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Abstract. Scene text recognition (STR) has been an active research
topic in computer vision for years. To tackle this challenging problem,
numerous innovative methods have been successively proposed and incor-
porating linguistic knowledge into STR models has recently become a
prominent trend. In this work, we first draw inspiration from the recent
progress in Vision Transformer (ViT) to construct a conceptually simple
yet powerful vision STR model, which is built upon ViT and outper-
forms previous state-of-the-art models for scene text recognition, includ-
ing both pure vision models and language-augmented methods. To inte-
grate linguistic knowledge, we further propose a Multi-Granularity Pre-
diction strategy to inject information from the language modality into
the model in an implicit way, i.e. , subword representations (BPE and
WordPiece) widely-used in NLP are introduced into the output space,
in addition to the conventional character level representation, while no
independent language model (LM) is adopted. The resultant algorithm
(termed MGP-STR) is able to push the performance envelop of STR
to an even higher level. Specifically, it achieves an average recognition
accuracy of 93.35% on standard benchmarks.
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1 Introduction

Reading text from natural scenes is one of the most indispensable abilities when
building an automated machine with high-level intelligence. This explains the
reason why researchers from the computer vision community sedulously have
explored and investigated this complex and challenging task for decades. Scene
text recognition (STR) involves decoding textual content from natural images
(usually cropped sub images), which is a key component in text reading pipelines.

Previously, a number of methods [5,30,39,41] have been proposed to address
the problem of scene text recognition. Recently, there emerges a new trend that
linguistic knowledge is introduced into the text recognition process. SRN [53]
devised a global semantic reasoning module (GSRM) to model global semantic
context. ABINet [9] proposed bidirectional cloze network (BCN) as the language
model to learn bidirectional feature representation. Both SRN and ABINet adopt
an independent and separate language model to capture rich language prior.
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Fig. 1. Pipelines of classic CNN-based, ViT-based and the proposed MGP-STR scene
text recognition methods are illustrated in (a), (b) and (c), respectively. (d) Examples
of Character, BPE and WordPiece subword tokenization. (Best viewed in color.) (Color
figure online)

In this paper, we propose to integrate linguistic knowledge in an implicit
way for scene text recognition. Specifically, we first construct a pure vision STR
model based on ViT [8] and a tailored Adaptive Addressing and Aggregation
(A3) module inspired by TokenLearner [36]. This model serves as a strong base-
line, which already achieves better performance than previous methods for scene
text recognition, according to the experimental comparisons. To further make
use of linguistic knowledge to enhance the vision STR model, we explore a Multi-
Granularity Prediction (MGP) strategy to inject information from the language
modality. The output space of the model is expanded that subword representa-
tions (BPE and WordPiece) are introduced, i.e. , the augmented model would
produce two extra subword-level predictions, besides the original character-level
prediction. Notably, there is no independent and separate language model. In
the training phase, the resultant model (named MGP-STR) is optimized with
a standard multi-task learning paradigm (three losses for three types of predic-
tions) and the linguistic knowledge is naturally integrated into the ViT-based
STR model. In the inference phase, the three types of predictions are fused
to give the final prediction result. Experiments on standard benchmarks ver-
ify that the proposed MGP-STR algorithm can obtain state-of-the-art perfor-
mance. Another advantage of MGP-STR is that it does not involve iterative
refinement, which could be time-consuming in the inference phase. The pipeline
of the proposed MGP-STR algorithm as well as that of previous CNN-based
and ViT-based methods are shown in Fig. 1. In a nutshell, the major difference
between MGP-STR and other methods is that it generates three types of predic-
tions, representing textual information at different granularities: from individual
characters to short character combinations, and even whole words.

The contributions of this work are summarized as follows: (1) We construct
a pure vision STR model, which combines ViT with a specially designed A3

module. It already outperforms existing methods. (2) We explore an implicit way
for incorporating linguistic knowledge by introducing subword representations to
facilitate multi-granularity prediction, and prove that an independent language
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model (as used in SRN and ABINet) is not indispensable for STR models. (3)
The proposed MGP-STR algorithm achieves state-of-the-art performance.

2 Related Work

Scene Text Recognition (STR) is a long-term subject of attention and research [4,
28,58]. With the popularity of deep learning methods [13,21,42], its effectiveness
in the field of STR has been extensively verified. Depending on whether linguistic
information is applied, we roughly divide STR methods into two categories, i.e. ,
language-free and language-augmented methods.

2.1 Language-Free STR Methods

The mainstream way for image feature extraction in STR methods is CNN [13,
42]. For example, previous STR methods [21,39,40] utilize VGG. Current STR
methods [2,3,26,48] employ ResNet [13] for better performance. Based on the
powerful CNN features, various methods [25,33,57] are proposed to tackle the
STR problem. CTC-based methods [14,15,26,39,46] use the Connectionist Tem-
poral Classication (CTC) [10] to accomplish sequence recognition. Segmentation-
based methods [23,24,45,47] cast STR as a semantic segmentation problems.

Inspired by the great success of Transformer [44] in natural language process-
ing (NLP) tasks, the application of Transformer in STR has also attracted more
attention. Vision Transformer (ViT) [8] that directly processes image patches
without convolutions opens the beginning of using Transformer blocks instead
of CNNs to solve computer vision problems [27,52], leading to prominent results.
ViTSTR [1] attempts to simply leverage the feature representations of the last
layer of ViT for parallel character decoding. In general, language-free methods
often fail to recognize low-quality images due to the lack of language information.

2.2 Language-Augmented STR Methods

Obviously, language information is favourable to the recognition of low-quality
images. RNN-based methods [21,39,48] can effectively capture the dependency
between sequential characters, which can be regarded as an implicit language
model. However, they cannot execute decoding in parallel during training and
inference. Recently, Transformer blocks are introduced into CNN-based frame-
work to facilitate language content learning. SRN [53] proposes a Global Seman-
tic Reasoning Module (GSRM) to capture the global semantic context through
multiple parallel transmissions. ABINet [9] presents a Bidirectional Cloze Net-
work (BCN) to explicitly model the language information, which is further used
for iterative correction. VisionLAN [51] proposes a visual reasoning module
that simultaneously captures visual and language information by masking input
images at the feature level. The mentioned above approaches utilize a specific
module to integrate language information. Meanwhile, most works [9,16] capture
semantic information based on character-level or word-level. In this paper, we
manage to utilize multi-granularity (character, subword and even word) semantic
information based on BPE and WordPiece tokenizations.
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Fig. 2. The architecture of the proposed MGP-STR algorithm.

3 Methodology

The overview of the proposed MGP-STR method is depicted in Fig. 2, which
is mainly built upon the original Vision Transformer (ViT) model [8]. We pro-
pose a tailored Adaptive Addressing and Aggregation (A3) module to select a
meaningful combination of tokens from ViT and integrate them into one output
token corresponding to a specific character, denoted as Character A3 module.
Moreover, subword classification heads based on BPE A3 module and WordPiece
A3 module are devised for subword predictions, so that the language informa-
tion can be implicitly modelled. Finally, these multi-granularity predictions are
merged via a simple and effective fusion strategy.

3.1 Vision Transformer Backbone

The fundamental architecture of MGP-STR is Vision Transformer [8,43], where
the original image patches are directly utilized for image feature extraction by
linear projection. As shown in Fig. 2, an input RGB image x ∈ R

H×W×C is split
into non-overlapping patches. Concretely, the image is reshaped into a sequence
of flattened 2D patches xp ∈ R

N×(P 2C), where (P × P ) is the resolution of each
image patch and (P 2C) is the number of feature channels of xp. In this way, a
2D image is represented as a sequence with N = HW/P 2 tokens, which serve as
the effective input sequence of Transformer blocks. Then, these tokens of xp are
linear transcribed into D dimension patch embeddings. Similar to the original
ViT [8] backbone, a learnable [class] token embedding with D dimension is
introduced into patch embeddings. And position embeddings are also added to
each patch embedding to retain the positional information, where the standard
learnable 1D position embedding is employed. Thus, the generation of patch
embedding vector is formulated as follows:

z0 = [xclass;x1
pE;x2

pE; . . . ;xN
p E] + Epos, (1)

where xclass ∈ R
1×D is the [class] embedding, E ∈ R

(P 2C)×D is a linear projec-
tion matrix and Epos ∈ R

(N+1)×D is the position embedding.
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Fig. 3. The detailed architectures of the three A3 modules.

The resultant feature sequence z0 ∈ R
(N+1)×D serves as the input of Trans-

former encoder blocks, which are mainly composed of Multi-head Self-Attention
(MSA), Layer Normalization (LN), Multilayer Perceptron (MLP) and residual
connection as in Fig. 2. The Transformer encoder block is formulated as:

z′
l = MSA(LN(zl−1)) + zl−1

zl = MLP(LN(z′
l)) + z′

l.
(2)

Here, L is the depth of Transformer block and l = 1 . . . L. The MLP consists
of two linear layers with GELU activation. Finally, the output embedding zL ∈
R

(N+1)×D of Transformer is utilized for subsequent text recognition.

3.2 Adaptive Addressing and Aggregation (A3) Modules

Traditional Vision Transformers [8,43] usually prepend a learnable xclass token
to the sequence of patch embeddings, which directly collects and aggregates
the meaningful information and serves as the image representation for the clas-
sification of the whole image. While the task of scene text recognition aims to
produce a sequence of character predictions, where each character is only related
to a small patch of the image. Thus, the global image representation z0L ∈ R

D

is inadequate for text recognizing task. ViTSTR [1] directly employs the first T
tokens of zL for text recognition, where T is the maximum text length. Unfor-
tunately, the rest tokens of zL are not fully utilized.

In order to take full advantage of the rich information of the sequence zL for
text sequence prediction, we propose a tailored Adaptive Addressing and Aggre-
gation (A3) module to select a meaningful combination of tokens zL and integrate
them into one token corresponding to a specific character. Specifically, we man-
age to learn T tokens Y = [yi]Ti=1 from the sequence zL for the subsequent text
recognizing task. An aggregation function is, thus, formulated as yi = Ai(zL),
which converts the input zL to a token vector yi : R

(N+1)×D �→ R
1×D. And

such T functions are constructed for the sequential output of text recognition.
Typically, the aggregation function Ai(zL) is implemented via a spatial atten-
tion mechanism [36] to adaptively select the tokens from zL corresponding to
ith character. Here, we employ function αi(zL) and softmax function to generate
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precise spatial attention mask mi ∈ R
(N+1)×1 from zL ∈ R

(N+1)×D. Thus, each
output token yi of A3 module is produced by

yi = Ai(zL) = mT
i z̃L = softmax(αi(zL))T (zLU)T . (3)

Here, αi(·) is implemented by group convolution with one 1 × 1 kernel. And
U ∈ R

D×D is a linear mapping matrix for learning feature z̃L. Therefore, the
resulting tokens of different aggregation functions are gathered together to form
the final output tensor as follows:

Y = [y1y2; . . . ;yT ] = [A1(zL);A2(zL); . . . ;AT (zL)]. (4)

Owing to the effective and efficient A3 module, the ultimate representation of
the text sequence is denoted as Y ∈ R

T×D in Eq. (4). Then, a character classifi-
cation head is built by G = YWT ∈ R

T×K for text sequence recognition, where
W ∈ R

K×D is a linear mapping matrix, K is the number of categories and G is
the classification logist. We regard this module as Character A3 for character-
level prediction, of which the detailed structure is illustrated in Fig. 3(a).

3.3 Multi-granularity Predictions

Character tokenization that simply splits text into characters is commonly-used
in scene text recognition methods. However, this naive and standard way ignores
the language information of text. In order to effectively resort to linguistic
information for scene text recognition, we incorporate subword [20] tokeniza-
tion mechanism in NLP [7] into text recognition method. Subword tokenization
algorithms aim to decompose rare words into meaningful subwords and remain
frequently used words, so that the grammatical information of word has already
been captured in the subwords. Meanwhile, since A3 module is independent of
Transformer encoder backbone, we can directly add extra parallel subword A3

modules for subword predictions. In such a way, the language information can be
implicitly injected into model learning for better performance. Notably, previous
methods, i.e. , SRN [53] and ABINet [9], design an explicit transformer module
for language modelling, while we cast linguistic information encoding problem
as a character and subword prediction task without an explicit language model.

Specifically, we employ two subword tokenization algorithms Byte-Pair
Encoding (BPE) [38] and WordPiece [37]1 to produce various combinations as
shown in Fig. 1(b)(c). Thus, BPE A3 module and WordPiece A3 module are pro-
posed for subword attention. And two subword-level classification heads are used
for subword predictions. Since subwords could be whole words (such as “coffee” in
WordPiece), subword-level and even word-level predictions can be generated by
the BPE and WordPiece classification heads. Along with the original character-
level prediction, we denote these various outputs as multi-granularity predictions

1 Considering the potential out-of-vocabulary (OOV) issue in the inference phase, we
did not directly predict whole words.
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for text recognition. In this way, character-level prediction guarantees the fun-
damental recognition accuracy, and subword-level or word-level predictions can
serve as complementary results for noised images via linguistic information.

Technically, the architecture of BPE or WordPiece A3 module is the same as
Character one. They are independent of each other with different parameters.
And the numbers of categories are different for different classification heads,
which depend on the vocabulary size of each tokenization method. The cross
entropy loss is employed for classification. Additionally, the mask mi precisely
indicates the attention location of the ith character in Character A3 module,
while it roughly shows the ith subword region of the image in subword A3 mod-
ules, due to the higher complexity and uncertainty of learning subword splitting.

3.4 Fusion Strategy for Multi-granularity Results

Multi-granularity predictions (Character, BPE and WordPiece) are generated by
different A3 modules and classification heads. Thus, a fusion strategy is required
to merge these results. At the beginning, we attempt to fuse multi-granularity
information by aggregating text features Y of the output of different A3 modules
at feature level. However, since these features are from different granularities,
the ith token ychar

i of character level is not aligned with the ith token ybpe
i (or

ywp
i ) of BPE level (or WordPiece level), so that these features cannot be added

for fusion. Meanwhile, even if we concatenate features by [Ychar
i ,Ybpe

i ,Ywp
i ],

only one character-level head can be used for final prediction. The subword
information will be greatly impaired in this way, resulting in less improvement.

Therefore, decision-level fusion strategy is employed in our method. How-
ever, perfectly fusing these predictions is a challenging problem [11]. We, thus,
propose a compromised but efficient fusion strategy based on the prediction con-
fidences. Specifically, the recognition confidence of each character or subword can
be obtained by the corresponding classification head. Then, we present two fusion
functions f(·) to produce the final recognition score based on atomic confidences:

fMean([c1, c2, . . . , ceos]) =
1
n

eos∑

i=1

ci, (5)

fCumprod([c1, c2, . . . , ceos]) =
eos∏

i=1

ci. (6)

We only consider the confidence of valid character or subword and ending symbol
eos, and ignore padding symbol pad. “Mean” recognition score is generated by
the mean value function as in Eq. (5). And “Cumprod” represents the score
produced by cumulative product function. Then, three recognition scores of three
classification heads for one image can be obtained by f(·). We simply pick the
one with the highest recognition score as the final predicted result.
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4 Experiment

4.1 Datasets

For fair comparison, we use MJSynth [16,17] and SynthText [12] as training data.
MJSynth contains 9M realistic text images and SynthText includes 7M synthetic
text images. The test dataset consists of “regular” and “irregular” datasets.
The “regular” dataset is mainly composed of horizontally aligned text images.
IIIT 5K-Words (IIIT) [31] consists of 3,000 images collected on the website.
Street View Text (SVT) [49] contains 647 test images. ICDAR 2013 (IC13) [19]
contains 1,095 images cropped from mall pictures, but we eventually evaluate on
857 images, discarding images that contain non-alphanumeric characters or less
than three characters. The text instances in the “irregular” dataset are mostly
curved or distorted. ICDAR 2015 (IC15) [18] includes 2,077 images collected
from Google Eyes, but we use 1,811 images without some extremely distorted
images. Street View Text-Perspective (SVTP) [32] contains 639 images collected
from Google Street View. CUTE80 (CUTE) [35] consists of 288 curved images.

4.2 Implementation Details

Model Configuration. MGP-STR is built upon DeiT-Base model [43], which
is composed of 12 stacked transformer blocks. For each layer, the number of head
is 12 and the embedding dimension D is 768. More importantly, square 224×224
images [1,8,43] are not adopted in our method. The height H and width W of
the input image are set to 32 and 128. The patch size P is set to 4 and thus
N = 8 × 32 = 256 plus one [class] tokens zL ∈ R

257×768 can be produced. The
maximum length T of the output sequence Y of A3 module is set to 27. The
vocabulary size K of Character classification head is set to 38, including 0 − 9,
a − z, pad for padding symbol and eos for ending symbol. The vocabulary sizes
of BPE and WordPiece heads are set to 50, 257 and 30, 522.

Model Training. The pretrained weights of DeiT-base [43] are loaded the ini-
tial weights, except the patch embedding model, due to inconsistent patch sizes.
Common data augmentation methods [6] for text image are applied, such as per-
spective distortion, affine distortion, blur, noise and rotation. We use 2 NVIDIA
Tesla V100 GPUs to train our model with a batch size of 100. Adadelta [55]
optimizer is employed with an initial learning rate of 1. The learning rate decay
strategy is Cosine Annealing LR [29] and the training lasts 10 epochs.

4.3 Discussions on Vision Transformer and A3 Modules

We analyse the influence of the patch size of Vision Transformer and the effec-
tiveness of A3 module in the proposed MGP-STR method (shown in Table 1).
MGP-STRP=16 represents the model that simply uses the first T tokens of zL
for text recognition as in ViTSTR [1], where the input image is reshaped to
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Table 1. The ablation study of the proposed vision model and the accuracy compar-
isons with some SOTA methods based on only vision information.

Methods Vision Image size (Patch) IC13 SVT IIIT IC15 SVTP CUTE AVG

MASTER [30] CNN – 95.3 90.60 95.0 79.4 84.5 87.5 89.5

SRNV [53] – 93.2 88.1 92.3 77.5 79.4 84.7 86.9

ABINetV [9] – 94.9 90.4 94.6 81.7 84.2 86.5 89.8

MGP-STRP=16 ViT 224 × 224(16 × 16) 95.68 91.96 95.13 83.88 85.74 90.28 91.07

MGP-STRP=4 32 × 128(4 × 4) 96.62 92.27 95.40 84.76 86.98 88.54 91.58

MGP-STRV ision 32 × 128(4 × 4) 96.50 93.20 96.37 86.25 89.46 90.63 92.73

Table 2. The accuracies of MGP-STRFuse with different fusion strategies.

Method Mode IC13 SVT IIIT IC15 SVTP CUTE AVG

MGP-STRFuse Char 96.49 93.66 96.1 86.14 88.83 89.58 92.53

Mean 97.31 94.28 96.60 86.97 90.23 90.97 93.28

Cumprod 97.32 94.74 96.40 87.24 91.01 90.28 93.35

224 × 224 and the patch size is set to 16 × 16. In order to retain the significant
information of the original text image, 32 × 128 images with 4 × 4 patches are
employed in MGP-STRP=4. MGP-STRP=4 outperforms MGP-STRP=16, which
indicates that the standard image size of ViT [8,43] is incompatible with text
recognition. Thus, 32 × 128 images with 4 × 4 patches are used in MGP-STR.

When the Character A3 module is introduced into MGP-STR, denoted as
MGP-STRV ision, the recognition performance will be further improved. MGP-
STRP=16 and MGP-STRP=4 cannot fully learn and utilize the all tokens, while
the Character A3 module can adaptively aggregate features of the last layer,
resulting in more sufficient learning and higher accuracy. Meanwhile, compared
with SOTA text recognition methods with CNN feature extractors, the proposed
MGP-STRV ision method achieves substantially performance improvement.

4.4 Discussions on Multi-Granularity Predictions

Effect of Fusion Strategy. Since the subwords generated by subword tokeniza-
tion methods contain grammatical information, we directly employ subwords as
the targets of our method to capture the language information implicitly. As
described in Sect. 3.2, two different subword tokenizations (BPE and Word-
Piece) are employed for complementary multi-granularity predictions. Besides
the character prediction, we propose two fusion strategies to further merge these
three results, denoted as “Mean” and “Cumprod” as mentioned in Sect. 3.4.
We denote this method that merges three results as MGP-STRFuse, and the
accuracy results of MGP-STRFuse with different fusion strategies are listed in
Table 2. Additionally, the first line “Char” in Table 2 records the result of char-
acter classification head in MGP-STRFuse. It is clear to see that both “Mean”
and “Cumprod” fusion strategies can significantly improve the recognition accu-
racy over single character-level result. Due the better performance of “Cumprod”
strategy, we employ it as the fusion strategy in the following experiments.
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Table 3. The accuracy results of the four variants of MGP-STR model. “Char”, “BPE”
and “WP” at “Output” represent predictions of Character, BPE and WordPiece clas-
sification head in each model, respectively. “Fuse” represents the fused results.

Methods Char BPE WP Output IC13 SVT IIIT IC15 SVTP CUTE AVG

MGP-STRV ision � × × Char 96.50 93.20 96.37 86.25 89.46 90.63 92.73

MGP-STRC+B � � × Char 97.43 93.82 96.53 85.92 89.15 90.28 92.84

BPE 97.78 94.13 90.00 81.12 88.37 82.64 88.63

Fuse 97.67 94.47 96.73 86.97 88.99 89.93 93.24

MGP-STRC+W � × � Char 96.97 93.97 96.30 86.20 90.39 89.93 92.87

WP 95.92 93.35 87.70 78.74 89.30 80.21 86.78

Fuse 97.32 93.82 96.60 86.91 90.54 90.97 93.25

MGP-STRFuse � � � Char 96.49 93.66 96.10 86.14 88.83 89.58 92.53

BPE 95.56 93.66 88.73 79.84 89.76 83.33 87.63

WP 95.79 94.59 86.37 77.36 89.61 79.86 85.99

Fuse 97.32 94.74 96.40 87.24 91.01 90.28 93.35

Effect of Subword Representations. We evaluate four variants of the
MGP-STR model, and the performances of these four methods are elaborately
reported in Table 3, including the fused results and the results of each single
classification. Specifically, MGP-STRV ision with only Character A3 module has
already obtained promising results. MGP-STRC+B and MGP-STRC+W incor-
porate Character A3 module with BPE A3 module and WordPiece A3 module,
respectively. No matter which subword tokenization is used alone, the accu-
racy of “Fuse” can exceed that of “Char” in both MGP-STRC+B and MGP-
STRC+W methods, respectively. Notably, the performance of the classification
of “BPE” or “WP” could be better than that of “Char” on SVP and SVTP
datasets in the same model. These results show that subword predictions can
boost text recognition performance by implicitly introducing language informa-
tion. Thus, MGP-STRFuse with three A3 modules can produce complementary
multi-granularity predictions (character, subword and even word). By fusing
these multi-granularity results, MGP-STRFuse obtains the best performance.

Comparison with BCN. Bidirectional cloze network (BCN) is designed in
ABINet [9] for explicit language modelling, and it leads to favorable improve-
ment over pure vision model. We equip MGP-STRV ision with BCN as a competi-
tor of MGP-STRFuse to verify the advantage of multi-granularity predictions.
Concretely, we first reduce the dimension 768 of representation feature Y to 512
for feature fusion of the output of BCN. Following the training setting in [9], the
model results are reported in Table 4. The accuracy of “V+L” is further improved
over the pure vision prediction “V” in MGP-STRV ision+BCN, and better than
the original ABINet [9]. However, the performance of MGP-STRV ision+BCN is a
little worse than that of MGP-STRFuse. In addition, we provide the upper bound
on the performance of MGP-STRFuse, denoted as MGP-STR∗

Fuse in Table 4. If
one of the three predictions (“Char”, “BPE” and “WP”) is right, the final pre-
diction is considered correct. The highest score of MGP-STR∗

Fuse demonstrates
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Table 4. The accuracy results of MGP-STRV ision equipped with BCN and multi-
granularity prediction. “V” represents the results of the pure vision output. “V+L”
represents the results based on the both vision and language parts.

Methods Mode IC13 SVT IIIT IC15 SVTP CUTE AVG

MGP-STRV ision+BCN V 96.97 93.82 95.90 85.53 89.15 89.58 92.40

V+L 97.32 95.36 95.97 86.69 91.78 89.93 93.14

MGP-STRFuse V+L 97.32 94.74 96.40 87.24 91.01 90.28 93.35

MGP-STR∗
Fuse V+L 97.66 96.29 96.97 89.06 92.09 92.01 94.38

Table 5. The accuracy results of MGP-STRFuse with different ViT backbones.

Backbone Output IC13 SVT IIIT IC15 SVTP CUTE AVG

DeiT-Tiny Char 93.47 90.57 93.93 82.94 81.71 84.38 89.36

BPE 87.40 84.39 83.17 73.72 77.83 71.53 80.48

WP 53.79 45.44 60.07 52.57 42.79 42.71 53.92

Fuse 94.05 91.19 94.30 83.38 83.57 84.38 89.91

DeiT-Small Char 95.92 91.04 94.97 84.59 85.89 86.81 91.01

BPE 96.27 93.35 89.37 79.74 86.67 82.29 87.61

WP 75.50 70.48 74.70 66.81 68.06 62.15 71.36

Fuse 96.38 93.51 95.30 86.09 87.29 87.85 91.96

DeiT-Base Char 96.49 93.66 96.10 86.14 88.83 89.58 92.53

BPE 95.56 93.66 88.73 79.84 89.76 83.33 87.63

WP 95.79 94.59 86.37 77.36 89.61 79.86 85.99

Fuse 97.32 94.74 96.40 87.24 91.01 90.28 93.35

the good potential of multi-granularity predictions. Moreover, MGP-STRFuse

only requires two new subword prediction heads, rather than the design of a
specific and explicit language model in [9,53].

4.5 Results with Different ViT Backbones

All of the proposed MGP-STR models mentioned earlier are based on DeiT-
Base [43]. We also introduce two smaller models, namely DeiT-Small and DeiT-
Tiny as presented in [43] to further evaluate the effectiveness of MGP-STRFuse

method. Specifically, the embedding dimensions of DeiT-Small and DeiT-Tiny
are reduced to 384 and 192, respectively. Table 5 records the results of each
prediction head of the MGP-STRFuse method with different ViT backbones.
Clearly, fusing multi-granularity predictions can still improve the performance
of pure character-level prediction in every backbone. And bigger models achieve
better performance in the same head. More importantly, the results of “Char” in
DeiT-Small and even DeiT-Tiny have already surpassed the SOTA pure CNN-
based vision models, referring to Table 1. Therefore, MGP-STRV ision with small
or tiny ViT backbone is also a competitive vision model and multi-granularity
prediction can also work well in different ViT backbones.
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Table 6. The comparisons with SOTA methods on several public benchmarks.

Methods Regular text Irregular text AVG

IC13 SVT IIIT IC15 SVTP CUTE

TBRA [2] 93.6 87.5 87.9 77.6 79.2 74.0 84.6

ViTSTR [1] 93.2 87.7 88.4 78.5 81.8 81.3 85.6

ESIR [56] 91.3 90.2 93.3 76.9 79.6 83.3 87.1

DAN [50] 93.9 89.2 94.3 74.5 80.0 84.4 87.2

SE-ASTER [34] 92.8 89.6 93.8 80.0 81.4 83.6 88.3

RobustScanner [54] 94.8 88.1 95.3 77.1 79.5 90.3 88.4

TextScanner [45] 92.9 90.1 93.9 79.4 84.3 83.3 88.5

SATRN [22] 94.1 91.3 92.8 79.0 86.5 87.8 88.6

MASTER [30] 95.3 90.6 95.0 79.4 84.5 87.5 89.5

SRN [53] 95.5 91.5 94.8 82.7 85.1 87.8 90.4

VisionLAN [51] 95.7 91.7 95.8 83.7 86.0 88.5 91.2

ABINet [9] 97.4 93.5 96.2 86.0 89.3 89.2 92.6

MGP-STRV ision 96.50 93.20 96.37 86.25 89.46 90.63 92.73

MGP-STRFuse 97.32 94.74 96.40 87.24 91.01 90.28 93.35

4.6 Comparisons with State-of-the-Arts

We compare the proposed MGP-STRV ision and MGP-STRFuse methods with
previous state-of-the-art scene text recognition methods, and the results on
6 standard benchmarks are summarized in Table 6. All of compared methods
and ours are trained on synthetic datasets MJ and ST for fair evaluation. And
the results are obtained without any lexicon based post-processing. Generally,
language-aware methods (i.e. , SRN [53], VisionLAN [51], ABINet [9] and MGP-
STRFuse) perform better than other language-free methods, showing the sig-
nificance of linguistic information. Notably, MGP-STRV ision without any lan-
guage information has already outperformed the state-of-the-art method ABINet
with explicit language model. Owing to the multi-granularity prediction, MGP-
STRFuse obtains more impressive results further, which outperforms ABINet
with 0.7% improvement on average accuracy.

4.7 Details of Multi-Granularity Predictions

We show the detailed prediction process of the proposed MGP-STRFuse method
on 6 test images from standard datasets. In the first three images, the results
of character-level prediction are incorrect, due to irregular font, motion blur
and curved shape, respectively. The scores of character prediction are very low,
since the images are difficult to recognize and one character is wrong in each
image. However, “BPE” and “WP” heads can recognize “table” image with
high scores. And “BPE” can make correct predictions with two subwords on
“dvisory” and “watercourse” images, while “WP” is wrong in “watercourse”
image. After fusion, the mistakes can be corrected. From the rest three images,
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Table 7. The details of multi-granularity prediction of MGP-STRFuse, including the
scores of each prediction head, the intermediate multi-granularity (Gra.) results and
the final prediction (Pred.). Best viewed in color.

Images GT Output Char BPE WP Fuse

table
Score 0.1643 0.9813 0.9521 0.9813
Gra. tabbe table table -
Pred. tabbe table table table

dvisory
Score 0.0316 0.8218 0.2574 0.8218
Gra. divsoory d visory dvisory -
Pred. divsoory dvisory dvisory dvisory

watercourse
Score 0.1565 0.8295 0.632 0.8295
Gra. watercourss water course waterco -
Pred. watercourss watercourse waterco watercourse

1869
Score 0.9999 0.9207 0.0354 0.9999
Gra. 1869 18 69 18 -
Pred. 1869 1869 18 1869

thday
Score 0.9998 0.5983 0.7638 0.9998
Gra. thday th day today -
Pred. thday thday today thday

guide
Score 0.9675 0.6959 0.1131 0.9675
Gra. guice gu ice guide -
Pred. guice guice guide guice

interesting phenomena can be observed. The predictions of “Char” and “BPE”
conform to the images. The predictions of “WP”, however, attempt to produce
strings with more linguistic content, like “today” and “guide”. Generally, “Char”
aims to produce characters one by one, while “BPE” usually generates n-gram
segments related to image and “WP” tends to directly predict words that are
linguistically meaningful. These prove the predictions of different granularities
convey text information in different aspects and are indeed complementary.

4.8 Visualization of Spatial Attention Maps of A3 Modules

Exemplar attention maps mi of Character, BPE and WordPiece A3 modules are
shown in Fig. 4. Character A3 module shows extremely precise addressing ability
on a variety of text images. Specifically, for the “7” image with one character, the
attention mask seems like the “7” shape. For the “day” and “bar” images with
three characters, the attention masks of middle character “a” are completely
different, verifying the adaptiveness of A3 module. As depicted in Fig. 1(d) and
in Table 7, BPE tends to generate short segments, thus the attention masks of
BPE are spilt into 2 or 3 areas as shown in “leaves” and “academy” images. This
is probably because that performing subword splitting and character addressing
simultaneously is difficult. Moreover, WordPiece often produces a whole word,
and the attention maps should be the whole feature map. Since the attention
maps produced by the softmax function are usually sparse, the attention maps of
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WordPiece are not as appealing as those of Character A3 module. These results
are consistent to those of Table 3, where the accuracies of “BPE” and “WP” are
relatively lower than “Char”, due to the difficulty of precise subword prediction.

Fig. 4. The illustration of spatial attention masks on Character A3 module, BPE A3

module and WordPiece A3 module, respectively.

4.9 Comparisons of Inference Time and Model Size

Table 8. Comparisons on inference time and model size.

Methods Time (ms/image) Parameters (1 × 106)

ABINet-S-iter1/iter2/iter3 13.7/18.6/24.3 32.8

ABINet-L-iter1/iter2/iter3 16.1/21.4/26.8 36.7

MGP-STRV ision-tiny/small/base 10.6/10.8/10.9 5.4/21.4/85.5

MGP-STRFuse-tiny/small/base 12.0/12.2/12.3 21.0/52.6/148.0

The model sizes and latencies of the proposed MGP-STR with different settings
as well as those of ABINet are depicted in Table 82. Since MGP-STR is equipped
with a regular Vision Transformer (ViT) and involves no iterative refinement,
the inference speed of MGP-STR is very fast: 12.3 ms with ViT-Base backbone.
Compared with ABINet, MGP-STR runs much faster (12.3 ms vs. 26.8 ms), while
obtaining higher performance. The model size of MGP-STR is relatively large.
However, a large portion of the model parameter is from the BPE and Word-
Piece branches. For the scenarios that are sensitive to model size or with limited
memory space, MGP-STRV ision is an excellent choice.

5 Conclusion

We presented a ViT-based pure vision model for STR, which shows its superi-
ority in recognition accuracy. To further promote recognition accuracy of this
2 All the evaluations are conducted on a NVIDIA V100 GPU.
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baseline model, we proposed a Multi-Granularity Prediction strategy to take
advantage of linguistic knowledge. The resultant model achieves state-of-the-art
performance on widely-used datasets. In the future, we will extend the idea of
multi-granularity prediction to broader domains.
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