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Abstract. We propose Masked Siamese Networks (MSN), a self-
supervised learning framework for learning image representations. Our
approach matches the representation of an image view containing ran-
domly masked patches to the representation of the original unmasked
image. This self-supervised pre-training strategy is particularly scalable
when applied to Vision Transformers since only the unmasked patches
are processed by the network. As a result, MSNs improve the scala-
bility of joint-embedding architectures, while producing representations
of a high semantic level that perform competitively on low-shot image
classification. For instance, on ImageNet-1K, with only 5,000 annotated
images, our base MSN model achieves 72.4% top-1 accuracy, and with
1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a
new state-of-the-art for self-supervised learning on this benchmark. Our
code is publicly available at https://github.com/facebookresearch/msn.

Keywords: Self-supervised representation learning · Low-shot
classification · Vision transformers · Siamese networks

1 Introduction

Self-Supervised Learning (SSL) has emerged as an effective strategy for unsu-
pervised learning of image representations, eliminating the need to manually
annotate vast quantities of data. By training large models on unlabeled data,
SSL aims to learn representations that can be effectively applied to a downstream
prediction task with few labels [15].

One of the core ideas of SSL is to remove a portion of the input and learn to
predict the removed content [43]. Auto-regressive models and denoising auto-
encoders instantiate this principle in vision by predicting the missing parts
at the pixel or token level [3,5,12,27,50]. Masked auto-encoders in particular,
which learn representations by reconstructing randomly masked patches from
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an input, have been successfully applied in vision [5,27,52,55]. However, opti-
mizing a reconstruction loss requires modelling low-level image details that are
not necessary for classification tasks involving semantic abstraction. Thus, the
resulting representations often need to be fine-tuned for semantic recognition
tasks which can lead to overfitting in low-shot settings. Nevertheless, masked
auto-encoders have enabled the training of large-scale models and demonstrated
state-of-the-art performance when fine-tuning on large labeled datasets, with
millions of labels [3,5,27,55].

Fig. 1. Masked Siamese Networks. First use random data augmentations to gen-
erate two views of an image, referred to as the anchor view and the target view.
Subsequently, a random mask is applied to the anchor view, while the target view
is left unchanged. The objective is then to assign the representation of the masked
anchor view to the same clusters as the representation of the unmasked target view. A
standard cross-entropy loss is used as the criterion to optimize.

Joint-embedding architectures, on the other hand, avoid reconstruction.
Approaches such as Siamese Networks [6,10,11,15,25,28,57] learn a represen-
tation by training an encoder network to produce similar embeddings for two
different views of the same image [9,22]. Here the views are typically con-
structed by applying different image transforms—such as random scaling, crop-
ping, and color jitter—to the input [41,53]. The inductive bias introduced by
this invariance-based pre-training typically produces strong off-the-shelf repre-
sentations of a high semantic level [11] but often disregards rich local structure
that can be helpful to model.

In this work, we propose Masked Siamese Networks (MSNs), a self-supervised
learning framework that leverages the idea of mask-denoising while avoiding
pixel and token-level reconstruction. Given two views of an image, MSN ran-
domly masks patches from one view while leaving the other view unchanged.
The objective is to train a neural network encoder, parametrized with a vision
transformer (ViT) [21], to output similar embeddings for the two views. In this
procedure, MSN does not predict the masked patches at the input level, but
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rather performs the denoising step implicitly at the representation level by ensur-
ing that the representation of the masked input matches the representation of
the unmasked one. Figure 1 shows a schematic of the method.

Empirically, we demonstrate that MSNs learn strong off-the-shelf represen-
tations that excel at low-shot prediction (cf. Fig. 2). In particular, MSN achieves
good classification performance using 100× fewer labels than current mask-based
auto-encoders [27,54]. In the standard 1% ImageNet low-shot classification task,
an MSN-trained ViT-B/4 (using a patch size of 4x4 pixels) achieves 75.7% top-1
accuracy, outperforming the previous 800M parameter state-of-the-art convolu-
tional network [14] while using nearly 10× fewer parameters (cf. Fig. 2a).

Since a good representation should not need many examples to learn about a
concept [24], we also consider a more challenging evaluation benchmark for label-
efficient low-shot classification [39,45], using from 1 labeled image per class up
to 5 images per class (cf. Table 2). MSN also achieves state-of-the-art in that
regime; e.g., with only 5 labeled images per class, we can pre-train a ViT-B
with MSN on ImageNet-1K to achieve over 72% top-1 accuracy, surpassing the
previous state-of-the-art method, DINO [11], by 8% top-1.

Similar to masked auto-encoders, MSNs also exhibit good computational
scaling since only the unmasked patches are processed by the ViT encoder. For
example, by randomly masking 70% of the patches, MSN uses half the com-
putation and memory compared to an unmasked joint-embedding baseline. In
practice, we pre-train a ViT-L/7 on as few as 18 AWS p4d-24xlarge machines.
Without masking, the same job requires over 42 machines.

Finally, we also show that MSNs are competitive with prior works on other
self-supervised benchmarks that use many labels for evaluation (e.g., fine-tuning,
linear-evaluation, transfer learning).

2 Prerequisites

Problem Formulation. Consider a large collection of unlabeled images, D =
(xi)U

i=1, and a small dataset of annotated images, S = (xsi, yi)L
i=1, with L � U .

Here, the images in S may overlap with the images in the dataset D. Our goal
is to learn image representations by first pre-training on D and then adapting
the representation to the supervised task using S.

Siamese Networks. The goal of siamese networks [7,9], as they are used in self-
supervised learning, is to learn an encoder that produces similar image embed-
dings for two views of an image. Specifically, given an encoder fθ(·) and two
views xi and x+

i of an image, the encoder independently processes each view
and outputs representations zi and z+i respectively, referred to as the anchor
representation and the target representation. The objective of siamese networks
is to learn an encoder that is not sensitive to differences between views, so the
representations zi and z+i should match. In practice, the encoder fθ(·) is usually
parameterized as a deep neural network with learnable parameters θ.
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The main challenge with siamese architectures is to prevent representation
collapse in which the encoder produces a constant image embedding regardless
of the input. Several approaches have been investigated in the literature. Con-
trastive losses explicitly push away embeddings of different images [9,15,28].
Information maximization approaches try to maximize the entropy of the aver-
age prediction [1,11] or spread out the embeddings uniformly on the surface
of a sphere [10]. Asymmetric approaches rely on an asymmetric architectural
choice such as stop-gradient operations and a momentum encoder [15,25] to
prevent collapse. Other approaches try to decorrelate the vector components of
the embeddings to minimize redundancy across samples [6,57].

Fig. 2. Low-shot Evaluation of self-supervised models, pre-trained on ImageNet-1K.
(Left) MSN matches the previous 800M parameter state-of-the-art, while using a model
that is 10× smaller, and no fine-tuning. (Right) MSN achieves good classification per-
formance using less labels than current mask-based auto-encoders.

Vision Transformer. We use a standard Vision Transformer (ViT) architec-
ture [21] as the encoder. Vision Transformers first extract a sequence of non-
overlapping patches of resolution N ×N from an image. Next, they apply a linear
layer to extract patch tokens, and subsequently add learnable positional embed-
dings to them. An extra learnable [CLS] token is added to the sequence. This
token aims to aggregate information from the full sequence of patches [11,21].
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The sequence of tokens is then fed to a stack of Transformer layers [49]. A Trans-
former layer is composed of a self-attention [49] and a fully-connected layer with
skip connections [29]. Self-attention uses an attention mechanism [4] applied to
the entire sequence of elements to update the representation. The output repre-
sentation associated to the [CLS] token is used as the output of the encoder.

(a) No Mask (b) Random Mask (c) Focal Mask

Fig. 3. Masking strategies. When applying a Random Mask, we randomly drop
patches across a global view of the image. When applying a Focal Mask, we randomly
select a local continuous block of an image, and mask everything around it. We typically
leverage both Random and Focal Masking strategies when pre-training with MSNs.

3 Masked Siamese Networks

We now describe the proposed Masked Siamese Network (MSN) training pro-
cedure, which combines invariance-based pre-training with mask denoising; see
Fig. 1 for a schematic. MSNs first use random data augmentations to generate
two views of an image, referred to as the anchor view and the target view. Sub-
sequently, a random mask is applied to the anchor view, while the target view
is left unchanged. Similar to clustering-based SSL approaches [1,10,11], learning
occurs by computing a soft-distribution over a set of prototypes for both the
anchor and target views. The objective is then to assign the representation of
the masked anchor view to the same prototypes as the representation of the
unmasked target view. We use a standard cross-entropy loss to optimize this
criterion.

In contrast to previous work on masked image modelling, the mask-denoising
process in MSN is discriminative, rather than generative [5,27,52,55,61]. MSN
architectures do not directly predict pixel values (or tokens) for the masked
patches. Instead, the loss is applied directly to the output corresponding to the
[CLS] token of the encoder.

Input Views. In each iteration of pre-training, we sample a mini-batch of B ≥ 1
images. For an index i ∈ [B], let xi denote the ith image in the mini-batch. For
each image xi, we first apply a random set of data augmentations to generate a
target view, denoted x+

i , and M ≥ 1 anchor views, denoted xi,1,xi,2, . . . ,xi,M .
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Patchify and Mask. Next, we “patchify” each view by converting it into a
sequence of non-overlapping N × N patches. After patchifying the anchor view
xi,m, we also apply the additional step of masking by randomly dropping some
of the patches. We denote by x̂i,m the sequence of masked anchor patches, and
by x̂+

i the sequence of unmasked target patches. Because of masking, the anchor
sequence x̂i,m can have a different length than the patchified target sequence
x̂+

i , even if both image views originally have the same resolution.
We investigate two strategies for masking the anchor views, Random Masking

and Focal Masking, which are depicted in Fig. 3. When applying Random Mask-
ing, we randomly drop potentially non-contiguous patches across the sequence.
Conversely, when applying Focal Masking, we randomly select a local continuous
block of the anchor view and drop all the patches around it.

Encoder. Given a parameterized anchor encoder, denoted fθ(·), let zi,m ∈ Rd

denote the representation computed from the patchified (and masked) anchor
view x̂i,m. Similarly, given a parameterized target encoder fθ̄(·), with a poten-
tially different set of parameters θ̄, let z+i ∈ Rd denote the representation com-
puted from the patchified target view x̂+

i . In MSNs, the parameters θ̄ of the
target encoder are updated via an exponential moving average of the anchor
encoder parameters [25]. Both encoders correspond to the trunk of a ViT [21].
We take the output of the network to be the representation corresponding to
the [CLS] token.

Similarity Metric and Predictions. Let q ∈ RK×d denote K > 1 learn-
able prototypes, each of dimension d. To train the encoder, we compute a dis-
tribution based on the similarity between these prototypes and each anchor
and target view pair, and we penalize the encoder for differences between these
distributions. More precisely, for an anchor representation zi,m, we compute a
“prediction” pi,m ∈ ΔK in the K-dimensional simplex by measuring the cosine
similarity to the prototypes matrix q. For L2-normalized representations and
prototypes, the predictions pi,m can be concisely written as

pi,m := softmax
(zi,m · q

τ

)
,

where τ ∈ (0, 1) is a temperature. Similarly, for each target representation z+i ,
we generate a prediction p+i ∈ ΔK by measuring the cosine similarity to the
same prototypes matrix q. When computing the target predictions, we also use
a temperature parameter τ+ ∈ (0, 1). Note, we always choose τ+ < τ to encour-
age sharper target predictions, which implicitly guides the model to produce
confident low entropy anchor predictions. As we show in Appendix D, target
sharpening coupled with mean-entropy maximization is provably sufficient to
eliminate collapsing solutions in the MSN framework.



462 M. Assran et al.

Training Objective. As previously mentioned, to train the encoder, we penal-
ize when the anchor prediction pi,m is different from the target prediction p+i .
We enforce this criterion using a standard cross-entropy loss H(pi,m, p+i ).

We also incorporate the mean entropy maximization (me-max) regularizer,
also used in [1,33], to encourage the model to utilize the full set of prototypes.
Denote the average prediction across all the anchor views by

p :=
1

MB

B∑
i=1

M∑
m=1

pi,m.

The me-max regularizer simply seeks to maximize the entropy of p, denoted
H(p), or equivalently, minimize the negative entropy of p. Thus, the overall
objective to be minimized when training the encoder parameters θ and proto-
types q is

1
MB

B∑
i=1

M∑
m=1

H(pi,m, p+i ) − λH(p), (1)

where λ > 0 controls the weight of the me-max regularization. Note that when
training, we only compute gradients with respect to the anchor predictions pi,m,
not the target predictions p+i .

4 Related Work

Unsupervised pre-training for vision has seen rapid progress with the devel-
opment of view-invariant representation learning and joint embedding archi-
tectures [6,11,15,25,28,53]. Most similar to our approach is DINO [11] which
leverages a Siamese Network with a cross-entropy loss and a momentum encoder.
DINO also uses multi-crop training, which is a form of focal masking, but it
requires an unmasked anchor view during training. MSN can be seen as a gener-
alization of DINO, leveraging both random and focal masking without requiring
any unmasked anchor views. Since the cross-entropy loss in Eq. (1) is only dif-
ferentiated with respect to the anchor predictions, not the target, MSN only
backpropagates through the anchor network and only needs to store the activa-
tion associated with the masked view. MSN therefore reduces the computational
and memory requirements. MSN also differs from DINO in its mechanism for
preventing representation collapse (entropy maximization as opposed to center-
ing and sharpening). Our empirical results show that MSN compares favourably
to DINO across various degrees of supervision for the downstream task.

A prominent line of work in SSL is to remove a portion of the input and
learn to reconstruct the removed content [18]. For example, in the field of
image recognition, some works have proposed to predict augmented image chan-
nels [60], which can be regarded as a form of image colorization [34,35,59]. Other
approaches propose to remove and learn to regress entire image regions: the sem-
inal Context Encoders of Pathak et al. [43] train a network to generate missing
image patches based on their surroundings. Recent works revisit this idea and



Masked Siamese Networks 463

investigate the pre-training of ViTs with masked auto-encoders [5,12,27,52,55].
These approaches corrupt images with mask-noise and predict missing input
values at the pixel level [21,27,54] or using a tokenizer [5,52]. Our approach
does not predict the missing value at the input level, but instead performs the
denoising step implicitly by ensuring that the global representation of the noisy
input matches that of the uncorrupted input.

Some recent approaches have started to explore the combination of joint-
embedding architectures and denoising pre-training tasks [3,23,61]. Those
approaches mask an image by replacing the masked patches with a learnable
mask token, and output a single vector for each masked patch. The objective is
then to directly match each computed patch vector to the equivalent patch token
extracted from a target encoder. Different from these approaches, we only match
the view representations globally and do not consider a patch level loss. Con-
sequently, we can completely ignore the masked patches, significantly reducing
the computational and memory requirements. For example, when training our
largest model, a ViT-L/7, we mask over 70% of the input patches, and reduce
memory and computational overhead by half.

Table 1. Extreme low-shot. We evaluate the label-efficiency of self-supervised mod-
els pretrained on the ImageNet-1K dataset. For evaluation, we use an extremely small
number of the ImageNet-1K labels and report the mean top-1 accuracy and standard
deviation across 3 random splits of the data.

Images per Class

Method Architecture Epochs 1 2 5

iBOT [61] ViT-S/16 800 40.4 ± 0.5 50.8 ± 0.8 59.9 ± 0.2

ViT-B/16 400 46.1 ± 0.3 56.2 ± 0.7 64.7 ± 0.3

DINO [11] ViT-S/16 800 38.9 ± 0.4 48.9 ± 0.3 58.5 ± 0.1

ViT-B/16 400 41.8 ± 0.3 51.9 ± 0.6 61.4 ± 0.2

ViT-S/8 800 45.5 ± 0.4 56.0 ± 0.7 64.7 ± 0.4

ViT-B/8 300 45.8 ± 0.5 55.9 ± 0.6 64.6 ± 0.2

MAE [27] ViT-B/16 1600 8.2 ± 0.3 25.0 ± 0.3 40.5 ± 0.2

ViT-L/16 1600 12.3 ± 0.2 19.3 ± 1.8 42.3 ± 0.3

ViT-H/14 1600 11.6 ± 0.4 18.6 ± 0.2 32.8 ± 0.2

MSN (Ours) ViT-S/16 800 47.1 ± 0.1 55.8 ± 0.6 62.8 ± 0.3

ViT-B/16 600 49.8 ± 0.2 58.9 ± 0.4 65.5 ± 0.3

ViT-B/8 600 55.1 ± 0.1 64.9 ± 0.7 71.6 ± 0.3

ViT-L/7 200 57.1 ± 0.6 66.4 ± 0.6 72.1 ± 0.2

5 Results

We evaluate MSN representations learned on the ImageNet-1K dataset [44]. We
first consider low-shot evaluation on ImageNet-1K using as few as 1–5 images
per class. We also compare with the state-of-the-art in settings where more
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supervision is available and investigate transfer-learning performance. Finally,
we conduct ablation experiments with MSN. By default, we pre-train with a
batch-size of 1024 images, generating several anchor views from each image: 1
view with a random mask, and 10 views with focal masks. We find that the
optimal masking ratio is model-dependent, with larger models benefiting from
more aggressive patch dropping. We describe MSN implementation details in
Appendix C.

5.1 Label-Efficient Learning

The premise of SSL is to learn representations on unlabeled data that can be
effectively applied to prediction tasks with few labels [14]. In this section we
explore the performance of self-supervised approaches when very few labeled
examples are available.

Table 2. Low-shot evaluation on ImageNet-1K using 1% of the labels (approximately
13 images per class). †Indicates evaluations we computed using publicly available mod-
els.

Method Architecture Params. Top 1

Comparing similar architectures

Barlow-Tw. [57] RN50 24M 55.0

SimCLRv2 [14] RN50 24M 57.9

PAWS [1] RN50 24M 66.5

DINO [11] ViT-S/16 22M 64.5

iBOT [61] ViT-S/16 22M 65.9

MSN ViT-S/16 22M 67.2

Comparing larger architectures

BYOL [25] RN200 (2×) 250M 71.2

SimCLRv2 [14] RN151+SK (3×) 795M 74.9

iBOT [61]† ViT-B/16 86M 69.7

DINO [11]† ViT-B/8 86M 70.0

MSN ViT-B/4 86M 75.7

Extreme Low-Shot. We first evaluate the classification performance of unsu-
pervised models that have been pre-trained on ImageNet-1K, by using 1, 2, and
5 labeled images per class for supervised evaluation. We compare MSN to the
joint-embedding approach, DINO [14], the auto-encoding approach, MAE [27],
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and the hybrid approach, iBOT [61], which combines a joint-embedding archi-
tecture with a token-based patch-level loss. We download the official released
models of each related approach for evaluation.

To adapt the joint-embeddings models to the supervised task, we freeze the
weights of the pre-trained model and train a linear classifier on top using 1,
2 or 5 labeled samples (see Appendix C). For MAE, we rely on partial fine-
tuning [27], except for the 1 image per class setting, and all results with the ViT-
H/14 architecture, which use a linear classifier. Partial fine-tuning corresponds
to fine-tuning the last block of the pre-trained model along with a linear head.
MAE benefits from partial fine-tuning, but for sufficiently large models, such as
the ViT-H/14, this leads to significant overfitting in the low-shot regime. We
compare both protocols in more detail in Appendix E.

Table 1 reports the extreme low-shot evaluation results. MSN outperforms the
other representation learning approaches across all levels of supervision. More-
over, the improvement offered by MSN increases as the amount of available
labeled data is decreased. The performance of MSN also benefits from increased
model size—settings with less labeled data appear to benefit more from increased
model depth and smaller patch sizes.

Table 3. Linear evaluation on ImageNet-1K using 100% of the labels.

Method Architecture Params. Epochs Top 1

Comparing similar architectures

SimCLRv2 [14] RN50 24M 800 71.7

BYOL [25] RN50 24M 1000 74.4

DINO [11] ViT-S/16 22M 800 77.0

iBOT [61] ViT-S/16 22M 800 77.9

MSN ViT-S/16 22M 600 76.9

Comparing larger architectures

MAE [27] ViT-H/14 632M 1600 76.6

BYOL [25] RN200 (2×) 250M 800 79.6

SimCLRv2 [14] RN151+SK (3×) 795M 800 79.8

iBOT [61] ViT-B/16 86M 400 79.4

DINO [11] ViT-B/8 86M 300 80.1

MoCov3 [16] ViT-BN-L/7 304M 300 81.0

MSN ViT-L/7 304M 200 80.7

We also observe that joint-embedding approaches appear to be more robust
to the limited availability of downstream supervision than reconstruction-based
auto-encoding approaches. To explain this observation, we refer to the Masked
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Auto-Encoders paper [27] which conjectures that using a pixel reconstruction
loss results in encoder representations of a lower semantic level than other meth-
ods. Conversely, the inductive bias introduced by invariance-based pre-training
appears to be helpful in the low-shot regime.

1% ImageNet-1K. Table 2 reports a comparison on the 1% ImageNet-1K task,
which is a standard benchmark for low-shot evaluation of self-supervised mod-
els [13]. For reference, the best reported result in the literature on 1% labeled
data is 76.6%, achieved with a multi-stage semi-supervised pipeline, i.e., self-
distilling from a fine-tuned ResNet-152 with 3× wider channels and selective
kernels [14]. Here we focus on comparing to other models trained in a self-
supervised setting. Our best MSN model using a ViT-L/7 achieves 75.1% top 1
accuracy, surpassing the previous 800M parameter state-of-the-art convolutional
network [14] while using significantly fewer parameters and no fine-tuning. When
focusing the comparison on similar architectures (models with similar FLOP
counts), MSN also consistently improves upon previous approaches.

5.2 Linear Evaluation and Fine-Tuning

In this section we compare with the state-of-the-art on standard evaluation
benchmarks where more supervised samples are available to adapt the repre-
sentation. We use the full ImageNet-1K training images with 1.28M labels.

Table 4. End-to-end fine-tuning of a ViT-B/16 encoder on ImageNet-1K using
100% of the labels. MSN obtains competitive performance with both joint-embedding
approaches and auto-encoding approaches.

Initialization Pretrain Epochs Top 1

DINO [11] 800 83.6

BEiT [5] 800 83.2

iBOT [27] 800 83.8

MAE [27] 1600 83.6

SimMIM [55] - 83.8

MaskFeat [52] - 84.0

Data2Vec [3] 800 84.2

MSN 600 83.4

Linear Evaluation. We evaluate self-supervised pretrained models by freezing
their weights and training a linear classifier. Table 3 reports the linear evaluation
results on ImageNet-1K. We observe that MSN performs competitively with the
state-of-the-art. The best MSN model achieves 80.7% top-1 accuracy.



Masked Siamese Networks 467

Fine-Tuning. In this evaluation setting, we finetune all the weights of the
self-supervised model using all the labels from the ImageNet-1K training set.
We focus on the ViT-B/16 architecture. We adopt the same fine-tuning pro-
tocol as [5], and provide the details in Appendix C. Table 4 reports the com-
parison with fine-tuning evaluation using 100% labels on ImageNet-1K. MSN
is competitive with joint-embedding approaches, such as DINO, and generative
auto-encoding approaches, such as MAE.

5.3 Transfer Learning

We also report transfer learning experiments on the CIFAR10, CIFAR100 and
iNaturalist datasets in Table 5 when using a self-supervised ViT-B/16 pre-trained
on ImageNet-1K. Across all tasks, various levels of supervision, and evaluation
methods, MSN either outperforms or achieves similar results to DINO pre-
training. Recall that MSN pre-training is also less computationally expensive
than DINO pre-training due to the anchor masking.

Table 5. Transfer Learning with a ViT-Base/16 pre-trained on ImageNet-1K. Across
all tasks, various levels of supervision, and evaluation methods, MSN either outperforms
or achieves similar results to DINO pre-training. The MSN model is trained with a
masking ratio of 0.3; i.e., dropping 30% of patches, and thus reduces the computational
cost of pre-training relative to DINO.

Evaluation Method Top 1

CIFAR10 CIFAR100 iNat18 iNat19

4000 labels 50000 labels

Fine-Tuning DINO – 99.0 90.5 72.0 78.2

MSN – 99.0 90.5 72.1 78.1

Linear Eval. DINO 93.2 95.3 82.9 – –

MSN 93.8 95.7 82.8 – –

5.4 Ablations

We now conduct a series of experiments to gain insights into the important design
decisions used in MSN such as the masking strategy and the data augmentation
strategy. We measure the accuracy of the models by training a logistic regression
classifier on the frozen trunk using 1% of ImageNet-1K labels (∼13 imgs/class).

Combining Random and Focal Masking. In MSN we apply both random
and focal masking to the anchor views. Focal masking corresponds to selecting
a small crop from the anchor view. Random masking corresponds to randomly
dropping potentially non-contiguous patches from the anchor view.
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Table 6. Masking strategy. Impact of masking strategy on low-shot accuracy (1% of
ImageNet-1K labels) of a ViT-B/16. We only generate one anchor view of each image,
except in the last row, where we generate two views, one with a Random Mask and
one with a Focal Mask. A random masking ratio of 0.5 is used. Applying a random
mask to the anchor view is better than applying no mask. By combining both random
and focal masking strategies, we obtain the strongest performance.

Anchor View Top 1

No Mask 49.3

Focal Mask 39.3

Random Mask 52.3

Random Mask + Focal Mask 59.8

Table 6 reports the effect on low-shot evaluation when using a) No Mask-
ing, b) Focal Masking, c) Random Masking, or d) Random and Focal Masking.
Applying a random mask to the anchor view is always better than applying no
mask. By contrast, applying only a focal mask degrades the performance, which
highlights the importance of maintaining a global view during pre-training. By
combining both random and focal masking strategies, we obtain the strongest
performance.

Random Masking Ratio. Here we explore the relationship between the opti-
mal masking ratio and the model size. Table 7 reports the low-shot learning
performance for various random masking ratios as we increase the model size.1

Table 7. Masking ratio. Impact of pre-training random masking ratio (fraction of
randomly dropped patches in each random mask) on ImageNet 1% accuracy. Accuracy
of larger models improves when leveraging aggressive masking during pre-training.

Top 1

Random Masking Ratio

Architecture 0.15 0.3 0.5 0.7

ViT-S/16 66.3 66.0 64.8 –

ViT-B/16 68.8 69.6 – –

ViT-L/16 NaN NaN 70.1 69.4

When increasing the model size, we find that increasing the masking ratio
(dropping more patches) is helpful for improving low-shot performance. We also
1 Note that the performance of the ViT-S/16 can be improved by removing the

Sinkhorn normalization, as we do in Table 2, however for consistency of evaluation
with other models, we keep it in for this ablation.
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find that the ViT-L/16 runs with weak masking are unstable, while the runs
with more aggressive masking are quite stable. However, we do not have sufficient
evidence to claim that increasing the masking ratio always improves the stability
of large ViT pre-training.

Augmentation Invariance and Low-Shot Learning. We explore the impor-
tance of data-augmentation invariance for low-shot learning. We pretrain a ViT-
B/16 with MSN, where the teacher and anchor networks either share the input
image view or use different input views; in both cases, the anchor view is always
masked. The views are constructed by applying random ColorJitter, Crop, Hor-
izontal Flips, and GaussianBlur to the input image.

Table 8 reports top-1 accuracy when evaluating with 1% of ImageNet-1K
labels. Sharing the view leads to a top-1 accuracy of 7%; MSN finds a shortcut
solution relying on color statistics. Using different colors in the input views
resolves this pathological behaviour and achieves a top-1 of 48.3%. Further
applying the geometric data-augmentations independently to the two views (as
opposed to sharing views) further improves the performance to 52.3%, showing
the importance of learning view-invariant representations in the low-shot setting.

Random Masking Compute and Memory. We look at the effect of the
random masking ratio, i.e., the fraction of dropped patches from the global
anchor view, on the computational requirements of large model pre-training. In
each iteration we also generate 10 focal views (small crops) of each input image;
the random masking ratio has no impact on these views.

Table 8. Impact of view-sharing during pre-training when evaluating on ImageNet 1%.
The target view is constructed by applying random ColorJitter, Crop, Horizontal Flips,
and GaussianBlur to the input image. When using the same image view, MSN finds
a shortcut solution. Using color jitter prevents this pathological behaviour. Randomly
applying additional geometric data transformations to the anchor further improves
performance, demonstrating the importance of view invariance in the low-shot setting.

Anchor View Generation Top 1

Target View 7.0

Target View + ColorJitter 48.7

Target View + ColorJitter + Crop + Flip + GaussianBlur 52.3
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Table 9. Impact of random masking ratio on GPU memory usage and runtime when
pre-training a ViT-L/7. Measurements are conducted on a single AWS p4d-24xlarge

machine, containing 8 A100 GPUs, using a batch-size of 2 images per GPU. In each
iteration we also generate 10 focal views (small crops) of each input image; the random
masking ratio has no impact on these views. Using more aggressive masking of the
global view progressively reduces device memory utilization and speeds up training.

Masking Ratio Mem./GPU Throughput

0.0 26G 415 imgs/s

0.3 21G 480 imgs/s

0.5 18G 525 imgs/s

0.7 17G 600 imgs/s

Table 9 reports the memory consumption and throughput (imgs/s) of a ViT-
L/7 model on a single AWS p4d-24xlarge machine using a batch-size of 2
images per GPU. As expected, using more aggressive masking of the global
view progressively reduces device memory utilization and speeds up training.
For example, by randomly masking 70% of the patches, we can use MSN to
pre-train a full-precision ViT-Large with a patch-size of 7 × 7 on as few as 18
AWS p4d-24xlarge machines. Without masking, the same job requires over 42
machines when using the default batch-size of 1024 images.

6 Conclusion

We propose Masked Siamese Networks (MSNs), a self-supervised learning frame-
work that leverages the idea of mask-denoising while avoiding pixel and token-
level reconstruction. We demonstrate empirically that MSNs learn strong off-the-
shelf representations that excel at label-efficient learning, while simultaneously
improving the scalability of joint-embedding architectures. By relying on view-
invariant representation learning, MSN does require the specification of data
transformations, and it may be that the optimal transformations and invari-
ances are dataset and task dependant. In future work, we plan to explore more
flexible mechanisms to learn those transformations and also explore the use of
equivariant representations.
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