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Abstract. Many hand-held or mixed reality devices are used with a
single sensor for 3D reconstruction, although they often comprise mul-
tiple sensors. Multi-sensor depth fusion is able to substantially improve
the robustness and accuracy of 3D reconstruction methods, but existing
techniques are not robust enough to handle sensors which operate with
diverse value ranges as well as noise and outlier statistics. To this end, we
introduce SenFuNet,- a depth fusion approach that learns sensor-specific
noise and outlier statistics and combines the data streams of depth
frames from different sensors in an online fashion. Our method fuses
multi-sensor depth streams regardless of time synchronization and cali-
bration and generalizes well with little training data. We conduct exper-
iments with various sensor combinations on the real-world CoRBS and
Scene3D datasets, as well as the Replica dataset. Experiments demon-
strate that our fusion strategy outperforms traditional and recent online
depth fusion approaches. In addition, the combination of multiple sen-
sors yields more robust outlier handling and more precise surface recon-
struction than the use of a single sensor. The source code and data are
available at https://github.com/tfy14esa/SenFuNet.

1 Introduction

Real-time online 3D reconstruction has become increasingly important with the
rise of applications like mixed reality, autonomous driving, robotics, or live 3D
content creation via scanning. The majority of 3D reconstruction hardware plat-
forms like phones, tablets, or mixed reality headsets contain a multitude of sen-
sors, but few algorithms leverage them jointly to increase their accuracy, robust-
ness, and reliability. For instance, the HoloLens2 has four tracking cameras and a
depth camera for mapping. Neither is its depth camera used for tracking, nor are
the tracking cameras used for mapping. Fusing the data from multiple sensors
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Fig. 1. Online multi-sensor depth map fusion. We fuse depth streams from a time-
of-flight (ToF) camera and multi-view stereo (MVS) depth. Compared to competitive
depth fusion methods such as TSDF Fusion and RoutedFusion, our learning-based
approach can handle multiple depth sensors and significantly reduces the amount of
outliers without loss of completeness.

is challenging since different sensors typically operate in different domains, have
diverse value ranges as well as noise and outlier statistics. This diversity is, how-
ever, what motivates sensor fusion. For example, RGB stereo cameras typically
have a larger field of view and higher resolution than time-of-flight (ToF) cam-
eras, but typically struggle on homogeneously textured surfaces. ToF cameras
perform well regardless of texture, but show performance drops around edges.
Fig. 1 shows the online fusion result of a ToF camera and a multi-view stereo
(MVS) depth sensor. Both traditional and recent learning-based techniques such
as TSDF Fusion [11] and RoutedFusion [54] respectively, reveal a high degree of
noise and outliers when fusing multi-sensor depth. Although other recent works
tackle depth map fusion [23,50,55,56] with learning techniques, there is yet no
work that considers multiple sensors for online dense reconstruction.

In this paper, we present an approach for sensor fusion (SenFuNet) which
jointly learns (1) the iterative online fusion of depth maps from a single sensor
and (2) the effective fusion of depth data from multiple different sensors. During
training, our method learns relevant sensor properties which impact the recon-
struction accuracy to locally emphasize the better sensor for particular input
and geometry configurations (see Fig. 1). We demonstrate with multiple sensor
combinations that the learned sensor weighting is generic and can also be used
as an expert system, e.g. for fusing the results of different stereo methods. In
this case, our method predicts which algorithm performs better on which part of
the scene. Since our approach handles time asynchronous sensor inputs, it is also
applicable to collaborative multi-agent reconstruction. Our contributions are:

– Our approach learns location-dependent fusion weights for the individual sen-
sor contributions according to learned sensor statistics. For various sensor
combinations our method extracts multi-sensor results that are consistently
better than those obtained from the individual sensors.

– Our pipeline is end-to-end trained in an online manner, is light-weight, real-
time capable and generalizes well even for small amounts of training data.

– In contrast to early fusion approaches which directly fuse depth values and
thus generally assume a time synchronized sensor setup, our approach is flex-
ible and can fuse the recovered scene reconstruction from asynchronous sen-
sors. Our system is therefore more robust (compared to early fusion) to sensor
differences such as sampling frequency, pose and resolution differences.
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2 Related Work

In this section, we discuss dense online 3D reconstruction, multi-sensor depth
fusion and multi-sensor dense 3D reconstruction.

Dense Online 3D Scene Reconstruction. The foundation for many volu-
metric online 3D reconstruction methods via truncated signed distance func-
tions (TSDF) was laid by Curless and Levoy [11]. Popular extensions of this
seminal work are KinectFusion [24] and scalable generalizations with voxel hash-
ing [25,38,39], octrees [48], or increased pose robustness via sparse image fea-
tures [5]. Further extensions include tracking for Simultaneous Localization and
Mapping (SLAM) [37,47,50,60] which potentially also handle loop closures,
e.g. BundleFusion [12]. To account for greater depth noise, RoutedFusion [54]
learns online updates of the volumetric grid. NeuralFusion [55] extends this idea
by additionally learning the scene representation which significantly improves
robustness to outliers. DI-Fusion [23], similarly to [55], learns the scene repre-
sentation, but additionally decodes a confidence of the signed distance per voxel.
Continual Neural Mapping [56] learns a continuous scene representation through
a neural network from sequential depth maps. Several recent works do not require
depth input and instead perform online reconstruction from RGB-cameras such
as Atlas [35], VolumeFusion [9], TransformerFusion [4] and NeuralRecon [51].
None of these approaches consider multiple sensors and their extensions to
sensor-aware data fusion is often by no means straightforward. Nevertheless,
by treating all sensors equally, they can be used as baseline methods.

The majority of the aforementioned traditional methods do not properly
account for varying noise and outlier levels for different depth values, which
are better handled by probabilistic fusion methods [15–17,28]. Cao et al. [7]
introduced a probabilistic framework via a Gaussian mixture model into a surfel-
based reconstruction framework to account for uncertainties in the observed
depth. For a recent survey on online RGB-D 3D scene reconstruction, readers
are referred to [61]. Overall, none of the state-of-the-art methods for dense online
3D scene reconstruction consider multiple sensors.

Multi-sensor Depth Fusion. The task of fusing depth maps from diverse
sensors has been studied extensively. Many works study the fusion of a specific
set of sensors. For example, RGB stereo and time-of-flight (ToF) [1,2,10,13,14,
18,33,52], RGB stereo and Lidar [31], RGB and Lidar [40,41,44], RGB stereo
and monocular depth [34] and the fusion of multiple RGB stereo algorithms [42].
All these methods only study a specific set of sensors, while we do not enforce
such a limitation. Few works study the fusion of arbitrary depth sensors [43].
Contrary to our method, all methods performing depth map fusion assume time
synchronized sensors, which is hard, if not impossible, to achieve with realistic
multi-sensor equipment.

Multi-sensor Dense 3D Reconstruction. Some works consider the prob-
lem of offline multi-sensor dense 3D reconstruction. For example, depth map
fusion for semantic 3D reconstruction [45], combining multi-view stereo with a
ToF sensor in a probabilistic framework [27], the combination of a depth sensor
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Fig. 2. SenFuNet Architecture. Given a depth stream Di
t, with known camera

poses, our method fuses each frame at time t from sensor i into global sensor-specific
shape Si

t and feature F i
t grids. The Shape Integration Module fuses the frames into

Si
t = {V i

t , W i
t } consisting of a TSDF grid V i

t and a weight counter grid W i
t . In parallel,

the Feature Integration Layer extracts features from the depth maps using a 2D
Feature Network F i and integrates them into the feature grid F i

t . Next, Si
t and F i

t are
combined and decoded through a 3D Weighting Network G into a sensor weighting
α ∈ [0, 1]. Together with Si

t and α, the Fusion Module computes the fused grid Vt

at each voxel location.

with photometric stereo [6] and large scene reconstruction using unsynchronized
RGBD cameras mounted on an indoor robot [57]. These offline methods do not
address the online problem setting that we are concerned with. Some works use
sensor fusion to achieve robust pose estimation in an online setting [20,58]. In
contrast to our method, these works do not leverage sensor fusion for mapping.
Ali et al. [3] present an online framework which perhaps is most closely related
to our work. They take Lidar and stereo depth maps as input and fuse the TSDF
signals of both sensors with a linear average before updating the global grid using
TSDF Fusion [11]. To reduce noise further, they optimize a least squares prob-
lem which encourages surface smoothing. Contrary to our method, no learning
is used and their system is only designed to fuse stereo depth with Lidar.

3 Method

Overview. Given multiple noisy depth streams Di
t : R

2 → R from different
sensors with known camera calibration, i.e. extrinsics P i

t ∈ SE(3) and intrinsics
Ki ∈ R

3×3, our method integrates each depth frame at time t ∈ N from sensor
i ∈ {1, 2} into a globally consistent shape Si

t and feature F i
t grid. Through a

series of operations, we then decode Si
t and F i

t into a fused TSDF grid Vt ∈
R

X×Y ×Z , which can be converted into a mesh with marching cubes [29]. Our
overall framework can be split into four components (see Fig. 2). First, the Shape
Integration Module integrates depth frames Di

t successively into the zero-
initialized shape representation Si

t = {V i
t ,W i

t }. Si
t consists of a TSDF grid V i

t ∈
R

X×Y ×Z and a corresponding weight grid W i
t ∈ N

X×Y ×Z , which keeps track
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of the number of updates to each voxel. In parallel, the Feature Integration
Layer extracts features from the depth maps using a 2D feature network F i :
Di

t ∈ R
W×H×1 → f i

t ∈ R
W×H×n, with n being the feature dimension. We use

separate feature networks per sensor to learn sensor-specific depth dependent
statistics such as shape and edge information. The extracted features f i

t are
then integrated into the zero-initialized feature grid F i

t ∈ R
X×Y ×Z×n. Next,

Si
t and F i

t are combined and decoded through a 3D Weighting Network G
into a location-dependent sensor weighting α ∈ [0, 1]. Together with Si

t and
α, the Fusion Module fuses the information into Vt at each voxel location.
Key to our approach is the separation of per sensor information into different
representations along with the successive aggregation of shapes and features in
the 3D domain. This strategy enables G to learn a fusion strategy of the incoming
multi-sensor depth stream. Our method is able to fuse the sensors in a spatially
dependent manner from a smooth combination to a hard selection as illustrated
in Fig. 3. Our scheme hence avoids the need to perform post-outlier filtering by
thresholding with the weight W i

t , which is difficult to tune and is prone to reduce
scene completion [54]. Another popular outlier filtering technique is free-space
carving1, but this can be computationally expensive and is not required by our
method. Instead, we use the learned α as part of an outlier filter at test time,
requiring no manual tuning. Next, we describe each component in detail.

Fig. 3. Overview. Left to right: Sequential
fusion of a multi-sensor noisy depth stream. Our
method integrates each depth frame at time t
and produces a sensor weighting which fuses the
sensors in a spatially dependent manner. For
example, areas in yellow denote high trust of
the ToF sensor.

(a) Shape Integration Mod-
ule. For each depth map Di

t and
pixel, a full perspective unpro-
jection of the depth into the
world coordinate frame yields a
3D point xw ∈ R

3. Along each ray
from the camera center, centered
at xw, we sample T points uni-
formly over a predetermined dis-
tance l. The coordinates are then
converted to the voxel space and a
local shape grid Si,∗

t−1 is extracted
from Si

t−1 through nearest neigh-
bor extraction. To incrementally
update the local shape grid, we
follow the moving average update
scheme of TSDF Fusion [11]. For
numerical stability, the weights
are clipped at a maximum weight
ωmax. For more details, see the
suppl. material.

1 Enforcing free space for voxels along the ray from the camera to the surface [36].
Note that outliers behind surfaces are not removed with this technique.
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(b) Feature Integration Layer. Each depth map Di
t is passed through a

2D network F i to extract context information f i
t , which can be useful during

the sensor fusion process. When fusing sensors based on the stereo matching
principle, we provide the RGB frame as additional input channels to F i. The
network is fully convolutional and comprises 7 network blocks, each consisting
of the following operations, 1) a 3 × 3 convolution with zero padding 1 and
input channel dimension 4 and output dimension 4 (except the first block which
takes 1 channel as input when only depth is provided), 2) a tanh activation, 3)
another 3 × 3 convolution with zero padding 1 outputting 4 channels and 4) a
tanh activation. The output of the first six blocks is added to the output of the
next block via residual connections. Finally, we normalize the feature vectors at
each pixel location and concatenate the input depth.

Next, we repeat the features T times along the direction of the viewing ray
from the camera, f i

t
Repeat−−−−−→
T times

f i,T
t ∈ R

W×H×T×n. The local feature grid F i,∗
t−1 is

then updated using the precomputed update indices from the Shape Integration

Module with a moving average update: F i,∗
t =

W i,∗
t−1F i,∗

t−1+fi,T
t

W i,∗
t−1+1

. For all update

locations the grid F i
t is replaced with F i,∗

t .

(c) Weighting Network. The task of the weighting network G is to predict the
optimal fusion strategy of the surface hypotheses V i

t . The input to the network
is prepared by first concatenating the features F i

t and the tanh-transformed
weight counters W i

t and second by concatenating the resulting vectors across
the sensors. Due to memory constraints, the entire scene cannot be fit onto the
GPU, and hence we use a sliding-window approach at test time to feed G chunks
of data. First, the minimum bounding grid of the measured scene (i.e. where
W i

t > 0) is extracted from the global grids. Then, the extracted grid is parsed
using chunks of size d × d × d through G : R

d×d×d×2(n+1) → α ∈ R
d×d×d×1

into α ∈ [0, 1]. To avoid edge effects, we use a stride of d/2 and update the
central chunk of side length d/2. The architecture of G combines 2 layers of 3D-
convolutions with kernel size 3 and replication padding 1 interleaved with ReLU
activations. The first layer outputs 32 and the second layer 16 channels. Finally,
the 16-dimensional features are decoded into the sensor weighting α by a 1×1×1
convolution followed by a sigmoid activation.

(d) Fusion Module. The task of the fusion module is to combine α with the
shapes Si

t . In the following, we define the set of voxels where only sensor 1
integrates as C1 = {W 1

t > 0, W 2
t−1 = 0}, the set where only sensor 2 integrates

as C2 = {W 1
t = 0, W 2

t−1 > 0} and the set where both sensors integrate as
C12 = {W 1

t > 0, W 2
t−1 > 0}. Let us also introduce α1 = α and α2 = 1 − α. The

fusion module computes the fused grid Vt as

Vt =

⎧
⎪⎨

⎪⎩

α1V
1
t + α2V

2
t−1 if C12

V 1
t if C1

V 2
t−1 if C2.

(1)
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Depending on the voxel set, Vt is computed either as a weighted average of the
two surface hypotheses or by selecting one of them. With only one sensor obser-
vation, a weighted average would corrupt the result. Hence, the single observed
surface is selected. At test time, we additionally apply a learned Outlier Filter
which utilizes αi and W i

t . The filter is formulated for sensors 1 and 2 as

Ŵ 1
t = 1{C1, α1>0.5}W 1

t , Ŵ 2
t−1 = 1{C2, α2>0.5}W 2

t−1, (2)

where 1{.} denotes the indicator function2. When only one sensor is observed at
a certain voxel, we remove the observation if αi, which could be interpreted as
a confidence, is below 0.5. This is done by setting the weight counter to 0.

Loss Function. The full pipeline is trained end-to-end using the overall loss

L = Lf + λ1

2∑

i=1

Lin
Ci + λ2

2∑

i=1

Lout
Ci . (3)

The term Lf computes the mean L1 error to the ground truth TSDF masked
by C12 (4). To supervise the voxel sets C1 and C2, we introduce two additional
terms, which penalize L1 deviations from the optimal α. The purpose of these
terms is to provide a training signal for the outlier filter. If the L1 TSDF error
is smaller than some threshold η, the observation is deemed to be an inlier, and
the corresponding confidence αi should be 1, otherwise 0. The loss is computed
as the mean L1 error to the optimal α:

Lf =
1

NC12

∑
1{C12}|Vt − V GT |1, Lin

Ci =
1

N in
Ci

∑
1{Ci, |Vt−V GT |1<η}|αi − 1|1,

Lout
Ci =

1
Nout

Ci

∑
1{Ci, |Vt−V GT |1>η}|αi|1, (4)

where the normalization factors are defined as

NC12 =
∑

1{C12}, N in
Ci =

∑
1{Ci, |Vt−V GT |1<η},

Nout
Ci =

∑
1{Ci, |Vt−V GT |1>η}. (5)

Training Forward Pass. After the integration of a new depth frame Di
t into the

shape and feature grids, the update indices from the Shape Integration Module
are used to compute the minimum bounding box of update voxels in Si

t and F i
t .

The update box varies in size between frames and cannot always fit on the GPU.
Due to this and for the sake of training efficiency, we extract a d×d×d chunk from
within the box volume. The chunk location is randomly selected using a uniform
distribution along each axis of the bounding box. If the bounding box volume
is smaller along any dimension than d, the chunk shrinks to the minimum size
along the affected dimension. To maximize the number of voxels that are used
to train the networks F i, we sample a chunk until we find one with at least 2000
2 See supplementary material for a definition.
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update indices. At most, we make 600 attempts. If not enough valid indices are
found, the next frame is integrated. The update indices in the chunk are finally
used to mask the loss. We randomly reset the shape and feature grids with a
probability of 0.01 at each frame integration to improve training robustness.

4 Experiments

We first describe our experimental setup and then evaluate our method against
state-of-the-art online depth fusion methods on Replica, the real-world CoRBS
and the Scene3D datasets. All reported results are averages over the respective
test scenes. Further experiments and details are in the supplementary material.

Implementation Details. We use ωmax = 500 and extract T = 11 points along
the update band l = 0.1 m. We store n = 5 features at each voxel location and
use a chunk side length of d = 64. For the loss (3) λ1 = 1/60, λ2 = 1/600 and
η = 0.04 m. In total, the networks of our model comprise 27.7K parameters,
where 24.3K are designated to G and the remaining parameters are split equally
between F1 and F2. For our method and all baselines, the image size is W =
H = 256, the voxel size is 0.01 m and we mask the 10 pixel border of all depth
maps to avoid edge artifacts, i.e. pixels belonging to the mask are not integrated
into 3D. Since our TSDF updates cannot be larger than 0.05 m, we truncate the
ground truth TSDF grid at l/2 = 0.05 m.

Evaluation Metrics. The TSDF grids are evaluated using the Mean Absolute
Distance (MAD), Mean Squared Error (MSE), Intersection over Union (IoU)
and Accuracy (Acc.). The meshes, produced by marching cubes [29] from the
TSDF grids, are evaluated using the F-score which is the harmonic mean of the
Precision (P) and Recall (R).

Baseline Methods. Since there is no other multi-sensor online 3D reconstruc-
tion method that addresses the same problem, we define our own baselines by
generalizing single sensor fusion pipelines to multiple sensors. TSDF Fusion [11]
is the gold standard for fast, dense mapping of posed depth maps. It generalizes
to the multi-sensor setting effortlessly by integrating all depth frames into the
same TSDF grid at runtime. RoutedFusion [54] extends TSDF Fusion by learning
the TSDF mapping. We generalize RoutedFusion to multiple sensors by feeding
all depth frames into the same TSDF grid, but each sensor is assigned a sep-
arate fusion network to account for sensor-dependent noise3. NeuralFusion [55]
extends RoutedFusion for better outlier handling, but despite efforts and help
from the authors, the network did not converge during training due to heavy
loss oscillations caused by integrating different sensors. DI-Fusion [23] learns the
scene representation and predicts the signed distance value as well as the uncer-
tainty σ per voxel. We use the provided model from the authors and integrate all
frames from both sensors into the same volumetric grid. In the following, we refer

3 Additionally, we tweak the original implementation to get rid of outliers. See sup-
plementary material.
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to each multi-sensor baseline by using the corresponding single sensor name. For
additional comparison, when time synchronized sensors with ground truth depth
are available, we train a so-called “Early Fusion” baseline by fusing the 2D depth
frames of both sensors. The fusion is performed with a modified version of the
2D denoising network proposed by Weder et al. [54] followed by TSDF Fusion
to attain the 3D model (see supplementary material). This baseline should be
interpreted as a light-weight alternative to our proposed SenFuNet, but assumes
synchronized sensors, which SenFuNet does not. Finally, for the single-sensor
results, we evaluate the TSDF grids V i

t . To make the comparisons fair, we do
not use weight counter thresholding as post-outlier filter for any method. For
DI-Fusion, we filter outliers by thresholding the learned voxel uncertainty. The
default value provided in the implementation is used.

Table 1. Replica Dataset. ToF+PSMNet Fusion. (a) Our method outperforms
the baselines as well as both of the sensor inputs and sets a new state-of-the-art for
multi-sensor online depth fusion. (b) The denoising network mitigates outliers along
planar regions, compare to Table 1a. Our method even outperforms the Early Fusion
baseline, which assumes synchronized sensors.

MSE↓ MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
Model

Metric

*e-04 *e-02 [0,1] [%] [%] [%] [%]

Single Sensor

PSMNet [8] 7.30 1.95 0.664 83.23 56.20 43.10 81.34

ToF [21] 7.48 1.99 0.664 83.65 58.52 45.84 84.85

Multi-Sensor Fusion

TSDF Fusion [11] 8.20 2.11 0.669 84.09 49.58 35.33 85.44

RoutedFusion [54] 5.62 1.66 0.735 87.22 61.08 49.51 79.92

DI-Fusion [23] σ=0.15 - - - - 48.39 34.24 85.29

SenFuNet (Ours) 4.65 1.54 0.753 88.05 69.29 62.05 79.81

(a) Without depth denoising.

MSE↓ MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
Model

Metric

*e-04 *e-02 [0,1] [%] [%] [%] [%]

Single Sensor

PSMNet [8] 6.35 1.77 0.673 84.54 60.28 48.26 80.41

ToF [21] 5.08 1.58 0.709 87.32 68.93 59.01 83.08

Multi-Sensor Fusion

TSDF Fusion [11] 6.40 1.80 0.681 85.31 52.93 38.95 84.60

RoutedFusion [54] 6.04 1.68 0.644 85.10 62.67 51.75 79.52

Early Fusion 6.40 1.40 0.760 89.02 74.60 67.46 83.47

DI-Fusion [23] σ=0.15 - - - - 55.66 41.49 85.33

SenFuNet (Ours) 3.49 1.31 0.761 89.61 76.47 73.58 79.77

(b) With depth denoising

Fig. 4. Replica Dataset. Our method fuses the sensors consistently better than the
baselines. Concretely, our method learns to detect and remove outliers much more effec-
tively (best viewed on screen). Top row: ToF+PSMNet Fusion without denoising. See
also Table 1a. Bottom row: ToF+PSMNet Fusion with denoising. See also Table 1b.

4.1 Experiments on the Replica Dataset

The Replica dataset [49] comprises high-quality 3D reconstructions of a variety
of indoor scenes. We collect data from Replica to create a multi-sensor dataset
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suitable for depth map fusion. To prepare ground truth signed distance grids,
we first make the 3D meshes watertight using screened Poisson surface recon-
struction [26]. The meshes are then converted to signed distance grids using a
modified version of mesh-to-sdf4 to accommodate non-cubic voxel grids. Ground
truth depth and an RGB stereo pair are extracted using AI Habitat [32] along
random trajectories. In total, we collected 92698 frames. We use 7 training and 3
test scenes. We simulate a depth sensor by adding noise to the GT depth of the
left stereo view. Correspondingly, from the RGB stereo pairs a left stereo view
depth map can be predicted using (optionally multi-view) stereo algorithms. In
the following, we construct two sensor combinations and evaluate our model.

ToF+PSMNet Fusion. We simulate a ToF sensor by adding realistic noise to
the ground truth depth maps5 [21]. To balance the two sensors, we increase the
noise level by a factor 5 compared to the original implementation. We simulate
another depth sensor from the RGB stereo pair using PSMNet [8]. We train the
network on the Replica train set and keep it fixed while training our pipeline.
Table 1a shows that our method outperforms both TSDF Fusion, RoutedFusion
and DI-Fusion on all metrics except Recall with at least 13% on the F-score.
Additionally, the F-score improves with a minimum of 18% compared to the
input sensors. Specifically, note the absence of outliers (colored yellow) in Fig. 4
Top row when comparing our method to TSDF Fusion. Also note the sensor
weighting e.g. we find lots of noise on the right wall of the ToF scene and thus,
our method puts more weight on the stereo sensor in this region.

Weder et al. [54] showed that a 2D denoising network (called routing net-
work in the paper) that preprocesses the depth maps can improve performance
when noise is present in planar regions. To this end, we train our own denois-
ing network on the Replica train set and train a new model which applies a
fixed denoising network. According to Table 1, this yields a gain of 10% on the
F-score of the fused model compared to without using a denoising network, see
also Fig. 4 Bottom row. Early Fusion is a strong alternative to our method when
the sensors are synchronized. We want to highlight, however, that the resource
overhead of our method is worthwhile since we outperform Early Fusion even in
the synchronized setting.

Table 2. Time Asynchronous Evaluation. Sen-
FuNet outperforms Early Fusion for sensors with dif-
ferent sampling frequencies. *With depth denoising.

MSE↓ MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
Model

Metric
*e-04 *e-02 [0,1] [%] % [%] [%]

Early Fusion 7.66 1.99 0.642 84.65 61.34 48.47 83.63
SenFuNet (Ours) 4.21 1.45 0.755 88.26 73.04 69.13 78.43
SenFuNet (Ours)* 3.15 1.23 0.760 89.52 79.26 79.91 78.79

Time Asynchronous Eval-
uation. RGB cameras often
have higher frame rates than
ToF sensors which makes
Early Fusion more challeng-
ing as one sensor might lack
new data. We simulate this
setting by giving the PSMNet
sensor twice the sampling rate
of the ToF sensor, i.e. we drop every second ToF frame. To provide a correspond-

4 https://github.com/marian42/mesh to sdf.
5 http://redwood-data.org/indoor/dataset.html.

https://github.com/marian42/mesh_to_sdf
http://redwood-data.org/indoor/dataset.html
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ing ToF frame for Early Fusion, we reproject the latest observed ToF frame into
the current view of the PSMNet sensor. As demonstrated in Table 2 the gap
between our SenFuNet late fusion approach and Early Fusion becomes even
larger (cf. Table 1 (b)).

Table 3. Replica Dataset. SGM+PSMNet Fusion. Our method does not assume
a particular sensor pairing and works well for all tested sensors. The gain from the
denoising network is marginal with a 2% F-score improvement since there are few
outliers on planar regions of the stereo depth maps and the denoising network over-
smooths the depth along discontinuities. Our method outperforms Early Fusion (which
generally assumes synchronized sensors) on most metrics even without depth denoising.

MSE↓ MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
Model

Metric

*e-04 *e-02 [0,1] [%] [%] [%] [%]

Single Sensor

PSMNet [8] 7.30 1.95 0.664 83.23 56.20 43.10 81.34

SGM [22] 8.90 2.17 0.610 81.48 57.71 44.40 84.08

Multi-Sensor Fusion

TSDF Fusion [11] 9.17 2.24 0.634 82.62 47.75 33.39 85.10

RoutedFusion [54] 7.11 1.82 0.671 84.63 60.31 48.47 80.21

DI-Fusion [23] σ=0.15 - - - - 47.29 32.92 85.14

SenFuNet (Ours) 4.77 1.56 0.738 87.62 69.83 63.20 79.12

(a) Without depth denoising

MSE↓ MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
Model

Metric

*e-04 *e-02 [0,1] [%] [%] [%] [%]

Single Sensor

PSMNet [8] 6.35 1.77 0.673 84.54 60.28 48.26 80.41

SGM [22] 6.60 1.80 0.659 84.29 60.79 49.78 78.13

Multi-Sensor Fusion

TSDF Fusion [11] 7.28 1.93 0.669 84.74 54.09 40.45 81.65

RoutedFusion [54] 8.09 2.05 0.580 80.18 59.88 47.13 82.12

Early Fusion 4.99 1.51 0.707 86.99 69.40 61.07 80.36

DI-Fusion [23] σ=0.15 - - - - 52.65 38.50 83.62

SenFuNet (Ours) 4.04 1.41 0.737 88.11 71.18 66.81 76.27

(b) With depth denoising

SGM+PSMNet Fusion. Our method does not assume a particular sensor
pairing. We show this, by replacing the ToF sensor with a stereo sensor acquired
using semi-global matching [22]. In Table 3, we show state-of-the-art sensor fusion
performance both with and without a denoising network. The denoising network
tends to over-smooth depth discontinuities, which negatively affects performance
when few outliers exist. Additionally, even without using a denoising network,
we outperform Early Fusion on most metrics. TSDF Fusion, RoutedFusion and
DI-Fusion aggregate outliers across the sensors leading to worse performance
than the single sensor results.

4.2 Experiments on the CoRBS Dataset

The real-world CoRBS dataset [53] provides a selection of reconstructed objects
with very accurate ground truth 3D and camera trajectories along with a
consumer-grade RGBD camera. We apply our method to the dataset by training
a model on the desk scene and testing it on the human scene. The procedure to
create the ground truth signed distance grids is identical to the Replica dataset.
We create an additional depth sensor along the ToF depth using MVS with
COLMAP [46]6. Fig. 5 shows that our model can fuse very imbalanced sensors
while the baseline methods fail severely. Even if one sensor (MVS) is significantly
worse, our method still improves on most metrics. This confirms that our method
learns to meaningfully fuse the sensors even if one sensor adds very little.

6 Unfortunately, no suitable public real 3D dataset exists, which comprises binocular
stereo pairs, and an active depth sensor, as well as ground truth geometry.
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4.3 Experiments on the Scene3D Dataset

We demonstrate that our framework can fuse imbalanced sensors on room-sized
real-world scenes using the RGBD Scene3D dataset [59]. The Scene3D dataset
comprises a collection of 3D models of indoor and outdoor scenes. We train our
model on the stonewall scene and test it on the copy room scene. To create
the ground truth training grid, we follow the steps outlined previously except
that it was not necessary to make the mesh watertight. We fuse every 10th
frame during train and test time. Equivalent to the study on CoRBS, we create
an MVS depth sensor using COLMAP and perform ToF and MVS fusion. We
only integrate MVS depth in the interval [0.5, 3.0] m. Table 4a along with Fig. 6
Top row shows that our method yields a fused result better than the individual
input sensors and the baseline methods. Further, Fig. 1 shows our method in
comparison with TSDF Fusion [11] and RoutedFusion [54] on the lounge scene.

Fig. 5. CoRBS Dataset. ToF+MVS Fusion. Our model can find synergies between
very imbalanced sensors. (a) The numerical results show that our fused model is better
than the individual depth sensor inputs and significantly better than any of the baseline
methods. (b) Contrary to our method, the baseline methods cannot handle the high
degree of outliers from the MVS sensor.

Fig. 6. Top row: Our method effectively fuses the ToF and MVS sensors. Note specif-
ically the absence of yellow outliers in the corner of the bookshelf. See also Table 4a.
Bottom row: Multi-Agent ToF Reconstruction. Our method is flexible and can per-
form Multi-Agent reconstruction. Note that our model learns where to trust each agent
at different spatial locations for maximum completeness, while also being noise aware.
See for instance the left bottom corner of the bookshelf where both agents integrate,
but the noise-free agent is given a higher weighting. The above scene is taken from the
Scene3D Dataset [59] (best viewed on screen). See also Table 4b.
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Table 4. Scene3D Dataset. (a) ToF+MVS
Fusion. Our method outperforms the baselines on
real-world data on a room-sized scene. (b) Multi-
Agent ToF Reconstruction. Our method is flexi-
ble and can perform collaborative sensor fusion from
multiple sensors with different camera trajectories.

Model F↑ [%] P↑ [%] R↑ [%]
Single Sensor

MVS [46] 44.26 32.08 71.33
ToF 90.73 85.53 96.61

Multi-Sensor Fusion
TSDF Fusion [11] 54.77 38.11 97.29
RoutedFusion [54] 53.98 37.73 94.86
DI-Fusion [23] σ=0.15 48.84 32.50 98.24
SenFuNet (Ours) 93.39 91.28 95.60

(a)

Model F↑ [%] P↑ [%] R↑ [%]
Single Sensor

ToF 1 84.68 89.92 80.01
ToF 2 77.77 79.65 75.97

Multi-Sensor Fusion
TSDF Fusion [11] 90.73 85.53 96.61
RoutedFusion[54] 84.11 74.16 97.14
DI-Fusion [23] σ=0.15 86.31 77.27 97.74
SenFuNet (Ours) 93.73 91.56 96.00

(b)

Multi-agent ToF Fusion.
Our method is not exclu-
sively applicable to sensor
fusion, but more flexible. We
demonstrate this by formulat-
ing a Multi-Agent reconstruc-
tion problem, which assumes
that two identical ToF sensors
with different camera trajec-
tories are provided. The task
is to fuse the reconstructions
from the two agents. This
requires an understanding of
when to perform sensor selection for increased completeness and smooth fusion
when both sensors have registered observations. Note that this formulation is dif-
ferent from typical works on collaborative 3D reconstruction e.g. [19] where the
goal is to align 3D reconstruction fragments to produce a complete model. In our
Multi-Agent setting, the alignment is given and the task is instead to perform
data fusion on the 3D fragments. No modification of our method is required to
perform this task. We set λ1 = 1/1200 and λ2 = 1/12000 and split the original
trajectory into 100 frame chunks that are divided between the agents. Table 4b
and Fig. 6 Bottom row show that our method effectively fuses the incoming data
streams and yields a 4% F-score gain on the TSDF Fusion baseline.
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Fig. 7. (a) Performance over Camera Trajectory. Our fused output outperforms
the single sensor reconstructions (V i

t ) for all frames along the camera trajectory. The
above results are evaluated on the Replica office 0 scene using {ToF, PSMNet} with
depth denoising. Note that the results get slightly worse after 300 frames. This is due
to additional noise from the depth sensors when viewing the scene from further away.
(b) Effect of Learned Outlier Filter. The learned filter is crucial for robust outlier
handling. Erroneous outlier predictions shown in yellow are effectively removed by our
approach while keeping the correct green-colored predictions. (Color figure online)

4.4 More Statistical Analysis

Performance over Camera Trajectory. To show that our fused output is
not only better at the end of the fusion process, we visualize the quantitative
performance across the accumulated trajectory. In Fig. 7a, we evaluate the office
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0 scene on the sensors {ToF, PSMNet} with depth denoising. Our fused model
consistently improves on the inputs.

Table 5. Architecture Ablation. We
vary the number of 3D convolutional lay-
ers with kernel size 3. Performance is
optimal at 2 layers, equivalent to a recep-
tive field of 93.

# Layers 0 1 2 3 4

F1 48.57 68.47 69.86 69.45 68.21

Architecture Ablation. We perform a
network ablation on the Replica dataset
with the sensors {SGM, PSMNet} with-
out depth denoising. In Table 5, we
investigate the number of layers with
kernel size 3 in the Weighting Network
G. Two layers yield optimal performance
which amounts to a receptive field of
9×9×9. This is realistic given that the support for a specific sensor is local
by nature.

Table 6. Generalization Capability. Our
model generalizes well when evaluated on the office
0 scene. We conclude this by training a model only
on office 0.

Train Set MSE↓ MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
*e-04 *e-02 [0,1] [%] % [%] [%]

Full Train Set 4.51 1.54 0.748 87.78 68.70 59.49 81.28
Office 0 4.54 1.53 0.752 87.97 69.23 59.45 82.86

Generalization Capability.
Table 6 shows our model’s gen-
eralization ability for {SGM,
PSMNet} fusion when evalu-
ated against a model trained
and tested on the office 0 scene.
Our model generalizes well and
performs almost on par with
one which is only trained on the
office 0 scene. The generalization capability is not surprising since G has a lim-
ited receptive field of 9×9×9.

Effect of Learned Outlier Filter. To show the effectiveness of the filter,
we study the feature space on the input side of G. Specifically, we consider
the hotel 0 scene and sensors {ToF, PSMNet} with depth denoising. First, we
concatenate both feature grids and flatten the resulting grid. Then, we reduce
the observations of the 12-dim feature space to a 2-dim representation using
tSNE [30]. We then colorize each point with the corresponding signed distance
error at the original voxel position. We repeat the visualization with and without
the learned outlier filter. Fig. 7b shows that the filter effectively removes outliers
while keeping good predictions.

Table 7. Loss Ablation. When only the term
Lf is used, we observe a significant performance
drop compared to the full loss. Note, however,
that only with the term Lf , our model still
improves on the single sensor input metrics com-
pared to Table 3a.

Loss L MSE↓ MAD↓ IoU↑ Acc.↑ F↑ P↑ R↑
*e-04 *e-02 [0,1] [%] [%] [%] [%]

Only Lf 6.04 1.78 0.710 86.20 62.65 50.88 82.17
Full Loss 4.77 1.56 0.738 87.62 69.83 63.20 79.12

Loss Ablation. Table 7 shows
the performance difference when
the model is trained only with
the term Lf compared to the
full loss (3). We perform {SGM,
PSMNet} fusion on the Replica
dataset. The extra terms of the
full loss clearly help improve
overall performance and specif-
ically to filter outliers.

Limitations. Our framework currently supports two sensors. Its extension to
a k-sensor setting is straightforward, but the memory footprint grows linearly
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with the number of sensors. However, few devices have more than two or three
depth sensors. While our method generates better results on average, some local
regions may not improve and our method struggles with overlapping outliers from
both sensors. For qualitative examples, see the supplementary material. Ideally,
outliers can be filtered and the data fused with a learned scene representation
as in [55], but our efforts to make [55] work with multiple sensors suggests that
this is a harder learning problem which deserves attention in future work.

5 Conclusion

We propose a machine learning approach for online multi-sensor 3D reconstruc-
tion using depth maps. We show that a fusion decision on 3D features rather
than directly on 2D depth maps generally improves surface accuracy and out-
lier robustness. This also holds when 2D fusion is straightforward, i.e. for time
synchronized sensors, equal sensor resolution and calibration. The experiments
demonstrate that our model handles various sensors, can scale to room-sized real-
world scenes and produce a fused result that is quantitatively and qualitatively
better than the single sensor inputs and the compared baselines methods.
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