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Abstract. For Weakly-Supervised Semantic Segmentation (WSSS)
with image-level annotation, mostly relies on the classification network
to generate initial segmentation pseudo-labels. However, the optimiza-
tion target of classification networks usually neglects the discrimina-
tion between different pixels, like insignificant foreground and back-
ground regions. In this paper, we propose an adaptive Spatial Binary
Cross-Entropy (Spatial-BCE) Loss for WSSS, which aims to enhance
the discrimination between pixels. In Spatial-BCE Loss, we calculate
the loss independently for each pixel, and heuristically assign the opti-
mization directions for foreground and background pixels separately. An
auxiliary self-supervised task is also proposed to guarantee the Spatial-
BCE Loss working as envisaged. Meanwhile, to enhance the network’s
generalization for different data distributions, we design an alternate
training strategy to adaptively generate thresholds to divide the fore-
ground and background. Benefiting from high-quality initial pseudo-
labels by Spatial-BCE Loss, our method also reduce the reliance on
post-processing, thereby simplifying the pipeline of WSSS. Our method
is validated on the PASCAL VOC 2012 and COCO 2014 datasets, and
achieves the new state-of-the-arts. Code is available at https://github.
com/allenwu97/Spatial-BCE.
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1 Introduction

Semantic segmentation aims to allocate labels to each pixel of an image, which
has made significant progress driven by the Deep Neural Networks (DNNs). How-
ever, fully-supervised semantic segmentation requires pixel-level annotations,
which are costly and time-consuming. Thus, researchers are motivated to use
cheaper alternatives, including bounding boxes [23,30], scribbles [26], points [3]
and image-level labels [31]. Among them, the image-level labels can be directly
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obtained from existing datasets, or when constructing large-scale datasets, web
search engines can automatically provide images and corresponding category
tags. Thus the image-level labels based methods have lowest cost and become
the mainstream of WSSS.

Fig. 1. The optimization directions of pixels when the network is trained by different
loss function. The blue and red arrows correspond to the directions towards foreground
and background, respectively. Best viewed in color. (Color figure online)

Most image-level labels based WSSS methods rely on Class Activation Maps
(CAMs) [44] to generate the initial pseudo-labels for the training of semantic
segmentation networks. Since the characteristics of the classification network,
the CAMs tend to highlight the discriminative object regions, rather than the
complete object regions, which deviates from the requirement of semantic seg-
mentation. In this case, most previous WSSS works are motivated to extend the
active regions of CAMs. One common solution is to obtain and fuse multiple
highlight regions by multiple CAMs, including using multiple dilated convo-
lutional blocks [36] and networks in different epochs [19]. These methods are
intuitive, but easily to be over-activated or under-activated when faced with
unconventional object sizes and shapes, and also their effects highly depend on
hyper-parameters which harms the generalization.

In practice, the size of the foreground regions in the initial pseudo-label
can be adjusted by the threshold, and a small threshold often refers to large
foreground regions. However, classification networks usually ignore the feature
discrimination between pixels, especially pixels in non-discriminative foreground
regions and background regions. It is difficult and even unreasonable to divide
precise target object boundaries by a global threshold overall images. Therefore,
the crucial point to improve the quality of the initial pseudo-labels is enhancing
the discrimination between foreground and background pixels, so that we can
easily identify the object boundaries during inference.

For each positive category, the traditional BCE loss is calculated based on
the average of the whole probability map, thus all pixels are optimized in the
same direction, which reduces the discrimination between the foreground and
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background. Thus, we propose a novel Spatial Binary Cross-Entropy (Spatial-
BCE) loss, which optimizes the foreground and background pixels in different
directions, as shown in Fig. 1. Spatial-BCE Loss is designed to calculate the loss
independently for each pixel. The optimization direction of each pixel depends
on its probability in the prediction map and the threshold which divides the fore-
ground and background. If its value is larger than the threshold, the parameters
are optimized toward the foreground, otherwise, the parameters are optimized
toward the background. With only image-level labels, the network lacks guid-
ance on the division of foreground and background at the pixel level. Therefore,
we introduce an auxiliary task to constrain the distribution of pixel probability,
making Spatial-BCE Loss correctly assign the optimization direction for each
pixel. Noticed that this auxiliary task is self-supervised, there is no requirement
of the additional data. With this auxiliary task, the network which is trained
by Spatial-BCE Loss, can correctly divide the foreground and background pixels
and increase the discrimination between them. In that case, we can further obtain
high-quality initial pseudo-labels with not only complete foreground regions but
also precise boundaries.

In Spatial-BCE, we need a threshold to divide the foreground and back-
ground pixels. Although it can be a fixed threshold, a better way is to gener-
ate it through the network attentively for diverse inputs. Therefore, we design
an alternate training strategy to alternately optimize this threshold. Previous
methods determine such an optimal threshold through trial-and-error. However,
it inevitably causes performance degradation when there is a lack of pixel-level
labels for comparison required for trial-and-error in a real scenario of WSSS. Due
to Spatial-BCE Loss allowing the network to generate the threshold adaptively,
we can directly use it during inference. This training strategy makes us maintain
stable performance even if without pixel-level labels as a comparison.

Our main contributions can be summarized as follows:

– We propose a novel Spatial-BCE Loss for WSSS, which can optimize the
foreground and background pixels separately to increase the discrimination
between them. With the help of an auxiliary self-supervised task, Spatial-BCE
allows the network to generate high-quality initial labels.

– We design an alternate training strategy to allow the network to adaptively
generate foreground and background dividing threshold. In that case, the net-
work can generate the dividing threshold by itself during inference, reducing
the impact of hyper-parameters on performance.

– Our method greatly improves the quality of the initial pseudo-labels, which in
turn benefits the trained semantic segmentation network. Even if we remove
post-processing that relies on additional networks or data, we still achieve
competitive results. Under the same experimental configuration, we achieve
the new state-of-the-arts of PASCAL VOC 2012 and MS-COCO 2014.
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2 Related Work

2.1 Pseudo-Label Generation

For WSSS of image-level labels, the common pipeline is to generate pseudo-
labels through a classification network, and then use the pseudo-labels to train a
semantic segmentation network. Most methods use CAM as the initial segmen-
tation pseudo-labels. Since CAM only highlights the discriminative regions, the
previous works are motivated by expanding the focus regions of CAM. Hou et al.
[17] proposed a self-erasing network, which forces the network to pay attention
to the remaining part of the object by erasing discriminative regions. Erasing
is intuitive and effective for expanding CAM, but it is difficult to give reliable
termination conditions the iterative erasure. Wei et al. [36] expand the recep-
tive field of discriminative features by adding dilated convolutions with different
dilated rates. Different receptive fields can generate CAMs with different distri-
butions of highlight regions. After the fusion of multiple CAMs, the purpose of
expanding the highlight regions can be achieved. A similar method also includes
the generation and fusion of multiple CAMs through different epoch parame-
ters [19] and different layers [25]. This idea of merging multiple CAMs is mostly
based on the designer’s prior knowledge rather than guiding the network to
learn to focus on the non-discriminative regions. Therefore, the extended range
is relatively fixed and the robustness is low.

Most of the latest methods tend to guide the network to focus on non-
discriminative regions autonomously by adding auxiliary tasks. SEAM [35] intro-
duced consistency regularization to provide self-supervision for network learn-
ing; MCIS [33] explore the semantic relationships across images; Chang et al.
[5] add sub-categories for each image through clustering, allowing the network
to focus on more fine-grained features. EDAM [37] effectively combines seman-
tic segmentation tasks and classification tasks, letting the classification network
directly predict the mask of each category. EPS [24] use additional saliency maps
as supervision during training, so that the predictions can have accurate object
boundaries and discard co-occurring pixels. The above auxiliary tasks are based
on the classification task, and the loss function of the classification task is BCE
Loss. However, we found that BCE Loss has the disadvantage when it is used
for WSSS. BCE Loss does not distinguish between foreground pixels and back-
ground pixels, which leads to the confusion of foreground and background in
CAM. Therefore, we upgraded the BCE Loss to Spatial-BCE Loss, make the
network can optimize the foreground and background separately, solve the prob-
lem from the roots.

2.2 Pseudo-Label Refinement

Besides improving the quality of the initial pseudo-labels, some works design
additional networks to refine the initial pseudo-labels. SEC [20] proposed the
three principles of seed, expansion, and constraint, which are followed by many
subsequent works. DSRG [18] combines the seeded region growing with DNN,
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uses CAM as the initial cue, and continuously expands the seed regions. Affini-
tyNet [2] generates a transition matrix by learning the similarity between pixels,
and implements the semantic propagation by random walks. Ahn et al. [1] used
the high-confidence foreground and high-confidence background to generate the
supervision of the object boundaries, which further improves the accuracy when
refining CAMs. Some works [13,19,24,33,36,37] use additional saliency maps as
background cues to enhance the details of the object boundaries. Due to class-
agnostic, these post-processings not only increase the complexity of the pipeline,
but also easily introduce new noise. Our method can achieve competitive results
without using additional saliency maps or training additional networks.

Fig. 2. Visualization of pseudo-labels from CAMs with different background threshold
and our adaptive threshold. Best viewed in color. (Color figure online)

3 Approach

3.1 Overview

For an image with a specific image-level category, there is only part of pixels that
strictly belong to such category, which we call target pixels, and the remained
parts are the non-target pixels. In a multi-label classification task with tradi-
tional BCE Loss, the features of all pixels are averaged for the prediction of
image probabilities belonging to certain categories. In this case, all pixels are
assigned with the same optimization direction. Therefore, the discrimination of
features between different pixels will be ignored, especially for the non-target pix-
els (e.g., pixels of background) and non-discriminative target pixels. The neglect
of feature discrimination makes it difficult to get the precise object regions in the
segmentation task. In Fig. 2, we present the pseudo-labels with various thresholds
to distinguish the target pixels and the non-target pixels from the classification
network. When setting a large threshold (0.7 or 0.4), the pseudo-labels only acti-
vate partial objects. To recall the rest target parts by reducing the threshold to
0.2, irrelative non-target regions surrounding the boundary are also activated.
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Considering the feature discrimination of different pixels, we propose the
Spatial-BCE Loss to optimize the prediction of pixels individually. Let’s denote
F the feature map of image I, and P c = Sigmoid(Linearc(GAP (F ))) rep-
resents the probability of I belonging to the cth category, where GAP is the
Global Average Pooling. In the Spacial-BCE Loss, we generate the probability
map P c = Sigmoid(Linearc(F )) to calculate the loss of cth category, where
P c = {pci} ∈ Rw×h, and pci is probability of ith pixel belonging to cth category.
Generally, the function of Spatial-BCE Loss is written as:

LSpatial−BCE =
C∑

c=1

h×w∑

i=1

(ycR(pci ) − (1 − yc)log(1 − pci )) (1)

where R(·) is the pixel-wise re-factoring strategy for positive categories, and
yc is the image-level label of cth category. The details of Spatial-BCE loss are
proposed in Sect. 3.2. To prevent the collapsing of Spatial BCE loss, an auxiliary
self-supervision task is introduced in Sect. 3.3. Different from most existing works
[13,19,24,33] using the same threshold for all categories through trial-and-error,
our adaptive threshold strategy is specified in Sect. 3.4.

3.2 Spatial-BCE Loss

Assuming the category-specific threshold tc is pre-defined, we treat the pixels
whose probabilities exceed the threshold tc as target candidates (pci > tc), oth-
erwise as non-target candidates (pci ≤ tc). The main idea of LSpatial−BCE is to
divide the target candidates from non-target ones, and penalize the uncertain
candidates by R(·). To this end, we propose three principles to design R(·):
1. The uncertainty of target candidates monotonically decreases with the incre-

ment of predicted probabilities, and reaches 0 if the probability is 1.
2. Likewise, the uncertainty of non-target candidates decreases monotonically

as the predicted probabilities decrease and is 0 with the probability of 0.
3. The uncertainty of regions reach maximum if the predicted probability is

surrounding the aforementioned threshold.

Based on principle 1&3, we define the uncertainty of target candidates as:

Rtg(pci ) = −(pci − tc)2 + (1 − tc)2 (2)

where pci ∈ (tc, 1). As a monotonically decreasing function over pci , Rtg(1) =
0 (satisfying principle 1), and reaches the maximum value when pci approaches
tc (satisfying principle 3). In practice, we use an α-balanced variable of Rtg(pci ):

Rtg(pci ) = −α(pci − tc)2 + 1 (3)

where α = (1 − tc)−2 is a variable to normalize the maximum value to be 1.
Similarly, for pixels in non-target candidates (pci ∈ (0, tc]), following principle

2&3, we define the uncertainty of non-target candidates as:

Rntg(pci ) = −β(pci − tc)2 + 1 (4)
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where β = tc−2 is a normalized variable for non-target pixels.
Finally, the R(pci ) can be written as a differentiable piecewise function:

R(pci ) =
{

Rtg(pci ) pci > tc

Rntg(pci ) pci ≤ tc
(5)

Fig. 3. The curve of uncertainty for the positive samples with different prediction
probabilities. Best viewed in color. (Color figure online)

In Fig. 3, we visualize the pixel uncertainty of positive samples by BCE Loss
and Spatial-BCE Loss respectively. The solid lines represent R(pci ) with different
tc, and the dashed line refers to the log pci which is the uncertainty metric in BCE
Loss. Different from BCE Loss, which regards samples with low probability as
the main optimization object, R(pci ) turns to consider it as a confident non-
target pixel. Furthermore, R(pci ) increases the uncertainty of pci when the value
surrounds tc, allowing the network to focus more on the hard-examples. Since the
value of tc is adaptively learned (sec Sect. 3.4), R(pci ) has strong generalization
when assigning optimization directions to pixels on different images.

3.3 Auxiliary Supervision

As we may observe in the experiment, the Spatial-BCE Loss can easily collapse
to a trivial solution that the probabilities of all pixels are zero. Therefore, we
import the distribution of target and non-target pixels as an extra constraint
for the training of Spatial-BCE Loss. Since this pixel distribution is lacking in
image-level labels, we design a self-supervised method without additional data
to obtain it.

Given the image-level labels, we first train a classification network by BCE
Loss to generate rough pseudo-labels. After using dense Conditional Random
Field (dCRF) [21] for enhancement, we calculate Qc for each image as:

Qc =
∑h×w

i=1 |li = c|
∑h×w

i=1 |li �= c|
(6)
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where li is the predicted category of ith pixel after dCRF, and Qc represents
Target and Non-Target (T/NT ) proportion of the cth category. Note again that
Qc is calculated independently for each image.

With the initialized Qc, we integrate our self-supervised task into the network
as an extra constraint. We first predict the T/NT proportion of images by:

P̂ c =
∑h×w

i=1 pci∑h×w
i=1 (1 − pci )

(7)

Then, we urge the predicted P̂ c by current network to approach Qc. To this end,
the Kullback-Leibler (KL) Divergence is used as the loss function:

DKL =
Pos∑

c=1

ycP̂ clog(
P̂ c

Qc
) (8)

where Pos is the positive categories of corresponding image. Although the initial
Qc is not accurate, it still provides sufficient constrain for the distribution of
pixels, thereby preventing the model from collapsing. In our experiment, we
update Qc of training images by the on-training network at every 8k iterations.

Finally, we use L = LSpatial−BCE + DKL as the whole losses. DKL provides
the constraint for the distribution of target and non-target pixels. LSpatial−BCE

converts the blurry soft predictions into polarized results, thus reducing the
uncertainty of target and non-target pixels. The conjunction of LSpatial−BCE and
DKL for joint training induces the network gradually generates more accurate
pseudo-labels, as well as T/NT proportion.

3.4 Adaptive Threshold

We assume the category-specific threshold tc is pre-defined in Sect. 3.2. In prac-
tice, rather than treating tc as a fixed hyper-parameter, we generate tc adaptively
during the training process, and the algorithm is presented in Algorithm 1.

Specifically, we separate every γ iterations as a training phase. At the first θ
iterations of each phase, we initialize the threshold t based on T/NT proportion
Q for input images. In detail, we estimate the coarse proportion of target pixels
in the image for each positive category c by Qc

1+Qc , and use the Qc

1+Qc -th percentile
of predicted probabilities Pc as the image-specific category threshold tc. In this
case, the network is only updated by the gradient of loss w.r.t P . This strategy
provides a relatively reliable value for tc and thus stabilizes the network training.

To chase a better threshold, we generate tc by the network through convolu-
tion layers and update it via the Spatial-BCE loss in the rest (γ − θ) iterations
of each training phase. Note that the gradient of loss w.r.t P is detached in this
sub-phase, since simultaneous learning of t and P usually result in the instabil-
ity of network training. As aforementioned, we update the T/NT proportion Q
based on the on-training network parameters at the last iteration of each phase.
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Pseudo-Label Generation. During inference, we directly use t generated by net-
work to as the image-specific threshold of foreground and background. Generally,
the pixel category li for specific image is determined by:

li =
{

arg maxc(Sc
i ) if max(Sc

i ) > 0
background otherwise (9)

where Sc
i = {pci − tc,∀c ∈ Pos} is the de-biased probability set of pixels for

cth positive category. This strategy of adaptive threshold allows our method to
select reliable dividing threshold (see Fig. 2), and thus alleviates the degradation
of performance caused by artificial hyper-parameters.

Algorithm 1. Training with Adaptive Threshold
Input: Initial T/NT proportion Q; Hyper-parameter θ, γ
Output: Probability map P ; Thresholds t

for iter < Iteration do
if iter%γ < θ then

t = Q
1+Q

-th percentile of P
P = P .update()

else
t = t.update()
P = P .detach()
if iter%γ == γ − 1 then

update Q
end if

end if
end for

4 Experiments

4.1 Datasets and Evaluation Metric

We train and validate our method on PASCAL VOC 2012 [12] and MS-COCO
2014 [27]. The PASCAL VOC 2012 contains 21 categories (including a back-
ground category). Following the previous works, we use the augmented training
set [15] containing 10, 582 images for training. The validation set and test set
of PASCAL VOC 2012 contain 1, 449 and 1, 456 images respectively. The MS-
COCO 2014 data set contains 81 categories including a background category, and
the training set and validation set contain 82, 081 and 40, 137 images, respec-
tively. We have excluded images that do not contain any foreground categories
in MS-COCO 2014 as [9,24]. As some pixels in the ground-truth of MS-COCO
overlap with multiple categories, we use the annotation of COCO-Stuff [4] as an
alternative, which shares the same image set with MS-COCO.

We validate our method on the validation and test set of PASCAL VOC and
the validation set of MS-COCO. The performance of the test set of PASCAL
VOC is obtained by submitting the results to the official evaluation website. For
all experiments, the mean IoU (mIoU) is used as the evaluation metric.
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4.2 Implementation Details

We use ResNet38 [38] as the backbone of the classification network in our
method. We randomly crop each image to the size of 368 × 368 and use Rando-
mAug [10] as the data augmentation during training. During training, we also
set learnable category-specific logit scales, which are initialized to ln(10). A large
logit scale can decrease the uncertainty that the pixel belongs to the foreground
or background and speed up the convergence. During inference, we drop out logit
scales to make prediction smoother, which is convenient for finding the optimal
threshold. We perform multi-scales fusion when generating the initial pseudo-
labels. After generating the pseudo-labels, we respectively apply IRN [1] and
saliency maps generated by PoolNet [28] as post-processing. In different config-
urations, we use Deeplab-LargeFOV [6] and Deeplab-ASPP [7] as the semantic
segmentation network, and their backbones are ResNet101 [16] and VGG16 [32]
respectively. All backbones are pretrained on ImageNet [11].

We train our model on 4 T V100 GPUs with 16 GB memory. We use the SGD
optimizer and set the initial learning rate to 10−2. In the initialization phase,
the learning rate (LR) will drop from 10−2 to 10−3. After each iteration of Qc,
the LR will drop from 10−3 to 0. Other important hyper-parameters are set as
follows: batch-size is 24, weight-decay is 5e−4, and momentum is 0.9.

4.3 Determining Thresholds

To determine the optimal threshold tc, most of the previous methods need to tra-
verse the range of [0, 1] to generate pseudo-labels with different thresholds. The
final threshold is obtained by calculating mIoU with the pixel-level ground-truth
of the training set. Our Spatial-BCE loss allows the network to adaptively gen-
erate the tc, as mentioned in Sect. 3.4. In that case, we can do inference without
comparing with the pixel-level ground-truth, more strictly following the require-
ments of WSSS. In the subsequent experiments, we use * to indicate the results
of using the adaptive threshold. For a fair comparison with previous methods,
we also report the performance of manually choosing the optimal threshold.

4.4 Comparisons to State-of-the-Arts

In Table 1, we compare the quality of pseudo-labels of different methods. Baseline
means method with pseudo-labels generated by ResNet38 based classification
network using multi-scale inference through DA Layer [37], and the mIoU on
training set of PASCAL VOC is 53.0%. The different ways to generate thresholds
are mentioned in Sect. 4.3. After iteratively updating Qc by 3 times, our initial
pseudo-labels achieve mIoU of 65.3% with the adaptive thresholds, which is 9.7%
higher than the previous SoTA of AdvCAM [22]. Since we have already used
dCRF before updating Qc, we also list results after dCRF for fair comparisons.
It shows that our method is 4.2% higher than the previous SoTA, even if we do
not need pixel-level labels during inference. When we manually choose the best
threshold as previous works, our results can be 8.3% higher than the previous
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Table 1. The mIoU (%) of the initial pseudo-labels (Init) and after refining by dCRF
(+dCRF), on PASCAL VOC 2012 training set.

Method Init +dCRF

Baseline 53.0 60.2

Chang et al. [CVPR2020] [5] 50.9 55.3

SEAM[CVPR2020] [35] 55.4 56.8

AdvCAM[CVPR2021] [22] 55.6 62.1

Ours* 65.3 66.3

Ours 68.1 70.4

SoTA. The significant improvements on the initial pseudo-labels quality laid the
foundation for us to simplify the post-processing process.

Table 2. Comparison to previous state-of-the-art approaches for WSSS on PASCAL
VOC 2012 validation and test sets. I: Image-level labels, S: Saliency maps.

Method Sup Val Test

IRNet[CVPR2019] [1] I 63.5 64.8

BES[ECCV2020] [8] I 65.7 66.6

CONTA[NeurIPS2020] [43] I 66.1 66.7

RRM[AAAI2020] [42] I 66.3 66.5

MBMNet[MM2020] [29] I 66.2 67.1

ECS-Net[ICCV2021] [34] I 66.6 67.6

AdvCAM[CVPR2021] [22] I 68.1 68.0

Ours* I 68.5 69.7

Ours I 70.0 71.3

OAA+
[ICCV2019] [19] I,S 65.2 66.4

CIAN[AAAI2020] [14] I,S 64.3 65.3

MCIS[ECCV2020] [33] I,S 66.2 66.9

ICD[CVPR2020] [13] I,S 67.8 68.0

AuxSegNet[ICCV2021] [39] I,S 69.0 68.6

NSROM[CVPR2021] [41] I,S 70.4 70.2

EDAM[CVPR2021] [37] I,S 70.9 70.6

EPS[CVPR2021] [24] I,S 71.0 71.8

Ours* I,S 70.5 71.6

Ours I,S 71.8 73.4
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Fig. 4. Qualitative examples of segmentation results on the validation set of PAS-
CAL VOC 2012 and MS-COCO 2014. (a) Original images, (b) Ground truth, (c) Our
predictions. Best viewed in color. (Color figure online)

Table 2 shows the results on the PASCAL VOC 2012 validation and test
set. The mainstream post-processing in previous methods is divided into two
groups: methods with only image-level labels (such as AffinityNet [2], IRN [1])
or using additional saliency map. When there are only image-level labels, the
post-processing relies on dCRF to construct the supervision for training extra
network. Due to the training of extra network also requiring pixel-level ground-
truth to finetune the hyper-parameters, we only use dCRF when we adaptively
generate thresholds. It can be seen that under the premise of removing additional
network and optimal threshold, our method can still achieve the new SoTA.
When our method uses IRN as post-processing, the results are higher than the
SoTA of the same post-processing by 1.9% and 3.3% on the validation set and
test set, respectively.

Another mainstream post-processing method is using a pre-trained saliency
detection network to generate saliency maps, and use saliency maps as the back-
ground cues, and the predictions as the foreground cues. Saliency map has accu-
rate boundaries, but it can only highlight salient objects in images that are class-
agnostic. To reduce the noise, we introduce the approach mentioned in EDAM
[37], modifying the misjudgment regions in the saliency maps based on the pre-
dicted probability maps. In the end, our performance based on the saliency maps
is 71.8% and 73.4% on the validation set and test set, also achieving the new
SoTA of this experimental configuration.
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Table 3. Comparison to previous SoTA approaches of weakly-supervised semantic
segmentation on MS-COCO 2014 validation set.

Method Backbone Sup Val

SEC[ECCV2016] [20] VGG16 I + S 22.4

DSRG[CVPR2018] [18] VGG16 I + S 26.0

ADL[TPAMI2020] [9] VGG16 I + S 30.8

CONTA[NeurIPS2020] [43] ResNet38 I 32.8

SGAN[ACCESS2020] [40] VGG16 I + S 33.6

AuxSegNet[ICCV2021] [39] ResNet38 I + S 33.6

EPS[CVPR2021] [24] VGG16 I + S 35.7

Ours* VGG16 I 35.2

Ours VGG16 I + S 38.6

Table 3 shows the results of our method on MS-COCO 2014. On the MS-
COCO dataset, we use VGG16 as the backebone, and use original CAMs as
initial pseudo-labels. When we only use image-level labels and adaptively gener-
ate thresholds, we can achieve comparable results with previous SoTA which use
extra saliency maps. If We use the same post-processing strategy which is men-
tioned above for saliency maps. On the validation set, our segmentation network
achieves mIoU of 38.6%, which is 2.9% higher than EPS [23].

4.5 Ablation Studies

Iteratively Update of Qc. Since the model generates more accurate T/NT
proportion during the training process, we update Qc at every 8k iterations to
make Qc gradually approaches ground-truth. In Table 4, we show the mIoU of
the pseudo-labels after each phase. It can be seen that the improvement in the
first iteration is most significant, and then the improvements gradually weaken.
Considering the time cost, we terminate the training process after the third
phase. Based on two different strategies for determining the threshold of pseudo-
labels, we improve the performance of 6.1% and 10.2% respectively compared
with the baseline. It is worth noting that our method does not depend on the
specific network structure, in theory, any current model can be further finetuned
by our method to achieve performance enhancement.
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Fig. 5. Visualization of heatmaps on PASCAL VOC 2012. (a) Heatmap generated by
our baseline. (b) Our final heatmap. Best viewed in color. (Color figure online)

Table 4. The mIoU on PASCAL VOC 2012 training set when each time Qc is updated.

Iteration Init +dCRF

Baseline 53.0 60.2

Phase1*/Phase1 61.7/64.2 64.4/68.6

Phase2*/Phase2 64.5/67.5 66.1/70.7

Phase3*/Phase3 65.3/68.1 66.3/70.4

Contribution of Components. In Table 5, we measure the effect of different
loss functions on the performance. After generating the initial Qc based on the
same results, we show the results of using only DKL and LSpatial−BCE + DKL.
When Qc is updated after the first phase, the gap between the two sets is not
obvious, only 1.2%. However, when Qc is updated after the second phase, the
gap increases to 3.8%. It can be concluded that without Spatial-BCE to optimize
the distribution of predicted probability, DKL will soon fall into the bottleneck,
and the performance cannot be continuously improved.

In Table 6, we show the performance of pseudo-labels when the T/NT pro-
portion is obtained in different ways. When tc is determined by Q, the T/NT
proportion of prediction is fixed, so the performance is difficult to improve. When
the tc is adaptively generated based on P , the network has the opportunity to
optimize T/NT proportion of prediction, which leads to better results.

Table 5. The mIoU on PASCAL VOC 2012 training set when the network is trained
by different loss function.

Loss Init Phase1 Phase2

DKL 60.2 63.0 63.7

LSpatial−BCE + DKL 60.2 64.2 67.5
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Table 6. The mIoU on PASCAL VOC 2012 training set when the T/NT proportion
is determined in different ways.

Method Init Phase1 Phase2

Fixed 60.2 59.7 60.5

Adaptive 60.2 61.7 64.5

Discrimination Between Foreground and Background. In Fig. 5, we com-
pare heatmaps generated by our method with heatmaps generated by our base-
line. It can be seen that after the fineturn by Spatial-BCE, the highlight regions
of the heatmaps are more complete, and the activations of the background
regions are significantly reduced. The initial heatmaps are also an active part of
the background regions while highlighting the regions of the object. Our heatmap
can be found that the activation degrees of the pixels on the boundary are nearly
the same, which makes us completely divide the foreground regions. At the same
time, near the boundary of the object, the activation degree of the pixels drops
rapidly (the color changes from red to blue), which means that it hardly divides
the background into the foreground when generating pseudo-labels, avoiding
over-activation. This is the contribution of Spatial-BCE which increases the dis-
crimination between the pixels of the foreground and background.

5 Conclusion

In this paper, we propose the novel loss function, Spatial-BCE Loss, to improve
the quality of initial pseudo-labels for weakly-supervised semantic segmentation.
Spatial-BCE Loss is re-factoring from the traditional BCE Loss, and is urged to
assign the different optimization directions for the target and non-target pixels
of each positive category. Through our alternate training, Spatial-BCE Loss can
not only improve the feature discrimination between foreground and background
pixels, but also allow the network to adaptively generate dividing threshold.
The trained classification network can generate initial pseudo-labels without
additional networks or data with accurate boundaries. Benefiting from high-
quality initial pseudo-labels, we achieve new state-of-the-art of PASCAL VOC
2012 and MS-COCO 2014 datasets under various experimental configurations.
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