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Abstract. Most few-shot image classification methods are trained based
on tasks. Usually, tasks are built on base classes with a large number
of labeled images, which consumes large effort. Unsupervised few-shot
image classification methods do not need labeled images, because they
require tasks to be built on unlabeled images. In order to efficiently build
tasks with unlabeled images, we propose a novel single-stage clustering
method: Learning Features into Clustering Space (LF2CS), which first
set a separable clustering space by fixing the clustering centers and then
use a learnable model to learn features into the clustering space. Based
on our LF2CS, we put forward an image sampling and c-way k-shot task
building method. With this, we propose a novel unsupervised few-shot
image classification method, which jointly learns the learnable model,
clustering and few-shot image classification. Experiments and visualiza-
tion show that our LF2CS has a strong ability to generalize to the novel
categories. From the perspective of image sampling, we implement four
baselines according to how to build tasks. We conduct experiments on the
Omniglot, miniImageNet, tieredImageNet and CIFARFS datasets based
on the Conv-4 and ResNet-12 backbones. Experimental results show that
ours outperform the state-of-the-art methods.

Keywords: Few-shot learning · Unsupervised few-shot image
classification · Single-stage clustering · Learning features into clustering
space

1 Introduction

Few-Shot Learning (FSL) aims to learn the novel categories by a small number
of images, and usually includes an auxiliary dataset for training [41–43]. The
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purpose of image classification is to predict the category of image x, while few-
shot image classification predicts which of c × k images (c categories and each
category has k images) are of the same category as image x. Few-shot image clas-
sification usually organizes images into a c-way k-shot form, which is called a
task. FSL learns meta-knowledge related to tasks, rather than knowledge related
to specific categories, thereby generalizing the meta-knowledge to the novel cat-
egories. The auxiliary dataset usually contains a large number of annotated
images. For example, the training set of tieredImageNet [38] contains 448,695
images. When FSL methods are directly applied to a new field, we need to label
the auxiliary dataset, which will consume large effort. To alleviate the burden
caused by the auxiliary dataset, Unsupervised FSL (UFSL) has attracted atten-
tion [2,6,16,17,20,21,25,36]. Under the setting of supervised FSL, the labels of
the auxiliary dataset are used to build tasks (as shown in Fig. 1 (a)), while under
the setting of UFSL, the auxiliary dataset has no available labels. Our work will
explore how to build tasks through unlabeled auxiliary dataset.

Fig. 1. The four baselines from the view of sampling. (a) Label-based baseline, which
is a supervised baseline. Since the images have category labels, two of the four sampled
images belong to the same category. (b) Random-based baseline, in which four images
are randomly sampled, and the label of task is randomly determined. (c) CSS-based
baseline, in which three images are randomly sampled, and then one of the images
is selected to obtain another view through data augmentation. (d) Clustering-based
baseline, in which first all images are divided into multiple clusters by a clustering
algorithm, and then four images are selected with cluster ids as labels.

There are two common unsupervised ways to build tasks from the auxil-
iary dataset: 1) CSS-based methods (Comparative Self-Supervised, as shown
in Fig. 1(c)) use data augmentations to obtain another view of the images to
construct the image pairs, and then use the image pairs to build tasks [17,20];
2) Clustering-based methods (as shown in Fig. 1(d)), by a clustering algorithm,
divide the images into clusters to obtain the pseudo-labels, and then use the
pseudo-labels to build tasks [5,16]. Since CSS-based methods build tasks based
on the different views, these methods are concise and effective, but the diversity
of tasks may be poor. Also, since Clustering-based methods build tasks based
on the clusters, the diversity of tasks may be good, but these methods usually
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contain multiple steps. For example, CACTUs [16] use the existing unsupervised
model [7] to extract features, and then cluster these features to obtain the cluster
ids (cluster assignments). This method takes features learning and clustering as
two independent steps and requires additional unsupervised models.

To combine the advantages of both methods, we propose a Learn Fea-
tures into Clustering Space (LF2CS) method, which is a single-stage clustering
method. By fixing the clustering center matrix to the identity matrix, LF2CS
sets a separable clustering space, and then uses a learnable model to learn fea-
tures into the clustering space. By this way, LF2CS does not require any other
images when determining the cluster id of each image. Based on LF2CS, we
put forward an image sampling and task building method, and thus propose a
clustering-based unsupervised few-shot image classification method, as shown in
Fig. 2. First, each image xi is fed into a random initialized network to obtain
the feature zi, and LF2CS is used to obtain the initial cluster id ŷi, so that
the cluster ids Ŷ of all images can be initialized. Then, for each image xi, c×k
images are sampled based on the cluster ids Ŷ , in which k images have the same
cluster id as the image xi, so a task can be built based on these c×k+1 images.
Finally, encoders are used to extract features of the images in the task, and the
new cluster id ŷi of the image xi is calculated by LF2CS and updated to the
cluster ids Ŷ .

Our method first generate cluster ids of images, then samples images to build
tasks, and realizes joint learning of feature extraction, clustering and FSL. After
the task is built, any task-based few-shot learning method [41–43] can be used
to optimize the network, such as MatchNet [43]. To show the performance of
our method, as shown in Fig. 1, we summarize four baselines according to how
to build tasks from the perspective of image sampling. Based on the Conv-4
[43] and ResNet-12 backbones, we conduct experiments on the Omniglot [23],
miniImageNet [43], tieredImageNet [38], and CIFARFS [3] datasets. In summary,
our main contributions are as follows:

1) By fixing the clustering center matrix to the identity matrix, we first set a
separable clustering space and then use a learnable model to learn features
into the clustering space;

2) A clustering-based unsupervised few-shot image classification method is pro-
posed through image sampling and task building, which jointly learns feature
learning, clustering, and few-shot image classification;

3) From the view of sampling, we implement four baselines according to how to
build tasks: Label-based, Random-based, CSS-based, and Clustering-based;

4) We conduct experiments on a series of benchmarks based on Conv-4 and
ResNet-12, and experimentals show that our method has a strong ability to
generalize to the novel categories and achieves the state-of-the-art results.
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2 Related Work

2.1 Few-Shot Learning

FSL aims to learn the novel categories through few labeled images, and it usu-
ally contains a labeled auxiliary dataset [12,26,30,32]. There are many methods:
Metric-based, Finetune-based, and Parameterize-based, etc. Metric-based meth-
ods are to learn the ability of similarity measure [28,41–43]. Finetune-based
methods are to finetune a base-learner for new tasks by its few samples and make
the base-learner converge fast within fewer parameter update steps [11,37,40].
Parameterize-based methods are to parameterize the base-learner or its sub-
components, thereby generalizing the meta-learner to new tasks [4,8,44].

2.2 Unsupervised Feature Learning

Unsupervised feature learning includes many methods, and we mainly introduce
clustering and self-supervised learning. Clustering aims to divide the data into
different clusters based on the inherent information of data, such as Gaussian
Mixture model [1], K-means [18], spectral clustering [48], hierarchical cluster-
ing [19], etc. Recently, deep-based clustering methods [7,27,45,47] have shown
superior performance. Self-supervised learning uses the data itself to construct
some supervised signals to replace the label, such as colorization [46], solving jig-
saw puzzle [34], rotation [13], etc. Recently, comparative self-supervised learning
methods [9,10,14,15,31] have made great progress, which learn from multiple
views of the images. These methods obtain multiple different views, thereby
constructing positive and negative image pairs, so that the positive image pair
are similar in the feature space, and the negative image pair are not similar [15].

2.3 Unsupervised Few-Shot Learning

Different from FSL, UFSL usually contains an unlabeled auxiliary dataset. There
are two common methods: CSS-based and Clustering-based. CSS-based meth-
ods use data augmentations to obtain mutiply views of image to construct image
pairs which are used to build tasks. Generally, the data augmentations contain
common image transforms [2,6,17,20,25,36], such as random resized crop and
color jitter, and (or) generative models [21,36], such as autoencoders and gen-
erative adversarial networks. Clustering-based methods [5,16] divide the images
in the auxiliary dataset into multiple clusters to obtain the pseudo-labels of the
images, and then use the pseudo-labels to build tasks.

3 Our Approach

3.1 Unsupervised Few-Shot Learning

In FSL, an auxiliary dataset Daux = {(xi, yi)}Naux
i=1 (Naux is the number of

images) is used to train a learnable model, and then applies the model to a
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Fig. 2. The overall pipeline of our approach. The 3-way 1-shot task is used as an
example to show our method. Clusters IDs Ŷ stores the cluster ids of all images in
Dunlabel, and |Ŷ | = Naux. First, for the image xi, its cluster id ŷi is obtained from
Ŷ (Image Traversing). Then, according to ŷi and Ŷ , three images are sampled from
Dunlabel: the cluster id of one image is ŷi, and the cluster id of the other two images is
not ŷi (Image Sampling), so the 3-way 1-shot task can be built (Task Building). Then,
the feature of task is obtained by encoders (Task Encoding), and encoders are optimized
by reducing the distance of features with the same cluster id as the image xi (Pull)
and increasing the distance of features with different cluster ids to the image xi (Push)
(Network Optimizing). Finally, the cluster id ŷi is updated (Cluster ID Updating).

target dataset Dtarget = {{(xi, yi)}Nlabel
i=1 , {xj}Nunlabel

j=1 } (where Nlabel � Nunlabel,
Nlabel and Nunlabel are the number of labeled and unlabeled images), so that
the target dataset with few labeled images can be classified. Daux and Dtarget

are also known as the base classes and the novel classes, respectively. Daux

contains a large number of labeled images. UFSL aims to train a model using an
unlabeled auxiliary dataset Dunlabel = {xi}Naux

i=1 which contains a large number
of unlabeled images, and then also applies the model to Dtarget.

Task-based FSL organizes images into tasks in the form of c-way k-shot. Task
Ti is composed of the support set T supp

i , the query set T quer
i and the label ytask

i :

Ti = {T supp
i , T quer

i , ytask
i } =

{{(xj , yj)}c×k
j=1 , {xi}, ytask

i

}
, (1)

where ytask
i ∈ {0, 1}c×k, T supp

i contains c classes and each class has k labeled
images. Note that in our work, T quer

i contains only one image xi. Under the
setting of supervised FSL, since the image label is available on the base classes,
the task Ti is built in an supervised way. Under the setting of UFSL, the task
Ti needs to be built in an unsupervised way. The difference between most UFSL
methods is how to build tasks in the base classes. There are two common unsu-
pervised ways to build tasks: Clustering-based and CSS-based. Clustering-based
methods divide the images of Dunlabel into multiple clusters, and then uses the
cluster ids as the pseudo-labels to build tasks. CSS-based methods build tasks
based on different views of the same image.

3.2 Learn Features into Clustering Space

In DeepCluster [7], Caron et. al alternates between clustering the image features
to generate pseudo-labels (Eq. 2) and updating the parameters of the learnable
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model fθ by predicting pseudo-labels (Eq. 3):

min
C∈Rd×K

1
N

N∑

i=1

min
ŷi∈{0,1}K

||fθ(xi) − Cŷi||22, (2)

min
θ

1
N

N∑

i=1

L(fθ(xi), ŷi), (3)

where θ is the parameter of the network fθ(·), C is the cluster center matrix,
K is the number of clusters, d is the output feature dimension of fθ(·), and
ŷi is the cluster id of the image xi and ŷT

i 1K = 1. This method has some
limitations: all features need to be extracted before clustering, feature learning
and clustering are two independent step, and clustering result usually depends
on the initialization of the cluster centers.

Different from [7], we preset a separable d-dimensional clustering space by
setting K = d and fixing the matrix C to the identity matrix E ∈ R

d×d. Since it
is located on the coordinate axis of this space, all cluster centers are orthogonal,
this clustering space has strong separability. Therefore, Eq. 2 is simplified to:

1
N

N∑

i=1

min
ŷi∈{0,1}d

||fθ(xi) − Eŷi||22. (4)

In order to make Eq. 4 feasible, the network fθ(·) need to be used to learn
features of all images into the d-dimensional clustering space. We call this Learn
Features into Clustering Space (LF2CS). Specifically, given an image xi, the
feature zi = fθ(xi) and the cluster to which xi belongs can be quickly calculated
by:

ŷi = arg min
m∈[1,d]

||zi − Em||22 = arg max
m∈[1,d]

zm
i , (5)

where zi ∈ R
d, Em ∈ R

d, Em is the cluster center of cluster m, zm
i is the m-th

value of zi, and ŷi is the cluster id of xi. By treating ŷi as the pseudo-label of
xi, the parameter of fθ(xi) can be updated by Eq. 3.

From Eq. 5, it can be seen that given a feature zi, cluster center, which is
closest to zi, can be quickly calculated. The advantage of this is that the cluster
id ŷi of the image xi can be calculated in a simple way, without the need of other
image features. Our LF2CS eliminates the process of solving cluster centers in
Eq. 2 by iterative algorithms, such as K-means. Therefore, our LF2CS is a single-
stage clustering algorithm, instead of alternating between Eq. 3 and Eq. 2.

Avoiding Trivial Solution. Most clustering-based methods have trivial solu-
tions [7,27]. In order to avoid invalid solutions, our LF2CS forces all images
to be scattered into the clustering space by limiting the maximum number of
images in each cluster. When the number of images in the m-th cluster exceeds
nmax = Naux/d, we will no longer assign any images to the m-th cluster, but
look for the next cluster that satisfies the constraint. The maximum number of
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images nmax per cluster means that each cluster is almost the same size. In this
way, our method avoids both over-clustering (many clusters are relatively small)
and under-clustering (some clusters are relatively large).

3.3 Image Sampling and Task Building

Given an unlabeled auxiliary dataset Dunlabel = {xi}Naux
i=1 , our goal is to build

tasks from unlabeled images. In order to record the cluster to which each image
belongs, Ŷ = {ŷi}Naux

i=1 is used to store the cluster ids of all images, that is, ŷi is
the cluster id of the image xi, where ŷi ∈ [1, d]. To facilitate joint training, we
use mini-batch of tasks in training for each optimization step, instead of episode

Fig. 3. Task Encoding and Network Optimizing. Both FSL Head and LF2CS Head are
a fully connected layer. We call Encoder, FSL Head, and LF2CS Head as Encoders. We
treat the optimization as a multi-task learning problem: LF2CS and few-shot image
classification. Note that zqueri ∈ R

q and zi ∈ R
d.

[43]. When evaluating, like other methods [41–43], we use episode as input. To
build c-way k-shot task, the image xi is used as the query set T quer

i , c×k images
are selected as the support set T supp

i through the cluster id ŷi. Specifically, we
get c clusters by ŷi and randomly selecting other c − 1 clusters:

Ŷc = {ŷi} ∪ {cj}c−1
j=1, s.t. cj �= ŷi, (6)

where cj is a cluster id and Ŷc is the set of c cluster ids. According to Ŷ , by
randomly selecting k images from Dunlabel for each cluster id in Ŷc, we can
get c×k images which are treated as the support set T supp

i . Since the images
with the same cluster id are usually treated as the same category, the task
Ti = {T supp

i , T quer
i , ytask

i } is built successfully, where ytask
i can be obtained by

whether the cluster ids of the images in the query set T quer
i and the support set

T supp
i are the same. The new cluster id ŷi of the image xi can be calculated by

Eq. 5, and then Ŷ is updated by replacing the old cluster id with the new one.
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3.4 Task Encoding and Network Optimizing

As shown in Fig. 3, we use the Encoder to embed images of the task Ti. In
our method, the Encoder is Conv-4 or ResNet-12. FSL Head is used to learn
features for few-shot image classification, and LF2CS Head is used to learn
features into the clustering space. Both FSL Head and LF2CS Head are a fully
connected layer, which are used to embed features for clustering and few-shot
image classification. The output dimension of FSL Head is q and the output
dimension of LF2CS Head is d. The feature zi ∈ R

d is extracted by feeding the
image xi in the query set T quer

i to Encoder and LF2CS Head, and the feature
zquer
i ∈ R

q also is extracted by feeding the image xi in the query set T quer
i

to Encoder and FSL Head. In addition, the features Zsupp
i = {zsupp

i,j }c×k
j=1 are

extracted by feeding images in the support set T supp
i to Encoder and FSL Head,

where zsupp
i,j ∈ R

q is the feature of the j-th image in the support set T supp
i .

Algorithm 1 The overall pipeline of our method.
Input: the dataset Dunlabel = {xi}Naux

i=1 , max iteration Tmax;
Output: Encoders.

1: Initialize the parameters of Encoders;
2: for i = {1, 2, ..., Naux} do
3: Extract zi and compute ŷi; // Initialize Ŷ ;
4: end for
5: for t = {1, 2, ..., Tmax} do
6: // Image Traversing
7: for i = {1, 2, ..., Naux} do
8: Get Ŷc by ŷi and Select c×k images as T supp

i ; // Image Sampling
9: Build task Ti = {T supp

i , T quer
i , ytask

i }; // Task Building
10: Get features zi, z

quer
i , Zsupp

i by Encoders; // Task Encoding
11: Compute loss L by Eq.8 and Update the parameters; // Network Optimizing
12: Calculate the cluster id ŷi and Update Ŷ by ŷi; // Cluster ID Updating
13: end for
14: end for
15: return Encoders;

After the task is built, any task-based few-shot learning method [41–43] can
be used to optimize the network. We optimize the network based on MatchNet
[43] and use the softmax over cosine to measure similarity between features:

ptask
i = {ptask

i,j }c×k
j=1 =

{ exp(cos(zsupp
i,j , zquer

i ))
∑

zsupp
i,l ∈Zsupp

i

exp(cos(zsupp
i,l , zquer

i ))

}c×k

j=1
, (7)

where cos(·, ·) is the cosine similarity. FSL can be optimized by MSE (Mean
Squared Error) loss between ptask

i and the task label ytask
i , and LF2CS can be

optimized by CE (Cross Entropy) loss between the feature zi and the cluster
id ŷi. The optimization of our method can be treated as a multi-task learning
problem. Therefore, we jointly learn LF2CS and FSL, and the total loss is:

L = MSE(ptask
i , ytask

i ) + CE(zi, ŷi), (8)
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where ytask
i ∈ {0, 1}c×k, ptask

i ∈ R
c×k, zi ∈ R

d, and ŷi ∈ [1, d]. In the CE loss,
ŷi is converted to a one-hot vector. Taking Eq. 8 as our total loss, our method
increases the similarity of features with the same cluster id and reduces the
similarity of features with different cluster ids.

For easy understanding, we show the overall pipeline of our method in Algo-
rithm 1. Please refer to https://github.com/xidianai/LF2CS for the code.

4 Experimental Results

4.1 Setup

Our method includes an Encoder and two linear head (FSL Head and LF2CS
Head). For Encoder, we use two widely used networks (Conv-4 [43] and ResNet-
12). For each Head, we use a fully connected layer. The output dimension q of
FSL Head is 1024, and the output dimension d of LF2CS Head is 1024. All our
models are trained from scratch without any pre-trained weights. We use the
SGD optimizer with learning rate of 0.01, weight decay of 5e-4 and batch size
of 64. We use the learning rate strategy shown in Fig. 5 and train the model
for 1,500 epochs. All our experiments are implemented based on PyTorch [35].
We use the evaluate strategies used in [42]. Following [42], each class uses 15
query samples in each episode: for c-way k-shot, each episode contains 15×c
query images and c×k support images. All accuracies are averaged over 1,000

Table 1. Few-shot image classification accuracies of 5-way and 20-way on Omniglot. All
accuracies are averaged over 1000 test episodes and are reported with 95% confidence
intervals. The backbone of all methods is Conv-4. Bold represent the best values.

Method 5-Way Acc. 20-Way Acc.

1-Shot 5-Shot 1-Shot 5-Shot

FSL MatchNet [43] 98.10±-% 98.90±-% 93.80±-% 98.50±-%

MAML [11] 98.70±0.40% 99.90±0.10% 95.80±0.30% 98.90±0.20%

ProtoNet [41] 98.80±-% 99.70±-% 96.00±-% 98.90±-%

Meta-SGD [29] 99.50±-% 99.90±-% 95.90±-% 99.00±-%

RelationNet [42] 99.60±0.20% 99.80±0.10% 97.60±0.20% 99.10±0.10%

Baselines: Label 97.92±0.22% 99.47±0.08% 92.84±0.21% 97.68±0.10%

UFSL CACTUs [16] 68.84±-% 87.78±-% 48.09±-% 73.36±-%

UMTRA [20] 83.80±-% 95.43±-% 74.25±-% 92.12±-%

LASIUM [21] 83.26±0.55% 95.29±0.22% - -

ProtoTransfer [33] 88.00±-% 96.48±-% 72.27±-% 89.08±-%

AAL [2] 88.40±0.75% 98.00±0.32% 70.20±0.86% 88.30±1.22%

ULDA [36] 91.00±0.42% 98.14±0.15% 78.05±0.31% 94.08±0.13%

UFLST [17] 97.03±-% 99.19±-% 91.28±-% 97.37±-%

Baselines: Random 58.50±0.70% 71.73±0.59% 33.94±0.31% 47.14±0.32%

Baselines: CSS 83.97±0.56% 94.65±0.26% 65.25±0.34% 84.74±0.22%

Baselines: Clustering 83.14±0.62% 91.67±0.36% 61.52±0.36% 77.05±0.28%

Ours: LF2CS 97.31±0.25% 99.32±0.10% 91.72±0.22% 97.65±0.09%

https://github.com/xidianai/LF2CS
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test episodes and are reported with 95% confidence intervals. We also use KNN
to evaluate our LF2CS, and set the number of nearest neighbor samples to 100.
The top-1 and top-5 accuracy of KNN are used to report the results.

4.2 Unsupervised Few-Shot Image Classification Results

Results on Omniglot. The Omniglot [23] dataset consists of 1,623 charac-
ters from 50 different alphabets and each character contains 20 samples drawn
by different people. Following [41,43], we resize the sample to 28×28. We use
1,028 characters for training, 172 characters for validation, and the remaining
423 characters for testing. On the Omniglot dataset, we only use Conv-4 as
the backbone of Encoder. Table 1 shows the few-shot image classification accu-
racies on Omniglot. Compared with other unsupervised baselines, the method
of building tasks by randomly selecting images (Random-based) has the worst
accuracies and our LF2CS has the best accuracies in all cases. Compared with
other unsupervised methods, ours do 97.31% for 5-way 1-shot with Conv-4 as
the backbone, which has also reached the level of supervised methods.

Table 2. 5-way 1-shot and 5-way 5-shot few-shot image classification accuracies on
the miniImageNet dataset. All accuracies are averaged over 1000 test episodes and
reported with 95% confidence intervals. Bold represent the best values.

Method Backbone 5-Way 1-Shot 5-Way 5-Shot

FSL MatchNet [43] Conv-4 46.60±-% 60.00±-%

ProtoNet [41] Conv-4 49.42±0.78% 68.20±0.66%

RelationNet [42] Conv-4 50.44±0.82% 65.32±0.70%

MAML [11] Conv-4 48.70±1.84% 63.11±0.92%

MetaOptnet [24] ResNet-12 62.64±0.61% 78.63±0.46%

Baselines: Label Conv-4 52.53±0.62% 65.98±0.53%

Baselines: Label ResNet-12 60.06±0.69% 71.76±0.58%

UFSL UFLST [17] Conv-4 33.77±0.70% 45.03±0.73%

AAL [2] Conv-4 37.67±0.39% 40.29±0.68%

CACTUs [16] Conv-4 39.90±0.74% 53.97±0.70%

UMTRA [20] Conv-4 39.93±-% 50.73±-%

LASIUM [21] Conv-4 40.19±0.58% 54.56±0.55%

ULDA [36] Conv-4 40.63±0.61% 56.18±0.59%

CSSL-FSL [25] ResNet-50 48.53±1.26% 63.13±0.87%

No-Labels [6] ResNet-50 50.10±0.20% 60.10±0.20%

Baselines: Random Conv-4 25.29±0.39% 28.86±0.39%

Baselines: CSS Conv-4 41.00±0.56% 52.17±0.54%

Baselines: Clustering Conv-4 41.01±0.59% 51.52±0.55%

Ours: LF2CS Conv-4 48.32±0.64% 61.52±0.52%

Baselines: Random ResNet-12 29.92±0.46% 36.82±0.48%

Baselines: CSS ResNet-12 45.42±0.60% 58.37±0.54%

Baselines: Clustering ResNet-12 48.48±0.63% 61.10±0.58%

Ours: LF2CS ResNet-12 53.14±0.62% 67.36±0.50%
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Results on MiniImageNet. The miniImageNet [43] dataset consists of 100
categories sampled from ImageNet [39], all images are 84×84 in size, and each
category has 600 images. Following [43], we divide all categories into 64 (train-
ing), 16 (validation), and 20 (test) categories. Table 2 shows the few-shot image
classification accuracies on miniImageNet. We compare with 5 supervised meth-
ods and 8 unsupervised methods. Compared with other unsupervised baselines,
the method of building tasks by randomly selecting images has the worst accu-
racies, while our methods have the best accuracies. Especially, our ResNet-12
reaches 53.14% for 5-way 1-shot, which has better results than all unsuper-
vised methods. Compared with other unsupervised methods, our methods have
a smaller gap with the supervised few-shot image classification methods.

Table 3. 5-way 1-shot and 5-way 5-shot few-shot image classification accuracies on
the tieredImageNet dataset. All accuracies are averaged over 1000 test episodes and
reported with 95% confidence intervals. Bold represent the best values.

Method Backbone 5-Way 1-Shot 5-Way 5-Shot

FSL ProtoNet [41] Conv-4 53.31±0.89% 72.69±0.74%

RelationNet [42] Conv-4 54.48±0.93% 71.32±0.78%

MAML [11] Conv-4 51.67±1.81% 70.30±1.75%

MetaOptnet [24] ResNet-12 65.99±0.72% 81.56±0.53%

Baselines: Label Conv-4 56.09±0.72% 68.86±0.60%

Baselines: Label ResNet-12 64.67±0.76% 76.71±0.57%

UFSL ULDA [36] Conv-4 41.77±0.65% 56.78±0.63%

Baselines: Random Conv-4 24.81±0.36% 28.80±0.40%

Baselines: CSS Conv-4 40.74±0.59% 52.72±0.58%

Baselines: Clustering Conv-4 42.60±0.62% 55.11±0.57%

Ours: LF2CS Conv-4 49.15±0.65% 62.54±0.58%

Baselines: Random ResNet-12 31.58±0.50% 38.82±0.53%

Baselines: CSS ResNet-12 43.13±0.62% 56.36±0.56%

Baselines: Clustering ResNet-12 44.93±0.64% 57.53±0.59%

Ours: LF2CS ResNet-12 53.16±0.66% 66.59±0.57%

Results on TieredImageNet. The tieredImageNet [38] dataset consists of 608
classes with a total of 779,165 images of size 84×84. These classes are selected
from 34 higher-level nodes in the ImageNet hierarchy. Following [38], 351 classes
from 20 high level nodes are used for training, 97 classes from 6 nodes for valida-
tion and 160 classes from 8 nodes for testing. Table 3 shows the few-shot image
classification accuracies on tieredImageNet. Compared with other unsupervised
methods, our methods have the best accuracies. Among them, our ResNet-12
has an accuracy of 53.16% for 5-way 1-shot and 66.59% for 5-way 5-shot. Com-
pared with other unsupervised baselines, our methods have a smaller gap with
the supervised few-shot image classification methods.
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Results on CIFARFS. The CIFARFS [3] dataset consists of 100 classes sam-
pled from CIFAR100 [22]. All the images are 32×32 in size. Following [3], we
divide all classes into 64, 16, and 20 classes for training, validation, and test-
ing, respectively. We compare with four supervised methods and one unsuper-
vised method. Table 4 shows the few-shot accuracies on CIFARFS. Compared
with other unsupervised methods, our methods have the best accuracies. For
5-way 1-shot, our method based on the Conv-4 backbone achieves an accuracy
of 51.52%.

4.3 Ablation Experiments and Visualization

The Performance of LF2CS. The number of clusters is the same as the
dimension d, which usually affects the clustering results. We conduct experiments
to observe the effect of the dimension d. Encoder also plays an important role on
the clustering results, and we evaluate our LF2CS on two architectures: Conv-
4 [43] and ResNet-12. Figure 4 shows the top-1 KNN accuracies and training
time per epoch on miniImageNet. Table 5 shows the accuracies of LF2CS with
different Encoder on miniImageNet. We report the results with top-1 and top-5
KNN accuracies, and 5-way 1-shot and 5-way 5-shot few-shot accuracies. Note
that the categories in training, validation and test sets do not intersect. From
Fig. 4, we can find that as the dimension d increases, the KNN accuracy and
training time also increase. To balance the time and accuracy, the dimension d

Table 4. Few-shot image classification accuracies on the CIFARFS dataset. All accu-
racies are averaged over 1000 test episodes and reported with 95% confidence intervals.
Bold represent the best values.

Method Backbone 5-way 1-shot 5-way 5-shot

FSL ProtoNet Conv-4 55.50±0.70% 72.60±0.60%

RelationNet Conv-4 55.00±1.00% 69.30±0.80%

MAML Conv-4 58.90±1.90% 71.50±1.00%

MetaOptnet ResNet-12 72.08±0.70% 85.00±0.50%

Baselines: Label-based Conv-4 65.65±0.74% 76.75±0.57%

Baselines: Label-based ResNet-12 67.14±0.76% 77.46±0.54%

UFSL No-Labels ResNet-50 53.00±0.20% 62.50±0.20%

Baselines: Random-based Conv-4 30.87±0.47% 38.03±0.49%

Baselines: CSS-based Conv-4 42.59±0.65% 55.64±0.59%

Baselines: Clustering-based Conv-4 44.72±0.66% 58.21±0.57%

Ours: LF2CS Conv-4 51.52±0.72% 66.82±0.57%

Baselines: Random-based ResNet-12 34.25±0.55% 44.48±0.55%

Baselines: CSS-based ResNet-12 46.46±0.67% 61.39±0.59%

Baselines: Clustering-based ResNet-12 44.88±0.67% 58.50±0.59%

Ours: LF2CS ResNet-12 55.04±0.72% 70.62±0.57%
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is set to 1024. From the few-shot accuracies in Table 5, it can be seen that LF2CS
has a strong generalization ability to the novel categories, such as 48.41% in the
training set v.s. 48.32% in the test set with Conv-4 as the backbone and 53.59%
in the training set v.s. 53.14% in the test set with ResNet-12 as the backbone.

Fig. 4. Left: The Top-1 KNN accuracies in test set on miniImageNet; Right: The
training time per epoch of different dimension of LF2CS Head on miniImageNet.

Table 5. Top-1 and Top-5 KNN accuracies, and 5-way 1-shot and 5-way 5-shot few-
shot accuracies of LF2CS Head with different Encoder on the training, validation and
test sets of miniImageNet. All few-shot accuracies are averaged over 1000 test episodes
and reported with 95% confidence intervals. The dimension d is 1024.

SubSet Encoder Top-1 Top-5 5-Way 1-Shot 5-Way 5-Shot

Training Conv-4 36.85% 69.36% 48.41±0.62% 62.28±0.50%

ResNet-12 53.42% 81.61% 53.59±0.65% 68.06±0.51%

Validation Conv-4 50.49% 88.86% 46.71±0.65% 59.32±0.53%

ResNet-12 62.17% 92.34% 51.69±0.67% 65.41±0.53%

Test Conv-4 49.10% 88.00% 48.32±0.64% 61.52±0.52%

ResNet-12 60.25% 91.38% 53.14±0.62% 67.36±0.50%

The Change of the Cluster Assignments. Now, we show the gradual change
of the cluster ids over time. During the training process, we have counted the
change of the cluster ids. The change of learning rate is shown in the left of Fig. 5.
There are two curves in the right of Fig. 5. The first represents the change ratio
of cluster ids and the second represents the ratio of cluster ids that do not meet
the limit on the number of clusters. At the beginning of training, the change
ratio of cluster ids and the ratio of cluster ids that do not meet the limit on the
number of clusters are almost 98% or more. It is almost completely random. But
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as the training progresses, the ratio of cluster ids that do not meet the limit on
the number of clusters dropped sharply. That is to say, the number of images
that do not meet the limit is rapidly decreasing. As the training progresses, the
change ratio of cluster assignments is also reduced. At the end of training, only
20% of the cluster assignments changed.

Fig. 5. The gradual change of the cluster ids over time. Left: The learning rate decay
using cosine strategy; Right: The change ratio of the cluster ids (assignments).

Fig. 6. Visualize images in some clusters on the miniImageNet dataset. Each row of
images represents the same clusters. The images of left, middle, and right come from
the training, validation and test sets, respectively.

The Visualization of Images in Some Clusters. Since task is built by select-
ing images from clusters, the clustering results affect the quality of tasks. When
there are more images belonging to the same category in the same cluster, the
quality of the task will be higher. Therefore, visualizing the images of the same
cluster will help to understand our method. Figure 6 shows some images in some
clusters, which are divided into three parts. The left, middle, and right show the
images in the training, validation, and test sets of miniImageNet, respectively.
Obviously, we can see that each cluster represents a certain vision semantics of
images. For example, the first row has a similar texture, and the last row has a
similar shape.
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5 Conclusion

In our work, we propose a novel single-stage clustering method: Learning Fea-
tures into Clustering Space (LF2CS), which fixes the cluster center matrix to
the identity matrix, thereby setting a strongly separable clustering space, and
then learns features into the clustering space. Based on this, we put forward an
image sampling and task building method, and with this, we propose an unsu-
pervised few-shot image classification method. Experimental results and visu-
alization show that our LF2CS has a strong ability to generalize to the novel
categories. Based on Conv-4 and ResNet-12, we conduct experiments on four
FSL datasets, and our method achieves the state-of-the-art results.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China (No.62076192), Key Research and Development Program in
Shaanxi Province of China (No.2019ZDLGY03-06), the State Key Program of National
Natural Science of China (No.61836009), in part by the Program for Cheung Kong
Scholars and Innovative Research Team in University (No. IRT 15R53), in part by
The Fund for Foreign Scholars in University Research and Teaching Programs (the 111
Project) (No. B07048), in part by the Key Scientific Technological Innovation Research
Project by Ministry of Education, the National Key Research and Development Pro-
gram of China.

References

1. Abramson, N., Braverman, D.J., Sebestyen, G.S.: Pattern recognition and machine
learning. JASA 103(482), 886–887 (2006)

2. Antoniou, A., Storkey, A.J.: Assume, augment and learn: Unsupervised few-shot
meta-learning via random labels and data augmentation. CoRR abs/1902.09884
(2019)

3. Bertinetto, L., Henriques, J.F., Torr, P.H.S., Vedaldi, A.: Meta-learning with dif-
ferentiable closed-form solvers. In: ICLR (2019)

4. Bertinetto, L., Henriques, J.F., Valmadre, J., Torr, P.H.S., Vedaldi, A.: Learning
feed-forward one-shot learners. In: NIPS, pp. 523–531 (2016)

5. Bertugli, A., Vincenzi, S., Calderara, S., Passerini, A.: Few-shot unsupervised con-
tinual learning through meta-examples. CoRR abs/2009.08107 (2020)

6. Bharti, A., Balasubramanian, V.N., Jawahar, C.V.: Few shot learning with no
labels. CoRR abs/2012.13751 (2020)

7. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised
learning of visual features. In: ECCV. vol. 11218, pp. 139–156 (2018)

8. Chen, M., et al.: Diversity transfer network for few-shot learning. In: AAAI, pp.
10559–10566 (2020)

9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for con-
trastive learning of visual representations. In: ICML, vol. 119, pp. 1597–1607 (2020)

10. Cui, Y., Liu, F., Liu, X., Li, L., Qian, X.: TCSPANET: two-staged contrastive
learning and sub-patch attention based network for polsar image classification.
Remote Sens. 14(10), 2451 (2022)

11. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML, vol. 70, pp. 1126–1135 (2017)



Unsupervised Few-Shot Image Classification by LF2CS 435
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20. Khodadadeh, S., Bölöni, L., Shah, M.: Unsupervised meta-learning for few-shot
image classification. In: NeurIPS, pp. 10132–10142 (2019)

21. Khodadadeh, S., Zehtabian, S., Vahidian, S., Wang, W., Lin, B., Bölöni, L.: Unsu-
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