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Abstract. Perceiving and interacting with 3D articulated objects, such
as cabinets, doors, and faucets, pose particular challenges for future
home-assistant robots performing daily tasks in human environments.

Besides parsing the articulated parts and joint parameters, researchers
recently advocate learning manipulation affordance over the input shape
geometry which is more task-aware and geometrically fine-grained.

However, taking only passive observations as inputs, these methods
ignore many hidden but important kinematic constraints (e.g., joint loca-
tion and limits) and dynamic factors (e.g., joint friction and restitution),
therefore losing significant accuracy for test cases with such uncertain-
ties. In this paper, we propose a novel framework, named AdaAfford,
that learns to perform very few test-time interactions for quickly adapt-
ing the affordance priors to more accurate instance-specific posteriors.
We conduct large-scale experiments using the PartNet-Mobility dataset
and prove that our system performs better than baselines. We will release
our code and data upon paper acceptance.

1 Introduction

For future home-assistant robots to aid humans in accomplishing diverse every-
day tasks, we must equip them with strong capabilities perceiving and interact-
ing with diverse 3D objects in human environments. Articulated objects, such
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as cabinets, doors, and faucets, are particularly interesting kinds of 3D shapes
in our daily lives since agents can interact with them and trigger functionally
important state changes of the objects (e.g., push closed the drawer of the cab-
inet, rotate the handle and pull open the door, turn on/off the water from the
faucet by rotating the switch). However, because robots need to understand more
semantically complicated part semantics and manipulate articulated parts with
higher degree-of-freedoms than rigid objects, it remains a very important yet
challenging task to perceive and interact with 3D articulated objects.

Many previous works have investigated the problem of perceiving and inter-
acting with 3D articulated objects. Researchers have been pushing the state-
of-the-arts on segmenting articulated parts [32,42], tracking them [30,35], and
estimating joint parameters [34,40], enabling robotic systems [2,23,33] to suc-
cessfully perform sophisticated planning and control over 3D articulated objects.
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Fig. 1. For robotic manipulation over 3D articulated objects (a), past works [18,36]
have demonstrated the usefulness of per-point manipulation affordance (b). However,
only observing static visual inputs passively, these systems suffer from intrinsic ambigu-
ities over kinematic constraints. Our AdaAfford framework reduces such uncertainties
via interactions and quickly adapts instance-specific affordance posteriors (c).

More recently, beyond recognizing the articulated parts and joints,
researchers have been proposing learning more task-aware and geometrically
fine-grained manipulation affordance over input 3D geometry. Where2Act [18],
the most related to our work, learns densely labeled manipulation affordance
heatmaps over 3D input partial scans of articulated objects, as illustrated in
Fig. 1(b), by performing self-supervised trial-and-error interaction in a physical
simulator. There are also many other works leveraging similar dense affordance
predictions over 3D scenes [21] and rigid objects [17]. Such densely labeled affor-
dance predictions over 3D data provide more geometrically fine-grained action-
able information and can be learned task-specifically given different manipula-
tion actions, showing promises in bridging the perception-interaction gaps for
robotic manipulation over large-scale 3D data across different tasks.
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However, taking only a single-frame observation of the 3D shape as input
(e.g., a single 2D image, a single partial 3D scan), these methods systematically
fail to capture many hidden but important kinematic or dynamic factors and
therefore predict inaccurate affordance heatmaps, similar to Fig. 1(b), by aver-
aging out such uncertainties. For example, given a fully closed cabinet door with
no obvious handle as shown in Fig. 1 (top-row), it is uncertain if the door axis
is on the left or right side, which significantly affects the manipulation affor-
dance predictions. Other kinematic uncertainties include joint limits (e.g., push
inward or pull outward for a door) and types (e.g., slide or rotate to open a door).
Besides, various dynamic or physical parameters (e.g., part mass, joint friction)
are also unobservable from single-frame inputs but largely affect manipulation
affordance. For example, with increasing friction coefficient for a cabinet drawer
(Fig. 1, bottom-row), robots would be able to push the inner board.

In this paper, we propose a novel framework AdaAfford learning perform very
few test-time interactions to reduce such kinematic or dynamic uncertainties and
fastly adapts the affordance prior predictions to instance-specific posteriors given
a novel test shape. Our system learns a data-efficient strategy that sequentially
samples very few uncertain or interesting locations to interact, as the interacting
grippers illustrated in Fig. 1(b), according to the current affordance predictions
and past interaction trials (we begin with the affordance prior predictions of
Where2Act [18] and zero interaction history). The interaction outcomes, each of
which includes the interaction location, direction, and the resulting part motion,
are then observed and incorporated to produce posterior affordance predictions,
as illustrated in Fig. 1(c), by a proposed fast-adaptation mechanism.

We set up a benchmark for experiments and evaluations using the large-scale
PartNet-Mobility dataset [20] and the SAPIEN physical simulator [37]. We use
in total 972 shapes from 15 object categories and conduct experiments for several
action types, and randomly sample the kinematic and dynamic parameters for
the 3D articulated objects in simulation. Experiments show our method can
successfully and efficiently adapt manipulation affordance to novel test shapes
with as few as one to four interactions. Quantitative evaluation further proves
the effectiveness of our proposed approach.

In summary, our main contributions are the following. 1) we point out and
investigate an important limitation of the methods that learn densely labeled
visual manipulation affordance – the unawareness of hidden yet important kine-
matic and dynamic uncertainties; 2) we propose a novel framework AdaAfford
that learns to perform very few test-time interactions to reduce uncertainties and
quickly adapt to predicting an instance-specific affordance posterior; 3) we set
up a large-scale benchmark, built upon PartNet-Mobility [20] and SAPIEN [37],
for experiments and evaluations, and results demonstrated the effectiveness and
efficiency of the proposed approach.

2 Related Work

Visual Affordance on 3D Shapes. Affordance [9] suggests possible ways
for agents to interact with objects. Many past works have investigated
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learning grasp [11,13,15,26,29] and manipulation [17,18,21,27,36,39] affor-
dance for robot-object interaction, while there are also many works studying
affordance for hand-object [3,4,12,17,41], object-object [19,31,46], and human-
scene [8,16,21,25] interaction scenarios. Among these works, researchers have
proposed different representations for visual affordance, including detection loca-
tions [15,29], parts [17], keypoints [27], heatmaps [18,21], etc. In this work, we
mostly follow the settings in [18] for learning visual affordance heatmaps for
manipulating 3D articulated objects. Different from previous works that infer
possible agent-object visual affordance heatmaps passively from static visual
observations, our framework leverages active interactions to efficiently query
uncertain kinematic or dynamic factors for learning more accurate instance-
adaptive visual affordance.

Fast Adaption via Few-Shot Interactions. Researchers have explored vari-
ous approaches [5,7,28,44,45] for fast adaption via few-shot interactions. Many
past works have also designed interactive perception methods to figure out object
mass [14], dynamic parameters [1,6,10,38], or parameters for known models [43].
Different from these studies proposing general algorithms for policy adaptation
or figuring out explicit system parameters for rigid objects, we focus on designing
a working solution for our specific task of learning visual affordance heatmaps for
manipulating 3D articulated objects with special designs on predicting geometry-
grounded interaction proposals and interaction-adaptive affordance predictions.

3 Problem Formulation

Given as input a single-frame 3D partial point cloud observation of an articu-
lated object O ∈ R

N×3 (e.g., lifted from a depth scanner with known camera
intrinsics), the Where2Act framework [18] directly outputs a per-point manip-
ulation affordance heatmap A ∈ [0, 1]N , where higher scores indicate bigger
chances for being interacted with to accomplish a given short-term manipulation
task (e.g., pushing, pulling). Additionally, a diverse set of gripper orientations
{Rp

1, R
p
2, · · · |Rp

i ∈ SO(3)} is proposed at each point p ∈ O suggesting possible
ways for robot agents to interact with, each of which also associated with a suc-
cess likelihood spi ∈ [0, 1]. No interaction is allowed at test time in Where2Act
and a fixed set of system dynamic parameters is used across all shapes.

We follow most of the Where2Act settings except that we randomly vary the
system dynamics and allow test-time interactions over the 3D shape to reduce
kinematic or dynamic uncertainties. Our AdaAfford system proposes a few inter-
actions sequentially I = {I1, I2, · · · }. Each interaction Ii = (Oi, pi, Ri,mi) exe-
cutes a task-specific hard-coded short-term trajectory defined in Where2Act,
parametrized by the interaction point pi ∈ Oi and the gripper orientation
Ri ∈ SO(3), and observes a part motion mi. Starting from the input shape obser-
vation O1 ← O, every interaction Ii where mi �= 0 changes the part state and
thus produces a new shape point cloud input for the next interaction Oi+1 �= Oi.
Leveraging the interaction observations I, our system then adapts the per-point
manipulation affordance A predicted by Where2Act to a posterior AI ∈ [0, 1]N
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Fig. 2. Method Overview. Starting from the Where2Act [18] predicted affordance
prior A, at each timestep t = 1, 2, · · · , we recursively leverage the Adaptive Interaction
Proposal (AIP) module to propose a next-time interaction action ut+1, observe the
interaction outcome mt+1, and feed through the Adaptive Affordance Prediction (AAP)
module all past few-shot interactions It together with the new one It+1 for adapting to
an affordance posterior prediction AIt+1 . The procedure iterates until the interaction
budget is reached or the AIP module decides to stop.

that reduces uncertainties and provides more accurate instance-specific predic-
tions. For each gripper orientation Ri, we also update the success likelihood score
spi,I ∈ [0, 1] considering the test-time interactions.

4 Method

Our proposed AdaAfford framework primarily consists of two modules – an
Adaptive Interaction Proposal (AIP) module and an Adaptive Affordance Pre-
diction (AAP) module. While the AIP module learns a greedy yet effective strat-
egy for sequentially proposing few-shot test-time interactions I = {I1, I2, · · · }
revealing hidden information, the AAP module is trained to adapt affordance
predictions from Where2Act [18] prior A to a posterior AI observing the sam-
pled interactions I. We iterate two modules recurrently at test time to produce a
sequence of few-shot interactions I leading to the final affordance posterior pre-
diction AI . During training, we iteratively alternate the training for the two mod-
ules until a joint convergence. Below, we first introduce the test-time inference
procedure for a brief overview. Next, we describe the input backbone encoders
that are shared among all networks in our framework. Then, we describe the
detailed architectures and system designs of the two modules. We conclude with
the training losses and strategy.

Test-Time Overview. Figure 2 presents an overview of the method. We apply
a recurrent structure at test time. Starting from the affordance prediction A,
the AIP module proposes the first action for producing the interaction data I1.
Then, at each timestep t = 1, 2, · · · , we feed the current set of interactions It =
{I1, · · · , It} as inputs to the AAP module and extract hidden information zIt

∈
R

128 that adapts the affordance map prediction to AIt
. The AIP module then

takes zIt
as input and proposes an action ut+1 = (pt+1, Rt+1) composed of the
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Fig. 3. Network Architecure. Left: the Adaptive Affordace Prediction (AAP) mod-
ule takes as inputs the few-shot interactions I and predicts the affordance posterior AI .
Right: the Adapative Interaction Proposal (AIP) module proposes a next-step interac-
tion action ut+1 = (pt+1, Rt+1) (denote the current timestep as t) given the feature zI
extracted from the current interaction observations I.

interaction point pt+1 and the gripper orientation Rt+1 for the next interaction.
Performing this action in the environment, we obtain the next-step interaction
data It+1 = (Ot+1, pt+1, Rt+1,mt+1) and put it into the interaction set It+1 ←
It ∪{It+1}. We iterate until the interaction budget has been reached or our AIP
module decides to stop. When the procedure stops at timestep T , we output the
final affordance posterior AI = AIT

.

Input Encoders. This paragraph details how we encode inputs into features as
all the encoder networks in the two modules take the same input entities (e.g.,
the shape observation O, the interaction action u) and thus share the same
architecture. We use the PointNet++ segmentation network [24] to encode the
input shape point cloud O ∈ R

N×3 into per-point feature maps fO ∈ R
N×128

and denote fp|O ∈ R
128 as the feature at any point p ∈ O. We use Multilayer

Perceptron (MLP) networks to encode other vector inputs (e.g., the interaction
action u and the part motion m) into fa ∈ R128. The networks in the following
subsections will first encode the inputs into fp|O and fa, and then concatenate
them into fI ∈ R256. The encoders do not share weights across different modules
(Fig. 3).

4.1 Adaptive Affordance Prediction Module

The Adaptive Affordance Prediction (AAP) module takes as inputs few-shot
interactions I and predicts the affordance posterior AI . This module is com-
posed of three subnetworks: 1) an Adaptive Information Encoder EAAP that
extracts hidden information z ∈ R

128 from a set of interactions I; 2) an Adap-
tive Affordance Network DAAP that predicts the posterior affordance heatmap
AI conditioned on the hidden information z; and 3) an Adaptive Critic Network
CAAP that predicts the AAP action score sAAP

u|z ∈ [0, 1] for an action u condi-
tioned on the hidden information z. Here, an action is represented as u = (p,R)
including an interaction point p ∈ O and a gripper orientation R ∈ SO(3).
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Adaptive Information Encoder. Given a set of interactions I = {I1, I2, · · · }
as inputs, the Adaptive Information Encoder EAAP outputs a 128-dim hidden
information representation zI (z for brevity). It first encodes each interaction
Ii using the input encoders mentioned before, and then uses an MLP network
to encode the features into a 128-dim latent code zIi representing the hidden
information extracted from Ii. As different interactions contain different amount
of hidden information, we use another MLP Network to predict an attention
score wIi ∈ R for each interaction. To get a summarized hidden information
from a set of interactions, we simply computes a weighted average over all zIi ’s
according to the weights wIi ’s and use the resulting feature as zI . Formally, we
have zI ← (

∑
i zIi × wIi) / (

∑
i wIi).

Adaptive Critic Network. Given the object partial point cloud observation O,
an arbitrary interaction point p ∈ O, an arbitrary gripper orientation R ∈ SO(3)
and the latent code z, the Adaptive Critic Network CAAP predicts an AAP action
score sAAP

u|z ∈ [0, 1] indicating the likelihood for the success of the interaction
action u given the interaction information z. It first encodes the input {O,P,R}
using the input encoders as mentioned before and then employs an MLP network
to predict AAP action score sAAP

u|z , taking the concatenated features together
with z as inputs. A higher AAP action score sAAP

u|z for action u indicates a
higher chance for u to succeed in accomplishing the given manipulation task.

Adaptive Affordance Network. Given the input object partial point cloud
O, an arbitrary point p ∈ O, and the latent code z, the Adaptive Affordance
Network DAAP predicts an actionability score aAAP

p|z ∈ [0, 1] at point p. It first
encodes the input {O, p} using the aforementioned input encoders and then uses
an MLP network that takes the concatenated features together with z as inputs
and produces an actionability score aAAP

p|z as the output. A higher actionability
score aAAP

p|z indicates a higher chance to successfully interact on point p.

4.2 Adaptive Interaction Proposal Module

Adaptive Interaction Proposal. (AIP) module proposes an action (denote the
current timestep as t) ut+1 = (pt+1, Rt+1) for the next step interaction, given
the feature z extracted from the current interaction observations I. This module
contains two networks: 1) an Adaptive Interaction Proposal Affordance Network
DAIP that predicts an AIP actionability score aAIP

p|z ∈ R indicating how likely
the next-action is worth interacting at point p, and 2) an Adaptive Interaction
Proposal Critic Network CAIP predicting an AIP action score sAIP

u|z ∈ R sug-
gesting the gripper orientation to pick for the next interaction. We leverage the
predictions of the two networks to propose the next action ut+1 = (pt+1, Rt+1).

Adaptive Interaction Proposal Critic Network. Given the input object
partial point cloud O, an arbitrary interaction point p ∈ O, an arbitrary gripper
orientation R ∈ SO(3), the latent code z, and the AAP action score sAAP

u|z pro-
duced by CAAP , the AIP Critic Network CAIP predicts the AIP action score
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sAIP
u|z ∈ R of u. It first encodes the inputs {O, p,R, sAAP

u|z } using the input
encoders and then uses an MLP network that takes the concatenated features
together with z as inputs and generates an AIP action score sAIP

u|z for the action
u. A higher AIP action score suggests that the action u may query more unknown
yet interesting hidden information and thus is worth exploring next.

Adaptive Interaction Proposal Affordance Network. Given the input par-
tial shape observation O, an arbitrary interaction point p ∈ O, the latent code
z, and the AAP actionability score aAAP

p|z at point p estimated by DAAP , the
AIP Affordance Network DAIP predicts the AIP actionability score aAIP

p|z ∈ R

at point p. It first encodes the inputs {O, p, aAAP
p|z } using the aforementioned

input encoders and then employs an MLP network to predict an AIP actionabil-
ity score aAIP

p|z , taking the concatenated features together with z as inputs. A
higher AIP actionability score at p indicates more unknown yet helpful hidden
information may be obtained by executing an interaction at p.

Next-Step Interaction Action Proposal. In order to propose an action
ut+1 = (pt+1, Rt+1) for the next interaction, given the hidden information z
and the input shape partial point cloud O, we first obtain the AIP actionability
heatmap AAIP

p|z for every point p ∈ O predicted by the AIP Affordance Network
DAIP and then select the point pt+1 ← p∗ with the highest AIP actionability
score aAIP

p∗|z . Then, we sample 100 random actions {u1, u2, · · · , u100} at p using
the Where2Act’s pre-trained Action Proposal Network, use our AIP critic net-
work CAIP to generate the AIP action scores sAIP

ui|z for each action ui, and then
choose the action ut+1 ← u∗ with the highest AIP action score sAIP

u∗|z .

Stopping Criterion for the Few-Shot Interactions. The AIP procedure for
generating few-shot interactions stops when a preset budget is reached or the
maximal AIP actionability score is below a certain threshold (e.g., 0.05).

4.3 Training and Losses

In brief, for AAP module, we use ground-truth motion m to supervise EAAP and
CAAP , and utilize CAAP to supervise the training of DAAP . For AIP module, we
use AAP module to supervise the training of CAIP and use it to supervise DAIP .
Below, we describe the losses and the training strategy in detail.

AAP Action Scoring Loss. To supervise CAAP , we use a standard binary
cross entropy loss, which measures the error between the prediction of CAAP

and target part’s ground truth motion m of an interaction I. Specifically, given
the hidden information z, a batch of interaction observations I = {I1, I2, ..., IB}
where Ii = {Oi, ui,mi}, and the AAP action score prediction sAAP

ui|z for each
interaction Ii, the loss is defined as

LAAP
C = − 1

B

∑

i

ri log(sAAP
ui|z ) + (1 − ri) log(1 − sAAP

ui|z )
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where ri = 1 if mi > τ (e.g., τ = 0.01) or ri = 0 rendering a binary discretization
for each interaction outcome.

AAP Actionability Scoring Loss. To train DAAP , we apply an L1 loss to
measure the difference from the predicted score aAAP

p|z to the ground truth. To
estimate the ground truth actionability score for p, we randomly sample 100
actions at p according to pre-trained Where2Act Action Proposal Network, pre-
dict AAP action scores sAAP

u|z ’s of these actions u’s using CAPP , and take the
average of the top-5 scores as the ground truth actionability score.

AIP Action Scoring Loss. To supervise CAIP , we use an L1 loss to measure
the difference between our predicted AIP action score sAIP

u|z and the ground truth
AIP action score gtAIP

u|z . Given a set of interactions IT = {I1, I2, · · · }, to generate
gtAIP

ui|z for an interaction action ui, we respectively encode two interaction subsets
Ii−1 = {I1, I2, · · · , Ii−1} and Ii = {I1, I2, · · · , Ii} into latent codes zIi

and
zIi−1 . Then feed zIi

and zIi−1 as the conditional inputs to CAAP separately and
count the difference of LAAP

C as the ground truth of AIP action score gtAIP
ui|zIi−1

.
More concretely, let the AAP action scoring loss conditioned on zIi

and zIi−1

respectively be LIi
and LIi−1 . We define the ground truth AIP action score

gtAIP
ui|zIi−1

← LIi−1 −LIi
. The AIP action score is trained to regress an estimated

positive influence of executing u on the AAP action score predictions, where
an action giving more influence is preferred as it helps discover more hidden
information useful to the task.

AIP Actionability Scoring Loss. To train DAIP , we use another L1 loss. For
each p ∈ O, we sample 100 actions ui’s using the pre-trained Where2Act Action
Proposal Network, obtain the AIP action scores sAIP

ui|z ’s of these actions ui’s by
CAIP , and use the average of the top-5 scores as the regression target.

Training Strategy. We iteratively train the AAP module and AIP module
until a joint convergence since the update of the subnetworks in one module will
affect the training of the subnetworks in the other module. More specifically,
the update of CAAP in the AAP module will affect the ground-truth AIP action
scores, while the update of CAIP and DAIP in the AIP module will change the
proposed interactions used to generate z in the AAP module. Therefore, our
final solution is to train the AAP and AIP modules iteratively.

5 Experiments

We perform experiments using the large-scale PartNet-Mobility dataset [20] and
the SAPIEN simulator [37], and set up several baselines for comparisons. Results
demonstrate the effectiveness and superiority of the proposed approach.

5.1 Data and Settings

Data. Following the settings of Where2Act [18], we conduct our experiments in
the SAPIEN [37] simulator equipped with NVIDIA PhysX [22] simulation engine
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and the large scale PartNet-Mobility [20] dataset. We use 972 articulated 3D
objects covering 15 object categories, mostly following Where2Act, to carry out
the experiments. The dataset is divided into 10 training and 5 testing categories.
The shapes in the training categories are further divided into two disjoint sets
of training and test shapes. See supplementary for detailed statistics.

Table 1. Quantitative Evaluations. We experiment with three different test-time
interaction budgets (i.e., 1, 2, or 4) where numbers are separated by slashes. We use
“pushing all” and “pulling all” to denote the experiments over all object categories,
while “pulling closed door” and “pushing faucet” refer to the experiments over a single
category only. For the experiments over all categories, we report the performance over
novel shapes from the training categories (marked with “train cat.”) and shapes from
novel categories (marked with “test cat.”).

F-score (%) Sample-Succ (%)

Pushing all
(train cat.)

Where2Act 56.44 20.85

Where2Act-adaptation 64.16/65.42/64.99 20.77/22.72/26.82

Ours-fps 64.32/69.58/70.99 26.22/27.30/30.65

Ours-final 72.78/73.12/75.18 33.82/33.23/35.23

Pushing all
(test cat.)

Where2Act 59.95 21.69

Where2Act-adaptation 51.09/53.28/55.56 19.06/22.27/24.50

Ours-fps 66.17/67.27/69.08 33.64/35.19/37.79

Ours-final 77.58/77.63/78.42 34.97/36.75/37.40

Pulling all
(train cat.)

Where2Act 31.19 1.92

Where2Act-adaptation 37.22/38.48/39.13 1.11/2.15/1.62

Ours-fps 39.88/42.74/43.55 2.78/5.56/4.44

Ours-final 42.62/43.87/44.08 7.78/9.44/10.55

Pulling all
(test cat.)

Where2Act 36.36 10.00

Where2Act-adaptation 40.11/45.52/48.80 3.40/6.25/10.17

Ours-fps 43.67/42.77/48.33 4.35/3.91/4.78

Ours-final 49.51/50.00/51.33 5.21/7.39/10.45

Pulling closed
door

Where2Act 48.44 4.38

Where2Act-adaptation 50.21/55.75/56.81 6.60/7.18/6.83

Ours-fps 59.79/63.43/69.13 8.88/11.33/12.10

Ours-final 57.83/65.60/79.65 10.86/11.57/22.14

Pushing faucet Where2Act 64.92 55.46

Where2Act-adaptation 66.25/62.18/67.15 57.50/52.08/61.70

Ours-fps 74.19/79.36/77.95 60.44/70.12/77.41

Ours-final 77.42/83.06/83.83 65.90/81.66/82.14
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Experiment Settings. Following Where2Act [18], we perform experiments over
all object categories under different manipulation action types. We train one net-
work for each downstream manipulation task over training shapes from the 10
training object categories and evaluate the performance over test shapes from the
training categories and shapes from unseen test categories. Besides, to further
demonstrate the effectiveness of our method, we conduct two additional experi-
ments under challenging tasks with clear kinematic ambiguity, each of which is
conducted over a single object category: 1) pulling closed doors of cabinets that
cannot be easily distinguished which side to pull open; 2) pushing faucets with
uncertainties which direction to rotate (clockwise or counter-clockwise). These
experiments are particularly interesting yet challenging cases on which previous
work Where2Act [18] fail drastically and we hope to test our framework.

Environment Settings. Following Where2Act, we abstract away the robot arm
and only use a Franka Panda flying gripper as the robot actuator. The input
shape point cloud is assumed to be cleanly segmented out. To generate the input
partial point cloud scans, we mount an RGB-D camera with known intrinsic
parameters 5-unit-length away pointing to the center of the target object.

To simulate manipulating shapes with uncertain dynamics, we randomly
change the following three physical parameters in SAPIEN: 1) the friction of the
target part joint, 2) the mass of the target part, and 3) the friction coefficient of
the target part surface. For the “pulling closed door” task, we manually select
the cabinets whose doors have no clear handle geometry in the PartNet-Mobility
dataset [37], and set the poses of those doors to be closed. The gripper cannot
tell which side to pull open the door because it is impossible to tell whether the
axis position is on the left or right of the door from passive visual observations.
For the “pushing faucet” task, we randomly set the rotating direction of the
faucet switch to be in one of the following three modes: only clockwise, only
counter clockwise, or both ways.

5.2 Baselines and Evaluation Metrics

We set up several baseline and employ two metrics for quantitative comparisons.

Baselines and Ablation Study. We compare our framework with several base-
lines (see supplementary for more detailed descriptions for the baseline designs):

– Where2Act: the original method proposed in [18] where only the pure visual
information is used for predicting the visual actionable information and no
interaction data is used at all during test time;

– Where2Act-adaptation: the Where2Act method augmented with a heuris-
tic based adaptation mechanism to replace the AAP module where given the
interaction observations we locally adjust the predictions for similar points;

– Ours-fps: a variant of our proposed method that we use FPS to sample over
the predicted affordance for interactions instead of the AIP proposals.

We compare to Where2Act to show that the few-shot interactions indeed
help to remove ambiguities and improve the performance. Furthermore, the
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Where2Act-adaptation baseline helps substantiate the effectiveness of our
proposed AAP module, while the Ours-fps baselines are designed to verify the
usefulness of the proposed AIP module.

Besides, we compare to an ablated version of our method to verify the sig-
nificance of iterative training between the AAP module and the AIP module.

– Ours w/o iter: an ablated version that trains the whole framework without
the iterative training process.

Evaluation Metrics. Following Where2Act [18], we use the F-score, balancing
the precision and recall, to evaluate the predictions of CAAP , and use the sample-
successful rate (Sample-Succ) to evaluate the performance of CAAP and DAAP .
To compute the sample successful rate, we apply the learned test-time strategy
to fill I and then use the extracted hidden information z as the conditional
input to CAAP and DAAP . After that, we randomly select a point to interact
from the group of points with the top-100 actionability scores aAAP

p|z , sample
100 actions ui’s at p, obtain sAAP

ui|z ’s of these actions ui’s predicted by CAAP ,
and then choose the action ui with the highest sAAP

ui|z to execute. We perform
10 interaction trials per test shape and report the final sample-succ rate as the
percentage of sampling successful interactions in simulation.

Pushing all 
category

Pushing all 
category 

novel shape 

Pulling all 
category

Pulling all 
category

novel shape

Pulling 
closed door

Pushing 
faucet

Pushing 
drawer

1

0.75

0.5

0.25

0

Fig. 4. Example results of adapted affordance predictions given by AAP module under
different kinematic and dynamic parameters. The first five columns show the adapted
affordance prediction conditioned on increasing joint friction (the first and second
columns), part mass (the third column), and friction coefficient on object surface (the
fourth and fifth columns). The last two columns respectively show the influence of
different rotating directions (i.e., joint limits) and joint axis locations.
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5.3 Results and Analysis

Table 1 presents the quantitative comparisons against the baselines showing that
our method achieves the best performance in most comparison entries. Specif-
ically, compared to Where2Act, we observe that our method can improve
the performance evidently with only 1 interaction. Also, the performance
increases as the number of interactions increases in most cases. Compared to the
Where2Act-adaptation baseline, our method with the proposed AAP mod-
ule shows better performance, revealing that learning an adaptation network
works better than using simple heuristics for adaptation. Finally, the superior
performance against the Ours-fps baseline that use FPS sampled interaction
trials further validate that our proposed AIP module is effective in strategically
and iteratively picking interaction trials. Our method can generalize well to novel
shapes and even shapes from unseen object categories through scores in test-cat.

Figure 4 shows example visualizations for our predicted affordance map pos-
terior given interactions under different hidden kinematic or dynamic informa-
tion (see the caption for more details explaining the different scenarios). In these
figures, it is clear to see that our proposed method successfully adapts the affor-
dance prediction conditioned on different hidden information. The affordance
predictions within one shape share the same visual inputs but output different
results, showing that our hidden embedding z contains certain information.

Interaction Affordance Map Interaction
(step 2)

Affordance Map 
(step 2)

0.25

0.75

0.5

-1

2

1

0
AIP Affordance Map Interaction Affordance Map AIP Affordance Map Interaction Affordance Map

AIP Affordance Map

Pushing
drawer

Pushing
faucet

Pulling all
category

AIP Affordance Map 
(step 2)

Pushing all
category

interaction
succeed

interaction
fail

interaction
succeed

interaction
succeed

interaction
succeed

interaction
succeed

interaction
succeed

interaction
succeed

Fig. 5. Example results for the interactions proposed by the AIP module and the
corresponding AIP affordance map predictions. In the first three rows, we show the
initial and the second AIP affordance maps, the corresponding proposed interactions,
and the posterior affordance map predictions. In the last row, we present two more
examples that only one interaction is needed. From these results, our AIP module
successfully proposes reasonable interactions for querying useful hidden information.
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Figure 5 further shows some interaction proposals by our AIP module with
its influence on the prediction of AAP affordance map and to the AIP affor-
dance map itself. In the first row, for example, we see that the AIP affordance
first proposes to interact at both sides of the faucet since it knows little about
the hidden information but at the second timestep proposes the right side as
it already learns the left side is actionable. Cases in the first and third rows
demonstrate that the past few interactions will influence the selection of future
interaction points, justifying the necessity of our recurrent structure for interac-
tion selection. In the last row, we show cases only requiring one step to adapt.

Ablation Study. In Table 2, comparing against Ours w/o iter that trains
the whole system without the interactive training process, we see that Ours-
final achieves better results in most cases, which proves the effectiveness of the
iterative training scheme. By iteratively alternating the training between the
AAP module and the AIP module, the networks would be trained under the
distribution of test-time interactions and thus achieve improved performance.

Real-World and Real-Robot Experiments. Finally, we perform real-world
and real-robot experiments to show that our method can to some degree work
beyond synthetic data. We use a Franka panda robot with a two-finger paral-
lel gripper as the actuator to pull open a cabinet door. Figure 6 presents the
results that our system proposes two interaction trials to inquire more informa-
tion about this real-world cabinet and successfully learns to adapt to the poste-
rior predictions. Please refer to the supplementary materials for a video better
illustrating this example, more experiment settings, more example results, and
more experiments with additional analysis.

Table 2. Ablation Study. We compare our method to an ablated version, where we
remove the iteratively training process. It is clear to see that the iteratively training
process helps our framework achieve better results in most cases.

F-score (%) Sample-Succ (%)

Pushing all (train cat.) Ours w/o iter 71.21/72.64/73.16 30.67/31.62/32.56

Ours-final 72.78/73.12/75.18 33.82/33.23/35.23

Pushing all (test cat.) Ours w/o iter 77.24/77.33/77.17 31.03/33.89/38.83

Ours-final 77.58/77.63/78.42 34.97/36.75/37.40

Pulling all (train cat.) Ours w/o iter 41.19/42.10/42.81 6.67/7.22/8.33

Ours-final 42.62/43.87/44.08 7.78/9.44/10.55

Pulling all (test cat.) Ours w/o iter 48.31/48.28/50.50 5.65/6.52/9.13

Ours-final 49.51/50.00/51.33 5.21/7.39/10.45

Pulling closed door Ours w/o iter 56.74/64.88/80.64 9.77/11.50/22.00

Ours-final 57.83/65.60/79.65 10.86/11.57/22.14

Pushing faucet Ours w/o iter 73.81/83.03/84.32 61.11/81.60/84.03

Ours-final 77.42/83.06/83.83 65.90/81.66/82.14
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Pulling
closed door
real-world

AIP Affordance Map Interaction (step 1)
interaction fail

Affordance Map AIP Affordance Map 
(step 2)

Interaction (step 2)
interacton succeed

Affordance Map
(step2)

Fig. 6. Real-robot experiment on pulling open a closed door in the real world. We
show the AIP affordance map predictions, the AIP proposed interactions, and the
AAP posterior predictions, for two interaction trials. The results show that our work
could reasonably generalize to real-world scenarios.

6 Conclusion

This work addresses a big limitation of previous works learning visual actionable
affordance for manipulating 3D articulated objects – the hidden kinematic or
dynamic uncertainties. We propose a novel framework AdaAfford that samples
a few test-time interactions for fastly adapting to a more accurate affordance
posterior prediction removing such ambiguities. Experimental results validate
the effectiveness of our method compared to baseline approaches.

Limitations and Future Works. This work only considers two action types
and 3D articulated objects. Future works may study more interaction and data
types. Also, we only perform short-term interactions. Future works can inves-
tigate how to extend the framework for long-term manipulation trajectories.
Future works shall work on considering the robot arm constraints.
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