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Abstract. Unsupervised semantic segmentation aims to obtain high-
level semantic representation on low-level visual features without manual
annotations. Most existing methods are bottom-up approaches that try
to group pixels into regions based on their visual cues or certain pre-
defined rules. As a result, it is difficult for these bottom-up approaches
to generate fine-grained semantic segmentation when coming to com-
plicated scenes with multiple objects and some objects sharing simi-
lar visual appearance. In contrast, we propose the first top-down unsu-
pervised semantic segmentation framework for fine-grained segmenta-
tion in extremely complicated scenarios. Specifically, we first obtain
rich high-level structured semantic concept information from large-scale
vision data in a self-supervised learning manner, and use such informa-
tion as a prior to discover potential semantic categories presented in
target datasets. Secondly, the discovered high-level semantic categories
are mapped to low-level pixel features by calculating the class activate
map (CAM) with respect to certain discovered semantic representation.
Lastly, the obtained CAMs serve as pseudo labels to train the segmenta-
tion module and produce the final semantic segmentation. Experimental
results on multiple semantic segmentation benchmarks show that our
top-down unsupervised segmentation is robust to both object-centric
and scene-centric datasets under different semantic granularity levels,
and outperforms all the current state-of-the-art bottom-up methods. Our
code is available at https://github.com/damo-cv/TransFGU.
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1 Introduction

Given pictures of this world, can a semantic concept be deduced by certain
prior rules, or can it be induced from the massive amount of observations? The
answer to this question leads to different ways to obtain the semantic concept,
and therefore brings different paradigms to the task of unsupervised semantic
segmentation, which aims to obtain the pixel-wise classification as the semantic
concept without any manual-annotated labels.

One way to tackle unsupervised image segmentation is to group low-level
pixels into some semantic groups under the guidance of certain prior knowl-
edge, i.e.the bottom-up manner [10,16,20,21,23,28,34], as shown in Fig. 1. Those
methods often assume pixels in the same semantic object share a similar repre-
sentation in the high-level semantic space. However, there is a large gap between
low-level pixel and high-level semantic embeddings. Two semantically different
objects may be mostly similar in low-level feature space, while the key to distin-
guishing them lies in some small areas reflecting the uniqueness of a semantic
category. e.g., the difference between a horse and a donkey may be found only
on ears and legs. Accurate perception of these slight differences is the key to
generating fine-grained segmentation, which is very hard to obtain by pixel-
level deduction. In contrast, an object that has a large intra-class variance in
appearance, e.g.the different parts of a person (head, arms, body...), may lead
to dissimilar pixel-level features in different parts, which hinder the bottom-up
methods from grouping these dissimilar features as an integrated object in high-
level semantic space, due to the lack of high-level conceptual understanding of
the whole object.

Fig. 1. Bottom-up (left) vs.Top-down (right) frameworks. Currently bottom-up man-
ners group feature under the guidance of certain prior knowledge to form the semantic
concepts (usually coarse), while our top-down manner maps the fine-grained struc-
tural semantic concepts obtained from ImageNet to pixel-level features and generates
fine-grained segmentation.
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To alleviate these problems, this work proposes a top-down approach to
unsupervised semantic segmentation, as shown in Fig. 2. Instead of deducing
high-level semantic concepts from low-level visual features, we start from the
high-level fine-grained semantic knowledge induced from ImageNet. We benefit
from the self-supervised learning method DINO [4] to gain the initial segmenta-
tion property of self-attention maps. The semantic representation obtained from
DINO is more robust to the object appearance variations. Then we leverage the
obtained prior to discover all the potential semantic categories presented in the
target dataset, and group them into the desired number of semantic clusters
according to their semantic similarity. It makes our method flexible to semantic
concepts at different granularity levels. We then project the high-level semantic
information to low-level pixel feature space by Grad-CAM [31,32,40], to gener-
ate fine-grained active maps for various semantic classes. The obtained active
maps serve as pseudo labels for segmentation model training. A bootstrapping
mechanism is employed to iteratively refine the quality of pseudo labels and
gradually improve the final segmentation performance. The proposed method,
named TransFGU, bridges the gap between high-level semantic representation
induced by SSL and low-level pixel space, resulting in fine-grained segmentation
in both object-centric and scene-centric images without any human annotations.

Through experiments on four public benchmarks, i.e.MS-COCO [26], Pas-
calVOC [13], Cityscapes [11], and LIP [14], we show that our method can handle
the cases of both foreground-only segmentation and foreground/background seg-
mentation. Moreover, our method can control the semantic granularity level of
segmentation by adjusting hyper-parameters, which overcome the limitations of
previous methods that they can only produce coarse-level segmentation results.
Our method achieves state-of-the-art results on all the benchmarks, surpassing
all the current bottom-up methods.

In summary, our contributions are as follows: (i) We propose the first top-
down framework for unsupervised semantic segmentation, which directly exploits
the semantic information induced from ImageNet to tackle the fine-grained seg-
mentation in an annotation-free way. (ii) We design an effective mechanism that
successfully transfers the high-level semantic features obtained from SSL into
low-level pixel-wise features to produce high-quality fine-grained segmentation
results. (iii) Experiments show that our proposed method achieves state-of-the-
art on a variety of semantic segmentation benchmarks including MS-COCO,
Pascal-VOC, Cityscapes, and LIP.

2 Related Work

2.1 Self-supervised Representation Learning

Self-supervised representation learning has rapidly gained attention for its
promising ability to represent the feature of semantic concepts without addi-
tional labels. It is also beneficial to many downstream tasks including detection,
segmentation, and tracking. The common paradigm of self-supervised representa-
tion learning is to minimize the feature distance between two views of the same
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object-centric image [3,4,7–9,15,17,24,39]. It allows learning semantic object
concepts purely based on images from ImageNet without any annotations. The
learned feature can perform well with KNN, which indicates the structural-
semantic concepts have been exploited. BYOL [15] shows that representation
learning without a single label can be on par or even better than its supervised
counterpart. DINO [4], a recent work based on the Transformer, shows that the
self-supervised learning method can learn a good representation of structured
semantic category information, which has a nice property of focusing on the area
of foreground objects. While most of them aim to learn the overall representation
from the object-centric image, some others [25,30,35–38] tend to generate pixel-
level dense features, which better benefit the tasks that require dense matching
like segmentation or detection. However, all of these methods tend to learn the
pixel-level correspondence on the category of objects that appear in different
views of an image rather than learning the pixel-level semantic concept, so the
learned representation embedding feature cannot convert to segmentation mask
directly without additional manual labels.

2.2 Unsupervised Segmentation

Most of the current works proposed to tackle unsupervised segmentation start
from the observation of pixel-level features and grouping the pixels into different
semantic groups with various priors rules that are independent of the training
data. [21,23] group the similar pixel extracted from a randomly initialized CNN
in both embedding and spatial space while keeping the diversity of embedding
features. [16,20,28,29] maximize the mutual information between the pixel-level
feature of two views from the same input image to distill the information shared
across the image. PiCIE [10] disentangles features between different semantic
objects by leveraging two simple rules, i.e.invariance to geometric and equiv-
ariance to photometric while transforming two different views of an image and
its feature by two asymmetric augmentation processes. These rules often fail to
tackle the case with complex scenes, where objects of different categories might
share similar appearances and objects of the same category might have a large
intra-class appearance variation. Unlike the bottom-up manner, our method is
based on the top-down pipeline that obtains fine-grained semantic concepts prior
information before performing the segmentation, which is crucial to tackling
these two problems.

Besides the bottom-up methods, several works use intermediate features
as additional cues to guide the semantic feature grouping, including saliency
map [1,2,6,34], super-pixel [21,28], and shape prior [19,22]. MaskContrast [34]
leverages two additional unsupervised saliency models to generate pseudo labels
of the foreground object in each image and train the final segmentation model
with a two-step bootstrapping mechanism, and then cluster all the gathered
foreground masks to form the semantic concept by contrast learning. However,
these methods assume that objects in an image are salient enough, which is not
always true in some complicated scene-based cases and could lead to low-quality
segmentation.
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3 Methods

Given a set of images I = [I1, ..., IN ] ∈ [0, 1]N×3×H×W with total N samples, our
goal is to generate a group of K segmentation probability maps for each image,
denoted as P = [P1, ..., PN ] ∈ [0, 1]N×K×H×W , where K indicates the predefined
number of semantic categories to be segmented in I, and (H,W ) are the height
and width of the image, respectively. To achieve this goal, a semantic prior model
self-supervised trained on ImageNet is introduced to extract the potential top-
level semantic information from the whole set of images I, and the extracted
top-level semantic features are clustering into K groups based on their semantic
similarity, resulting in K semantic concept features. Then, for each Ii ∈ I, a
top-down semantic information mapping pipeline is introduced to generate pixel-
level semantic pseudo label according to K semantic concept features based on
Grad-CAM. An encoder is needed to extract pixel-level features, and a decoder is
required to convert the pixel-level features into Pi corresponding to the generated
semantic pseudo label. In this section, we will first introduce some basics of the
encoder and decoder, then describe the designed top-down pipeline, followed by
a bootstrapping process that helps further refine the results.

Fig. 2. Our proposed top-down pipeline for unsupervised semantic segmentation. The
training samples are first cropped and resized into square patches using sliding windows,
and class features for each cropped patch are extracted by ViT pretrained on DINO.
The obtained class features are clustered into semantic concept representations, which
are mapped to the pixel level to generate the pseudo labels. The quality of pseudo labels
is further bootstrapped by the teacher network, based on which a student network is
trained to refine the semantic knowledge. The teacher network is updated by the learned
student network to produce better pseudo labels for the next round of training.

3.1 Revisiting ViT and Segmenter

Previous works on SSL have shown that ViT [12] models pretrained on Ima-
geNet using methods like DINO [4] can provide surprisingly good properties for
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segmentation tasks due to its explicit semantic information learned during SSL.
Thus, the pre-trained ViT is employed as Encoder(·) in our pipeline, for its
capability of providing high-level semantic priors through the class token, as well
as extracting pixel-level features in image patch tokens. Next, we will introduce
some basic notations and terminologies about ViT for easier reference.

ViT is an attention-based model with L layer attention blocks. Each attention
block at the l-th layer produces an attention map Al ∈ [0, 1](1+hw)×(1+hw) that
can be formulated as:

Al = Softmax(
Ql · KT

l√
d′ ) (1)

where Ql,Kl ∈ R(1+hw)×d′
are the query and key, respectively, which are mapped

and reshaped from the layer input xl, d′ is the dimension of embedding feature
in attention block, and (h,w) is the size of the feature map.

As an Encoder(·), the final outputs of ViT are denoted as class token xcls

and image patch tokens as xpatch. It is worth noting that, ViT pretrained with
DINO is more irreplaceable for generating high-level semantic priors through
class token, however, the model for generating pixel-level features can be substi-
tuted by other networks capable of extracting nice local features. Here we unify
the two networks as the same ViT model for simplicity.

For the decoder which generates segmentation probability maps using the
output of encoder, there are also lots of options while transformer-based methods
are preferable due to their robustness to noises. Segmenter [33] is selected among
them for its simplicity and straightforward interface to take xpatch as input.

Segmenter is a transformer-based segmentation model which consists of mul-
tiple cross-attention layers. It takes xpatch as input, and the output probability
mask is:

Mask(x′, C) =
x′CT

√
d

(2)

where x′ and C ∈ RK×d are the patch embedding and class embedding output
by the final layer in the segmenter, respectively. Mask(x′, C) ∈ Rhw×K is the
downsampled probability maps for K categories, and then it is upsampled to
(H,W ) to obtain the final mask P . This whole process is denoted as Decoder(·)
in the following sections.

3.2 Top-Down Pipeline

To generate semantic mask P , a ViT model obtained by DINO is first used as
a semantic prior model to encode all the potential semantic information in I.
In the real-world application, an image might contain abundant and complex
semantic concepts instead of a simple object, therefore, applying ViT encoder
to the whole image might not be sufficient to attend to all potential semantic
priors. Instead, we propose to apply a sliding window cropping operation to
each image. For every image Ii, nc square patches are generated, each with
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side length β × min(H,W ) where β is a scaling factor taking a series of values.
Patches from all images are put together to form a larger “patch image” set
Ic = [Ic1 , . . . , I

c
N ] with Ici representing the patch set for image Ii. All patches are

resized to (min(H,W )
2 , min(H,W )

2 ) and treated as a whole image before feeding into
the ViT encoder.

Class features and patch features are extracted from Ic, denoted as xc,cls =
[xc,cls

1 , . . . , xc,cls
N ] and xc,patch = [xc,patch

1 , . . . , xc,patch
N ], in which:

(xc,cls
i , xc,patch

i ) = Encoder(Ici ) (3)

here the ViT encoder is served as a semantic prior model, xc,cls can be regarded
as containing all the potential semantic concepts that have appeared in I, xc,patch

is discarded because of its weak semantic prior property. Assuming there are in
total K pre-defined semantic categories, we can obtain a set of semantic feature
S = [S1, . . . , SK ] ∈ RK×d by applying K-means on xc,cls ∈ R(N×nc)×d over all
the (N × nc) features based on Euclidean distance. K can be set as the number
of classes, to generate segmentation results at different desired granularity levels.

The extracted semantic features Sk ∈ S can be seen as a category-wise pseudo
semantic label corresponding to a certain granularity level of semantic. Next,
the Grad-CAM [31] is adopted to visualize the corresponding category-specific
response area to the target pseudo semantic label S. The response heat-map is
treated as a coarse semantic area that locates the target semantic object in the
pixel-level feature space. Furthermore, these coarse semantic areas are treated
as pseudo labels M = [M1, . . . ,MN ], Mi ∈ [0,K]H×W , and a decoder will be
trained based on these pseudo labels.

To be more specific, inspired by [5], we first obtain the class token xcls
i and

patch token xpatch
i of the whole image Ii by ViT encoder:

(xcls
i , xpatch

i ) = Encoder(Ii), (4)

then take attention map from cls token of the last attention block, and take the
feature map while discarding the cls token itself. Denote Acls

L ∈ [0, 1]h×w as the
feature map, gradient is generated on Acls

L w.r.t Sk by maximizing the cosine
similarity between xcls

i and each Sk ∈ S:

min(1 − xcls
i ST

k√
d

). (5)

We take the gradient value of all the patch locations on Acls
L , and add it back to

Acls
L to generate K response maps [M1

i , . . . ,MK
i ] ∈ RK×h×w, then the pseudo

label Mi can be obtained by appling arg max operator to each patch location
(h′, w′) across all the K response maps, where h′ ∈ [0, h], w′ ∈ [0, w], and upsam-
ple to the target size of (H,W ):

Mi = Upsample(arg max
(h′,w′)

(M1
i , . . . ,MK

i )), (6)

Mk
i = Grad-CAM(xcls

i , Sk|Acls
L ) + Acls

L . (7)
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If only the foreground objects need to be segmented in an image, we calculate
the background probability M bg

i based on all the foreground pseudo labels as
follows:

M bg
i = Relu(T bg − max

k∈[0,K]
Mk

i ) (8)

in which T bg is a hyper-parameter that represents the max probability of back-
ground, and is set to 0.1 in our experiments. Mbg

i is then upsampled and con-
catenated with Mi. The decoder can be trained by standard cross-entropy loss
with its output denoted as segmentation probability maps P :

L = CE(P,M). (9)

3.3 Bootstrapping

Training the decoder directly with the initial pseudo labels may lead to segmen-
tation of low quality because the noise level in pseudo labels can be detrimental.
For example, two categories with similar high-level semantic meaning may gen-
erate similar response maps on the same image, thus disturbing the ranking of
K values on the same location of the pseudo labels and further misleading the
learning process. Additionally, the boundary produced by the pseudo labels is
not precise enough for certain semantic objects due to the coarse response area
in response maps generated by Grad-CAM.

We tackle these problems by a bootstrapping mechanism. First, a teacher-
student framework is introduced to refine the pseudo labels progressively. Second,
we introduce a set of loss functions to force the model to learn discriminative
abilities and prevent the model from over-fitting the noise in the pseudo labels.

Teacher-Student Network. In our design, both teacher and student network
have exactly the same architectures as Decoder(·). As shown in Fig. 2, given
an initial pseudo mask M generated by Grad-CAM, its bootstrapped version
M̂ = [M̂1, . . . , M̂N ] can be obtained by aggregating M and the output of the
teacher network prediction P̂ = [P̂1, ..., P̂N ] ∈ [0, 1]N×K×H×W :

P̂i = Teacher(xpatch
i ), (10)

M̂i = Upsample(arg max
(h′,w′)

(M̂1
i , . . . , M̂K

i )), (11)

M̂k
i = 0.5 · (Mk

i + P̂ k
i ), k ∈ [1, . . . , K]. (12)

where P̂ k
i ∈ Rh×w is the k-th probability map in P̂i before upsampled. With

this bootstrapped pseudo labels, the student network is trained with a cross-
entropy loss CE(P, M̂) with P as the output segmentation probability of student
network, i.e.Pi = Student(xpatch

i ).
In the next round, the teacher network is updated with the parameter trained

from the student network, so it can produce a better prediction of P̂ , which fur-
ther improves the bootstrapped pseudo labels M̂ . The student network in the



TransFGU 81

next round is reset to the initial state and trained with the improved M̂ . There-
fore, the quality of bootstrapped pseudo labels and the output of the student
network can be improved progressively as the iteration goes on.

Bootstrapping Loss. A few additional loss functions are further proposed to
provide better guidance for training the decoder based on the pseudo label masks.

First, we observe that even though categories with similar semantic meanings
are difficult to differentiate thus might confuse the training process, categories
with much different semantic meanings are actually easier to identify with high
accuracy. Therefore, in addition to the cross-entropy loss which aligns probability
masks P and the “correct” pseudo labels M̂ , we also introduce a set of “wrong”
pseudo labels M̂ ′ so that its cross-entropy loss with P should be maximized.
Thus a peer loss [27] is defined as below:

Lpeer = CE(P, M̂) − α · CE(P, M̂ ′). (13)

where α is a hyper-parameter, and M̂ ′ is the constructed negative labels by
shuffling the K pseudo labels of M̂ .

Second, it is observed that categories with similar semantic meanings usually
generate similar response values at the same location of the pseudo label masks,
making it hard to distinguish the correct category from the others and further
slow down the training. An uncertainty loss is introduced to diminish such uncer-
tainty. Specifically, this is achieved by maximizing the gap between the largest
and the second largest value at each location of the output probability map P :

Lunc = 1 − 1
hw

∑

(h′,w′)

(p′ − p′′). (14)

in which p′, p′′ are the largest and second largest probability value among the K
probabilities at location (h′, w′).

Third, it is beneficial to keep the representations diversified in the decoder
model to learn more meaningful categories information. This is done by a diver-
sity loss which maximizes the summation of all the pairwise distances between
the class embeddings of K categories, i.e., minimizing their cosine similarities:

Ldiv = 1 +
1

K2

∑ C · CT

√
d

. (15)

where C is the class embedding in the decoder as in Eq. 2.
The final loss is:

L = Lpeer + ω1 · Ldiv + ω2 · Lunc. (16)

in which ω1, ω2 are hyper-parameters to balance between different losses, and
set to 1 and 0.3 in our experiments, respectively.



82 Z. Yin et al.

4 Experiments

4.1 Dataset and Evaluation Metrics

We conduct experiments on four semantic segmentation benchmarks includ-
ing COCO-Stuff, Pascal-VOC, Cityscapes, and LIP, with different definitions
of semantic concepts.

COCO-Stuff. COCO-Stuff is a challenging benchmark with scene-centric
images, which contains 80 things categories and 91 stuff categories. The total
number of training and validation samples is 117,266 and 5,000 images, respec-
tively. Note that the previous works [10,20] only conduct their experiments on
the “curated” data (2175 images total) in which the stuff occupied at least 75%
pixels of an image. We evaluate our method on three settings: 1) COCO-S-27:all
categories in COCO-Stuff merged into 27 superclasses as [10], 2) COCO-S-171:
the original 171 things and stuff categories, and 3) COCO-80: only 80 things
categories without background stuff.

Cityscapes. Cityscapes contain 5,000 images focusing on street scenes, in which
2,975 and 500 images are used for training and validation. All pixels are cate-
gorized into 34 classes. We follow [10] to merge 34 classes into 27 classes after
filtering out the ‘void’ class.

Pascal-VOC. Pascal-VOC contains 1464 images for training and 1,449 for eval-
uation, with 20 classes as foreground objects to be segmented and the rest pixels
as background.

LIP. LIP contains person images cropped from MS-COCO [26]. It has 30,462
training images and 10,000 validation images, with 19 semantic parts defined.
The 19 categories are merged into 16 and 5 coarse categories to evaluate the
ability of our method to handle the semantic concepts of different granularities.
Please refer to supplementary materials for more details.

Evaluation Metric. Following the standard evaluation protocols for unsuper-
vised segmentation used in [10,20,34], we use Hungarian matching algorithm
to align indices between our prediction and the ground-truth label over all
the images in the validation set. Two metrics are reported for comparison,
i.e.Intersection over Union (mIoU) and Pixel Accuracy over all the semantic
categories.

4.2 Implementation Details

Cropping and Evaluation Protocol. The scaling factor β in sliding window
cropping is set to 0.5, 0.4, 0.3, 0.2, and the step size of the sliding window is set
to 1

2 × β × min(H,W ).
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Foreground prior is introduced in the cropping operation, which is defined
as the binarized attention map Ācls

L obtained from Acls
L on the last attention

block by setting the values greater than the mean value of Acls
L as 1 and the rest

as 0. Cropped patches are separated into foreground patches and background
patches. A patch is a foreground patch when it has more than 50% of pixels
belonging to Ācls

L , and a background patch when it contains more than 80% of
pixels that belong to (1 − Ācls

L ). K-Means is executed on these two groups of
patches separately. If a patch is treated as a foreground patch, its probability
in those background categories will have a default value of 0, and a background
patch is treated in a similar way. The separation of foreground and background
patches help generate more accurate semantic clusters and better pseudo labels.

Different cropping protocols are applied to the four datasets, due to their
different properties and requirements. On Cityscapes, foreground prior is not
involved as there is no definition of foreground/background. On LIP, the images
are obtained as bounding boxes around each person without much background
area, so we treat all the areas as foreground. On COCO-80, Pascal-VOC and
LIP, Eq. (8) is used to generate background probability.

Trainning Setting. We use ViT-small 8×8 pre-trained on ImageNet by DINO
[4] as encoder and fix the weight during training, and Segmenter [33] with random
initial weights as the decoder. We pre-compute and save all the initial pseudo
labels and build a pseudo label bank which considerably accelerates the training.
More training details are included in the supplemental materials.

Data Augmentation. A set of data augmentations are utilized, such as color
jittering, horizontal flipping, Gaussian blur, color dropping, and random resized
crop following [4,15]. The cropped image is resized to (H2 , W

2 ) for the following
training. We crop and resize the initial pre-computed pseudo label to (h2 , w

2 ) by
RoI-Align operator [18].

4.3 Main Results

Baseline. We compare our method with PiCIE [10], IIC [20] and MaskContrast
(MC) [34], which can generate segmentation masks without further fine-tuning.
Since IIC and PiCIE cannot distinguish foreground objects from the background,
they can only be applied on COCO-Stuff and Cityscapes. MaskContrast is only
able to deal with the foreground object without background area, so it is only
applied to COCO-80 and Pascal-VOC. None of these methods can actually work
well on LIP which is essentially a task of fine-grained human parsing. Note that
our method can be successfully adapted to all these datasets.
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Table 1. Results on four benchmarks. * indicates the results are evaluated on the
“curated” samples. † denotes PiCIE trained without auxiliary clustering.

Dataset Method mIoU Acc. Dataset Method mIoU Acc.

COCO-S-27* IIC [20] 6.71 21.79 COCO-80 MC [34] 3.73 8.81

PiCIE† [10] 13.84 48.09 TransFGU 12.69 64.31

PiCIE [10] 14.36 49.99 Cityscapes IIC [20] 6.35 47.88

TransFGU 17.47 52.66 PiCIE [10] 12.31 65.50

COCO-S-27 IIC [20] 2.36 21.02 TransFGU 16.83 77.92

PiCIE [10] 11.88 37.20 Pascal-VOC MC [34] 35.00 79.84

TransFGU 16.19 44.52 TransFGU 37.15 83.59

COCO-S-171 IIC [20] 0.64 8.67 LIP-5 TransFGU 25.16 65.76

PiCIE [10] 4.56 24.66 LIP-16 TransFGU 15.49 60.08

TransFGU 11.93 34.32 LIP-19 TransFGU 12.24 42.52

Quantitative Evaluation. The comparison is shown in Table 1. Our method
exceeds all the baseline methods on mIoU and pixel accuracy of all datasets.
Our method has been adapted to different granularity levels in the same dataset,
e.g.27/171 categories on COCO-S and 5/16/19 categories in LIP, to make a fair
comparison with other methods which mainly work on coarser-level categories.
Our method shows a larger margin of performance improvement for the settings
with much finer-grained categories. Besides, it can also be adapted to only seg-
ment foreground objects, i.e.COCO-80, Pascal-VOC, and LIP, demonstrating
its all-around flexibility.

Fair Comparison with Prior Arts. The difference in backbone architec-
ture and the pre-training manner to obtain backbone weights influences the
model performance. For fair comparison, we conduct the following experiments
successively: (1) reproduce IIC with the ResNet-18 backbone fully-supervised
trained on ImageNet to align the amount of training data; (2) reproduce IIC
and PiCIE with ResNet-50 and ViT-S fully-supervised trained on ImageNet
instead of its original ResNet-18 to make backbone parameters comparable with
our method; (3) reproduce IIC, PiCIE and MaskContrast with the ResNet-50
backbone trained by DINO to unify the training manner; (4) reproduce the
PiCIE and MaskContrast with the ViT backbone trained by DINO instead of
ResNet-50 to eliminate the impact of the architecture difference. To obtain the
input feature maps of FPN used in PiCIE, we extract pixel features every three
attention blocks amount 12 layers and resize them to the target size. The results
are shown in Table 2. Our method outperforms all the baseline in each case. Note
that the performance of IIC and PiCIE with backbones trained by SSL manner
becomes inferior to its original fully-supervised version. It might be due to the
feature learned by SSL containing more fine-grained foreground details, which
may distract the bottom-up method to find similar features that belong to the
same category.
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Table 2. Results for the effectiveness of pretrained weight. *, † and ‡ indicates the
weights are trained on ImageNet by fully-supervised, DINO and MoCo, respectively.

Dataset Method mIoU Acc. Dataset Method mIoU Acc.

COCO-S-171 IIC-R18 [20] 0.64 8.67 COCO-S-171 PiCIE-R50† [10] 2.30 13.50

IIC-R18* [20] 1.22 13.92 PiCIE-ViT† [10] 3.02 18.45

IIC-R50* [20] 2.15 15.72 TransFGU† 11.93 34.32

IIC-R50† [20] 0.98 11.89 Pascal-VOC MC-R50‡ [34] 35.00 79.84

PiCIE-R18* [10] 4.56 24.66 MC-R50† [34] 28.72 78.72

PiCIE-R50* [10] 5.61 29.79 MC-ViT† [34] 31.24 79.18

PiCIE-ViT* [10] 6.82 31.17 TransFGU† 37.15 83.59

Qualitative Evaluation. Some qualitative comparisons on different bench-
marks are shown in Fig. 3. Our results can show richer semantic information
in both scene/object-centric images on all datasets. We obtain much detailed
segmentation on foreground objects, especially in complicated scenarios.

Image IIC PiCIE Ours GT Image MC Ours GT

Fig. 3. Qualitative comparison on COCO-S-171 (left) and Pascal-VOC (right).

4.4 Ablation Studies

The Bootstrapping Mechanism. Table 3 compares results on MS-COCO
of directly using initial pseudo labels (“initial”), training the student network
once on the initial pseudo labels without the bootstrapping (“trained”), and the
proposed bootstrapping mechanism (“bootstrapped”). Student network trained
once on the initial pseudo labels can achieve an improved mIoU over the origi-
nal pseudo labels, indicating that it can effectively learn meaningful information
from the noisy pseudo label. The performance is further improved as more iter-
ations of the teacher-student bootstrapping are introduced.
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Table 3. Results for the effectiveness of boot-
strap mechanism on MS-COCO with various
semantic levels.

Dataset Initial Trained Bootstrapped

COCO-S-27 8.95 13.19 16.19

COCO-S-171 5.05 8.66 11.93

COCO-80 4.23 8.28 12.69

Table 4. Results for the effective-
ness of encoder and decoder on
COCO-S-171.

Encoder Decoder mIoU Acc.

None None 5.05 17.33

R50+FPN Segmenter 9.21 26.17

ViT+FPN Classifier 7.96 24.17

R50+FPN Classifier 8.33 25.35

Table 5. Results for different losses on COCO-S-171 and Pascal-VOC.

Dataset Loss mIoU Acc. Dataset Loss mIoU Acc.

CE Peer unc div CE Peer unc div

COCO-S-171 � 10.49 29.72 Pascal-VOC � 34.24 79.85

� 10.54 30.46 � 35.08 80.92

� � 11.24 33.03 � � 36.46 82.36

� � 10.96 32.45 � � 35.97 82.03

� � � 11.93 34.32 � � � 37.15 83.59

The Effectiveness of Encoder and Decoder. To evaluate the effectiveness of
the encoder and decoder used in our top-down pipeline, we conduct three more
experiments that gradually replace the encoder and decoder with the ones used
in PiCIE [10]. First, we change the encoder from ViT to ResNet-50 followed by
an FPN model and keep the decoder as Segmenter. Second, we keep the encoder
as ViT and change the decoder from Segmenter to a single layer convolution
classifier to map the output dimension of the last attention block from d to
K. Last, the encoder and decoder are replaced by ResNet-50 and convolution
classifier, respectively. In all the settings, the encoders (ViT, ResNet-50) are
trained on the ImageNet by DINO, and the decoders (Segmenter, convolution
classifier) are randomly initialized. The results are shown in Table 4. As one can
see, in all the settings, the performance can be improved from the initial pseudo
label (encoder and decoder are all set to ‘None’). Moreover, it’s important to
use fully-transformer architecture in our pipeline due to its robustness to noises.

The Bootstrapping Loss. We compare different combinations of using the
original CE loss in Eq. (9), peer loss in Eq. (13), uncertainty loss in Eq. (14), and
diversity loss in Eq. (15) in Table 5. Each of the proposed three bootstrapping
losses can effectively improve the performance of the original CE loss, and their
combination achieves the best performance.

5 Conclusion

We propose the first top-down framework for unsupervised semantic segmen-
tation, which shows the importance of high-level semantic information in this
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task. The semantic prior information is learned from large-scale visual data in
a self-supervised manner, and then mapped to the pixel-level feature space. By
carefully designing the mapping process and the unsupervised training mecha-
nism, we obtain fine-grained segmentation for both foreground and background.
Our design also enables the flexible control of granularity levels of the semantic
categories, making it possible to generate semantic segmentation results for var-
ious datasets with different requirements. The fully unsupervised manner and
the flexibility make our method much more practical in real applications.
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