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Abstract. Panoptic image segmentation is the computer vision task
of finding groups of pixels in an image and assigning semantic classes
and object instance identifiers to them. Research in image segmenta-
tion has become increasingly popular due to its critical applications in
robotics and autonomous driving. The research community thereby relies
on publicly available benchmark dataset to advance the state-of-the-art
in computer vision. Due to the high costs of densely labeling the images,
however, there is a shortage of publicly available ground truth labels
that are suitable for panoptic segmentation. The high labeling costs also
make it challenging to extend existing datasets to the video domain and
to multi-camera setups. We therefore present the Waymo Open Dataset:
Panoramic Video Panoptic Segmentation, a large-scale dataset that offers
high-quality panoptic segmentation labels for autonomous driving. We
generate our dataset using the publicly available Waymo Open Dataset
(WOD), leveraging the diverse set of camera images. Our labels are
consistent over time for video processing and consistent across multiple
cameras mounted on the vehicles for full panoramic scene understanding.
Specifically, we offer labels for 28 semantic categories and 2,860 temporal
sequences that were captured by five cameras mounted on autonomous
vehicles driving in three different geographical locations, leading to a
total of 100k labeled camera images. To the best of our knowledge, this
makes our dataset an order of magnitude larger than existing datasets
that offer video panoptic segmentation labels. We further propose a new
benchmark for Panoramic Video Panoptic Segmentation and establish
a number of strong baselines based on the DeepLab family of models.
We have made the benchmark and the code publicly available, which we
hope will facilitate future research on holistic scene understanding. Our
dataset can be found at: waymo.com/open.
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1 Introduction

Semantic visual scene understanding has been studied extensively for decades
in the field of computer vision [17,37,61,68,77,84]. Researchers have tackled
tasks of varying difficulty, ranging from segmenting distinct objects in individ-
ual camera images [9,24,26,44] to tracking and segmenting multiple objects
in videos [14,69,75]. Robotic applications, such as autonomous driving, have
led to new challenges and opportunities for semantic visual scene understand-
ing [12,21].

Modern autonomous vehicles tend to be equipped with multiple cameras and
LiDAR scanners. The cameras provide rich semantic information about the scene,
whereas the LiDAR scanners capture sparse, but geometrically highly accurate
information. Autonomous vehicles need to be able to fuse and interpret the data
stream from multiple sensors to build and maintain over time an accurate and
consistent estimate of the world. One challenge when tracking and segmenting
multiple objects is that objects of interest may leave the field of view of a camera
to enter the field of view of another camera across consecutive video frames.

In this paper, we study the new task of video panoptic segmentation [32,35]
for autonomous vehicles equipped with multiple cameras. See Fig. 1 for an illus-
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Fig. 1. We provide panoptic segmentation labels for 100k camera images of the Waymo
Open Dataset. Our dataset is grouped into 2,860 temporal sequences captured by
five cameras, mounted on autonomous vehicles driving in three geographical locations.
Instance segmentation labels are consistent both across cameras and over time. Our
dataset offers diversity in terms of object classes, locations, weather, and time of day.
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tration. Panoptic segmentation enables autonomous vehicles to reason about
their surroundings in terms of semantic and geometry properties, such as fine-
grained object contours. There are also important offboard applications, includ-
ing auto-labeling [53,79,87] and camera sensor simulation [10,42,46]. On the
one hand, most existing panoptic segmentation datasets [12,49] provide labels
for individual camera images. This makes it difficult to train models that fuse
information from multiple camera images, either temporally or by leveraging a
multi-camera setup. On the other hand, datasets that provide panoptic segmen-
tation labels for video data [32,74] tend to be scarce and much smaller than
datasets for object detection and tracking for autonomous driving [21,64].

To bridge this gap, we present a new benchmark dataset for panoptic seg-
mentation based on the popular Waymo Open Dataset (WOD). Specifically,
we provide panoptic segmentation labels for video data that are consistent
across five cameras mounted on the vehicles. We further present a benchmark
that captures the task of multi-camera panoptic segmentation in video data for
autonomous driving. Overall, we provide panoptic segmentation labels for 100k
camera images, which we group into training (70%), validation (10%) and test
(20%) sets. The training set consists of 2,800 sequences, each of which comprises
labels for five cameras spanning 1.2 s and five temporal frames. In contrast, our
validation and test sets consist of 60 longer sequences, in order to facilitate the
evaluation of long-term tracking. Each validation and test sequence consists of
100 temporal frames, spanning the full 20 s of a scene, while also providing labels
across all five cameras.

We extend the Segmentation and Tracking Quality (STQ) metric [74] to
support our multi-camera setup by computing a weight for pixels depending on
the cameras they correspond to. We also extend a state-of-the-art video panoptic
segmentation method, ViP-DeepLab [54], to our multi-camera setup by training
separate models on each camera view and by training a model on a panorama
generated from all views. We present an extensive experimental evaluation on
the proposed dataset and metric.

We have open-sourced our full dataset to enhance video panoptic segmen-
tation research, while also opening up the field of panoramic video panoptic
segmentation.

2 Related Work

Panoptic Segmentation. The task of panoptic segmentation [35] aims to unify
semantic segmentation [26] and instance segmentation [24], requiring assigning
a class label and instance ID to all pixels in an image. Modern panoptic seg-
mentation systems could be roughly categorized into top-down (or proposal-
based) [34,38,43,52,72,76] and bottom-up (or proposal-free) [11,20,70,71,83]
approaches. Our adopted baseline methods belong to the bottom-up category.

Video Panoptic Segmentation. Extending panoptic segmentation to the
video domain, Video Panoptic Segmentation (VPS) [32] requires generating the
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instance tracking IDs (i.e., temporally consistent instance IDs) along with panop-
tic segmentation results across video frames. Current VPS datasets are small
scale in terms of semantic classes and sizes. Specifically, Cityscapes-VPS [32]
sparsely annotates (every five frame) Cityscapes [12] video sequences, resulting
in only 3,000 frames with 19 semantic classes for training and testing. Recently,
STEP [74] extends KITTI-MOTS [21,69] and MOTS-Challenge [14,69] for VPS.
However, their annotated datasets are still small-scale (18K annotated frames
with 19 semantic classes for KITTI-STEP, and 2K frames with 8 classes for
MOTChallenge-STEP), and the video sequences are only captured by a single
front-view camera. On the other hand, our annotated dataset presents the first
large-scale VPS annotations and extends to the multi-camera scenario.

Segmentation Benchmarks. There are other popular video segmentation
benchmarks existing in the literature, e.g., VSPW [47] for video semantic seg-
mentation, while MOTS [69] and Youtube-VIS [82] for video instance segmenta-
tion. Our benchmark is also related to urban scene understanding, where typical
benchmarks include [2,4–6,12,21,22,28,39–41,49,64,81,85,86,88]. Our work is
most related to WildPASS [81], WildPPS [30] and UP-Drive [50], which also
aim to endow machines with large field-of-view perception. However, building
on top of the large-scale Waymo Open Dataset [64], our benchmark provides
much more high-quality annotated video sequences.

Multi-Camera Multi-Object Tracking. Consistently tracking objects across
multiple cameras, multi-camera multi-object tracking [1,3,13,15,19,27,56,58]
has been a popular research topic in the computer vision community. Typical
benchmarks [7,18,23,36,55,65,78] only track a single class (e.g., people or vehi-
cles) with bounding boxes, while our proposed benchmark demands for pixel-
level tracking and segmentation for multiple classes.

Panoramic Semantic Segmentation. Panoramic semantic segmentation pro-
vides surround-view perception [48,62,66,80,81,89], but limited to semantic seg-
mentation without temporal and instance-level understanding. Our work is sim-
ilar, but additionally tackles video panoptic segmentation. Recently, [51,57]
predict bird’s-eye view semantic segmentation using multi-camera inputs.

Table 1. Dataset comparison. Our WOD:PVPS is a new large-scale panoramic video
panoptic segmentation dataset. † indicates panoramas.

Dataset statistics WOD:PVPS (ours) WildPASS [81] WildPPS [30] Cityscapes-VPS [32] KITTI-STEP [74] MOT-STEP [74]

# sequences 2860 - - 500 50 4

# images 100,000 500† 40† 3,000 19,103 2,075

# tracking classes 8 - - 8 2 1

# semantic classes 28 8 4 19 19 7

panoramic ✓ ✓ ✓ ✗ ✗ ✗

panoptic ✓ ✗ ✓ ✓ ✓ ✓

video panoptic ✓ ✗ ✗ ✓ ✓ ✓
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3 WOD:PVPS Dataset

In this section, we first recap the existing Waymo Open Dataset (WOD) [64], one
of the largest and most diverse multi-sensor datasets in the autonomous driving
domain. We leverage the existing data that comes with coarse-level annotations
(e.g., 2D and 3D bounding boxes) as the foundation, and subsample images for
our dataset. We then provide an overview of our WOD:PVPS dataset, includ-
ing panorama generation, statistics of the semantic classes, and temporal frame
sampling. Finally, we explain in details our hybrid scheme to address the chal-
lenges in multi-camera and video labeling. We obtain consistent instance IDs
across temporal frames and cameras by associating the panoptic labels from
each individual image with the existing box-level annotations.

3.1 Dataset Overview

The Waymo Open Dataset contains 1,150 scenes, each consisting of 20 s of data
captured 10 Hz (i.e., 10 frames per second, and thus 200 frames per scene). Each
data frame in the dataset includes 3D point clouds from the LiDAR devices,
images from five cameras (positioned at Front, Front-Left, Front-Right, Side-
Left, and Side-Right), and ground truth 3D and 2D bounding boxes annotated
by humans in the LiDAR point clouds and camera images, respectively. Each
bounding box contains an ID that is unique to that object across the entirety of
each scene. For the LiDAR data, this allows for tracking in the whole scene. For
the camera data, these IDs are consistent within each camera’s images only.

Built on top of the WOD, Our WOD:PVPS dataset consists of 100,000 images
with panoptic segmentation labels using a prescribed train, validation, and test
set split, subsampled from the existing 1.15 million images. In Table 1, we com-
pare our proposed WOD:PVPS dataset with the public datasets for video panop-
tic segmentation. Our dataset is the only one that provides panoptic segmen-
tation annotations that are consistent both across multiple cameras and across
time. Furthermore, our dataset is much larger both in terms of number of frames
and number of semantic classes than existing datasets [32,74,81].

Equirectangular Panorama. We reconstruct the equirectangular panorama
(220◦ coverage from five cameras) by stitching each individual camera images as
an alternative input format to our dataset. Specifically, we first use the extrin-
sics and intrinsics from the five cameras provided by WOD to unproject each
pixel coordinates to the 3D space. We then set a virtual camera [63] located at
the geometric mean of all five camera centers and compute the pixel colors by
equirectangular projection from the 3D space with bilinear sampling. For pix-
els correspond to multiple camera views, we compute the weights based on the
distance of each pixel in the panorama to each of the camera views’ boundaries.
For panoptic labels, we compute labels in each camera view given the camera
parameters of five cameras and the virtual camera using the nearest sampling.
Then we use the method in Qiao et al. [54] to stitch the panorama labels to main-
tain the view consistency. Finally, we fused the five panorama labels together
based on the correspondences and the distances to the camera view’s boundaries.
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Fig. 2. Histogram of the 28 semantic categories in our dataset in terms of their pixel
distributions. The vertical axis denotes the number of pixels for each class in log scale.
We provide instance IDs for classes marked with diamonds.

Fig. 3. Super-class distributions for each camera. Each camera sees a different distri-
bution of classes, due to their fixed positions and different field-of-views.

There are more sophisticated methods [60,67] that leverage cross-frame infor-
mation and the geometry captured from LiDAR sensors to potentially improve
panorama generation. We leave this as an open research topic in the future.

Semantic Class Distribution. In total, our dataset contains 28 semantic cat-
egories, outlined with their frequency in pixels in Fig. 2. In addition, we provide
instance IDs for most of the classes under the vehicle and human super-classes,
as they are major dynamic categories in the autonomous driving space. We also
outline the pixel distribution for each camera view in Fig. 3, where we see notable
differences in the distributions in each camera. For example, the front camera
covers more of flat (e.g., road surfaces) and sky pixels than the rest of the
cameras, while the side left camera covers more vehicle pixels due to the ego-
vehicle driving on the right hand side of the road. This analysis is important as
machine learning models trained on the images captured by a single camera from
the existing datasets may not necessarily generalize to the other cameras due to
large domain gaps across different cameras. In contrast, our proposed task has
an emphasis on the holistic scene understanding, which grants our WOD:PVPS
dataset unique value to the research community.

Temporal Frame Sampling for Human Annotations. To maximize the
diversity of the images on the training set, we subsample sparsely from each
scene, labeling chunks of five-frame sequences from all the cameras. We start by
randomly selecting 700 out of the 798 scenes. For each scene, which typically
has 200 frames, we annotate four sets of five-frame sequences, starting at frame
indices {25, 50, 125, 150} (i.e., we pick 25th, 50th, 125th, and 150th frames as the
first frame of each five-frame sequence for annotation). For each set, we further
select frames with offsets {0, 4, 6, 8, 12} w.r.t.the first frame for annotations. For
example, the first set of five-frame sequences will contain frames with indices
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{25, 29, 31, 33, 37}. Our sparse sampling strategy facilitates a variety of different
sequence lengths, allowing users to train on frame pairs with time difference
as small as two frames (0.2 s) and as large as 12 frames (1.2 s). As a result,
our training set contains groups of five temporal frames across all five cameras,
yielding 2,800 sequences of 25 images (5 temporal frames × 5 cameras), or 70,000
images in total. Finally, we provide the associations between each instance ID
and the corresponding 3D LiDAR bounding box, allowing us to compute very
long associations (up to 13.7 s between all four sequences), if an object persists
across multiple sequences in the same scene.

For the validation and test sets, we aim to enable the testing of long-term
consistency across cameras and frames. We therefore densely sample frames 5 Hz
from chunks of 100 frames across all cameras (i.e., every other two frames are
sampled in the 200 frame sequence). We select 20 and 40 scenes for validation and
test sets by maintaining diversity in the location, density of object, and time of
day distributions of WOD. In contrast to the training set, for each scene selected
from the validation and test tests, we densely subsample the scenes for these
splits by labeling every other frame, resulting in sequences with 100 temporal
frames across all five cameras. In the end, our validation set contains annotations
for 20 sequences of 500 images (100 temporal frames × 5 cameras), and our
test set consists of 40 sequences of 500 images (or totally 10,000 and 20,000
annotations for validation and test sets, respectively). The test set annotations
will not be made publicly available, but instead we will prepare a test server to
evaluate the held-out test set, once the dataset is released.

3.2 Associating Instance IDs Across Cameras and Frames

In constructing the panoramic video panoptic segmentation dataset, ensuring the
annotations have consistent instance IDs across cameras and temporal frames
is one of the major challenges. Manual labeling is a straight-forward option,
but is time-consuming and expensive at large scales. In addition, it is difficult to
develop an effective labeling interface that allows human annotators to iteratively
refine instance labels across cameras and temporary frames.

We instead assigned human annotators to label each camera image for panop-
tic segmentation separately and employed a hybrid scheme that leverages the
existing coarse-level annotations in WOD. The coarse-level annotations include
(i) 3D bounding boxes with corresponding IDs that are consistent across all
frames and cameras; and (ii) 2D bounding boxes with IDs that are consistent
across temporal frames, but annotated independently for each camera. Asso-
ciations were then computed between each instance and its corresponding 3D
LiDAR boxes and 2D camera boxes. Instances determined to correspond to the
same object are then mapped to the same ID in all frames across cameras. A
sample sequence from this process can be found in Fig. 4.

For a given frame with instance labels, 3D point clouds, and 3D bounding
boxes, we associate instances with boxes by filtering the LiDAR points within
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Fig. 4. Labeling and Association Overview. Human annotators first label each camera
image for panoptic segmentation separately (step 1). LiDAR points within each ground
truth 3D bounding box are then projected to each image, and associate with the
single frame instance labels (step 2). For far-range instances without corresponding
3D bounding boxes, we associate the single frame instance labels over time using the
ground truth 2D bounding boxes within each camera (step 3). New associations are
highlighted in the zoomed-in views at the bottom.

each box, and projecting them onto the image. Association scores are then com-
puted using IoU between the convex hull of the projected LiDAR points and each
instance label. Bipartite matching is then applied to match each projected box
with an instance label. For 3D driving scenes, points inside the bounding box
almost entirely correspond to the instances inside of them, and so these projected
LiDAR points have a high overlap with their corresponding instance masks in
the image. Our label association step is related to the prior work [29,40], but,
our association leverages the ground-truth labeled 3D boxes and only transfers
instance IDs rather than fine-grained per-pixel labels.

There are, however, a small number of instances without corresponding
LiDAR ground truth boxes due to occlusions, rolling shutter artifacts, and the
limited range of the provided LiDAR scans (75 m). We apply an additional
matching step by associating the 2D bounding boxes with our instance labels.
First, we score matches between 2D boxes and instances by computing the IoU
between each 2D box and the tightly-fitting bounding boxes around each instance
mask, and then compute associations with bipartite matching.

For boxes with existing 3D associations, we extend these tracks by propa-
gating the existing ID to all other instances that match with the same 2D box.
This resolves cases where only a object track misses 3D associations in a few
frames. Then, we assign the remaining boxes without any matches to the ID
of their corresponding 2D box, if any. Finally, to capture any additional cross-
camera associations, we project all of the camera views onto the panorama, and
associate instances which overlap in this joint representation.

In order to identify any instances that are still not associated with any ground
truth boxes after these steps, we provide an additional mask for these instance
pixels indicating that they are not tracked, similar to the crowd mask used in
single frame instance segmentation labels [12].
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4 Benchmark and Evaluation Metrics

In this section, we first describe the task of Panoramic Video Panoptic Segmen-
tation (PVPS). Then we review the evaluation metrics used in the literature,
and propose a new metric designed for PVPS with an emphasis on consistent
multi-object tracking and segmentation across multiple cameras.

4.1 Problem Definition

We represent a multi-camera video sequence with T frames and M independent
camera views as {I1:Ti }Mi=1, where Iti is the i-th camera view captured at the
t-th time step in the video sequence. Along with the multi-view representation
of the full scene, we define the panorama at t-th time step as Itpano. In the
task of Panoramic Video Panoptic Segmentation (PVPS), we require a mapping
f of every pixel (x, y, t, i) in the multi-camera video sequence to a semantic
category c ∈ C and an instance ID z consistent across camera views and temporal
frames. Here, (x, y, t, i) indicates the spatial coordinate (x, y) of the i-th camera
view captured at the t-th time step, and C is the set of semantic categories.
Accordingly, we define the mappings fid and fsem for a particular instance ID
z and semantic category c in Eq. (1) and Eq. (2), respectively. The mapping
functions are the building blocks of our proposed metric introduced in Sect. 4.2.

fid(z) = {(x, y, i, t)|f(x, y, i, t) = (c, z), c ∈ C}, (1)
fsem(c) = {(x, y, i, t)|f(x, y, i, t) = (c, ∗), c ∈ C}. (2)

Compared to the existing tasks including Video Panoptic Segmentation
(VPS) and Panoramic Semantic Segmentation, the proposed task is more chal-
lenging in the following aspects. First, each individual camera has its own unique
viewpoint and field-of-view such that the semantic class statistics are differ-
ent across cameras (e.g., see Fig. 3). This leads to a large domain gap between
videos captured with different cameras. Second, the instance ID prediction, with
the long-term consistency across both time and cameras, requires holistic scene
understanding.

4.2 Evaluation Metrics

In this subsection, we overview the existing Video Panoptic Segmentation (VPS)
metric: Segmentation and Tracking Quality (STQ) [74], which we extend to
evaluate the Panoramic Video Panoptic Segmentation (PVPS) task.

VPS Metric. We use f and g to indicate the prediction and ground-truth
mapping, respectively. We define the true positive associations (TPA) [45] of a
specific instance as TPA(zf , zg) = |fid(zf ) ∩ gid(zg)|, where zf is the predicted
instance, zg ∈ G is the ground-truth instance, and G is the set containing all
unique ground-truth instances across cameras and temporal frames. Similarly,
false negative associations (FNA) and false positive associations (FPA) can be
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Side Left Front Left Front Front Right Side Right

Fig. 5. Visualization of the weights tensor for all cameras. Pixels in the blue region
have weights 0.5 during evaluation, as they are covered by two cameras. (Color figure
online)

defined to compute the Intersection over Union (IoUid) for evaluating tracking
quality. Formally, STQ is defined as follows.

STQ = (AQ × SQ)
1
2 , (3)

AQ =
1

|G|
∑

zg∈G

1
|gid(zg)|

∑

zf ,|zf∩zg|�=∅
TPA(zf , zg) × IoUid(zf , zg),

SQ =
1

|C|
∑

c∈C

fsem(c) ∩ gsem(c)
fsem(c) ∪ gsem(c)

.

As defined in Eq (3), STQ fairly balances segmentation and tracking perfor-
mance, and is suitable for evaluating video sequences of arbitrary length. The
Association Quality (AQ) measures the association quality for tracking classes,
while the Segmentation Quality (SQ) measures the segmentation quality for
semantic classes. Specifically, AQ involves the IoUid computation for predicted
instance IDs (and further weighted by true positive associations to encourage
long-term tracking [74]), while SQ is the typical semantic segmentation met-
ric [16] (i.e., mean IoUsem for predicted semantic classes).

PVPS Metric. We propose to extend the metric STQ [74] for Panoramic Video
Panoptic Segmentation (PVPS). However, näıvely adopting STQ for the multi-
camera scenario results in a potential issue, where pixels in the overlapping
regions covered by multiple cameras will be counted multiple times. Instead, we
employ a simple and effective solution by exploiting the pixel-centric property
of STQ. In particular, we weight each pixel prediction w.r.t.its coverage by the
number of cameras, as determined by the mapping between the camera images
and the panorama image. For example, if a pixel is covered by N cameras (in our
dataset, N = 2), its prediction will contribute 1/N when computing AQ, and
SQ. We name the resulting metrics as weighted STQ (wSTQ), since each pixel
prediction takes a different weight depending on its coverage by the number of
cameras. In Fig. 5, we visualize the weights for an example of five-camera images.

PS Metric. We also briefly review the metric PQ (panoptic quality) [35] for
evaluating image Panoptic Segmentation (PS), since we will build image-level
baselines purely trained with image panoptic annotations.

For a particular semantic class c, the sets of true positives (TPc), false pos-
itives (FPc), and false negatives (FNc) are formed by matching predictions zf
to the ground-truth masks zg based on the IoU scores. A minimal threshold of
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greater than 0.5 IoU is chosen to guarantee unique matching. Formally,

PQc =

∑
(zf ,zg)∈TPc

IoU(zf , zg)

|TPc| + 1
2 |FPc| + 1

2 |FNc|
, (4)

where the final PQ is then obtained by averaging PQc over semantic classes.

5 Experimental Results

In this section, we introduce our PVPS baselines, which exploit the property
of multi-camera images by taking as input either individual camera views or
panorama images (generated from all camera views). We then provide extensive
experiments on the proposed dataset and metric.

5.1 ViP-DeepLab Extensions as PVPS Baselines

To tackle the new challenging PVPS task, we extend the state-of-art video panop-
tic segmentation method, ViP-Deeplab [54], to panoramic views.

Baseline Overview. For completeness, we first briefly review ViP-DeepLab [54].
ViP-DeepLab extends the state-of-art image panoptic segmentation model,
Panoptic-DeepLab [11], to the video domain. Panoptic-DeepLab employs two sep-
arate prediction branches for semantic segmentation [9] and instance segmenta-
tion [31], respectively. Both segmentation results are then merged [83] to form the
final panoptic segmentation result. To perform video panoptic segmentation, ViP-
DeepLab adopts a two-frame image panoptic segmentation framework. Specifi-
cally, during training, ViP-DeepLab takes a pair of image frames as input and
their panoptic segmentation ground-truths as training target. During inference,
ViP-DeepLab performs two-frame image panoptic predictions at each time step,
and continues the inference process for every two consecutive frames (i.e., with one
overlapping frame at the next time step) in a video sequence. The predictions in
the overlapping frames are “stitched” together by propagating instance IDs based
on mask IoU between region pairs (i.e., if two masks have high IoU overlap, they
will be re-assigned with the same instance ID), and thus temporally consistent IDs
are obtained (see Fig. 4 of Qiao et al. [54] for an illustration). We refer this post-
processing as “panoptic stitching over time”.

Baseline Extension for PVPS. We explore several ViP-DeepLab extensions
for PVPS, which takes as input individual camera views or panorama images
(generated from all camera views). The input types could be different during
training and evaluation. Specifically, we define three training schemes: View,
Pano, and Ensemble-View. The View scheme refers to the case where ViP-
DeepLab is trained with images from all camera views, while Pano means the
model is trained with full panorama images. The Ensemble-View scheme refers to
the case where we have five camera-specific ViP-DeepLab models, each of which
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Fig. 6. We experiment with two evaluation schemes: (a) View and (b) Pano. The View
evaluation scheme takes individual camera views as input and generates their panoptic
predictions, which are then “stitched over cameras” to obtain consistent instance IDs
between cameras. The Pano evaluation scheme takes as panorama images as input and
generates panoramic panoptic predictions, which are then reprojected back to each
camera for evaluation.

is trained and evaluated on their own camera images. We also have two evaluation
schemes: View and Pano. The View scheme refers to the case where the trained
model is fed with images from individual camera views and generates the cor-
responding panoptic predictions for each view. However, the predicted instance
IDs are not consistent between cameras, since the predictions are made indepen-
dently for each view. To generate consistent instance IDs between cameras, we
propose a similar method to “panoptic stitching over time”: if two masks have
high IoU overlap in the overlapping regions between two cameras’ field-of-view,
we re-assign the same instance ID for them, resulting in the “panoptic stitch-
ing over cameras” post-processing method. For the Pano evaluation scheme, the
model is fed with panorama images and generates panoramic panoptic predic-
tions. We then re-project panoramic panoptic predictions onto each camera for
evaluation. Note that, for the Pano evaluation scheme, the instance IDs are con-
sistent between cameras by nature. We visualize the evaluation schemes in Fig. 6.

Implementation Details. We build our image-based and video-based baselines
on top of Panoptic-DeepLab [11] and ViP-DeepLab [54], respectively, using the
official code-base [73]. The training strategy follows Panoptic-DeepLab and ViP-
DeepLab. Specifically, the models are trained with 32 TPU cores for 60k steps,
batch size 32, Adam [33] optimizer and a poly schedule learning rate of 2.5×10−4.
We use an ImageNet-1K-pretrained [59] ResNet-50 [25] with stride 16 as the
backbone (using atrous convolution [8]). For image-based methods, we use the
crop size 1281 × 1921 during training, while, during inference, we use the whole
image (or panorama). We use a similar strategy for the video-based methods,
but we use a ResNet-50 backbone with stride 32 and crop size 641 × 961 due to
memory constraints.
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Fig. 7. Comparison of qualitative results from our baseline ViP-DeepLab [54] mod-
els over different time intervals. Results show models trained on single images with
panoptic stitching over cameras, and trained directly on panorama images. Our base-
line models show strong performance for the majority of the scene, although tracking
small/distant objects and crowded scenes remains challenging.

5.2 Qualitative Evaluation

In Fig. 7, we provide results from our two ViP-DeepLab baselines, both trained
and evaluated on single images and on panorama images (i.e., two models using
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View and Pano schemes, respectively, for both training and evaluation), over
two (non-adjacent) temporal frames. As shown in the figure, the baseline mod-
els accurately track objects in very dense scenes. In addition, there are some
qualitative benefits provided by the panorama model in these examples. In par-
ticular, the single view model has an inconsistent prediction on the crosswalk
in the left and right images for the single view model, but the panorama model
attains the full context of the scene and avoids this mistake. Further, the single
view models fail to track the car crossing the front right and side right cameras
at t0, but the panorama is again able to track this object correctly.

5.3 Baseline Comparisons

Video-Based Baselines. In Table 2(a), we provide video-based baseline com-
parisons using ViP-DeepLab [54], evaluated by the proposed weighted STQ
(wSTQ). We compare different training and evaluation schemes. When both
evaluated with View scheme, training with View scheme performs better than
training with Ensemble-View by 0.86% wSTQ. That is, training a single model
with all the camera views performs better than training five camera-specific mod-
els with its own camera views. Also, when training with View scheme, using the
Pano evaluation scheme degrades the performance by 2.91% wSTQ. When train-
ing with Pano scheme, using View scheme is better than Pano scheme for evalu-
ation. Due to memory limits, we use a smaller crop size 641 × 961 of panorama
images udring training (from the original resolution 1000 × 5875), which makes
the training and evaluation settings inconsistent. However, the Pano scheme is
still valuable, as we observed that the Pano scheme provides more consistent
results for large objects that span across multiple cameras. The current best
setting is trained and evaluated with the View scheme, reaching 17.78% wSTQ.
We observe that our dataset is very challenging in terms of both tracking and
segmentation, since our best wAQ is only 8.21% and best wSQ is 39.78%. In sum-
mary, two major factors contributed to the low wAQ on our datasets, namely, the
scene complexity (e.g., number of objects) and the failure modes of our baselines
(see the supplementary doc).

Image-Based Baselines. In Table 2(b), we provide image-based baseline com-
parisons using Panoptic-DeepLab [11], evaluated by image panoptic segmenta-
tion metric PQ [35] and semantic segmentation metric mIoU [16]. Basically, we
observe the same trend of image-based baselines and video-based baselines.

5.4 Ablation Studies

Transferability of Models Between Viewpoints. We measure the ability to
transfer models between viewpoints. As shown in Table 3, we have the following
observations: First, all models, even trained on left side views, perform better
on right side views. This phenomenon is due to the ego-vehicle driving on the
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Table 2. Quantitative evaluation: the baselines can take different types of inputs: View:
individual camera views; Pano: panoramas; Ensemble-View: camera-specific views.
Results include (a) video-baseline using ViP-DeepLab, measured by wSTQ; and (b)
image-baseline using Panoptic-DeepLab, measured by PQ and mIoU.

(a) Video-baseline Comparison

Training Scheme Eval Scheme wSTQ wAQ wSQ

Ensemble-View View 16.92 7.61 37.33

View View 17.78 8.21 38.46

View Pano 14.87 6.13 36.04

Pano View 17.56 8.11 38.04

Pano Pano 15.72 6.22 39.78

(b) Image-baseline Comparison

Training Scheme Eval Scheme PQ mIoU

Ensemble-View View 35.70 48.15

View View 40.00 53.64

View Pano 33.65 50.61

Pano View 38.93 51.65

Pano Pano 36.32 52.19

Table 3. View transferability on our video-based baselines, measured by wSTQ. We
evaluate models (1st column) trained on a specific view w.r.t.other camera views. The
last row, MultiCamera, refers to the model trained with all camera views (i.e., training
scheme View), and the last column, All, denotes the evaluation set using all camera
views (i.e., evaluation scheme View).

Model \ Eval Side left Front left Front Front right Side right All

Side left 18.79 17.41 14.56 19.06 19.40 16.31

Front left 16.88 18.39 12.84 19.22 18.49 15.36

Front 16.58 18.02 14.54 18.55 18.96 15.98

Front right 16.56 17.36 14.99 19.40 19.16 16.18

Side right 17.91 16.50 13.16 18.23 20.47 15.65

MultiCamera 20.11 19.54 15.63 20.67 21.53 17.78

right side of the road, and providing wider scope, more instances, and smaller
objects on the left side (i.e., the left side views are more challenging). Second,
the front camera performance is inferior compared to the other cameras. We
hypothesize that the front camera captures more diverse and challenging views,
e.g., vehicles driving in multiple directions, more dynamic and smaller objects,
making tracking more challenging.

6 Conclusion

In this work, we presented a new benchmark called WOD:PVPS. Our benchmark
extends video panoptic segmentation to a more challenging multi-camera setting
that requires consistent instance IDs both across cameras and over time. Our
dataset is an order of magnitude larger than all the existing video panoptic seg-
mentation datasets. We establish several strong baselines evaluated with a new
metric, wSTQ, that takes multi-camera, multi-object tracking and segmentation
into consideration. We will make our benchmark publicly available, and we hope
that it will facilitate future research on panoramic video panoptic segmentation.



68 J. Mei et al.

References

1. Baqué, P., Fleuret, F., Fua, P.: Deep occlusion reasoning for multi-camera multi-
target detection. In: ICCV (2017)

2. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar
sequences. In: ICCV (2019)

3. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-
shortest paths optimization. PAMI 33(9), 1806–1819 (2011)

4. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-
definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2009)

5. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In:
CVPR (2020)

6. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In:
CVPR (2019)

7. Chavdarova, T., et al.: Wildtrack: a multi-camera HD dataset for dense unscripted
pedestrian detection. In: CVPR (2018)

8. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic
image segmentation with deep convolutional nets and fully connected CRFs. In:
ICLR (2015)

9. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs. TPAMI 40(4), 834–848 (2017)

10. Chen, Y., et al.: Geosim: realistic video simulation via geometry-aware composition
for self-driving. In: CVPR (2021)

11. Cheng, B., et al.: Panoptic-deeplab: a simple, strong, and fast baseline for bottom-
up panoptic segmentation. In: CVPR (2020)

12. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding.
In: CVPR (2016)

13. Dehghan, A., Modiri Assari, S., Shah, M.: GMMCP tracker: globally optimal gen-
eralized maximum multi clique problem for multiple object tracking. In: CVPR
(2015)

14. Dendorfer, P., et al.: MOTChallenge: a benchmark for single-camera multiple tar-
get tracking. IJCV 129(4), 845–888 (2020)

15. Eshel, R., Moses, Y.: Homography based multiple camera detection and tracking
of people in a dense crowd. In: CVPR (2008)

16. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

17. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
IJCV 59(2), 167–181 (2004)

18. Ferryman, J., Shahrokni, A.: Pets 2009: dataset and challenge. In: 2009 Twelfth
IEEE International Workshop on Performance Evaluation of Tracking and Surveil-
lance, pp. 1–6. IEEE (2009)

19. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with
a probabilistic occupancy map. PAMI 30(2), 267–282 (2007)

20. Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In:
ICCV (2019)

21. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti
vision benchmark suite. In: CVPR (2012)

22. Geyer, J., et al.: A2d2: Audi autonomous driving dataset. arXiv preprint
arXiv:2004.06320 (2020)

http://arxiv.org/abs/2004.06320


WOD: Panoramic Video Panoptic Segmentation 69

23. Han, X., et al.: MMPTRACK: large-scale densely annotated multi-camera multiple
people tracking benchmark (2021)
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