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Abstract. Contrastive learning has proven effective for pre-training
image models on unlabeled data with promising results for tasks such as
medical image classification. Using paired text (like radiological reports)
during pre-training improves the results even further. Still, most exist-
ing methods target image classification downstream tasks and may not
be optimal for localized tasks like semantic segmentation or object
detection. We therefore propose Localized representation learning from
V ision and Text (LoVT), a text-supervised pre-training method that
explicitly targets localized medical imaging tasks. Our method combines
instance-level image-report contrastive learning with local contrastive
learning on image region and report sentence representations. We eval-
uate LoVT and commonly used pre-training methods on an evaluation
framework of 18 localized tasks on chest X-rays from five public datasets.
LoVT performs best on 10 of the 18 studied tasks making it the preferred
method of choice for localized tasks.

Keywords: Representation learning · Contrastive learning · Text
supervision

1 Introduction and Motivation

In medical applications of computer vision, high-quality annotated data is scarce
and expensive to acquire, as it typically requires trained physicians to manu-
ally label samples [37]. Therefore, the requirement for large labeled datasets can
become quite problematic and may limit the applications of deep learning in this
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field. One approach to overcome this problem is to utilize radiological reports
that are paired with medical images. Such reports are produced routinely in
clinical practice and are typically written by medical experts (e.g. radiologists).
They thus provide a valuable source of semantic information that is available
with little additional cost. Rule-based Natural Language Processing (NLP) mod-
els like CheXpert [19] extract labels from these reports allowing the automatic
creation of large datasets but they also have some significant limitations. Most
importantly, such approaches are typically limited to classification tasks. They
generate overall labels for reports (and therefore the paired images) but relating
these labels to specific image regions is nontrivial so they cannot be used for
localized tasks like semantic segmentation or object detection. Also, rule-based
NLP models have to be manually created and cannot generalize to different clas-
sification tasks or even different report writing styles [19]. Instead of using these
reports to generate classification labels, the reports can be utilized directly in the
pre-training method, as was first proposed in the ConVIRT method [51]. Here,
the semantic information contained in the reports is used as weak supervision to
pre-train image models that are then fine-tuned on labeled downstream tasks,
where results can be improved or the number of labeled samples can be reduced.
We argue that while this approach is quite promising it is not designed for local-
ized downstream tasks. For example, ConVIRT [51] only works on per-sample
image representations and does not explicitly provide more localized represen-
tations that might be beneficial for localized tasks like semantic segmentation
and object detection. In this work, we therefore propose Localized representation
learning from V ision and Text (LoVT), a pre-training method that utilizes the
structure of radiological reports (where each sentence typically describes a single
property of the image) to pre-train image models for localized tasks. It extends
ConVIRT [51] and outperforms it on most localized downstream tasks.

Our contributions are as follows:

– We split each report into sentences and each image into regions (i.e. patches),
jointly encode all sentences of the report to get representations per sentence
and jointly encode all patches to get region representations.

– We align sentence and region representations using an attention mechanism
and local contrastive learning.

– We show that this can be effectively achieved using our novel local contrastive
loss that encourages spatial smoothness and sensitivity.

– We evaluate our method trained using MIMIC-CXR [13,22–24] on a down-
stream evaluation framework [30] with 18 localized tasks on chest X-rays,
including object detection and semantic segmentation on five public datasets.
We compare it with several self- and text-supervised methods and with trans-
fer from classification in more than 1400 evaluation runs. Our method LoVT
proves as the most successful method outperforming all other methods on 10
out of 18 tasks.
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2 Related Work

In recent years, contrastive learning [2–4,6,7,11,14,15,17,18,25,29,31,47,50],
has become the state-of-the-art approach for self-supervised representation learn-
ing on images. It has been successfully applied as pre-training method in medical
imaging including downstream tasks such as image classification on chest X-rays
[12,41,42].

Most contrastive learning approaches use, unlike our method, only instance-
level contrast, i.e. represent each view of the image by a single vector. While
the resulting representations are well-suited for global downstream tasks, they
are not designed for localized downstream tasks. Therefore, there is a number of
recent approaches that use region-level contrast [5,28,32,46,48,49], i.e. they act
on representations of image regions. Unlike our method, these methods do not
utilize paired text.

Recently however, there is much focus on self-supervised representation learn-
ing methods that pre-train image models for downstream tasks by taking advan-
tage of the companion text [8,21,27,33,38,51]. VirTex [8] and ICMLM [38] use
image captioning tasks (generative tasks). ConVIRT [51], CLIP [33] and ALIGN
[21] on the other hand use multiview contrastive learning [1]. These approaches
have been found to be more effective for discriminative downstream tasks [33].
ConVIRT, CLIP, and ALIGN all follow the same general framework where an
image and a text encoder are trained jointly using the NT-Xent loss (which is
also used in SimCLR) on image and text views. The text views are based on
single sentences from companion text, in the case of ConVIRT it is a sentence
sampled from the radiology report. The main difference between these methods
is the datasets they are studied on, ConVIRT is trained on chest X-rays while
the other methods use natural images. Additionally, CLIP uses attention pooling
to compute image representations from feature maps while the other methods
use the default pooling method from the image encoder (average pooling in the
case of ResNet50 [16]). Our method follows a similar framework but adds local
contrastive losses for better performance on localized tasks. Also, it encodes the
whole report instead of sampling a single sentence and uses attention pooling in
the image and text encoders. LocTex [27] does localized pre-training on natural
images with companion text and predicts alignment of text and image regions.
Unlike our method, it uses supervision generated by mouse gazes instead of
learning the alignment implicitly using a local contrastive loss. Most related to
our work is the recently published local Mutual Information approach [26] that
performs contrastive learning on report sentences and image regions but tar-
gets classification instead of localized tasks and does therefore neither encourage
contrast between regions nor spatial smoothness.
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3 Method

3.1 Assumptions and Intuition

As shown in Fig. 1, a radiology report is typically split into several sections,
including a Findings section, describing related radiological images, and an
Assessment section, interpreting the findings. As these sections describe medi-
cal aspects observed (Findings) in one or more related images and conclusions
(Assessment) drawn from it, they provide supervision for identifying relevant
patterns in the images and interpretations of these patterns. Both sections can
be split into sentences and each of these sentences typically describes one or a
few aspects of which we assume that most are related to one or a few very local-
ized regions in a paired image. We randomly sample one of the images related
to a given report and split it into 7 × 7 equally-sized regions. More precisely, we
augment and resize the image to a size of 224 × 224, feed it into a convolutional
neural network, and use the output feature map of size 7×7 as region representa-
tions. A language model encodes the tokens of the report as contextualized (i.e.
considering their meaning in the whole report) vector representations from which
we compute sentence representations. A many-to-many alignment model is then
used to compute cross-modal representations from uni-modal representations,
i.e. image region representations from sentence representations and vice-versa.
We argue that by aligning cross-modal and uni-modal representations, the image
region representations are encouraged to contain the high-level semantics present
in the report.

EXAMINATION: CHEST (PA and LAT)

INDICATION: year old woman with ?pleural effusion

FINDINGS:
Cardiac size cannot be evaluated.
Large left pleural effusion is new.
Small right effusion is new.
The upper lungs are clear.
Right lower lobe opacities are better seen in prior
CT.
There is no pneumothorax.
There are mild degenerative changes in the tho-
racic spine.

IMPRESSION:
Large left pleural effusion.

Fig. 1. Example radiology report describing chest X-Rays. Taken from the MIMIC-
CXR [13,23,24] dataset.

3.2 Model Overview

Figure 2 shows the general architecture of our proposed LoVT model. Each train-
ing sample xi is a pair of an image xI

i ∈ R
224×224 and the related report xR

i
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consisting of Mi sentences. Both, xI
i and xR

i , are encoded independently into two
global representations, for image and report respectively, and multiple local rep-
resentations per sample, corresponding to image regions and report sentences,
respectively. An attention-based alignment model then computes cross-modal
representations (i.e. sentence representations from image regions and vice-versa)
which are aligned with the local uni-modal representations using local con-
trastive losses. Additionally, the global representations are aligned using a global
contrastive loss. The encoders and the alignment model are trained jointly on
batches of image-report pairs xi. The details of the model and the loss function
will be described in the following sections.

Large left pleural effusion is new.

Small right effusion is new.

There are mild degenerative ...

There is no pneumothorax.

Att
Pool

Att
Pool

Fig. 2. Architecture of LoVT. Given an image xI
i and the related report xR

i , the
encoders EI and ER compute image region and report sentence representations, respec-
tively, which are projected using fI and fR. The alignment models AR→I and AI→R

compute cross-modal report-to-image (zR→I
i,k ) and image-to-report (zI→R

i,m ) represen-
tations which are aligned with the uni-modal representations (zI

i,k and zR
i,m) using

the local losses Llocal-image and Llocal-report, respectively. Global image (ȳI
i ) and report

(ȳR
i ) representations are computed using attention pooling on the local representa-

tions, are then projected using f̄I and f̄R and aligned using the global loss Lglobal.

3.3 Encoding

Each image xI
i is encoded into K = H × W (we use K = 7 × 7) region repre-

sentations yI
i,k ∈ R

dI
using the image encoder EI , where k is the index of the

image region, and dI is the dimension of the image region representation space.
Our approach is encoder agnostic, i.e. any model encoding image regions into
vector representations can be used for EI . We use a ResNet50 [16] and take the
feature map before global average pooling as region representations. Similarly,
each report xR

i is encoded into Mi sentence representations yR
i,m ∈ R

dR
using

the report encoder ER. Here Mi is the number of sentences of report sample i,
m is the index of the sentence, and dR is the dimension of the report sentence
representation space. Note that while K is constant, Mi may be different for
each sample. Any model encoding sentences into vector representations can be
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used for ER. We use BERT base [10] to jointly encode the tokens of the con-
catenated sentences of each report and then perform max pooling over the token
representations of each sentence to get sentence representations.

The global (i.e. per-sample) representations ȳI
i and ȳR

i are each computed
by an attention pooling layer (not shared between modalities) on the region and
sentence representations, respectively. It is implemented using multi-head query-
key-value attention [44] where the query is computed from the globally averaged
region or sentence representations. This pooling approach was first proposed for
the image encoder of CLIP [33].

Following previous works [6,14,51], we compute projected local representa-
tions zI

i,k ∈ R
dZ

and zR
i,m ∈ R

dZ
, and projected global representations z̄I

i ∈ R
d̄Z

and z̄R
i ∈ R

d̄Z
from the representations yI

i,k, yR
i,m, ȳI

i , and ȳR
i , using the (non-

shared) nonlinear transformations fI , fR, f̄I , and f̄R, respectively, where dZ

is the dimension of the shared local and d̄Z of the shared global representation
space (we use 512 for both). Note that for local representations the projections
are applied to each region k or sentence m independently.

3.4 Alignment Model

Following our assumptions (see Sect. 3.1), we compute an alignment of image
regions and sentences and compute cross-modal representations using the align-
ment models AI→R and AR→I , which are based on single-head query-key-value
attention [44].

For each sentence m the cross-modal representation zI→R
i,m is computed by

letting zR
i,m attend to all image region representations zI

i,k (of the related image).
We therefore compute the probability αI→R

i,m,k that sentence m is aligned with
region k based on the scaled dot product scores of their projected representations,

i.e. αI→R
i,m,k = softmaxk

(
(QzR

i,m)T (QzI
i,k)√

dZ

)
, where the linear query-key projection

Q is a learned matrix. Then the alignment model AI→R uses αI→R
i,m,k to compute

zI→R
i,m as projected weighted sum of the image region representations zI

i,k:

zI→R
i,m = O

(
K∑

k=1

αI→R
i,m,k

(
V zI

i,k

))
, (1)

where the value projection V , and the output projection O are learned matrices.
In a similar fashion the cross-modal representations zR→I

i,k are computed by
AR→I :

zR→I
i,k = O

(
Mi∑

m=1

αR→I
i,k,m

(
V zR

i,m

))
, (2)

with αR→I
i,k,m = softmaxm

(
(QzI

i,k)
T (QzR

i,m)√
dZ

)
. Note that as AR→I and AI→R share

the same matrices Q, V , and O, the only difference between αR→I
i,k,m and αI→R

i,m,k

is transposition and the index over which softmax is applied.
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3.5 Loss Function

Global Alignment. For global alignment we follow ConVIRT [51] and maximize
the cosine similarity between paired image and report representations while min-
imizing the similarity between non-paired (i.e. from different samples) represen-
tations. The loss consists of a image-report part, where all non-paired report
representations from the batch are used as negatives:

�
I‖R
global = − log

ecos(z̄
I
i ,z̄R

i )/τ

∑
j ecos(z̄

I
i ,z̄R

j )/τ
, (3)

and a report-image part, defined analogously:

�
R‖I
global = − log

ecos(z̄
R
i ,z̄I

i )/τ

∑
j ecos(z̄

R
i ,z̄I

j )/τ
, (4)

where τ is the similarity temperature (we use 0.1) and all logarithms are natural.
Both parts are combined using the hyperparameter λ ∈ [0, 1] (we use 0.75):

Lglobal =
1
N

N∑
i=1

[
λ · �

I‖R
global + (1 − λ) · �

R‖I
global

]
. (5)

Local Alignment. The global alignment loss does not only align the global rep-
resentations but it also prevents the global representations from collapsing to
a constant vector using negative samples to contrast the positive pairs. Simi-
larly, we propose local alignment losses encouraging spatial (sentence) sensitivity
through negatives from the same sample, i.e. preventing the local representations
to be similar for all regions (sentences) of an image (report). We use two NT-
Xent-based [6] local losses: Llocal-image, aligning region representations zI

i,k with
zR→I

i,k , and Llocal-report, aligning sentence representations zR
i,m with zI→R

i,m .
Some regions or sentences may not be relevant for aligning a sample (e.g.

background regions or sentences not related to the image). Therefore, we intro-
duce region weights wI

i,k and sentence weights wR
i,m, which are computed as

the attention probabilities from the respective attention pooling layer (which
was used to compute global representations), averaged over all attention heads.
These weights are used in the local loss functions such that irrelevant represen-
tations do not have to be aligned. Note that we do not backpropagate through
the region or sentence weights.

The loss Llocal-image allows for having multiple positive pairs within each
sample by giving each pair of regions (k, l) a positiveness probability pI

k,l ∈ [0, 1].
We then treat each positive pair as its own (weighted) example and contrast it
with all other pairs (again all logarithms are natural):

�
I‖R→I
local-image = −

K∑
l=1

pI
k,l log

ecos(z
I
i,k,zR→I

i,l )/τ ′

∑
k′ e

cos
(
zI
i,k,zR→I

i,k′
)

/τ ′
(6)
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�
R→I‖I
local-image = −

K∑
l=1

pI
k,l log

ecos(z
R→I
i,k ,zI

i,l)/τ ′

∑
k′ e

cos
(
zR→I
i,k ,zI

i,k′
)

/τ ′
(7)

Llocal-image =
1

2N

N∑
i=1

K∑
k=1

wI
i,k ·

[
�
I‖R→I
local-image + �

R→I‖I
local-image

]
. (8)

Here τ ′ is the similarity temperature and is set to 0.3. We assume that nearby
image regions are often similar and that therefore nearby regions are more likely
to be positives while distant regions are more likely to be negatives. Thus, we
define the positiveness probability pI

k,l of two image regions as the complemen-
tary cumulative exponential distribution of dx (their spatial �2-distance in 2D
space normalized by the length of the diagonal

√
H2 + W 2) and set pI

k,l to zero
above cutoff threshold T ∈ [0,∞):

pI
k,l =

1[dx (k,l)≤T ] · e−dx (k,l)/β∑
k′ 1[dx (k,k′)≤T ] · e−dx (k,k′)/β

. (9)

Here β ∈ (0,∞) is a sharpness hyperparameter. We set β = 1 and T = 0.5. Note
that the normalization of dx is equal to rescaling T and β, i.e. it allows us to
define both hyperparameters independently of the image size.

The definition of pI
k,l is derived by modeling the occurrence of related fea-

tures at specific distances in the image as a Poisson point process, such that the
�2-distance of related features follows the exponential distribution. We assume
a Poisson process due to its property of being memoryless, i.e. knowing that a
feature is already related to another feature at some distance does not change
how distant additional related features can be found. Also, the probability den-
sity function of the exponential distribution is decreasing (with support on the
interval [0,∞)), which seems reasonable as it is typically more likely that related
features are near than far. Its cumulative distribution function then describes the
probability that two related features are within a given radius and its comple-
mentary function that of being outside a given radius. The threshold T assures
that very distant pairs do not count as positives. The loss Llocal-image thus encour-
ages spatial smoothness of image regions while maintaining spatial sensitivity
through negative samples. Note that it is related to the pixel-contrast loss pro-
posed in [49], where the main novelty of our work is the partly smooth definition
of pI

k,l based on the exponential distribution.
The local report loss Llocal-report is defined similarly but we do not assume

prior knowledge about the similarity of sentences and therefore only have a single
positive pair per sentence (again all logarithms are natural):

�
R‖I→R
local-report = − log

ecos(z
R
i,m,zI→R

i,m )/τ ′

∑
m′ e

cos
(
zR
i,m,zI→R

i,m′
)

/τ ′
(10)

�
I→R‖R
local-report = − log

ecos(z
I→R
i,m ,zR

i,m)/τ ′

∑
m′ e

cos
(
zI→R
i,m ,zR

i,m′
)

/τ ′
(11)
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Llocal-report =
1

2N

N∑
i=1

Mi∑
m=1

wR
i,m ·

[
�
R‖I→R
local-report + �

I→R‖R
local-report

]
(12)

Total Loss. The total loss L is computed as the weighted sum of global and local
losses:

L = γ · Lglobal + μ · Llocal-image + ν · Llocal-report , (13)

where γ, μ, and ν are loss weights to balance the individual losses and are set
to 1.0, 0.75, and 0.75, respectively. We determined these loss weights by running
small grid searches (see supplementary material for details).

4 Evaluation

4.1 Downstream Tasks and Experimental Setup

We evaluate our method on a downstream evaluation framework [30] with 18
localized tasks on chest X-rays, which we will shortly describe here. For more
details, we refer to the supplementary material.

Evaluation Protocols. We only evaluate the pre-trained ResNet50 (from the
image encoder). For semantic segmentation tasks we use the following evaluation
protocols: (i) U-Net Finetune, where the ResNet50 is used as the backbone of
a U-Net [35] and is finetuned jointly with all other layers, (ii) U-Net Frozen,
where the ResNet50 is used as the frozen backbone of a U-Net [35] and only the
non-backbone layers are trained, and (iii) Linear, where an element-wise linear
layer is trained that is applied to the feature map of the frozen ResNet50, and
then results are upsampled to the segmentation resolution.

For object detection tasks we use the following protocols: (i) YOLOv3 Fine-
tune, where the ResNet50 is used as the backbone of a YOLOv3 [34] model
and is finetuned jointly with all other layers, (ii) YOLOv3 Frozen, where the
ResNet50 is used as the frozen backbone of a YOLOv3 [34] model and only
the non-backbone layers are trained, and (iii) Linear, where the object detec-
tion ground truth is converted to segmentation masks and the Linear evaluation
protocol is applied.

Downstream Datasets. We evaluate the pre-trained ResNet50 on several medical
datasets, namely (i) RSNA Pneumonia Detection [39,45], with more than
260000 frontal-view chest X-rays with detection targets for pneumonia opacities.
We use the YOLOv3 Finetune, YOLOv3 Frozen, and Linear protocols, each with
1%, 10%, and 100% of the training samples; (ii) COVID Rural [9,43], with
more than 200 frontal-view chest X-rays with segmentation masks for COVID-19
lung opacity regions. We use the UNet Finetune, UNet Frozen, and Linear pro-
tocols; (iii) SIIM-ACR Pneumothorax Segmentation [40], with more than
12000 frontal-view chest X-rays with segmentation masks for pneumothorax. We
use the UNet Finetune, UNet Frozen protocols, but due not use Linear due to
the fine-grained nature of the segmentation masks; (iv) Object CXR [20] with
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9000 frontal-view chest X-rays with detection targets for foreign objects. We
use the YOLOv3 Finetune, YOLOv3 Frozen, and Linear protocols; (v) NIH
CXR [45], with almost 1000 frontal-view chest X-rays with detection targets for
eight pathologies (Atelectasis, Cardiomegaly, Effusion, Infiltrate, Mass, Nodule,
Pneumonia, and Pneumothorax). Due to the limited data per class, we only use
the Linear protocol. The different evaluation protocols are complementary to
each other, where the U-Net Finetune and YOLOv3 Finetune protocols evalu-
ate how well suited the pre-trained image models are for fine-tuning as used in
practical applications and the Linear protocols evaluate the quality of learned
local representations (i.e. feature maps) while adding only a few parameters and
therefore mostly omitting the variance introduced by random initialization dur-
ing downstream evaluation. The U-Net Frozen and YOLOv3 Frozen protocols
are a trade-off, where representations are frozen but evaluated in a more practical
setting (with several randomly initialized layers).

Tuning and Evaluation Procedure. All baselines and our models have been tuned
only on a single downstream task, RSNA YOLOv3 Frozen 10%, where a single
fixed downstream learning rate was used (determined in preliminary experi-
ments) and the results of five runs have been averaged. Other downstream tasks
have not been evaluated during tuning to make sure that models are not biased
towards the downstream tasks. After tuning, we evaluated each model on all
downstream tasks: The learning rates were tuned individually per model and
task (using single evaluation runs) before running five evaluations per task (all
using the tuned learning rate). We report the average results of these five runs
and their 95%-confidence interval (where each evaluation run is considered a
sample).

Pre-Training Dataset. We train our method on MIMIC-CXR [13,22–24] (version
2) as, to our best knowledge, it is the largest and most commonly used dataset
of this kind. Since all downstream tasks contain only frontal views, we remove
all lateral views, such that roughly 21000 training samples remain, each with a
report and one or more frontal images.
Baselines. We compare our method against several baseline methods:

– Random Init.: The ResNet50 is initialized using its default random initial-
ization

– ImageNet [36] Init.: The ResNet50 is initialized with weights pre-trained
on the ImageNet ILSVRC-2012 task [36];

– CheXpert [19]: The ResNet50 is pre-trained using supervised multi-label
binary classification with CheXpert [19] labels on frontal chest X-rays of
MIMIC-CXR

– Global image pre-training methods: The ResNet50 is pre-trained using
the self-supervised pre-training methods SimCLR [6] or BYOL [14] on frontal
chest X-rays of MIMIC-CXR. We decided to include SimCLR as is uses a
similar loss function as LoVT and we include BYOL because of its widespread
use.

– Local image pre-training methods: The ResNet50 is pre-trained using
the self-supervised pre-training method PixelPro [49] on frontal chest X-rays
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Table 1. Results on the RSNA pneumonia detection tasks with different training set
sizes. All results are averaged over five evaluation runs and the 95%-confidence interval
is shown. The best results per task are underlined, the second-best results are dash-
underlined and the best results per pre-training category (general initialization, pre-
training on 30% and 100%) are highlighted in bold. Note that the YOLOv3 Frozen 10%
task (task 5) was used for tuning of all methods and may therefore not be representative
as methods may overfit on this task.

RSNA YOLOv3 Finetune RSNA YOLOv3 Frozen RSNA Lin. Seg.

mAP (%) mAP (%) Dice (%)

1% 10% 100% 1% 10% 100% 1% 10% 100%

General initialization methods

Random 2.4± 0.5 5.1± 1.2 14.9± 1.7 1.0± 0.2 4.0± 0.3 8.9± 0.9 21.9± 1.2 5.3± 0.0 5.3± 0.0

ImageNet [36] 5.0± 0.7 12.4± 0.8 19.0± 0.2 3.6± 1.4 8.0± 0.1 15.7± 0.3 27.5± 0.6 38.3± 0.0 43.3± 0.0

Pre-Training on 30 % of frontal MIMIC-CXR

CheXpert [19] 8.3± 0.8 12.4± 1.6 21.3± 0.3 7.0± 1.0 14.8± 0.8 18.8± 0.4 38.9± 0.2 45.5± 0.2 48.1± 0.0

BYOL [14] 7.0± 1.0 11.9± 1.1 18.8± 0.2 9.6± 0.2 14.0± 1.2 21.0± 0.2 42.9± 0.1 47.8± 0.2 50.0± 0.0

SimCLR [6] 6.7± 0.5 12.9± 0.5 20.4± 1.8 7.9± 1.0 11.9± 0.1 19.9± 0.2 43.1± 0.0 46.0± 0.0 48.2± 0.0

PixelPro [49] 4.8± 0.6 12.6± 1.2 19.8± 0.4 3.1± 0.2 6.4± 0.5 13.4± 0.3 25.9± 0.2 34.6± 0.0 39.8± 0.1

ConVIRT [51] 7.4± 1.3 12.7± 1.5 18.3± 0.4 9.8± 0.3 14.8± 1.1 18.4± 1.1 42.1± 0.1 47.1± 0.2 50.2± 0.0

CLIP [33]* 7.2± 0.8 12.8± 1.2 19.7± 0.5 9.3± 0.4 16.1± 1.1 19.6± 1.4 44.3± 0.1 48.8± 0.1 50.7± 0.0

LoVT (Ours) 7.7± 1.0 11.7± 0.5 17.2± 1.3 8.6± 1.5 17.9± 0.4 18.0± 0.1 46.0± 0.0 49.4± 0.0 51.5± 0.0

Pre-Training on 100 % of frontal MIMIC-CXR

CheXpert [19] 10.0± 1.9 12.4± 0.9 22.2± 0.4 5.8± 0.4 11.9± 0.7 20.0± 0.2 40.0± 0.1 44.3± 0.0 46.9± 0.0

BYOL [14] 5.6± 0.8 11.0± 0.2 17.3± 1.1 6.8± 1.6 12.1± 1.1 15.9± 0.6 41.9± 0.0 45.1± 0.0 46.8± 0.0

SimCLR [6] 7.1± 0.7 12.2± 0.8 18.8± 1.0 5.4± 0.2 13.1± 0.2 17.3± 1.6 43.0± 0.0 45.1± 0.0 47.0± 0.0

PixelPro [49] 4.8± 0.3 11.0± 1.5 17.4± 1.7 4.6± 1.6 5.4± 1.1 12.6± 1.3 23.9± 0.4 34.8± 0.2 40.2± 0.1

ConVIRT [51] 10.7± 1.1 13.3± 0.8 18.5± 0.4 8.2± 0.9 15.6± 1.2 17.9± 0.3 44.6± 0.1 48.5± 0.0 50.4± 0.3

CLIP [33]* 7.0± 1.5 10.7± 1.1 19.9± 0.8 11.9± 0.7 15.0± 1.1 18.7± 0.0 45.2± 0.0 49.3± 0.1 51.1± 0.0

LoVT (Ours) 8.5± 0.8 13.2± 0.6 18.1± 3.2 9.6± 1.2 16.4± 1.3 20.5± 1.0 46.3± 0.0 50.1± 0.0 51.8± 0.0

Task Nr. 1 2 3 4 5 6 7 8 9

* Modified to use the same image and text encoders as ConVIRT and LoVT.

of MIMIC-CXR. We include PixelPro to study the effect of local contrastive
losses when using only images.

– Global image-text pre-training methods: The ResNet50 is pre-trained
using the image-text methods ConVIRT [51] or CLIP [33] on frontal MIMIC-
CXR. Note that for comparability we adapted CLIP to use the same image
and text encoders as ConVIRT such that the main difference between CLIP
and ConVIRT is that CLIP uses attention pooling to compute the scan repre-
sentation while ConVIRT uses average pooling. We include both methods as
LoVT builds upon a similar general framework, where we include ConVIRT
because it targets chest X-rays (like LoVT) and include CLIP because of its
widespread use and as it uses (like LoVT) attention pooling in the image
encoder. We decided not to include VirTex [8] and ICMLM [38] as they use
generative tasks, which have been found to be less effective for discriminative
downstream tasks [33].

4.2 Downstream Results

We present the downstream results of our model LoVT and the baselines, with
pre-training on 100% and 30% of MIMIC-CXR. Table 1 shows the results on
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Table 2. Results on downstream tasks on the COVID Rural, SIIM Pneumothorax,
Object CXR, and NIH CXR datasets. All results are averaged over five evaluation runs
and the 95%-confidence interval is shown. The best results per task are underlined, the
second-best results are dash-underlined and the best results per pre-training category
(general initialization, pre-training on 30% and 100%) are highlighted in bold.

COVID Rural SIIM-ACR Pneumoth. Object CXR NIH CXR

UNet UNet Linear UNet UNet YOLOv3 YOLOv3 Linear Linear

Finetune Frozen Finetune Frozen Finetune Frozen

Dice (%) Dice (%) Dice (%) Dice (%) Dice (%) fROC (%) fROC (%) Dice (%)
Avg

Dice (%)

General initialization methods

Random 34.0± 1.1 32.2± 1.8 6.0± 0.0 23.2± 1.0 23.9± 1.6 49.5± 1.2 28.4± 1.4 6.9± 0.0 0.5± 0.4

ImageNet [36] 43.9± 2.0 41.9± 1.7 32.6± 0.7 38.5± 0.9 36.9± 0.7 62.5± 0.4 52.7± 1.3 37.8± 0.0 2.6± 1.6

Pre-Training on 30 % of frontal MIMIC-CXR

CheXpert [19] 43.5± 4.9 44.1± 3.2 32.1± 2.0 38.9± 0.9 40.7± 0.7 62.2± 0.6 46.3± 1.9 16.5± 7.7 8.7± 0.6

BYOL [14] 46.2± 1.6 47.5± 1.6 36.9± 1.7 43.1± 0.6 42.9± 0.3 59.6± 1.0 55.7± 1.0 32.3± 0.1 6.0± 0.1

SimCLR [6] 44.9± 2.9 41.4± 3.7 33.0± 0.0 42.6± 0.4 39.2± 0.7 61.9± 0.8 54.3± 1.0 33.2± 0.1 13.3± 0.5

PixelPro [49] 47.0± 3.4 38.5± 3.9 26.6± 0.4 39.3± 0.8 39.1± 0.3 63.1± 0.7 46.3± 0.2 29.9± 0.2 1.8± 0.0

ConVIRT [51] 48.8± 2.2 44.2± 3.1 45.0± 3.0 42.5± 1.0 42.5± 0.2 62.5± 0.1 54.0± 0.7 37.7± 0.1 11.4± 0.8

CLIP [33]* 49.3± 2.0 46.5± 2.3 46.2± 0.3 42.8± 1.5 42.5± 0.6 62.9± 0.8 55.5± 2.1 39.0± 0.0 12.5± 1.0

LoVT (Ours) 49.5± 1.3 49.2± 4.6 49.2± 0.2 43.4± 0.7 43.1± 0.6 61.0± 1.3 55.8± 1.1 37.6± 0.2 13.4± 0.8

Pre-Training on 100 % of frontal MIMIC-CXR

CheXpert [19] 46.2± 1.7 45.9± 3.9 37.7± 0.4 34.2± 0.8 37.7± 0.3 57.5± 1.1 39.8± 2.4 19.4± 0.1 15.2± 0.0

BYOL [14] 50.7± 2.7 42.0± 3.0 32.9± 0.0 42.6± 0.7 40.7± 0.7 60.6± 1.1 53.1± 0.8 21.8± 0.1 5.7± 0.0

SimCLR [6] 48.1± 2.5 44.1± 2.1 35.3± 0.0 41.2± 0.8 38.7± 0.5 61.1± 0.7 48.7± 0.5 30.0± 0.0 11.8± 0.0

PixelPro [49] 42.4± 4.4 37.7± 1.0 18.9± 6.4 39.4± 1.2 38.7± 0.6 65.0± 0.5 46.2± 1.2 29.7± 0.1 1.8± 0.0

ConVIRT [51] 47.9± 0.7 46.0± 1.1 42.7± 2.0 39.3± 0.3 43.1± 0.3 60.6± 1.2 52.5± 1.0 36.0± 0.0 18.6± 0.1

CLIP [33]* 48.6± 2.4 45.8± 4.1 41.7± 0.1 44.0± 0.7 45.0± 0.5 62.8± 0.5 56.9± 1.4 39.4± 0.0 11.4± 0.8

LoVT (Ours) 51.2± 2.5 46.2± 2.4 44.0± 0.8 44.1± 0.3 43.9± 0.7 62.1± 0.5 57.4± 0.5 39.9± 0.0 9.4± 0.5

Task Nr. 10 11 12 13 14 15 16 17 18

* Modified to use the same image and text encoders as ConVIRT and LoVT.

different subsets of the RSNA dataset and Table 2 shows the results on the
remaining downstream datasets, i.e. on COVID Rural, SIM-ACR Pneumothorax,
Object CXR, and NIH CXR.

Comparison of Methods. We found that there is no single pre-training method
performing best on all evaluated downstream tasks. On most tasks (15 out of 18)
image-text self-supervised methods (i.e. LoVT, CLIP, or ConVIRT) outperform
the other methods, such that they should be preferred if paired text is available.

Our model LoVT is the best method (over all pre-training settings) on 10
of 18 tasks, and significantly outperforms all other methods in 6 of these tasks,
while the second-best method CLIP significantly outperforms all other methods
only on 2 tasks. LoVT outperforms image-only methods (i.e. BYOL, SimCLR,
and PixelPro) on 14 tasks, where the localized image-only method PixelPro out-
performs LoVT only on one task (task 15). On 11 tasks LoVT outperforms other
text-supervised methods (i.e. ConVIRT and CLIP), on 14 tasks it outperforms
CheXpert classification and on all but two tasks it outperforms ImageNet initial-
ization. When using 100% of the pre-training data LoVT is the best pre-training
method on 11 tasks (better by at least the confidence interval on 5 tasks) and
when using 30% on 11 tasks (significantly the best on 4 tasks). LoVT performs
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Fig. 3. Spatial smoothness and sensitivity of image region representations. Left: LoVT
(Ours). Middle: No local losses. Right: No local losses and no attention pooling.
Cosine similarities of image region pairs yI

i,k,y
I
i,k′ (each from the same sample) plotted

as violin plots (with their width representing the number of pairs and quartiles shown
as dashed lines) over their spatial distance in the 7 × 7 image space (normalized and
rounded to one decimal digit). We trained all models on 30% of the data and computed
the representations on the test set.

best on all COVID Rural tasks, best on most Linear tasks, and quite well on
the Frozen protocol, but does not perform well on the NIH CXR dataset and
when finetuned on the RSNA dataset. As there is no single method performing
best on all tasks and LoVT performs best in the majority of tasks, this makes
LoVT the default method of choice for localized downstream tasks.

Relevance of Pre-Training Dataset Size. We do not observe a consistent benefit
of using roughly 210000 pre-training samples (i.e. 100% of the data) over using
roughly 63000 samples (i.e. 30%). While on some datasets like RSNA and Object
CXR many methods often perform better when pre-trained on 210000 samples
(100%), on other datasets like COVID Rural, methods often perform better when
pre-trained on 63000 samples (30%). When comparing LoVT pre-trained on 30%
of the data with other methods pre-trained in both settings (i.e. 30% and 100%),
we observe that LoVT outperforms image-only methods (i.e. BYOL, SimCLR,
and PixelPro) on 12 tasks, other text-supervised methods (i.e. ConVIRT and
CLIP) on 7 tasks and CheXpert classification on 12 tasks, showing that LoVT
effectively reduces the number of required pre-training samples.

Relevance of Downstream Dataset Size. The results shown in Table 1 suggest
that, as expected, larger downstream training sets lead to better results. How-
ever, we observe that for text-supervised methods (i.e. LoVT, CLIP, and Con-
VIRT), the downstream training set size is often less relevant compared to other
methods. On the RSAN YOLOv3 Frozen tasks, LoVT (100%) outperforms Ima-
geNet initialization by 31% when using 100% of the downstream samples, while
it outperforms ImageNet initialization by even 167% when only using 1% of the
samples.

Spatial Smoothness and Sensitivity. We analyze the influence of the local losses
and attention pooling on the spatial smoothness and sensitivity of image region
representations and therefore plot in Fig. 3 the distributions of the cosine sim-
ilarity of image region pairs over their spatial distances. For our LoVT model
spatial smoothness and sensitivity can be observed as the quartiles and extreme



698 P. Müller et al.

points of the cosine similarity distributions decrease monotonously with increas-
ing spatial distance, except for a few very distant region pairs with distances
larger than 0.6. Note that these spatially very distant region pairs very likely
represent opposite borders (or corners) of the image such that they both very
likely contain background, explaining that they have more similar representa-
tions. Without local losses Llocal-image and Llocal-report, the quartiles and extreme
points decrease only for small spatial distances while increasing again for points
further away, showing that spatial smoothness is only present for nearby regions
and spatial sensitivity of more distant region is not optimal. When addition-
ally replacing attention pooling with average (for image regions) and max (for
sentences) pooling, similar results can be observed except that the quartiles are
decreasing faster and the maximum points do not decrease for nearby regions. We
can therefore deduce that the local losses effectively encourage spatial smooth-
ness and sensitivity while attention pooling alone has only little effect.

Analysis of LoVT and Ablation Study. We refer to the supplementary material
for a detailed analysis of our method LoVT, including an ablation study (focusing
on local weighting, global and local losses, and attention pooling), an analysis
of the distribution and alignment of learned representations, and an analysis of
the region weights wI

i,k.

5 Discussion

Limitations of Our Evaluation Procedure. In the evaluation procedure, we did not
apply extensive hyperparameter tuning, resized all inputs to a resolution of only
224×224, and applied no data augmentation. The presented downstream results
are therefore below results typically reported on these datasets. We followed [30]
and kept the evaluation procedure simple to limit computational resources and
avoid bias induced by tuning to allow for a fair comparison of our method with
the baselines.

Limitations of LoVT. LoVT learns its alignment model implicitly based only
on latent representations and instance-level pairing information. This makes the
model sensitive to hyperparameters and hard to train. Also, it only uses local
negatives from the same sample which restricts the number of negatives and may
therefore limit its performance. Additionally, the alignment model is restricted
to a simple attention mechanism and the regions are based on fixed patches that
are not adaptive to the contents of the image. This may restrict the capabilities
of the model and therefore of the pre-training method. For a detailed discussion
of these limitations as well as of the potential negative societal impact we refer
to the supplementary material.

Conclusion. We study pre-training for localized medical imaging on chest X-
rays and propose a novel text-supervised method called LoVT, that combines
instance-level contrastive learning with local contrastive learning. We evaluate
our method on 18 localized tasks on chest X-rays and compare it with typi-
cally used pre-training and initialization methods. While there is no single best
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method for all tasks, our method LoVT is the best method on 10 out of 18
studied tasks making it the method of choice for localized tasks.

We hope that our work provides valuable insights that encourage using pre-
training for localized medical imaging and that our method inspires future work
on localized text-supervised pre-training.
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