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Abstract. The standard approach to contrastive learning is to maxi-
mize the agreement between different views of the data. The views are
ordered in pairs, such that they are either positive, encoding different
views of the same object, or negative, corresponding to views of different
objects. The supervisory signal comes from maximizing the total simi-
larity over positive pairs, while the negative pairs are needed to avoid
collapse. In this work, we note that the approach of considering indi-
vidual pairs cannot account for both intra-set and inter-set similarities
when the sets are formed from the views of the data. It thus limits the
information content of the supervisory signal available to train represen-
tations. We propose to go beyond contrasting individual pairs of objects
by focusing on contrasting objects as sets. For this, we use combinatorial
quadratic assignment theory designed to evaluate set and graph similar-
ities and derive set-contrastive objective as a regularizer for contrastive
learning methods. We conduct experiments and demonstrate that our
method improves learned representations for the tasks of metric learning
and self-supervised classification.

Keywords: Contrastive learning · Representation learning ·
Self-supervised · Optimal assignment

1 Introduction

The common approach to contrastive learning is to maximize the agreement
between individual views of the data [28,33]. The views are ordered in pairs,
such that they either positive, encoding different views of the same object, or
negative, corresponding to views of different objects. The pairs are compared
against one another by a contrastive loss-objective [12,39,44]. Contrastive learn-
ing was successfully applied among others in metric learning [23], self-supervised
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Fig. 1. (a) Contrasting views by similarity over pairs (pairwise linear alignment) versus
similarity over sets with set-alignment (set-wise quadratic alignment). (b) Comparing
total pairwise similarities versus set similarities for different configurations of repre-
sentation graphs. In both configurations, the total similarity over pairs remains the
same, being unable to discriminate between the internal structures of different views
as quadratic alignment can.

classification [12,21], and pre-training for dense prediction tasks [45]. However,
when two views of an object are drastically different, the view of object A will
resemble the same view of object B much more than it resembles the other view
of object A. By comparing individual pairs, the common patterns in the differ-
ences between two views will not be exploited. In this paper, we propose to go
beyond contrasting individual pairs of objects and focus on contrasting sets of
objects.

In contrastive learning, the best alignment of objects follows from maximiz-
ing the total similarity over positive pairs, while the negative pairs are needed
to encourage diversity. The diversity in representations is there to avoid collapse
[42]. We note that one number, the total similarity from contrasting individual
pairs, cannot both account for the inter-set similarities of the objects from the
same view and the intra-set similarities with objects from another view. There-
fore, considering the total similarity over pairs essentially limits the information
content of the supervisory signal available to the model. We aim to exploit the
information from contrasting sets of objects rather than contrasting objects pair-
wise only, further illustrated in Fig. 1a. From the perspective of set assignment
theory [8], two sets may expose the same linear pairwise alignment costs, yet
have different internal structures and hence have different set alignment costs,
see Fig. 1b. Therefore, contrastive learning from sets provides a richer supervi-
sory signal.

To contrast objects as sets, we turn to combinatorial quadratic assignment
theory [8] designed to evaluate set and graph similarities. Quadratic assignment
has advanced from linear assignment [9], which relies on pairwise similarities
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between objects. We pose contrastive learning by structural risk minimiza-
tion [43] in assignment problems. In this, pairwise contrastive learning meth-
ods emerge from the linear assignment case. We aim to extend the contrastive
objective to the set level by generalizing the underlying assignment problem
from linear to quadratic, as illustrated in Fig. 1a. Since directly computing set
similarities from quadratic alignment is computationally expensive, we derive an
efficient approximation. It can be implemented as a regularizer for existing con-
trastive learning methods. We provide a theory for the proposed method from
the perspective of assignment problems and dependence maximization. And, we
experimentally demonstrate the advantages of contrasting objects by quadratic
alignment.

We make the following contributions:

– Using combinatorial assignment theory, we propose to learn representations
by contrasting objects as sets rather than as pairs of individual instances.

– We propose a computationally efficient implementation, where the set con-
trastive part is implemented as a regularizer for existing contrastive learning
methods.

– We demonstrate that set-contrastive regularization improves recent con-
trastive learning methods for the tasks of metric learning and self-supervised
classification.

As a byproduct of viewing representation learning through the lens of combi-
natorial assignment theory, we additionally propose SparseCLR contrastive loss,
a modification of the popular InfoNCE [39] objective. Different from InfoNCE,
SparseCLR enjoys sparse support over negative pairs, which permits better use
of hard negative examples. Our experiments demonstrate that such an approach
improves the quality of learned representations for self-supervised classification.

2 Related Work

2.1 Contrastive Learning

In contrastive learning, a model is trained to align representations of the data
from different views (modalities), which dates back to the work of Becker et
al. [4]. Contrastive learning is made up of a joint embedding architecture like
Siamese networks [7] and a contrastive objective function. The network maps
different views of the data into the embedding space, where the alignment
between embeddings is measured by contrasting positive and negative pairs. The
pairs either from a complete set of observations [12,13,40,41] or from partially-
complete views [26,32,46,47]. And as a contrastive objective, contrastive loss
functions are used [12,21,39,44]. Van den Oord et al. [39] derived the InfoNCE
contrastive loss as a mutual information lower bound between different views
of the signal. In computer vision, Chen et al. apply the InfoNCE to contrast
the images with their distorted version. In PIRL [37], the authors propose to
maintain a memory bank of image representations to improve the generalization
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of the model by sampling negative samples better. Along the same lines, MoCO
[14,21] proposes a running queue of negative samples and a momentum-encoder
to increase the contrasting effect of negative pairs. All of these contrastive meth-
ods are based on measuring the alignment between individual pairs of objects.
This approach does not account for patterns in the views of objects beyond
contrasting them pairwise. We aim to extend contrastive learning to include set
similarities.

2.2 Information Maximization Methods

In contrastive learning information maximization methods aim to improve con-
trastive representations by maximizing the information content of the embed-
dings [2]. In W-MSE [16], batch representations are passed through a whiten-
ing, Karhunen-Loève transformation before computing the contrastive loss. Such
transformations help to avoid collapsing representations when the contrastive
objective can be minimized without learning the discriminative representations.
In [48], the authors follow the redundancy-reduction principle to design a loss
function to bring the cross-correlation matrix of representations from differ-
ent views close to identity. In the recent work of Zbontar et al., the authors
extend the above formulation of Barlow Twins with an explicit variance term,
which helps to stabilize the training. In this paper, we also seek to maximize
the information content of the embeddings but we aim to do so by comput-
ing the rich representation of set similarities between data views. In contrast to
existing methods, our approach does not require any additional transformations
like whitening and can be easily incorporated into other contrastive learning
methods.

2.3 Distillation Methods

Another branch of self-supervised methods is not based on contrastive learning
but rather based on knowledge distillation [24]. Instead of contrasting positive
and negative pairs of samples, these methods try to predict one positive view
from another. We discuss them here for completeness. BYOL [19] uses a student
network that learns to predict the output of a teacher network. SimSiam [15]
simplifies the BYOL by demonstrating that the stop-gradient operation suffices
to learn a generalized representation from distillation. In SWaV [11], the authors
combine online clustering and distillation by predicting swapped cluster assign-
ments. These self-supervised methods have demonstrated promising results in
the task of learning representations. We prefer to follow a different path of con-
trastive learning, where we do not exclude the possibility that set-based methods
may also be applicable to distillation.

2.4 Assignment Theory

Generally, optimal assignment problems can be categorized into linear and
higher-order assignments. Linear assignment problems can be viewed as a trans-
portation problem over a bipartite graph, where the transportation distances are
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defined on individual pairs of nodes. Linear assignment problems have many real-
world applications such as scheduling or vehicle routing, we refer to [9]. Higher-
order or in particular Quadratic assignment problems [8,17] extend the domain
of the transportation distances from individual pairs to sets of objects. Where
the linear assignment problem seeks to optimally match individual instances, its
quadratic counterpart matches the inter-connected graphs of instances, bring-
ing additional structure to the task. In this work, we aim to exploit linear and
quadratic assignment theory to rethink contrastive learning.

2.5 Structured Predictions

In a structured prediction problem, the goal is to learn a structured object such
as a sequence, a tree, or a permutation matrix [1]. Training a structure is non-
trivial as one has to compute the loss on the manifold defined by the structured
output space. In the seminal work of Tsochantaridis et al. [43], the authors derive
a structured loss for support vector machines and apply it to a sequence labeling
task. Later, structured prediction was applied to learn parameters of constraint
optimization problems [6,20]. In this work, we utilize structured prediction prin-
ciples to implement set similarities into contrastive losses.

3 Background

We start by formally introducing contrastive learning and linear assignment
problems. Then, we argue about the connection between these two problems
and demonstrate how one leads to another. This connection is essential for the
derivation of our contrastive method.

3.1 Contrastive Representation Learning

Consider a dataset D = {di}N
i=1 and an encoder function fθ : D −→ R

N×E ,
which outputs an embedding vector of dimension E for each of the objects in
D. The task is to learn a such fθ that embeddings of objects belonging to the
same category are pulled together, while the embeddings of objects from different
categories are pushed apart.

As category labels are not available during training, the common strategy
is to maximize the agreement between different views of the instances, i.e. to
maximize the mutual information between different data modalities. The mutual
information between two latent variables X,Y , can be expressed as:

MI(X,Y ) = H(X) − H(X|Y ) (1)

where X and Y correspond to representations of two different views of a dataset.
Minimizing the conditional entropy H(X|Y ) aims at reducing uncertainty in
the representations from one view given the representations of another, while
H(X) enforces the diversity in representations and prevents trivial solutions. In
practice, sample-based estimators of the mutual information such as InfoNCE
[39] or NT-Xent [12] are used to maximize the objective in (1).
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3.2 Linear Assignment Problem

Given two input sets, A = {ai}N
i=1 and B = {bj}N

j=1, we define the inter-set
similarity matrix S ∈ R

N×N between each element in set A and each element in
B. This similarity matrix encodes pairwise distances between the elements of the
sets, i.e. [S]i,j = φ(ai, bj), where φ is a distance metric. The goal of the linear
assignment problem is to find a one-to-one assignment ŷ(S), such that the sum
of distances between assigned elements is optimal. Formally:

ŷ(S) = argmin
Y∈Π

tr(SYT ) (2)

where Π corresponds to a set of all N × N permutation matrices.
The linear assignment problem in (2) is also known as the bipartite graph

matching problem. It can be efficiently solved by linear programming algorithms
[5].

3.3 Learning to Produce Correct Assignments

Consider two sets, DZ1 and DZ2 , which encode two different views of the dataset
D under two different views Z1 and Z2. By design, the two sets consist of the
same instances, but the modalities and the order of the objects may differ. With
the encoder, which maximizes the mutual information, objects in both sets can
be uniquely associated with one another by comparing their representations as
the uncertainty term in (1) should be minimized. In other words, ŷ(S) = Ygt,
where Ygt ∈ Π is a ground truth assignment between elements of DZ1 and DZ2 .

Thus, a natural objective to supervise an encoder function is to train it
to produce the correct assignment between the different views of the data. As
the assignment emerges as a result of the optimization problem, we employ a
structured prediction framework [43] to define a structural loss from the linear
assignment problem as follows:

L(S,Ygt) = tr(SYT
gt) − min

Y∈Π
tr(SYT ) (3)

where S = φ
(
fθ(DZ1), fθ(DZ2)

)
. Note that L ≥ 0 and L = 0 only when the

similarities produced by an encoder lead to the correct optimal assignment.
Intuitively, the structured linear1 assignment loss in (3) encodes the discrepancy
between the true cost of the assignment and the cost induced by an encoder.

By minimizing the objective in (3), we train the encoder fθ to correctly assign
objects from one view to another. In practice, it is desirable that such assignment
is robust under small perturbations in the input data. The straightforward way
to do so is to enforce a separation margin m in the input similarities as Sm =
S + mYgt. Then, the structured linear assignment loss with separation margin
reduces to a known margin Triplet loss [23].

1 We emphasize that the term linear here is only used with regard to an underlying
assignment problem.



94 A. Moskalev et al.

Proposition 1. The structured linear assignment loss L(Sm,Ygt) with separa-
tion margin m ≥ 0 is equivalent to the margin triplet loss.

Mining Strategies. By default, the loss in (3) enforces a one-to-one negative pair
mining strategy due to the structural domain constraint Y ∈ Π. By relaxing this
domain constraint to row-stochastic binary matrices, we arrive at the known
batch-hard mining [23]. This is essential to have a computationally tractable
implementation of structured assignment losses.

Smoothness. An immediate issue when directly optimizing the structured linear
assignment loss is the non-smoothness of the minimum function in (3). It is
known that optimizing smoothed functions can be more efficient than directly
optimizing their non-smooth counterparts [3]. The common way to smooth a
minimum is by log-sum-exp approximation. Thus, we can obtain a smoothed
version of structured linear assignment loss:

Lτ (S,Ygt) = tr(SYT
gt) + τ log

∑

Y∈Π

exp(−1
τ
tr(SYT )) (4)

where τ is a temperature parameter controlling the degree of smoothness. Prac-
tically, the formulation in (4) requires summing N ! terms, which makes it
computationally intractable under the default structural constraints Y ∈ Π.
Fortunately, similar to the non-smooth case, we can utilize batch-hard min-
ing, which leads to O(N2) computational complexity. The smoothed structured
linear assignment loss with batch-hard mining reduces to known normalized-
temperature cross entropy [12] also known as the InfoNCE [39] loss.

Proposition 2. The smoothed structured linear assignment loss Lτ (S,Ygt)
with batch-hard mining is equivalent to the normalized-temperature cross entropy
loss.

Connection to Mutual Information. It is known that the InfoNCE objective is
a lower bound on the mutual information between the representations of data
modalities [39]. Thus, Propositions 1 and 2 reveal a connection between mutual
information maximization and minimization of structured losses for assignmnet
problems. In fact, the assignment cost tr(SYT

gt) in (2) is related to the condi-
tional entropy H(X|Y ), while minY∈Π tr(SYT ) aims to maximize the diversity
in representations. This connection allows for consideration of contrastive rep-
resentation learning methods based on InfoNCE as a special case the structured
linear assignment loss.

4 Extending Contrastive Losses

We next demonstrate how to exploit the connection between contrastive learning
and assignment problems to extend contrastive losses the set level. As a byprod-
uct of this connection, we also derive the SparseCLR contrastive objective.
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4.1 Contrastive Learning with Quadratic Assignments on Sets

Quadratic Assignment Problem. As in the linear case, we are given two
input sets A,B and the inter-set similarity matrix S. For the Quadratic Assign-
ment Problem (QAP), we define intra-set similarity matrices SA and SB mea-
suring similarities within the sets A and B respectively, i.e. [SA]ij = φ(ai, aj).
A goal of the quadratic assignment problem is to find a one-to-one assignment
ŷQ(S,SA,SB) ∈ Π that maximizes the set similarity between A,B, where the
set similarity is defined as follows:

Q(S,SA,SB) = min
Y∈Π

{
tr(SYT ) + tr(SAYST

BYT )
}

(5)

Compared to the linear assignment problem, the quadratic term Q(S,SA,SB)
in (5) additionally measures the discrepancy in internal structures between sets
SA and SB.

Learning with Quadratic Assignments. Following the similar steps as
for the linear assignment problem in Sect. 3.3, we next define the structured
quadratic assignment loss by extending the linear assignment problem in (3)
with the quadratic term:

LQAP = tr(SYgt) − Q(S,SA,SB) (6)

Minimization of the structured quadratic assignment loss in (6) encourages
the encoder to learn representations resulting in the same solutions of the linear
and quadratic assignment problems, which is only possible when the inter-set
and intra-set similarities are sufficiently close [8]. Note that we do not use a
ground truth quadratic assignment in LQAP , but a ground truth linear assign-
ment objective is used for the supervision. This is due to a quadratic nature of Q,
where minimizing the discrepancy between ground truth and predicted assign-
ments is a subtle optimization objective, e.g. for an equidistant set of points the
costs of all quadratic assignments are identical.

To compute LQAP , we first need to evaluate the quadratic term Q(S,SA,SB),
which requires solving the quadratic assignment. This problem is known to be
notoriously hard to solve exactly even when an input dimensionality is moderate
[8]. To alleviate this, we use a computationally tractable upper-bound:

LQAP ≤ tr(SYgt) − min
Y∈Π

tr(SYT ) − min
Y∈Π

tr(SAYST
BYT )

≤ L(S,Ygt) − 〈λA, λB〉−
(7)

where 〈λA, λB〉− corresponds to a minimum dot product between eigenvalues of
matrices SA and SB .

The first inequality is derived from Jensen’s inequality for (6) and the second
inequality holds due to the fact that 〈λF , λD〉− ≤ tr(FXDT XT ) ≤ 〈λF , λD〉+
for symmetric matrices F,D and X ∈ Π as shown in Theorem 5 by Burkard
[8]. The above derivations are for the case when the similarity metric is a valid
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Algorithm 1. Pseudocode for set-based InfoNCE with Euclidean distance sim-
ilarity and Quadratic Assignment Regularization (QARe).

# f: encoder network
# alpha: weighting for the pairwise contrastive part (linear assignment)
# beta: weighting for the set contrastive part
# N: batch size
# E: dimensionality of the embeddings

for x in loader: # load a batch with N samples
# two randomly augmented views of x
y_a, y_b = augment(x)

# compute embeddings
z_a = f(y_a) # NxE
z_b = f(y_b) # NxE

# compute inter-set and intra-set similarities
S_AB = similarity(z_a, z_b) # NxN
S_A = similarity(z_a, z_a) # NxN
S_B = similarity(z_b, z_b) # NxN

# compute pairwise contrastive InfoNCE loss
pairwise_term = infonce(S_AB)

# compute eigenvalues
eigs_a = eigenvalues(S_A) #N
eigs_b = eigenvalues(S_B) #N

# compute QARe from minimum dot product of eigenvalues
eigs_a_sorted = sort(eigs_a, descending = True) #N
eigs_b_sorted = sort(eigs_b, descending = False) #N
qare = -1*(eigs_a_sorted.T@eigs_b_sorted)

# combine pairwise contrastive loss with QARe
loss = alpha*pairwise_term + beta*qare/(Nˆ2)

# optimization step
loss.backward()
optimizer.step()

distance function, i.e. minimizing a distances leads to maximizing a similarity.
The derivation for the reverse case can be done analogously by replacing min
with max in the optimal assignment problem formulation (we provide more
details in supplementary material).

Optimizing the upper-bound in (7) is computationally tractable compared
to optimizing the exact version of LQAP . Another advantage is that the upper-
bound in (7) breaks down towards minimizing the sum of the structured linear
assignment loss L(S,Ygt) and the regularizing term, which accounts for the set
similarity. This allows to easily modify existing contrastive learning approaches
like those in [12,23,36,39] that are based on pairwise similarities and thus stem
from the linear assignment problem by simply plugging in the regularizing term.
We provide a simple pseudocode example demonstrating InfoNCE with the
quadratic assignment regularization (Algorithm 1).

Computational Complexity. Computing the upper-bound in (7) has a com-
putational complexity of O(N3) as one needs to compute eigenvalues of the intra-
set similarity matrices. This is opposed to (6) that requires directly computing
quadratic assignments, for which it is known there exist no polynomial-time
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algorithms [8]. The computational complexity can be pushed further down to
O(k2N) by evaluating the only top-k eigenvalues instead of computing all eigen-
values. In supplementary materials, we also provide an empirical analysis of
how the proposed approach influences a training time of a baseline contrastive
method.

4.2 SparseCLR

In Sect. 3 we noted that the smoothness of a loss function is a desirable property
for optimization and that the log-sum-exp smoothing of the structured linear
assignment loss yields the normalized temperature cross-entropy objective as a
special case. Such an approach, however, is known to have limitations. Specifi-
cally, the log-sum-exp smoothing yields dense support over samples, being unable
to completely rule out irrelevant examples [38]. That can be statistically and
computationally overwhelming and can distract the model from fully utilizing
information from hard negative examples.

We propose to use sparsemax instead of log-sum-exp approximation to alle-
viate the non-smoothness of the structured linear assignment objective, yet keep
the sparse support of the loss function. Here sparsemax is defined as the mini-
mum distance Euclidean projection to a k-dimensional simplex as in [35,38].

Let x̃ :∈ R
N ! be a vector that consists of the realizations of all possible

assignment costs for the similarity matrix S. With this we can define SparseCLR
as follows:

Lsparse(S,Ygt) = tr(SYT
gt) − 1

2

∑

j∈Ω(x̃)

(
x̃2

j − T 2(−x̃)
)

(8)

where Ω(X) = {j ∈ X : sparsemax(X)j > 0} is the support of sparsemax
function, and T denotes the thresholding operator [35]. In practice, to avoid
summing over a factorial number of terms, as well as for other methods, we use
batch-hard mining strategy resulting in O(N2) computational complexity for
SparseCLR.

5 Experiments

In this section, we evaluate the quality of representations trained with and with-
out our Quadratic Assignment Regularization (QARe). We also evaluate the
performance of SparseCLR and compare it with other contrastive losses. As we
consider the representation learning from the perspective of the assignment the-
ory, we firstly conduct the instance matching experiment, where the goal is to
learn to predict the correct assignment between different views of the dataset.
Then, we test the proposed method on the task of self-supervised classification
and compare it with other contrastive learning approaches. Next, we present
ablation studies to visualize the role of the weighting term, when combining
QARe with the baseline contrastive learning method.
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5.1 Matching Instances from Different Views

In this experiment, the goal is to train representations of objects from different
views, such that the learned representations provide a correct matching between
identities in the dataset. This problem is closely related to a metric learning and
can be solved by contrasting views of the data [23].

Data. We adopt the CUHK-03 dataset [31] designed for the ReID [23] task.
CUHK-03 consist of 1467 different identities recorded each from front and
back views. To train and test the models, we randomly divide the dataset into
70/15/15 train/test/validation splits.

Evaluation. We evaluate the quality of representations learned with contrastive
losses by computing the matching accuracy between front and back views. In
practice, we first obtain the embeddings of the views of the instances from the
encoder and then compute their inter-view similarity matrix using the Euclidean
distance. Given this, the matching accuracy is defined as the mean Hamming
distance between the optimal assignment from the inter-view similarity matrix
and the ground truth assignment. We report the average matching accuracy
and the standard deviation over 3 runs with the same fixed random seeds. As
a baseline, we chose Triplet with batch-hard mining [23], InfoNCE [39] and
NTLogistic [36] contrastive losses, which we extend with the proposed QARe.

Implementation Details. As the encoder, we use ResNet-18 [22] with the top
classification layer replaced by the linear projection head that outputs feature
vectors of dimension 64. To obtain representations, we normalize the feature
vectors to be L2 unit-norm.

We train the models for 50 epochs using Adam optimizer [29] with the cosine
annealing without restarts [34]. Initial learning rate is 0.01 and a batch size is set
to 128. During the training, we apply random color jittering and horizontal flip
augmentations. To compute the test matching accuracy, we select the best model
over the epochs based on the validation split. We provide detailed hyperparam-
eters of the losses, QARe weighting, and augmentations in the supplementary
material.

Results. The results are reported in Table 1. As can be seen, adding QARe
regularization to a baseline contrastive loss leads to a better matching accu-
racy, which indicates an improved quality of representations. Notably, QARe
delivers 3.6% improvement when combined with Triplet loss and 4.1% increase
in accuracy with the InfoNCE objective. This demonstrates that the quadratic
assignment regularization on sets helps the model to learn generalized represen-
tation space.
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Table 1. Matching accuracy for instances from different views of CUHK-03 dataset.
The pairwise corresponds to the contrastive losses acting on the level of pairs. +QARe
denotes methods with quadratic assignment regularization. Best results are in bold.

Method Triplet SparseCLR InfoNCE NTLogistic

pairwise 54.85± 0.77 53.03± 0.43 57.87± 1.19 40.30± 0.42

+QARe 58.48± 1.67 54.84± 1.40 61.96± 1.38 43.48± 1.41

5.2 Self-supervised Classification

Next, we evaluate the quadratic assignments on sets in the task of self-supervised
classification. The goal in this experiment is to learn a representation space from
an unlabeled data that provides a linear separation between classes in a dataset.
This is a common problem to test contrastive learning methods.

Evaluation. We follow the standard linear probing protocol [30]. The evaluation
is performed by retrieving embeddings from a contrastively trained backbone and
fitting a linear classifier on top of the embeddings. Since linear classifiers have
a low discriminative power on their own, they heavily rely on input representa-
tions. Thus, a higher classification accuracy indicates a better quality of learned
representations. As the baseline for pairwise contrastive learning methods, we
select popular SimCLR and proposed SparseCLR. We extend the methods to
the set level by adding the quadratic assignment regularization. We compare the
set-level contrastive methods with other self-supervised [10,18] and contrastive
approaches [11,12].

Table 2. Self-supervised training and linear probing for a self-supervised classification.
Average classification accuracy (percentage) and standard deviation over 3 runs with
common fixed random seeds are reported. ∗ we report the results from our reimple-
mentation of SimCLR.

Conv-4 ResNet-32

Method CIFAR-10 CIFAR-100 tiny-ImageNet CIFAR-10 CIFAR-100 tiny-ImageNet

Supervised

(upper bound)

80.46± 0.39 49.29± 0.85 36.47± 0.36 90.87± 0.41 65.32± 0.22 50.09± 0.32

Random

Weights

(lower bound)

32.92± 1.88 10.79± 0.59 6.19± 0.13 27.47± 0.83 7.65± 0.44 3.24± 0.43

DeepCluster

[10]

42.88± 0.21 21.03± 1.56 12.60± 1.23 43.31± 0.62 20.44± 0.80 11.64± 0.21

RotationNet

[18]

56.73± 1.71 27.45± 0.80 18.40± 0.95 62.00± 0.79 29.02± 0.18 14.73± 0.48

Deep InfoMax

[25]

44.60± 0.27 22.74± 0.21 14.19± 0.13 47.13± 0.45 24.07± 0.05 17.51± 0.15

SimCLR∗ [12] 59.64± 0.93 30.75± 0.23 21.15± 0.16 76.45± 0.10 40.18± 0.13 23.44± 0.27

SimCLR+QARe

(Ours)

61.54±1.17 31.18±0.41 21.33±0.18 76.85±0.39 41.20±0.34 25.05±0.18
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Implementation Details. We train shallow convolutional (Conv-4) and deep
(ResNet-32) backbone encoders to obtain representations. We follow the stan-
dard approach and attach an MLP projection head that outputs feature vectors
of dimension 64 to compute a contrastive loss. We use the cosine distance to
get similarities between embeddings. We provide more details on the encoder
architectures in the supplementary material.

We train the models for 200 epochs using Adam optimizer with a learning rate
of 0.001 and a batch size is set to 128. For contrastive learning methods, we adopt
a set of augmentations from [12] to form different views of the data. For linear
probing, we freeze the encoder weights and train a logistic regression on top of
the learned representation for 100 epochs with Adam optimizer, using a learning
rate of 0.001 and a batch size of 128. We provide detailed hyperparameters of
the contrastive losses and augmentations in the supplementary material.

We perform training and testing on standard CIFAR-10, CIFAR-100, and
tiny-ImageNet datasets. For each dataset, we follow the same training procedure
and fine-tune the optimal weighting of the quadratic assignment regularizer.

Fig. 2. Influence of the weighting of the QARe term in the self-supervised classification
for ResNet-32 trained with SimCLR. The accuracy is recorded over 3 runs with common
fixed random seeds.

Table 3. Self-supervised training on unlabeled data and linear evaluation on labeled
data. Comparing SimCLR [12] with the proposed SparseCLR and SparseCLR with
QARe. Average accuracy and standard deviation over three runs over 3 runs with
common fixed random seeds.

Method Conv-4 ResNet-32

CIFAR-10 CIFAR-100 tiny-ImageNet CIFAR-10 CIFAR-100 tiny-ImageNet

SimCLR∗ [12] 59.64± 0.93 30.75± 0.23 21.15± 0.16 76.45± 0.10 40.18± 0.13 23.44± 0.27

SparseCLR
(Ours)

59.86± 0.56 32.04± 0.26 22.41± 0.39 70.37± 0.12 41.05± 0.20 25.87± 0.59

SparseCLR+
QARe (Ours)

61.06± 0.39 33.05± 0.32 22.45± 0.30 71.39± 0.30 42.07± 0.35 27.03± 0.40
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QARe Results. The results for the quadratic assignment regularization are
reported in Table 2 for SimCLR and in Table 3 for proposed SparseCLR. For
SimCLR, adding QARe delivers 1.9% accuracy improvement on CIFAR-10 for
the shallow encoder network and up to 1.6% improvement for ResNet-32 on tiny-
ImageNet. We observed a consistent improvement in other dataset-architecture
setups, except tiny-ImageNet with shallow Conv-4 encoder, where the perfor-
mance gain from adding QARe is modest. For this case, we investigated the
training behavior of the models and observed that both SimCLR and Sim-
CLR+QARe for Conv-4 architecture very quickly saturate to a saddle point,
where the quality of representations stops improving. Since this does not hap-
pen with ResNet-32 architecture, we attribute this phenomenon to the limited
discriminative power of the shallow Conv-4 backbone, which can not be extended
by regularizing the loss.

For SparseCLR, we observed the same overall pattern. As can be seen from
Table 3, extending SparseCLR to set level with QARe delivers 1.6% accuracy
improvement for ResNet-32 on tiny-ImageNet and also steadily improve the per-
formance on other datasets. This indicates that QARe helps to provide a richer
supervisory signal for the model to train representations.

SparseCLR Results. Next, we compare SimCLR against the proposed Sparse-
CLR. As can be seen in Table 3, SparseCLR consistently improves over the base-
line on CIFAR-100 and tiny-ImageNet datasets, where it delivers 2.4% improve-
ment. Surprisingly, we noticed a significant drop in performance for ResNet-32
on CIFAR-10. For this case, we investigated the training behavior of the model
and observed that in the case of CIFAR-10, the batch often includes many false
negative examples, which results in uninformative negative pairs. Since Sparse-
CLR assigns the probability mass only to a few hardest negative pairs, a lot of
false-negative examples in the batch impede obtaining a clear supervisory signal.
We assume the problem can be alleviated by using false-negative cancellation
techniques [27].

5.3 Ablation Study

Here we illustrate how the weighting of the QARe term influences the quality
of representations learned with SimCLR under a linear probing evaluation. We
search for the optimal weighting in the range from 0 to 1.875 with a step of
0.125. The results are depicted in Fig. 2. In practice, we observed that QARe is
not too sensitive to a weighting and the values in the range 0.75–1.25 provide
consistent improvement.

6 Discussion

In this work, we present set contrastive learning method based on quadratic
assignments. Different from other contrastive learning approaches, our method
works on the level of set similarities as opposed to only pairwise similarities,
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which allows improving the information content of the supervisory signal. For
derivation, we view contrastive learning through the lens of combinatorial assign-
ment theory. We show how pairwise contrastive methods emerge from learning
to produce correct optimal assignments and then extend them to a set level by
generalizing an underlying assignment problem, implemented as a regularization
for existing methods. As a byproduct of viewing representation learning through
the lens of assignment theory, we additionally propose SparceCLR contrastive
loss.

Our experiments in instance matching and self-supervised classification sug-
gest that adding quadratic assignment regularization improves the quality of
representations learned by backbone methods. We suppose, that our approach
would be most useful in the problems where the joint analysis of objects and
their groups appears naturally and labeling is not readily available.
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