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Abstract. We present a new approach to instill 4D dynamic object pri-
ors into learned 3D representations by unsupervised pre-training. We
observe that dynamic movement of an object through an environment
provides important cues about its objectness, and thus propose to imbue
learned 3D representations with such dynamic understanding, that can
then be effectively transferred to improved performance in downstream
3D semantic scene understanding tasks. We propose a new data aug-
mentation scheme leveraging synthetic 3D shapes moving in static 3D
environments, and employ contrastive learning under 3D-4D constraints
that encode 4D invariances into the learned 3D representations. Experi-
ments demonstrate that our unsupervised representation learning results
in improvement in downstream 3D semantic segmentation, object detec-
tion, and instance segmentation tasks, and moreover, notably improves
performance in data-scarce scenarios. Our results show that our 4D pre-
training method improves downstream tasks such as object detection
mAP@0.5 by 5.5%/6.5% over training from scratch on ScanNet/SUN
RGB-D while involving no additional run-time overhead at test time.

Keywords: 3D scene understanding · Point cloud recognition · 3D
semantic segmentation · 3D instance segmentation · 3D object detection

1 Introduction

3D semantic scene understanding has seen remarkable progress in recent years,
in large part driven by advances in deep learning as well as the introduction of
large-scale, annotated datasets [1,7,10]. In particular, notable progress has been
made to address core 3D scene understanding tasks such as 3D semantic seg-
mentation, object detection, and instance segmentation, which are fundamental
to many real-world computer vision applications such as robotics, mixed real-
ity, or autonomous driving. Such approaches have developed various methods to
learn on different 3D scene representations, such as sparse or dense volumetric
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Fig. 1. We propose 4DContrast to imbue learned 3D representations with 4D priors.
We introduce a data augmentation scheme to composite synthetic 3D objects with real-
world 3D scans to create 4D sequence data with inherent correspondence information.
We then leverage a combination of 3D-3D, 3D-4D, and 4D-4D constraints within a
contrastive learning framework to learn 4D invariance in the 3D representations. The
learned features can be transferred to improve performance in various downstream 3D
scene understanding tasks.

grids [6,7,11], point clouds [29,30], meshes [19], or multi-view approaches [8,38].
Recently, driven by the success of unsupervised representation learning for trans-
fer learning in 2D, 3D scene understanding methods have been augmented with
unsupervised 3D pre-training to further improve performance to downstream 3D
scene understanding tasks [17,20,43,46] (Fig. 1).

While such 3D representation learning has focused on feature representations
learned from static 3D scenes, we observe that important notions of objectness
are given by 4D dynamic observations – for instance, object segmentations can
often be naturally intuited by observing objects moving around an environment
without any annotations required, which can be more difficult in a static 3D
observation. We thus propose to leverage this powerful 4D signal in unsupervised
pre-training to imbue 4D object priors into learned 3D representations, that can
then be effectively transferred to various downstream 3D scene understanding
tasks for improved recognition performance.

In this work, we introduce 4DContrast to learn about objectness from both
static 3D and dynamic 4D information in learned 3D representations. We lever-
age a combination of static 3D scanned scenes and a database of synthetic 3D
shapes, and augment the scenes with moving synthetic shapes to generate 4D
sequence data with inherent motion correspondence. We then employ a con-
trastive learning scheme under both 3D and 4D constraints, correlating local
3D point features with each other as well as with 4D sequence features, thus
imbuing learned objectness from dynamic information into the 3D representa-
tion learning.

To demonstrate our approach, we pre-train on ScanNet [7] along with Model-
Net [41] shapes for unsupervised 3D representation learning. Experiments on 3D
semantic segmentation, object detection, and instance segmentation show that
4DContrast learns effective features that can be transferred to achieve improved



4DContrast 545

performance in various downstream 3D scene understanding tasks. 4DContrast
can also generalize from pre-training on ScanNet and ModelNet to improved per-
formance on SUN RGB-D [36]. Additionally, we show that our learned represen-
tations remain robust in limited training data scenarios, consistently improving
performance under a various amounts of training data available.

Our main contributions are summarized as follows:

– We propose the first method to leverage 4D sequence information and con-
straints for 3D representation learning, showing transferability of the learned
features to the downstream 3D scene understanding tasks of 3D semantic
segmentation, object detection, and instance segmentation.

– Our new unsupervised pre-training based on constructing 4D sequences from
synthetic 3D shapes in real-world, static 3D scenes improves performance
across a variety of downstream tasks and different datasets.

2 Related Work

3D Semantic Scene Understanding. Driven by rapid developments in deep
learning and the introduction of several large-scale, annotated 3D datasets [1,
7,10], notable progress has been made in 3D semantic scene understanding, in
particular the tasks of 3D semantic segmentation [6–8,11,18,19,24,30,32], 3D
object detection [25–27,42,47], and 3D instance segmentation [9,13,16,21,45].
Many methods have been proposed, largely focusing on learning on various 3D
representations, such as sparse or dense volumetric grids [6,7,11], point clouds
[21,27,29,30], meshes [19,35], or multi-view hybrid representations [8,22]. In
particular, approaches leveraging backbones built with sparse convolutions [6,11]
have shown strong effectiveness across a variety of 3D scene understanding tasks
and datasets. We propose a new unsupervised pre-training approach to learn 4D
priors in learned 3D representations, leveraging sparse convolutional backbones
for both 3D and 4D feature extraction.

3D Representation Learning. Inspired by the success of representation learn-
ing in 2D, particularly that leveraging instance discrimination with contrastive
learning [2,3,15], recent works have explored unsupervised learning with 3D pre-
text tasks that can be leveraged for fine-tuning on downstream 3D scene under-
standing tasks [5,14,17,20,23,31,33,34,39,40,43,46]. For instance, [14,34] learn
feature representations from point-based instance discrimination for object clas-
sification and segmentation, and [17,43,46] extend to more complex 3D scenes
by generating correspondences from various different views of scene point clouds.

In particular, given the more scarce data availability of real-world 3D envi-
ronments, Hou et al. [17] additionally demonstrate the efficacy of contrastive 3D
pretraining for various 3D semantic scene understanding tasks under a variety
of limited training data scenarios. In contrast to these methods that employ
3D-only pretext tasks for representation learning, we propose to learn from 4D
sequence data to embed 4D priors into learned 3D representations for more
effective transfer to downstream 3D tasks.



546 Y. Chen et al.

Fig. 2. Method overview. 4DContrast learns effective 3D feature representations
imbued with 4D signal from moving object sequences. During pre-training, we augment
static 3D scene data with a moving object from a synthetic shape dataset. We can then
establish dynamic correspondences between the spatio-temporal features learned from
the 4D sequence with 3D features of individual static frames. We employ contrastive
learning under not only 3D geometric correspondence between individual frames, but
also with their corresponding 4D counterpart, as well as 4D-4D constraints to anchor
the 4D feature learning. This enables 4D-invariant representation learning, which we
can apply to various downstream 3D scene understanding tasks.

Recently, Huang et al. [20] propose to learn from the inherent sequence data
of RGB-D video to incorporate the notion of a temporal sequence. Constraints
are established across pairs of frames in the sequence; however, the sequence
data itself represents static scenes without any movement within the scene,
limiting the temporal signal that can be learned. In contrast, we consider 4D
sequence data containing object movement through the scene, which can provide
additional semantic signal about objectness through an object’s motion. Addi-
tionally, Rao et al. [31] propose to learn from 3D scenes that are synthetically
generated by randomly placing synthetic CAD models on a rectangular layout.
They employ object-level contrastive learning on object-level features, resulting
in improved 3D object detection performance. We also leverage synthetic CAD
models for data augmentation, but we compose them with real-world 3D scan
data to generate 4D sequences of objects in motion, and exploit learned 4D fea-
tures to enhance learned 3D representations, with performance improvement on
various downstream 3D scene understanding tasks.

3 4D Invariant Representation Learning

4DContrast presents a new approach to 3D representation learning: our key idea
is to employ 4D constraints during pre-training, in order to imbue learned fea-
tures with 4D invariance from learned objectness from seeing an object in motion.
We consider a dataset of 3D scans S = {Si} as well as a dataset of synthetic
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3D objects O = {Oj}, and construct dynamic sequences with inherent corre-
spondence information by moving a synthetic object Oj in a static 3D scan Si.
This enables us to establish 4D correspondences along with 3D-4D correspon-
dence as constraints under a contrastive learning framework for unsupervised
pre-training. An overview of our approach is shown in Fig. 2.

3.1 Revisiting SimSiam

We first revisit SimSiam [4], which introduced a simple yet powerful approach for
contrastive 2D representation learning. Inspired by the effectiveness of SimSiam,
we build an unsupervised contrastive learning scheme for embedding 4D priors
into 3D representations.

SimSiam considers two augmented variants of an image I, I1, and I2, which
are input to weight-shared encoder network Φ2D (a 2D convolutional backbone
followed by a projection MLP). Then a prediction MLP head P2D transforms
the output of one view as p2D1 = P2D(Φ2D(I1)) to match to the another output
z2D2 = Φ2D(I2), with minimizing the negative cosine similarity [12]:

D(p2D1 , z2D2 ) = − p2D1
||p2D1 ||2

· z2D2
||z2D2 ||2

. (1)

SimSiam also uses a stop-gradient (SG) operation that treats z2D2 as a constant
during back-propagation, to prevent collapse during the training, thus modifying
Eq. 1 as: D(p2D1 , SG(z2D2 )). A symmetrized loss is defined for the two augmented
inputs:

L2D =
1
2
D(p2D1 , SG(z2D2 )) +

1
2
D(p2D2 , SG(z2D1 )). (2)

SimSiam has shown to be very effective at learning invariances under various
image augmentations, without requiring negative samples or very large batches.
We thus build from this contrastive framework for our 3D-4D constraints, as it
allows for our high-dimensional pre-training design.

3.2 4D-Invariant Contrastive Learning

To imbue effective 4D priors into learned 3D features, we consider a static 3D
scan S and a synthetic 3D object O as a train sample, and compose them together
to form dynamic object movement in the scene {F0, ..., Ft−1} for t time steps
(as described in Sect. 3.3). We then establish spatial correspondences between
frames (3D-3D), spatio-temporal correspondences (3D-4D), and dynamic corre-
spondences (4D-4D) as constraints. 3D features are extracted with a 3D encoder
Φ3D and 4D features with a 4D encoder Φ4D, with respective prediction MLPs
P3D and P4D.

Inter-Frame Spatial Correspondence. For each pair of frames (Fi, Fj) in
a train sequence F , we consider their spatial correspondence across sequence
frames in order to implicitly pose invariance over the dynamic sequence. That
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Fig. 3. 4DContrast pre-training. We visualize 3D-3D, 3D-4D, and 4D-4D losses across
frame and spatio-temporal correspondence. Note that losses are established across all
pairs of frames for L3D L4D and across all frames for L3D4D; for visualization we
only show those associated with frames Ft−2 and Ft−1, and only for Ft−1 for L3D4D.
Each loss only propagates back according to the gradient arrows due to stop-gradient
operations for stable training. (Color figure online)

is, points that correspond to the same location in the original 3D scene S or
original object O should also correspond in feature space. For the set of corre-
sponding point locations Ai,j from frames (Fi, Fj), we consider each pair of point
locations (ai,bj) ∈ A, we obtain their 3D backbone features at the respective
locations: p3Di,a = P3D(Φ3D(Fi))(ai) and z3Dj,b = Φ3D(Fj)(bj). We then compute
a symmetrized negative cosine similarity loss between features of corresponding
point locations:

L3D
Ai,j

=
∑

(a,b)∈Ai,j

(
1
2
D(p3Di,a , SG(z3Dj,b )) +

1
2
D(p3Dj,b , SG(z3Di,a ))

)
. (3)

In Fig. 3, we use green arrows to indicate constraints between frame Ft−2 and
frame Ft−1.

We compute Eq. 3 over each pair of frames in the whole sequence F :

L3D =
t−1∑

i=0

t−1∑

j=0
i<j

L3D
Ai,j

. (4)

By establishing constraints across 3D frames in a 4D sequence, we encode
pose invariance of moving objects across varying background into the learned
3D features.

Spatio-Temporal Correspondence. In addition to implicitly encoding pose
invariance of moving objects, we establish explicit 3D-4D correspondences to
learn 4D priors, encouraging 4D-invariance in the learned features. For a train
sequence F = {F0, ..., Ft−1}, we use the 4D encoder Φ4D and the 4D predictor
P4D to extract 4D features from the whole sequence. Then z4Di,a indicates the 4D
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features output by the 4D encoder Φ4D at point location ai in frame i, and p4Di,a
denotes the 4D features output by the 4D predictor P4D. Then for a frame Fi,
we consider each 3D point ai ∈ Ai in this set of frame points Fi, and establish a
constraint between its corresponding 3D feature extracted by 3D network (Φ3D

and P3D) and its corresponding 4D feature extracted by 4D network (Φ4D and
P4D):

L3D4D
Ai

=
∑

a∈Ai

(
1
2
D(SG(p3Di,a), z4Di,a )+

1
2
D(SG(p4Di,a), z3Di,a )

)
. (5)

As shown in Fig. 3, we use orange arrows to indicate constraints of frame Ft−1.
For the entire input sequence F , we calculate Eq. 5 for every frame, and the
3D-4D contrastive loss L3D4D is defined as:

L3D4D =
t−1∑

i=0

L3D4D
Ai

. (6)

Additionally, in order to learn spatio-temporally consistent 4D representa-
tions, we employ 4D-4D correspondence constraints inherent to the 4D features
within the same point cloud sequence. This is formulated analogously to Eq. 3,
replacing the 3D features with the 4D features from different time steps that
correspond spatially:

L4D
Ai,j

=
∑

(a)∈Ai,j

(
1
2
D(p4Di,a , SG(z4Dj,a)) +

1
2
D(p4Dj,a, SG(z4Di,a ))

)
. (7)

In Fig. 3, we use blue arrows to indicate 4D constraints between frame Ft−2

and frame Ft−1. We evaluate Eq. 7 over every pair of frames in the entire input
sequence F , with the 4D contrastive loss L4D defined as:

L4D =
t−1∑

i=0

t−1∑

j=1
i<j

L4D
Ai,j

. (8)

Joint Learning. Our overall training loss L consists of three parts including
3D contrastive loss L3D, 3D-4D contrastive loss L3D4D, and 4D contrastive loss
L4D:

L = w3DL3D + w3D4DL3D4D + w4DL4D, (9)

where constant weights w3D, w3D4D and w4D are used to balance the losses.

3.3 Generating 4D Correspondence via Scene-Object Augmentation

To learn from 4D sequence data to embed 4D priors into learned 3D represen-
tations, we leverage existing large-scale real-world 3D scan datasets in combi-
nation with synthetic 3D shape datasets. This enables generation of 4D corre-
spondences without requiring any labels – by augmenting static 3D scenes with
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Table 1. Summary of fine-tuning of 4DContrast for various downstream 3D scene
understanding tasks and datasets. Our pre-training approach learns effective, transfer-
able features, resulting in notable improvement over the baseline learning paradigm of
training from scratch.

Datasets Stats (#train/#val) Task Gain (from scratch)

ScanNetV2 [7] 1.2K/312 scenes Sem. Seg. +2.3% mIoU

Ins. Seg. +4.2% mAP@0.5

Obj. Det. +5.5% mAP@0.5

SUN RGB-D [36] 5.2K/5K frames Obj. Det +6.5% mAP@0.5

generated trajectories of a moving synthetic object within the scene, which pro-
vides inherent 4D correspondence knowledge across the object motion. Thus for
pre-training, we consider pairs of reconstructed scans and an arbitrarily sampled
synthetic 3D shape (S,O), and generate a 4D sequence F = {F0, ..., Ft−1} by
moving the object through the scene.

Trajectory Generation. We first generate a trajectory for O in S. We voxelize
S at 10 cm voxel resolution, and accumulate occupied surface voxels in the height
dimension to acquire a 2D map of the scene geometry. Valid object locations are
then identified as those in the 2D map with a voxel accumulation ≤1, with the
max height of the accumulated voxels near to the ground floor (within 20 cm of
the average floor height). For the object O, we consider all possible 2D locations,
and if O does not exceed the valid region (based on its bounding sphere), then
the location is taken as a candidate object position. A random position sampled
from these candidate positions is taken as the starting point of the trajectory,
we can randomly sample a step distance in [30, 90] cm and step direction such
that the angular change in trajectory is <150◦, and then select the nearest valid
candidate position as the second trajectory point. We repeat this process for
t time steps in the sequence to obtain 4D scene-object augmentations for pre-
training.

4D Sequence Generation. A sequence of point clouds are then generated
based on the computed object trajectory for the scan, up to sequence length t,
by compositing the object into the scene under its translation and rotation steps
per frame. This provides inherent correspondence information between 3D scene
locations and 4D object movement through the scene.

Scene Augmentation. We augment the 4D sequences by randomly sampling
different points across the geometry in each individual frame. We also randomly
remove cubic chunks of points in the background 3D scene for additional data
variation, with the number of chunks removed randomly sampled from [5,15]
and the size of the chunks randomly sampled in [0.15, 0.45] as a proportion of
the scene extent. We discard any sequences that do not have enough correspon-
dences in its frames; that is, ≥30% of the points in the original scan and ≥30%
of the points of the synthetic object should be consistently represented in each
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frame, and each frame must maintain at least 50% of its points through the
augmentation process. Additionally, we further augment the static 3D frame
interpretations of the sequence (but not the sequence) by applying random rota-
tion, translation, and scaling to each individually considered 3D frame.

3.4 Network Architecture for Pre-training

During pre-training, we leverage correspondences induced by our 4D data gen-
eration, between encoded 3D frames as well as across the encoded 4D sequence.
To this end, we employ 3D and 4D feature extractors as meta-architectures for
4D-invariant learning.

To extract per-point features from a 3D scene, we use a 3D encoder Φ3D and
a 3D predictor P3D. Φ3D is a U-Net architecture based on sparse 3D convolutions
with residual block followed by a 1× 1× 1 sparse convolutional projection layer,
and P3D is two 1 × 1 × 1 sparse convolutional layers.

To extract spatio-temporal features from a 4D sequence, we use a 4D encoder
Φ4D and a 4D predictor P4D. These are structured analogously to the 3D feature
extraction, using sparse 4D convolutions instead. For more detailed architecture
specifications, we refer to the supplemental material.

4 Experimental Setup

We demonstrate the effectiveness of our 4D-informed pre-training of learned 3D
representations for a variety of downstream 3D scene understanding tasks.

Pre-training Setup. We use reconstructed 3D scans from ScanNet [7] and
synthetic 3D shapes from ModelNet [41] to compose our 4D sequence data for
pre-training. We use the official ScanNet train split with 1201 train scans, aug-
mented with shapes from ModelNet from eight furniture categories: chair, desk,
dresser, nightstand, sofa, table, bathtub, and toilet. For each 3D scan, we gen-
erate 20 trajectories of an object moving through the scan, following Sect. 3.3
with t = 4. For sequence generation we use 2 cm resolution for the scene and
1000 randomly sampled points from the synthetic object to compose together.

The 3D and 4D sparse U-Nets are implemented with MinkowskiEngine [6]
using 2 cm voxel size for 3D and 5cm voxel size for 4D. For pre-training we con-
sider only geometry information from the scene-object sequence augmentations.
We use an SGD optimizer with initial learning rate 0.25 and a batch-size of 12.
The learning rate is decreased by a factor of 0.99 every 1000 steps. We train for
50K steps until convergence.

Fine-Tuning on Downstream Tasks. We use the same pre-trained back-
bone network in the three 3D scene understanding tasks of semantic segmenta-
tion, instance segmentation, and object detection. For semantic segmentation,
we directly use the U-Net architecture for dense label prediction, and for object
detection and instance segmentation, we use VoteNet [27] and PointGroup [21]
respectively, both with our pre-trained 3D U-Net backbone. All experiments,
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Table 2. 3D object detection on ScanNet. Our 4DContrast pre-training leads to
improved performance in comparison with state of the art object detection and 3D
pretraining schemes.

Method Input mAP@0.5

DSS [37] Geo + RGB 6.8

F-PointNet [28] Geo + RGB 10.8

GSPN [44] Geo + RGB 17.7

3D-SIS [16] Geo + RGB 22.5

VoteNet [27] Geo + Height 33.5

Scratch + VoteNet Geo only 34.5

RandomRooms [31] + VoteNet Geo only 36.2 (+1.7)

PointContrast [43] + VoteNet Geo only 38.0 (+3.5)

CSC [17] + VoteNet Geo only 39.3 (+4.8)

Ours + VoteNet Geo only 40.0 (+5.5)

including comparisons with state of the art, are trained with geometric informa-
tion only, unless otherwise noted. Fine-tuning experiments on semantic segmen-
tation are trained with a batch size of 48 for 10K steps, using an initial learning
rate of 0.8 with polynomial decay with power 0.9. For instance segmentation, we
use the same training setup as PointGroup, and use an initial learning rate of
0.1. For object detection, the network is trained for 500 epochs, and the learning
rate is 0.001 and decayed by a factor of 0.5 at epochs 250, 350, and 450. We use
a batch size of 6 on ScanNet and 16 on SUN RGB-D.

5 Results

We demonstrate that our learned features under 3D-4D constraints can effec-
tively transfer well to a variety of downstream 3D scene understanding tasks. We
consider both in-domain transfer to 3D scene understanding tasks on ScanNet [7]
(Sect. 5.1), as well as out-of-domain transfer to SUN RGB-D [36] (Sect. 5.2); a
summary is shown in Table 1. We also show data-efficient scene understand-
ing (Sect. 5.3) and additional analysis (Sect. 5.4). Note that for all downstream
experiments, we do not use the 4D backbone and thus use the same 3D U-Net
architecture as PointContrast [43] and CSC [17].

All experiments, including our method and all baseline comparisons, are
trained on geometric data only without any color information.

5.1 ScanNet

We first demonstrate our 4DContrast pre-training in fine-tuning for 3D object
detection, semantic segmentation, and instance segmentation on ScanNet [7],
showing the effectiveness of learning 3D features under 4D constraints. Tables 2,
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3, and 4 evaluate performance on 3D object detection, semantic segmentation,
and instance segmentation, respectively.

Table 2 shows 3D object detection results, for which our pretraining app-
roach improves over baseline training from scratch (+5.5% mAP@0.5) as well
as over the strong 3D-based pre-training methods of RandomRooms [31], Point-
Contrast [43] and CSC [17].

In Tables 3 and 4, we evaluate semantic segmentation in comparison with
state-of-the-art 3D pre-training approaches [17,43], as well as a baseline train-
ing paradigm from scratch. These pre-training approaches improve notably over
training from scratch, and our 4DContrast approach leveraging learned repre-
sentations under 4D constraints, leads to additional performance improvement
over train from scratch (+2.3% mIoU for semantic segmentation and +4.2%
mAP@0.5 for instance segmentation). We show qualitative results for semantic
segmentation in Fig. 4.

5.2 SUN RGB-D

We additionally show that our 4DContrast learning scheme can produce trans-
ferable representations across datasets. We leverage our pre-trained weights from
ScanNet + ModelNet, and explore downstream 3D object detection on the SUN
RGB-D [36] dataset. SUN RGB-D is a dataset of RGB-D images, containing
10,335 frames captured with a variety of commodity RGB-D sensors. It contains
3D object bounding box annotations for 10 class categories. We follow the official
train/test split of 5,285 train frames and 5,050 test frames.

Table 5 shows 3D object detection performance on SUN RGB-D, with quali-
tative results visualized in Fig. 5. We use the same pre-training as with ScanNet,
with downstream fine-tuning on SUN RGB-D data. 4DContrast improves over
training from scratch (+6.5% mAP@0.5), with our learned representations sur-
passing the 3D-based pre-training [17,31,43,46].

Table 3. Semantic segmentation on ScanNet. Our 4D-informed pre-training learns
effective features that lead to improved performance boost over training from scratch
as well as state-of-the-art 3D-based pre-training of CSC [17] and PointContrast [43].

Method mIoU mAcc

Scratch 70.0 78.1

CSC [17] 70.7 (+0.7) 78.8 (+0.7)

PointContrast [43] 71.3 (+1.3) 79.3 (+1.2)

Ours 72.3 (+2.3) 80.8 (+2.7)
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Table 4. Instance segmentation on ScanNet. Our 4D-imbued pre-training leads to sig-
nificantly improved results over training from scratch, as well as favorable performance
over other 3D-only pretraining schemes.

Method mAP@0.5 mIoU

Scratch 53.4 69.0

PointContrast [43] 55.8 (+2.4) 70.9 (+1.9)

CSC [17] 56.5 (+3.1) 71.1 (+2.1)

Ours 57.6 (+4.2) 71.4 (+2.4)

5.3 Data-Efficient 3D Scene Understanding

We evaluate our approach in the scenario of limited training data, as shown
in Fig. 6. 4DContrast improves over baseline training from scratch as well as
over state-of-the-art data-efficient scene understanding CSC [17] in semantic
segmentation and object detection under various different percentages of Scan-
Net training data. With only 20% of the training data, we can recover 87% of
the fine-tuned semantic segmentation performance training with 100% of the
train data from scratch. In object detection, our pre-training enables improved
performance for all percentage settings, notably in the very limited regime
with +3.0/4.5% mAP@0.5 over CSC/training from scratch at 10% data, and
+2.5/5.9% mAP@0.5 with 20% data.

5.4 Ablation Studies

Effect of 3D and 4D Data Augmentation. We consider a baseline vari-
ant of our approach that considers only the static 3D scene data without any

Fig. 4. Qualitative results on ScanNet semantic segmentation. Our 4DContrast pre-
training to encode 4D priors enables more consistent segmentation results, in comparison
to training from scratch as well as 3D-based PointContrast [43] pre-training.
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Table 5. 3D object detection on SUN RGB-D. Our 4D-based pre-training learns effec-
tive 3D representations, improving performance over training from scratch and state-
of-the-art 3D pre-training methods. ∗indicates that PointNet++ is used as a backbone
instead of a 3D U-Net.

Method Input mAP@0.5

VoteNet [27] Geo + Height 32.9

Scratch + VoteNet [27] Geo 31.7

PointContrast [43] + VoteNet Geo 34.8 (+3.1)

RandomRooms [31]∗ + VoteNet Geo 35.4 (+3.7)

DeepContrast [46]∗ + VoteNet Geo 35.5 (+3.8)

CSC [17] + VoteNet Geo 36.4 (+4.7)

Ours + VoteNet Geo 38.2 (+6.5)

scene-object augmentations with 3D-3D constraints during pre-training in
Table 6 (Ours (3D data, 3D-3D only)), which provides some improvement over
training from scratch but is notably improved with our 4D pre-training formu-
lation. We additionally consider using our 4D scene-object augmentation with
only 3D-3D constraints between sequence frames during pre-training (Ours (4D
data, 3D-3D only)) in Table 6, which helps to additionally improve performance
with implicitly learned priors from 4D data. Both are further improved by our
approach to explicitly learn 4D priors in 3D features.

Effect of 4D-Invariant Contrastive Priors. In Table 6, we see that learning
4D-invariant contrastive priors through our 3D-4D and 4D-4D constraints dur-
ing pretraining improves upon data augmentation variants only. Additionally,
Table 7 evaluates the 3D variant of our approach with our full 4D-based pre-
training across a variety of downstream tasks, showing consistent improvements
from learned 4D-based priors.

Effect of SimSiam Contrastive Learning. We also consider the effect of our
SimSiam contrastive framework as PointContrast [43] leverages a PointInfoNCE
contrastive loss. We note that the 3D variant of our approach (Ours (3D data,
3D-3D only)) reflects a PointContrast [43] setting using our scene augmentation
and SimSiam architecture, which our 4D-based feature learning outperforms.

5.5 Discussion

While 4DContrast pre-training demonstrates the effectiveness of leveraging 4D
priors for learned 3D representations, various limitations remain. In particu-
lar, 4D feature learning with sparse convolutions involves considerable memory
during pre-training, so we use half-resolution for characterizing 4D features rel-
ative to 3D features and limited sequence durations. Additionally, we consider
a subset of 4D motion when augmenting scenes with moving synthetic objects,
and believe exploration of articulated motion or more complex dynamic object
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Fig. 5. Qualitative results on SUN RGB-D [36] object detection. Our 4DContrast pre-
training to encode 4D priors enables more accurate detection results, in comparison
to training from scratch as well as 3D-based PointContrast [43] pre-training. Different
colors denote different objects.

Fig. 6. Data-efficient learning on ScanNet semantic segmentation and object detec-
tion. Under limited data scenarios, our 4D-imbued pre-training effectively improves
performance over training from scratch as well as the state-of-the-art CSC [17].

interactions would lead to additional insight and robustness of learned feature
representations.

Memory and Speed. Our 4D-imbued pre-training results in consistent improve-
ments across a variety of tasks and datasets, even with only using the learned 3D
backbone for downstream training and inference. Thus, our method maintains
the same memory and speed costs for inference as purely 3D-based pre-training
approaches. For pre-training, our joint 3D-4D training uses additional parame-
ters (33M for the 4D network in addition to the 38M for the 3D network), but
due to jointly learning 4D priors with SimSiam, we do not require as large of a
batch size to train as PointContrast [43] (12 vs their 48), nor as many iterations
(up to 30K vs 60K), resulting in slightly less total memory use and pre-training
time overall.
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Table 6. Additionally ablation variants: compared to a baseline of using 3D-3D con-
straints on static 3D scene data only, leveraging augmented 4D sequence data improves
feature learning even under 3D only constraints. Our final 4DContrast pre-training
leveraging constraints with learned 4D features achieves the best performance.

Method/Data Augmentation Pre-training Loss Term(s) mIoU mAcc

Scratch - 70.0 78.1

Ours (3D data, 3D-3D only) L3D(static scene) 71.5 (+1.5) 79.7 (+1.6)

Ours (4D data, 3D-3D only) L3D(dynamic scene) 71.7 (+1.7) 80.0 (+1.9)

Ours L3D,L3D4D,L4D(dynamic scene) 72.3 (+2.3) 80.5 (+2.4)

Table 7. Extended ablation of the 3d-only variant of our approach on ScanNet.

Task Ours (3D data, 3D-3D only) Ours

Ins. Seg. (mAP@0.5) 54.1 57.6 (+3.5)

Obj. Det. (mAP@0.5) 38.7 40.0 (+1.3)

Sem. Seg. 1% data (mIoU) 27.0 28.2 (+1.2)

Sem. Seg. 5% data (mIoU) 44.4 45.3 (+0.9)

Sem. Seg. 10% data (mIoU) 56.3 57.9 (+1.6)

Sem. Seg. 20% data (mIoU) 60.6 61.9 (+1.3)

Sem. Seg. 100% data (mIoU) 71.5 72.3 (+0.8)

6 Conclusion

We have presented 4DContrast, a new approach for 3D representation learn-
ing that incorporates 4D priors into learned features during pre-training. We
propose a data augmentation scheme to construct 4D sequences of moving syn-
thetic objects in static 3D scenes, without requiring any semantic labels. This
enables learning from 4D sequences, and we and establish contrastive constraints
between learned 3D features and 4D features from the inherent correspondences
given in the 4D sequence generation. Our experiments demonstrate that our
4D-imbued pre-training results in performance improvement across a variety of
3D downstream tasks and datasets. Additionally, our learned features effectively
transfer to limited training data scenarios, significantly outperforming state of
the art in the low training data regime. We hope that this will lead to addi-
tional insights in 3D representation learning and new possibilities in 3D scene
understanding.

Acknowledgements. This project is funded by the Bavarian State Ministry of Sci-
ence and the Arts and coordinated by the Bavarian Research Institute for Digital
Transformation (bidt), the TUM Institute of Advanced Studies (TUM-IAS), the ERC
Starting Grant Scan2CAD (804724), and the German Research Foundation (DFG)
Grant Making Machine Learning on Static and Dynamic 3D Data Practical.



558 Y. Chen et al.

References

1. Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environ-
ments. In: International Conference on 3D Vision, pp. 667–676 (2017)

2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607 (2020)

3. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum con-
trastive learning. arXiv preprint arXiv:2003.04297 (2020)

4. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Conference
on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

5. Chen, Y., et al.: Shape self-correction for unsupervised point cloud understanding.
In: International Conference on Computer Vision, pp. 8382–8391 (2021)

6. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convo-
lutional neural networks. In: Conference on Computer Vision and Pattern Recog-
nition, pp. 3075–3084 (2019)

7. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
richly-annotated 3d reconstructions of indoor scenes. In: Conference on Computer
Vision and Pattern Recognition, pp. 5828–5839 (2017)

8. Dai, A., Nießner, M.: 3DMV: joint 3D-multi-view prediction for 3D semantic scene
segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018. LNCS, vol. 11214, pp. 458–474. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01249-6 28

9. Engelmann, F., Bokeloh, M., Fathi, A., Leibe, B., Nießner, M.: 3D-MPA: multi-
proposal aggregation for 3D semantic instance segmentation. In: Conference on
Computer Vision and Pattern Recognition, pp. 9031–9040 (2020)

10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern
Recognition, pp. 3354–3361 (2012)

11. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with
submanifold sparse convolutional networks. In: Conference on Computer Vision
and Pattern Recognition, pp. 9224–9232 (2018)

12. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised
learning. arXiv preprint arXiv:2006.07733 (2020)

13. Han, L., Zheng, T., Xu, L., Fang, L.: OccuSeg: occupancy-aware 3D instance seg-
mentation. In: Conference on Computer Vision and Pattern Recognition, pp. 2940–
2949 (2020)

14. Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds.
In: International Conference on Computer Vision, pp. 8160–8171 (2019)

15. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Conference on Computer Vision and Pattern
Recognition, pp. 9729–9738 (2020)

16. Hou, J., Dai, A., Nießner, M.: 3D-SIS: 3D semantic instance segmentation of RGB-
D scans. In: Conference on Computer Vision and Pattern Recognition, pp. 4421–
4430 (2019)

17. Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3D scene under-
standing with contrastive scene contexts. In: Conference on Computer Vision and
Pattern Recognition, pp. 15587–15597 (2021)

18. Hu, W., Zhao, H., Jiang, L., Jia, J., Wong, T.T.: Bidirectional projection network
for cross dimension scene understanding. In: Conference on Computer Vision and
Pattern Recognition, pp. 14373–14382 (2021)

http://arxiv.org/abs/2003.04297
https://doi.org/10.1007/978-3-030-01249-6_28
https://doi.org/10.1007/978-3-030-01249-6_28
http://arxiv.org/abs/2006.07733


4DContrast 559

19. Huang, J., Zhang, H., Yi, L., Funkhouser, T., Nießner, M., Guibas, L.J.: Tex-
tureNet: consistent local parametrizations for learning from high-resolution signals
on meshes. In: Conference on Computer Vision and Pattern Recognition, pp. 4440–
4449 (2019)

20. Huang, S., Xie, Y., Zhu, S.C., Zhu, Y.: Spatio-temporal self-supervised represen-
tation learning for 3D point clouds. In: International Conference on Computer
Vision, pp. 6535–6545 (2021)

21. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: PointGroup: dual-set point
grouping for 3D instance segmentation. In: Conference on Computer Vision and
Pattern Recognition, pp. 4867–4876 (2020)

22. Kundu, A., et al.: Virtual multi-view fusion for 3D semantic segmentation. In:
European Conference on Computer Vision, pp. 518–535 (2020)

23. Liang, H., et al.: Exploring geometry-aware contrast and clustering harmonization
for self-supervised 3D object detection. In: International Conference on Computer
Vision, pp. 3293–3302 (2021)

24. Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F.: Mix3D: out-of-
context data augmentation for 3D scenes. In: 2021 International Conference on 3D
Vision (3DV), pp. 116–125. IEEE (2021)

25. Nie, Y., Hou, J., Han, X., Nießner, M.: RFD-net: point scene understanding by
semantic instance reconstruction. In: Conference on Computer Vision and Pattern
Recognition, pp. 4608–4618 (2021)

26. Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: ImvoteNet: boosting 3D object detec-
tion in point clouds with image votes. In: Conference on Computer Vision and
Pattern Recognition, pp. 4404–4413 (2020)

27. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3D object detec-
tion in point clouds. In: International Conference on Computer Vision, pp. 9277–
9286 (2019)

28. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3D object
detection from RGB-D data. In: Conference on Computer Vision and Pattern
Recognition, pp. 918–927 (2018)

29. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D
classification and segmentation. In: Conference on Computer Vision and Pattern
Recognition, pp. 652–660 (2017)

30. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learn-
ing on point sets in a metric space. In: Neural Information Processing Systems
(2017)

31. Rao, Y., Liu, B., Wei, Y., Lu, J., Hsieh, C.J., Zhou, J.: RandomRooms: unsu-
pervised pre-training from synthetic shapes and randomized layouts for 3D object
detection. In: International Conference on Computer Vision, pp. 3283–3292 (2021)

32. Rozenberszki, D., Litany, O., Dai, A.: Language-grounded indoor 3D semantic
segmentation in the wild. arXiv preprint arXiv:2204.07761 (2022)

33. Sanghi, A.: Info3D: representation learning on 3D objects using mutual informa-
tion maximization and contrastive learning. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 626–642. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58526-6 37

34. Sauder, J., Sievers, B.: Self-supervised deep learning on point clouds by recon-
structing space. In: Neural Information Processing Systems (2019)

35. Schult, J., Engelmann, F., Kontogianni, T., Leibe, B.: DualconvMesh-net: joint
geodesic and Euclidean convolutions on 3D meshes. In: Conference on Computer
Vision and Pattern Recognition, pp. 8612–8622 (2020)

http://arxiv.org/abs/2204.07761
https://doi.org/10.1007/978-3-030-58526-6_37


560 Y. Chen et al.

36. Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding
benchmark suite. In: Conference on Computer Vision and Pattern Recognition,
pp. 567–576 (2015)

37. Song, S., Xiao, J.: Deep sliding shapes for amodal 3D object detection in RGB-D
images. In: Conference on Computer Vision and Pattern Recognition, pp. 808–816
(2016)

38. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neu-
ral networks for 3D shape recognition. In: International Conference on Computer
Vision, pp. 945–953 (2015)

39. Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Unsupervised point cloud
pre-training via occlusion completion. In: International Conference on Computer
Vision, pp. 9782–9792 (2021)

40. Wang, P.S., Yang, Y.Q., Zou, Q.F., Wu, Z., Liu, Y., Tong, X.: Unsupervised 3D
learning for shape analysis via multiresolution instance discrimination, vol. 35, pp.
2773–2781 (2021)

41. Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In:
Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

42. Xie, Q., et al.: MlcvNet: multi-level context votenet for 3D object detection. In:
Conference on Computer Vision and Pattern Recognition, pp. 10447–10456 (2020)

43. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsu-
pervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574–591.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8 34

44. Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.J.: GSPN: generative shape
proposal network for 3D instance segmentation in point cloud. In: Conference on
Computer Vision and Pattern Recognition, pp. 3947–3956 (2019)

45. Zhang, B., Wonka, P.: Point cloud instance segmentation using probabilistic
embeddings. In: Conference on Computer Vision and Pattern Recognition, pp.
8883–8892 (2021)

46. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3D
features on any point-cloud. In: International Conference on Computer Vision, pp.
10252–10263 (2021)

47. Zhang, Z., Sun, B., Yang, H., Huang, Q.: H3DNet: 3D object detection using hybrid
geometric primitives. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12357, pp. 311–329. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58610-2 19

https://doi.org/10.1007/978-3-030-58580-8_34
https://doi.org/10.1007/978-3-030-58610-2_19
https://doi.org/10.1007/978-3-030-58610-2_19

	4DContrast: Contrastive Learning with Dynamic Correspondences for 3D Scene Understanding
	1 Introduction
	2 Related Work
	3 4D Invariant Representation Learning
	3.1 Revisiting SimSiam
	3.2 4D-Invariant Contrastive Learning
	3.3 Generating 4D Correspondence via Scene-Object Augmentation
	3.4 Network Architecture for Pre-training

	4 Experimental Setup
	5 Results
	5.1 ScanNet
	5.2 SUN RGB-D
	5.3 Data-Efficient 3D Scene Understanding
	5.4 Ablation Studies
	5.5 Discussion

	6 Conclusion
	References




