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Abstract. Deep learning approaches achieve prominent success in 3D
semantic segmentation. However, collecting densely annotated real-world
3D datasets is extremely time-consuming and expensive. Training mod-
els on synthetic data and generalizing on real-world scenarios becomes an
appealing alternative, but unfortunately suffers from notorious domain
shifts. In this work, we propose a Data-Oriented Domain Adaptation
(DODA) framework to mitigate pattern and context gaps caused by
different sensing mechanisms and layout placements across domains.
Our DODA encompasses virtual scan simulation to imitate real-world
point cloud patterns and tail-aware cuboid mixing to alleviate the inte-
rior context gap with a cuboid-based intermediate domain. The first
unsupervised sim-to-real adaptation benchmark on 3D indoor semantic
segmentation is also built on 3D-FRONT, ScanNet and S3DIS along
with 8 popular Unsupervised Domain Adaptation (UDA) methods. Our
DODA surpasses existing UDA approaches by over 13% on both 3D-
FRONT → ScanNet and 3D-FRONT → S3DIS. Code is available at
https://github.com/CVMI-Lab/DODA.
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1 Introduction

3D semantic segmentation is a fundamental perception task receiving incred-
ible attention from both industry and academia due to its wide applications
in robotics, augmented reality, and human-computer interaction, to name a
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few. Data hungry deep learning approaches have attained remarkable success
for 3D semantic segmentation [22,30,46,55,61,63]. Nevertheless, harvesting a
large amount of annotated data is expensive and time-consuming [3,7].

An appealing avenue to overcome such data scarcity is to leverage simulation
data where both data and labels can be obtained for free. Simulated datasets
can be arbitrarily large, easily adapted to different label spaces and customized
for various usages [8,18,26,34,53,72]. However, due to notorious domain gaps
in point patterns and context (see Fig. 1), models trained on simulated scenes
suffer drastic performance degradation when generalized to real-world scenarios.
This motivates us to study sim-to-real unsupervised domain adaptation (UDA),
leveraging labeled source data (simulation) and unlabeled target data (real) for
effectively adapting knowledge across domains.

Recent efforts on 3D domain adaptation for outdoor scene parsing have
obtained considerable progress [23,29,60,71]. However, they often adopt LiDAR-
specific range image format, not applicable for indoor scenarios with scenes con-
structed by RGB-D sequences. Besides, such outdoor attempts could be sub-
optimal in addressing the indoor domain gaps raised from different scene con-
struction processes. Further, indoor scenes have more sophisticated interior con-
text than outdoor, which makes the context gap a more essential issue in indoor
settings. Here, we explore sim-to-real UDA in the 3D indoor scenario which is
challenging and largely under explored.

Fig. 1. The domain gaps between simulated scenes from 3D-FRONT [8] and real-
world scenes from ScanNet [7]. (a): The point pattern gap. The simulated scene is
perfect without occlusions or noise, while the real-world scene inevitably contains scan
occlusion and noise patterns such as rough surfaces. (b): The context gap. While the
simulated scene applies simple layout with regularly placed objects, the real scene is
complex with cluttered interiors.

Challenges. Our empirical studies on sim-to-real adaptation demonstrate two
unique challenges in this setting: the point pattern gap owing to different sensing
mechanisms, and the context gap due to dissimilar semantic layouts. As shown
in Fig. 1(a), simulated scenes tend to contain complete objects as well as smooth
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surfaces, while real scenes include inevitable scan occlusions and noise patterns
during reconstructing point clouds from RGB-D videos captured by depth cam-
eras [3,7]. Also, even professionally designed layouts in simulated scenes are
much simpler and more regular than real layouts as illustrated in Fig. 1(b).

To tackle the above domain gaps, we develop a holistic two stage pipeline
DODA with a pretrain and a self-training stage, which is widely proved to be
effective in UDA settings [49,64,73]. As the root of the challenges lies in “data”,
we thus design two data-oriented modules which are shown to dramatically
reduce domain gaps without incurring any computational costs during infer-
ence. Specifically, we develop Virtual Scan Simulation (VSS) to mimic occlusion
and noise patterns that occur during the construction of real scenes. Such pat-
tern imitation yields a more transferable model to real-world data. Afterwards, to
adapt the model to target domain, we design Tail-aware Cuboid Mixing (TACM)
for boosting self-training. While source supervision is utilized to stabilize gradi-
ents with clean labels in self-training, it unfortunately introduces context bias.
Thus, we propose TACM to create an intermediate domain by splitting, per-
muting, mixing and re-sampling source and target cuboids, which explicitly mit-
igates the context gap through breaking and rectifying source bias with target
pseudo-labeled data, and simultaneously eases long-tail issue by oversampling
tail cuboids.

To the best of our knowledge, we are the first to explore unsupervised domain
adaptation on 3D indoor semantic segmentation. To verify the effectiveness of
our DODA, we construct the first 3D indoor sim-to-real UDA benchmark on a
simulated dataset 3D-FRONT [8] and two widely used real-world scene under-
standing datasets ScanNet [7] and S3DIS [3] along with 8 popular UDA methods
with task-specific modifications as our baselines. Experimental results show that
DODA obtains 22% and 19% performance gains in terms of mIoU compared to
source only model on 3D-FRONT → ScanNet and 3D-FRONT → S3DIS respec-
tively. Even compared to existing UDA methods, over 13% improvement is still
achieved. It is also noteworthy that the proposed VSS can lift previous UDA
methods by a large margin (8% ∼ 14%) as a plug-and-play data augmentation,
and TACM further facilitates real-world cross-site adaptation tasks with 4% ∼
5% improvements.

2 Related Work

3D Indoor Semantic Segmentation focuses on obtaining point-wise cate-
gory predictions from point clouds, which is a fundamental while challenging
task due to the irregularity and sparsity of 3D point clouds. Some previous
works [41,53] feed 3D grids constructed from point clouds into 3D convolutional
neural networks. Some approaches [6,16] further employ sparse convolution [17]
to leverage the sparsity of 3D voxel representation to accelerate computation.
Another line of works [25,45,46,61,70] directly extract feature embeddings from
raw point clouds with hierarchical feature aggregation schemes. Recent meth-
ods [55,63] assign position-related kernel functions on local point areas to per-
form dynamic convolutions. Additionally, graph-based works [31,52,59] adopt
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graph convolutions to mimic point cloud structure for point representation learn-
ing. Although the above methods achieve prominent performance on various
indoor scene datasets, they require large-scale human-annotated datasets which
we aim to address using simulation data. Our experimental investigation is built
upon the sparse-convolution-based U-Net [6,16] due to its high performance.

Unsupervised Domain Adaptation aims at adapting models obtained
from annotated source data towards unlabeled target samples. The annota-
tion efficiency of UDA and existing data-hungry deep neural networks make
it receive great attention from the computer vision community. Some previous
works [38,39] attempt to learn domain-invariant representations by minimizing
maximum mean discrepancy [5]. Another line of research leverages adversarial
training [14] to align distributions in feature [10,20,50], pixel [13,20,21] or out-
put space [56] across domains. Adversarial attacks [15] have also been utilized
in [35,66] to train domain-invariant classifiers. Recently, Self-training has been
investigated in addressing this problem [49] which formulate UDA as a supervised
learning problem guided by pseudo-labeled target data and achieves state-of-the-
art performance in semantic segmentation [73] and object detection [28,48].

Lately, with the rising of 3D vision tasks, UDA has also attracted a lot
of attention in such 3D tasks as 3D object classification [1,47], 3D outdoor
semantic segmentation [23,29,44,60,67] and 3D outdoor object detection [40,
58,64,65,69]. Especially, Wu et al. [60] propose intensity rendering, geodesic
alignment and domain calibration modules to align sim-to-real gaps of outdoor
3D semantic segmentation datasets. Jaritz et al. [23] explore multi-modality
UDA by leveraging images and point clouds simultaneously. Nevertheless, no
previous work studies UDA on 3D indoor scenes. The unique point pattern
gap and the context gap also render 3D outdoor UDA approaches not readily
applicable to indoor scenarios. Hence, in this work, we make the first attempt on
UDA for 3D indoor semantic segmentation. Particularly, we focus on the most
practical and challenging scenario – simulation to real adaptation.

Data Augmentation for UDA has also been investigated to remedy data-level
gaps across domains. Data augmentation techniques have been widely employed
to construct an intermediate domain [13,29,48] to benefit optimization and
facilitate gradual domain adaptation. However, they mainly focus on image-like
input formats, which is not suitable for sparse and irregular raw 3D point clouds.
Different from existing works, we build a holistic pipeline with two data-oriented
modules on two stages to manipulate raw point clouds for mimicking target point
cloud patterns and creating a cuboid-based intermediate domain.

3 Method

3.1 Overview

In this work, we aim at adapting a 3D semantic scene parsing model trained
on a source domain Ds = {(P s

i , Y s
i )}Ns

i=1 of Ns samples to an unlabeled target
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domain Dt = {P t
i }Nt

i=1 of Nt samples. P and Y represent the point cloud and the
point-wise semantic labels respectively.

In this section, we present DODA, a data-oriented domain adaptation frame-
work to simultaneously close pattern and context gaps by imitating target pat-
terns as well as breaking source bias with the generated intermediate domain.
Specifically, as shown in Fig. 2, DODA begins with pretraining the 3D scene pars-
ing model F on labeled source data with our proposed virtual scan simulation
module for better generalization. VSS puts virtual cameras on the feasible regions
in source scenes to simulate occlusion patterns, and jitters source points to imi-
tate sensing and reconstruction noise in the real scenes. The pseudo labels are
then generated with the pretrained model. In the self-training stage, we develop
tail-aware cuboid mixing to build an intermediate domain between source and
target, which is constructed by splitting and mixing cuboids from both domains.
Besides, cuboids including high percentage tail classes are over-sampled to over-
come the class imbalance issue during learning with pseudo labeled data. Elab-
orations of our tailored VSS and TACM are presented in the following parts.

Fig. 2. Our DODA framework consists of two data-oriented modules: Virtual Scan
Simulation (VSS) and Tail-aware Cuboid Mixing (TACM). VSS mimics real-world
data patterns and TACM constructs an intermediate domain through mixing source
and target cuboids. P denotes the point cloud; Y denotes the semantic labels and
Ŷ denotes the pseudo labels. The superscripts s, t and m stand for source, target
and intermediate domain, respectively. The blue line denotes source training flow; the
orange line denotes target training flow and the orange dotted line denotes target
pseudo label generation procedure. Best viewed in color. (Color figure online)

3.2 Virtual Scan Simulation

DODA starts from training a 3D scene parsing network on labeled source data,
to provide pseudo labels on the target domain in the next self-training stage.
Hence, a model with a good generalization ability is highly desirable. As ana-
lyzed in Sect. 1, different scene construction procedures cause point pattern gaps
across domains, significantly hindering the transferability of source-trained mod-
els. Specifically, we find that the missing of occlusion patterns and sensing or
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reconstruction noise in simulation scenes raises huge negative transfer during
the adaptation, which cannot be readily addressed by previous UDA methods
(see Sect. 5). This is potentially caused by the fact that models trained on clean
source data are incapable of extracting useful features to handle real-world chal-
lenging scenarios with ubiquitous occlusions and noise. To this end, we propose
a plug-and-play data augmentation technique, namely virtual scan simulation,
to imitate camera scanning procedure for augmenting the simulation data.

VSS includes two parts: the occlusion simulation that puts virtual cameras in
feasible regions of simulated scenes to imitate occlusions in the scanning process,
and the noise simulation that randomly jitters point patterns to mimic sensing
or reconstruction errors, through which the pattern gaps are largely bridged.

Fig. 3. Virtual scan simulation. (a): We simulate occlusion patterns by simulating
camera poses and determining visible ranges. (b): We simulate noise by randomly
jittering points to generate realistic irregular point patterns such as rough surfaces.

Occlusion Simulation. Scenes in real-world datasets are reconstructed from
RGB-D frame sequences suffering from inevitable occlusions, while simulated
scenes contain complete objects without any hidden points. We attempt to mimic
occlusion patterns on the simulation data by simulating the real-world data
acquisition procedures. Specifically, we divide it into the following three steps:

a) Simulate camera poses. To put virtual cameras in a given simulation scene,
we need to determine camera poses including camera positions and camera orien-
tations. First, feasible camera positions where a handheld camera can be placed
are determined by checking free space in the simulated environment. We voxelize
and project P s to bird eye’s view and remove voxels containing instance or room
boundary. The centers of remaining free-space voxels are considered as feasible
x-y coordinates for virtual cameras, as shown in Fig. 3(a) (i). For the z axis, we
randomly sample the camera height in the top half of the room.

Second, for each camera position v, we randomly generate a camera orienta-
tion using the direction from the camera position v to a corresponding randomly
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sampled point of interest h on the wall, as shown in Fig. 3(a) (i). This ensures
that simulated camera orientations are uniformly distributed among all potential
directions without being influenced by scene-specific layout bias.

b) Determine visible range. Given a virtual camera pose and a simulated 3D
scene, we are now able to determine the spatial range that the camera can cover,
i.e., Rv, which is determined by the camera field of view (FOV) (see Fig. 3(a)
(ii)). To ease the modeling difficulties, we decompose FOV into the horizontal
viewing angle αh, the vertical viewing angle αv and the viewing mode η that
determine horizontal range, vertical range and the shape of viewing frustum,
respectively. For the viewing mode η, we approximate three versions from simple
to sophisticated, namely fixed, parallel and perspective, with details presented in
the supplementary materials. As illustrated in Fig. 3(a) (ii), we show an example
of the visible range Rv with random αh and αv and η in the fixed mode.

c) Determine visible points. After obtaining the visible range Rv, we then deter-
mine the visibility of each point within Rv. Specifically, we convert the point
cloud to the camera coordinate and extend [27] with spherical projection to fil-
ter out occluded points and obtain visible points. By taking the union of visible
points from all virtual cameras, we finally obtain the point set P s

v with occluded
points removed. Till now, we can generate occlusion patterns in simulation scenes
by mimicking real-world scanning process and adjust the intensity of occlusion by
changing the number of camera positions nv and FOV configurations to ensure
that enough semantic context is covered for model learning.

Noise Simulation. Besides occlusion patterns, sensing and reconstruction
errors are unavoidable when generating 3D point clouds from sensor-captured
RGB-D videos, which unfortunately results in non-uniform distributed points
and rough surfaces in real-world datasets (See Fig. 1(a)). To address this issue,
we equip our VSS with another noise simulation module, which injects pertur-
bations to each point as follows:

P̃ s = {p + Δp | p ∈ P s
v }, (1)

where Δp denotes the point perturbation following a uniform distribution rang-
ing from −δp to δp, and P̃ s is the perturbed simulation point cloud. Though
simple, we argue that this module efficiently imitates the noise in terms of non-
uniform and irregular points patterns as illustrated in Fig. 3.

Model Pretraining on Source Data. By adopting VSS as a data augmen-
tation for simulated data, we train a model with cross-entropy loss as Eq. (2)
following settings in [24,37].

min Lpre =
Ns∑

i=1

CE(Ss
i , Y s

i ), (2)
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where CE(·, ·) is the cross-entropy loss and S is the predicted semantic scores
after performing softmax on logits.

3.3 Tail-aware Cuboid Mixing

Fig. 4. An illustration of tail-aware
cuboid mixing, which contains cuboid
mixing and tail cuboid over-sampling.
Notice that for clarity, we take
(nx, ny, nz) = (2, 2, 1) as an example.

After obtaining a more transferable scene
parsing model with VSS augmentation,
we further adopt self-training [32,54,62,
69,73], to adapt the model by directly
utilizing target pseudo-labeled data for
supervision. Since target pseudo label is
rather noisy, containing incorrect pseudo
labeled data and leading to erroneous
supervisions [65], we also introduce source
supervision to harvest its clean anno-
tations and improve the percentage of
correct labels. However, directly utilizing
source data unfortunately brings source
bias and large discrepancies in joint opti-
mization. Even though point pattern gaps
have already been alleviated with the pro-
posed VSS, the model still suffers from the
context gap due to different scene layouts.
Fortunately, the availability of target domain data gives us the chance to rectify
such context gaps. To this end, we design Tail-aware Cuboid Mixing (TACM) to
construct an intermediate domain Dm that combines source and target cuboid-
level patterns (see Fig. 4), which augments and rectifies source layouts with
target domain context. Besides, it also decreases the difficulty of simultaneously
optimizing source and target domains with huge distribution discrepancies by
providing a bridge for adaptation. TACM further moderates the pseudo label
class imbalance issue by cuboid-level tail class oversampling. Details on pseudo
labeling, cuboid mixing and tail cuboid oversampling are as follows.

Pseudo Label Generation. To employ self-training after pretraining, we first
need to generate pseudo labels Ŷ t for target scenes P t. Similar to previous
paradigms [24,62,65,73], we obtain pseudo labels via the following equation:

Ŷ t
i,j =

{
1 , if max(St

i ) > T, j = arg max St
i ,

0 , otherwise, (3)

where Ŷ t
i = [Ŷ t

i,1, · · · , Ŷ t
i,c], c is the number of classes and T is the confidence

threshold to filter out uncertain predictions.

Cuboid Mixing. Here, given labeled source data and pseudo-labeled target
data, we carry out the cuboid mixing to construct a new intermediate domain



292 R. Ding et al.

Dm as shown in Fig. 2 and Fig. 4. For each target scene, we randomly sample a
source scene to perform cuboid mixing. We first partition two scenes into several
cuboids with varying sizes as the smallest units to mix cuboid as Eq. (4):

P = {γijk}, i ∈ {1, ..., nx}, j ∈ {1, ..., ny}, k ∈ {1, ..., nz},

γijk = {p | p in [xi−1, yj−1, zk−1, xi, yj , zk]}, (4)

where γijk denotes a single cuboid; nx, ny and nz stand for the number of
partitions in x, y and z axis, respectively; and each cuboid γijk is constrained
in a six-tuple bounding box [xi−1, yj−1, zk−1, xi, yj , zk] defined by the partition
positions xi, yj , zk for corresponding dimensions, respectively. These partition
positions are first initialized as equal-divisions and then injected with random-
ness to enhance diversities as below:

xi =

{
i

nx
max px + (1 − i

nx
)min px, if i ∈ {0, nx},

i
nx

max px + (1 − i
nx

)min px + Δφ, otherwise,
(5)

where Δφ is the random perturbation following uniform distribution ranging
from −δφ to δφ. The same formulation is also adopted for yj and zk. After
partitioning, the source and target cuboids are first spatially permuted with a
probability ρs and then randomly mixed with another probability ρm, as depicted
in Fig. 4 and Fig. 2.

Though ConDA [29] shares some similarities with our cuboid mixing by mix-
ing source and target, it aims to preserve cross-domain context consistency while
ours attempts to mitigate context gaps. Besides, ConDA operates on 2D range
images, inapplicable to reconstructed indoor scenes obtained by fusing depth
images. Our cuboid mixing leverages the freedom of the raw 3D representation,
i.e., point cloud, and thus is generalizable to arbitrary 3D scenarios.

Tail Cuboid Over-Sampling. Besides embedding target context to source
data, our cuboid mixing technique also allows adjusting the category distri-
butions by designing cuboid sampling strategies. Here, as an add-on advan-
tage, we leverage this nice property to alleviate the biased pseudo label prob-
lem [2,19,36,73] in self-training: tail categories only occupy a small percentage
of pseudo labeled data. Specifically, we sample cuboids with tail categories more
frequently, namely tail cuboid over-sampling, detailed as follows.

We calculate per-class pseudo label ratio r ∈ [0, 1]c and define nr least com-
mon categories as tail categories. We then define tail cuboid whose pseudo label
ratio is higher than the average value r on at least one of nr tail categories.
We construct a tail cuboid queue Q with size Nq to store tail cuboids. For-
mally, γt

q[w] denotes the wth tail cuboid in Q, as shown in Fig. 4. Notice that
through training, Q is dynamically updated with First In, First Out (FIFO)
rule since cuboids are randomly split in each iteration as Eq. (4). In each train-
ing iteration, we ensure that at least u tail cuboids are in each mixed scene by
sampling cuboids from Q and replacing existing cuboids if needed. With such
a simple over-sampling strategy, we make the cuboid mixing process tail-aware,
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and relieve the class imbalance issue in the self-training. Experimental results
in Sect. 6 further demonstrate the effectiveness of our tail cuboid over-sampling
strategy.

Self-training with Target and Source data. In the self-training stage, for
data augmentation, VSS is first adopted to augment the source domain data
to reduce the pattern gap and then TACM mixes source and target scenes to
construct a tail-aware intermediate domain Dm = {Pm} with labels Ŷ m mixed
by source ground-truth and target pseudo labels. To alleviate the noisy supervi-
sions from incorrect target pseudo labels, we minimize dense cross-entropy loss
on source data P̃ s and intermediate domain data Pm as below:

min Lst =
Nt∑

i=1

CE(Sm
i , Ŷ m

i ) + λ

Ns∑

i=1

CE(Ss
i , Y s

i ), (6)

where λ denotes the trade-off factor between losses.

4 Benchmark Setup

4.1 Datasets

3D-FRONT [8] is a large-scale dataset of synthetic 3D indoor scenes, which con-
tains 18,968 rooms with 13,151 CAD 3D furniture objects from 3D-FUTURE [9].
The layouts of rooms are created by professional designers and distinctively span
31 scene categories and 34 object semantic super-classes. We randomly select
4995 rooms as training samples and 500 rooms as validation samples after fil-
tering out noisy rooms. Notice that we obtain source point clouds by uniformly
sampling points from original mesh with CloudCompare [12] at 1250 surface
density (number of points per square units). Comparison between 3D-FRONT
and other simulation datasets are detailed in the nsupplemental materials.

ScanNet [7] is a popular real-world indoor 3D scene understanding dataset,
consisting 1,613 real 3D scans with dense semantic annotations (i.e.,, 1,201 scans
for training, 3,12 scans for validation and 100 scans for testing). It provides
semantic annotations for 20 categories.

S3DIS [3] is also a well-known real-world indoor 3D point cloud dataset for
semantic segmentation. It contains 271 scenes across six areas along with 13
categories with point-wise annotations. Similar to previous works [33,46], we
use the fifth area as the validation split and other areas as the training split.

Label Mapping. Due to different category taxonomy of datasets, we condense
11 categories for 3D-FRONT → ScanNet and 3D-FRONT → S3DIS settings,
individually. Besides, we condense 8 categories for cross-site settings between
S3DIS and ScanNet. Please refer to the Suppl. for the detailed taxonomy.
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4.2 UDA Baselines

As shown in Table 1 and 2, we reproduce 7 popular 2D UDA methods and
1 3D outdoor method as UDA baselines, encompassing MCD [51], AdaptSeg-
Net [56], CBST [73], MinEnt [57], AdvEnt [57], Noisy Student [62], APO-DA [66]
and SqueezeSegV2 [60]. These UDA baselines cover most existing streams such
as adversarial alignment, discrepancy minimization, self-training and entropy
guided adaptation. To perform these image-based methods on our setting, we
carry out some task-specific modifications, which are detailed in supplemental
materials.

5 Experiments

To validate our method, we benchmark DODA and other popular UDA meth-
ods with extensive experiments on 3D-FRONT [8], ScanNet [7] and S3DIS [3].
Moreover, we explore a more challenging setting, from simulated 3D-FRONT [8]
to RGBD realistic dataset NYU-V2 [42], presented in the supplementary mate-
rials. To verify the generalizability of VSS and TACM, we further integrate VSS
to previous UDA methods and adopt TACM in the real-world cross-site UDA
setting. Note that since textures for some background classes are not provided
in 3D-FRONT dataset, we only focus on adaptation using 3D point positions.
The implementation details including network and training details are provided
in the Suppl.

Comparison to Other UDA Methods. As shown in Table 1 and Table 2,
compared to source only, DODA largely lifts the adaptation performance in
terms of mIoU by around 21% and 19% on 3D-FRONT → ScanNet and 3D-
FRONT → S3DIS, respectively. DODA also shows its superiority over other
popular UDA methods, obtaining 14% ∼ 22% performance gain on 3D-FRONT
→ ScanNet and 13% ∼ 19% gain on 3D-FRONT → S3DIS. Even only equip-
ping source only with VSS module, our DODA (only VSS) still outperforms
UDA baselines by around 4% ∼ 10%, indicating that the pattern gap caused by
different sensing mechanisms significantly harms adaptation results while pre-
vious methods have not readily addressed it. Comparing DODA with DODA
(w/o TACM), we observe that TACM mainly contributes to the performance of
instances such as bed and bookshelf on ScanNet, since cuboid mixing forces
model to focus more on local semantic clues and object shapes itself inside
cuboids. It is noteworthy that though DODA yields general improvement around
almost all categories adaptation in both pretrain stage and self-training stage,
challenging classes such as bed on ScanNet and sofa on S3DIS attain more con-
spicuous performance lift, demonstrating the predominance of DODA in tackling
troublesome categories. However, the effectiveness of all UDA methods for col-
umn and beam on S3DIS are not obvious due to their large disparities in data
patterns across domains and low appearing frequencies in source domain. To
illustrate the reproducibility of our DODA, all results are repeated three times
and reported as average performance along with standard variance.
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Table 1. Adaptation results of 3D-FRONT → ScanNet in terms of mIoU. We indicate
the best adaptation result in bold. † denotes pretrain generalization results with VSS

Method mIoU Wall Floor Cab Bed Chair Sofa Table Door Wind Bksf Desk

Source only 29.60 60.72 82.42 04.44 12.02 61.76 22.31 38.52 05.72 05.12 19.72 12.84

MCD [51] 32.27 62.86 88.70 03.81 38.50 57.51 21.48 41.67 05.78 01.29 18.81 15.69

AdaptSegNet [56] 34.51 61.81 83.90 03.64 36.06 55.05 34.26 44.21 06.59 05.54 31.87 16.64

CBST [73] 37.42 60.37 81.39 12.18 30.00 68.86 36.22 49.93 07.05 05.82 43.59 16.25

MinEnt [57] 34.61 63.35 85.54 04.66 26.05 61.98 33.05 48.38 05.20 03.15 35.84 13.49

AdvEnt [57] 32.81 64.31 79.21 04.39 35.01 61.05 24.36 41.64 05.97 01.60 29.07 14.32

Noisy student [62] 34.67 62.63 86.27 01.45 17.13 69.98 37.58 47.87 06.01 01.66 35.79 15.06

APO-DA [66] 31.73 62.84 85.43 02.77 15.08 64.24 34.41 46.41 03.94 03.59 18.88 11.41

SqueezeSegV2 [60] 29.77 61.85 72.74 02.50 16.89 58.79 16.81 38.19 05.08 03.24 35.68 15.72

DODA (only VSS)† 40.52±0.80 67.36 90.24 15.98 39.98 63.11 46.38 48.05 07.63 13.98 33.17 19.86

DODA (w/o TACM) 48.13±0.25 72.22 93.43 24.46 56.30 70.40 53.33 56.57 09.44 19.97 47.05 26.25

DODA 51.42±0.90 72.71 93.86 27.61 64.31 71.64 55.30 58.43 08.21 24.95 56.49 32.06

Oracle 75.19 83.39 95.11 69.62 81.15 88.95 85.11 71.63 47.67 62.74 82.63 59.05

Table 2. Adaptation results of 3D-FRONT → S3DIS in terms of mIoU. We indicate
the best adaptation result in bold. † denotes pretrain generalization results with VSS

Method mIoU Wall Floor Chair Sofa Table Door Wind Bkcase Ceil Beam Col

Source only 36.72 67.95 88.68 57.69 04.15 38.96 06.99 00.14 44.90 94.42 00.00 00.00

MCD [51] 36.62 64.53 92.16 54.76 13.31 46.67 8.54 00.08 28.86 93.89 00.00 00.00

AdaptSegNet [56] 38.14 68.14 93.17 55.14 05.31 43.14 14.67 00.33 45.75 93.88 00.00 00.00

CBST [73] 42.47 71.60 92.07 68.09 03.28 60.45 17.13 00.18 58.45 95.87 00.00 00.00

MinEnt [57] 37.08 66.15 87.92 52.30 06.27 25.79 15.70 04.44 55.72 93.58 00.00 00.00

AdvEnt [57] 37.98 66.94 91.84 57.96 02.39 46.18 15.14 00.54 44.31 92.50 00.00 00.00

Noisy student [62] 39.44 68.84 91.78 65.53 06.65 48.67 02.27 00.00 53.67 96.46 00.00 00.00

APO-DA [66] 38.23 68.63 89.66 58.84 03.51 40.66 13.73 02.61 47.88 94.97 00.04 00.00

SqueezeSegV2 [60] 36.50 65.01 89.95 54.29 06.79 45.75 10.23 01.70 32.93 94.81 00.00 00.00

DODA (only VSS) † 46.85±0.78 70.96 96.12 68.70 25.47 58.47 17.87 27.65 54.39 95.66 00.00 00.00

DODA (w/o TACM) 53.86±0.49 75.75 95.14 76.12 60.11 64.07 25.24 31.75 68.49 95.82 00.00 00.00

DODA 55.54±0.91 76.23 97.17 76.89 63.55 69.04 25.76 38.22 68.18 95.85 00.00 00.00

Oracle 62.29 82.82 96.95 78.16 40.37 78.56 56.91 47.90 77.10 96.29 00.41 29.69

VSS Plug-and-Play Results to Other UDA Methods. Since VSS works
as a data augmentation in our DODA, we argue that it can serve as a plug-
and-play module to mimic occlusion and noise patterns on simulation data, and
is orthogonal to existing UDA strategies. As demonstrated in Table 3, equipped
with VSS, current popular UDA approaches consistently surpass their original
performance by around 8% ∼ 13%. It also verifies that previous 2D-based meth-
ods fail to close the point pattern gap in 3D indoor scene adaptations, while our
VSS can be incorporated into various pipelines to boost performance.

TACM Results in Cross-Site Adaptation. Serving as a general module
to alleviate domain shifts across domains, we show that TACM can consistently
mitigate domain discrepancies on even real-to-real adaptation settings. For cross-
site adaptation, scenes collected from different sites or room types also suffer a
considerable data distribution gap. As shown in Table 4, the domain gaps in
real-to-real adaptation tasks are also large when comparing the source only and
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Table 3. UDA results equipped with
VSS on 3D-FRONT → ScanNet

Method VSS Improv.

w/o w/

MCD [51] 32.37 40.32 +7.95

AdaptSegNet [56] 34.51 45.75 +11.24

CBST [73] 36.30 47.70 +11.40

MinEnt [57] 34.61 43.26 +8.65

AdvEnt [57] 32.81 42.94 +10.13

Noisy Student [62] 34.67 48.30 +13.63

APO-DA [66] 31.73 43.98 +12.25

SqueezeSegV2 [60] 29.77 40.60 +10.83

Table 4. Cross-site adaptation results
with TACM

Task Method mIoU

ScanNet→ S3DIS Source only 54.09

CBST [73] 60.13

CBST+TACM 65.52

Oracle 72.51

S3DIS → ScanNet Source only 33.48

Noisy student [62] 44.81

Noisy student+TACM 48.47

Oracle 80.06

oracle results. When adopting TACM in the self-training pipelines, they obtain
5.64% and 3.66% relative performance boost separately in ScanNet → S3DIS
and S3DIS → ScanNet. These results verify that TACM is general in relieving
data gaps, especially the context gap on various 3D scene UDA tasks. We provide
the cross-site benchmark with more UDA methods in the Suppl.

6 Ablation Study

In this section, we conduct extensive ablation experiments to investigate the
individual components of our DODA. All experiments are conducted on 3D-
FRONT → ScanNet for simplicity. Default settings are marked in bold.

Component Analysis. Here, we investigate the effectiveness of each compo-
nent and module in our DODA. As shown in Table 5, occlusion simulation brings
the largest performance gain (around 9.7%), indicating that model trained on
complete scenes is hard to adapt to scenes with occluded patterns. Noise sim-
ulation further supplements VSS to imitate sensing and reconstruction noise,
obtaining about 1.3% boosts. Two sub-modules jointly mimic realistic scenes,
largely alleviating the point distribution gap and leading to a more generalizable
source only model. In the self-training stage, VSS also surpasses the baseline by
around 13% due to its efficacy in reducing the point pattern gap and facili-
tating generating high-quality pseudo labels. Cuboid mixing combines cuboid
patterns from source and target domains for moderating context-level bias, fur-
ther boosting the performance by around 2.4%. Moreover, cuboid-level tail-class
over-sampling yields 0.9% improvement with greater gains on tail classes. For
instance, desk on ScanNet achieves 6% gain (see Suppl.).

VSS: Visible Range. Here, we study the effect of visible range of VSS, which
is jointly determined by the horizontal angle αh, vertical angle αv, viewing mode
η and the number of cameras nv. As shown in Table 6, fewer cameras nv = 2 and
smaller viewing angle αv = 45◦ draw around 2% performance degradation with
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Table 5. Component Analysis for DODA on 3D-FRONT → ScanNet

Baseline Virtual scan simulation Tail-aware cuboid mixing mIoU

Occlusion sim Noise sim Cuboid mix Tail samp

Source only 29.60

Source only � 39.25 (+9.65)

Source only � � 40.52 (+1.27)

Noisy student 34.67

Noisy student � � 48.13 (+13.46)

Noisy student � � � 50.55 (+2.42)

Noisy student � � � � 51.42 (+0.87)

Table 6. Ablation study of visible
range design on 3D-FRONT → Scan-
Net

αh αv η nv mIoU

180◦ 90◦ Fixed 2 38.80

180◦ 90◦ Fixed 4 40.52

90◦ 90◦ Fixed 8 40.30

180◦ 90◦ Parallel 4 39.08

180◦ 90◦ Perspective 4 39.04

180◦ 45◦ Perspective 4 36.64

Table 7. Ablation study of cuboid par-
titions on 3D-FRONT → ScanNet

(nx, ny, nz) # cuboid mIoU

(1, 1, 1) 1 48.10

(2, 1, 1) 2 50.00

(2, 2, 1) 4 50.55

(3, 2, 1) 6 50.57

(3, 3, 1) 9 50.02

(1, 1, 2) 2 49.49

(2, 1, 2) 4 49.48

a smaller visible range. And decreasing αh to 90◦ can also achieve similar perfor-
mance with αh = 180◦ with more cameras nv = 8, demonstrating that enough
semantic coverage is a vital factor. Besides, as for the three viewing modes η, the
simplest fixed mode achieves the highest performance in comparison to parallel
and perspective modes. Even though parallel and perspective are more simi-
lar to reality practice, they cannot cover sufficient range with limited cameras,
since real-world scenes are reconstructed through hundreds or thousands of view
frames. This again demonstrates that large spatial coverage is essential. To trade
off between the effectiveness and efficiency of on-the-fly VSS, we use fixed mode
with 4 camera positions by default here.

TACM: Cuboid Partition. We study various cuboid partition manners in
Table 7. Notice that random rotation along z axis is performed before cuboid
partition, so the partition on x or y axes can be treated as identical. While
horizontal partitioning yields consistent performance beyond 50% mIoU, verti-
cal partitioning does not show robust improvements, suggesting the mixing of
vertical spatial context is not necessary. Simultaneous partitioning on x and y
axes also improves performance (i.e., (2,2,1) and (2,3,1)), while too small cuboid



298 R. Ding et al.

Table 8. Ablation study of data-mixing
methods on 3D-FRONT → ScanNet

Method mIoU

Mix3D [43] 48.62

CutMix [68] 49.19

Copy-Paste [11] 48.51

TACM 51.42

Table 9. Investigation of pseudo label class
imbalance issue on 3D-FRONT → ScanNet

Method mIoU

Noisy student 48.13

TACM 51.42

CM + lovasz loss [4] 51.68

TACM + lovasz loss [4] 52.50

size (i.e., (3,3,1)) results in insufficient context cues in each cuboid with a slight
decrease in mIoU.

TACM: Data-Mixing Method. We compare TACM with other popular data-
mixing methods in Table 8. Experimental results show the superiority of TACM
since it outperforms Mix3D [43], CutMix [68] and Copy-Paste [11] by around
2.2% to 2.9%. TACM effectively alleviates the context gap while preserving local
context clues. Mix3D, however, results in large overlapping areas, which is unnat-
ural and causes semantic confusions. CutMix and Copy-Paste only disrupt local
areas without enough perturbations of the broader context (see Suppl.).

TACM: Tail Cuboid Over-Sampling with Class-Balanced Loss. Tail
cuboid over-sampling brings significant gains on tail classes as discussed in
Sect. 6. As demonstrated in Table 9, the class-balanced lovasz loss [4] also boosts
performance by considering each category more equally. We highlight that our
TACM can also incorporate with other class-balancing methods during optimiza-
tion since it eases long tail issue on the data-level.

7 Limitations and Open Problems

Although our model largely closes the domain gaps across simulation and real-
world datasets, we still suffer from the inherent limitations of the simulation
data. For some categories such as beam and column, the simulator fails to gen-
erate realistic shape patterns, resulting in huge negative transfer. Besides, room
layouts need to be developed by experts, which may limit the diversity and com-
plexity of the created scenes. Therefore, in order to make simulation data benefit
real-world applications, there are still several open problems: how to handle the
failure modes of the simulator, how to unify the adaptation and simulation stage
in one pipeline, and how to automate the simulation process, to name a few.

8 Conclusions

We have presented DODA, a data-oriented domain adaptation method with
virtual scan simulation and tail-aware cuboid mixing for 3D indoor sim-to-
real unsupervised domain adaptation. Virtual scan simulation generates a more
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transferable model by mitigating the real-and-simulation point pattern gap.
Tail-aware cuboid mixing rectifies context biases through creating a tail-aware
intermediate domain and facilitating self-training to effectively leverage pseudo
labeled target data, further reducing domain gaps. Our extensive experiments
not only show the prominent performance of our DODA in two sim-to-real UDA
tasks, but also illustrate the potential ability of TACM to solve general 3D UDA
scene parsing tasks. More importantly, we have built the first benchmark for
3D indoor scene unsupervised domain adaptation, including sim to real adapta-
tion and cross-site real-world adaptation. The benchmark suit will be publicly
available. We hope our work could inspire further investigations on this problem.

Acknowledgement. This work has been supported by Hong Kong Research Grant
Council - Early Career Scheme (Grant No. 27209621), HKU Startup Fund, and HKU
Seed Fund for Basic Research.

References

1. Achituve, I., Maron, H., Chechik, G.: Self-supervised learning for domain adap-
tation on point clouds. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 123–133 (2021)

2. Araslanov, N., Roth, S.: Self-supervised augmentation consistency for adapting
semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 15384–15394 (2021)

3. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–
1543 (2016)

4. Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable
surrogate for the optimization of the intersection-over-union measure in neural
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4413–4421 (2018)

5. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola,
A.J.: Integrating structured biological data by kernel maximum mean discrepancy.
Bioinformatics 22(14), e49–e57 (2006)

6. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: minkowski convolu-
tional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3075–3084 (2019)

7. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

8. Fu, H., et al.: 3d-front: 3D furnished rooms with layouts and semantics. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 10933–
10942 (2021)

9. Fu, H., et al.: 3D-future: 3D furniture shape with texture. Int. J. Comput. Vision
129, 1–25 (2021)

10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: International Conference on Machine Learning, pp. 1180–1189 (2015)

11. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for
instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2918–2928 (2021)



300 R. Ding et al.

12. Girardeau-Montaut, D.: Cloudcompare. EDF R&D Telecom ParisTech, France
(2016)

13. Gong, R., Li, W., Chen, Y., Gool, L.V.: Dlow: domain flow for adaptation and
generalization. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2477–2486 (2019)

14. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

16. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with
submanifold sparse convolutional networks. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

17. Graham, B., van der Maaten, L.: Submanifold sparse convolutional networks. arXiv
preprint arXiv:1706.01307 (2017)

18. Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: Under-
standing real world indoor scenes with synthetic data. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4077–4085 (2016)

19. He, R., Yang, J., Qi, X.: Re-distributing biased pseudo labels for semi-supervised
semantic segmentation: a baseline investigation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6930–6940 (2021)

20. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. arXiv
preprint arXiv:1711.03213 (2017)

21. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: pixel-level adversarial
and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)

22. Hu, Q., et al.: Randla-net: efficient semantic segmentation of large-scale point
clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11108–11117 (2020)

23. Jaritz, M., Vu, T.H., Charette, R.d., Wirbel, E., Pérez, P.: xmuda: cross-modal
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