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Abstract. We focus on better understanding the critical factors of
augmentation-invariant representation learning. We revisit MoCo v2 and
BYOL and try to prove the authenticity of the following assumption: dif-
ferent frameworks bring about representations of different characteristics
even with the same pretext task. We establish the first benchmark for
fair comparisons between MoCo v2 and BYOL, and observe: (i) sophis-
ticated model configurations enable better adaptation to pre-training
dataset; (ii) mismatched optimization strategies of pre-training and fine-
tuning hinder model from achieving competitive transfer performances.
Given the fair benchmark, we make further investigation and find asym-
metry of network structure endows contrastive frameworks to work well
under the linear evaluation protocol, while may hurt the transfer perfor-
mances on long-tailed classification tasks. Moreover, negative samples do
not make models more sensible to the choice of data augmentations, nor
does the asymmetric network structure. We believe our findings provide
useful information for future work.

1 Introduction

Recently, with the advancement of research on pretext tasks [11,12,16,29,30,40],
self-supervised learning (SSL) presents extraordinary potential in computer
vision, pushing the frontier of transfer learning. The effectiveness of self-
supervised learned representations has been empirically verified. Compared to
supervised pre-training counterparts, MoCo series [7,9,20] achieves comparable
or even better performances on object detection, semantic segmentation, etc.
Moreover, under the linear evaluation protocol on ImageNet [34] (an often used
evaluation metric for SSL), BYOL [18] and SwAV [3] have largely shrunk the
gap with supervised learning.
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Among various pretext tasks, one of the most promising ways is to pull
together the positive sample pairs (different augmented views of the same image),
which enables the model to learn augmentation-invariant representations. The
simplicity of this pretext task also brings about a notorious problem: without
careful design, the model will collapse to a trivial solution that all images are
mapped to a constant vector, resulting in useless representations. To avoid this
collapse, contrastive methods like MoCo impose regularization by pushing away
the negative sample pairs (different images), while BYOL develops the asymmet-
ric siamese network with a stop-gradient operation. Though sharing the same
pretext task, MoCo v2 and BYOL show different results of linear classification
and transfer learning. As reported in [8,18], BYOL has higher linear accuracy,
while MoCo v2 presents better transferability. Given this observation, it is natu-
ral to assume different frameworks bring about representations of different char-
acteristics.

To prove or disprove the above assumption, it is essential to build the bench-
mark for fair comparison between contrastive frameworks and BYOL. Since
MoCo v2 shares many similarities with BYOL, which is convenient to perform
controlled experiments, we choose it as the representative of contrastive meth-
ods. We aim to study the experimental impact of the following variables on
augmentation-invariant representation learning: model configurations (i.e., net-
work architecture, symmetry of training loss, etc.), combination of data aug-
mentations, and optimization strategies. The evaluation criteria consist of linear
classification accuracy and transfer performances of typical downstream tasks.
Our efforts and contributions will be described next.

We challenge the opinion arising from previous experimental observations
of [8,18] that the superiority of linear evaluation is unique to SSL frameworks
without negative sample pairs (e.g., BYOL [18], SimSiam [8]). We ablate the
differences in model configurations between MoCo v2 and BYOL, including net-
work architecture, rule of momentum update, and symmetry of training loss.
The differences are iteratively removed based on MoCo v2. Without searching
pre-training hyper-parameters, the linear accuracy of MoCo v2 on ImageNet
consistently benefits from the sophisticated model configurations (72.0% top-1
accuracy for 200-epoch pre-training). On top of this, we reformulate MoCo v2
into a more effective version as shown in Fig. 1c (MoCo v2+ for short). Moreover,
when pre-training with more complex data augmentations, MoCo v2+ receives
further improvement (72.4%). Our study suggests that the sophisticated design
of model configurations affects a lot on the pretext task’s performance.

Second, we try to uncover the mystery of BYOL’s poor transferability. It
seems that practitioners struggle to fully unleash the potential of BYOL even
with heavy computation to search fine-tuning learning rates [8]. We tackle this
issue by investigating the optimization strategy (e.g., optimizer, learning rate,
etc.) of pre-training and fine-tuning. By delving into the original implementa-
tion of BYOL and its LARS optimizer [42], we find the distribution of LARS-
trained representations is different from that of SGD-trained representations.
The currently used fine-tuning optimization strategy best selected for SGD-
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Fig. 1. This figure compares the structures of four SSL frameworks discussed in our
paper. All of them are siamese network along with the stop-gradient operation and
momentum update. For convenient reference, we name the encoder updated by gradi-
ents as student encoder, and the encoder with stop-gradient operation as the teacher
encoder. They are represented by the capital letter, S and T respectively. Note that
the backbones of both student and teacher encoder include a projector that is a non-
linear 2-layer MLP (not shown in the picture). pred in the green box represents the
predictor (also a non-linear 2-layer MLP). The only difference between MoCo v2+ and
S-MoCo v2+ lies in the existence of teacher encoder’s predictor (Color figure online)

trained features is not suitable for LARS-trained features. We therefore can con-
clude that the mismatched optimizer choices (LARS for pre-training and SGD
for fine-tuning) cause the sub-optimal performances of BYOL. Obviously, using
matched optimizers or searching optimization hyper-parameters for fine-tuning
can circumvent this issue. In this paper, we also propose one simple yet effec-
tive technique NormRescale to solve this problem. NormRescale rescales the
weight norm of LARS-trained model by the SGD-trained counterpart. Norm-
Rescale works well across many downstream tasks and significantly outperforms
the baseline, which proves its capability to recover BYOL’s transferability.

Thus far, a fair benchmark has been established. We can make a robust
argument that it is not the frameworks but the training details that determine
the characteristics of learned representations.

Thanks to the unified training details, we are able to quest for the exper-
imental impact of the asymmetric network structure. Previous work [8,9,18]
has verified the effectiveness of asymmetric network structure for linear clas-
sification. The influences on transfer learning are yet to be examined. To this
goal, we symmetrize the network structure of MoCo v2+, which gives us the
Symmetric MoCo v2+ (abbreviated as S-MoCo v2+, the structure can be seen
in Fig. 1d). Based on the comparison among MoCo v2+, S-MoCo v2+, and
BYOL, our findings are threefold: (i) asymmetric network structure leads to
better adaptation on the pre-training datasets but does not mean higher trans-
ferability; (ii) the performances of long-tailed classification datasets are more
outstanding for contrastive methods, and will be further improved by the sym-
metric network structure; (iii) contrary to the claim in [18,43], contrastive meth-
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ods with or without symmetry of network structure are not more susceptible to
data augmentations than BYOL.

Compared to the current literature, our findings are surprising and challenge
existing understanding of self-supervised learning. The extensive experiments
convey a main idea that training details determine the characteristics of learned
representations. As long as we align the model configurations, combination of
data augmentations and optimization strategy of MoCo v2 and BYOL, they
show similar performances in linear evaluation and transferring to other down-
stream tasks. We hope the fair benchmark and our observations will motivate
future research.

2 Related Work

Augmentation-Invariant Representation Learning. There have been a
great deal of pretext task [2–4,6,11,12,14,16,18,20,23,28–31,35,37,39–41,43]
proposed in self-supervised learning. Amongst them, augmentation-invariant
representation learning shines brightly. The core idea of augmentation-invariant
representation learning is to attract different augmented views of the same image
as closely as possible. Many research branches are derived from the creative
endeavor of the community. Contrastive methods [6,20,23,30,37,39,41] follow
the idea proposed in [19] to pull together the positive sample pairs and push
away the negative sample pairs. BYOL [18] and SimSiam [8] directly minimize
the distance of positive sample pairs, along with an asymmetric siamese net-
work. W-MSE [14] attracts the positive pairs based on the whitening features.
SwAV [3] first performs online clustering and then classification according to
the clustering label generated by its positive sample. DINO [4] optimizes the
distribution distances of positive sample pairs along with the “centering” and
“sharpening” operations. BarlowTwins [43] maximizes the correlation of pos-
itive sample pairs and decorrelates the features of different images. Research
on augmentation-invariant representation learning has sprung up, which also
illustrates the advantages of augmentation-invariant representation learning as
a pretext task for self-supervised learning.

Impact of Training Details. Discussion about the impact of training details on
representation quality is not new to the community. Previous work has explored
which factors enable performance promotion for their algorithms. For example,
in order to boost the accuracy of linear evaluation, MoCo series [7,9,20] and Sim-
CLR [6] search for optimization hyper-parameters (e.g., learning rate, learning
rate decay schedule, batch size, etc.), the combination of data augmentations,
and the number of negative samples. BYOL [18,33] and SimSiam [8] ablates the
coefficients of momentum update and the choice of batch normalization. Due to
the lack of a fair benchmark, the successes of these methods seem to be binding
together with their unique framework. We are not aware of whether future work
can learn from their successes.

Other work like [44] makes a contribution to better understanding the trans-
fer performance of instance discrimination. But the scope of their study is nar-
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rowed down to MoCo v2. SimSiam [8] pays more attention to what the optimiza-
tion problem for frameworks without using negative samples is. [13] focuses on
the fine-tuning results based on frozen pre-trained weights. Unlike them, we pro-
vide extensive experiments based on MoCo v2 and BYOL that are pre-trained
given various training details. The standard evaluation protocol includes linear
evaluation on pre-training datasets and transfer performance of some typical
downstream tasks. Our goal is to build the first fair benchmark to compare
MoCo v2 and BYOL, two influential frameworks in augmentation-invariant rep-
resentation learning.

Asymmetric Network Structure. The notorious problem of augmentation-
invariant representation learning is that without careful design, all input images
are mapped to a constant vector. The solution of contrastive frameworks is
simple and intuitive—repulsing the negative sample pairs. Likewise, feature
decorrelation methods [4,14,24] separate the features according to the specific
rules to avoid the collapse. BYOL [18] and SimSiam [8] rely on the asymmetric
network structure and the stop-gradient operation. To study the optimization
problem based on asymmetric network structure, SimSiam ablates many hyper-
parameters of pre-training. Later work [38] concentrates on the theoretical influ-
ence of the asymmetric network structures.

It should be noted that the focus of this work is not on advancing the develop-
ment of SSL by proposing a new algorithm. On the opposite, we aim to present a
fair and comprehensive investigation based on existing algorithms to gain better
understanding.

3 Experimental Setup

3.1 Framework

In this section, we briefly review two well-known frameworks of augmentation-
invariant representation learning: MoCo v2 [7] and BYOL [18]. Both of them
adopt the design of teacher-student siamese network with momentum update rule
[36], where the teacher encoder is updated by the exponential moving average
of the student encoder. This unity of network structure is convenient for us to
perform controlled experiments. It is worth noting that other self-supervised
learning frameworks pre-training with different pretext tasks are beyond the
scope of our paper.

MoCo v2. By optimizing the contrastive loss [19], MoCo v2 learns to pull the
features of positive sample pairs (different augmented views of the same image)
together and to push the features of negative sample pairs (different images)
away. Different from other contrastive frameworks [6,28,30,37,40], MoCo v2
designs a memory queue (first-in, first-out) to store features computed in pre-
vious training iterations. Meanwhile, the rule of momentum update helps main-
tain the feature consistency. In practice, a batch of input images will be inde-
pendently transformed twice, resulting in a batch of positive sample pairs. The
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teacher-student siamese network then encodes them as features respectively. The
mini-batch contrastive loss is described as follow:

L = − 1
N

∑

q

log
(

exp(qTk+/τ)
exp(qTk+/τ) +

∑
k− exp(qTk−/τ)

)
(1)

q and k+ stand for the student feature and teacher feature that are encoded
from the positive sample pair by the siamese network respectively. k− is the
negative feature stored in the memory queue. N is the batch size and τ is the
temperature (for the following experiments of our paper, we use 0.2 by default).
After back-propagating the contrastive loss, all the teacher features {k+} are
enqueued and the “oldest” of the memory queue features are dequeued.

BYOL. Similar to contrastive methods, BYOL learns to attract the positive
sample pairs as close as possible in feature space without regularization of neg-
ative sample pairs. Previous work [8,18] have stated the asymmetric structure
of siamese network and the stop-gradient operation (no gradient will flow to the
teacher encoder) are critical to avoiding trivial solution in BYOL. The asymmet-
ric structure refers to that the student branch of siamese network is followed by a
predictor (a non-linear two-layer MLP), yielding the asymmetry between student
and teacher branches. The mini-batch training loss of BYOL is symmetric:

L =
1
N

(
∑

q1

‖q1 − k1‖2 +
∑

q2

‖q2 − k2‖2) (2)

The samples from a positive pair are mapped to q1 and q2 by the student
encoder, and mapped to k1 and k2 by the teacher encoder. ‖ · ‖ is the Euclidean
distance.

3.2 Pre-training and Evaluation

In this section, we provide the required information on pre-training and fine-
tuning for our experiments. The backbone of siamese network is ResNet-50 [22],
and the pre-training dataset is ImageNet [34]. The details about data augmen-
tations can be found in Supplementary Materials.

Pre-training. To re-implement MoCo v2 efficiently, we make the following
adjustments: increasing the training batch size to 1024, linearly scaling up the
learning rate to 0.12 according to [17], and introducing a 10-epoch linear warm-
up schedule before the decay of learning rate. Note that these modifications
do not change the performance of MoCo v2. To reproduce BYOL, we faithfully
follow the training settings in [18]. There are two combinations of data augmen-
tations mentioned in BYOL. We use the symmetric one for our experiments. In
the crossover study of Sect. 4.2, when training MoCo v2+ with LARS [42] opti-
mizer, the training hyper-parameters are copied from the implementation of the
original BYOL. Likewise, when training BYOL with SGD optimizer, we adopt
the same hyper-parameters used in MoCo v2+.
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Linear Evaluation. The common practice of linear evaluation is to freeze the
backbone and train a linear classifier based on the fixed representations. Here, we
provide two settings for the training phase of linear evaluation. For models pre-
trained with SGD optimizer, we use SGD optimizer to train for 100 epochs. The
batch size is 256, and the initial learning rate is 30 which is decayed by a factor
of 10 at the 60 and 80-th epoch. For models pre-trained with LARS optimizer,
we follow the hyper-parameters adopted in BYOL. We use SGD optimizer with
Nesterov to train for 80 epochs. The batch size is 1024, and the initial learning
rate is 0.8 and is decayed to 0 by the cosine schedule. Both training settings use a
momentum of 0.9 and no weight decay. After training, we report the single-crop
classification accuracy on ImageNet validation set.

PASCAL VOC Object Detection. We transfer the pre-trained models on
PASCAL VOC [15] for object detection. We strictly follow the training details in
[20], which uses a Faster R-CNN [32] detector with a backbone of ResNet50-C4.
It takes 9k iterations to fine-tune on trainval2007 set and 24k iterations to
fine-tune on trainval07+12 set. We report the results evaluated on test2007
set.

COCO Object Detection and Instance Segmentation. We fine-tune the
pre-trained models on COCO [27] for object detection and instance segmenta-
tion. We adopt Mask R-CNN [21] as the detector with two kinds of backbone,
ResNet50-C4 and ResNet50-FPN. For a fair comparison, the training settings are
exactly the same used in [20]. Following the 1× optimization setting, it takes 90k
iterations to fine-tune on train2017 set. Finally, we report the results evaluated
on val2017 set.

CityScapes Semantic Segmentation. We train on CityScapes [10] to evalu-
ate the performance on semantic segmentation. For easy re-implementation, we
use DeepLab-v3 architecture [5]. The backbone is ResNet50 with a stride of 8.
The crop size is 512×1024 for training, and 1024×2048 for testing. It takes
40k iterations to fine-tune on train fine set, and finally we report the results
evaluated on val set.

4 Experiments and Analyses

4.1 What Matters in Linear Evaluations?

In the light of previous work, SSL methods without negative sample pairs (e.g.,
BYOL [18], SimSiam [8], DINO [4]) have higher accuracy in linear evaluation,
compared to contrastive methods. What on earth hinders contrastive methods
like MoCo v2 from better adapting to the pre-training dataset to achieve better
performance in linear evaluation, the negative sample pairs or other previously
ignored factors?

In this subsection, we seek to answer the question by exploring how to ele-
vate MoCo v2 to achieve higher accuracy in linear evaluation. Given this goal, it
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Fig. 2. Top-1 accuracy of linear evaluation on ImageNet and CIFAR-100. The x-axis
represents the modifications of model configurations. We use MoCo v2 as our baseline.
All models are trained for 200 epochs. The trend of these two curves indicates that the
linear accuracy consistently benefits from the sophisticated model configurations

is desirable to improve linear accuracy under modifications to model configura-
tions. With reference to BYOL, we make the following adjustment on MoCo v2.
First, we replace the ShufflingBN with synchronized BN (SyncBN). However,
this direct replacement does not bring the expected performance improvement.
Hence we insert a BN to the hidden layer of the projector (a non-linear two-layer
MLP after the backbone) as BYOL does. Second, we add a predictor (an MLP
similar to projector) at the end of student encoder, yielding asymmetry between
student encoder and teacher encoder. Third, the coefficient of momentum update
no longer stays still, but increases from 0.99 to 1 according to a cosine schedule.
Forth, we symmetrize the contrastive loss, as has been done in [3,6,8,18]. For
convenient reference, we name this enhanced framework as MoCo v2+, which
is an extension of MoCo v2. Last, we train MoCo v2+ with more complex data
augmentations (introducing solarization to the combination)1.

The results of linear evaluation on ImageNet are in Fig. 2. Surprisingly,
the linear accuracy consistently benefits from the modifications even without
searching hyper-parameters. When training with more complex augmentations,
MoCo v2+ finally catches up to BYOL in terms of linear accuracy (72.4% top-1
accuracy). Among these changes, the symmetrization of contrastive loss brings
the most obvious improvement (2.0% accuracy increment). To validate the effec-
tiveness of representations with high linear accuracy on ImageNet, we train a
linear classifier on CIFAR-100 [26]. The accuracy curve is in Fig. 2. Similarly,
we observe distinct promotions for linear evaluation on CIFAR-100 compared to
baseline.

Table 1 presents the transfer performances on downstream tasks. The pro-
motions (about 0.5% improvement) in transfer learning are not as obvious as

1 The detailed information about the combination of data augmentations can be found
in Supplementary Materials.
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Table 1. The results of transfer learning on detection and segmentation tasks. All
models are trained for 200 epochs. The best results are marked as bold

VOC07 VOC07+12 COCO CityScapes

AP50 AP50 APC4
box APC4

seg APFPN
box APFPN

seg mIoU

MoCo v2 76.5 82.2 38.8 34.0 39.5 35.8 77.4

+ SyncBN 76.7 82.0 38.6 33.7 39.7 35.8 76.9

+ Asymmetric Predictor 76.7 82.1 39.0 34.1 39.8 35.9 77.3

+ Momentum Ascending 77.0 82.3 39.0 34.3 39.7 35.8 77.4

+ Symmetric Loss (MoCo v2+) 77.1 82.7 39.4 34.5 40.3 36.5 77.6

+ More Complex Augmentations 77.3 82.7 39.2 34.4 40.4 36.7 77.6

BYOL 71.7 79.1 35.3 31.1 40.8 36.9 76.4

in linear evaluation. One possible explanation for this contradiction is that bet-
ter adaptation to pre-training dataset is more helpful to those datasets whose
distribution are similar to the pre-training dataset. As we can see in Fig. 2, the
trends of two curves in Fig. 2 are accordant. In a nutshell, sophisticated design
of model configurations affects a lot on the pretext task’s performance.

4.2 How to Improve Transfer Performances?

Despite BYOL being one of the significant frameworks in SSL, its capability on
typical downstream tasks like object detection on VOC [15] and COCO [27] have
not received enough attention. From one of only a few studies concerning this
problem, we find MoCo v2 outperforms BYOL on VOC and COCO detection
and instance segmentation [8]. Table 1 also reflects this issue. We notice these
comparisons are based on misaligned optimization strategies. Specifically, BYOL
utilizes LARS optimizer [42] to train with large batch size, while MoCo v2+ uses
SGD optimizer. In this case, it remains an open question whether BYOL has
innately poor transferability on those challenging downstream tasks given the
same optimization strategy.

In this subsection, we investigate how to improve transfer performances of
BYOL from the perspective of optimization. To understand how optimization
strategy influences the transferability of learned representations, we provide a
crossover study of SGD and LARS optimizers for pre-training. The results of
downstream tasks are in Table 2. Both frameworks are less competitive on most
downstream tasks when pre-trained with LARS. It seems that the poor results
may originate from the pre-training optimization strategy. There is one excep-
tion, though, that LARS-trained models show comparable or even better results
for the downstream tasks adopting ResNet50-FPN as backbone. We, therefore,
infer that the LARS optimizer does not compromise the quality of learned rep-
resentations.

By examining the implementation details of BYOL, we find that, unlike
SGD, the LARS optimizer does not impose L2-regularization on the parameters
of batch normalization layers. As training goes on, the weight norm becomes
larger. We can see the clear contrast in Fig. 3a that the weight norms of the
LARS-trained model are significantly larger. In other words, the distribution
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of learned representations is different from those trained by SGD. Fine-tuning
LARS-trained models with the hyper-parameters best suited for SGD-trained
models naturally yields sub-optimal performances. Thus, we can conclude that
mismatched optimizer used in pre-training and fine-tuning is the reason for per-
formance degeneration in BYOL, but not the framework itself.

Table 2. The results of crossover study involving SGD and LARS optimizer. All models
are trained for 200 epochs. The best results are marked bold

Optimizer ImageNet VOC07 VOC07+12 COCO CityScapes

Acc AP50 AP50 APC4
box APC4

seg APFPN
box APFPN

seg mIoU

MoCo v2+ SGD 72.0 77.1 82.7 39.4 34.5 40.3 36.5 77.7

LARS 72.5 62.9 74.4 32.1 28.9 40.0 36.2 73.2

BYOL SGD 72.1 76.2 82.4 38.8 33.9 39.9 36.1 77.5

LARS 72.4 71.7 79.1 35.3 31.1 40.8 36.9 75.2

Fig. 3. (a): Weight norms of all conv3× 3 layers from LARS-trained and SGD-trained
models. (b): CKA similarities of LARS-trained and SGD-trained representations across
all stages of ResNet-50. Best viewed in color (Color figure online)

Table 2 points out a solution to circumvent this issue—using SGD optimizer
for pre-training. This solution, however, is not universally effective, since it does
not apply to large batch size training where LARS is more popularly used.
To alleviate this issue, [8] searches learning rates for fine-tuning LARS-trained
models, inevitably inducing heavy computation. Next, we describe two findings
that lead us to a flexible approach.

First, we utilize the CKA similarity [25] to measure how similar the repre-
sentations learned by LARS and SGD are. The blue line of Fig. 3b indicates
these representations are sufficiently similar although they follow different dis-
tributions. Second, as described in [20], the features for the region proposal are
normalized by the newly initialized BN in ResNet50-FPN, while not in ResNet50-
C4. We argue the rescale operation in newly initialized BN helps LARS-trained
models to adapt to optimization of fine-tuning driven by SGD. Motivated by
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Table 3. The downstream performances of BYOL under various implementations.
“NR” stands for NormRescale. All models are trained for 200 epochs. The best results
are marked bold

VOC07 VOC07+12 COCO detection COCO instance seg.

AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 APM
50 APM APM

75

BYOL-SGD 76.2 48.1 52.9 82.4 56.5 63.6 58.5 38.8 42.1 55.2 34.0 36.2

BYOL-LARS 71.7 38.8 37.0 79.1 48.7 51.7 56.2 35.3 37.5 52.3 31.1 32.2

BYOL in [8] 77.1 47.0 49.9 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0

BYOL-NR 76.6 48.1 51.6 82.1 56.7 62.9 59.3 39.3 42.6 56.0 34.5 36.7

the analyses above, we present a simple yet effective technique, NormRescale,
to address this issue. Assume we have a well-trained model that is pre-trained
by SGD2. For any weight of the LARS-trained model, we rescale its norm as
follows:

w∗ = ‖wS‖ · wL

‖wL‖ , (3)

where wL is the weight vector of LARS-trained model, and wS is the corre-
sponding weight vector of SGD-trained model. ‖·‖ stands for 2-norm. We skip
the procedure of hyper-parameters searching and fine-tune the processed weight
w∗ on downstream tasks.

In Table 3, we compare the transfer performances of BYOL under differ-
ent implementations. The results of NormRescale are about the same as that
of BYOL-SGD and significantly better than that of the vanilla implementation
(BYOL-LARS). Moreover, it also shows superior performances on most metrics
for detection and segmentation against the reproduction of [8]. The comparisons
confirm NormRescale can effectively recover the transferability of the LARS-
trained model. We also plot the CKA similarities between the representations
of BYOL-SGD and NormRescale in Fig. 3 (red line). It can be seen that Norm-
Rescale retains the characteristics of LARS-trained representations. Apart from
using BYOL-SGD as the anchor weight, we also explore other anchor choices for
NormRescale. The detailed comparison can be found in Supplementary Materials.

These results suggest that optimization strategy is the key to the transferabil-
ity of BYOL. For efficient comparison, we adopt SGD as our default optimizer
for all the below experiments. Without confusing references, we continue to use
BYOL to stand for SGD-trained BYOL.

Thus far, we have presented the first fair benchmark to compare two impor-
tant frameworks of SSL, namely MoCo and BYOL. Our extensive experiments
show that the performances of linear evaluation and transfer learning are sim-
ilar in MoCo v2+ and BYOL given the aligned training details, leading to an
authentic argument that the training details determine the characteristics of
learned representations.

2 In default, we choose the 200-epoch SGD-trained BYOL.
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Table 4. Results on ImageNet and downstream tasks of BYOL, MoCo v2+,
S-MoCo v2+. All models are trained for 200 epochs. The best results are marked bold

Asymmetry ImageNet VOC07 VOC07+12 COCO CityScapes

Acc AP50 AP50 APC4
box APC4

seg APFPN
box APFPN

seg mIoU

BYOL � 72.1 77.2 82.7 39.3 34.5 40.6 36.6 77.1

MoCo v2+ � 72.4 77.3 82.7 39.2 34.4 40.4 36.7 77.6

S-MoCo v2+ 71.2 77.1 82.4 39.1 34.2 40.6 36.7 77.2

4.3 What Is the Impact of Asymmetric Network Structure?

The asymmetric network structure first proposed in BYOL plays an important
role in avoiding model collapse for augmentation-invariant representation learn-
ing. There are follow-up studies on the asymmetric structure that are mainly
about the theoretical understanding [8,38] and the effectiveness for linear classi-
fication [8,9]. Here, we explore the experimental impact of asymmetric structure
in transfer learning and its comparison to symmetric one. We symmetrize the
network structure of MoCo v2+ by adding an extra predictor to the teacher
encoder. We call it Symmetric MoCo v2+ (abbreviated as S-MoCo v2+). We
refer to Fig. 1d for visual description. In this subsection, the experiments are
mainly about the following three parts.

Standard Evaluation Tasks. We first provide a direct comparison amongst
MoCo v2+, S-MoCo v2+, and BYOL on the typical datasets. The results of lin-
ear evaluation and transfer learning are listed in Table 4. As shown in the third
column (ImageNet Acc), S-MoCo v2 is inferior in linear evaluation, indicating
that models with asymmetric structure may better fit pretext tasks. The perfor-
mances of transfer learning, in contrast, are similarly good on many downstream
tasks. The biggest gap between the best and the worst is within 0.4. We conclude
that the transferability for these regular downstream tasks may be neutral to
the symmetry of network structure.

Long-Tailed Classification Task. We next study the effects on two long-
tailed classification tasks (CIFAR-10-LT and CIFAR-100-LT [1]). The effective-
ness of pre-trained models is measured in two aspects: linear evaluation and
fine-tuning. For solid comparisons, we provide models pre-trained with different
hyper-parameters (e.g., learning rate, training epochs, etc.). As plotted in Fig. 4,
the horizontal coordinate for each point represents the pre-trained model’s linear
accuracy on ImageNet and the vertical coordinate stands for linear or fine-tuning
accuracy on long-tailed datasets. Our findings can be summarized as follows:

(i) Model with higher linear accuracy on ImageNet shows better performance on
CIFAR-10/100-LT under the linear evaluation protocol. But the situation is
different for fine-tuning. We do not see a clear trend between linear accuracy
on ImageNet and fine-tuning accuracy.

(ii) In all four sub-figures, we can observe a clear ranking result that
S-MoCo v2+ has the best effect, followed by MoCo v2+, and finally BYOL.
The superiority of contrastive methods in linear evaluation and fine-tuning
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implies that the regularization imposed by pushing away negative sample
pairs which renders a more uniform representation space is conducive to
long-tailed classification. Besides, we point out the strength of symmetric
network structure, as it provides the best performances of S-MoCo v2+ (see
Fig. 4).

Fig. 4. Linear evaluation and fine-tuning results of BYOL, MoCo v2+ and
S-MoCo v2+. The regression lines describe the correlation between linear accuracy
on ImageNet and linear or fine-tuning accuracy on long-tailed classification datasets,
with confidence intervals in shaded areas. Best viewed in color (Color figure online)

Data Augmentations. We make an attempt to investigate the sensitivity of
contrastive methods and BYOL to data augmentations, which has been dis-
cussed in [18,43]. The conclusions about this problem are consistent in their
work—contrastive methods are more sensitive to the variation of data augmen-
tations. Following our above analyses, we are sceptical about the validity of this
conclusion where a fair benchmark is absent. To get a clear picture of it, we ablate
data augmentations based on MoCo v2+, S-MoCo v2+, and BYOL. The base-
line combination of data augmentations includes random cropping and resizing
to 224×224, horizontal flipping, color jittering, gray scale converting, Gaussian
blur, and solarization. The specific parameters of augmentations can be found
in Supplementary Materials. Likewise, we iteratively remove the data augmen-
tations involving color transformations. The order goes solarization, Gaussian
blur, gray scale converting, and color jittering. After removing all color transfor-
mations, the combination is the same as used in supervised training. The results
are depicted in Fig. 5.

Interestingly, the obvious accuracy gap between contrastive methods and
BYOL reported in [18,43] vanishes; instead, we observe similar results of linear
accuracy on ImageNet for contrastive methods and BYOL. The comparison of
contrastive methods (MoCo v2+ vs. S-MoCo v2+) demonstrates that it is not
the asymmetric head that causes these similarities. Therefore, we can present a
convincing and empirically verified conclusion that a sufficiently complex com-
bination of data augmentation is equally important for contrastive methods and
BYOL. In turn, the consistency of effects between MoCo v2+, S-MoCo v2+ and
BYOL suggests that ignoring training details can give misperceptions in SSL.

In addition to the linear accuracy on ImageNet, we also report the transfer
performances across various downstream tasks. As clearly shown in Fig. 5, sim-
ilar phenomena can be found in the results of different downstream tasks that
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Fig. 5. The results of linear evaluation and downstream tasks under different combi-
nations of data augmentations. Best viewed in color (Color figure online)

transferability is positively correlated to the complexity of data augmentation
combinations. Through careful observation, we find that most models meet sig-
nificant performance degeneration if gray scale converting is cancelled. Strictly
speaking, it is biased to believe gray scale converting is so important that SSL
methods would face degradation without it. A more likely explanation is that
the combination of data augmentations lacks complexity when cancelling out
gray scale converting, inducing less competitive representations.

5 Conclusion

In summary, the extensive experiments throughout the paper revolve around the
idea that training details determine the characteristics of learned representations
in augmentation-invariant representation learning. In the process of verifying the
idea, we observe the following:

(i) Sophisticated design of model configurations helps representations better
adapt to the pre-training dataset, which in turn improves the linear accuracy
on datasets with similar distribution to pre-training dataset.

(ii) What truly prevents BYOL from achieving competitive performances on
typical downstream tasks is the mismatched optimization strategy for pre-
training and fine-tuning. Using matched optimizers can remedy the perfor-
mances drop. We also propose one simple yet effective technique to do the
same, and it can apply to the situation where using mismatched optimizers
is inevitable.

(iii) Asymmetric network structure leads to higher linear accuracy on pre-
training dataset, while symmetric one has more competitive results on long-
tailed classification tasks. Based on the fair comparisons among MoCo v2+,
S-MoCo v2+ and BYOL, we confirm that contrastive methods and BYOL
are equally sensitive to data augmentations.

We hope the fair benchmark and our observations will shed light on the
understanding of MoCo v2 and BYOL, and help motivate future research to
push forward the frontier of SSL.
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