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Abstract. 3D point cloud semantic segmentation is fundamental for
autonomous driving. Most approaches in the literature neglect an impor-
tant aspect, i.e., how to deal with domain shift when handling dynamic
scenes. This can significantly hinder the navigation capabilities of self-
driving vehicles. This paper advances the state of the art in this research
field. Our first contribution consists in analysing a new unexplored sce-
nario in point cloud segmentation, namely Source-Free Online Unsuper-
vised Domain Adaptation (SF-OUDA). We experimentally show that
state-of-the-art methods have a rather limited ability to adapt pre-
trained deep network models to unseen domains in an online manner.
Our second contribution is an approach that relies on adaptive self-
training and geometric-feature propagation to adapt a pre-trained source
model online without requiring either source data or target labels. Our
third contribution is to study SF-OUDA in a challenging setup where
source data is synthetic and target data is point clouds captured in the
real world. We use the recent SynLiDAR dataset as a synthetic source
and introduce two new synthetic (source) datasets, which can stimulate
future synthetic-to-real autonomous driving research. Our experiments
show the effectiveness of our segmentation approach on thousands of
real-world point clouds (Code and synthetic datasets are available at
https://github.com/saltoricristiano/gipso-sfouda).
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1 Introduction

Autonomous driving requires accurate and efficient 3D visual scene perception
algorithms. Low-level visual tasks such as detection and segmentation are crucial
to enable higher-level tasks such as path planning [11,35] and obstacle avoidance
[46]. Deep learning-based methods have proven to be the most suitable option to
meet these requirements so far, but at the cost of requiring large-scale annotated
dataset for training [29]. Relying only on annotated data is not always a viable
solution. This problem can be mitigated by considering synthetic data, as it can
be generated at low cost with potentially unlimited annotations and under differ-
ent environmental conditions [12,23]. However, when a model trained on synthetic
data is deployed in the real world, typically it will underperform due to domain
shift, e.g., caused by varying lighting conditions, clutter, occlusions and materi-
als with different reflective properties [56]. We argue that a 3D semantic segmen-
tation algorithm running on an autonomous vehicle should be capable of adapt-
ing online – handling scenarios that are visited for the first time while driving –
and it should do so by only using the newly captured data. A variety of research
works have addressed the adaptation problem in the context of 3D semantic seg-
mentation. However, most approaches operate offline and assume to have access
to training (source) data [28,61,63,69,72,73]. In this paper, we argue that these
two assumptions are too restrictive in an autonomous driving scenario (Fig. 1). On
the one hand, offline adaptation would be equivalent to performing model adap-
tation on the data a vehicle has captured when the navigation has terminated,
which is clearly a sub-optimal solution for autonomous driving [30]. On the other
hand, having to rely on source data may not be a viable option, as it requires the
method to store and query potentially large amount of data, thus hindering scal-
ability [33,36].

Existing methods
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Fig. 1. Existing methods adapt 3D semantic segmentation networks offline, requiring
both source and target data. Differently, real-world applications urge solutions capable
of adapting to unseen scenes online having access only to a pre-trained model.

To overcome these limitations, in this paper we explore the new problem of
Source-Free Online Unsupervised Domain Adaptation (SF-OUDA) for semantic
segmentation, i.e., that of adapting a deep semantic segmentation model while
a vehicle navigates in an unseen environment without relying on human super-
vision. Specifically, in this work we first implement, adapt and thoroughly ana-
lyze existing adaptation methods for the 3D semantic segmentation problem in
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a SF-OUDA setup. We experimentally observe that none of these methods pro-
vides consistent and satisfactory performance when employed in a SF-OUDA set-
ting. However, there are elements of interest that, when carefully combined and
extended, can be generally applicable. This leads us to move toward and design
GIPSO (Geometrically Informed Propagation for Source-free Online adaptation),
the first SF-OUDA method for 3D point cloud segmentation that builds upon
recent advances in the literature, and exploits geometry information and temporal
consistency to support the domain adaptation process. We also introduce two new
synthetic datasets to benchmark SF-OUDA in two different real-world datasets,
i.e. SemanticKITTI [3,13,14] and nuScenes [4]. We validate our approach on these
new synthetic-to-real benchmarks. Our motivation for creating these datasets is to
make evaluation more comprehensive and to assess the generalization ability of dif-
ferent techniques to different experimental setups. In summary, our contributions
are:

– A thorough experimental analysis of existing domain adaptation methods for
3D semantic segmentation in a SF-OUDA setting;

– A novel method for SF-OUDA that exploits low-level geometric properties
and temporal information to continuously adapt a 3D segmentation model;

– The introduction of two new LiDAR synthetic datasets that are compatible
with the SemanticKITTI and nuScenes datasets.

2 Related Work

Point Cloud Semantic Segmentation. Point cloud segmentation methods
can be classified into quantization-free and quantization-based architectures. The
former processes the input point clouds in their original 3D format. Examples
include PointNet [43] that is based on a series of multi layer perceptrons. Point-
Net++ [44] builds upon PointNet by using multi-scale sampling and neighbour-
hood aggregation to encode both global and local features. RandLA-Net [21]
extends PoinNet++ [44] by embedding local spatial encoding, random sampling
and attentive pooling. These methods are computationally inefficient when large-
scale point clouds are used. The latter provides a computationally efficient alter-
native as input point clouds can be mapped into efficient representations, namely
range maps [39,60,61], polar maps [67], 3D voxel grids [8,16,17,70] or 3D cylin-
drical voxels [71]. Quantization-based approaches can be based on sparse convo-
lutions [16,17] or Minkowski convolutions [8]. We use the Minkowski Engine [8]
as it provides a suitable trade off between accuracy and efficiency.

Unsupervised Domain Adaptation. Offline UDA can be performed either
using source data [20,37,48,72] or without using source data (source-free
UDA) [33,36,49,62]. Online UDA can be used to adapt a model to an unla-
belled continuous target data stream through source domain supervision [58].
It can be employed for classification [40], image semantic segmentation [58],
depth estimation [55,68], robot manipulation [38], human mesh reconstruction
[19] and occupancy mapping [54]. The assumption of unsupervised target input
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data can be relaxed and applied for online adaptation in classification [31], video-
object segmentation [57] and motion planning [53]. Recently, test-time adapta-
tion methods have been applied to online UDA in classification by using super-
vision from source data [50,52,59]. We tackle source-free online UDA for point
cloud segmentation for the first time.

Domain Adaptation for Point Cloud Segmentation. Domain shift in point
cloud segmentation occurs due to differences in (i) sampling noise, (ii) struc-
ture of the environment and (iii) class distributions [26,61,63,69]. The domain
adaptation problem can be formulated as a 3D surface completion task [63]
or addressed with ray casting system capable of transferring the target sensor
sampling pattern to the source data [28]. Other approaches tackle the domain
adaptation problem in the synthetic-to-real setting (i.e., point cloud in the
source domain are synthetic, while target ones are collected with LiDAR sensors)
[60,61,69]. Attention models can be used to aggregate contextual information
with large receptive fields at early layers of the model [60,61]. Geodesic corre-
lation alignment and progressive domain calibration can be also used to further
improve domain adaptation effectiveness [61]. Authors in [69] argue that the
method in [61] cannot be trained end-to-end as it employs a multi-stage pipeline.
Therefore, they propose an end-to-end approach to simulate the dropout noise of
real sensors on synthetic data through a generative adversarial network. Unlike
these methods, we focus on SF-OUDA and propose a novel adaptation method
which invokes geometry for propagating reliable pseudo-labels on target data.

Table 1. Comparison between public synthetic datasets and Synth4D in terms of
sensor specifications, acquisition areas, number of scans, number of points, presence of
odometry data, and whether the semantic classes are all or partially shared.

Name Specifications Areas Scans Points Odometry Shared semantic classes

Sensor FOV S-KITTI [3] nuScenes [4]

SynthCity [18] MLS 360◦ City 1 367M No No

GTA-LiDAR [61] HDL64E 90◦ Town 121087 – Partial No

PreSIL [23] HDL64E 90◦ Town 51074 3135M Partial No

SynLiDAR [2] HDL64E 360◦ City, town 198396 19482M All No

Harbor, rural

Synth4D (ours) HDL64E 360◦ City, town 20000 2000M ✓ All All

HDL32E Rural, highway 20000 2000M

3 Datasets for Synthetic-to-Real Adaptation

Autonomous driving simulators enable users to create ad-hoc synthetic datasets
that can resemble real-world scenarios. Examples of popular simulators are GTA-
V [64] and CARLA [12]. In principle, synthetic datasets should be compati-
ble with their real-world counterpart [3,4,14], i.e., they should share the same
semantic classes and the same sensor specifications, such as the resolution (32
vs. 64 channels) and the horizontal field of view (e.g., 90◦ vs. 360◦). However,
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this is not the case for most of the synthetic datasets in literature. The SynthCity
[18] dataset contains large-scale point clouds that are generated from collections
of several LiDAR scans, making it unsuitable for online domain adaptation as
no odometry data is provided. PreSIL [23] and GTA-LiDAR’s [61] point clouds
are captured from a moving vehicle using a simulated Velodyne HDL64E [34],
as that of SemanticKITTI, however they are rendered with a different field of
view, i.e., 90◦ as opposed to 360◦ of SemantiKITTI. SynLIDAR’s [2] point clouds
are obtained using a simulated Velodyne HDL64E with 360◦ field of view, as in
SemantiKITTI. However, the odometry data is not provided, i.e., point clouds
are all configured in their local reference frame. Therefore, domain adaptation
algorithms that are based on ray-casting like [28] cannot be used.

To enable full compatibility with SemanticKITTI [3] and nuScenes [4], we
present a new synthetic dataset, namely Synth4D, which we created using
the CARLA simulator [12]. Table 1 compares Synth4D to the other synthetic
datasets. Synth4D is composed of two sets of point cloud sequences, one com-
patible with SemanticKITTI and one compatible with nuScenes. Each set is
composed of 20K labelled point clouds. Synth4D is captured using a vehicle nav-
igating in four scenarios, i.e., town, highway, rural area and city. Because UDA
requires consistent labels between source and target, we mapped the labels of
Synth4D with those of SemanticKITTI/nuScenes using the original instructions
given to annotators [3,4], thus producing eight macro classes: vehicle, pedes-
trian, road, sidewalk, terrain, manmade, vegetation and unlabelled. Figure 2 shows
examples of annotated point clouds from Synth4D. See Supp. Mat. for more
details.

(a) (b)

vehicle pedestrian road sidewalk manmade terrain vegetation

Fig. 2. Example of point clouds from Synth4D using the simulated Velodyne (a)
HDL32E and (b) HDL64E.

4 SF-OUDA

We formulate the problem of SF-OUDA for 3D point cloud segmentation as
follows. Given a deep network model FS that is pre-trained with supervision on
the source domain S, we aim to adapt FS on the target domain T given an
unlabelled point cloud stream as input. FS is pre-trained using the source data
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ΓS = {(Xi
S , Y i

S)}MS
i=1, where Xi

S is a synthetic point cloud, Y i
S is the segmentation

mask of Xi
S and MS is the number of available synthetic point clouds. Let Xt

T
be a point cloud of our stream at time t and F t

T be the target model adapted
using Xt

T and Xt−w
T , with w > 0. YT is the set of unknown target labels and

C is the number of classes contained in YT . The source classes and the target
classes are coincident.

4.1 Our Approach

The input to GIPSO is the point cloud Xt
T and an already processed point cloud

Xt−w
T . These point clouds are used to adapt FS to T through self-supervision

(Fig. 3). The input is processed by two modules. The first module aims to cre-
ate labels for self-supervision by segmenting Xt

T with the source model FS .
Because these labels are produced by an unsupervised deep network, we refer to
them as pseudo-labels. We select a subset of segmented points that have reliable
pseudo-labels through an adaptive selection criteria, and propagate them to less
reliable points. The propagation uses geometric similarity in the feature space
to increase the number of pseudo-labels available for self-supervision. To this
end, we use an auxiliary deep network (Faux) that is specialized in extracting
geometrically-informed representations from 3D points. The second module aims
to encourage temporal regularization of semantic information between Xt

T and
Xt−w

T . Unlike recent works [22], where a global point cloud descriptor of the
scene is learnt, we exploit a self-supervised framework based on stop gradient [6]

Fig. 3. Overview of GIPSO. A source pre-trained model FS selects seed pseudo-labels
through our adaptive-selection approach. An auxiliary model Faux extracts geometric
features to guide pseudo-label propagation. Ldice is minimised over the pseudo-labels
Y t
T . In parallel, semantic smoothness is enforced with Lreg over time. ( ) frozen param-

eters. ( ) learnable parameters.
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to ensure smoothness over time. Self-supervision through pseudo-label geometric
propagation and temporal regularization are concurrently optimized to achieve
the desired domain adaptation objective (Sect. 4.2).

Adaptive Pseudo-label Selection. An accurate selection of pseudo-labels is
key to reliably adapt a model. In dynamic real-world scenarios, where new struc-
tures appear/disappear in/from the LiDAR field of view, traditional pseudo-
labeling techniques [7,51] can suffer from unexpected variations of class distri-
butions, producing overconfident incorrect pseudo-labels and making more pop-
ulated classes prevail on others [72,73]. We overcome this problem by designing
a class-balanced adaptive-thresholding strategy to choose reliable pseudo-labels.
First, we compute an uncertainty index to filter out likely unreliable pseudo-
labels. Second, we apply a different threshold for each class based on the uncer-
tainty index distribution. This uncertainty index is directly related to the robust-
ness of the output class distribution for each point. Robust pseudo-labels can
be extracted from those points that consistently provide similar output distri-
butions under different dropout perturbations [27]. We found that this approach
works better than alternative confidence based approaches [72,73].

Given the point cloud Xt
T , we perform J iterations of inference with FS by

using dropout and obtain

ptT =
1
J

J∑

j=1

p
(
FS |Xt

T , dj
)
, (1)

Fig. 4. Example of geometric propagation: a) starting from seed pseudo-labels, b) geo-
metric features are used to expand labels toward geometrically consistent regions.

where ptT is the averaged output distribution of FS given Xt
T and dj , i.e. the

dropout at j-th iteration. We compute the uncertainty index νt
T as the variance

over the C classes of ptT as

νt
T = E

[(
ptT − μt

T
)2]

, (2)

where μt
T = E[ptT ] is the expected value of ptT . Then, we select the least uncertain

points by using a different uncertainty threshold for each class. Let λt
c be the

uncertainty threshold of class c at time t. Since νt
T defines the uncertainty for

each point, we group νt
T values per class and compute λt

c as the a-th percentile of
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νt
T for class c. Therefore, at time t and for class c, we select only those pseudo-

labels having the corresponding uncertainty index lower than λt
c and use the

corresponding pseudo-labels as seed pseudo-labels.

Geometric Pseudo-label Propagation. Typically, seed pseudo-labels are few
and uninformative for the adaptation of the target model – the deep network
is already confident about them. Therefore, we aim to propagate these pseudo-
labels to potentially informative points. This is challenging because the model
may drift during adaptation. We propose to use the features produced by an
auxiliary geometrically-informed encoder Faux to propagate seed pseudo-labels
to geometrically-similar points. Geometric features can be extracted using deep
networks that compute 3D local descriptors [1,15,41]. 3D local descriptors are
compact representations of local geometries with great generalization abilities
across domains. Our intuition is that, while the propagation in the metric space
may propagate only in the spatial neighborhood of seed pseudo-labels, the use of
geometric features would allow us to propagate to geometrically similar points,
which can be distant from their seeds in the metric space (Fig. 4).

Given a seed pseudo-labeled point x̃t ∈ Xt
T , we compute a set of geometric

similarities as
Gt
x̃ = ‖Faux(x̃t) − Faux(Xt

T )‖2, (3)

where || · ||2 is the l2-norm and Gt
x̃ is the set that contains the similarity values

between x̃t and all the other points of Xt
T (except x̃t). Then, we select the points

that correspond to top K values in Gt
x̃ and assign the pseudo-label of x̃t to them.

Let Y t
T be the final set of pseudo-labels that we use for fine-tuning our model.

Self-supervised Temporal Consistency Loss. While the vehicle moves, the
LiDAR sensor samples the environment from different viewpoints generating
point clouds with different point distributions due to clutter and/or occlusions.
As points of consecutive point clouds can be simply matched over time by using
the vehicle’s odometry [4,14], we can reasonably consider local variations of
point distributions as local augmentations with the same semantic information.
As a result, we can exploit recent self-supervised techniques to enforce temporal
smoothness of our semantic features.

We begin by computing the set of corresponding points between Xt−w
T and

Xt
T by using the vehicle’s odometry. Let Tt−w→t ∈ R

4×4 be the rigid transforma-
tion (from odometry) that maps Xt−w

T in the reference frame of Xt
T . We define

the set of corresponding point Ωt,t−w as

Ωt,t−w =
{
{xt ∈ Xt

T ,xt−w ∈ Xt−w
T } :

xt = NN
(
Tt−w→t ◦ xt−w,Xt

T
)
,

‖xt − xt−w‖2 < τ
}

, (4)

where NN(n,m) is the nearest-neighbour search given the set m and the query n,
◦ is the operator that applies Tt−w→t to a 3D point and τ is a distance threshold.

We adapt the self-supervised learning framework proposed in SimSiam [6] to
semantically smooth point clouds over time. We add an encoder network h(·)
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and a predictor head f(·) to the target model FT and minimize the negative
cosine similarity between consecutive semantic representations of corresponding
points. Let zt � h(xt) be the encoder features over the target backbone for xt

and let qt � f(h(xt)) be the respective predictor features. We minimize the
negative cosine similarity as

Dt→t−w(qt, zt−w) = − qt

‖qt‖2
· zt−w

‖zt−w‖2
(5)

Time consistency is symmetric in the backward direction, hence we use the
corresponding point of xt from Ωt,t−w and define our self-supervised temporal
consistency loss as

Lreg =
1
2
Dt→t−w(qt, zt−w) +

1
2
Dt−w→t(qt−w, zt) (6)

where stop-grad is applied on zt and zt−w.

4.2 Online Model Update

Classes are typically highly unbalanced in each point cloud, e.g., a pedestrian
class may be 1% the number of points of the vegetation class. To this end, we
use the soft Dice loss [25] as we found it works well when classes are unbalanced.
Let Ldice be our soft Dice loss that uses the pseudo-labels selected though Eq. 3
as supervision. We define the overall adaptation objective as Ltot = Ldice+Lreg,
where Lreg is our regularization loss defined in Eq. 6.

Table 2. Synth4D → SemanticKITTI online adaptation. Source: pre-trained source
model (lower bound). We report absolute mIoU for Source and mIoU relative to Source
for the other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.

Model SF UDA O Vehicle Pedestrian Road Sidewalk Terrain Manmade Vegetation Avg

Source 63.90 12.60 38.10 47.30 20.20 26.10 43.30 35.93

Target ✓ ✓ +16.84 +5.49 +8.48 +34.44 +51.92 +45.68 +39.09 +28.85

ADABN [32] ✓ ✓ −7.80 −2.00 −10.20 −18.60 −7.70 +5.80 −0.70 −5.89

RayCast [28] ✓ +3.80 −2.60 −3.10 −0.50 +7.30 +4.50 +0.20 +1.37

ProDA∗ ✓ ✓ ✓ −57.77 −12.34 −37.36 −46.95 −19.97 −25.62 −42.48 −34.64

SHOT∗ ✓ ✓ ✓ −62.44 −12.00 −28.27 −40.20 −20.00 −25.47 −42.55 −32.99

ONDA [38] ✓ ✓ ✓ −13.60 −1.70 −10.60 −20.00 −7.10 +3.90 −5.10 −7.74

CBST∗ ✓ ✓ ✓ −0.13 +0.58 −1.00 −1.12 +0.88 +1.69 +1.03 +0.28

TPLD∗ ✓ ✓ ✓ +0.36 +1.18 −0.76 −0.71 +0.95 +1.74 +1.15 +0.56

GIPSO (ours) ✓ ✓ ✓ +13.12 −0.54 +1.19 +2.45 +2.78 +5.64 +5.54 +4.31

5 Experiments

5.1 Experimental Setup

Source and Target Datasets. We pre-train our source models on Synth4D
and SynLiDAR [2], and validate our approach on the official validation sets of
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SemanticKITTI [3] and nuScenes [4] (target domains). In SemanticKITTI, we
use the sequence 08 that is composed of 4071 point clouds 10 Hz. In nuScenes,
we use 150 sequences, each composed of 40 point clouds 2 Hz.

Implementation Details. We use MinkowskiNet as deep network for point
cloud segmentation [8]. We use ADAM: initial learning rate of 0.01 with expo-
nential decay, batch-size 16 and weight decay 10−5. As auxiliary network Faux,
we use the PointNet-based architecture proposed in [41] trained on Synth4D
that outputs a geometric features (descriptor) for a given 3D point. For online
adaptation, we fix the learning rate to 10−3 and do not use schedulers as they
would require prior knowledge about the stream length. Because we adapt our
model on each new incoming point cloud, we use batch-size equal to 1. We set
J = 5, a = 1, τ = 0.3 cm and use 0.5 dropout probability. We set K = 10, w = 5
on SemanticKITTI, and K = 5, w = 1 on nuScenes. Parameters are the same in
all the experiments.

Evaluation Protocol. We follow the traditional evaluation procedure for online
learning methods [5,65], i.e., we evaluate the model performance on a new incom-
ing frame using the model adapted up to the previous frame. We compute the
Intersection over Union (IoU) [45] and report the average IoU (mIoU) improve-
ment over the source (averaged over all the target sequences). We also evaluate
the online version of our source model by fine-tuning it with ground-truth labels
for all the points in the scene (target). We also evaluate the target upper bound
(target) of our method obtained from the online finetuning of our source models
over labelled target point clouds.

5.2 Benchmarking Existing Methods for SF-OUDA

Because our approach is the first that specifically tackles SF-OUDA in the con-
text of 3D point cloud segmentation, we perform an in-depth analysis of the
literature to identify previous adaptation methods that can be re-purposed for
SF-OUDA. Additionally, we experimentally evaluate their effectiveness on the
considered datasets. We identify three categories of methods, as detailed below.

Batch normalization-based methods perform domain adaptation by consid-
ering different statistics for source and target samples within Batch Normaliza-
tion (BN) layers. Here, we consider ADABN [32] and ONDA [38]. ADABN [32]
is a source-free adaptation method which operates by updating the BN statistics
assuming that all target data are available (offline adaptation). ONDA [38] is
the online version of ADABN [32], where the target BN statistics are updated
online based on the target data within a mini-batch. This can be regarded as
a SF-OUDA method. However, these approaches are general-purpose methods
and have not been previously evaluated for 3D point cloud segmentation.

Prototype-based adaptation methods use class centroids, i.e. prototypes, to
generate target pseudo-labels that can be transferred to other samples via clus-
tering. We implement SHOT [33] and ProDA [66]. SHOT [33] exploits Informa-
tion Maximization (IM) to promote cluster compactness during offline adaptation.
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We implement SHOT by adapting the pre-trained model with the proposed IM
loss online on each incoming target point cloud. ProDA [66] adopts a centroid-
based weighting strategy to denoise target pseudo-labels, while also considering
supervision from source data. We adapt ProDA to SF-OUDA by applying the
same weighting strategy but removing source data supervision. We update tar-
get centroids at each incremental learning step. We refer to our SF-OUDA version
of SHOT and PRODA as SHOT∗ and ProDA∗, respectively.

Self-training-based methods exploit source model predictions to adapt on
the target domain by re-training the model. We implement CBST [72] and
TPLD [51]. CBST [72] relies on a prediction confidence to select the most reli-
able pseudo labels. A confidence threshold is computed offline for each target
class to avoid class unbalance. Our implementation of CBST, which we denote
as CBST∗, uses the same class balance selection strategy but updates the thresh-
olds online on each incoming frame. Moreover, no source data are considered as
we are in a SF-OUDA setting. TPLD [51], originally designed for 2D semantic
segmentation, uses the pseudo-label selection mechanism in [72] but introduces
a pixel pseudo label densification process. We implement TPLD by removing
source supervision and replace the densification procedure with a 3D spatial
nearest-neighbor propagation. Our version of TPLD is denoted as TPLD∗.

Besides re-purposing existing approaches for SF-OUDA, we also evaluate an
additional baseline, i.e. the rendering-based method RayCast [28]. This approach
is based on the idea that target-like data can be obtained with photorealistic
rendering applied to the source point clouds. Thus, adaptation is performed by
simply training on target-like data. While RayCast can be regarded as an offline
adaptation approach, we select it as it only requires the parameters of the real
sensor to obtain target-like data from source point clouds.

5.3 Results

Evaluating GIPSO. Tables 2, 3 and 4 report the results of our quanti-
tative evaluation in the cases of Synth4D → SemanticKITTI, Synlidar →
SemanticKITTI and Synth4D → nuScenes, respectively. The numbers in the

Table 3. SynLiDAR → SemanticKITTI online adaptation. Source: pre-trained source
model (lower bound). We report absolute mIoU for Source and mIoU relative to Source
for the other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.

Model SF UDA O Vehicle Pedestrian Road Sidewalk Terrain Manmade Vegetation Avg

Source 59.80 14.20 34.90 53.50 31.00 37.40 50.50 40.19

Target ✓ ✓ +21.32 +8.09 +11.51 +28.13 +40.46 +33.67 +30.63 +24.83

ADABN [32] ✓ ✓ +3.90 −6.40 −0.20 −3.70 −5.70 +1.40 +0.30 −1.49

RayCast [28] ✓ – – – – – – – –

ProDA∗ ✓ ✓ ✓ −53.30 −13.79 −33.83 −52.78 −30.52 −36.68 −49.29 −38.60

SHOT∗ ✓ ✓ ✓ −57.83 −12.64 −24.80 −46.02 −30.80 −36.83 −49.32 −36.89

ONDA [38] ✓ ✓ ✓ −2.90 −6.40 −2.20 −8.80 −7.60 −1.20 −6.70 −5.11

CBST∗ ✓ ✓ ✓ +0.99 −0.83 +0.55 +0.20 +0.74 −0.07 +0.38 +0.28

TPLD∗ ✓ ✓ ✓ +0.90 −0.48 +0.59 +0.33 +0.84 +0.07 +0.37 +0.37

GIPSO (ours) ✓ ✓ ✓ +13.95 −6.76 +3.26 +5.01 +3.00 +3.34 +4.08 +3.70
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Table 4. Synth4D → nuScenes online adaptation. Source: pre-trained source model
(lower bound). We report absolute mIoU for Source and mIoU relative to Source for
the other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.

Model SF UDA O Vehicle Pedestrian Road Sidewalk Terrain Manmade Vegetation Avg

Source 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75

Target ✓ ✓ +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

ADABN [32] ✓ ✓ +1.23 −2.74 −1.24 +0.14 +0.53 +0.70 +4.03 +0.38

RayCast [28] ✓ −1.36 −9.69 −3.53 −3.42 −2.77 −2.54 −0.91 −3.46

ProDA∗ ✓ ✓ ✓ +0.57 −1.40 +0.73 +0.09 +0.71 +0.40 +0.91 +0.29

SHOT∗ ✓ ✓ ✓ +0.82 −1.77 +0.68 −0.05 −0.70 −0.54 +1.09 −0.07

ONDA [38] ✓ ✓ ✓ +0.34 −1.90 −1.19 −0.62 +0.18 −0.40 +0.58 −0.43

CBST∗ ✓ ✓ ✓ +0.37 −2.61 −1.35 −0.79 +0.19 −0.36 −0.45 −0.71

TPLD∗ ✓ ✓ ✓ +0.65 −1.90 −0.96 −0.39 +0.43 +0.07 +0.86 −0.18

GIPSO (ours) ✓ ✓ ✓ +0.55 −3.76 +1.64 +1.72 +2.28 +1.18 +2.36 +0.85

tables indicate the improvement over the source model. GIPSO achieves an
average IoU improvement of +4.31 on Synth4D → SemanticKITTI, +3.70 on
Synlidar → SemanticKITTI and +0.85 on Synth4D → nuScenes. GIPSO out-
performs both offline and online methods by a large margin on Synth4D →
SemanticKITTI and Synlidar → SemanticKITTI, while it achieves a lower
improvement over Synth4D → nuScenes. On SemanticKITTI, GIPSO can effec-
tively improve road, sidewalk, terrain, manmade and vegetation. vehicle is the
best performing class, which can achieve a mIoU above +13. pedestrian is the
worst performing class on all the datasets. pedestrian is a challenging class
because it is significantly unbalanced compared to the others, also in the source
domain. Although we attempted to mitigate the problem of unbalanced classes
using adaptive thresholding and soft Dice loss, there are still situations that are
difficult to address (see Sect. 6 for details). On nuScenes, the improvement is
minor because at its lower resolutions makes patterns less distinguishable and
more difficult to segment.

Evaluating State-of-the-Art Methods. We also analyze the performance of
the existing methods discussed in Sect. 5.2. Batch-normalisation based methods
perform poorly on all the datasets, with only ADABN [32] showing a minor
improvement on nuScenes. We argue that non-i.i.d. batch samples arising in the
online setting are playing an important role in this degradation, as they can
have detrimental effects on models with BN layers [24]. SHOT∗ and ProDA∗

perform poorly in almost all the experiments, except on Synth4D → nuScenes
where ProDA∗ achieves +0.29. This minor improvement may be due to the short
sequences of nuScenes (40 frames) making centroids less likely to drift. This
does not occur in SemanticKITTI where the long sequence causes a rapid drift
(see detailed in Sect. 5.4). CBST∗ and TPLD∗ improve on SemanticKITTI and
perform poorly on nuScenes. This can be ascribed to the noisy pseudo-labels that
are selected using their confidence-based filtering approach. Lastly, RayCast [28]
achieves +1.37 on Synth4D → SemanticKITTI, but underperform on Synth4D
→ nuScenes with a degradation of −3.46. RayCast was originally proposed for
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Fig. 5. (a) Per-class improvement of GIPSO over time on Synth4D→SemanticKITTI.
(b) DB-Index over time on Synth4D→SemanticKITTI. The lower the DB-Index, the
better the class separation of the features.

real-to-real adaptation, therefore we believe that its performance may be affected
by the large difference in point cloud resolution between Synth4D and nuScenes.
RayCast underperforms GIPSO in the online setup, thus showing how offline
solutions can fail in dynamic domains. Note that RayCast cannot be evaluated
using Synlidar, because Synlidar does not provide odometry information.

5.4 In-Depth Analyses

Ablation Study. Table 5 shows the results of our ablation study on Synth4D
→ SemanticKITTI. When we use only the adaptive pseudo-label selection (A)
we can achieve +1.07 compared to the source. When we combine A with the
temporal regularization (T) we can further improve by +3.65. Then we can
achieve our best performance through the geometric propagation (P) of the
pseudo labels.

Oracle Study. We analyze the importance of using a reliable pseudo-label selec-
tion metric. Table 6 shows the pseudo-label accuracy as a function of the points
that are selected as the K-th best candidates based on the distance from their
centroids (as proposed in [66]), confidence (as proposed in [72]) and uncertainty
(ours). Centroid-based selection shows a low accuracy even at K = 1, which
tends to worsen as K increases. Confidence-based selection is more reliable than
the centroid-based selection. We found uncertainty-based selection to be more
reliable at smaller values of K, which we deem to be more important than having
more pseudo-labels but less reliable.

Per-Class Temporal Behavior. Figure 5a shows the mIoU over time for each
class on Synth4D → SemanticKITTI. We can observe that six out of seven classes
have a steady improvement: vehicle is the best performing class, followed by
vegetation and manmade. Drops in mIoU are typically due to sudden geometric
variations of the point cloud, e.g., a road junction after a straight road, or a
jammed road after a empty road. pedestrian confirms to be the most challenging
class.
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Table 5. Synth4D→SemanticKITTI
ablation study of GIPSO: (A) Adap-
tive thresholding; (A+T) A + Tempo-
ral consistency; (A+T+P) A+T + geo-
metric Propagation.

Source Target A A+T A+T+P

35.95 +28.85 +1.07 +3.65 +4.31

Table 6. Oracle study on Synth4D
→ SemanticKITTI that compares the
accuracy of different pseudo-label selec-
tion metrics: Centroid, Confidence and
Uncertainty.

Centroid Confidence Uncertainty

Top-1 38.1 66.7 76.1

Top-10 43.8 61.4 69.7

Temporal Compactness of Features. We assess how well points are orga-
nized in the feature space over time. We use the DB Index (DBI) that is typically
used in clustering to measures the feature intra- and inter-class distances [10].
The lower the DBI, the better the quality of the features. We use SHOT∗ and
ProDA∗ as comparisons with our method, and the source and target models
as references. Figure 5b shows the DBI variations over time. SHOT∗ behavior
is typical of a drift, as features of different classes become interwoven. ProDA∗

does not drift, but it produces features that are worse than the source model.
Our approach is between source and target models, with a tendency to get closer
to target.

Different 3D Local Descriptors. We assess the effectiveness of different 3D
local descriptors. We test FPFH [47] (handcrafted) and FCGF [9] (deep learn-
ing) descriptors. GIPSO achieves +3.56 mIoU with FPFH, +4.12 mIoU with
FCGF and +4.31 mIoU with DIP. This is inline with the experiments shown
in [42], where DIP shows a superior generalization capability across domains
than FCGF.

Performance with Global Features. We assess the GIPSO performance on
Synth4D→SemanticKITTI when the global temporal consistency loss proposed
in STRL [22] is used instead of our per-point loss (Eq. 5). This variation achieves
+1.74 mIoU, showing that per-point temporal consistency is key.

Qualitative Results. Figure 6 shows the comparison between GIPSO and the
source model on Synth4D→SemanticKITTI. The first row shows frame 178 of
SemanticKITTI with an improvement of +27.14 mIoU (large). The classes vehi-
cle, sidewalk and terrain are incorrectly segmented by the source model, we can
see a significant improvement in segmentation on these classes after adaptation.
The second and third rows show frame 1193 and frame 2625 with an improve-
ment of +10.00 mIoU (medium) and +4.99 mIoU (small). Improvements are
visible after adaptation in the classes vehicle, sidewalk and road. The last row
shows a segmentation drift for road that is caused by incorrect pseudo-labels.
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Fig. 6. Results on Synth4D→SemanticKITTI with three different ranges of mIoU
improvements, i.e., large (+27.2), medium (+10.0) and small (+5.1).

6 Discussions

Conclusions. We studied for the first time the problem of SF-OUDA for
3D point cloud segmentation in a synthetic-to-real setting. We experimentally
showed that existing approaches do not suffice in coping with domain shift in
this scenario. We presented GIPSO that relies on adaptive self-training and
geometric-features propagation to address SF-OUDA. We also introduced a
novel synthetic dataset, namely Synth4D composed of two splits and match-
ing the sensor setup of SemanticKITTI and nuScenes, respectively. Experiments
on three different benchmarks showed that GIPSO outperforms state-of-the-art
approaches.

Limitations. GIPSO limitations are related to geometric propagation and long-
tailed classes. If objects of different classes share similar geometric structures,
the geometric propagation may be deleterious. This can be mitigated by using



582 C. Saltori et al.

another sensor modality (e.g. RGB) or by accounting for multi-scale signals to
exploit context information. If severe class unbalance occurs, semantic segmenta-
tion accuracy may be affected, e.g. pedestrian class in Tables 2, 3 and 4. This can
be mitigated by re-weighting the loss through a class-balanced term (computed
on the source).
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