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Abstract. Combining human body models with differentiable rendering
has recently enabled animatable avatars of clothed humans from sparse
sets of multi-view RGB videos. While state-of-the-art approaches achieve
a realistic appearance with neural radiance fields (NeRF), the inferred
geometry often lacks detail due to missing geometric constraints. Further,
animating avatars in out-of-distribution poses is not yet possible because
the mapping from observation space to canonical space does not general-
ize faithfully to unseen poses. In this work, we address these shortcom-
ings and propose a model to create animatable clothed human avatars
with detailed geometry that generalize well to out-of-distribution poses.
To achieve detailed geometry, we combine an articulated implicit sur-
face representation with volume rendering. For generalization, we propose
a novel joint root-finding algorithm for simultaneous ray-surface inter-
section search and correspondence search. Our algorithm enables effi-
cient point sampling and accurate point canonicalization while general-
izing well to unseen poses. We demonstrate that our proposed pipeline
can generate clothed avatars with high-quality pose-dependent geometry
and appearance from a sparse set of multi-view RGB videos. Our method
achieves state-of-the-art performance on geometry and appearance recon-
struction while creating animatable avatars that generalize well to out-of-
distribution poses beyond the small number of training poses.

Keywords: 3D computer vision · Clothed human modeling · Cloth
modeling · Neural rendering · Neural implicit functions

1 Introduction

Reconstruction and animation of clothed human avatars is a rising topic in
computer vision research. It is of particular interest for various applications in
AR/VR and the future metaverse. Various sensors can be used to create clothed
human avatars, ranging from 4D scanners over depth sensors to simple RGB

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-19824-3 1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Avidan et al. (Eds.): ECCV 2022, LNCS 13692, pp. 1–19, 2022.
https://doi.org/10.1007/978-3-031-19824-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19824-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-19824-3_1
https://doi.org/10.1007/978-3-031-19824-3_1


2 S. Wang et al.

Fig. 1. Detailed Geometry and Generalization to Extreme Poses. Given sparse
multi-view videos with SMPL fittings and foreground masks, our approach synthesizes
animatable clothed avatars with realistic pose-dependent geometry and appearance.
While existing works, e.g . Neural Body [56] and Ani-NeRF [54], struggle with gener-
alizing to unseen poses, our approach enables avatars that can be animated in extreme
out-of-distribution poses.

cameras. Among these data sources, RGB videos are by far the most accessi-
ble and user-friendly choice. However, they also provide the least supervision,
making this setup the most challenging for the reconstruction and animation of
clothed humans.

Traditional works in clothed human modeling use explicit mesh [1,2,6,7,17,
18,29,33,52,63,68,78,83] or truncated signed distance fields (TSDFs) of fixed
grid resolution [34,35,66,76,81] to represent the geometry of humans. Textures
are often represented by vertex colors or UV-maps. With the recent success
of neural implicit representations, significant progress has been made towards
modeling articulated clothed humans. PIFu [60] and PIFuHD [61] are among the
first works that propose to model clothed humans as continuous neural implicit
functions. ARCH [24] extends this idea and develops animatable clothed human
avatars from monocular images. However, this line of works does not handle
dynamic pose-dependent cloth deformations. Further, they require ground-truth
geometry for training. Such ground-truth data is expensive to acquire, limiting
the generalization of these methods.

Another line of works removes the need for ground-truth geometry by utiliz-
ing differentiable neural rendering. These methods aim to reconstruct humans
from a sparse set of multi-view videos with only image supervision. Many of
them use NeRF [46] as the underlying representation and achieve impressive
visual fidelity on novel view synthesis tasks. However, there are two fundamen-
tal drawbacks of these existing approaches: (1) the NeRF-based representation
lacks proper geometric regularization, leading to inaccurate geometry. This is
particularly detrimental in a sparse multi-view setup and often results in arti-
facts in the form of erroneous color blobs under novel views or poses. (2) Existing
approaches condition their NeRF networks [56] or canonicalization networks [54]
on inputs in observation space. Thus, they cannot generalize to unseen out-of-
distribution poses.

In this work, we address these two major drawbacks of existing approaches.
(1) We improve geometry by building an articulated signed-distance-field (SDF)
representation for clothed human bodies to better capture the geometry of
clothed humans and improve the rendering quality. (2) In order to render the
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SDF, we develop an efficient joint root-finding algorithm for the conversion from
observation space to canonical space. Specifically, we represent clothed human
avatars as a combination of a forward linear blend skinning (LBS) network, an
implicit SDF network, and a color network, all defined in canonical space and do
not condition on inputs in observation space. Given these networks and camera
rays in observation space, we apply our novel joint root-finding algorithm that
can efficiently find the iso-surface points in observation space and their corre-
spondences in canonical space. This enables us to perform efficient sampling on
camera rays around the iso-surface. All network modules can be trained with a
photometric loss in image space and regularization losses in canonical space.

We validate our approach on the ZJU-MoCap [56] and the H36M [25] dataset.
Our approach generalizes well to unseen poses, enabling robust animation of
clothed avatars even under out-of-distribution poses where existing works fail,
as shown in Fig. 1. We achieve significant improvements over state-of-the-arts
for novel pose synthesis and geometry reconstruction, while also outperforming
state-of-the-arts in the novel view synthesis task on training poses. Code and
data are available at https://neuralbodies.github.io/arah/.

2 Related Works

Clothed Human Modeling with Explicit Representations: Many explicit
mesh-based approaches represent cloth deformations as deformation layers [1,2,
6–8] added to minimally clothed parametric human body models [5,20,27,37,50,
53,75]. Such approaches enjoy compatibility with parametric human body mod-
els but have difficulties in modeling large garment deformations. Other mesh-
based approaches model garments as separate meshes [17,18,29,33,52,63,68,78,
83] in order to represent more detailed and physically plausible cloth deforma-
tions. However, such methods often require accurate 3D-surface registration, syn-
thetic 3D data or dense multi-view images for training and the garment meshes
need to be pre-defined for each cloth type. More recently, point-cloud-based
explicit methods [38,39,82] also showed promising results in modeling clothed
humans. However, they still require explicit 3D or depth supervision for training,
while our goal is to train using sparse multi-view RGB supervision alone.

Clothed Humans as Implicit Functions: Neural implicit functions [12,41,42,
51,57] have been used to model clothed humans from various sensor inputs includ-
ing monocular images [21,22,24,31,59–61,65,73,86], multi-view videos [28,36,
48,54,56,74], sparse point clouds [6,13,15,70,71,87], or 3D meshes [10,11,14,44,
45,62,67]. Among the image-based methods, [4,22,24] obtain animatable recon-
structions of clothed humans from a single image. However, they do not model
pose-dependent cloth deformations and require ground-truth geometry for train-
ing. [28] learns generalizable NeRF models for human performance capture and
only requires multi-view images as supervision. But it needs images as inputs for
synthesizing novel poses. [36,48,54,56,74] take multi-view videos as inputs and
do not need ground-truth geometry during training. These methods generate per-

https://neuralbodies.github.io/arah/
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sonalized per-subject avatars and only need 2D supervision. Our approach follows
this line of work and also learns a personalized avatar for each subject.

Neural Rendering of Animatable Clothed Humans: Differentiable neural
rendering has been extended to model animatable human bodies by a num-
ber of recent works [48,54,56,58,65,74]. Neural Body [56] proposes to diffuse
latent per-vertex codes associated with SMPL meshes in observation space and
condition NeRF [46] on such latent codes. However, the conditional inputs of
Neural Body are in the observation space. Therefore, it does not generalize well
to out-of-distribution poses. Several recent works [48,54,65] propose to model
the radiance field in canonical space and use a pre-defined or learned back-
ward mapping to map query points from observation space to this canonical
space. A-NeRF [65] uses a deterministic backward mapping defined by piece-
wise rigid bone transformations. This mapping is very coarse and the model
has to use a complicated bone-relative embedding to compensate for that. Ani-
NeRF [54] trains a backward LBS network that does not generalize well to out-
of-distribution poses, even when fine-tuned with a cycle consistency loss for its
backward LBS network for each test pose. Further, all aforementioned methods
utilize a volumetric radiance representation and hence suffer from noisy geome-
try [49,69,79,80]. In contrast to these works, we improve geometry by combining
an implicit surface representation with volume rendering and improve pose gen-
eralization via iterative root-finding. H-NeRF [74] achieves large improvements
in geometric reconstruction by co-training SDF and NeRF networks. However,
code and models of H-NeRF are not publicly available. Furthermore, H-NeRF’s
canonicalization process relies on imGHUM [3] to predict an accurate signed
distance in observation space. Therefore, imGHUM needs to be trained on a
large corpus of posed human scans and it is unclear whether the learned signed
distance fields generalize to out-of-distribution poses beyond the training set. In
contrast, our approach does not need to be trained on any posed scans and it
can generalize to extreme out-of-distribution poses.

Concurrent Works: Several concurrent works extend NeRF-based articulated
models to improve novel view synthesis, geometry reconstruction, or animation
quality [9,23,26,30,43,55,64,72,77,85]. [85] proposes to jointly learn forward
blending weights, a canonical occupancy network, and a canonical color network
using differentiable surface rendering for head-avatars. In contrast to human
heads, human bodies show much more articulation. Abrupt changes in depth
also occur more frequently when rendering human bodies, which is difficult to
capture with surface rendering [69]. Furthermore, [85] uses the secant method
to find surface points. For each secant step, this needs to solve a root-finding
problem from scratch. Instead, we use volume rendering of SDFs and formulate
the surface-finding task of articulated SDFs as a joint root-finding problem that
only needs to be solved once per ray. We remark that [26] proposes to formu-
late surface-finding and correspondence search as a joint root-finding problem
to tackle geometry reconstruction from photometric and mask losses. However,
they use pre-defined skinning fields and surface rendering. They also require esti-
mated normals from PIFuHD [61] while our approach achieves detailed geometry
reconstructions without such supervision.
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Fig. 2. Overview of Our Pipeline. (a) Given a ray (c,v) with camera center c
and ray direction v in observation space, we jointly search for its intersection with
the SDF iso-surface and the correspondence of the intersection point via a novel joint
root-finding algorithm (Sect. 3.3). We then sample near/far surface points {x̄}. (b)
The sampled points are mapped into canonical space as {x̂} via root-finding. (c) In
canonical space, we run an SDF-based volume rendering with canonicalized points {x̂},
local body poses and shape (θ, β), an SDF network feature z, surface normals n, and
a per-frame latent code Z to predict the corresponding pixel value of the input ray
(Sect. 3.4). (d) All network modules, including the forward LBS network LBSσω , the
canonical SDF network fσf , and the canonical color network fσc , are trained end-to-
end with a photometric loss in image space and regularization losses in canonical space
(Sect. 3.5).

3 Method

Our pipeline is illustrated in Fig. 2. Our model consists of a forward linear blend
skinning (LBS) network (Sect. 3.1), a canonical SDF network, and a canonical
color network (Sect. 3.2). When rendering a specific pixel of the image in obser-
vation space, we first find the intersection of the corresponding camera ray and
the observation-space SDF iso-surface. Since we model a canonical SDF and a
forward LBS, we propose a novel joint root-finding algorithm that can simulta-
neously search for the ray-surface intersection and the canonical correspondence
of the intersection point (Sect. 3.3). Such a formulation does not condition the
networks on observations in observation space. Consequently, it can generalize
to unseen poses. Once the ray-surface intersection is found, we sample near/far
surface points on the camera ray and find their canonical correspondences via for-
ward LBS root-finding. The canonicalized points are used for volume rendering to
compose the final RGB value at the pixel (Sect. 3.4). The predicted pixel color is
then compared to the observation using a photometric loss (Sect. 3.5). The model
is trained end-to-end using the photometric loss and regularization losses. The
learned networks represent a personalized animatable avatar that can robustly
synthesize new geometries and appearances under novel poses (Sect. 4.1).

3.1 Neural Linear Blend Skinning

Traditional parametric human body models [5,20,37,50,53,75] often use linear
blend skinning (LBS) to deform a template model according to rigid bone trans-
formations and skinning weights. We follow the notations of [71] to describe
LBS. Given a set of N points in canonical space, X̂ = {x̂(i)}N

i=1, LBS takes a
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set of rigid bone transformations {Bb}24b=1 as inputs, each Bb being a 4 × 4
rotation-translation matrix. We use 23 local transformations and one global
transformation with an underlying SMPL [37] model. For a 3D point x̂(i) ∈ X̂1,
a skinning weight vector is defined as w(i) ∈ [0, 1]24, s.t.

∑24
b=1 w(i)

b = 1. This
vector indicates the affinity of the point x̂(i) to each of the bone transforma-
tions {Bb}24b=1. Following recent works [11,45,62,71], we use a neural network
fσω

(·) : R3 �→ [0, 1]24 with parameters σω to predict the skinning weights of any
point in space. The set of transformed points X̄ = {x̄(i)}N

i=1 is related to X̂ via:

x̄(i) = LBSσω

(
x̂(i), {Bb}

)
, ∀i = 1, . . . , N

⇐⇒x̄(i) =

(
24∑

b=1

fσω
(x̂(i))bBb

)

x̂(i), ∀i = 1, . . . , N (1)

where Eq. (1) is referred to as the forward LBS function. The process of applying
Eq. (1) to all points in X̂ is often referred to as forward skinning. For brevity,
for the remainder of the paper, we drop {Bb} from the LBS function and write
LBSσω

(x̂(i), {Bb}) as LBSσω
(x̂(i)).

3.2 Canonical SDF and Color Networks

We model an articulated human as a neural SDF fσf
(x̂, θ, β,Z) with parameters

σf in canonical space, where x̂ denotes the canonical query point, θ and β
denote local poses and body shape of the human which capture pose-dependent
cloth deformations, and Z denotes a per-frame optimizable latent code which
compensates for time-dependent dynamic cloth deformations. For brevity, we
write this neural SDF as fσf

(x̂) in the remainder of the paper.
Similar to the canonical SDF network, we define a canonical color network

with parameters σc as fσc
(x̂,n,v, z,Z) : R

9+|z|+|Z| �→ R
3. Here, n denotes

a normal vector in the observation space. n is computed by transforming the
canonical normal vectors using the rotational part of forward transformations∑24

b=1 fσω
(x̂(i))bBb (Eq. (1)). v denotes viewing direction. Similar to [69,79,80],

z denotes an SDF feature which is extracted from the output of the second-last
layer of the neural SDF. Z denotes a per-frame latent code which is shared with
the SDF network. It compensates for time-dependent dynamic lighting effects.
The outputs of fσc

are RGB color values in the range [0, 1].

3.3 Joint Root-Finding

While surface rendering [47,80] could be used to learn the network parameters
introduced in Sects. 3.1 and 3.2, it cannot handle abrupt changes in depth, as
demonstrated in [69]. We also observe severe geometric artifacts when applying
surface rendering to our setup, we refer readers to the Supp. Mat. for such an
1 With slight abuse of notation, we also use x̂ to represent points in homogeneous

coordinates when necessary.
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ablation. On the other hand, volume rendering can better handle abrupt depth
changes in articulated human rendering. However, volume rendering requires
multi-step dense sampling on camera rays [69,79], which, when combined naively
with the iterative root-finding algorithm [11], requires significantly more memory
and becomes prohibitively slow to train and test. We thus employ a hybrid
method similar to [49]. We first search the ray-surface intersection and then
sample near/far surface points on the ray. In practice, we initialize our SDF
network with [71]. Thus, we fix the sampling depth interval around the surface
to [−5 cm,+5 cm].

A naive way of finding the ray-surface intersection is to use sphere tracing [19]
and map each point to canonical space via root-finding [11]. In this case, we
need to solve the costly root-finding problem during each step of the sphere
tracing. This becomes prohibitively expensive when the number of rays is large.
Thus, we propose an alternative solution. We leverage the skinning weights of
the nearest neighbor on the registered SMPL mesh to the query point x̄ and
use the inverse of the linearly combined forward bone transforms to map x̄
to its rough canonical correspondence. Combining this approximate backward
mapping with sphere tracing, we obtain rough estimations of intersection points.
Then, starting from these rough estimations, we apply a novel joint root-finding
algorithm to search the precise intersection points and their correspondences in
canonical space. In practice, we found that using a single initialization for our
joint root-finding works well already. Adding more initializations incurs drastic
memory and runtime overhead while not achieving any noticeable improvements.
We hypothesize that this is due to the fact that our initialization is obtained
using inverse transformations with SMPL skinning weights rather than rigid
bone transformations (as was done in [11]).

Formally, we define a camera ray as r = (c,v) where c is the camera center
and v is a unit vector that defines the direction of this camera ray. Any point on
the camera ray can be expressed as c+v · d with d >= 0. The joint root-finding
aims to find canonical point x̂ and depth d on the ray in observation space, such
that:

fσf
(x̂) = 0

LBSσω
(x̂) − (c + v · d) = 0 (2)

in which c,v are constants per ray. Denoting the joint vector-valued function as
gσf ,σω

(x̂, d) and the joint root-finding problem as:

gσf ,σω
(x̂, d) =

[
fσf

(x̂)
LBSσω

(x̂) − (c + v · d)

]

= 0 (3)

we can then solve it via Newton’s method
[
x̂k+1

dk+1

]

=
[
x̂k

dk

]

− J−1
k · gσf ,σω

(x̂k, dk) (4)
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where:

Jk =

⎡

⎣

∂fσf

∂x̂ (x̂k) 0
∂LBSσω

∂x̂ (x̂k) −v

⎤

⎦ (5)

Following [11], we use Broyden’s method to avoid computing Jk at each iteration.

Amortized Complexity: Given the number of sphere-tracing steps as N and
the number of root-finding steps as M, the amortized complexity for joint root-
finding is O(M) while naive alternation between sphere-tracing and root-finding
is O(MN). In practice, this results in about 5× speed up of joint root-finding
compared to the naive alternation between sphere-tracing and root-finding. We
also note that from a theoretical perspective, our proposed joint root-finding
converges quadratically while the secant-method-based root-finding in the con-
current work [85] converges only superlinearly.

We describe how to compute implicit gradients wrt. the canonical SDF and
the forward LBS in the Supp. Mat. In the main paper, we use volume rendering
which does not need to compute implicit gradients wrt. the canonical SDF.

3.4 Differentiable Volume Rendering

We employ a recently proposed SDF-based volume rendering formulation [79].
Specifically, we convert SDF values into density values σ using the scaled CDF
of the Laplace distribution with the negated SDF values as input

σ(x̂) =
1
b

(
1
2

+
1
2
sign(−fσf

(x̂)
)(

1 − exp(−| − fσf
(x̂)|

b
)
)

(6)

where b is a learnable parameter. Given the surface point found via solving
Eq. (3), we sample 16 points around the surface points and another 16 points
between the near scene bound and the surface point, and map them to canonical
space along with the surface point. For rays that do not intersect with any
surface, we uniformly sample 64 points for volume rendering. With N sampled
points on a ray r = (c,v), we use standard volume rendering [46] to render the
pixel color

Ĉ(r) =
N∑

i=1

T (i)
(
1 − exp(−σ(x̂(i))δ(i))

)
fcσ

(x̂(i),n(i),v, z,Z) (7)

T (i) = exp

⎛

⎝−
∑

j<i

σ(x̂(j))δ(j)

⎞

⎠ (8)

where δ(i) = |d(i+1) − d(i)|.
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3.5 Loss Function

Our loss consists of a photometric loss in observation space and multiple regu-
larizers in canonical space

L = λC · LC + λE · LE + λO · LO + λI · LI + λS · LS (9)

LC is the L1 loss for color predictions. LE is the Eikonal regularization [16].
LO is an off-surface point loss, encouraging points far away from the SMPL
mesh to have positive SDF values. Similarly, LI regularizes points inside the
canonical SMPL mesh to have negative SDF values. LS encourages the forward
LBS network to predict similar skinning weights to the canonical SMPL mesh.
Different from [26,74,80], we do not use an explicit silhouette loss. Instead, we
utilize foreground masks and set all background pixel values to zero. In practice,
this encourages the SDF network to predict positive SDF values for points on
rays that do not intersect with foreground masks. For detailed definitions of loss
terms and model architectures, please refer to the Supp. Mat.

4 Experiments

We validate the generalization ability and reconstruction quality of our proposed
method against several recent baselines [54,56,65]. As was done in [56], we con-
sider a setup with 4 cameras positioned equally spaced around the human sub-
ject. For an ablation study on different design choices of our model, including ray
sampling strategy, LBS networks, and number of initializations for root-finding,
we refer readers to the Supp. Mat.

Datasets: We use the ZJU-MoCap [56] dataset as our primary testbed because
its setup includes 23 cameras which allows us to extract pseudo-ground-truth
geometry to evaluate our model. More specifically, the dataset consists of 9
sequences captured with 23 calibrated cameras. We use the training/testing splits
from Neural Body [56] for both the cameras and the poses. As one of our goals
is learn to detailed geometry, we collect pseudo-ground-truth geometry for the
training poses. We use all 23 cameras and apply NeuS with a background NeRF
model [69], a state-of-the-art method for multi-view reconstruction. Note that
we refrain from using the masks provided by Neural Body [56] as these masks are
noisy and insufficient for accurate static scene reconstruction. We observe that
geometry reconstruction with NeuS [69] fails when subjects wear black clothes
or the environmental light is not bright enough. Therefore, we manually exclude
bad reconstructions and discard sequences with less than 3 valid reconstructions.
For completeness, we also tested our approach on the H36M dataset [25] and
report a quantitative comparison to [48,54] in the Supp. Mat.

Baselines: We compare against three major baselines: Neural Body [56](NB),
Ani-NeRF [54](AniN), and A-NeRF [65](AN). Neural Body diffuses per-SMPL-
vertex latent codes into observation space as additional conditioning for NeRF
models to achieve state-of-the-art novel view synthesis results on training poses.
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Ani-NeRF learns a canonical NeRF model and a backward LBS network which
predicts residuals to the deterministic SMPL-based backward LBS. Conse-
quently, the LBS network needs to be re-trained for each test sequence. A-NeRF
employs a deterministic backward mapping with bone-relative embeddings for
query points and only uses keypoints and joint rotations instead of surface mod-
els (i.e. SMPL surface). For the detailed setups of these baselines, please refer
to the Supp. Mat.

Benchmark Tasks: We benchmark our approach on three tasks: generalization
to unseen poses, geometry reconstruction, and novel-view synthesis. To analyze
generalization ability, we evaluate the trained models on unseen testing poses.
Due to the stochastic nature of cloth deformations, we quantify performance via
perceptual similarity to the ground-truth images with the LPIPS [84] metric. We
report PSNR and SSIM in the Supp. Mat. We also encourage readers to check
out qualitative comparison videos at https://neuralbodies.github.io/arah/.

For geometry reconstruction, we evaluate our method and baselines on the
training poses. We report point-based L2 Chamfer distance (CD) and normal
consistency (NC) wrt. the pseudo-ground-truth geometry. During the evaluation,
we only keep the largest connected component of the reconstructed meshes. Note
that is in favor of the baselines as they are more prone to producing floating blob
artifacts. We also remove any ground-truth or predicted mesh points that are
below an estimated ground plane to exclude outliers from the ground plane
from the evaluation. For completeness, we also evaluate novel-view synthesis
with PSNR, SSIM, and LPIPS using the poses from the training split.

Table 1. Generalization to Unseen
Poses. We report LPIPS [84] on syn-
thesized images under unseen poses
from the testset of the ZJU-MoCap
dataset [56] (i.e. all views except 0, 6,
12, and 18). Our approach consistently
outperforms the baselines by a large
margin. We report PSNR and SSIM in
the Supp. Mat.

Sequence Metric NB AniN AN Ours

313 LPIPS ↓ 0.126 0.115 0.209 0.092

315 LPIPS ↓ 0.152 0.167 0.232 0.105

377 LPIPS ↓ 0.119 0.153 0.165 0.093

386 LPIPS ↓ 0.171 0.187 0.241 0.127

387 LPIPS ↓ 0.135 0.145 0.162 0.099

390 LPIPS ↓ 0.163 0.173 0.226 0.126

392 LPIPS ↓ 0.135 0.169 0.183 0.106

393 LPIPS ↓ 0.132 0.155 0.175 0.104

394 LPIPS ↓ 0.150 0.171 0.199 0.111

Table 2. Geometry Reconstruc-
tion. We report L2 Chamfer Distance
(CD) and Normal Consistency (NC) on
the training poses of the ZJU-MoCap
dataset [56]. Note that AniN and AN
occasionally produce large background
blobs that are connected to the body
resulting in large deviations from the
ground truth.

Sequence Metric NB AniN AN Ours

313 CD ↓ 1.258 1.242 9.174 0.707

NC ↑ 0.700 0.599 0.691 0.809

315 CD ↓ 2.167 2.860 1.524 0.779

NC ↑ 0.636 0.450 0.610 0.753

377 CD ↓ 1.062 1.649 1.008 0.840

NC ↑ 0.672 0.541 0.682 0.786

386 CD ↓ 2.938 23.53 3.632 2.880

NC ↑ 0.607 0.325 0.596 0.741

393 CD ↓ 1.753 3.252 1.696 1.342

NC ↑ 0.600 0.481 0.605 0.739

394 CD ↓ 1.510 2.813 558.8 1.177

NC ↑ 0.628 0.540 0.639 0.762

https://neuralbodies.github.io/arah/
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Fig. 3. Generalization to Unseen Poses on the testing poses of ZJU-MoCap. A-
NeRF struggles with unseen poses due to the limited training poses and the lack of a
SMPL surface prior. Ani-NeRF produces noisy images as it uses an inaccurate backward
mapping function. Neural Body loses details, e.g. wrinkles, because its conditional
NeRF is learned in observation space. Our approach generalizes well to unseen poses
and can model fine details like wrinkles.

4.1 Generalization to Unseen Poses

We first analyze the generalization ability of our approach in comparison to
the baselines. Given a trained model and a pose from the test set, we render
images of the human subject in the given pose. We show qualitative results
in Fig. 3 and quantitative results in Table 1. We significantly outperform the
baselines both qualitatively and quantitatively. The training poses of the ZJU-
MoCap dataset are extremely limited, usually comprising just 60–300 frames of
repetitive motion. This limited training data results in severe overfitting for the
baselines. In contrast, our method generalizes well to unseen poses, even when
training data is limited.

We additionally animate our models trained on the ZJU-MoCap dataset
using extreme out-of-distribution poses from the AMASS [40] and AIST++ [32]
datasets. As shown in Fig. 5, even under extreme pose variation our approach
produces plausible geometry and rendering results while all baselines show severe
artifacts. We attribute the large improvement on unseen poses to our root-
finding-based backward skinning, as the learned forward skinning weights are
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Fig. 4. Geometry Reconstruction. Our approach reconstructs more fine-grained
geometry than the baselines while preserving high-frequency details such as wrinkles.
Note that we remove an estimated ground plane from all meshes.

constants per subject, while root-finding is a deterministic optimization process
that does not rely on learned neural networks that condition on inputs from the
observation space. More comparisons can be found in the Supp. Mat.

4.2 Geometry Reconstruction on Training Poses

Next, we analyze the geometry reconstructed with our approach against recon-
structions from the baselines. We compare to the pseudo-ground-truth obtained
from NeuS [69]. We show qualitative results in Fig. 4 and quantitative results
in Table 2. Our approach consistently outperforms existing NeRF-based human
models on geometry reconstruction. As evidenced in Fig. 4, the geometry
obtained with our approach is much cleaner compared to NeRF-based baselines,
while preserving high-frequency details such as wrinkles.
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Table 3. Novel View Synthesis. We report PSNR, SSIM, and LPIPS [84] for novel
views of training poses of the ZJU-MoCap dataset [56]. Due to better geometry, our
approach produces more consistent rendering results across novel views than the base-
lines. We include qualitative comparisons in the Supp. Mat. Note that we crop slightly
larger bounding boxes than Neural Body [56] to better capture loose clothes, e.g .
sequence 387 and 390. Therefore, the reported numbers vary slightly from their evalu-
ation.

313 315 377

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NB 30.5 0.967 0.068 26.4 0.958 0.079 28.1 0.956 0.080

Ani-N 29.8 0.963 0.075 23.1 0.917 0.138 24.2 0.925 0.124

A-NeRF 29.2 0.954 0.075 25.1 0.948 0.087 27.2 0.951 0.080

Ours 31.6 0.973 0.050 27.0 0.965 0.058 27.8 0.956 0.071

386 387 390

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NB 29.0 0.935 0.112 26.7 0.942 0.101 27.9 0.928 0.112

Ani-N 25.6 0.878 0.199 25.4 0.926 0.131 26.0 0.912 0.148

A-NeRF 28.5 0.928 0.127 26.3 0.937 0.100 27.0 0.914 0.126

Ours 29.2 0.934 0.105 27.0 0.945 0.079 27.9 0.929 0.102

392 393 394

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NB 29.7 0.949 0.101 27.7 0.939 0.105 28.7 0.942 0.098

Ani-N 28.0 0.931 0.151 26.1 0.916 0.151 27.5 0.924 0.142

A-NeRF 28.7 0.942 0.106 26.8 0.931 0.113 28.1 0.936 0.103

Ours 29.5 0.948 0.090 27.7 0.940 0.093 28.9 0.945 0.084

4.3 Novel View Synthesis on Training Poses

Lastly, we analyze our approach for novel view synthesis on training poses.
Table 3 provides a quantitative comparison to the baselines. While not the main
focus of this work, our approach also outperforms existing methods on novel view
synthesis. This suggests that more faithful modeling of geometry is also benefi-
cial for the visual fidelity of novel views. Particularly when few training views are
available, NeRF-based methods produce blob/cloud artifacts. By removing such
artifacts, our approach achieves high image fidelity and better consistency across
novel views. Due to space limitations, we include further qualitative results on
novel view synthesis in the Supp. Mat.
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Fig. 5. Qualitative Results on Out-of-distribution Poses from the AMASS [40]
and AIST++ [32] datasets. From top to bottom row: Neural Body, Ani-NeRF, our
rendering, and our geometry. Note that Ani-NeRF requires re-training their backward
LBS network on novel pose sequence. We did not show A-NeRF results as it already
produces severe overfitting effects on ZJU-MoCap test poses. For more qualitative
comparisons, please refer to the Supp. Mat.
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5 Conclusion

We propose a new approach to create animatable avatars from sparse multi-view
videos. We largely improve geometry reconstruction over existing approaches by
modeling the geometry as articulated SDFs. Further, our novel joint root-finding
algorithm enables generalization to extreme out-of-distribution poses. We discuss
limitations of our approach in the Supp. Mat.
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