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Abstract. We consider the problem of task-agnostic feature upsampling
in dense prediction where an upsampling operator is required to facili-
tate both region-sensitive tasks like semantic segmentation and detail-
sensitive tasks such as image matting. Existing upsampling operators
often can work well in either type of the tasks, but not both. In this work,
we present FADE, a novel, plug-and-play, and task-agnostic upsampling
operator. FADE benefits from three design choices: i) considering encoder
and decoder features jointly in upsampling kernel generation; ii) an effi-
cient semi-shift convolutional operator that enables granular control over
how each feature point contributes to upsampling kernels; iii) a decoder-
dependent gating mechanism for enhanced detail delineation. We first
study the upsampling properties of FADE on toy data and then evaluate
it on large-scale semantic segmentation and image matting. In partic-
ular, FADE reveals its effectiveness and task-agnostic characteristic by
consistently outperforming recent dynamic upsampling operators in dif-
ferent tasks. It also generalizes well across convolutional and transformer
architectures with little computational overhead. Our work additionally
provides thoughtful insights on what makes for task-agnostic upsampling.
Code is available at: http://lnkiy.in/fade in.

Keywords: Feature upsampling · Dense prediction · Dynamic
networks · Semantic segmentation · Image matting

1 Introduction

Feature upsampling, which aims to recover the spatial resolution of features,
is an indispensable stage in many dense prediction models [1,25,34,36,37,41].
Conventional upsampling operators, such as nearest neighbor (NN) or bilinear
interpolation [15], deconvolution [40], and pixel shuffle [26], often have a prefer-
ence of a specific task. For instance, bilinear interpolation is favored in semantic
segmentation [4,37], and pixel shuffle is preferred in image super-resolution [14].
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Fig. 1. Inferred segmentation masks and alpha mattes with different
upsampling operators. The compared operators include IndexNet [19], A2U [7],
CARAFE [32], and our proposed FADE. Among all competitors, only FADE generates
both the high-quality mask and the alpha matte.

A main reason is that each dense prediction task has its own focus: some
tasks like semantic segmentation [18] and instance segmentation [11] are region-
sensitive, while some tasks such as image super-resolution [8] and image mat-
ting [19,39] are detail-sensitive. If one expects an upsampling operator to gen-
erate semantically consistent features such that a region can share the same
class label, it is often difficult for the same operator to recover boundary details
simultaneously, and vice versa. Indeed empirical evidence shows that bilinear
interpolation and max unpooling [1] have inverse behaviors in segmentation and
matting [19,20], respectively.

In an effort to evade ‘trials-and-errors’ from choosing an upsampling opera-
tor for a certain task at hand, there has been a growing interest in developing a
generic upsampling operator for dense prediction recently [7,19,20,22,30,32,33].
For example, CARAFE [32] demonstrates its benefits on four dense prediction
tasks, including object detection, instance segmentation, semantic segmentation,
and image inpainting. IndexNet [19] also boosts performance on several tasks
such as image matting, image denoising, depth prediction, and image recon-
struction. However, a comparison between CARAFE and IndexNet [20] indicates
that neither CARAFE nor IndexNet can defeat its opponent on both region- and
detail-sensitive tasks (CARAFE outperforms IndexNet on segmentation, while
IndexNet is superior than CARAFE on matting), which can also be observed
from the inferred segmentation masks and alpha mattes in Fig. 1. This raises an
interesting question: Does there exist a unified form of upsampling operator that
is truly task-agnostic?

To answer the question above, we present FADE, a novel, plug-and-play,
and task-agnostic upsampling operator which Fuses the Assets of Decoder and
Encoder (FADE). The name also implies its working mechanism: upsampling
features in a ‘fade-in’ manner, from recovering spatial structure to delineating
subtle details. In particular, we argue that an ideal upsampling operator should
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be able to preserve the semantic information and compensate the detailed infor-
mation lost due to downsampling. The former is embedded in decoder features;
the latter is abundant in encoder features. Therefore, we hypothesize that it is
the insufficient use of encoder and decoder features bringing the task dependency
of upsampling, and our idea is to design FADE to make the best use of encoder
and decoder features, inspiring the following insights and contributions:

i) By exploring why CARAFE works well on region-sensitive tasks but poorly on
detail-sensitive tasks, and why IndexNet and A2U [7] behave conversely, we
observe that what features (encoder or decoder) to use to generate the upsam-
pling kernels matters. Using decoder features can strengthen the regional con-
tinuity, while using encoder features helps recover details. It is thus natural
to seek whether combining encoder and decoder features enjoys both merits,
which underpins the core idea of FADE.

ii) To integrate encoder and decoder features, a subsequent problem is how to
deal with the resolution mismatch between them. A standard way is to imple-
ment UNet-style fusion [25], including feature interpolation, feature concate-
nation, and convolution. However, we show that this naive implementation
can have a negative effect on upsampling kernels. To solve this, we intro-
duce a semi-shift convolutional operator that unifies channel compression,
concatenation, and kernel generation. Particularly, it allows granular control
over how each feature point participates in the computation of upsampling
kernels. The operator is also fast and memory-efficient due to direct execu-
tion of cross-resolution convolution, without explicit feature interpolation for
resolution matching.

iii) To enhance detail delineation, we further devise a gating mechanism, condi-
tioned on decoder features. The gate allows selective pass of fine details in
the encoder features as a refinement of upsampled features.

We conduct experiments on five data sets covering three dense prediction
tasks. We first validate our motivation and the rationale of our design through
several toy-level and small-scale experiments, such as binary image segmenta-
tion on Weizmann Horse [2], image reconstruction on Fashion-MNIST [35], and
semantic segmentation on SUN RGBD [27]. We then present a thorough evalua-
tion of FADE on large-scale semantic segmentation on ADE20K [42] and image
matting on Adobe Composition-1K [39]. FADE reveals its task-agnostic char-
acteristic by consistently outperforming state-of-the-art upsampling operators
on both region- and detail-sensitive tasks, while also retaining the lightweight
property by appending relatively few parameters and FLOPs. It has also good
generalization across convolutional and transformer architectures [13,37].

To our knowledge, FADE is the first task-agnostic upsampling operator that
performs favorably on both region- and detail-sensitive tasks.

2 Related Work

Feature Upsampling. Unlike joint image upsampling [12,31], feature upsam-
pling operators are mostly developed in the deep learning era, to respond to
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the need for recovering spatial resolution of encoder features (decoding). Con-
ventional upsampling operators typically use fixed/hand-crafted kernels. For
instance, the kernels in the widely used NN and bilinear interpolation are
defined by the relative distance between pixels. Deconvolution [40], a.k.a. trans-
posed convolution, also applies a fixed kernel during inference, despite the kernel
parameters are learned. Pixel shuffle [26] instead only includes memory opera-
tions but still follows a specific rule in upsampling by reshaping the depth channel
into the spatial channels. Among hand-crafted operators, unpooling [1] perhaps
is the only operator that has a dynamic upsampling behavior, i.e., each upsam-
pled position is data-dependent conditioned on the max operator. Recently the
importance of the dynamic property has been proved by some dynamic upsam-
pling operators [7,19,32]. CARAFE [32] implements context-aware reassembly
of features, IndexNet [19] provides an indexing perspective of upsampling, and
A2U [7] introduces affinity-aware upsampling. At the core of these operators is
the data-dependent upsampling kernels whose kernel parameters are predicted
by a sub-network. This points out a promising direction from considering generic
feature upsampling. FADE follows the vein of dynamic feature upsampling.

Dense Prediction. Dense prediction covers a broad class of per-pixel label-
ing tasks, ranging from mainstream object detection [23], semantic segmenta-
tion [18], instance segmentation [11], and depth estimation [9] to low-level image
restoration [21], image matting [39], edge detection [38], and optical flow esti-
mation [29], to name a few. An interesting property about dense prediction is
that a task can be region-sensitive or detail-sensitive. The sensitivity is closely
related to what metric is used to assess the task. In this sense, semantic/instance
segmentation is region-sensitive, because the standard Mask Intersection-over-
Union (IoU) metric [10] is mostly affected by regional mask prediction quality,
instead of boundary quality. On the contrary, image matting can be considered
detail-sensitive, because the error metrics [24] are mainly computed from trimap
regions that are full of subtle details or transparency. Note that, when we empha-
size region sensitivity, we do not mean that details are not important, and vice
versa. In fact, the emergence of Boundary IoU [5] implies that the limitation of a
certain evaluation metric has been noticed by our community. The goal of devel-
oping a task-agnostic upsampling operator capable of both regional preservation
and detail delineation can have a board impact on a number of dense predic-
tion tasks. In this work, we mainly evaluate upsampling operators on semantic
segmentation and image matting, which may be the most representative region-
and detail-sensitive task, respectively.

3 Task-Agnostic Upsampling: A Trade-off Between
Semantic Preservation and Detail Delineation

Before we present FADE, we share some of our view points towards task-agnostic
upsampling, which may be helpful to understand our designs in FADE.

How Encoder and Decoder Features Affect Upsampling. In dense predic-
tion models, downsampling stages are involved to acquire a large receptive field,
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Fig. 2. Use of encoder and/or decoder features in different upsampling oper-
ators. (a) CARAFE generates upsampling kernels conditioned on decoder features,
while (b) IndexNet and A2U generate kernels using encoder features only. By contrast,
(c) FADE considers both encoder and decoder features not only in upsampling kernel
generation but also in gated feature refinement.

bringing the need of peer-to-peer upsampling stages to recover the spatial resolu-
tion, which together constitutes the basic encoder-decoder architecture. During
downsampling, details of high-resolution features are impaired or even lost, but
the resulting low-resolution encoder features often have good semantic meanings
that can pass to decoder features. Hence, we believe an ideal upsampling opera-
tor should appropriately resolve two issues: 1) preserve the semantic information
already extracted; 2) compensate as many lost details as possible without dete-
riorating the semantic information. NN or bilinear interpolation only meets the
former. This conforms to our intuition that interpolation often smooths features.
A reason is that low-resolution decoder features have no prior knowledge about
missing details. Other operators that directly upsample decoder features, such
as deconvolution and pixel shuffle, can have the same problem with poor detail
compensation. Compensating details requires high-resolution encoder features.
This is why unpooling that stores indices before downsampling has good bound-
ary delineation [19], but it hurts the semantic information due to zero-filling.

Dynamic upsampling operators, including CARAFE [32], IndexNet [19], and
A2U [7], alleviate the problems above with data-dependent upsampling kernels.
Their upsampling modes are illustrated in Fig. 2(a)-(b). From Fig. 2, it can be
observed that, CARAFE generates upsampling kernels conditioned on decoder
features, while IndexNet [19] and A2U [7] generate kernels via encoder features.
This may explain the inverse behavior between CARAFE and IndexNet/A2U
on region- or detail-sensitive tasks [20]. In this work, we find that generating
upsampling kernels using either encoder or decoder features can lead to subop-
timal results, and it is critical to leverage both encoder and decoder features for
task-agnostic upsampling, as implemented in FADE (Fig. 2(c)).

How Each Feature Point Contributes to Upsampling Matters. After
deciding what the features to use, the follow-up question is how to use the features
effectively and efficiently. The main obstacle is the mismatched resolution between
encoder and decoder feature maps. One may consider simple interpolation for res-
olution matching, but we find that this leads to sub-optimal upsampling. Consid-
ering the case of applying ×2 NN interpolation to decoder features, if we apply
3 × 3 convolution to generate the upsampling kernel, the effective receptive field
of the kernel can be reduced to be < 50%: before interpolation there are 9 valid
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points in a 3 × 3 window, but only 4 valid points are left after interpolation, as
shown in Fig. 5(a). Besides this, there is another more important issue. Still in ×2
upsampling, as shown in Fig. 5(a), the four windows which control the variance
of upsampling kernels w.r.t. the 2 × 2 neighbors of high resolution are influenced
by the hand-crafted interpolation. Controlling a high-resolution upsampling ker-
nel map, however, is blind with the low-resolution decoder feature. It contributes
little to an informative upsampling kernel, especially to the variance of the four
neighbors in the upsampling kernel map. Interpolation as a bias of that variance
can even worsen the kernel generation. A more reasonable choice may be to let
encoder and decoder features cooperate to control the overall upsampling kernel, but
let the encoder feature alone control the variance of the four neighbors. This insight
exactly motivates the design of semi-shift convolution (Sect. 4).

Exploiting Encoder Features for Further Detail Refinement. Besides
helping structural recovery via upsampling kernels, there remains much useful
information in the encoder features. Since encoder features only go through a
few layers of a network, they preserve ‘fine details’ of high resolution. In fact,
nearly all dense prediction tasks require fine details, e.g., despite regional pre-
diction dominates in instance segmentation, accurate boundary prediction can
also significantly boost performance [28], not to mention the stronger request of
fine details in detail-sensitive tasks. The demands of fine details in dense pre-
diction need further exploitation of encoder features. Instead of simply skipping
the encoder features, we introduce a gating mechanism that leverages decoder
features to guide where the encoder features can pass through.

4 Fusing the Assets of Decoder and Encoder

Dynamic Upsampling Revisited. Here we review some basic operations in
recent dynamic upsampling operators such as CARAFE [32], IndexNet [19],
and A2U [7]. Figure 2 briefly summarizes their upsampling modes. They share
an identical pipeline, i.e., first generating data-dependent upsampling kernels,
and then reassembling the decoder features using the kernels. Typical dynamic
upsampling kernels are content-aware, but channel-shared, which means each
position has a unique upsampling kernel in the spatial dimension, but the same
ones are shared in the channel dimension.

CARAFE learns upsampling kernels directly from decoder features and then
reassembles them to high resolution. In particular, the decoder features pass
through two consecutive convolutional layers to generate the upsampling kernels,
of which the former is a channel compressor implemented by 1 × 1 convolution
to reduce the computational complexity and the latter is a content encoder with
3 × 3 convolution, and finally the softmax function is used to normalize the ker-
nel weights. IndexNet and A2U, however, adopt more sophisticated modules to
leverage the merit of encoder features. Further details can be referred to [7,19,32].

FADE is designed to maintain the simplicity of dynamic upsampling. Hence,
it generally follows the pipeline of CARAFE, but further optimizes the process
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Fig. 3. Technical pipeline of FADE. From (a) the overview of FADE, feature
upsampling is executed by jointly exploiting the encoder and decoder feature with
two key modules. In (b) dynamic feature pre-upsampling, they are used to gener-
ate upsampling kernels using a semi-shift convolutional operator (Fig. 5). The kernels
are then used to reassemble the decoder feature into pre-upsampled feature. In (c)
gated feature refinement, the encoder and pre-upsampled features are modulated by a
decoder-dependent gating mechanism to enhance detail delineation before generating
the final upsampled feature.

of kernel generation with semi-shift convolution, and the channel compressor
will also function as a way of pre-fusing encoder and decoder features. In addi-
tion, FADE also includes a gating mechanism for detail refinement. The overall
pipeline of FADE is summarized in Fig. 3.

Generating Upsampling Kernels from Encoder and Decoder Fea-
tures. We first showcase a few visualizations on some small-scale or toy-level
data sets to highlight the importance of both encoder and decoder features for
task-agnostic upsampling. We choose semantic segmentation on SUN RGBD [27]
as the region-sensitive task and image reconstruction on Fashion MNIST [35] as
the detail-sensitive one. We follow the network architectures and the experimental
settings in [20]. Since we focus on upsampling, all downsampling stages use max
pooling. Specifically, to show the impact of encoder and decoder features, in the
segmentation experiments, we all use CARAFE but only modify the source of fea-
tures used for generating upsampling kernels. We build three baselines: 1) decoder-
only , the implementation of CARAFE; 2) encoder-only , where the upsampling
kernels are generated from encoder features; 3) encoder-decoder , where the upsam-
pling kernels are generated from the concatenation of encoder andNN-interpolated
decoder features. We report Mask IoU (mIoU) [10] and Boundary IoU (bIoU) [5]
for segmentation, and report Peak Signal-to-Noise Ratio (PSNR), Structural SIM-
ilarity index (SSIM), Mean Absolute Error (MAE), and root Mean Square Error
(MSE) for reconstruction. From Table 1, one can observe that the encoder-only
baseline outperforms the decoder-only one in image reconstruction, but in seman-
tic segmentation the trend is on the contrary. To understand why, we visualize the
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Table 1. Results of semantic segmentation on SUN RGBD and image reconstruction
on Fashion MNIST. Best performance is in boldface.

Segmentation Reconstruction

accuracy metric↑ accuracy metric↑ error metric↓
mIoU bIoU PSNR SSIM MAE MSE

Decoder-only 37.00 25.61 24.35 87.19 0.0357 0.0643

Encoder-only 36.71 27.89 32.25 97.73 0.0157 0.0257

Encoder-decoder 37.59 28.80 33.83 98.47 0.0122 0.0218

Fig. 4. Visualizations of inferred mask and reconstructed results on SUN
RGBD and Fashion-MNIST. The decoder-only model generates good regional pre-
diction but poor boundaries/textures, while the encoder-only one is on the contrary.
When fusing encoder and decoder features, both region and detail predictions are
improved, e.g., the table lamp and stripes on clothes.

segmentation masks and reconstructed results in Fig. 4. We find that in segmenta-
tion the decoder-only model tends to produce region-continuous output, while the
encoder-only one generates clear mask boundaries but blocky regions; in recon-
struction, by contrast, the decoder-only model almost fails and can only gener-
ate low-fidelity reconstructions. It thus can be inferred that, encoder features help
to predict details, while decoder features contribute to semantic preservation of
regions. Indeed, by considering both encoder and decoder features, the resulting
mask seems to integrate the merits of the former two, and the reconstructions are
also full of details. Therefore, albeit a simple tweak, FADE significantly benefits
from generating upsampling kernels with both encoder and decoder features, as
illustrated in Fig. 2(c).

Semi-shift Convolution. Given encoder and decoder features, we next address
how to use them to generate upsampling kernels. We investigate two implemen-
tations: a naive implementation and a customized implementation. The key dif-
ference between them is how each decoder feature point spatially corresponds to
each encoder feature point. The naive implementation shown in Fig. 5(a) includes
four operations: i) feature interpolation, ii) concatenation, iii) channel compres-
sion, iv) standard convolution for kernel generation, and v) softmax normaliza-
tion. As aforementioned in Sect. 3, naive interpolation can have a few problems. To
address them, we present semi-shift convolution that simplifies the first four oper-
ations above into a unified operator, which is schematically illustrated in Fig. 5(b).
Note that the 4 convolution windows in encoder features all correspond to the same
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Fig. 5. Two forms of implementations for generating upsampling kernels.
Naive implementation requires matching resolution with explicit feature interpolation
and concatenation, followed by channel compression and standard convolution for ker-
nel prediction. Our customized implementation simplifies the whole process with only
semi-shift convolution.

window in decoder features. This design has the following advantages: 1) the role
of control in the kernel generation is made clear where the control of the variance
of 2 × 2 neighbors is moved to encoder features completely; 2) the receptive field
of decoder features is kept consistent with that of encoder features; 3) memory
cost is reduced, because semi-shift convolution directly operates on low-resolution
decoder features, without feature interpolation; 4) channel compression and 3× 3
convolution can be merged in semi-shift convolution. Mathematically, the single
window processing with naive implementation or semi-shift convolution has an
identical form if ignoring the content of feature maps. For example, considering
the top-left window (‘1’ in Fig. 5), the (unnormalized) upsampling kernel weight
has the form
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∑
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∑
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where wm,m = 1, ...,K2, is the weight of the upsampling kernel, K the upsam-
pling kernel size, h the convolution window size, C the number of input channel
dimension of encoder and decoder features, and d the number of compressed chan-
nel dimension. αen

kl and {α+
klde, al} are the parameters of 1×1 convolution specific

to encoder and decoder features, respectively, and {βijlm, bm} the parameters of
3 × 3 convolution. Following CARAFE, we fix h = 3, K = 5 and d = 64.

According to Eq. (3), by the linearity of convolution, Eq. (1) and Eq. (2) are
equivalent to applying two distinct 1× 1 convolutions to C-channel encoder and
C-channel decoder features, respectively, followed by a shared 3 × 3 convolution
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Table 2. The results on the Weizmann
Horse dataset.

SegNet – baseline mIoU

Unpooling 93.42

IndexNet [19] 93.00

NN 89.15

CARAFE [32] 89.29

NN + Gate 95.26

CARAFE + Gate 95.25

Fig. 6. Gradient maps and gate maps of
horses.

and summation. Equation (3) allows us to process encoder and decoder features
without matching their resolution. To process the whole feature map, the window
can move s steps on encoder features but only �s/2� steps on decoder features.
This is why the operator is given the name ‘semi-shift convolution’. To implement
this efficiently, we split the process to 4 sub-processes; each sub-process focuses
on the top-left, top-right, bottom-left, and bottom-right windows, respectively.
Different sub-processes have also different prepossessing strategies. For example,
for the top-left sub-process, we add full padding to the decoder feature, but only
add padding on top and left to the encoder feature. Then all the top-left window
correspondences can be satisfied by setting stride of 1 for the decoder feature and
2 for the encoder feature. Finally, after a few memory operations, the four sub-
outputs can be reassembled to the expected upsampling kernel, and the kernel
is used to reassemble decoder features to generate pre-upsampled features, as
shown in Fig. 3(b).

Extracting Fine Details from Encoder Features. Here we further intro-
duce a gating mechanism to complement fine details from encoder features to
pre-upsampled features. We again use some experimental observations to show-
case our motivation. We use a binary image segmentation dataset, Weizmann
Horse [2]. The reasons for choosing this dataset are two-fold: (1) visualization is
made simple; (2) the task is simple such that the impact of feature representa-
tion can be neglected. When all baselines have nearly perfect region predictions,
the difference in detail prediction can be amplified. We use SegNet pretrained
on ImageNet as the baseline and alter only the upsampling operators. Results
are listed in Table 2. An interesting phenomenon is that CARAFE works almost
the same as NN interpolation and even falls behind the default unpooling and
IndexNet. An explanation is that the dataset is too simple such that the region
smoothing property of CARAFE is wasted, but recovering details matters.

A common sense in segmentation is that, the interior of a certain class would
be learned fast, while mask boundaries are difficult to predict. This can be
observed from the gradient maps w.r.t. an intermediate decoder layer, as shown
in Fig. 6. During the middle stage of training, most responses are near bound-
aries. Now that gradients reveal the demand of detail information, feature maps
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would also manifest this requisite with some distributions, e.g., in multi-class
semantic segmentation a confident class prediction in a region would be a uni-
modal distribution along the channel dimension, and an uncertain prediction
around boundaries would likely be a bimodal distribution. Hence, we assume
that all decoder layers have gradient-imposed distribution priors and can be
encoded to inform the requisite of detail or semantic information. In this way
fine details can be chosen from encoder features without hurting the semantic
property of decoder features. Hence, instead of directly skipping encoder fea-
tures as in feature pyramid networks [16], we introduce a gating mechanism [6]
to selectively refine pre-upsampled features using encoder features, conditioned
on decoder features. The gate is generated through a 1 × 1 convolution layer,
a NN interpolation layer, and a sigmoid function. As shown in Fig. 3(c), the
decoder feature first goes through the gate generator, and the generator then
outputs a gate map instantiated in Fig. 6. Finally, the gate map G modulates
the encoder feature Fencoder and the pre-upsampled feature Fpre−upsampled to
generate the final upsampled feature Fupsampled as

Fupsampled = Fencoder · G + Fpre−upsampled · (1 − G) . (4)

From Table 2, the gating mechanism works on both NN and CARAFE.

5 Results and Discussions

Here we formally validate FADE on large-scale dense prediction tasks, including
image matting and semantic segmentation. We also conduct ablation studies
to justify each design choice of FADE. In addition, we analyze computational
complexity in terms of parameter counts and GFLOPs.

5.1 Image Matting

Image matting [39] is chosen as the representative of the detail-sensitive task.
It requires a model to estimate the accurate alpha matte that smoothly splits
foreground from background. Since ground-truth alpha mattes can exhibit sig-
nificant differences among local regions, estimations are sensitive to a specific
upsampling operator used [7,19].

Data Set, Metrics, Baseline, and Protocols. We conduct experiments on
the Adobe Image Matting dataset [39], whose training set has 431 unique fore-
ground objects and ground-truth alpha mattes. Following [7], instead of com-
positing each foreground with fixed 100 background images chosen from MS
COCO [17], we randomly choose background images in each iteration and gener-
ate composited images on-the-fly. The Composition-1K testing set has 50 unique
foreground objects, and each is composited with 20 background images from
PASCAL VOC [10]. We report the widely used Sum of Absolute Differences
(SAD), Mean Squared Error (MSE), Gradient (Grad), and Connectivity (Conn)
and evaluate them using the code provided by [39].
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Table 3. Image matting and semantic segmentation results on the Adobe Composition-
1k and ADE20K data sets. ΔParam. indicates the additional number of parameters
compared with the bilinear baseline. Best performance is in boldface.

A2U matting/ Matting – error↓ Segm – accuracy↑
SegFormer SAD MSE Grad Conn ΔParam mIoU bIoU ΔParam

Bilinear 37.31 0.0103 21.38 35.39 8.05M 41.68 27.80 13.7M

CARAFE [32] 41.01 0.0118 21.39 39.01 +0.26M 42.82 29.84 +0.44M

IndexNet [19] 34.28 0.0081 15.94 31.91 +12.26M 41.50 28.27 +12.60M

A2U [7] 32.15 0.0082 16.39 29.25 +38K 41.45 27.31 +0.12M

FADE (Ours) 31.10 0.0073 14.52 28.11 +0.12M 44.41 32.65 +0.29M

A2U Matting [7] is adopted as the baseline. Following [7], the baseline net-
work adopts a backbone of the first 11 layers of ResNet-34 with in-place activated
batchnorm [3] and a decoder consisting of a few upsampling stages with short-
cut connections. Readers can refer to [7] for the detailed architecture. To control
variables, we use max pooling in downsampling stages consistently and only
alter upsampling operators to train the model. We strictly follow the training
configurations and data augmentation strategies used in [7].

Matting Results. We compare FADE with other state-of-the-art upsampling
operators. Quantitative results are shown in Table 3. Results show that FADE
consistently outperforms other competitors in all metrics, with also few addi-
tional parameters. It is worth noting that IndexNet and A2U are strong baselines
that are delicately designed upsampling operators for image matting. Also the
worst performance of CARAFE indicates that upsampling with only decoder
features cannot meet a detail-sensitive task. Compared with standard bilin-
ear upsampling, FADE invites 16%∼32% relative improvement, which suggests
upsampling can indeed make a difference, and our community should shift more
attention to upsampling. Qualitative results are shown in Fig. 1. FADE generates
a high-fidelity alpha matte.

5.2 Semantic Segmentation

Semantic segmentation is chosen as the representative region-sensitive task. To
prove that FADE is architecture-independent, SegFormer [37], a recent trans-
former based segmentation model, is used as the baseline.

Data Set, Metrics, Baseline, and Protocols. We use the ADE20K dataset
[42], which is a standard benchmark used to evaluate segmentation models.
ADE20K covers 150 fine-grained semantic concepts, including 20210 images in
the training set and 2000 images in the validation set. In addition to reporting
the standard Mask IoU (mIoU) metric [10], we also include the Boundary IoU
(bIoU) metric [5] to assess boundary quality.
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Table 4. Ablation study on the source of features, the way for upsampling kernel
generation, and the effect of the gating mechanism. Best performance is in boldface.
en: encoder; de: decoder.

No. A2U MattingSegFormer Matting - error ↓ Segm - accuracy ↑
source of feat Kernel gen Fusion SAD MSE Grad Conn mIoU bIoU

B1 en 34.22 0.0087 15.90 32.03 42.75 31.00

B2 de 41.01 0.0118 21.39 39.01 42.82 29.84

B3 en & de naive 32.41 0.0083 16.56 29.82 43.27 31.55

B4 en & de semi-shift 31.78 0.0075 15.12 28.95 43.33 32.06

B5 en & de semi-shift skipping 32.64 0.0076 15.90 29.92 43.22 31.85

B6 en & de semi-shift gating 31.10 0.0073 14.52 28.11 44.41 32.65

SegFormer-B1 [37] is chosen by considering both the effectiveness and com-
putational sources at hand. We keep the default model architecture in SegFomer
except for modifying the upsampling stage in the MLP head. All training settings
and implementation details are kept the same as in [37].

Segmentation Results. Quantitative results of different upsampling opera-
tors are also listed in Table 3. Similar to matting, FADE is the best perform-
ing upsampling operator in both mIoU and bIoU metrics. Note that, among
compared upsampling operators, FADE is the only operator that exhibits the
task-agnostic property. A2U is the second best operator in matting, but turns
out to be the worst one in segmentation. CARAFE is the second best opera-
tor in segmentation, but is the worst one in matting. This implies that current
dynamic operators still have certain weaknesses to achieve task-agnostic upsam-
pling. Qualitative results are shown in Fig. 1. FADE generates high-quality pre-
diction both within mask regions and near mask boundaries.

5.3 Ablation Study

Here we justify how performance is affected by the source of features, the way for
upsampling kernel generation, and the use of the gating mechanism. We build
six baselines based on FADE:

1) B1: encoder-only. Only encoder features go through 1 × 1 convolution for
channel compression (64 channels), followed by 3 × 3 convolution layer for
kernel generation;

2) B2: decoder-only. This is the CARAFE baseline [32]. Only decoder features
go through the same 1×1 and 3×3 convolution for kernel generation, followed
by Pixel Shuffle as in CARAFE due to different spatial resolution;

3) B3: encoder-decoder-naive. NN-interpolated decoder features are first con-
catenated with encoder features, and then the same two convolutional layers
are applied;

4) B4: encoder-decoder-semi-shift. Instead of using NN interpolation and stan-
dard convolutional layers, we use semi-shift convolution to generate kernels
directly as in FADE;
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Fig. 7. GFLOPs comparison between FADE and other upsampling operators.

5) B5: B4 with skipping. We directly skip the encoder features as in feature
pyramid networks [16];

6) B6: B4 with gating. The full implementation of FADE.

Results are shown in Table 4. By comparing B1, B2, and B3, the experimental
results give a further verification on the importance of both encoder and decoder
features for upsampling kernel generation. By comparing B3 and B4, the results
indicate a clear advantage of semi-shift convolution over naive implementation
in the way of generating upsampling kernels. As aforementioned, the rationale
that explains such a superiority can boil down to the granular control of the
contribution of each feature point in kernels (Sect. 4). We also note that, even
without gating, the performance of FADE already surpasses other upsampling
operators (B4 vs. Table 3), which means the task-agnostic property is mainly due
to the joint use of encoder and decoder features and the semi-shift convolution.
In addition, skipping is clearly not the optimal way to move encoder details to
decoder features, at least worse than the gating mechanism (B5 vs. B6).

5.4 Comparison of Computational Overhead

A favorable upsampling operator, being part of overall network architecture,
should not significantly increase the computation cost. This issue is not well
addressed in IndexNet as it significantly increases the number of parameters
and computational overhead [19]. Here we measure GFLOPs of some upsam-
pling operators by i) changing number of channels given fixed spatial resolution
and by ii) varying spatial resolution given fixed number of channels. Figure 7 sug-
gests FADE is also competitive in GFLOPs, especially when upsampling with
relatively low spatial resolution and low channel numbers. In addition, semi-shift
convolution can be considered a perfect replacement of the standard ‘interpo-
lation+convolution’ paradigm for upsampling, not only superior in effectiveness
but also in efficiency.

6 Conclusions

In this paper, we propose FADE, a novel, plug-and-play, and task-agnostic
upsampling operator. For the first time, FADE demonstrates the feasibility of
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task-agnostic feature upsampling in both region- and detail-sensitive dense pre-
diction tasks, outperforming the best upsampling operator A2U on image mat-
ting and the best operator CARAFE on semantic segmentation. With step-to-
step analyses, we also share our view points from considering what makes for
generic feature upsampling.

For future work, we plan to validate FADE on additional dense prediction
tasks and also explore the peer-to-peer downsampling stage. So far, FADE is
designed to maintain the simplicity by only implementing linear upsampling,
which leaves much room for further improvement, e.g., with additional nonlin-
earity. In addition, we believe how to strengthen the coupling between encoder
and decoder features to enable better cooperation can make a difference for
feature upsampling.
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