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Abstract. To generalize the model trained in source domains to unseen
target domains, domain generalization (DG) has recently attracted lots of
attention. Since target domains can not be involved in training, overfit-
ting source domains is inevitable. As a popular regularization technique,
the meta-learning training scheme has shown its ability to resist overfit-
ting. However, in the training stage, current meta-learning-based methods
utilize only one task along a single optimization trajectory, which might
produce a biased and noisy optimization direction. Beyond the training
stage, overfitting could also cause unstable prediction in the test stage.
In this paper, we propose a novel multi-view DG framework to effectively
reduce the overfitting in both the training and test stage. Specifically, in
the training stage, we develop a multi-view regularized meta-learning algo-
rithmthat employsmultiple optimization trajectories toproduce a suitable
optimization direction for model updating. We also theoretically show that
the generalization bound could be reduced by increasing the number of
tasks in each trajectory. In the test stage, we utilize multiple augmented
images to yield a multi-view prediction to alleviate unstable prediction,
which significantly promotes model reliability. Extensive experiments on
three benchmark datasets validate that our method can find a flat min-
imum to enhance generalization and outperform several state-of-the-art
approaches.The code is available at https://github.com/koncle/MVRML.

1 Introduction

Traditional supervised learning assumes that training and test data are from
the same distribution. However, this conventional assumption is not always
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Fig. 1. The examples for the variation of the prediction probability when the test
images are slightly perturbed in the unseen domain on the PACS dataset.

satisfied in the real world when domain shifts exist between training and test
data. Recently, learning a robust and effective model against domain shift has
raised considerable attention [3,20]. As one of the most representative learning
paradigms under domain shift, unsupervised domain adaption (UDA) aims to
tackle the adaptation from the labeled source domain to the unlabeled target
domain under domain shift. Despite the great success of current UDA mod-
els [33,36,54], when deploying the previously trained UDA model to other unseen
domains, we should re-train the model by incorporating the newly collected
data from the unseen domain. This re-training process not only increases extra
space/time costs but also violates privacy policy in some cases (e.g., clinical
data), rendering these UDA methods not applicable to some real tasks.

The dilemma above motivates us to focus on a more applicable yet challeng-
ing setting, namely domain generalization (DG) [35]. In DG, by only learning the
related knowledge from existing source domains, the trained model is required
to be directly applied to previously unseen domains without any re-training
procedure. To guarantee the model’s efficacy on the unseen target domain, pre-
vious DG methods [25,35,41] intend to reduce the domain-specific influence from
source domains via learning domain-invariant representations.

Well fitting source domains is easy, whereas well generalizing to an unseen
target domain is hard. Previous methods inevitably suffer from overfitting when
concentrating only on fitting source domains. Therefore, the meta-learning-based
methods [10,24] have arisen as one of the most popular methods to resist over-
fitting during training, which simulates the domain shift episodically to perform
regularization. However, these methods train their model with a single task at
each iteration, which could cause a biased and noisy optimization direction.

Besides, after investigating the predictions of the trained model during the
test stage, we notice that overfitting also results in unstable predictions. We con-
duct an experiment by perturbing (e.g., random crop and flip) the test images.
As shown in Fig. 1, their predictions usually changed after being perturbed. It
is because the feature representations of unseen images learned by the overfitted
model are more likely to lie near the decision boundary. These representations
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are easily perturbed across the boundary, thus, producing different predictions.
This phenomenon is more challenging in DG due to the domain discrepancy.

As aforementioned, the overfitting problem not only appears in the training
stage but also largely influences the following test procedure. To fight against
overfitting, we innovatively propose a multi-view framework to deal with the
inferior generalization ability and unstable prediction. Specifically, in the train-
ing stage, we design a multi-view regularized meta-learning algorithm that can
regularize the training process in a simple yet effective way. This algorithm
contains two steps. The first step is to guide a model to pursue a suitable opti-
mization direction via exploiting multi-view information. Unlike most previous
methods (e.g., MLDG [24]) that train the model using only one task along a
single optimization trajectory (i.e., the training path from the current model to
another model) with limited single-view information, we propose to train the
model using multiple trajectories with different sampled tasks to find a more
accurate direction with integrated multi-view information. In the second step,
we update the model with the learned direction. We present a theoretical anal-
ysis that the number of tasks is also critical for generalization ability. Besides,
we empirically verify that integrating multiple trajectory information can help
our method find a flat minimum for promising generalization.

In the test stage, we propose to deal with the unstable prediction caused
by the overfitted model using multi-view prediction. We argue that current test
images with a single view cannot prevent unstable prediction. Nevertheless, dif-
ferent augmentations applied to the test image can bring abundant information
from different views. Thus, if using the image pre-processing perturbations in
the test procedure (e.g., the cropping operation), we can obtain multi-view infor-
mation for a single image. Therefore, we augment each test image into multiple
views during the test stage and ensemble their predictions as the final output.
By exploiting the multi-view predictions of a single image, we can eliminate the
unreliability of predictions and obtain a more robust and accurate prediction.

In summary, we propose a unified multi-view framework to enhance the gen-
eralization of the model and stabilize the prediction in both training and test
stages. Our contributions can be summarized as follows:

– During training, we design an effective multi-view regularized meta-learning
scheme to prevent overfitting and find a flat minimum that generalizes better.

– We theoretically prove that increasing the number of tasks in the training
stage results in a smaller generalization gap and better generalizability.

– During the test stage, we introduce a multi-view prediction strategy to boost
the reliability of predictions by exploiting multi-view information.

– Our method is validated via conducting extensive experiments on multiple
DG benchmark datasets and outperforms other state-of-the-art methods.

2 Related Work

Domain Generalization. Domain generalization (DG) has been proposed
recently to deal with learning the generalizability to the unseen target domain.
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Current DG methods can be roughly classified into three categories: Domain-
invariant feature learning, Data augmentation and Regularization.

Domain-invariant feature learning-based methods aim to extract domain-
invariant features that are applicable to any other domains. One widely employed
technique is adversarial training [28,41,56], which learns the domain-invariant
features by reducing the domain gap between multiple source domains. Instead
of directly learning the domain-invariant features, several methods [4,8,39] try
to disentangle it from domain-specific features.

Data augmentation based methods try to reduce the distance between source
and unseen domains via augmenting unseen data. Most of them perform image-
level augmentation [26,52,53,57] that generates images with generative adversar-
ial networks [14] or adaptive instance normalization [16]. Since feature statistics
contains style information and easy to manipulate, other methods augment fea-
tures by modifying its statistics [19,38,59] or injecting generated noise [27,43].

As overfitting hurts the generalization ability of a model, regularization-based
methods prevent this dilemma by regularizing the model during training. Several
works [6,48] add auxiliary self-supervised loss to perform regularization. [10,
24,55] adopt a meta-learning framework to regularize the model by simulating
domain shift during training. Ensemble learning [7,58] also has been employed
to regularize training models. Our method also belongs to this category which
can better prevent overfitting by exploiting multi-view information.

Meta-Learning. Meta-learning [45] is a long-standing topic that learns how
to learn. Recently, MAML [11] has been proposed as a simple model-agnostic
method to learn the meta-knowledge, attracting lots of attention. Due to the
unpredictable large computational cost of second-order derivatives, first-order
methods are thus developed [11,37] to reduce the cost. Later, meta-learning is
introduced into DG to learn generalizable representation across domains. These
methods perform regularization under the meta-learning framework. For exam-
ple, MLDG [24] utilizes the episodic training paradigm and updates the network
with simulated meta-train and meta-test data. MetaReg [2] explicitly learns reg-
ularization weights, and Feature-critic [29] designs a feature-critic loss to ensure
that the updated network should perform better than the original network.
Recent DG methods [30,40] all adopt the episodic training scheme similar to
MLDG due to its effectiveness. Although these methods can alleviate overfitting
by training on a single task, they may produce biased optimization direction.
However, our method can mitigate this problem by learning from multiple tasks
and optimization trajectories.

Test Time Augmentation. The test time augmentation (TTA) is originally
proposed in [21], which integrates the predictions of several augmented images for
improving the robustness of the final prediction. Besides, several methods [34,44]
try to learn automatic augmentation strategy for TTA. Other methods apply
TTA to estimate uncertainty in the model [1,22]. However, according to our best
knowledge, TTA has not been explored in DG, which can alleviate prediction
uncertainty via generating multi-view augmented test images.
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3 Our Method

3.1 Episodic Training Framework

Given the data space and label space as X and Y, respectively, we denote N
source domains as D1, . . . ,DN , where Di = {xk, yk}Ni

1 . Ni is the number of sam-
ples in the i-th source domain Di. We denote the model parameterized by θ as f .
Given input x, the model outputs f(x|θ). As previously reviewed, meta-learning-
based methods usually train the model with an episodic training paradigm. Sim-
ilar to the meta-learning based methods [24] that split the source domains into
meta-train and meta-test sets at each iteration, we leave one domain out as
meta-test domain Dte and the remaining domains as meta-train domains Dtr.
Hereafter, we sample mini-batches from these domains and obtain meta-train Btr

and meta-test data Bte. A sub-DG task is defined as a pair of them t = (Btr,Bte).
We define the loss on a batch B ∈ {Btr,Bte} with parameter θ as:

L(B|θ) =
∑

(xi,yi)∈B
�
(
f(xi|θ), yi

)
,

where � is the traditional cross-entropy loss.

Fig. 2. An illustration of reptile and our
multi-view regularized meta-learning algo-
rithm (best viewed in color). (Color figure
online)

Different from previous meta-
learning algorithms (e.g., MLDG [24])
that take second-order gradients to
update model parameters, Reptile [37]
is proposed as a first-order algo-
rithm to reduce the computational
cost. Therefore, we adopt Reptile ver-
sion of MLDG. To be specific, given
model parameter θj at the j-th iter-
ation, we sample a task and train
the model first with L(Btr|θj) and
then L(Bte|θj). Afterwards, we can
obtain a temporarily updated param-
eter θtmp along this optimization tra-
jectory. Finally, we take (θtmp−θj) as an optimization direction, i.e., the direction
points from the temporary parameter to the original parameter, to update the
original parameter θj :

θj+1 = θj + β(θtmp − θj). (1)

In this way, θtmp could exploit a part of current weight space and find a better
optimization direction for current sampled tasks.
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3.2 Multi-view Regularized Meta-Learning

Fig. 3. The loss surface [13] of three tem-
porarily trained parameters (denoted as
dot) starting from θj and optimized along
a different trajectory. The star denotes the
averaged parameter.

Although Reptile reduces the com-
putational cost, the training scheme
above suffers from several problems.
Firstly, the model is trained along
a single optimization trajectory, pro-
ducing only one temporary parameter
θtmp. It is only a partial view of the
weight space for the current param-
eter θj , which is noisy and insuffi-
cient to produce a robust optimiza-
tion direction. To better understand
this problem, we plot the loss surface
of three temporarily trained parame-
ters (denoted as a dot) in Fig. 3. Two of the three parameters have higher loss
values on both source and target domains. If we only consider one view (i.e.,
using a single temporary parameter), we may not find a good optimization
direction for updating. Recent researchs [7,12,18] find that the flat minimum
can produce better generalization performance than a sharp minimum, and sim-
ple weight averaging can achieve it if these weights share part of optimization
trajectory [12]. Inspired by this conclusion, we also plot the averaged parame-
ter (denoted as a star) and find that it can produce a more robust parameter
with lower loss than most parameters on both training and test domains. There-
fore, the ensembling of temporary models can produce a better and more stable
optimization direction.

Secondly, since the model is trained with a single task in each trajectory,
it cannot explore the weight space fully and is hard to escape from the local
minimum, resulting in the overfitting problem. We have theoretically proved
that more sampled tasks can help minimize the domain generalization error and
produce better performance in Sect. 3.3.

Aiming to better explore the weight space to obtain a more accurate opti-
mization direction and erase the impact of overfitting, we develop a simple yet
effective multi-view regularized meta-learning (MVRML) algorithm by exploit-
ing multi-view information at each iteration. Specifically, to find a robust opti-
mization direction, we obtain T temporary parameters {θ1tmp, ..., θ

T
tmp} along

different optimization trajectories. Different from MLDG, which only samples
a single task for the training stage, we train each temporary parameter with s
sampled tasks to help it escape from the local minimum. Besides, we sample
different tasks in different trajectories to encourage the diversity of temporary
models. Learning from these tasks allows to explore different information from
weight space with supplementary views. This sampling strategy plays an impor-
tant role in our method, and we will verify it in Sect. 4.3. Then we average their
weights to obtain a robust parameter: θtmp = 1

T

∑T
t=1 θt

tmp. Since these models
share a part of the optimization trajectory, ensembling their weights can help
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find parameters located in the flat minimum that generalizes better. The full
algorithm is shown in Algorithm 1 and illustrated in Fig. 2.

Algorithm 1. Multi-view Regularized Meta-Learning
Input: source data Dsrc, network parametrized by θ, hyperparameters: inner loop
learning rate α, outer loop learning rate β, the number of optimization trajectories T
and the number of sampled tasks s.
Output: the trained parameter

1: θ0 ← θ; j ← 0 // initialize parameter

2: while not converged do
3: θ0

j ← Initialized by θj

4: for t ∈ {1, ..., T} do // train temporary models

5: for i ∈ {1, ..., s} do
6: Dtr, Dte ← Random split Dsrc // Dtr ∪ Dte = Dsrc, Dtr ∩ Dte = ∅
7: Sample mini-batch Btr, Bte from Dtr, Dte

8: θi−1
j ← θi−1

j − α�θ(L(Btr|θi−1
j )) // train with meta-train data

9: θi
j ← θi−1

j − α�θ(L(Bte|θi−1
j )) // train with meta-test data

10: end for
11: θt

tmp ← θi
j // assign current temporary parameter

12: end for
13: θj+1 ← θj + β( 1

T

∑T
t=1 θt

tmp − θj) // update the original parameter

14: j ← j + 1
15: end while

Relation to Reptile. Our algorithm is similar to the batch version of Rep-
tile [37], but there are three key differences. Firstly, the goal is different. Reptile
aims to find a good weight initialization that can be fast adapted to new tasks,
while since our classification task is fixed, we are more interested in the gener-
alization problem without adaptation. Secondly, the task sampling strategy is
different. Reptile only samples a single task for each trajectory, while we sample
multiple different tasks for better generalization. Finally, the training scheme is
different. In Reptile, since its goal is to adapt to the current classification task,
it trains the model on this task iteratively. However, it is easy to overfit this
single task in DG since the performance of the training model is already good
in the source domains. Differently, we train different tasks in each trajectory to
find a more generalizable parameter and prevent the overfitting problem.

Relation to Ensemble Learning. There are two ensemble steps in our
method. First, at each iteration, we ensemble several temporary model parame-
ters to find a robust optimization direction. Second, if we change the formulation
of Eq. (1) as θi+1 = (1−β)θi +βθtmp, we can obtain an ensemble learning algo-
rithm that combines the weights of current model and temporary model. There-
fore, this training paradigm implicitly ensembles models in the weight space and
can lead to a more robust model [18].
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3.3 Theoretical Insight

Traditional meta-learning methods train the model with only one task, which
could suffer from the overfitting problem. We theoretically prove that increasing
the number of tasks can improve the generalizability in DG. We denote the
source domain as S = {D1, ...DN} and target domain as T = DN+1. A task
is defined as t = (Btr,Bte), which is obtained by sampling from S. At each
iteration, a sequence of sampled tasks along a single trajectory is defined as
T = {t0, . . . , tm} with a size of m. The training set of task sequences is defined
as T = {T0,T1, . . . ,Tn} with a size of n. A training algorithm A trained with
T or T is denoted as θ = A(T) or θ = A(T). We define the expected risk as
EP(θ) = E(xi,yi)∼P�(f(xi|θ), yi). With a little abuse of notation, we define the
loss with respect to T as:

L(T; θ) =
1
m

∑

(Btr,Bte)∈T

1
2
(L(Btr; θ) + L(Bte; θ)), (2)

and the loss with respect to T as L(T; θ) = 1
n

∑
T∈T

L(T; θ).

Theorem 1. Assume that algorithm A satisfies β1-uniform stability [5] with
respect to L(T;A(T)) and β2-uniform stability with respect to L(T;A(T)). The
following bound holds with probability at least 1 − δ:

ET (θ) ≤ ÊS(θ) +
1
2

sup
Di∈S

Div(Di, T ) + 2β1 + (4nβ1 + M)

√
ln 1

δ

2n
+ 2β2, (3)

where M is a bound of loss function � and Div is KL divergence. β1 and β2 are
functions of the number of task sequences n and the number of tasks m in each
task samples. When β1 = o(1/na), a ≥ 1/2 and β2 = o(1/mb), b ≥ 0, this bound
becomes non-trivial. Proof is in Supplementary Material.

This bound contains three terms: (1) the empirical error estimated in the
source domain; (2) the distance between the source and target domain; (3) the
confidence bound related to the number of task sequences n and the number of
tasks m in each sequence. Traditional meta-learning methods in DG train with
a large number of task sequences (i.e., n). However, the number of tasks in the
sequence is only one (i.e., m). By increasing the number of sampled tasks in each
sequence, we can obtain a lower error bound. In this case, we could expect a
better generalization ability.

3.4 Multi-view Prediction

As our model is trained in source domains, the feature representations of learned
data are well clustered. However, when unseen images come, they are more
likely to be near the decision boundary because of the overfitting and domain
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discrepancy, leading to unstable feature representations. When we apply small
perturbations to the test images, their feature representations will be pushed
across the boundary, as shown in Fig. 1.

However, current test images only present a single view (i.e., the original
image) with limited information. As a result, it cannot completely prevent the
unstable prediction caused by overfitting. Besides, we argue that different views
of a single image could bring in more information than a single view. Therefore,
instead of only using a single view to conduct the test, we propose to perform
multi-view prediction (MVP). By performing multi-view predictions, we can
integrate complementary information from these views and obtain a more robust
and reliable prediction. Assuming we have an image x to be tested, we can
generate different views of this image with some weak stochastic transformations
T(·). Then the image prediction p is obtained by:

p = softmax
( 1
m

m∑

i=1

f(T(x)|θ)
)
,

where m is the number of views for a test image. We only apply the weak
transformations (e.g., random flip) for MVP because we find that the strong
augmentations (e.g., the color jittering) make the augmented images drift off the
manifold of the original images, resulting in unsatisfactory prediction accuracy,
which will be shown in Supplementary Material.

Note that the improvement brought by MVP does not mean the learned
model has poor generalization capability on the simple transformations since
our method without MVP has superior performance compared to other methods,
and MVP can also improve other SOTA models. Besides, most predictions can
not be changed if a model is robust. We will verify these claims in Sect. 4.3.

4 Experiments

We describe the details of datasets and implementation details as follows:

Datasets. To evaluate the performance of our method, we consider three
popularly used domain generalization datasets: PACS, VLCS and OfficeHome.
PACS [23] contains 9,991 images with 7 classes and 4 domains, and there is
a large distribution discrepancy across domains. VLCS [46] consists of 10,729
images, including 5 classes and 4 domains with a small domain gap. Office-
Home [47] contains 15,500 images, covering 4 domains and 65 categories which
are significantly larger than PACS and VLCS.

Implementation Details. We choose ResNet-18 and Resnet-50 [15] pretrained
on ImageNet [9] as our backbone, the same as previous methods [10]. All images
are resized to 224×224, and the batch size is set to 64. The data augmentation
consists of random resize and crop with an interval of [0.8, 1], random horizontal
flip, and random color jittering with a ratio of 0.4. The model is trained for 30
epochs. We use SGD as our outer loop optimizer and Adam as the inner loop
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optimizer, both with a weight decay of 5 × 10−4. Their initial learning rates
are 0.05 and 0.001 for the first 24 epochs, respectively, and they are reduced
to 5 × 10−3 and 1 × 10−4 for the last 6 epochs. The β1 and β2 are 0.9 and
0.999 for Adam optimizer, respectively. The number of optimization trajectories
and sampled tasks are both 3. For multi-view prediction, we only apply weak
augmentations, i.e., the random resized crop with an interval of [0.8, 1] and
random horizontal flip. The augmentation number t is set to 32. If not specially
mentioned, we adopt this implementation as default.

We adopt the leave-one-out [23] experimental protocol that leaves one domain
as an unseen domain and other domains as source domains. We conduct all
experiments three times and average the results. Following the way in [23], we
select the best model on the validation set of source domains. DeepAll indicates
that the model is trained without any other domain generalization modules.

Table 1. Domain generalization accuracy (%) on PACS dataset with ResNet-18 (left)
and ResNet-50 (right) backbone. The best performance is marked as bold.

Method A C P S Avg.

DeepAll 78.40 75.76 96.49 66.21 79.21

MLDG [24] 79.50 77.30 94.30 71.50 80.70

MASF [10] 80.29 77.17 94.99 71.69 81.04

MetaReg [2] 83.70 77.20 95.50 70.30 81.70

VDN [50] 82.60 78.50 94.00 82.70 84.50

FACT [51] 85.37 78.38 95.15 79.15 84.51

RSC [17] 83.43 80.31 95.99 80.85 85.15

FSDCL [19] 85.30 81.31 95.63 81.19 85.86

MVDG (Ours) 85.62 79.98 95.54 85.08 86.56

Method A C P S Avg.

DeepAll 86.72 76.25 98.22 76.31 84.37

MASF [10] 82.89 80.49 95.01 72.29 82.67

MetaReg [2] 82.57 79.20 97.60 70.30 83.58

MatchDG [31] 85.61 82.12 78.76 97.94 86.11

DSON [42] 87.04 80.62 95.99 82.90 86.64

RSC [17] 87.89 82.16 97.92 83.35 87.83

FSDCL [19] 88.48 83.83 96.59 82.92 87.96

SWAD [7] 89.30 83.40 97.30 82.50 88.10

MVDG (Ours) 89.31 84.22 97.43 86.36 89.33

4.1 Comparison with State-of-the-Art Methods

We evaluate our method (namely MVDG) to different kinds of recent state-of-
the-art DG methods on several benchmarks to demonstrate its effectiveness.

Table 2. Domain generalization accuracy (%) on VLCS and OfficeHome datasets. The
best performance is marked as bold.

Method C L P S Avg.

DeepAll 96.98 62.00 73.83 68.66 75.37

JiGen [6] 96.17 62.06 70.93 71.40 75.14

MMLD [32] 97.01 62.20 73.01 72.49 76.18

RSC [17] 96.21 62.51 73.81 72.10 76.16

MVDG (Ours) 98.40 63.79 75.26 71.05 77.13

Method A C P R Avg.

DeepAll 58.65 50.35 73.74 75.67 64.60

RSC [17] 58.42 47.90 71.63 74.54 63.12

DAEL [58] 59.40 55.10 74.00 75.70 66.10

FSDCL [19] 60.24 53.54 74.36 76.66 66.20

FACT [51] 60.34 54.85 74.48 76.55 66.56

MVDG (Ours) 60.25 54.32 75.11 77.52 66.80
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PACS. We perform evaluation on PACS with ResNet-18 and ResNet-50 as
our backbone. We compare with several meta-learning based methods (i.e.,
MLDG [24], MASF [10], MetaReg [2]), augmentation based methods (i.e.,
FACT [51], FSDCL [19]), ensemble learning based methods (i.e., SWAD [7]),
domain-invariant feature learning (i.e., VDN [50]) and causal reasoning (i.e.,
MatchDG [31]). As shown in Table 1, our method can surpass traditional meta-
learning methods in a large margin by 4.86% (86.56% vs. 81.70%) on ResNet-18
and 6.66% (89.33% vs. 82.67%) on ResNet-50. Besides, our method also achieves
SOTA performance compared to recent other methods. Note that the improve-
ment of our method on the hardest “sketch” domain is significant compared
to the DeepAll (i.e., 85.08% vs. 66.21%), owing to its better regularization and
robustness.

VLCS. To verify the trained model can also generalize to unseen domains with
a small domain gap, we conduct an experiment on VLCS. As seen in Table 2, our
method outperforms several SOTA methods and achieves the best performance
on three domains (CALTECH, LABELME, and PASCAL), demonstrating that
our method can also perform well in this case.

OfficeHome. We compare our method with SOTA methods on OfficeHome to
prove the adaptation of our method to the dataset with a large number of classes.
The result is reported in Table 2. Our method is able to achieve comparable
performance to current SOTA methods.

4.2 Ablation Study

To further investigate our method, we conduct an ablation study on MVDG: i.e.,
1) Reptile version of MLDG, 2) multi-view regularized meta-learning (MVRML),
3) multi-view prediction (MVP).

Table 3. The accuracy (%) of the ablation study on PACS dataset on each component:
DeepAll, Reptile, and multi-view regularized meta-learning (MVRML), multi-view pre-
diction (MVP).

Method A C P S Avg.

Resnet-18 78.40 75.76 96.49 66.21 79.21±0.49

+MVRML 85.20 79.97 95.29 83.11 85.89±0.27

+MVRML+MVP 85.62 79.98 95.54 85.08 86.56±0.18

+Reptile 80.49 76.23 94.91 77.65 82.34±0.71

Method A C P S Avg.

Resnet-50 86.72 76.25 98.22 76.31 84.37±0.42

+MVRML 89.02 84.47 97.09 85.24 88.95±0.06

+MVRML+MVP 89.31 84.22 97.43 86.36 89.33±0.18

+Reptile 85.48 78.58 97.07 77.31 84.61±0.15

Reptile. As seen in Table 3, the performance of Reptile can achieve satisfactory
performance compared to DeepAll. Note that, although its performance in the
“sketch” domain improves a lot (i.e., 77.65% vs. 66.21%), the performance in
the “photo” domain decreases. We hypothesize that the feature spaces learned
by meta-learning and DeepAll are different. Since ResNet-18 is pretrained on
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ImageNet (photo-like dataset), it shows high performance in the “photo” domain
at the beginning. When the training procedure continues, the model is hard to
move far away from its initial weight space. Thus its performance is promising in
the “photo” domain. However, when trained with meta-learning, it can obtain
a good performance by the episodic training scheme but with a little sacrifice of
its original performance in the “photo” domain.

Multi-view Regularized Meta-Learning. When we apply multi-view reg-
ularized meta-learning (MVRML), the performance is improved a lot on the
baseline in Table 3, which shows its efficacy in dealing with the overfitting issue.
We observe that the “photo” domain also decreases a little. It may be caused by
the better weight space produced by the meta-learning algorithm, which is far
away from the initial weight space (i.e., the initial model trained by ImageNet).

Multi-view Prediction. We employ multi-view prediction (MVP) to enhance
model reliability. As shown in Table 3, the performance improves on both base-
lines. We notice that there is a large improvement in the “sketch” domain because
the “sketch” domain has only the outline of the object, and thus it is more sen-
sitive to small perturbations. With MVP, the model’s prediction can be more
reliable and accurate.

4.3 Further Analysis

We further analyze the properties of our method with ResNet-18 as backbone.
More experiments could be found in Supplementary Material.

Local Sharpness Comparison. As mentioned in Sect. 3.2, our method can
achieve better performance because it can find a flat minimum. To verify it, we
plot local flatness via the loss gap between the original parameter and perturbed
parameter, i.e., Eθ′=θ+ε[L(θ,D) − L(θ′,D)] [7], where ε is perturbation sampled
from gaussian distribution with a radius of γ. We conduct an experiment on
the target domain of PACS, and the results are shown in Fig. 4. With a larger
radius, the sharpness of the three methods all increases. However, MVRML can
find a better flat minimum where the loss increases the most slowly compared
to the other methods, achieving better generalization performance.

Fig. 4. Local sharpness comparison between ERM, Reptile, and MVRML on target
domain of PACS. X-axis indicates the distance γ to the original parameter, and Y-axis
indicates the sharpness of the loss surface (the lower, the flatter).
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Table 4. The comparison of different task sampling strategies for MVRML on PACS
dataset.

Strategies A C P S Avg.

S1 82.81 76.85 94.65 82.78 84.27

S2 84.11 78.48 93.75 82.95 84.82

S3 (Ours) 85.20 79.97 95.29 83.11 85.89

Influence of Task Sampling Strategies. As mentioned in Sect. 3.2, task sam-
pling strategy is crucial for performance improvement in MVRML. We compare
different sampling strategies at each iteration: each trajectory samples 1) from
the same domain, denoted as S1; 2) from all domains, denoted as S2; 3) from
random split meta-train and meta-test domains, denoted as S3. As shown in
Table 4, with a better sampling strategy, the generalizability of the trained model
increases. We hypothesize that it is owing to the batch normalization layer that
normalizes data with statistics calculated on a batch. When only sampling from
a single domain, the diversity of BN statistics is limited to three domains. If
we sample batches from different domains, although the diversity of BN statis-
tics increases a little, the statistics in a batch tend to be the same on average.
Finally, if we sample tasks from meta-train and meta-test splits, we can ensure
that the diversity of statistics changes drastically, encouraging temporary models
to explore diverse trajectories and produce a more robust optimization direction.

Impact of the Number of Tasks and Trajectories. For MVRML, we sample
a sequence of tasks on multiple trajectories to train the model. Both the number
of tasks and trajectories can affect the generalization performance. Therefore,
we train our model with a different number of tasks and trajectories. When we
experiment with one factor, we set the other to 3. The result can be shown in
Fig. 5a and Fig. 5b. With the increasing number of tasks, the performance first
improves, as our theory suggests that more tasks can benefit the generalizabil-
ity. However, the performance plateaus afterward. We suspect that the first few
tasks are critical for the optimization procedure of temporary models since it
decides the direction to optimize. With more tasks to be learned, the optimiza-
tion direction does not change too much. Thus, more tasks could not largely
improve performance. There is a similar trend in the number of trajectories.
Because three trajectories are good enough to provide a robust optimization
direction, more trajectories also could not help too much. To reduce the compu-
tational cost, we choose three trajectories in our experiments.

Influence of the Number of Augmented Images in MVP. When applying
multi-view prediction (MVP), we need to augment the test images into different
views and ensemble their results. Therefore, the number of augmented images has
an influence on the result. We apply MVP to both DeepAll and our model with
a different number of augmented images. As shown in Fig. 5c, the performance
improves when more augmented images are generated, which results from the
increasing diversity of the test images. When the number is large enough (e.g.,
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64), the diversity created by the weak augmentation cannot increase anymore,
and the performance plateaus.

Fig. 5. The impact of the number of tasks (a) and trajectories (b) in MVRML. The
number of augmented images (c) in MVP.

Table 5. The left table shows accuracy and prediction change rate (PCR) of different
methods on PACS dataset with ResNet-18. The weak augmentation is denoted as WA.
The right table shows the accuracy (%) of applying MVP to other SOTA methods on
PACS dataset.

Method A C P S Avg.

A
c
c
(%

) DeepAll (w/o WA) 77.90 70.60 96.41 66.03 77.73

DeepAll 78.40 75.76 96.49 66.21 79.21

MVRML 85.20 79.97 95.29 83.11 85.89

P
C
R
(%

)

DeepAll (w/o WA) 43.0 42.7 9.9 63.6 39.8

DeepAll 36.5 37.6 8.1 49.3 32.9

MVRML 27.7 28.4 8.7 25.4 22.6

Method A C P S Avg.

MixStyle [59] 80.43 77.55 97.11 76.15 82.81

MixStyle+MVP 83.05 78.45 97.50 78.99 84.49

RSC [17] 84.67 76.75 95.81 82.59 84.96

RSC+MVP 84.91 76.83 96.41 83.81 85.49

FSR [49] 84.57 80.76 96.11 82.16 85.90

FSR+MVP 85.60 81.40 96.59 83.48 86.76

Unstable Prediction. In the previous sections, we argue that if the model
overfits the source domains, it is easy to produce unstable predictions by per-
turbing the test images slightly (random resized crop and flip). By contrast, a
robust model can reduce this effect and perform well. To verify it, we test sev-
eral models in the unseen domain: DeepAll without weak augmentations (i.e.,
color jittering, random crop, and flip), DeepAll, and the model trained with
MVRML. We introduce prediction change rate (PCR), calculated by the ratio
of the number of predictions changed after applying the augmentations and the
number of total predictions. We compare the test accuracy and PCR in Table 5.
The larger this measure, the more unstable the model in the unseen domains. As
seen, DeepAll without augmentation produces the highest PCR and lowest Acc
because this model overfits source domains. Meanwhile, with data augmentation
and a better training strategy, the performance of the model largely improves,
and PCR decreases drastically.
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MVP on SOTA Methods. MVP is a plug-and-play method that can be easily
adapted to other methods. To validate its adaptation ability, we integrate it into
three SOTA methods, i.e., Mixstyle [59], RSC [17] and FSR [49]. For RSC and
FSR, we directly use their pre-trained model. For MixStyle, we implement it by
ourselves. The result is shown in Table 5. MVP can improve all of these trained
models, which suggests its effectiveness in DG.

5 Conclusion

In this paper, to resist overfitting, with the observation that the performance
in DG models can be benefited by task-based augmentation in training and
sample-based augmentation in testing, we propose a novel multi-view frame-
work to boost generalization ability and reduce unstable prediction caused by
overfitting. Specifically, during training, we designed a multi-view regularized
meta-learning algorithm. During testing, we introduced multi-view prediction to
generate different views of a single image for the ensemble to stabilize its predic-
tion. We provide theoretical proof that increasing the number of tasks can boost
generalizability, and we also empirically verified that our method can help find
a flat minimum that generalizes better. By conducting extensive experiments on
three DG benchmark datasets, we validated the effectiveness of our method.
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