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Abstract. The neural implicit representation has shown its effective-
ness in novel view synthesis and high-quality 3D reconstruction from
multi-view images. However, most approaches focus on holistic scene rep-
resentation yet ignore individual objects inside it, thus limiting potential
downstream applications. In order to learn object-compositional repre-
sentation, a few works incorporate the 2D semantic map as a cue in train-
ing to grasp the difference between objects. But they neglect the strong
connections between object geometry and instance semantic information,
which leads to inaccurate modeling of individual instance. This paper
proposes a novel framework, ObjectSDF, to build an object-compositional
neural implicit representation with high fidelity in 3D reconstruction and
object representation. Observing the ambiguity of conventional volume
rendering pipelines, we model the scene by combining the Signed Dis-
tance Functions (SDF) of individual object to exert explicit surface con-
straint. The key in distinguishing different instances is to revisit the
strong association between an individual object’s SDF and semantic
label. Particularly, we convert the semantic information to a function of
object SDF and develop a unified and compact representation for scene
and objects. Experimental results show the superiority of ObjectSDF
framework in representing both the holistic object-compositional scene
and the individual instances. Code can be found at https://qianyiwu.
github.io/objectsdf/.
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1 Introduction

This paper studies the problem of efficiently learning an object-compositional 3D
scene representation from posed images and semantic masks, which defines the
geometry and appearance of the whole scene and individual objects as well. Such
a representation characterizes the compositional nature of scenes and provides
additional inherent information, thus benefiting 3D scene understanding [8,11,
20] and context-sensitive application tasks such as robotic manipulation [16,30],
object editing, and AR/VR [34,37]. Learning this representation yet imposes new
challenges beyond those arising in the conventional 3D scene reconstruction.

The emerging neural implicit representation rendering approaches provide
promising results in novel view synthesis [18] and 3D reconstruction [22,33,35].
A typical neural implicit representation encodes scene properties into a deep
network, which is trained by minimizing the discrepancies between the rendered
and real RGB images from different viewpoints. For example, NeRF [18] repre-
sents the volumetric radiance field of a scene with a neural network trained from
images. The volume rendering method is used to compute pixel color, which
samples points along each ray and performs α−composition over the radiance of
the sampled points. Despite not having direct supervision on the geometry, it is
shown that neural implicit representations often implicitly learn the 3D geometry
to render photorealistic images during training [18]. However, the scene-based
neural rendering in these works is mostly agnostic to individual object identities.

To enable the model’s object-level awareness, several works are developed
to encode objects’ semantics into the neural implicit representation. Zhi et al.
propose an in-place scene labeling scheme [41], which trains the network to render
not only RGB images but also 2D semantic maps. Decomposing a scene into
objects can then be achieved by painting the scene-level geometric reconstruction
using the predicted semantic labels. This workflow is not object-based modeling
since the process of learning geometry is unaware of semantics. Therefore, the
geometry and semantics are not strongly associated, which results in inaccurate
object representation when the prediction of either geometry or semantics is
bad. Yang et al. present an object-compositional NeRF [34], which is a unified
rendering model for the scene but respecting individual object placement in
the scene. The network consists of two branches: The scene branch encodes the
scene geometry and appearance, and the object branch encodes each standalone
object by conditioning the output only for a specific object with everything else
removed. However, as proved in recent works [33,39], object supervision suffers
from 3D space ambiguity in a clustered scene. It thus requires aids from extra
components such as scene guidance and 3D guard masks, which are used to
distill the scene information and protect the occluded object regions.

Inspired by these works, we suggest modeling the object-level geometry
directly to learn the geometry and semantics simultaneously so that the rep-
resentation captures “what” and “where” things are in the scene. The inher-
ent challenge is how to get the supervision for the object-level geometry from
RGB images and 2D instance semantic. Unlike the semantic label for a 3D posi-
tion that is well constrained by multiple 2D semantic maps using multi-view
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consistency, finding a direct connection between object-level geometry and the
2D semantic labels is non-trivial. In this paper, we propose a novel method called
ObjectSDF for object-compositional scene representations, aiming at more accu-
rate geometry learning in highly composite scenes and more effective extraction
of individual objects to facilitate 3D scene manipulation. First, ObjectSDF repre-
sents the scene at the level of objects using a multi-layer perceptron (MLP) that
outputs the Signed Distance Function (SDF) of each object at any 3D position.
Note that NeRF learns a volume density field, which has difficulty in extracting
a high-quality surface [33,35,38–40]. In contrast, the SDF can more accurately
define surfaces and the composition of all object SDFs via the minimum oper-
ation that gives the SDF of the scene. Moreover, a density distribution can be
induced by the scene SDF, which allows us to apply the volume rendering to
learn an object-compositional neural implicit representation with robust network
training. Second, ObjectSDF builds an explicit connection between the desired
semantic field and the level set prediction, which braces the insight that the
geometry of each object is strongly associated with semantic guidance. Specif-
ically, we define the semantic distribution in 3D space as a function of each
object’s SDF, which allows effective semantic guidance in learning the geome-
try of objects. As a result, ObjectSDF provides a unified, compact, and simple
framework that can supervise the training by the input RGB and instance seg-
mentation guidance naturally, and learn the neural implicit representation of the
scene as a composition of object SDFs effectively. This is further demonstrated
in our experiments.

In summary, the paper has the following contributions: 1) We propose a
novel neural implicit surface representation using the signed distance functions
in an object-compositional manner. 2) To grasp the strong associations between
object geometry and instance segmentation, we propose a simple yet effective
design to incorporate the segmentation guidance organically by updating each
object’s SDF. 3) We conduct experiments that demonstrate the effectiveness of
the proposed method in representing individual objects and compositional scene.

2 Related Work

Neural Implicit Representation. Occupancy Networks [17] and
DeepSDF [24] are among those pioneers who introduced the idea of encoding
objects or scenes implicitly using a neural network. Such a representation can be
considered as a mapping function from a 3D position to the occupancy density
or SDF of the input points, which is continuous and can achieve high spatial
resolution. While these works require 3D ground-truth models, Scene Represen-
tation Networks (SRN) [31] and Neural Radiance Field (NeRF) [18] demonstrate
that both geometry and appearance can be jointly learned only from multiple
RGB images using multi-view consistency. Such an implicit representation idea
is further used to predict the semantic segmentation label [13,41], deformation
field [25,27], high-fidelity specular reflections [32].

This learning-by-rendering paradigm of NeRF has attracted broad interest.
They also lay a foundation for many follow-up works including ours. Instead of
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rendering a neural radiance field, several works [5,14,22,33,35,36] demonstrate
that rendering neural implicit surfaces, where gradients are concentrated around
surface regions, is able to produce a high-quality 3D reconstruction. Particularly,
a recent work, VolSDF [35], combines neural implicit surface with volume ren-
dering and produces high fidelity reconstructed surfaces. Due to its superior
modeling performance, our network is built upon VolSDF. The key difference is
that VolSDF only has one SDF to model the entire scene while our work models
the scene SDF as a composition of multiple object SDFs.
Object-Compositional Implicit Representation. Decomposing a holistic
NeRF into several parts or object-centric representations could benefit efficient
rendering of radiance fields and other applications like content generation [2,28,
29]. Several attempts are made to model the scene via a composition of object
representations, which can be roughly categorized as category-specific [7,19,21,
23] and scene-specific [10,34,41] methods.

The category-specific methods learn the object representation of a limited
number of object categories using a large amount of training data in those cate-
gories. They have difficulty in generalizing to objects in other unseen categories.
For example, Guo et al. [7] propose a bottom-up method to learn one scattering
field per object, which enables rendering scenes with moving objects and lights.
Ost et al. [23] use a neural scene graph to represent dynamic scenes and par-
ticularly decompose objects in a street view dataset. Niemeyer and Geiger [21]
propose GIRAFFE that conditions latent codes to get object-centric NeRFs and
thus represents scenes as compositional generative neural feature fields.

The scene-specific methods directly learn a unified neural implicit repre-
sentation for the whole scene, which also respects the object placement as in
the scene [34,41]. Particularly, SemanticNeRF [41] augments NeRF to estimate
the semantic label for any given 3D position. A semantic head is added into
the network, which is trained by comparing the rendered and real semantic
maps. Although SemanticNeRF is able to predict semantic labels, it does not
explicitly model each semantic entity’s geometry. The work closest to ours is
ObjectNeRF [34], which uses a two-pathway architecture to capture the scene
and object neural radiance fields. However, the design of ObjectNeRF requires
a series of additional voxel feature embedding, object activation encoding, and
separate modeling of the scene and object neural radiance fields to deal with
occlusion issues and improve the rendering quality. In contrast, our approach is
a simple and intuitive framework that uses SDF-based neural implicit surface
representation and models scene and object geometry in one unified branch.

3 Method

Given a set of N posed images A = {x1, x2, · · · , xN} and the corresponding
instance semantic segmentation masks S = {s1, s2, · · · , sN}, our goal is to learn
an object-compositional implicit 3D representation that captures the 3D shapes
and appearances of not only the whole scene Ω but also individual objects O
within the scene. Different from the conventional 3D scene modeling which typ-
ically models the scene as a whole without distinguishing individual objects
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within it, we consider the 3D scene as a composition of individual objects and
the background. A unified simple yet effective framework is proposed for 3D scene
and object modeling, which offers a better 3D modeling and understanding via
inherent scene decomposition and recomposition.

Fig. 1. Overview of our proposed ObjectSDF framework, consisting of two parts:
an object-SDF part (left, yellow region) and a scene-SDF part (right, green region).
The former predicts the SDF of each object, while the latter composites all object
SDFs to predict the scene-level geometry and appearance. (Color figure online)

Figure 1 shows the proposed ObjectSDF framework of learning object com-
positional neural implicit surfaces. It consists of an object-SDF part that is
responsible for modeling all instances including background (Fig. 1, yellow part)
and a scene-SDF part that recomposes the decomposed objects in the scene
(Fig. 1, green part). Note that here we use Signed Distance Function (SDF)
based neural implicit surface representation to model the geometry of the scene
and objects, instead of using the popular Neural Radiance Fields (NeRF). This is
mainly because NeRF aims at high-quality view synthesis, not for accurate sur-
face reconstruction, while the SDF-based neural surface representation is better
for geometry modeling and SDF is also easier for the 3D composition of objects.

In the following, we first give the background of volume rendering and its
combination with SDF-based neural implicit surface representation in Sect. 3.1.
Then, we describe how to represent a scene as a composition of multiple objects
within it under a unified neural implicit surface representation in Sect. 3.2, and
emphasize our novel idea of leveraging semantic labels to supervise the modeling
of individual object SDFs in Sect. 3.3, followed by a summary of the overall
training loss in Sect. 3.4.

3.1 Background

Volume Rendering essentially takes the information from a radiance field.
Considering a ray r(v) = o + vd emanated from a camera position o in the
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direction of d, the color of the ray can be computed as an integral of the trans-
parency T (v), the density σ(v) and the radiance c(v) over samples taken along
near and far bounds vn and vf ,

Ĉ(r) =
∫ vf

vn

T (v)σ(r(v))c(r(v))dv. (1)

This integral is approximated using a numerical quadrature [15]. The trans-
parency function T (v) represents how much light is transmitted along a ray r(v)
and can be computed as T (v) = exp(− ∫ v

vn
σ(r(u))du), where the volume density

σ(p) is the rate that light is occluded at a point p. Sometimes the radiance c
may not be the function only of a ray r(v), such as in [18,36]. We refer readers
to [9] for more details about volume rendering.

SDF-Based Neural Implicit Surface. SDF directly characterizes the geom-
etry at the surface. Specifically, given a scene Ω ⊂ R

3, and M = ∂Ω is the
boundary surface. The Signed Distance Function dΩ is defined as the distance
from point p to the boundary M:

dΩ(p) = (−1)1Ω(p) min
y∈M

||p − y||2, (2)

where 1Ω(p) is the indicator denoting whether p belongs to the scene Ω or not.
If the point is outside the scene, 1Ω(p) returns 0; otherwise returns 1. Typically,
the standard l2-norm is used to compute the distance.

The latest neural implicit surface works [33,35] combine SDF with neural
implicit function and volume rendering for better geometry modeling, by replac-
ing the NeRF volume density output σ(p) with the SDF value dΩ(p), which
can be directly transferred into the density. Following [35], here we model the
density σ(p) using a specific tractable transformation:

σ(p) = αΨ(dΩ(p)) =

⎧⎪⎪⎨
⎪⎪⎩

1
2β

exp (
dΩ(p)

β
) if dΩ(p) ≤ 0

1
β

− 1
2β

exp (
−dΩ(p)

β
) if dΩ(p) > 0

(3)

where β is a learnable parameter in our implementation.

3.2 The Scene as Object Composition

Unlike the existing SDF-based neural implicit surface modeling works [33,35],
which either focus on a single object or treat the entire scene as one object,
we consider the scene as a composition of multiple objects and aim to model
their geometries and appearances jointly. Specifically, given a static scene Ω, it
can be naturally represented by the spatial composition of k different objects

{Oi ⊂ R
3|i = 1, . . . , k}, i.e., Ω =

k⋃
i=1

Oi (including background, as an indi-

vidual object). Using the SDF representation, we denote the scene geometry
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by scene-SDF dΩ(p) and the object geometry as object-SDF dOi
(p), and their

relationship can be derived as: for any point p ∈ R
3, dΩ(p) = mini=1...k dOi

(p).
This is fundamentally different from [33,35] that directly predict the SDF of
the holistic scene Ω, while our neural implicit function outputs k distinct SDFs
corresponding to different objects (see Fig. 1). The scene-SDF is just a minimum
of the k object-SDFs, which can be implemented as a particular type of pooling.

Considering that we do not have any explicit supervision for the SDF values in
any 3D position, we adopt the implicit geometric regulation loss [6] to regularize
each object SDF dOi

as:

LSDF =
k∑

i=1

EdOi
(||∇dOi

(p)|| − 1)2. (4)

This will also constrain the scene SDF dΩ . Once we obtain the scene SDF dΩ ,
we use Eq. (3) to obtain the density in the holistic scene.

Fig. 2. Semantic as a function of object-SDF. Left: the desired 3D semantic field
that should satisfy the requirement, i.e., when the ray is crossing an object (the toy),
the corresponding 3D semantic label should change rapidly. Thus, we propose to use
the function (6) to approximate the 3D semantic field given object-SDF. Right: The
plot of function (6) versus SDF.

3.3 Leveraging Semantics for Learning Object-SDFs

Although our idea of treating scene-SDF as a composition of multiple object-
SDFs is simple and intuitive, it is extremely challenging to learn meaningful
and accurate object-SDFs since there is no explicit SDF supervision. The only
object information we have is the given 2D semantic masks S = {s1, s2, · · · , sN}.
So, the critical issue we need to address here is: How to leverage 2D instance
semantic masks to guide the learning of object-SDFs?
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The only existing solution we can find is the SemanticNeRF [41], which adds
an additional head to predict a 3D “semantic field” s in the same way as pre-
dicting the radiance field c. Then, similar to Eq. (1), 2D semantic segmentation
can be regarded as a volume rendering result from the 3D “semantic field” as:

Ŝ(r) =
∫ vf

vn

T (v)σ(r(v))s(r(v))dv. (5)

However, in our framework, σ is transformed from scene-SDF dΩ , which is fur-
ther obtained from object-SDFs. The supervision on the segmentation prediction
Ŝ cannot ensure the object-SDFs to be meaningful.

Therefore, we turn to a new solution that represents the 3D semantic predic-
tion s as a function of object-SDF. Our key insight is that the semantic infor-
mation is strongly associated with the object geometry. Specifically, we analyze
the property of a desired 3D “semantic field”. Considering we have k objects
{Oi ⊂ R

3|i = 1, . . . , k} inside the scene including background, we expect that
a desired 3D semantic label should maintain consistency inside one object while
changing rapidly when crossing the boundary from one class to another. Thus,
we investigate the derivative of s(p) at a 3D position p. Particularly, we inspect
the norm of ∂si

∂p :

||∂si

∂p
|| = || ∂si

∂dOi

· ∂dOi

∂p
|| (chain rule)

≤ || ∂si

∂dOi

|| · ||∂dOi

∂p
|| (norm inequality)

= || ∂si

∂dOi

|| · ||∇dOi
(p)||.

As we adopt the implicit geometric regulization loss in Eq. (4), ||∇dOi
(p)|| should

be close to 1 after training. Therefore, the norm of ∂si/∂p should be bounded
by the norm of ∂si/∂dOi

. In this way, we can convert the desired property of
the 3D “semantic field” to ∂si/∂dOi

. Considering that crossing from one class
to another class means dOi

is passing zero-level set (see Fig. 2 left), we come up
with a simple but effective function to satisfied the property. Concretely, we use
the function:

si = γ/(1 + exp (γdOi
)), (6)

which is a scaled sigmoid function and γ is a hyper-parameter to control the
smoothness of the function. The absolute value of ∂si/∂dOi

is γ2 exp (γdOi
)/(1+

exp (γdOi
))2, which meets the requirement of desired 3D semantic field, i.e.,

smooth inside the object but a rapid change at the boundary (see Fig. 2 right).
This is fundamentally different from [41]. Here we directly transform the

object-SDF prediction dOi
to a semantic label in 3D space. Thanks to this design,

we can conduct volume rendering to convert the transformed SDF into the 2D
semantic prediction using Eq. (5). With the corresponding semantic segmenta-
tion mask, we minimize the cross-entropy loss Ls:

Ls = Er∼S [− log Ŝ(r)]. (7)
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3.4 Model Training

Following [18,35], we first minimize the reconstruction error between the pre-
dicted color Ĉ(r) and the ground-truth color C(r) with:

Lrec = Er||Ĉ(r) − C(r)||1. (8)

Furthermore, we use the implicit geometric loss to regularize the SDF of each
object as in Eq. (4). Moreover, the cross-entropy loss between the rendered
semantic and ground-truth semantic is applied to guide the learning of object-
SDFs as in Eq. (7). Overall, we train our model with the following three losses
Ltotal = Lrec + λ1Ls + λ2LSDF , where λ1 and λ2 are two trade-off hyper-
parameters. We set λ1 = 0.04 and λ2 = 0.1 empirically.

4 Experiments

The main purpose of our proposed method is to build an object-compositional
neural implicit representation for scene rendering and object modeling. There-
fore, we evaluate our approach in two real-world datasets from two aspects.
Firstly, we quantitatively compare our scene representation ability with the
state-of-the-art methods on standard scene rendering and modeling aspects.
Then, we investigate the object representation ability of our method and com-
pare it with NeRF-based object representation method [34]. Finally, we perform
a model design ablation study to inspect the effectiveness of our framework.

4.1 Experimental Setting

Implementation Details. Our systems consists of two Multi-Layer Percep-
trons (MLP). (i) The first MLP fφ estimates each object SDF as well as a
scene feature z of dimension 256 for further rendering branch, i.e., fφ(p) =
[dO1(p), . . . , dOK

(p), z(p)] ∈ R
K+256. fφ consists of 6 layers with 256 channels.

(ii) The second MLP fθ is used to estimate the scene radiance field, which takes
point position p, point normal n, view direction d and scene feature z as inputs
and outputs the RGB color c, i.e., fθ(p,n,d, z) = c. fθ consists of 4 layers with
256 channels. We use the geometric network initialization technique [1,36] for
both MLPs to initial the network weights to facilitate the learning of signed
distance functions. We adopt the error-bounded sampling algorithm proposed
by [35] to decide which points will be used in calculating volume rendering
results. We also incorporate the positional encoding [18] with 6 levels for posi-
tion p and 4 levels for view direction d to help the model capture high frequency
information of the geometry and radiance field. Our model can be trained in a
single GTX 2080Ti GPU with a batch size of 1024 rays. We set β = 0.1 in Eq. 3
in the initial stage of training.

Datasets. Following [34] and [41], we use two real datasets for comparisons.
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– ToyDesk [34] contains scenes of a desk by placing several toys with two
different layouts and capturing images in 360◦ by looking at the desk center.
It also contains 2D instance segmentation for target objects as well as the
camera pose for each image and a reconstructed mesh for each scene.

– ScanNet dataset [3] contains RGB-D indoor scene scans as well as 3D seg-
mentation annotations and projected 2D segmentation masks. In our exper-
iments, we use the 2D segmentation masks provided in the ScanNet dataset
for training, and the provided 3D meshes for 3D reconstruction evaluation.

Comparison Baselines. We compare our method with the recent representa-
tive works in the realm of object-compositional neural implicit representation for
the single static scene: ObjectNeRF [34] and SemanticNeRF [26]. Object-
NeRF uses a two-path architecture to represent object-compositional neural radi-
ance, where one branch is used for individual object modeling while the other
is for scene representation. To broaden the ability of the network to capture
accurate scene information, ObjectNeRF utilizes voxel features for both scene
and object branches training, as in [12], which significantly increases the model
complexity. SemanticNeRF [26] is a NeRF-based framework that jointly predicts
semantics and geometry in a single model for semantic labeling. The key design
in this framework is an additional semantic prediction head extended from the
NeRF backbone. Although this method does not directly represent objects, it
can still extract an object by using semantic prediction.

Metric. We employ the following metrics for evaluation: 1) PSNR to evalu-
ate the quality of rendering; 2) mIOU to evaluate the semantic segmentation;
and 3) Chamfer Distance (CD) to measure the quality of reconstructed 3D
geometry. Besides these metrics, we also provide the number of neural network
parameters (#params) of each method for comparing the model complexity.

Table 1. The quantitative results on scene representation. We compare our
method against recent SOTA methods [34,41], ablation designs and Ground Truth

Methods ground truth (GT) #Params ToyDesk [34] ScanNet [3]

PSNR ↑ mIOU ↑ CD ↓ PSNR ↑ mIOU ↑ CD ↓
– N/A 1.00 0.00 N/A 1.00 0.00

SemanticNeRF [41] ∼1.26M 19.57 0.79 1.15 23.59 0.57 0.64

ObjectNeRF [34] 1.78M(+19.20M) 21.61 0.75 1.06 24.01 0.31 0.61

VolSDF [35] 0.802M 22.00 – 0.30 25.31 – 0.32

VolSDF w/ Semantic ∼0.805M 22.00 0.89 0.34 25.41 0.56 0.28

Ours ∼0.804M 22.00 0.88 0.19 25.23 0.53 0.22

Comparison Settings. We follow the comparison settings introduced by
ObjectNeRF [34] and SemanticNeRF [41]. We use the same scene data used
in [34] from ToyDesk and ScanNet for a fair comparison. To be consistent with
SemanticNeRF [41], we predict the category semantic label rather than the
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instance semantic label for the quantitative evaluation on the ScanNet bench-
mark. Note that we are unable to train SemanticNeRF in the original resolution
in the official codebase due to memory overflow. Therefore, we downscale the
images of ScanNet and train all methods with the same data. We also noticed
that the ground truth mesh may lack points in some regions, for which we apply
the same crop setting for all methods to evaluate the 3D region of interest.

It is worth noting that both our method and SemanticNeRF are able to pro-
duce the semantic label in the output. However, ObjectNeRF does not explicitly
predict the semantic label in their framework. Therefore, we calculate the depth
of each object which is computed from the volume density predicted from each
object branch in ObjectNeRF [4]. Then, we use the object with the nearest
depth as the pixel semantic prediction of ObjectNeRF for calculating the mIOU
metric. For scene rendering and the 3D reconstruction ability of ObjectNeRF,
we adopt the result from the scene branch for evaluation. More details can be
found in the supplementary.

4.2 Scene-Level Representation Ability

To evaluate the scene-level representation ability, we first compare the scene ren-
dering, object segmentation, and 3D reconstruction results. As shown in Table 1,
our framework outperforms other methods on the Toydesk benchmark and is
comparable or even better than the SOTA methods on the ScanNet dataset.
The qualitative results shown in Fig. 3 demonstrate that both our method and
SemanticNeRF are able to produce fairly accurate segmentation masks. Object-
NeRF, on the other hand, renders noisy semantic masks as shown in the third
row of Fig. 3. We believe the volume density predicted by the object branch
is susceptible to noisy semantic prediction for points that are further from the
object surface. Therefore, when calculating the depth of each object, it results
in artifacts and leads to noisy rendering.

In terms of 3D structure reconstruction, thanks to the accurate SDF in
capturing surface information, our framework can recover much more accurate
geometry compared with other methods. We also calculate the number of model
parameters of each method. Due to the feature volume used in ObjectNeRF,
their model needs additional 19.20 M parameters. In contrast, the number of
parameters of our model is about 0.804 M, which is about 36% and 54% reduc-
tions from ObjectNeRF and SemanticNeRF, respectively. This demonstrates the
compactness and efficiency of our proposed method.
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4.3 Object-Level Representation Ability

Besides the scene-level representation ability, our framework can naturally rep-
resent each object by selecting the specific output channel of object-SDFs for
volume rendering. ObjectNeRF [34] can also isolate an object in a scene by
computing the volume density and color of the object using the object branch
network with a specific object activation code. We evaluate the object-level rep-
resentation ability based on the quality of rendering and reconstruction of each
object. Particularly, we compare our method against ObjectNeRF on Toydesk02
which contains five toys in the scene as shown in Fig. 4. We show the rendered
opacity and RGB images of each toy from the same camera pose. It can be seen
that our proposed method can render the objects more precisely with accurate
opacity to describe each object. In contrast, ObjectNeRF often renders noisy
images despite utilizing the opacity loss and 3D guided mask to stop gradient
during training. Moreover, the accurate rendering of the occluded cubes (the last
two columns in Fig. 4) demonstrates that our method handles occlusions much
better than ObjectNeRF. We also compare the geometry reconstructions of all
the five objects on the left of Fig. 4.

Fig. 3. Qualitative Comparison with SemanticNeRF [41] and Object-
NeRF [34] on scene-level representation ability. We show the reconstructed
meshes, predicted RGB images, and semantic masks of each method together with
the ground truth results from two scenes in ScanNet.
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Fig. 4. Instance Results of ObjectNeRF [34] and Ours. We show the recon-
structed mesh, rendered opacity, and RGB images of different objects.

4.4 Ablation Study

Our framework is built upon VolSDF [35] to develop an object-compositional
neural implicit surface representation. Instead of modeling individual object
SDFs, an alternative way to achieve the same goal is to add a semantic head to
VolSDF to predict the semantic label given each 3D location, which is similar
to the approach done in [41]. We name this variant as “VolSDF w/ Semantic”.

We first evaluate the scene-level representation ability between our method
and the variant “VolSDF w/ Semantic” in Table 1. For completeness, we also
include the vanilla VolSDF, but due to the lack of semantic head, it cannot
be evaluated on mIOU. While the comparing methods achieve similar perfor-
mance on image rendering measured by PSNR, our method excels at geometric
reconstruction. This is further demonstrated in Fig. 5, where we render the RGB
image and normal map of each method. From the rendered normal maps, we can
see that our method captures more accurate geometry compared with the two
baselines. For example, our method can recover the geometry of the floor and the
details of the sofa legs. The key difference between our method and the two vari-
ants is that we directly model each object SDF inside the scene. This indicates
that our object-compositional modeling can improve the full understanding of
3D scene both semantically and geometrically.

To investigate the object representation ability of “VolSDF w/ semantic”,
we obtain an implicit object representation by using the prediction of seman-
tic labels to determine the volume density of an object. In particular, given a
semantic prediction in a 3D position, we can truncate the object semantic value
by a threshold to decide whether to use the density to represent this object. We
evaluate the object representation ability on two instances from ToyDesk and
Scannet, respectively, in Fig. 6. We choose the object, which is not occluded to
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Fig. 5. Ablation study results on scene representation ability. We show the
rendered RGB image and rendered normal map together with ground truth image.

Fig. 6. Instance Results of Ours and “VolSDF w/ Semantic”. We show the
curve between instance IOU value and semantic value threshold (left), the ground
truth instance image and mask (middle), the rendered normal map, and RGB/opacity
of each instance under different threshold values (right).

extract the complete segmentation mask, and then use this mask to evaluate the
semantic prediction result for each instance. Because the instance mask gener-
ated by “VolSDF w/ Semantic” is controlled by the semantic value threshold,
we plot the curve of IOUs under different thresholds (blue line). This reveals
an inherent challenge for “VolSDF w/ Semantic”, i.e., how to find a generally
suitable threshold across different instances or scenes. For instance, we notice
“VolSDF w/ Semantic” could gain a high IOU value with a high threshold of
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0.99, but it will miss some information of the teapot (as highlighted by the
red box). While using the same threshold of 0.99 on ScanNet 0024 (bottom), it
fails in separating the piano. In contrast, our instance prediction is invariant to
the threshold as shown in the yellow dash line. This suggests that the separate
modeling of 3D structure and semantic information is undesirable to extract
accurate instance representation when either prediction is inaccurate. We also
observe that given a fairly rough segmentation mask during training, our frame-
work can produce a smooth and high-fidelity object representation as shown in
Fig. 6.

5 Conclusion and Future Work

We have presented an object-compositional neural implicit surface representa-
tion framework, namely ObjectSDF, which learns the signed distance functions
of all objects in a scene from the guidance of 2D instance semantic segmentation
masks and RGB images using a single network. Our model unifies the object
and scene representations in one framework. The main idea behind it is building
a strong association between semantic information and object geometry. Exten-
sive experimental results on two datasets have demonstrated the strong ability of
our framework in both 3D scene and object representation. Future work includes
applying our model for various 3D scene editing applications and efficient train-
ing of neural implicit surfaces.
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