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Abstract. Deep neural network-based image classifications are vulner-
able to adversarial perturbations. The image classifications can be easily
fooled by adding artificial small and imperceptible perturbations to input
images. As one of the most effective defense strategies, adversarial train-
ing was proposed to address the vulnerability of classification models,
where the adversarial examples are created and injected into training
data during training. The attack and defense of classification models
have been intensively studied in past years. Semantic segmentation, as
an extension of classifications, has also received great attention recently.
Recent work shows a large number of attack iterations are required to
create effective adversarial examples to fool segmentation models. The
observation makes both robustness evaluation and adversarial training
on segmentation models challenging. In this work, we propose an effective
and efficient segmentation attack method, dubbed SegPGD. Besides, we
provide a convergence analysis to show the proposed SegPGD can create
more effective adversarial examples than PGD under the same number of
attack iterations. Furthermore, we propose to apply our SegPGD as the
underlying attack method for segmentation adversarial training. Since
SegPGD can create more effective adversarial examples, the adversar-
ial training with our SegPGD can boost the robustness of segmentation
models. Our proposals are also verified with experiments on popular Seg-
mentation model architectures and standard segmentation datasets.

Keywords: Adversarial robustness · Semantic segmentation

1 Introduction

Due to their vulnerability to artificial small perturbations, the adversarial robust-
ness of deep neural networks has received great attention [13,40]. A large
amount of attack and defense strategies have been proposed for classification in
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past years [1,5,14,34,37,39,43,46,47,52,54,57]. As an extension of classification,
semantic segmentation also suffers from adversarial examples [2,50]. Segmenta-
tion models applied in real-world safety-critical applications also face potential
threats, e.g., in self-driving systems [4,19,25,32,33,36] and in medical image
analysis [10,12,30,35]. Hence, the adversarial robustness of segmentation has
also raised great attention recently [2,8,20,24,27,38,42,49,49–51,53].

In terms of the attack methods, different from classification, the attack goal
in segmentation is to fool all pixel classifications at the same time. An effec-
tive adversarial example of a segmentation model are expected to fool as many
pixel classifications as possible, which requires the larger number of attack itera-
tions [15,50]. The observation makes both robustness evaluation and adversarial
training on segmentation models challenging. In this work, we propose an effec-
tive and efficient segmentation attack method, dubbed SegPGD. Besides, we
provide a convergence analysis to show why the proposed SegPGD can create
more effective adversarial examples than PGD under the same number of attack
iterations.

The right evaluation of model robustness is an important step to building
robust models. Evaluation with weak or inappropriate attack methods can give
a false sense of robustness [3]. Recent work [51] evaluates the robustness of
segmentation models under a similar setting to the one used in classification.
This could be problematic given the fact that a large number of attack iterations
are required to create effective adversarial examples of segmentation [50]. We
evaluate the adversarially trained segmentation models in previous work with a
strong attack setting, namely with a large number of attack iterations. We found
the robustness can be significantly reduced. Our SegPGD can reduce the mIoU
score further. For example, the mIoU of adversarially trained PSPNet [56] on
Cityscapes dataset [9] can be reduced to near zero under 100 attack iterations.

As one of the most effective defense strategies, adversarial training was pro-
posed to address the vulnerability of classification models, where the adversarial
examples are created and injected into training data during training [13,29]. One
promising way to boost segmentation robustness is to apply adversarial train-
ing to segmentation models. However, the creation of effective segmentation
adversarial examples during training can be time-consuming. In this work, we
demonstrate that our effective and efficient SegPGD can mitigate this challenge.
Since it can create effective adversarial examples, the application of SegPGD as
the underlying attack method of adversarial training can effectively boost the
robustness of segmentation models. It is worth noting that many adversarial
training strategies with single-step attacks have been proposed to address the
efficiency of adversarial training in classification [1,37,43,47,57]. However, they
do not work well on segmentation models since the adversarial examples created
by single-step attacks are not effective enough to fool segmentation models.
The contributions of our work can be summarised as follows:

– Based on the difference between classification and segmentation, we propose
an effective and efficient segmentation attack method, dubbed SegPGD. Espe-
cially, we show its generalization to single-step attack SegFGSM.
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– We provide a convergence analysis to show the proposed SegPGD can create
more effective adversarial examples than PGD under the same number of
attack iterations.

– We apply SegPGD as the underlying attack method for segmentation adver-
sarial training. The adversarial training with our SegPGD achieves state-of-
the-art performance on the benchmark.

– We conduct experiments with popular segmentation model structures (i.e.,
PSPNet and DeepLabV3) on standard segmentation datasets (i.e., PASCAL
VOC and Cityscapes) to demonstrate the effectiveness of our proposals.

2 Related Work

Adversarial Robustness of Segmentation Models. The work [2] makes
an extensive study on the adversarial robustness of segmentation models and
demonstrates the inherent robustness of standard segmentation models. Espe-
cially, they find that adversarial examples in segmentation do not transfer well
across different scales and transformations. Another work [50] also found that the
adversarial examples created by their attack method do not transfer well across
different network structures. The observations in the two works [2,50] indicate
the standard segmentation models are inherently robust to transfer-based black-
box method. The belief is broken by the work [15] where they propose a method
to improve the transferability of adversarial examples and show the feasibility
of transfer-based black-box method. In addition, the adversarial robustness of
segmentation models has also been studied from other perspectives, such as uni-
versal adversarial perturbation [20,23], adversarial example detection [49], and
backdoor attack [28]. Theses works also imply the necessity of building robust
segmentation models to defend against potential threats. Along this direction,
the work [25] shows self-supervised learning with more data can improve the
robustness of standard models. However, the obtained model can be easily com-
pletely fooled with a strong attack [25]. A recent work [51] makes the first explo-
ration to apply adversarial training to segmentation models. We find that the
adversarially trained models is still vulnerable under strong attacks. The robust
accuracy of their adversarial trained models can be significantly reduced under
PGD with a large number of attack iterations. In this work, we propose an
effective and efficient segmentation attack method, which be used in adversarial
training to build robust segmentation models against strong attacks.

Adversarial Training of Classification Models. Adversarial training has
been intensively studied on classification models [13,29]. When a multi-step
attack is applied to create adversarial examples for adversarial training, the
obtained model is indeed robust against various attack to some extent, as shown
in [5,29,46,52]. However, adversarial training with multi-step attack can be very
time consuming due to the adversarial example creation, which is N times longer
than standard natural training [29,37]. To accelerate the adversarial training,
single-step attack has also been explored therein. When standard single-step
attack is applied during training, the obtained model is only robust to single-step



SegPGD: An Effective and Efficient Adversarial Attack 311

attack [41]. One reason behind is that the gradient masking phenomenon of the
model can be observed on the adversarial examples created by single-step attack.
Besides, another challenge to apply single-step attack in adversarial training is
the label leaking problem where the model show higher robust accuracy against
single-step attack than clean accuracy [26]. The low defensive effectiveness of
single-step attack and the low efficiency of multi-step attack pose a dilemma.

One way to address the dilemma is to overcome the challenges using advanced
single-step attacks [21,22,41,44,46,47,55], which can address label leaking prob-
lem and avoid gradient masking phenomenon. Though it boosts the robustness of
the classification models, however, single-step attack based adversarial training
does work well on segmentation model due to the challenge to create effective
segmentation adversarial examples with a single-step attack. Another way to
address the dilemma is to simulate the robustness performance of multi-step
attack-based adversarial training in an efficient way [5,37,57]. However, it is not
clear how well the generalization of the methods above to segmentation is.

3 SegPGD for Evaluating and Boosting Segmentation

In semantic segmentation, given the segmentation model fseg(·), the clean image
Xclean ∈ R

H×W×C and its segmentation label Y ∈ R
H×W×M , the segmenta-

tion model classifies all individual pixels of the input image fseg(Xclean) ∈
R

H×W×M . The notation (H,W ) corresponds to the size of input image, C is the
number of image channels, and M stands for the number of output classes. The
goal of the attack is to create an adversarial example to mislead classifications
of all pixels of an input image.

3.1 SegPGD: An Effective and Efficient Segmentation Attack

Formally, the goal of attack is defined to create the adversarial exam-
ple Xadv to mislead all the pixel classifications of an image Xclean, i.e.,
argmax(fseg(Xadv)i) �= argmax(Y i) where i ∈ [1,H × W ] corresponds to the
index of a input pixel. One of the most popular attack method PGD [29] creates
adversarial examples via multiple iterations in Eq. 1.

Xadvt+1 = φε(Xadvt + α ∗ sign(∇X advt L(f(Xadvt),Y ))), (1)

where α, ε are the step size and the perturbation range, respectively. Xadvt is
the adversarial example after the t-th attack step, and the initial value is set to
Xadv0 = Xclean +U(−ε,+ε), which corresponds to perturbation random initial-
ization. The φε(·) function clips its output into the range [Xclean −ε,Xclean +ε].
Besides, Xadvt is always clipped into a valid image space. sign(·) is the sign func-
tion and ∇a(b) is the matrix derivative of b with respect to a. L(·) stands for
the cross-entropy loss function. In segmentation, the loss is

L(fseg(Xadvt),Y ) =
1

H × W

H×W∑

i=1

CE(fseg(Xadvt)i,Y i) =
1

H × W

H×W∑

i=1

Li. (2)
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We reformulate the loss function into two parts in Eq. 3. The first term therein
is the loss of the correctly classified pixels, while the second one is formed by the
wrongly classified pixels.

L(fseg(Xadvt),Y ) =
1

H × W

∑

j∈PT

Lj +
1

H × W

∑

k∈PF

Lk, (3)

where PT is the set of correctly classified pixels, PF corresponds to wrongly
classified ones. The two sets make up all pixels, i.e., #PT + #PF = H × W .

The loss of the second term is often large since the wrongly classified pixels
lead to large cross-entropy loss. When creating adversarial examples, the gradient
of the second loss term can dominate. However, the increase of the second-term
loss does not lead to better adversarial effect since the involved pixels have
already been wrongly classified. To achieve high effective adversarial examples
on segmentation, a large number of attack iterations are required so that the
update towards increasing the first-term loss can be accumulated to mislead
correctly classified pixels.

To tackle the issue above, considering the dense pixel classifications in seg-
mentation, we propose the Segmentation-specific PGD, dubbed SegPGD,
which can create more effective adversarial examples with the same number
of attack iterations in Eq. 4.

L(fseg(Xadvt),Y ) =
1 − λ

H × W

∑

j∈PT

Lj +
λ

H × W

∑

k∈PF

Lk, (4)

where two loss terms are weighted with 1 − λ and λ, respectively. Note that
the selection of λ is non-trivial. It does not work well by simply setting λ = 0
where only correctly classified pixels are considered. In such a case, the previous
wrongly classified pixels can become benign again after a few attack iterations
since they are ignored when updating perturbations. The claim is also consistent
with the previous observation [45,48] that adversarial perturbation is also sen-
sitive to small noise. Furthermore, setting λ to a fixed value in [0, 0.5] does not
always lead to better attack performance due to a similar reason. When most
of pixel classifications are fooled after a few attack iterations, less weight on the
wrongly classified pixels can make some of them benign again.

In this work, instead of manually specifying a fixed value to λ, we propose to
set λ dynamically with the number of attack iterations. The intuition behind the
dynamic schedule is that we mainly focus on fooling correct pixel classifications
in the first a few attack iterations and then treat the wrong pixel classifications
quasi equally in the last few iterations. By doing this, our SegPGD can achieve
similar attack effectiveness with less iterations. We list some instances of our
dynamic schedule as follows

λ(t) =
t − 1

2T
, λ(t) =

1

2
∗ log2(1 +

t − 1

T
), λ(t) =

1

2
∗ (2(t−1)/T − 1), (5)

where t is the index of current attack iteration and T are the number of all attack
iterations. Our experiments show that all the proposed instances are similarly
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Algorithm 1. SegPGD: An Efficient and Effective Segmentation Attack
Require: segmentation model fseg(·), clean samples Xclean, perturbation range ε,

step size α, attack iterations T

Xadv0 = Xclean + U(−ε, +ε) � initialize adversarial example
for t ← 1 to T do � loop over attack iterations

P = fseg(Xclean) � make predictions
P T , P F ← P � split predictions

λ(t) ← (t − 1)/2T � compute weight

L ←λ(t) * L(P T , Y ) + (1-λ(t)) * L(P F , Y ) � loss for example updates

Xadvt+1 ← Xadvt + α ∗ sign(∇X advt L) � update adversarial examples
Xadvt+1 ← φε(Xadvt+1) � clip into ε-ball of clean image

end for

effective. In this work, we mainly use the first simple linear schedule. The pseudo
code of our SegPGD with the proposed schedule is shown in Algorithm 1. Further
discussion on the schedules to dynamically set λ are in Sect. 4.2.

Similarly, the loss function in Eq. 4 can also be applied in single-step adver-
sarial attack, e.g., FGSM [13]. In the resulted SegFGSM, only correctly classified
pixels are considered in case of the proposed λ schedule. Since it only takes one-
step update, the wrongly classified pixels is less likely to become benign. Hence,
SegFGSM with the proposed λ schedule (i.e., λ = 1) also shows superior attack
performance than FGSM.

In this subsection, we propose a fast segmentation attack method, i.e.,
SegPGD. It can be applied to evaluate the adversarial robustness of segmentation
models in an efficient way. Besides, SegPGD can also be applied to accelerate
the adversarial training on segmentation models.

3.2 Convergence Analysis of SegPGD

Problem Formulation. The goal of the attack is to create an adversarial exam-
ple Xadv to maximize cross-entropy loss of all the pixel classifications. The
adversarial example is constrained into ε-ball of the clean example Xclean. The
cross-entropy loss of i-th pixel is

L(X ,Y i) = CE(fseg(Xadvt)i,Y i). (6)

The process to create adversarial example for segmentation can be formulated
into a constrained minimization problem

min
X

1

H × W

H×W∑

i=1

gi(X) s.t. ‖X − Xclean‖∞ < ε and X ∈ [0, 1], (7)

where gi(X) = −L(X,Y i). The variable is constrained into concave region since
both constraints are linear.
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Fig. 1. Convergence Analysis. SegPGD marked with blue solid lines achieve higher
MisRatio than PGD under the same number of attack iterations. The loss of false
classified pixels (FLoss) marked with triangle down dominate the overall loss (i.e.
red lines without markers) during attacks. Compared to PGD, the FLoss in SegPDG
makes up a smaller portion of the overall loss since SegPGD main focuses on correctly
classified pixels in the first a few attack iterations. (Color figure online)

Projected Gradient Descent-based optimization method is often applied to
solve the constrained minimization problem above [29]. The method first takes
a step towards the negative gradient direction to get a new point while ignoring
the constraint, and then correct the new point by projecting it back into the
constraint set.

The gradient-descent step of PGD attack is

Xt+1 = Xt − α ∗ sign(∇
H×W∑

i=1

gi(Xt)), (8)

In contrast, the gradient-descent step of our SegPGD attack is

Xt+1 = Xt − α ∗ sign(∇(
∑

j∈PT

(1 − λ(t))gj(Xt) +
∑

k∈PF

λ(t)gk(Xt))), (9)

where α is the step size. The initial point is the original clean example Xclean

or a random initialization Xclean + U(−ε,+ε).

Convergence Criterion. In classification task, the loss is directly correlated
with attack goal. The larger the loss is, the more likely the input is to be misclas-
sified. However, it does not hold in segmentation task. The large loss of segmen-
tation not necessarily leads to more pixel misclassifications since the loss consists
of losses of all pixel classifications. Once a pixel is misclassified, the increase of
the loss on the pixel does not bring more adversarial effect. Hence, we propose a
new convergence criterion for segmentation, dubbed MisRatio, which is defined
as the ratio of misclassified pixels to all input pixels.

Convergence Analysis. In the first step to update adversarial examples, the
update rule of our SegPGD can be simplified as

X1 = X0 + α ∗ sign(
∑

j∈PT

∇gj(Xt)), (10)
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Algorithm 2. Segmentation Adversarial Training with SegPGD
Require: segmentation model fseg(·), training iterations N , perturbation range ε, step

size α, attack iterations T

for i ← 1 to N do

Xclean
1 , Xclean

2 ← Xclean � split mini-batch

Xadv
2 ← SegPGD(fseg(·), Xclean

2 , ε, α, i) � create adversarial examples

L ← L(fseg(Xclean
1 ),Y 1) + L(fseg(Xadv

2 ),Y 2) � loss for network updates
end for

For almost all misclassified pixels k ∈ PF of X0, the k-th pixel of X1 is still
misclassified since natural misclassifications are not sensitive to small adversarial
noise in general. The claim is also true with PGD update rule. Besides, our
SegPGD can turn part of the pixels k ∈ PT of X0 into misclassified ones of
X1. However, PGD is less effective to do so since the update direction also takes
the misclassified pixels of X0 into consideration. Therefore, our SegPGD can
achieve higher MisRatio than PGD in the first step.

In all intermediate steps, both SegPGD and PGD leverage gradients of all
pixels classification loss to update adversarial examples. The difference is that
our SegPGD assign more weight to loss of correctly classified pixel classifications.
The assigned value depends on the update iteration t. Our SegPGD focuses more
on fooling correctly classified pixels at first a few iterations and then treat both
quasi equally. By doing this, our SegPGD can achieve higher MisRatio than
PGD under the same attack iterations.

In Fig. 1, we show the pixel classification loss and PosiRatio (=1 - MisRatio)
in each attack iteration. Figure 1a shows the case to attack adversarially trained
PSPNet on VOC (see more details in experimental section). SegPGD marked
with blue solid lines achieve higher MissRatio than PGD under the same num-
ber of attack iterations. The loss of False classified pixels (FLoss) marked with
triangle down dominate the overall loss (i.e. red lines without markers) during
attacks. Compared to PGD, the FLoss in SegPDG makes up a smaller portion
of the overall loss since SegPGD main focuses on correctly classified pixels in
the first a few attack iterations. Note that the scale of loss does not matter since
only the signs of input gradients are leveraged to create adversarial examples.

3.3 Segmentation Adversarial Training with SegPGD

Adversarial training, as one of the most effective defense methods, has been well
studied in the classification task. In classification, the main challenge of applying
adversarial training is computational cost. It requires multiple gradient propa-
gation to produce adversarial images, which makes adversarial training slow. In
fact, it can take 3–30 times longer to train a robust network with adversarial
training than training a non-robust equivalent [37]. The segmentation task makes
the adversarial training more challenging. More attack iterations are required to



316 J. Gu et al.

create effective adversarial examples for boosting segmentation robustness. E.g.,
more than 100 attack iterations are required to fool segmentation [50].

In this work, we improve segmentation adversarial training by applying
SegPGD as the underlying attack. As an effective and efficient segmentation
attack method, SegPGD can create more effective adversarial examples than the
popular PGD. By injecting the created adversarial examples into the training
data, adversarial training with SegPGD can achieve a more robust segmenta-
tion model with the same computational cost. Following the previous work, the
adversarial training procedure on segmentation is shown in Algorithm 2.

4 Experiment

In this section, we first introduce the experimental setting. Then, we show
the effectiveness of SegPGD. Specifically, we show SegPGD can achieve similar
attack effect with less attack iterations than PGD on both standard models and
adversarially trained models. In the last part, we show that adversarial training
with SegPGD can achieve more adversarially robust segmentation models.

4.1 Experimental Setting

Datasets. The popular semantic segmentation datasets, PASCAL VOC 2012
(VOC) [11] and Cityscapes (CS) [9], are adopted in experiments. VOC dataset
contains 20 object classes and one class for background, with 1,464, 1,499, and
1,456 images for training, validation, and testing, respectively. Following the
popular protocol [17], the training set is augmented to 10,582 images. Cityscapes
dataset contains urban scene understanding images with 19 categories, which
contains high-quality pixel-level annotations with 2,975, 500, and 1,525 images
for training, validation, and testing, respectively.

Models. We choose popular semantic segmentation architectures PSPNet [56]
and DeepLabv3 [7] for our experiments. The standard configuration of the model
architectures is used as in [56]. By default, ResNet50 [18] is applied as a backbone
for feature extraction in both segmentation models.

Adversarial Attack. We choose the popular single-step attack FGSM [13] and
the popular multiple-step attack PGD [29] as our baseline attack methods. In this
work, we focus on �∞-based perturbations. The maximum allowed perturbation
value ε is set to 0.03 = 8/255. The step size α is set to 0.03 for FGSM and 0.01
for PGD. The PGD with 3 attack iterations is denoted as PGD3. Besides, for
evaluating the robustness of segmentation models, we also apply attack methods,
such as CW attack [6], DeepFool [31] and �2-based BIM [26].

Metrics. The standard segmentation evaluation metric mIoU (in %) is used to
evaluate the adversarial robustness of segmentation models. The mIoUs on both
clean image and adversarial images are reported, respectively. The higher the
mIoUs are, the more robust the model is.
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Fig. 2. SegPGD is more effective and efficient than PGD. SegPGD creates more effec-
tive adversarial examples with the same number of attack iterations and converges to
a better minima than PGD. The subfigures (a-d) show the segmentation mIoUs on
VOC, while the scores on Cityscapes are reported in the subfigures (e-h). AT PSPNet
stands for the adversarially trained PSPNet.

4.2 Evaluating Segmentation Robustness with SegPGD

Quantitative Evaluation. We train PSPNet and DeepLabV3 on VOC and
Cityscapes, respectively. Both standard training and adversarial training are
considered in this experiment. PGD with 3 attack iterations is applied as the
underlying attack method of adversarial training. This result in 8 models. We
apply PGD and SegPGD on the 8 models. On each model, we report the final
mIoU under attack with different attack iterations, e.g., 20, 40 and 100. As shown
in Fig. 2, the segmentation models show low mIoU on the adversarial examples
created by our SegPGD. SegPGD achieve can converge faster to a better minima
than PGD, which shows the high effectiveness and efficiency of SegPGD.

Qualitative Evaluation. For qualitative evaluations, we visualize the created
adversarial examples and model’s predictions on them. We take the adversar-
ial examples created on standard PSPNet on VOC with 20 attack iterations
as examples. As shown in Fig. 3, the adversarial perturbations created by both
PGD and SegPGD are imperceptible to human vision. In other words, the cre-
ated adversarial examples in Fig. 3b and 3b are not distinguishable from the
counter-part clean images in Fig. 3a. The predicted masks on the adversar-
ial examples by SegPGD have deviated more from the ground truth than the
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(a) Clean Images and Ground-truth Masks

(b) Adversarial Images Created by PGD and Model Predictions

(c) Adversarial Images Created by SegPGD and Model Predictions

Fig. 3. Visualizing of Adversarial Examples and Predictions on them. SegPGD create
more effective adversarial examples than PGD.

ones corresponding to PGD. The visualization in Fig. 3 shows SegPGD creates
more effective adversarial examples than PGD under the same number of attack
iterations.

Comparison with other Segmentation Attack Methods. The segmenta-
tion attack methods have also been explored in related work. The work [20]
aim to create adversarial perturbations that are always deceptive when added to
any sample. Similarly, The work [23] creates universal perturbations to attack
multiple segmentation models. Since more constraints are applied to universal
perturbations, both types of universal adversarial perturbations are supposed to
be less effective than the sample-specific ones. Another work [20] related to us
proposes Dense Adversary Generation (DAG), which can be seen as a special
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Fig. 4. Schedules for weighting misclassified pixels. SegPGD with our weight-dyn-linear
weighting schedules can better reduce the mIoU and achieve better attack effectiveness
than the ones with baseline schedules.

case of our SegPGD along with other minor differences. DAG only considers
the correctly classified pixels in each attack iteration, which is equivalent to set
λ = 0 in our SegPGD. To further improve the attack effectiveness, the work [16]
proposes multiple-layer attack (MLAttack) where the losses in feature spaces of
multiple intermediate layers and the one in the final output layer are combined
to create adversarial examples. SegPGD outperforms both DAG and MLAttack
in terms of both efficiency and effectiveness, as shown in Appendix A.

Single-Step Attack. When a single attack iteration is applied, SegPGD is
degraded to SegFGSM. In SegFGSM, only the loss of correctly classified pixels
are considered in the case of the proposed λ schedule. We compare FGSM and
SegFGSM and report the mIOU. Our SegFGSM outperforms FGSM on both
standard models and adversarially trained models. See Appendix B for details.

Ablation on Weighting Schedules. In this work, we argue that the weight
should be changed dynamically with the attack iterations. At the beginning
of the attack, the update of adversarial example should focus more on fooling
correctly classified pixels. In Eq. 5, we list three schedule instances, i.e., the
weight-dyn-linear, weight-dyn-exp, and weight-dyn-log schedule respectively. We
denote the case as baseline where the losses of all the pixels are equally treated.
Another choice to weigh the loss of misclassified pixels is to use a constant
λ, e.g., 0.1, 0.2 or 0.3, which is denoted as weight-mis-λ. When the constant
is set to zero, only correctly classified pixels are considered to compute the
loss in all attack iterations, which is denoted as only-correct. We report the
mIoU of segmentation under different weighting schedules in Fig. 4. As shown in
the figure, SegPGD with our weight-dyn-linear weighting schedules can better
reduce the mIoU and achieve better attack effectiveness than baselines. Given
its simplicity, we apply the linear schedule rule in our SegPGD. We leave the
exploration of more dedicated weighting schedules in future work.
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Table 1. Adversarial Training on VOC Dataset. We evaluate the robustness of adver-
sarially trained models with various attacks, especially under strong attacks (e.g., PGD
with 100 attack iterations). We report mIoU scores on different segmentation architec-
tures and different adversarial training settings. Adversarial training with our SegPGD
can boost the robustness of segmentation models.

PSPNet Clean CW DeepFool BIMl2 PGD10 PGD20 PGD40 PGD100

Standard 76.64 4.72 14.2 15.32 5.21 4.09 3.64 3.37

PGD3-AT 74.51 52.23 55.46 51.56 20.04 17.34 15.84 13.89

SegPGD3-AT 75.38 56.52 59.47 50.17 26.6 20.69 17.19 14.49

PGD7-AT 74.99 42.30 45.05 47.21 21.79 19.39 17.99 16.97

SegPGD7-AT 74.45 48.79 51.44 45.15 25.73 22.05 20.61 19.23

DeepLabv3 Clean CW DeepFool BIMl2 PGD10 PGD20 PGD40 PGD100

Standard 77.36 5.24 13.57 14.76 4.36 3.46 3.05 2.85

PGD3-AT 75.03 57.10 60.23 36.83 28.16 20.77 18.12 16.91

SegPGD3-AT 75.01 59.55 62.12 39.46 26.29 20.92 19.1 18.24

PGD7-AT 73.45 48.51 48.87 43.13 26.23 21.15 20.06 19.10

SegPGD7-AT 74.46 51.42 51.47 42.91 30.95 26.68 24.32 23.09

4.3 Boosting Segmentation Robustness with SegPGD-AT

The setting of adversarial training in previous work [51] is adopted in this work.
In the baseline, PGD is applied as the underlying attack method for adversarial
training. In our approach, We apply SegPGD to create adversarial examples
for adversarial training. For both standard training and adversarial training, we
train for one more time and report the average results.

White-Box Attack. We evaluate the segmentation models with popular white-
box attacks. The results are reported in Table 1 and Table 2. The mIoU of the
standard segmentation model can be reduced to near zero. As expected, they
are not robust at all to strong attack methods. Adversarial training methods
boost the robustness of segmentation models to different degrees. Under the
evaluation of all attack methods, adversarial training with our SegPGD achieves
more robust segmentation performance than the one with PGD. Besides the
popular segmentation attack methods, we also evaluate the adversarially-trained
models with our SegPGD. The evaluation results also support our conclusion,
which can be found in Appendix C.

We also compare our SegPGD-AT with the recently proposed segmentation
adversarial training method DDCAT [51]. We load the pre-trained DDCAT mod-
els from their released the codebase and evaluate the model with strong attacks.
We found that their models are vulnerable to strong attacks, e.g., PGD100. For
fair comparison, we compare the scores on our SegPGD3-AT with the ones on
their models since three steps are applied to generate adversarial examples in
both cases. Our model trained with SegPGD3-AT outperform the DDCAT by
a large margin under strong attacks, e.g., 10.98 (DDCAT) vs. 18.24 (ours) with
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Table 2. Adversarial Training on Cityscapes Dataset. This table show that the boost-
ing effect of adversarial training with our SegPGD still clearly holds on a different
dataset. Besides, we show the previous adversarially trained baseline model can be
reduced to near zero under strong attack, i.e., PGD3-AT PSPNet under PGD100
attack. Our segPGD improves the robustness significantly.

PSPNet Clean CW DeepFool BIMl2 PGD10 PGD20 PGD40 PGD100

Standard 73.98 5.94 12.68 12.36 0.96 0.61 0.42 0.27

DDCAT [51] 76.64 4.72 14.2 15.32 5.21 4.09 3.64 3.37

PGD3-AT 71.28 35.21 36.84 32.22 28.79 17.3 9.29 3.95

SegPGD3-AT 71.01 36.30 38.27 35.34 33.52 25.23 19.22 13.04

PGD7-AT 69.85 27.78 28.44 27.87 26.00 24.75 23.86 22.8

SegPGD7-AT 70.21 29.59 30.68 32.55 27.13 25.56 24.29 23.13

DeepLabv3 Clean CW DeepFool BIMl2 PGD10 PGD20 PGD40 PGD100

Standard 73.82 8.24 14.26 13.86 1.07 0.84 0.62 0.44

DDCAT [51] 76.64 4.72 14.2 15.32 5.21 4.09 3.64 3.37

PGD3-AT 71.45 36.72 38.98 36.78 29.52 20.23 12.22 6.74

SegPGD3-AT 71.04 37.93 37.63 34.54 32.11 25.49 17.67 15.23

PGD7-AT 69.91 28.87 29.63 30.58 25.64 24.48 22.87 21.24

SegPGD7-AT 69.93 29.73 31.30 32.35 30.43 28.78 26.73 25.31

DeepLabv3 architecture on VOC dataset under PGD100. More results can be
found in Appendix D.

In our experiments, PGD-AT PSPNet on Cityscapes can be almost com-
pletely fooled under strong attack where the mIoU is 3.95 under PGD100 attack.
Adversarial training with SegPGD boosts the robustness to 13.04. Although the
improvement is large, there is still much space to improve.

Black-Box Attack. We also evaluate the segmentation robustness with black-
box attacks. Different from white-box attacks, black-box attackers are supposed
to have no access to the gradient of the target model. Following the previous
work [51], we conduct experiments with transfer-based black-box attacks. We
train PSPNet and DeepLabV3 on the same dataset. Then, we create adversarial
examples on PSPNet with PGD100 or SegPGD100 and test the robustness of
DeepLabV3 on these adversarial examples. The detailed results are reported in
Appendix E. The DeepLabV3 models trained with different adversarial training
methods are tested. The model trained with our SegPGD-AT shows the best
performance against the transfer-based black-box attacks. The claim is also true
when different attack methods are applied to create adversarial examples.

5 Conclusions

A large number of attack iterations are required to create effective segmentation
adversarial examples. The requirement makes both robustness evaluation and
adversarial training on segmentation challenging. In this work, we propose an
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effective and efficient segmentation-specific attack method, dubbed SegPGD. We
first show SegPGD can converge better and faster than the baseline PGD. The
effectiveness and efficiency of SegPGD is verified with comprehensive experi-
ments on different segmentation architectures and popular datasets. Besides the
evaluation, we also demonstrate how to boost the robustness of segmentation
models with SegPGD. Specifically, we apply SegPGD to create segmentation
adversarial examples for adversarial training. Given the high effectiveness of the
created adversarial examples, the adversarial training with SegPGD improves the
segmentation robustness significantly and achieves the state of the art. However,
there is still much space to improve in terms of the effectiveness and efficiency
of segmentation adversarial training. We hope this work can serve as a solid
baseline and inspire more work to improve segmentation robustness.
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