ✗ 53.3 69.5 77.4 1.0

CSG [5] ✓ ✗ 64.1 77.0 73.8 0.89

GCISG ✗ ✗ 55.9 73.3 52.7 0.72

✗ ✓ 58.6 74.4 51.9 0.73

✓ ✗ 64.3 76.6 75.9 0.95

✓ ✓ 67.5 78.6 75.4 0.93

Implementation Details. We adopt ImageNet pre-trained ResNet-101 as the
backbone. We use an SGD optimizer with a learning rate of 0.001, a batch size
of 64 for 30 epochs. For data augmentations, we use the RandAugment [12]
following the protocol of CSG [5]. The momentum rate is 0.996 and the number
of the support sample is 65536 throughout the training.

Results. In Table 1, we report the top-1 validation accuracy on VisDA-17
(AccVisDA) of synthetic-trained model with various syn-to-real generalization
methods. We also report the ImageNet validation accuracy (AccIN) of the same
synthetic-trained model as a guidance metric. We observe that GCISG outper-
forms the competing methods on VisDA-17 on a large margin. As shown in
Table 1, there is a correlation between the ImageNet classification accuracy and
syn-to-real generalization performance. However, the correlation is not strong
that the methods with higher ImageNet accuracy such as ASG [6] and ROAD [9],
do not necessarily have higher validation accuracy on VisDA-17. Thus, suffi-
ciently high ImageNet validation accuracy might be useful for syn-to-real gener-
alization, but it may hamper the generalization if it is too much as it transfers
knowledge that is overfitted to the ImageNet classification task.

Table 2 shows that our method not only achieves a higher VisDA-17 valida-
tion accuracy but also has a higher match rate (M) and CKA similarity than
CSG. The higher match rate indicates that the learned representation is invariant
to the style change, and the higher CKA similarity indicates the conformation of
learned representation to the ImageNet pre-trained network. Therefore, one can
observe that both factors have positive impacts on syn-to-real generalization.
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Fig. 4. Ablation of feature pooling strategies
for LG. NP, GAP, CP, SP, and SAP denote no
pooling, global average pooling, channel pool-
ing, spatial pooling, and self-attention pooling
respectively.

Fig. 5. Visualized attention of fea-
ture pooling methods. From top to
bottom, rows correspond to NP,
GAP, SAP. The red area corre-
sponds to high score for class.

Table 2 reports the effect of using causal invariance loss and guidance loss
on VisDA-17 validation accuracy and auxiliary evaluation metrics. Remark that
CSG [5] applied guidance loss in contrastive learning with ImageNet pre-trained
features. We observe that the guidance loss generally boosts ImageNet validation
accuracy and CKA similarity. This clearly demonstrates that the transferring
knowledge from the ImageNet pre-trained model which holds useful knowledge
of real domain helps the syn-to-real generalization. Moreover, using the causal
invariance loss generally boosts both match rate and VisDA-17 validation accu-
racy. This also demonstrates that the style-invariance of the model enhances the
syn-to-real generalization.

4.2 Ablation Study

Ablation on Pooling Operators for Guidance Loss. As explained in
Sect. 3.2, the choice of pooling operator for guidance loss affects the learning.
We conduct an ablation study on the effect of the pooling operator on VisDA-17
syn-to-real generalization. We compare 5 different pooling strategies: no pool-
ing (NP), global average pooling (GAP), channel pooling (CP), spatial pool-
ing (SP), and self-attention pooling (SAP), where spatial pooling takes both
height pooling and width pooling. In Fig. 4, we show the generalization perfor-
mance in VisDA-17 for various pooling strategies. We also conduct the ablation
study on removing causal invariance loss to identify the effect of the pooling
operator on the generalization. In both situations, we observe that self-attention
pooling outperforms other pooling strategies.

We also investigate the attention map using Grad-CAM [40] to qualitatively
analyze the effect of pooling operators for guidance loss. In Fig. 5, we observe
a tendency that SAP comprehensively includes more semantically meaningful



666 G. Nam et al.

Table 3. Ablation on the
choice of feature stages SG

and SCI.

SG SCI Acc

{0,1,2} {0,1,2} 59.8

{0,1,2} {3,4} 55.9

{3,4} {0,1,2} 66.2

{3,4} {3,4} 67.5

Table 4. Ablation on the
choice of temperatures τ, τ̄
for LCI.

τ̄ 0.02 0.04 0.06 0.08

τ = 0.12 66.6 67.5 66.5 66.3

τ 0.08 0.1 0.12 0.14

τ̄ = 0.04 66.8 67.1 67.5 67.4

Table 5. Ablation on the
loss functions for style-
invariant learning.

Loss LG Acc

InfoNCE ✗ 56.2

✓ 64.7

CI loss ✗ 58.6

✓ 67.5

regions than NP which only focuses on detailed features with relatively narrow
receptive fields. Also, one can observe that SAP focuses less on meaningless parts
compared to GAP, which does not sufficiently encode informative features with
a relatively wide receptive field.

Ablation on Feature Stages. We conduct an ablation study on generalization
performance with different feature stage for LCI and LG. Let us denote SG and
SCI to be the set of layers that we used for computation of guidance loss and
causal invariance loss. In ResNet-101, there is one convolutional layer and 4 Res-
Blocks. We grouped the first three layers and last two layers and experimented
on 4 combinations of guidance loss and causal invariance loss with different layer
groups. As shown in Table 3, the computation of guidance loss and causal invari-
ance loss with deeper feature stages is more effective in generalization than the
shallower one, as the deeper stage of features holds richer semantic information.
This result is consistent with the tendency of deep layers to encode content
discriminative information as Pan et al. pointed out in IBN-Net [33].

Ablation on Temperature Scale. We conduct an ablation study on the effect
of different temperature scales for causal invariance loss. In Table 4, when τ =
0.12 we observe that small value of τ̄ is beneficial for the performance. Conversely,
when τ̄ is fixed to 0.04, relatively high value of τ has better performance. Thus,
we choose τ = 0.12 and τ̄ = 0.04 for our experiments.

Ablation on Causal Invariance Loss. We conduct an ablation study on
the effect of different contrastive losses for causal invariance loss. We compare
proposed LCI and InfoNCE loss [7] on VisDA-17 image classification. To see the
effect of causal invariance loss solely, we further removed the guidance loss. In
Table 5, we observe that LCI is more effective in syn-to-real-generalization that
InfoNCE loss regardless of the guidance loss.

4.3 Semantic Segmentation

Datasets. For semantic segmentation, the source domain is GTAV [38] and
the target domain is Cityscapes [11]. GTAV is a large-scale dataset containing
24,996 synthetic driving-scene images with resolution 1914×1052, taken from the
Grand Theft Auto V game engine. Cityscapes street scene dataset contains 2,975
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Table 6. Comparison of mIoU (%) with existing synthetic-to-real generalization
and domain generalization methods on GTAV-Cityscapes datasets. All methods used
ResNet-50 as a base architecture.

Method IBN-Net [33] DRPC [47] RobustNet [10] ASG [6] CSG [5] GCISG

No adapt 22.17 32.45 28.95 23.29 25.43 26.67

Adapt 29.64 37.42 36.58 29.65 35.27 39.01

mIoU ↑(%) 7.47 4.97 7.63 6.36 9.84 12.34

Fig. 6. Segmentation results on GTAV to Cityscapes. From left to right, columns cor-
respond to original images, ground truth, prediction results of CSG, and GCISG.

train images and 500 validation images with resolution 2048×1024, taken from
European cities. All the images in the source and target dataset have pixel-level
annotations with 19 semantic categories. For evaluation, we report the mean
intersection over union (mIoU) on the Cityscapes validation set.

Implementation Details. We adopt DeepLab-V3 [3] with ImageNet pre-
trained ResNet-50 backbone for our semantic segmentation network. We employ
an SGD optimizer with a learning rate of 0.001 and a batch size of 8 for 40
epochs. We crop an image with the size of 512 × 512 and apply color jittering
and multi-scale resizing.

Results. In Table 6, we report the mIoU (%) of the semantic segmentation
models trained with various syn-to-real generalization methods. We observe that
the model trained with GCISG achieves the best performance gain. It is worth
noting that IBN-Net [33] and RobustNet [10] modifies the normalization blocks,
and DRPC [47] requires preparation steps of stylizing images before training.
In contrast, our method can be applied to any general architecture with no
additional preparation steps. In Fig. 6, we qualitatively compare with CSG [5]
by visualizing the results of segmentation on validation images.
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Table 7. The average precision (AP) of
Sim10k to Cityscapes object detection
with various methods. All experiments
are run by us.

Method AP AP50 AP75

Baseline 24.8 45.1 24.0

CSG 28.5 50.4 28.1

GCISG 30.6 54.6 29.5

Table 8. Top-1 accuracy (%) of unsu-
pervised domain adaptation on VisDA-
17 by using CBST initialized with differ-
ent methods.

Method AccVisDA

Source only + CBST [52] 76.4

ASG + CBST [6] 82.5

GCISG + CBST 83.6

Fig. 7. Object detection results on Sim10k to Cityscapes. From left to right, columns
correspond to original images, ground truth, prediction results of CSG, and GCISG.

4.4 Object Detection

Datasets. We conduct object detection experiments on the source domain of
Sim10k [22] to the target domain of Cityscapes. Sim10k dataset consists of 10,000
images with bounding box annotations on the car object. Images in Sim10k are
rendered by the Grand Theft Auto V game engine, where the resolution of the
images are 1914×1052. Since Cityscapes does not contain bounding box labels,
we generate bounding box labels from polygon labels, following the method of [8].

Implementation Details. We experiment on Faster R-CNN [37] as the base
detector and ImageNet pre-trained ResNet-101 with FPN [26] as the backbone.
We use an SGD optimizer with a learning rate of 0.001, and a batch size of 4 for 30
epochs. We use the same hyperparameter settings for the original Faster R-CNN
except that we add color jittering for data augmentation. Since CSG [5] does
not contain experiments on object detection, we implement the CSG framework
for our experiments for a fair comparison.
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Results. We evaluate the average precision of bounding boxes on each gener-
alization method following the COCO [27] evaluation protocol. The results are
shown in Table 7. Compared to the previous state-of-the-art syn-to-real general-
ization method [5], GCISG achieves around 2.1% points improvement in AP and
4.2% points improvement in AP50. In Fig. 7, we qualitatively compare with the
CSG [5] by visualizing the results of the object detection on validation images.

4.5 Unsupervised Domain Adaptation

In this section, we demonstrate the effectiveness of GCISG for the unsupervised
domain adaptation (UDA) task. We conduct experiments on class-balanced self-
training (CBST) [51] framework, where we use the model trained with GCISG
as a starting point for the adaptation.

We perform UDA experiments on the VisDA-17 image classification dataset.
We follow the setting of [52], where we set the starting portion of the pseudo
label p to 20%, and empirically add 5% to p for each epoch until it reaches
50%. Remark that, unlike previous syn-to-real generalization tasks, we freeze
the normalization layers when training the source model, where we empirically
found it better for the UDA task.

In Table 8, we present an accuracy on VisDA-17 validation dataset under
various initialization methods for CBST framework. Compared to the baseline,
our method remarkably boosts the performance by 7%, achieving 83.6%. Also,
the model trained from GCISG outperforms that from ASG by 1%.

5 Conclusion

In this work, we present GCISG, which enhances the syn-to-real generalization
by learning style-invariant representation and retaining the semantic knowledge
of the ImageNet pre-trained model simultaneously. Through extensive experi-
ments on VisDA-17 image classification, GTAV-Cityscapes semantic segmenta-
tion, and object detection, we demonstrate the effectiveness of our method.

Our work shows that we can extract useful information over the style changes
that are useful for generalization. For future works, we aim to design style trans-
formation methods that can better disentangle the style and content which suits
our causal model. We believe that those style transformations can lead to better
syn-to-real generalization under our method as they seek better causal invari-
ance. We leave them for future work.
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18. Handa, A., Pătrăucean, V., Stent, S., Cipolla, R.: SceneNet: an annotated model
generator for indoor scene understanding. In: ICRA (2016)

19. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: CVPR (2020)

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

https://doi.org/10.1007/978-3-030-01258-8_15
https://doi.org/10.1007/978-3-030-01258-8_15
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/2003.04297
https://doi.org/10.1007/978-3-030-58565-5_6
http://arxiv.org/abs/2101.04731
http://arxiv.org/abs/1811.12231


Guided Causal Invariant Learning for Syn-to-Real Generalization 671

21. Hinton, G., et al.: Distilling the knowledge in a neural network. arXiv:1503.02531
(2015)

22. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan,
R.: Driving in the matrix: can virtual worlds replace human-generated annotations
for real world tasks? In: ICRA (2017)

23. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network rep-
resentations revisited. In: ICML (2019)

24. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: CVPR (2018)

25. Li, Z., Hoiem, D.: Learning without forgetting. In: Li, Z., Hoiem, D.: Learning
without forgetting. Trans. Pattern Anal. Mach. Intell. (2017)

26. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. arXiv:1612.03144 (2016)

27. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

28. Mahajan, D., Tople, S., Sharma, A.: Domain generalization using causal matching.
In: ICML (2021)

29. Maximov, M., Galim, K., Leal-Taixe, L.: Focus on defocus: bridging the synthetic
to real domain gap for depth estimation. In: CVPR (2020)

30. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: SceneNet RGB-D:
5M photorealistic images of synthetic indoor trajectories with ground truth.
arXiv:1612.05079 (2016)

31. Mitrovic, J., McWilliams, B., Walker, J., Buesing, L., Blundell, C.: Representation
learning via invariant causal mechanisms. arXiv:2010.07922 (2020)

32. Müller, M., Casser, V., Lahoud, J., Smith, N., Ghanem, B.: Sim4Cv: a photo-
realistic simulator for computer vision applications. Int. J. Comput. Vis. 126,
902–919 (2018)

33. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generaliza-
tion capacities via IBN-Net. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss,
Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 484–500. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01225-0 29

34. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: CVPR
(2019)

35. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: Visda: the
visual domain adaptation challenge. arXiv:1710.06924 (2017)

36. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL:Incremental clas-
sifier and representation learning. In: CVPR (2017)

37. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: TPAMI (2017)

38. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth
from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 7

39. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.: The SYNTHIA
Dataset: a large collection of synthetic images for semantic segmentation of urban
scenes. In: CVPR (2016)

40. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
ICCV (2017)

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1612.03144
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1612.05079
http://arxiv.org/abs/2010.07922
https://doi.org/10.1007/978-3-030-01225-0_29
http://arxiv.org/abs/1710.06924
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1007/978-3-319-46475-6_7


672 G. Nam et al.

41. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation.
arXiv:1910.10699 (2019)

42. Tremblay, J., et al.: Training deep networks with synthetic data: Bridging the
reality gap by domain randomization. In: CVPR Workshops (2018)

43. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: ICCV (2019)
44. Wang, Z., Luo, Y., Qiu, R., Huang, Z., Baktashmotlagh, M.: Learning to diversify

for single domain generalization. In: ICCV (2021)
45. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-

parametric instance discrimination. In: CVPR (2018)
46. Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision.

In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12354, pp. 588–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58545-7 34

47. Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A.L., Keutzer, K., Gong, B.:
Domain randomization and pyramid consistency: simulation-to-real generalization
without accessing target domain data. In: ICCV (2019)

48. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improv-
ing the performance of convolutional neural networks via attention transfer.
arXiv:1612.03928 (2016)

49. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: ICML (2017)

50. Zheng, M., You, S., Wang, F., Qian, C., Zhang, C., Wang, X., Xu, C.: ReSSL:
relational self-supervised learning with weak augmentation. In: NIPS (2021)

51. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised Domain adap-
tation for semantic segmentation via class-balanced self-training. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp.
297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9 18

52. Zou, Y., Yu, Z., Liu, X., Kumar, B.V., Wang, J.: Confidence regularized self-
training. In: ICCV (2019)

http://arxiv.org/abs/1910.10699
https://doi.org/10.1007/978-3-030-58545-7_34
https://doi.org/10.1007/978-3-030-58545-7_34
http://arxiv.org/abs/1612.03928
https://doi.org/10.1007/978-3-030-01219-9_18

	GCISG: Guided Causal Invariant Learning for Improved Syn-to-Real Generalization
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Causal Invariance for Syn-to-Real Generalization
	3.2 Guided Learning for Syn-to-Real Generalization
	3.3 Guided Causal Invariant Syn-to-Real Generalization

	4 Experiments
	4.1 Image Classification
	4.2 Ablation Study
	4.3 Semantic Segmentation
	4.4 Object Detection
	4.5 Unsupervised Domain Adaptation

	5 Conclusion
	References




