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Abstract. The rise of transformers in vision tasks not only advances
network backbone designs, but also starts a brand-new page to achieve
end-to-end image recognition (e.g., object detection and panoptic seg-
mentation). Originated from Natural Language Processing (NLP), trans-
former architectures, consisting of self-attention and cross-attention,
effectively learn long-range interactions between elements in a sequence.
However, we observe that most existing transformer-based vision mod-
els simply borrow the idea from NLP, neglecting the crucial difference
between languages and images, particularly the extremely large sequence
length of spatially flattened pixel features. This subsequently impedes the
learning in cross-attention between pixel features and object queries. In
this paper, we rethink the relationship between pixels and object queries,
and propose to reformulate the cross-attention learning as a clustering
process. Inspired by the traditional k-means clustering algorithm, we
develop a k-means Mask Xformer (kMaX-DeepLab) for segmentation
tasks, which not only improves the state-of-the-art, but also enjoys a
simple and elegant design. As a result, our kMaX-DeepLab achieves a
new state-of-the-art performance on COCO val set with 58.0% PQ, and
Cityscapes val set with 68.4% PQ, 44.0% AP, and 83.5% mIoU without
test-time augmentation or external dataset. We hope our work can shed
some light on designing transformers tailored for vision tasks. Code and
models are available at https://github.com/google-research/deeplab2.
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1 Introduction

Transformers [89] are receiving a growing attention in the computer vision com-
munity. On the one hand, the transformer encoder, with multi-head self-attention
as the central component, demonstrates a great potential for building powerful
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network architectures in various visual recognition tasks [32,70,93]. On the other
hand, the transformer decoder, with multi-head cross-attention at its core, pro-
vides a brand-new approach to tackling complex visual recognition problems in
an end-to-end manner, dispensing with hand-designed heuristics.

Recently, the pioneering work DETR [10] introduces the first end-to-end
object detection system with transformers. In this framework, the pixel features
are firstly extracted by a convolutional neural network [58], followed by the
deployment of several transformer encoders for feature enhancement to capture
long-range interactions between pixels. Afterwards, a set of learnable positional
embeddings, named object queries, is responsible for interacting with pixel fea-
tures and aggregating information through several interleaved cross-attention
and self-attention modules. In the end, the object queries, decoded by a Feed-
Forward Network (FFN), directly correspond to the final bounding box pre-
dictions. Along the same direction, MaX-DeepLab [92] proves the success of
transformers in the challenging panoptic segmentation task [55], where the prior
arts [21,54,100] usually adopt complicated pipelines involving hand-designed
heuristics. The essence of this framework lies in converting the object queries to
mask embedding vectors [49,87,97], which are employed to yield a set of mask
predictions by multiplying with the pixel features.

The end-to-end transformer-based frameworks have been successfully applied
to multiple computer vision tasks with the help of transformer decoders, espe-
cially the cross-attention modules. However, the working mechanism behind the
scenes remains unclear. The cross-attention, which arises from the Natural Lan-
guage Processing (NLP) community, is originally designed for language prob-
lems, such as neural machine translation [4,86], where both the input sequence
and output sequence share a similar short length. This implicit assumption
becomes problematic when it comes to certain vision problems, where the cross-
attention is performed between object queries and spatially flattened pixel fea-
tures with an exorbitantly large length. Concretely, usually a small number of
object queries is employed (e.g., 128 queries), while the input images can con-
tain thousands of pixels for the vision tasks of detection and segmentation. Each
object query needs to learn to highlight the most distinguishable features among
the abundant pixels in the cross-attention learning process, which subsequently
leads to slow training convergence and thus inferior performance [37,112].

In this work, we make a crucial observation that the cross-attention scheme
actually bears a strong similarity to the traditional k-means clustering [72] by
regarding the object queries as cluster centers with learnable embedding vectors.
Our examination of the similarity inspires us to propose the novel k-means Mask
Xformer (kMaX-DeepLab), which rethinks the relationship between pixel fea-
tures and object queries, and redesigns the cross-attention from the perspective
of k-means clustering. Specifically, when updating the cluster centers (i.e., object
queries), our kMaX-DeepLab performs a different operation. Instead of perform-
ing softmax on the large spatial dimension (image height times width) as in the
original Mask Transformer’s cross-attention [92], our kMaX-DeepLab performs
argmax along the cluster center dimension, similar to the k-means pixel-cluster
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assignment step (with a hard assignment). We then update cluster centers by
aggregating the pixel features based on the pixel-cluster assignment (computed
by their feature affinity), similar to the k-means center-update step. In spite of
being conceptually simple, the modification has a striking impact: on COCO
val set [66], using the standard ResNet-50 [41] as backbone, our kMaX-DeepLab
demonstrates a significant improvement of 5.2% PQ over the original cross-
attention scheme at a negligible cost of extra parameters and FLOPs. When
comparing to state-of-the-art methods, our kMaX-DeepLab with the simple
ResNet-50 backbone already outperforms MaX-DeepLab [92] with MaX-L [92]
backbone by 1.9% PQ, while requiring 7.9 and 22.0 times fewer parameters
and FLOPs, respectively. Our kMaX-DeepLab with ResNet-50 also outperforms
MaskFormer [24] with the strong ImageNet-22K pretrained Swin-L [70] back-
bone, and runs 4.4 times faster. Finally, our kMaX-DeepLab, using the mod-
ern ConvNeXt-L [71] as backbone, sets a new state-of-the-art performance on
the COCO val set [66] with 58.0% PQ. It also outperforms other state-of-the-
art methods on the Cityscapes val set [28], achieving 68.4% PQ, 83.5% mIoU,
44.0% AP, without using any test-time augmentation or extra dataset pretrain-
ing [66,75].

2 Related Works

Transformers. Transformer [89] and its variants [2,8,26,39,57,74,94,106]
have advanced the state-of-the-art in natural language processing tasks [30,31,
82] by capturing relations across modalities [4] or in a single context [25,89].
In computer vision, transformer encoders or self-attention modules are either
combined with Convolutional Neural Networks (CNNs) [9,96] or used as
standalone backbones [32,44,70,80,93]. Both approaches have boosted vari-
ous vision tasks, such as image classification [7,19,32,44,64,70,80,93,101,105],
image generation [42,77], object detection [10,43,80,83,96,112], video recogni-
tion [3,19,33,96], semantic segmentation [11,17,35,46,99,108,109,111,113], and
panoptic segmentation [93].

Mask Transformers for Segmentation. Besides the usage as backbones,
transformers are also adopted as task decoders for image segmentation. MaX-
DeepLab [92] proposed Mask Xformers (MaX) for end-to-end panoptic segmen-
tation. Mask transformers predict class-labeled object masks and are trained
by Hungarian matching the predicted masks with ground truth masks. The
essential component of mask transformers is the conversion of object queries to
mask embedding vectors [49,87,97], which are employed to generate predicted
masks. Both Segmenter [85] and MaskFormer [24] applied mask transformers
to semantic segmentation. K-Net [107] proposed dynamic kernels for generat-
ing the masks. CMT-DeepLab [104] proposed to improve the cross-attention
with an additional clustering update term. Panoptic Segformer [65] strength-
ened mask transformer with deformable attention [112], while Mask2Former [23]
further boosted the performance with masked cross-attention along with a series
of technical improvements including cascaded transformer decoder, deformable
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attention [112], uncertainty-based pointly supervision [56], etc.. These mask
transformer methods generally outperform box-based methods [54] that decom-
pose panoptic segmentation into multiple surrogate tasks (e.g., predicting masks
for each detected object bounding box [40], followed by fusing the instance
segments (‘thing’) and semantic segments (‘stuff’) [14] with merging mod-
ules [60,62,67,78,100,103]). Moreover, mask transformers showed great success
in the video segmentation problems [20,52,61].

Clustering Methods for Segmentation. Traditional image segmentation
methods [1,72,110] typically cluster image intensities into a set of masks or
superpixels with gradual growing or refinement. However, it is challenging for
these traditional methods to capture high-level semantics. Modern clustering-
based methods usually operate on semantic segments [13,15,18] and group
‘thing’ pixels into instance segments with various representations, such as
instance center regression [22,50,63,76,88,93,102], Watershed transform [5,90],
Hough-voting [6,59,91], or pixel affinity [36,47,51,69,84].

Recently, CMT-DeepLab [104] discussed the similarity between mask trans-
formers and clustering algorithms. However, they only used the clustering update
as a complementary term in the cross-attention. In this work, we further discover
the underlying similarity between mask transformers and the k-means clustering
algorithm, resulting in a simple yet effective k-means mask transformer.

3 Method

In this section, we first overview the mask-transformer-based segmentation
framework presented by MaX-DeepLab [92]. We then revisit the transformer
cross-attention [89] and the k-means clustering algorithm [72], and reveal their
underlying similarity. Afterwards, we introduce the proposed k-means Mask
Xformer (kMaX-DeepLab), which redesigns the cross-attention from a cluster-
ing perspective. Even though simple, kMaX-DeepLab effectively and significantly
improves the segmentation performance.

3.1 Mask-Transformer-Based Segmentation Framework

Transformers [89] have been effectively deployed to segmentation tasks. Without
loss of generality, we consider panoptic segmentation [55] in the following prob-
lem formulation, which can be easily generalized to other segmentation tasks.

Problem Statement. Panoptic segmentation aims to segment the image I ∈
R

H×W×3 into a set of non-overlapping masks with associated semantic labels:

{yi}Ki=1 = {(mi, ci)}Ki=1 . (1)

The K ground truth masks mi ∈ {0, 1}H×W do not overlap with each other,
i.e.,

∑K
i=1 mi ≤ 1H×W , and ci denotes the ground truth class label of mask mi.

Starting from DETR [10] and MaX-DeepLab [92], approaches to panoptic
segmentation shift to a new end-to-end paradigm, where the prediction directly
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matches the format of ground-truth with N masks (N is a fixed number and
N ≥ K) and their semantic classes:

{ŷi}Ni=1 = {(m̂i, p̂i(c))}Ni=1, (2)

where p̂i(c) denotes the semantic class prediction confidence for the correspond-
ing mask, which includes ‘thing’ classes, ‘stuff’ classes, and the void class ∅.

The N masks are predicted based on the N object queries, which aggregate
information from the pixel features through a transformer decoder, consisting of
self-attention and cross-attention modules.

The object queries, updated by multiple transformer decoders, are employed
as mask embedding vectors [49,87,97], which will multiply with the pixel features
to yield the final prediction Z ∈ R

HW×N that consists of N masks. That is,

Z = softmax
N

(F × CT), (3)

where F ∈ R
HW×D and C ∈ R

N×D refers to the final pixel features and object
queries, respectively. D is the channel dimension of pixel features and object
queries. We use underscript N to indicate the axis to perform softmax.

3.2 Relationship Between Cross-Attention and k-means Clustering

Although the transformer-based segmentation frameworks successfully connect
object queries and mask predictions in an end-to-end manner, the essential prob-
lem becomes how to transform the object queries, starting from learnable embed-
dings (randomly initialized), into meaningful mask embedding vectors.

Cross-Attention. The cross-attention modules are used to aggregate affili-
ated pixel features to update object queries. Formally, we have

Ĉ = C + softmax
HW

(Qc × (Kp)T) × Vp, (4)

where C ∈ R
N×D refers to N object queries with D channels, and Ĉ denotes

the updated object queries. We use the underscript HW to represent the
axis for softmax on spatial dimension, and superscripts p and c to indicate
the feature projected from the pixel features and object queries, respectively.
Qc ∈ R

N×D,Kp ∈ R
HW×D,Vp ∈ R

HW×D stand for the linearly projected fea-
tures for query, key, and value. For simplicity, we ignore the multi-head mecha-
nism and feed-forward network (FFN) in the equation.

As shown in Eq. (4), when updating the object queries, a softmax function
is applied to the image resolution (HW ), which is typically in the range of thou-
sands of pixels for the task of segmentation. Given the huge number of pixels, it
can take many training iterations to learn the attention map, which starts from
a uniform distribution at the beginning (as the queries are randomly initialized).
Each object query has a difficult time to identify the most distinguishable fea-
tures among the abundant pixels in the early stage of training. This behavior is
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very different from the application of transformers to natural language process-
ing tasks, e.g., neural machine translation [4,86], where the input and output
sequences share a similar short length. Vision tasks, especially segmentation
problems, present another challenge for efficiently learning the cross-attention.

Discussion. Similar to cross-attention, self-attention needs to perform a soft-
max function operated along the image resolution. Therefore, learning the atten-
tion map for self-attention may also take many training iterations. An efficient
alternative, such as axial attention [93] or local attention [70] is usually applied
on high resolution feature maps, and thus alleviates the problem, while a solution
to cross-attention remains an open question for research.

k-Means Clustering. In Eq. (4), the cross-attention computes the affinity
between object queries and pixels (i.e., Qc × (Kp)T), which is converted to the
attention map through the spatial-wise softmax (operated along the image res-
olution). The attention map is then used to retrieve (and weight accordingly)
affiliated pixel features to update the object queries. Surprisingly, we observe
that the whole process is actually similar to the classic k-means clustering algo-
rithm [72], which works as follows:

A = argmax
N

(C × PT), (5)

Ĉ = A × P, (6)

where C ∈ R
N×D, P ∈ R

HW×D, and A ∈ R
N×HW stand for cluster centers,

pixel features, and clustering assignments, respectively.
Comparing Eq. (4), Eq. (5), and Eq. (6), we notice that the k-means cluster-

ing algorithm is parameter-free and thus no linear projection is needed for query,
key, and value. The updates on cluster centers are not in a residual manner. Most
importantly, k-means adopts a cluster-wise argmax (i.e., argmax operated along
the cluster dimension) instead of the spatial-wise softmax when converting the
affinity to the attention map (i.e., weights to retrieve and update features).

This observation motivates us to reformulate the cross-attention in vision
problems, especially image segmentation. From a clustering perspective, image
segmentation is equivalent to grouping pixels into different clusters, where each
cluster corresponds to a predicted mask. However, the cross-attention mecha-
nism, also attempting to group pixels to different object queries, instead employs
a different spatial-wise softmax operation from the cluster-wise argmax as in
k-means. Given the success of k-means, we hypothesize that the cluster-wise
argmax is a more suitable operation than the spatial-wise softmax regarding
pixel clustering, since the cluster-wise argmax performs the hard assignment
and efficiently reduces the operation targets from thousands of pixels (HW ) to
just a few cluster centers (N), which (we will empirically prove) speeds up the
training convergence and leads to a better performance.
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3.3 k-means Mask Transformer

Herein, we first introduce the crucial component of the proposed k-means Mask
Transformer, i.e., k-means cross-attention. We then present its meta architecture
and model instantiation.

k-means Cross-Attention. The proposed k-means cross-attention reformu-
lates the cross-attention in a manner similar to k-means clustering:

Ĉ = C + argmax
N

(Qc × (Kp)T) × Vp. (7)

Comparing Eq. (4) and Eq. (7), the spatial-wise softmax is now replaced by
the cluster-wise argmax. As shown in Fig. 1, with such a simple yet effective
change, a typical transformer decoder could be converted to a kMaX decoder.
Unlike the original cross-attention, the proposed k-means cross-attention adopts
a different operation (i.e., cluster-wise argmax) to compute the attention map,
and does not require the multi-head mechanism [89]. However, the cluster-wise
argmax, as a hard assignment to aggregate pixel features for the cluster center
update, is not a differentiable operation, posing a challenge during training. We
have explored several methods (e.g., Gumbel-Softmax [48]), and discover that
a simple deep supervision scheme turns out to be most effective. In particular,
in our formulation, the affinity logits between pixel features and cluster centers
directly correspond to the softmax logits of segmentation masks (i.e., Qc×(Kp)T

in Eq. (7) corresponds to F×CT in Eq. (3)), since the cluster centers aim to group
pixels of similar affinity together to form the predicted segmentation masks. This
formulation allows us to add deep supervision to every kMaX decoder, in order
to train the parameters in the k-means cross-attention module.

Meta Architecture. Figure 2 shows the meta architecture of our pro-
posed kMaX-DeepLab, which contains three main components: pixel encoder,
enhanced pixel decoder, and kMaX decoder. The pixel encoder extracts the pixel
features either by a CNN [41] or a transformer [70] backbone, while the enhanced
pixel decoder is responsible for recovering the feature map resolution as well as
enhancing the pixel features via transformer encoders [89] or axial attention [93].
Finally, the kMaX decoder transforms the object queries (i.e., cluster centers)
into mask embedding vectors from the k-means clustering perspective.

Model Instantiation. We build kMaX based on MaX-DeepLab [92] with the
official code-base [98]. We divide the whole model into two paths: the pixel path
and the cluster path, which are responsible for extracting pixel features and
cluster centers, respectively. Figure 3 details our kMaX-DeepLab instantiation
with two example backbones.

Pixel Path. The pixel path consists of a pixel encoder and an enhanced pixel
decoder. The pixel encoder is an ImageNet-pretrained [81] backbone, such as
ResNet [41], MaX-S [92] (i.e., ResNet-50 with axial attention [93]), and Con-
vNeXt [71]. Our enhanced pixel decoder consists of several axial attention
blocks [93] and bottleneck blocks [41].



k-means Mask Transformer 295

Fig. 1. To convert a typical transformer decoder into our kMaX decoder, we simply
replace the original cross-attention with our k-means cross-attention (i.e., with the
only simple change cluster-wise argmax high-lighted in red) (Color figure online)

Fig. 2. The meta architecture of k-means Mask Transformer consists of three compo-
nents: pixel encoder, enhanced pixel decoder, and kMaX decoder. The pixel encoder
is any network backbone. The enhanced pixel decoder includes transformer encoders
to enhance the pixel features, and upsampling layers to generate higher resolution fea-
tures. The series of kMaX decoders transform cluster centers into (1) mask embedding
vectors, which multiply with the pixel features to generate the predicted masks, and
(2) class predictions for each mask.
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Cluster Path. The cluster path contains totally six kMaX decoders, which are
evenly distributed among features maps of different spatial resolutions. Specifi-
cally, we deploy two kMaX decoders each for pixel features at output stride 32,
16, and 8, respectively.

Loss Functions. Our training loss functions mostly follow the setting of MaX-
DeepLab [92]. We adopt the same PQ-style loss, auxiliary semantic loss, mask-id
cross-entropy loss, and pixel-wise instance discrimination loss [104].

Fig. 3. An illustration of kMaX-DeepLab with ResNet-50 and MaX-S as backbones.
The hidden dimension of FFN is 256. The design of kMaX-DeepLab is general to
different backbones by simply updating the pixel encoder (marked in dark-blue). The
enhanced pixel decoder and kMaX decoder are colored in light-blue and yellow, respec-
tively (Color figure online)

4 Experimental Results

In this section, we first provide our implementation details. We report our main
results on COCO [66] and Cityscapes [28]. We also provide visualizations to
better understand the clustering process of the proposed kMaX-DeepLab. The
ablation studies are provided in the appendix.

4.1 Implementation Details

The meta architecture of the proposed kMaX-DeepLab contains three main com-
ponents: the pixel encoder, enhanced pixel decoder, and kMaX decoder, as shown
in Fig. 2. We provide the implementation details of each component below.
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Pixel Encoder. The pixel encoder extracts pixel features given an image. To
verify the generality of kMaX-DeepLab across different pixel encoders, we exper-
iment with ResNet-50 [41], MaX-S [92] (i.e., ResNet-50 with axial attention [93]
in the 3rd and 4th stages), and ConvNeXt [71].

Enhanced Pixel Decoder. The enhanced pixel decoder recovers the feature
map resolution and enriches pixel features via self-attention. As shown in Fig. 3,
we adopt one axial block with channels 2048 at output stride 32, and five axial
blocks with channels 1024 at output stride 16. The axial block is a bottleneck
block [41], but the 3 × 3 convolution is replaced by the axial attention [93]. We
use one bottleneck block at output stride 8 and 4, respectively. We note that the
axial blocks play the same role (i.e., feature enhancement) as the transformer
encoders in other works [10,24,104], where we ensure that the total number of
axial blocks is six for a fair comparison to previous works [10,24,104].

Cluster Path. As shown in Fig. 3, we deploy six kMaX decoders, where each
two are placed for pixel features (enhanced by the pixel decoders) with output
stride 32, 16, 8, respectively. Our design uses six transformer decoders, aligning
with the previous works [10,24,104], though some recent works [23,65] adopt
more transformer decoders to achieve a stronger performance.

Training and Testing. We mainly follow MaX-DeepLab [92] for training set-
tings. The ImageNet-pretrained [81] backbone has a learning rate multiplier
0.1. For regularization and augmentations, we adopt drop path [45], random
color jittering [29], and panoptic copy-paste augmentation, which is an exten-
sion from instance copy-paste augmentation [34,38] by augmenting both ‘thing’
and ‘stuff’ classes. AdamW [53,73] optimizer is used with weight decay 0.05. The
k-means cross-attention adopts cluster-wise argmax, which aligns the formula-
tion of attention map to segmentation result. It therefore allows us to directly
apply deep supervision on the attention maps. These auxiliary losses attached to
each kMaX decoder have the same loss weight of 1.0 as the final prediction, and
Hungarian matching result based on the final prediction is used to assign super-
visions for all auxiliary outputs. During inference, we adopt the same mask-wise
merging scheme used in [24,65,104,107] to obtain the final segmentation results.

COCO Dataset. If not specified, we train all models with batch size 64
on 32 TPU cores with 150k iterations (around 81 epochs). The first 5k steps
serve as the warm-up stage, where the learning rate linearly increases from 0 to
5 × 10−4. The input images are resized and padded to 1281 × 1281. Following
MaX-DeepLab [92], the loss weights for PQ-style loss, auxiliary semantic loss,
mask-id cross-entropy loss, instance discrimination loss are 3.0, 1.0, 0.3, and 1.0,
respectively. The number of cluster centers (i.e., object queries) is 128, and the
final feature map resolution has output stride 4 as in MaX-DeepLab [92].

We have also experimented with doubling the number of object queries to
256 for kMaX-DeepLab with ConvNeXt-L, which however leads to a performance
loss. Empirically, we adopt a drop query regularization, where we randomly
drop half of the object queries (i.e., 128) during each training iteration, and
all queries (i.e., 256) are used during inference. With the proposed drop query
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regularization, doubling the number of object queries to 256 consistently brings
0.1% PQ improvement under the large model regime.

Cityscapes Dataset. We train all models with batch size 32 on 32 TPU
cores with 60k iterations. The first 5k steps serve as the warm-up stage, where
learning rate linearly increases from 0 to 3 × 10−4. The inputs are padded to
1025× 2049. The loss weights for PQ-style loss, auxiliary semantic loss, mask-id
cross-entropy loss, and instance discrimination loss are 3.0, 1.0, 0.3, and 1.0,
respectively. We use 256 cluster centers, and add an additional bottleneck block
in the pixel decoder to produce features with output stride 2.

4.2 Main Results

Our main results on the COCO [66] and Cityscapes [28] val set are summarized
in Table 1 and Table 2, respectively.

Table 1. COCO val set results. Our FLOPs and FPS are evaluated with the input
size 1200 × 800 and a Tesla V100-SXM2 GPU. †: ImageNet-22K pretraining. �: Using
256 object queries with drop query regularization. ‡: Using COCO unlabeled set

method backbone params FLOPs FPS PQ PQTh PQSt

MaskFormer [24] ResNet-50 [41] 45M 181G 17.6 46.5 51.0 39.8

K-Net [107] ResNet-50 [41] – – – 47.1 51.7 40.3

CMT-DeepLab [104] ResNet-50 [41] – – – 48.5 – –

Panoptic SegFormer [65] ResNet-50 [41] 51M 214G 7.8 49.6 54.4 42.4

Mask2Former [23] ResNet-50 [41] 44M 226G 8.6 51.9 57.7 43.0

kMaX-DeepLab ResNet-50 [41] 57M 168G 22.8 53.0 58.3 44.9

MaX-DeepLab [92] MaX-S [92] 62M 324G - 48.4 53.0 41.5

CMT-DeepLab MaX-S† [92] 95M 396G 8.1 53.0 57.7 45.9

kMaX-DeepLab MaX-S† [92] 74M 240G 16.9 56.2 62.2 47.1

MaskFormer [24] Swin-B (W12)† [70] 102M 411G 8.4 51.8 56.9 44.1

CMT-DeepLab [104] Axial-R104† [104] 135M 553G 6.0 54.1 58.8 47.1

Panoptic SegFormer [65] PVTv2-B5† [95] 105M 349G – 55.4 61.2 46.6

Mask2Former [23] Swin-B (W12)† [70] 107M 466G – 56.4 62.4 47.3

kMaX-DeepLab ConvNeXt-B† [71] 122M 380G 11.6 57.2 63.4 47.8

MaX-DeepLab [92] MaX-L [92] 451M 3692G – 51.1 57.0 42.2

MaskFormer [24] Swin-L (W12)† [70] 212M 792G 5.2 52.7 58.5 44.0

K-Net [107] Swin-L (W7)† [70] – – – 54.6 60.2 46.0

CMT-DeepLab [104] Axial-R104-RFN† [79] 270M 1114G 3.2 55.3 61.0 46.6

Panoptic SegFormer [65] Swin-L (W7)† [70] 221M 816G - 55.8 61.7 46.9

Mask2Former [23] Swin-L (W12)† [70] 216M 868G 4.0 57.8 64.2 48.1

kMaX-DeepLab ConvNeXt-L† [71] 232M 744G 6.7 57.9 64.0 48.6

kMaX-DeepLab� ConvNeXt-L† [71] 232M 749G 6.6 58.0 64.2 48.6

kMaX-DeepLab‡ ConvNeXt-L† [71] 232M 744G 6.7 58.1 64.3 48.8
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COCO val Set. In Table 1, we compare our kMaX-DeepLab with other
transformer-based panoptic segmentation methods on COCO val set. Notably,
with a simple ResNet-50 backbone, kMaX-DeepLab already achieves 53.0% PQ,
surpassing most prior arts with stronger backbones. Specifically, kMaX-DeepLab
outperforms MaskFormer [24] and K-Net [107], all with the ResNet-50 backbone
as well, by a large margin of 6.5% and 5.9%, while maintaining a similar level
of computational costs. Our kMaX-DeepLab with ResNet-50 even surpasses the
largest variants of MaX-DeepLab [92] by 1.9% PQ (while using 7.9× fewer
parameters and 22.0× fewer FLOPs), and MaskFormer (while using 3.7× fewer
parameters and 4.7× fewer FLOPs) by 0.3% PQ, respectively. With a stronger
backbone MaX-S [92], kMaX-DeepLab boosts the performance to 56.2% PQ,
outperforming MaX-DeepLab with the same backbone by 7.8% PQ. Our kMaX-
DeepLab with MaX-S backbone also improves over the previous state-of-art K-
Net with Swin-L [70] by 1.6% PQ. To further push the envelope, we adopt the
modern CNN backbone ConvNeXt [71] and set new state-of-the-art results of
57.2% PQ with ConvNeXt-B and 58.0% PQ with ConvNeXt-L, outperforming
K-Net with Swin-L by a significant margin of 3.4% PQ.

When compared to more recent works (CMT-DeepLab [104], Panoptic Seg-
Former [65], and Mask2Former [23]), kMaX-DeepLab still shows great perfor-
mances without the advanced modules, such as deformable attention [112], cas-
caded transformer decoder [23], and uncertainty-based pointly supervision [56].
As different backbones are utilized for each method (e.g., PVTv2 [95], Swin [70],
and ConvNeXt [71]), we start with a fair comparison using the ResNet-50 back-
bone. Our kMaX-DeepLab with ResNet-50 achieves a significant better per-
formance compared to CMT-DeepLab, Panoptic SegFormer and Mask2Former
by a large margin of 4.5%, 3.4%, and 1.1% PQ, respectively. Additionally,
our model runs almost 3× faster than them (since kMaX-DeepLab enjoys a
simple design without deformable attention). When employing stronger back-
bones, kMaX-DeepLab with ConvNeXt-B outperforms CMT-DeepLab with
Axial-R104, Panoptic SegFormer with PVTv2-B5, and Mask2Former with Swin-
B (window size 12) by 3.1%, 1.8%, and 0.8% PQ, respectively, while all models
have a similar level of cost (parameters and FLOPs). When scaling up to the
largest backbone for each method, kMaX-DeepLab outperforms CMT-DeepLab,
and Panoptic SegFormer significantly by 2.7% and 2.2% PQ. Although we
already perform better than Mask2Former with Swin-L (window size 12), we
notice that kMaX-DeepLab benefits much less than Mask2Former when scaling
up from base model to large model (+0.7% for kMaX-DeepLab but +1.4% for
Mask2Former), indicating kMaX-DeepLab’s strong representation ability and
that it may overfit on COCO train set with the largest backbone. Therefore,
we additionally perform a simple experiment to alleviate the over-fitting issue
by generating pseudo labels [12] on COCO unlabeled set. Adding pseudo labels
to the training data slightly improves kMaX-DeepLab, yielding a PQ score of
58.1% (the drop query regularization is not used here and the number of object
query remains 128).
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Cityscapes val Set. In Table 2, we compare our kMaX-DeepLab with other
state-of-art methods on Cityscapes val set. Our reported PQ, AP, and mIoU
results use the same panoptic model to provide a comprehensive comparison.
Notably, kMaX-DeepLab with ResNet-50 backbone already surpasses most base-
lines, while being more efficient. For example, kMaX-DeepLab with ResNet-
50 achieves 1.3% PQ higher performance compared to Panoptic-DeepLab [22]
(Xception-71 [27] backbone) with 20% computational cost (FLOPs) reduced.
Moreover, it achieves a similar performance to Axial-DeepLab-XL [93], while
using 3.1× fewer parameters and 5.6× fewer FLOPs. kMaX-DeepLab achieves
even higher performances with stronger backbones. Specifically, with MaX-S
backbone, it performs on par with previous state-of-the-art Panoptic-DeepLab
with SWideRNet [16] backbone, while using 7.2× fewer parameters and 17.2×
fewer FLOPs. Additionally, even only trained with panoptic annotations, our
kMaX-DeepLab also shows superior performance in instance segmentation (AP)
and semantic segmentation (mIoU). Finally, we provide a comparison with the
recent work Mask2Former [23], where the advantage of our kMaX-DeepLab
becomes even more significant. Using the ResNet-50 backbone for a fair com-
parison, kMaX-DeepLab achieves 2.2% PQ, 1.2% AP, and 2.2% mIoU higher
performance than Mask2Former. For other backbone variants with a similar
size, kMaX-DeepLab with ConvNeXt-B is 1.9% PQ higher than Mask2Former
with Swin-B (window size 12). Notably, kMaX-DeepLab with ConvNeXt-B
already obtains a PQ score that is 1.4% higher than Mask2Former with their
best backbone. With ConvNeXt-L as backbone, kMaX-DeepLab sets a new
state-of-the-art record of 68.4% PQ without any test-time augmentation or
COCO [66]/Mapillary Vistas [75] pretraining.

Fig. 4. Visualization of kMaX-DeepLab (ResNet-50) pixel-cluster assignments at each
kMaX decoder stage, along with the final panoptic prediction. In the cluster assignment
visualization, pixels with same color are assigned to the same cluster and their features
will be aggregated for updating corresponding cluster centers

Visualizations. In Fig. 4, we provide a visualization of pixel-cluster assign-
ments at each kMaX decoder and final prediction, to better understand the
working mechanism behind kMaX-DeepLab. Another benefit of kMaX-DeepLab
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Table 2. Cityscapes val set results. We only consider methods without extra data [66,
75] and test-time augmentation for a fair comparison. We evaluate FLOPs and FPS
with the input size 1025× 2049 and a Tesla V100-SXM2 GPU. Our instance (AP) and
semantic (mIoU) results are based on the same panoptic model (i.e., no task-specific
fine-tuning). †: ImageNet-22K pretraining

method backbone params FLOPs FPS PQ AP mIoU

Panoptic-DeepLab [22] Xception-71 [27] 47M 548G 5.7 63.0 35.3 80.5

Axial-DeepLab [93] Axial-ResNet-L [93] 45M 687G – 63.9 35.8 81.0

Axial-DeepLab [93] Axial-ResNet-XL [93] 173M 2447G – 64.4 36.7 80.6

CMT-DeepLab [104] MaX-S [92] – – – 64.6 – 81.4

Panoptic-DeepLab [22] SWideRNet-(1,1,4.5) [16] 536M 10365G 1.0 66.4 40.1 82.2

Mask2Former [23] ResNet-50 [41] – – – 62.1 37.3 77.5

Mask2Former [23] Swin-B (W12)† [70] – – – 66.1 42.8 82.7

Mask2Former [23] Swin-L (W12)† [70] – – – 66.6 43.6 82.9

SETR [109] ViT-L† [32] – – – – – 79.3

SegFormer [99] MiT-B5 [99] 85M 1460G 2.5 – – 82.4

Mask R-CNN [40] ResNet-50 [41] – – – – 31.5 -

PANet [68] ResNet-50 [41] – – – – 36.5 –

kMaX-DeepLab ResNet-50 [41] 56M 434G 9.0 64.3 38.5 79.7

kMaX-DeepLab MaX-S† [92] 74M 602G 6.5 66.4 41.6 82.1

kMaX-DeepLab ConvNeXt-B† [71] 121M 858G 5.2 68.0 43.0 83.1

kMaX-DeepLab ConvNeXt-L† [71] 232M 1673G 3.1 68.4 44.0 83.5

is that with the cluster-wise argmax, visualizations can be directly drawn as
segmentation masks, as the pixel-cluster assignments are exclusive to each other
with cluster-wise argmax. Noticeably, the major clustering update happens in
the first three stages, which already updates cluster centers well and generates
reasonable clustering results, while the following stages mainly focus on refin-
ing details. This coincides with our observation that 3 kMaX decoders are suffi-
cient to produce good results. Besides, we observe that 1st clustering assignment
tends to produce over-segmentation effects, where many clusters are activated
and then combined or pruned in the later stages. Moreover, though there exist
many fragments in the first round of clustering, it already surprisingly distin-
guishes different semantics, especially some persons are already well clustered,
which indicates that the initial clustering is not only based on texture or loca-
tion, but also depends on the underlying semantics. Another visualization is
shown in Fig. 5, where we observe that kMaX-DeepLab behaves in a part-to-
whole manner to capture an instance. More experimental results (e.g., ablation
studies, test set results) and visualizations are available in the appendix.
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Fig. 5. Visualization of kMaX-DeepLab (ResNet-50) pixel-cluster assignments at each
kMaX decoder stage, along with the final panoptic prediction. kMaX-DeepLab shows
a behavior of recognizing objects starting from their parts to their the whole shape
in the clustering process. For example, the elephant’s top head, body, and nose are
separately clustered at the beginning, and they are gradually merged in the following
stages

5 Conclusion

In this work, we have presented a novel end-to-end framework, called k-means
Mask Transformer (kMaX-DeepLab), for segmentation tasks. kMaX-DeepLab
rethinks the relationship between pixel features and object queries from the
clustering perspective. Consequently, it simplifies the mask-transformer model by
replacing the multi-head cross attention with the proposed single-head k-means
clustering. We have tailored the transformer-based model for segmentation tasks
by establishing the link between the traditional k-means clustering algorithm and
cross-attention. We hope our work will inspire the community to develop more
vision-specific transformer models.
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