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Abstract. While Video Instance Segmentation (VIS) has seen rapid
progress, current approaches struggle to predict high-quality masks
with accurate boundary details. Moreover, the predicted segmentations
often fluctuate over time, suggesting that temporal consistency cues are
neglected or not fully utilized. In this paper, we set out to tackle these
issues, with the aim of achieving highly detailed and more temporally
stable mask predictions for VIS. We first propose the Video Mask Trans-
finer (VMT) method, capable of leveraging fine-grained high-resolution
features thanks to a highly efficient video transformer structure. Our
VMT detects and groups sparse error-prone spatio-temporal regions of
each tracklet in the video segment, which are then refined using both
local and instance-level cues. Second, we identify that the coarse bound-
ary annotations of the popular YouTube-VIS dataset constitute a major
limiting factor. Based on our VMT architecture, we therefore design
an automated annotation refinement approach by iterative training and
self-correction. To benchmark high-quality mask predictions for VIS, we
introduce the HQ-YTVIS dataset, consisting of a manually re-annotated
test set and our automatically refined training data. We compare VMT
with the most recent state-of-the-art methods on the HQ-YTVIS, as well
as the Youtube-VIS, OVIS and BDD100K MOTS benchmarks. Experi-
mental results clearly demonstrate the efficacy and effectiveness of our
method on segmenting complex and dynamic objects, by capturing pre-
cise details.

Keywords: Video instance segmentation · Multiple object tracking
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Fig. 1. Video instance segmentation results by VisTr [35], IFC [14], SeqFormer [36],
and VMT (Ours) along with the YTVIS Ground Truth. All methods adopt R101 as
backbone. VMT achieves highly accurate boundary details, e.g. at the feet and tail
regions of the tiger, even exceeding the quality of the GT annotations.

1 Introduction

Video Instance Segmentation (VIS) requires tracking and segmenting all objects
from a given set of categories. Most recent state-of-the-art methods [11,14,35,36]
are transformer-based, using learnable object queries to represent each tracklet
in order to predict instance masks for each object. While achieving promising
results, their predicted masks suffer from oversmoothed object boundaries and
temporal incoherence, leading to inaccurate mask predictions, as shown in Fig. 1.
This motivates us to tackle the problem of high-quality video instance segmen-
tation, with the aim to achieve accurate boundary details and temporally stable
mask predictions.

Although high-resolution instance segmentation [15,19] has been explored in
the image domain, video opens the opportunity to leverage rich temporal infor-
mation. Multiple temporal views can help to accurately identify object bound-
aries, and allow the use of correspondences across frames to achieve temporally
consistent and robust segmentation. However, high-quality VIS poses major chal-
lenges, most importantly: 1) utilizing long-range spatio-temporal cues in the
presence of dynamic and fast-moving objects; 2) the large computational and
memory costs brought by high-resolution video features for capturing low-level
details; 3) how to fuse fine-grained local features and with global instance-aware
context for accurate boundary prediction; 4) the inaccurate boundary annota-
tion of existing large-scale datasets [37]. In this work, we set out to address all
these challenges, in order to achieve VIS with highly accurate mask boundaries.

We propose Video Mask Transfiner (VMT), an efficient video transformer
that performs spatio-temporal segmentation refinement for high-quality VIS. To
achieve efficiency, we take inspiration from Ke et al. [15] and identify a set of
sparse error-prone regions. However, as illustrated in Fig. 2, we detect 3D spatio-
temporal points, which are often located along object motion boundaries. These
regions are represented as a sequence of quadtree points to encapsulate various
spatial and temporal scales. To effectively utilize long-range temporal ques, we
group all points and jointly process them using a spatio-temporal refinement
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transformer. Thus, the input sequence for the transformer contains both detailed
spatial and temporal information. To effectively integrate instance-aware global
context, besides using the aggregated points as both input queries and keys of the
transformer, we design an additional instance guidance layer (IGL). It makes our
transformer aware of both local boundary details and global semantic context.
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Fig. 2. We propose VMT for high-quality video instance segmentation. It adopts a
temporal refinement transformer to jointly correct the 3D error-prone regions in the
spatio-temporal volume. We employ VMT for automatically correcting the YTVIS with
an iterative training paradigm by taking its annotation as coarse masks input.

While our VMT already achieves higher segmentation performance, we
observed the boundary quality of the YTVIS [37] training annotations to be
the next major bottleneck in the strive towards higher-quality mask predictions
and evaluation on this popular, large-scale, and highly challenging dataset. Most
importantly, we notice that many videos in YTVIS suffer object boundary infla-
tion issues, as shown in Fig. 1 and Fig. 5. This introduces a learned bias in the
trained model and prohibits very accurate evaluation. In fact, high-quality train-
ing data for VIS is difficult to obtain since dense pixel-wise annotations are costly
for a large number videos. To address this difficulty, instead of manual relabeling
the training data, we design an automatic refinement procedure by employing
VMT with iterative training. To self-correct mask annotations of YTVIS, both
VMT model and training data are alternately evolved, as in Fig. 3. To initialize
the training of VMT annotation refinement, we use recently proposed OVIS [28]
with better boundary annotations.

To enable benchmarking of high-quality VIS, we introduce the High-Quality
YTVIS (HQ-YTVIS) dataset, consisting of our automatically refined train-
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Fig. 3. Illustration and intermediate results visualization for iterative training. We
show the mask quality change for the given case when correcting YTVIS coarse labels
both qualitatively and quantitatively. The predicted instance masks boundaries by
VMT becomes more fine-grained with more correction iterations on the YTVIS.

ing annotations and a manually re-annotated val & test split. Moreover,
we propose the Tube-Boundary AP evaluation metric that better focuses on
segmentation boundary accuracy as well as tracking ability. With the pro-
posed HQ-YTVIS dataset, we retrain our VMT and several recent VIS base-
lines [11,14,16,35,37,38] using our boundary-accurate annotations, providing a
comprehensive comparison with current state-of-the-art. We also compare our
VMT with state-of-the-art methods on the OVIS [28] and BDD MOTS [39]
benchmarks with better annotated boundaries. Quantitative and qualitative
results on all three benchmarks demonstrate that VMT not only consistently
outperforms existing VIS methods, but also predicts masks at much higher reso-
lution size with small additional computation costs to current video transformer-
based methods. We hope our VMT and HQ-YTVIS benchmark could facilitate
the community in achieving ever more accurate video instance segmentation.

2 Related Work

Video Instance Segmentation (VIS). Extended from image instance seg-
mentation, existing VIS methods can be divided into three categories: two-stage,
one-stage, and transformer-based. Earlier methods [3,21,37] widely adopted the
two-stage Mask R-CNN family [12,13,17] by introducing a tracking head for
object association. Later works [5,20,23] adopted a one-stage instance segmen-
tation framework by using anchor-free detectors [31] and linear combination of
mask bases [4]. For longer temporal information modeling [22], CrossVIS [38] pro-
poses instance-to-pixel relation learning and PCAN [16] introduces prototypical
cross-attention operations for reading space-time memory. For the transformer-
based approach, VisTr [35] first uses vision transformer [6] for VIS, which is
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then improved by IFC [14] using memory token communication. Seqformer [36]
designs query decomposition mechanism. The aforementioned approaches put
very limited emphasis on generating very accurate boundary details necessary of
high-quality video object masks. In contrast, VMT is the first method targeting
for very high-quality video instance segmentation.

Multiple Object Tracking and Segmentation (MOTS). MOTS meth-
ods [25,26,33] mainly follow the tracking-by-detection paradigm. To utilize tem-
poral features, different from [2,16] in clustering/grouping spatio-temporal fea-
ture, VMT directly detects the sparse error-prone points in the 3D feature space
w/o feature compression and yield highly accurate boundary details.

Refinement for Segmentation. Existing works [19,30] on instance segmen-
tation refinement are single-image based and thus neglect temporal informa-
tion. Most of them adopt convolutional networks [30] or MLPs [19]. The latest
image-based method Mask Transfiner [15] detects incoherent regions and adopts
quadtree transformer for correcting region errors. Some methods [9,10,29,34,40]
focus on refining semantic segmentation details. However, they apply on images
without temporal object associations.

We build VMT based on [15], due to its efficiency and accuracy for sin-
gle image segmentation. The key design of our VMT lies in leveraging tempo-
ral information and multi-view object associations of the input video clip. We
explore new ways of using video instance queries to detect 3D incoherent points
and correct spatio-temporal segmentation errors. Besides, VMT is also a part of
our iterative training and self-correction to construct the HQ-YTVIS benchmark.

Self Training. To reduce the expense of large-scale human-annotation on pix-
els, some semantic segmentation methods produce pseudo labels for unlabeled
data using teacher model [7,42] or data augmentation [43]. Then, their mod-
els are jointly trained on both human-labeled and pseudo labels. In contrast,
VMT aims at self-correcting the coarsely or wrongly annotated VIS data. Con-
sidering that high-quality VIS requires very accurate video mask annotations to
reveal object boundary details, our proposed self-correction and iterative train-
ing become even more valuable by eliminating such exhaustive manual labeling.

3 High-Quality Video Instance Segmentation

We tackle the problem of high-quality Video Instance Segmentation (VIS), by
proposing an efficient temporal refinement transformer, Video Mask Transfiner
(VMT), in Sect. 3.1. We further introduce a new iterative training paradigm for
automatically correcting inaccurate annotations of YTVIS in Sect. 3.2. To facil-
itate the research in high-quality VIS, we contribute a large-scale HQ-YTVIS
benchmark, and propose the Tube-Boundary AP metric in Sect. 3.3. The pro-
posed benchmark and metric contribute to existing and future VIS models, with
high-quality annotations for both better training and more precise evaluation.
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3.1 Video Mask Transfiner

Figure 4 depicts the overall architecture of Video Mask Transfiner (VMT). Our
design is inspired by the image-based instance segmentation method Mask Trans-
finer [15]. This single-image method first detects incoherent regions, where seg-
mentation errors most likely occur in the coarse mask prediction. A quadtree
transformer is then used to refine the segmentation in these regions. However, in
case of video, the usage of temporal information, including object associations
between different frames, is not accounted for by Mask Transfiner. This limits its
segmentation performance in the video domain, leading to temporally incoherent
mask results. To effectively and efficiently leverage the high-resolution temporal
features, we propose three new components for our VMT: 1) an instance query
based 3D incoherent points detector; 2) quadtree sequence grouping for tem-
poral information aggregation; and 3) instance query guided incoherent points
segmentation. We will describe each of these key components in this section,
after a brief summary of the employed base detector in the following.

Fig. 4. Our VMT framework. A sequence of quadtrees are first constructed in the
spatio-time volume by the 3D incoherence detector. Then, these incoherent nodes are
concatenated across frames by Quadtree Sequence Grouping. The produced new spatio-
temporal node sequences are corrected by temporal refinement transformer under the
guidance of video instance queries with global instance context.

Backbone and Base Detector. Given a video clip that consists of multiple
image frames as input, we first use CNN backbone and transformer encoder [41]
to extract feature maps for each frame. Then, we adopt video-level instance
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queries to detect and segment objects for each frame following [36]. This base
detector [36] generates initial coarse mask predictions of the video tracklets at
low resolution T× H

8 × W
8 , where T , H and W are the length, height and width of

the input video clip. Given this input data, our goal is to predict highly accurate
video instance segmentation masks at T × H × W .

Query-based 3D Incoherent Points Detection. To detect the incoher-
ent regions in the video clip, where segmentation errors are concentrated, a
lightweight 3D incoherent region detector is designed. The detector, which
encodes the video-level instance query embedding to generate a set of dynamic
convolutional weights, consists of three 3× 3 convolution layers with ReLU acti-
vations. The predicted instance-specific weights are then convolved with the
spatio-temporal feature volume at resolution T × H

8 × W
8 , followed by a binary

classifier to detect the 3D sparse incoherent tree roots.
We further break down these predicted incoherent points in the 3D volume

into each frame. Each point serves as root node in a tree, by branching each node
into its four quadrants on the corresponding lower-level frame feature map, which
is 2× higher in resolution. The branching is recursive until reaching the largest
feature resolution. We share this 3-layer dynamic instance weights to detect
incoherent points for the same video instance across backbone feature sizes at
{H

8 × W
8 , H

4 × W
4 , H

2 × W
2 }, as visualized in Fig. 4. This allows VMT to save a huge

computational and memory cost, because only a small part of the high-resolution
video features are processed, occupying less than 10% of the all the points in
the 3D temporal volume. Video-level instance query captures both positional
and appearance information for a time sequence of the same instance in a video
clip. The instance-specific information are already contained in the correlation
weights. Thus, different from [15], instance query-based detection removes the
necessity of constructing ROI pooling feature pyramid for each video object. Our
3D incoherent region detector directly operates on the spatio-temporal feature
volume from the backbone.

Quadtree Sequence Grouping. After detecting 3D incoherent points, we
build a sequence of quadtree points within the video clip, each of which resides
in a single frame. To effectively utilize the temporal information across frames,
VMT groups together all the tree nodes from all frames of the quadtree sequence,
and concatenate them in the token dimension for the transformer. The result-
ing new sequence is the input for the temporal refinement transformer, which
contains tree nodes across both spatial and temporal scales, thus encapsulating
both detailed spatial and temporal information. We study the influence of dif-
ferent video clip lengths in Table 1, which reveals that the input sequence from
longer video clips with more diverse and rich information boosts the accuracy of
temporal segmentation refinement.

Instance Query Guided Temporal Refinement. For segmenting the newly
formed incoherent sequence above, instead of solely leveraging the incoherent
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points as both input queries and keys [15], our Node Attention Layer (NAL)
utilizes video-level instance queries as additional semantic guidance. In Fig. 4, to
inject each point with instance-specific information, we introduce the Instance
Guidance Layer (IGL) after each NAL in a level-wise manner. IGL uses inco-
herent points only as queries, and adopts the video-level instance embedding as
the keys and values. This helps our temporal refinement transformer be aware of
both local boundary details and global instance-level context, thus better sepa-
rating incoherent points among different foreground instances. Besides, we add
a low-level RGB feature embedding, produced by a network consisting of three
3×3 Conv. layers directly operating on the image. This further encapsulates fine-
grained object edge details as input to the node encoder. Finally, the output is
sent into the dynamic pixel decoder for final prediction.

3.2 Iterative Training Paradigm for Self-correcting YTVIS

We observed the boundary annotation quality of the YTVIS dataset to be an
important bottleneck when aiming to learn highly accurate segmentation masks.
We show the inaccurate and coarse boundary annotations of YTVIS in Fig. 5,
Fig. 1 and the supplemental video. In particular, we randomly sample 200 videos
from the original YTVIS annotations, and find around 28% of the cases suffer
from the boundary inflation problem, where a halo about 5 pixels is around
the real object contour. These coarse annotations may due to small number of
selected polygon points during instance labeling, which introduces a severe bias
in the training, leading to inaccurate boundary prediction. Based on VMT, we
therefore design a method for automatic annotation refinement, and apply it to
correct the inaccurate annotations of YTVIS. The core idea is to take the coarse
mask annotations from HQ-YTVIS as input and alternate between refining the
training data and training the model to achieve gradually improved annotations.

At the beginning, to equip VMT with initial boundary correction ability, we
pretrain VMT on the better annotated OVIS dataset as the first iteration, which
has similar data categories and sources as YTVIS. We train the temporal refine-
ment transformer of VMT in a class-agnostic way, leveraging only the incoherent
points and video-level instance queries as the input. To simulate various shapes
and output of inaccurate segmentation, we degrade the video mask annotations
of OVIS [28] by subsampling the boundary regions followed by random dilations
and erosions. Examples of such degraded masks are in the supplemental file.
VMT is trained to correct the errors in the ground-truth incoherent regions, and
we further enlarge the regions by dilating 3 pixels to introduce both the diversity
and the balance of foreground and background pixels ratio in this region.

After training on OVIS, we employ the trained VMT to correct the mask
boundary annotations of YTVIS, where the mask annotations of YTVIS are
regarded as the coarse mask inputs. We only correct the mask labels when the
confidence of the most likely predicted class (foreground or background) is larger
than 0.65. Then, we obtain a corrected version of YTVIS and use this new
corrected YTVIS data to retrain the temporal refinement transformer of VMT
as the 2nd iteration. We iterate this process until the model performance on the
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manually labeled validation set reaches saturation, requiring 4 iterations. We
illustrate the iterative training process and show the intermediate visualizations
in Fig. 3. After each iteration, the produced annotations masks of YTVIS become
more fine-grained until final convergence. We compare the training results using
different iterated versions of the YTVIS data, and evaluate their performance
on the human-relabeled val set in Table 3.

YTVIS

HQ-YTVIS

YTVIS

HQ-YTVIS

Fig. 5. Masks quality comparisons between YTVIS [37] and HQ-YTVIS annotations.

3.3 The HQ-YTVIS Benchmark

To facilitate the research in high-quality VIS, we further contribute a new bench-
mark HQ-YTVIS and design a new evaluation metric Tube-Boundary AP.

HQ-YTVIS. To construct the HQ-YTVIS, we first randomly re-split the orig-
inal YTVIS training set (2238 videos) with coarse mask boundary annotations
into train (1678 videos, 75%), val (280 videos, 12.5%) and test (280 videos,
12.5%) subsets following the splitting ratios in YTVIS. Then, the masks anno-
tations on the train subset is self-corrected automatically by VMT using iter-
ative training as described in Sect. 3.2. The smaller set of validation and test
videos are carefully relabeled by human annotators to ensure high mask bound-
ary quality. Figure 5 shows the mask annotation differences of the same image
from the training set between HQ-YTVIS and YTVIS. HQ-YTVIS has much
more accurate object boundary annotations. We retrained VMT and all base-
lines [11,14,16,35,37,38] on HQ-YTVIS from scratch, and compare the results
with those obtained by training them on the original YTVIS annotations with
the same set of images. We conduct quantitative results comparisons results
in Table 4, which clearly shows the advantage brought by HQ-YTVIS. We also
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include the relevant qualitative comparisons in the Supp. file. We hope HQ-
YTVIS can serve a new and more accurate benchmark to facilitate future devel-
opment of VIS methods aiming at higher mask quality.

Tube-Boundary AP. We propose a new segmentation measure Tube-Boundary
AP for high-quality video instance segmentation. The standard tube mask AP
in [37] is biased towards object interior pixels [8,19], thus falling short of revealing
motion boundary errors, especially for large moving objects. Given a sequence
of GT masks Gi

b...e for instance i, a sequence detected masks P j

b̂...ê
for predicted

instance j, we extend frame index b and b̂ to 1, e and ê to T for temporal length
alignment using empty masks. Tube-Boundary AP (APB) is computed as,

APB(i, j) =

∑t=T
t=1

∣
∣
∣(Gi

t ∩ git) ∩ (P j
t ∩ pjt )

∣
∣
∣

∑t=T
t=1

∣
∣
∣(Gi

t ∩ git) ∪ (P j
t ∩ pjt )

∣
∣
∣

(1)

where spatio-temporal boundary regions g and p are respectively the sequential
set of all pixels within d pixels distance from the contours of Gi

b...e and P i
b̂...ê

in the video clip. By definition, Tube-Boundary AP not only focuses on the
boundary quality of the objects, but also considers spatio-temporal consistency
between the predicted and ground truth object masks. For example, detected
object masks with frequent id switches will lead to a low IoU value.

4 Experiments

4.1 Experimental Setup

HQ-YTVIS & YTVIS. We conduct experiments on YTVIS [37] and our
HQ-YTVIS datasets. YTVIS contains 2,883 videos with 131k annotated object
instances belonging to 40 categories. We identify its inaccurate mask boundaries
issues in Fig. 5 and Sect. 3.2, which influences both model training and accuracy
in testing evaluation. For HQ-YTVIS, we split the original YTVIS training set
(2238 videos) into a new train (1678 videos, 75%), val (280 videos 12.5%) and test
(280 videos 12.5%) sets following the ratios in YTVIS. The masks annotations
on the train subset of HQ-YTVIS is self-corrected by VMT, while the smaller
sets of val and test are carefully relabeled by human annotators to ensure high
mask boundary quality. We employ both the standard tube mask APM in [37]
and our Tube-Boundary APB as evaluation metrics.

OVIS. We also report results on OVIS [28], a recently proposed VIS benchmark
on occlusion learning. OVIS has better-annotated boundaries for instance masks
with 607, 140 and 154 videos for train, valid and test respectively.
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BDD100K MOTS. We further train and evaluate Video Mask Transfiner on
the large-scale BDD100K [39] MOTS, which is a self-driving benchmark with
high-quality instance masks. It contains 154 videos (30,817 images) for training,
32 videos (6,475 images) for validation, and 37 videos (7,484 images) for testing.

4.2 Implementation Details

Video Mask Transfiner is implemented on the query-based detector [41], and
employ [36] to provide coarse mask predictions for video instances. For the tem-
poral refinement transformer, we adopt 3 multi-head attention layers, setting the
hidden dimension to 64 and using 4 attention heads. The instance queries are
shared between temporal refinement transformer with the base object detector.
During training, we follow the setting in [36] and use video clips consisting of 5
frames and sample them from the whole video. We train VMT for 12 epochs and
use AdamW [24] as optimizer, with initial learning rate set to 2e-4. Our VMT
executes at 8.2 FPS on Swin-L backbone. The learning rate is decayed at the
5th and 11th epochs by factor of 0.1. More details are in the Supp. file.

Table 1. Quadtree sequence grouping
(QSG) across frames in varying video
clip lengths on HQ-YTVIS val set.

Length QSG APB APB
50 ARB

1 APM APM
50 ARM

1

1 26.1 59.8 23.8 44.5 64.2 40.1

5 30.2 63.3 29.6 47.5 69.8 43.5

5 � 31.4 64.2 30.7 48.2 70.5 44.1

10 31.2 64.1 30.3 48.9 70.6 44.3

10 � 32.5 65.3 31.2 49.6 71.2 44.9

All 32.3 66.0 30.6 49.7 71.8 45.5

All � 33.7 67.2 31.8 50.5 72.4 46.2

Table 2. Ablation on 3D incoherent
region detector, and refinement region
types comparison on HQ-YTVIS vali-
dation set. IQ: Instance Query.

Region type Incoherence detector APB APB
50 ARB

1 APM APM
50 ARM

1

Detected
object bound-
ary

FCN 31.8 65.4 30.5 48.7 71.0 45.0

IQ (Frame-level) 31.3 64.8 29.9 48.1 69.9 44.3

IQ (Video-level) 32.8 66.2 31.0 49.8 71.6 45.7

3D Incoherent
region

FCN 32.2 65.1 30.7 49.1 70.9 45.3

IQ (Frame-level) 31.8 65.2 30.5 48.9 70.6 45.1

IQ (Video-level) 33.7 67.2 31.8 50.5 72.4 46.2

4.3 Ablation Experiments

We conduct detailed ablation studies for VMT using ResNet-101 as backbone
on HQ-YTVIS and OVIS val sets. We analyze the impact of each proposed
component. Besides, we study the effect of iterative training for self-correcting
YTVIS, and compare the same models trained on our HQ-YTVIS vs. YTVIS.

Effect of the Quadtree Sequence Grouping. Table 1 analyzes the influ-
ence of video clip lengths to the Quadtree Sequence Grouping (QSG). It reveals
that the longer video clips with richer temporal amount indeed brings more
performance gain to our VMT. When we increase the tube length from 1 to
all frames in the video, a remarkable gain in tube boundary APB from 26.1 to
33.7 is achieved. This demonstrate that our approach effectively leverages tem-
poral information, since a tube length 1 performs independent prediction for
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each frame. Moreover, models w/o QSG are refining the inherent points in each
frame separately as [15]. The multiple boundary view of the same object brings
an gain in temporal refinement for over 1.0 APB .

Ablation on the 3D Incoherence Detector. We study the design choices
of our 3D incoherence detector in Table 2. We compare fixed FCN and dynamic
FCN (three 3×3 Convs) with weights produced by frame-level or video-level
instance queries used in [36]. Video-level instance queries achieve the highest
APB , improving 1.9 point compared to the frame-level queries, which shows
the effect of temporally aggregated video-level instance information. We also
compare 3D incoherent regions with detected object mask boundaries, where
the 3D incoherent regions achieves 0.9 APB gain.

Table 3. Comparison on iterative train-
ing. Models after each correction is eval-
uated on HQ-YTVIS val by taking GT
classes, ids and coarse masks as input.

Table 4. Training on YTVIS vs. HQ-
YTVIS with the same images from
scratch. We evaluate the trained mod-
els on HQ-YTVIS and OVIS val sets.

Method YTVIS HQ-YTVIS HQ-YTVIS OVIS

APB APB
50 APM APM APM

50

MaskTrack [37] � 19.8 48.9 40.2 9.3 24.2

MaskTrack [37] � 21.7 50.5 41.1 10.5 25.1

SeqFormer [36] � 28.9 64.2 48.6 13.8 32.1

SeqFormer [36] � 31.0 66.1 50.5 15.2 33.7

VMT (Ours) � 30.5 64.7 48.9 15.9 33.8

VMT (Ours) � 33.7 67.2 50.5 17.1 35.0

Effect of Iterative Training. In Table 3, we compare MaskTrack [37], Seq-
Former [36] and VMT for correcting coarse masks of YTVIS in the iterative
training. We observe that the improvement scales after each iteration of Mask-
Track and SeqFormer on HQ-YTVIS val is minor, where the boundary quality
APB after the 3rd iteration are still coarse (around 60.0 using GT object classes,
identities and corresponding coarse masks). In contrast, VMT achieves consis-
tent and large mask quality improvements after three training iterations, which
reveals the design advantages of our temporal refinement transformer.

Training on YTVIS vs. HQ-YTVIS. In Table 4, we evaluate the perfor-
mance of three different approaches when training on either YTVIS or HQ-
YTVIS. We train MaskTrack [37], SeqFormer [36] and our VMT from scratch
with the same set of images. We use HQ-YTVIS and OVIS for evaluation due
to the better annotated mask boundaries. For evaluation on OVIS, we train
the mask heads of all these methods in a class-agnostic way, and fix the model
weights of the mask head when finetuning them on OVIS for object detection
and tracking parts. All three methods trained using HQ-YTVIS obtain con-
sistent and large performance gain of over 2.0 APB on the manually labeled
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HQ-YTVIS val set, and over 1.0 APM on the OVIS val set. This shows our
self-corrected HQ-YTVIS dataset consistently improves existing VIS methods
for segmentation quality, without overfitting to the specific dataset.

Temporal Attention Visualization. In Fig. 6, we visualize the temporal
attention distribution for incoherent nodes in a video-clip of length 5. The atten-
tion weights are extracted from the last NAL of the refinement transformer. For
the sampled point R1 at T=3, it attends more to the feet regions of the giraffe
with semantic correspondence in both the current and neighboring frames. Also,
the attention weights for the temporally farther frames are smaller.

4.4 Comparison with State-of-the-art Methods

We compare VMT with the state-of-the-art methods on the benchmarks HQ-
YTVIS, YTVIS, OVIS and BDD100K MOTS. Note that we only conduct iter-
ative training when producing the training annotations of HQ-YTVIS. When
retraining VMT and all other baselines on the HQ-YTVIS benchmark, all meth-
ods are trained from scratch and only once on the same data for fair comparison.

HQ-YTVIS & YTVIS. Table 5 compares VMT with state-of-the-art instance
segmentation methods on both HQ-YTVIS and YTVIS benchmarks. VMT
achieves consistent performance advantages on different backbones, showing its
effectiveness by surpassing SeqFormer [36] by around 2.8 APB

75 on HQ-YTVIS
using ResNet-50. As in Fig. 5 and Sect. 3.2, the mask boundary annotation in
YTVIS is less accurate. Therefore, the advantages brought by our approach are
not fully revealed on this dataset. Yet, VMT exceeds SeqFormer by about 0.5
APM on YTVIS with ResNet-50 with higher mask quality as in Fig. 7. Moreover,
masks predicted by our approach are 16× larger than those of SeqFormer, while
only increasing negligible amount of the model parameters.

T=1 T=2 T=3 T=4 T=5

Fig. 6. Temporal attention visualizations on the sparse incoherent regions for a video
clip of length 5. The sampled red node R1 attends more to the feet regions of the giraffe
with semantic correspondence in both the current and neighboring frames. The top 10
attended incoherent node regions are marked in yellow. (Color figure online)
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Table 5. Comparison with state-of-the-art methods on HQ-YTVIS test set and
YTVIS [37] validation set. All methods, including VMT, are retrained on HQ-YTVIS
and YTVIS training sets respectively from scratch for fair comparisons. Results are
reported in terms of Tube-Mask APM [37] and our Tube-boundary APB . VMT pre-
dicts mask at output sizes 16× larger than SeqFormer [36]. The advantage of VMT is
not fully revealed on YTVIS due to its inaccurate and coarse boundary annotation.

Method Backbone Params HQ-YTVIS YTVIS

APB APB
75 ARB

1 APM APM
75 ARM

1 APM APM
75 ARM

1

MaskTrack [37] R50 58.1M 19.8 10.6 21.1 38.8 48.6 40.3 30.3 32.6 31.0

CrossVIS [38] R50 37.5M 23.6 16.2 24.9 43.0 52.3 44.0 36.3 38.9 35.6

VisTr [35] R50 57.2M 24.0 16.3 25.1 43.3 52.9 44.5 36.2 36.9 37.2

PCAN [16] R50 36.9M 23.9 16.1 25.2 42.2 51.8 43.9 36.1 39.4 36.3

IFC [14] R50 39.3M 26.5 19.6 27.5 46.6 51.5 46.9 42.8 46.8 43.8

SeqFormer [36] R50 49.3M 28.6 21.4 29.3 48.5 52.2 48.5 47.4 51.8 45.5

VMT (Ours) R50 51.5M 30.7 24.2 31.5 50.5 54.5 50.2 47.9 52.0 45.8

MaskTrack [37] R101 77.2M 21.7 13.1 22.8 41.1 49.1 41.7 31.8 33.6 33.2

CrossVIS [38] R101 56.6M 24.5 19.7 26.5 44.1 52.6 44.5 36.6 39.7 36.0

VisTr [35] R101 76.3M 25.1 20.5 27.7 45.3 53.2 45.1 40.1 45.0 38.3

PCAN [16] R101 54.8M 24.8 20.1 27.0 44.0 52.1 44.3 37.6 41.3 37.2

IFC [14] R101 58.3M 27.2 23.6 28.3 48.2 51.8 47.6 44.6 49.5 44.0

SeqFormer [36] R101 68.4M 30.7 27.3 30.1 49.0 52.3 46.6 49.0 55.7 46.8

VMT (Ours) R101 70.5M 32.5 28.9 32.6 51.2 55.1 49.3 49.4 56.4 46.7

SeqFormer [36] Swin-L 220.0M 43.3 41.5 41.6 63.7 69.7 58.7 59.3 66.4 51.7

VMT (Ours) Swin-L 222.3M 44.8 43.4 43.0 64.8 70.1 59.3 59.7 66.7 52.0

OVIS. The results of OVIS dataset are reported in Table 6, where VMT achieves
the best mask AP 19.8 using Swin-L backbone, improving 1.9 point compared
to the baseline SeqFormer [36].

Fig. 7. Seqformer (1st row) vs. ours (2rd row) on YTVIS, in terms of mask quality &
temporal consistency. Please refer to the Supp. file for more video results comparisons.
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Table 6. Comparison with state-of-
the-art on the OVIS validation set.

Method Backbone AP AP50 AP75 AR1 AR10

MaskTrack [37] R50 10.8 25.3 8.5 7.9 14.9

SipMask [5] R50 10.2 24.7 7.8 7.9 15.8

CrossVIS [38] R50 14.9 32.7 12.1 10.3 19.8

STMask [20] R50 15.4 33.8 12.5 8.9 21.3

CMTrack RCNN [28] R50 15.4 33.9 13.1 9.3 20.0

SeqFormer [36] R50 15.6 34.3 12.1 9.6 21.8

VMT (Ours) R50 16.9 36.4 13.7 10.4 22.7

SeqFormer [36] R101 16.2 35.1 13.1 10.3 22.9

VMT (Ours) R101 17.8 35.7 15.4 10.5 23.8

SeqFormer [36] Swin-L 17.9 35.6 15.6 10.7 24.1

VMT (Ours) Swin-L 19.8 39.6 17.2 11.2 26.3

Table 7. State-of-the-art comparison
on the BDD100K segmentation track-
ing validation set using ResNet-50. I:
ImageNet. C: COCO. S: Cityscapes. B:
BDD100K.

Method Pretrained mMOTSA↑ mMOTSP↑ mIDF↑ ID sw.↓ mAP↑
SortIoU I, C, S 10.3 59.9 21.8 15951 22.2

MaskTrack [32] I, C, S 12.3 59.9 26.2 9116 22.0

STEm-Seg [2] I, C, S 12.2 58.2 25.4 8732 21.8

QDTrack [27] I, C, S 22.5 59.6 40.8 1340 22.4

QDTrack-fix [27] I, B 23.5 66.3 44.5 973 25.5

PCAN [16] I, B 27.4 66.7 45.1 876 26.6

VMT (Ours) I, B 28.7 67.3 45.7 825 28.3

BDD100K MOTS. Table 7 shows results on BDD100K MOTS, where Mask
Transfiner obtains the highest mMOTSA of 28.7 and outperforms the PCAN [16]
by 1.3 points by sharing the same object detection tracking heads. The large gain
reveals the high quality of temporal masks prediction by VMT.

5 Conclusion

We present Video Mask Transfiner, the first high-quality video instance seg-
mentation method. Enabled by the efficient video transformer design, VMT uti-
lizes the high-resolution spatio-temporal features for temporal mask refinement
and achieves large boundary and mask AP gains on the HQ-YTVIS, OVIS,
and BDD100K. To refine the coarse annotation of YTVIS, we design an itera-
tive training paradigm and adopt VMT to correct the annotations errors of the
training data instead of tedious manual relabeling. We build the new HQ-YTVIS
benchmark with more accurate mask boundary annotations than YTVIS, and
introduce Tube Boundary AP for accurate performance measure. We believe
our method, the new benchmark HQ-YTVIS and evaluation metric will facili-
tate future video instance segmentation works on improving their mask quality
and benefit real-world applications such as video editing [1,18].1
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