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Abstract. Video-Text Pre-training (VTP) aims to learn transferable
representations for various downstream tasks from large-scale web videos.
To date, almost all existing VTP methods are limited to retrieval-based
downstream tasks, e.g., video retrieval, whereas their transfer poten-
tials on localization-based tasks, e.g., temporal grounding, are under-
explored. In this paper, we experimentally analyze and demonstrate the
incompatibility of current VTP methods with localization tasks, and
propose a novel Localization-oriented Video-Text Pre-training frame-
work, dubbed as LocVTP. Specifically, we perform the fine-grained con-
trastive alignment as a complement to the coarse-grained one by a clip-
word correspondence discovery scheme. To further enhance the temporal
reasoning ability of the learned feature, we propose a context projection
head and a temporal aware contrastive loss to perceive the contextual
relationships. Extensive experiments on four downstream tasks across
six datasets demonstrate that our LocVTP achieves state-of-the-art per-
formance on both retrieval-based and localization-based tasks. Further-
more, we conduct comprehensive ablation studies and thorough analyses
to explore the optimum model designs and training strategies. Codes are
available at https://github.com/mengcaopku/LocVTP.

1 Introduction

Video-Text Pre-training (VTP) [4,26,30,31,39,49,54,67] has attracted increas-
ing attention with the aim to learn generic and transferable joint video-language
(VL) representations. Compared to the conventional separate pre-training on
each single modality, e.g., video features are pre-trained under the action recog-
nition datasets (Kinetics [23], Sport1M [22]), VTP has several advantages: 1) It

M. Cao—Work done during an internship at Tencent AI Lab.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-19809-0 3.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Avidan et al. (Eds.): ECCV 2022, LNCS 13686, pp. 38–56, 2022.
https://doi.org/10.1007/978-3-031-19809-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19809-0_3&domain=pdf
https://github.com/mengcaopku/LocVTP
https://doi.org/10.1007/978-3-031-19809-0_3
https://doi.org/10.1007/978-3-031-19809-0_3


LocVTP 39

Fig. 1. (a) Video retrieval and temporal grounding performance using dif-
ferent pre-trained features. Sep.Pre. means separately pre-training, i.e., the
video encoder supervisedly pre-trained on Kinetics [23] and text encoder taken from
BERT [12]. MIL-NCE and our LocVTP are VTP methods pre-trained on HowTo100M [39].
For video retrieval, we use COOT [16] as the downstream method and evaluate on
YouCook2 [75] dataset with R@5. For temporal grounding, we take 2D-TAN [74] as
the downstream method and evaluate on ActivityNet Captions [24] dataset with R@1,
IoU = 0.5. (b) Retrieval-based and localization-based downstream tasks. We
take video retrieval and temporal grounding as typical examples, respectively. The for-
mer needs video-level classification while the latter requires clip-level or frame-level
localization.

leverages large-scale unlabeled narrated video data with automatically generated
corresponding text data for video-text correspondence pre-training. 2) It tries
to map different modality features into a shared latent space, which reduces the
difficulties of the cross-modal feature interaction. Thanks to these advantages,
VTP has significantly improved the performance of many downstream VL tasks.
For example, as illustrated in [16], the video retrieval performance using features
pre-trained with the VTP method MIL-NCE [38] is much higher than that using
separately pre-trained way (cf. Fig. 1a (left)).

Despite their encouraging performance, we find that most current VTP meth-
ods are applicable to limited downstream tasks, i.e., they focus on retrieval-based
tasks which require video-level predictions, e.g., video retrieval [64], video cap-
tioning [45], and video question answering [21]. In contrast, there exists another
mainstream localization-based tasks which expect more fine-grained clip-level or
frame-level predictions, e.g., temporal grounding [15], action segmentation [51],
action step localization [77] (cf. Fig. 1b). Unfortunately, through experiments,
we find their poor generalization abilities on this type of downstream tasks. For
example, on temporal grounding, even pre-trained with a much larger dataset
HowTo100M [39], the VTP method MIL-NCE still performs worse than the sep-
arately pre-trained counterpart (cf. Fig 1a (right)).

In this paper, we analyze that this poor transfer ability on localization-based
tasks is due to the absence of two indispensable characteristics: 1) Fine-grained
alignment : We contend that the alignment should be conducted on more
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fine-grained clip-word level instead of the coarse-grained video-sentence1 level.
As the temporal grounding example shown in Fig. 2, a given query sentence may
contain multiple actions (e.g., “hit the golf ball” (qs1) and “bend down to
pick up the ball” (qs2)). Thus, aligning each action (or words) to the corre-
sponding clips (i.e., vt1 and vt2) will help to obtain more detailed and accurate
feature representations. 2) Temporal relation reasoning : We hope the clip
features of a certain action can also perceive other actions in the same video.
For example, for a typical golf video, action qs2 (“bend down to pick up the
ball”) always occurs shortly after action qs1 (“hit the golf ball”). Thus,
incorporating such temporal relationship into VTP can help to improve the
temporal awareness of video features.

Fig. 2. Fine-grained video-text alignment: positive clip-word pairs are selected
via cosine similarity and are then forced to be close to each other, i.e., vt1 ↔ qs1,
vt2 ↔ qs2; Temporal relation reasoning: a context warping head reconstructs vt1

conditioned on vt2 and distance t2 − t1 while maintaining the cross-modal alignment
unchanged, i.e., zt1 = warp(vt2, t2 − t1) ↔ qs1.

Based on these observations, we propose a novel video-text pre-training
framework for localization tasks, dubbed as LocVTP. By considering both above-
mentioned characteristics, LocVTP achieves state-of-the-art performance not
only on the widely studied retrieval-based tasks, but also on the less-focused
localization-based tasks. Specifically, for fine-grained alignment, we extend
the coarse-grained contrastive training with video-sentence alignment to a fine-
grained one with clip-word alignment. Since there are no clip-word correspon-
dence annotations in existing large-scale datasets, we utilize the latent space
established by the coarse-grained contrastive learning to estimate the clip-word
similarity, and then select the clip-word pairs with high similarities as positive
samples. To further illustrate this, as shown in Fig. 2 (right), suppose {vt1, qs1}
and {vt2, qs2} are two matched clip-word feature pairs. Semantic embeddings in
each pair are mapped to be close to each other, i.e., vt1 ↔ qs1, vt2 ↔ qs2. For
temporal relation reasoning, we propose a new pretext task called context
warping. Here we use Fig. 2 (right) for illustration. Context warping is designed
1 Here we use “sentence” to represent the whole paired text for each video, such as

the ASR in HowTo100M [39] or query language in ActivityNet Caption [24].
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to generate a new temporally relevant clip features zt1, which imitates vt1,
conditioned on another clip vt2 and the relative distance t2 − t1 in time, i.e.,
zt1 = warp(vt2, t2 − t1). The predicted relevant clip feature zt1 is enforced to
maintain the original established cross-modal correspondence unchanged, i.e.,
zt1 ↔ qs1. In this manner, we simulate the contextual reasoning process and
enhance the temporal awareness of video features.

We conduct extensive experiments on four downstream tasks (i.e., video
retrieval, temporal grounding, action step localization, and action segmentation)
across six datasets. The results on both retrieval-based and localization-based
tasks demonstrate the superiority and the generalization ability of our LocVTP.

In summary, we make three contributions in this paper:

– We propose a localization-oriented video-text pre-training framework,
LocVTP, which benefits both retrieval-based and the less-explored
localization-based downstream tasks.

– We pinpoint two crucial designs in LocVTP, i.e., fine-grained video-text align-
ment and temporal relation reasoning.

– Experimental results show that our LocVTP significantly outperforms previ-
ous state-of-the-art methods when transferred to various downstream tasks.

2 Related Work

Video-Text Pre-training (VTP). With the release of the large-scale instruc-
tional dataset HowTo100M, VTP has spurred significant interest in the commu-
nity. Overall, the mainstream methods can be broadly classified into two classes:
1) Generative methods: Several methods [11,20,28,31,34,50,55,56] try to extend
BERT [53] to the cross-modal domain, i.e., they accept both visual and textual
tokens as input and perform the masked-token prediction task. 2) Discrimina-
tive methods. These methods [4,26,30,41] learn representations by differentiat-
ing input samples using objectives such as the metric loss [19,58] or contrastive
loss [9,18]. ClipBert [26] enables affordable pre-training from sparsely sampled
frames. Frozen [4] adapts the recent ViT [13] as the visual encoder and is flexible
to be trained on both image and video datasets. T2VLAD [56] and FCA [17]
also perform the fine-grained interactions between video clips and phrases. How-
ever, both of them resort to additional overload, e.g., k-means cluster or graph
auto-encoder. In contrast, our LocVTP explicitly models the clip-word matching
with a more light-weighted similarity comparison manner.

Pre-training for Localization Tasks. Compared to the retrieval tasks [21,45,
64] which only require only video-level predictions, localization tasks [15,51,77]
are essentially different since they need dense clip-level or frame-level predictions
and thus the pre-training for these tasks is more challenging. In the pure video
domain, this gap has been noticed and several pre-training works [2,65,66,73]
tailored for action localization have been proposed. BSP [65] synthesizes tempo-
ral boundaries using existing action recognition datasets and conducts boundary
type classification to generate localization-friendly features. TSP [2] trains video
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encoders to be temporally sensitive by predicting the foreground clip label and
classifying whether a clip is inside or outside the action. As for the video-language
domain, our LocVTP is the first pre-training framework designed for localization
tasks. Besides, compared to TSP and BSP which require label information for
supervised pre-training, our LocVTP can directly learn from narrated videos.

3 Approach

3.1 Overview of LocVTP

An overview of LocVTP is illustrated in Fig. 3. We firstly feed the video and lan-
guage modalities to their respective encoders fv(·) and fq(·) to obtain embedded
features. We follow the sparse sampling spirit in [26] and sample T clips for each
video, yielding the encoded video v = {vt}T

t=1, where vt ∈ R
D is the tth clip

feature and D is the feature dimension. The text embedding is represented as
q = {qs}Sq

s=1, where qs ∈ R
D is the sth word embedding and Sq is the word

length of q.

Fig. 3. An overview of LocVTP. fv(·) and fq(·) are video and language encoders,
respectively. 1) Coarse-grained contrastive loss Lc matches the global video and sen-
tence representations v and q. 2) The clip-word correspondence is firstly built by
similarity computing and then fine-grained contrastive loss Lf conducts detailed cross-
modal alignment. Note that for clarity, we only present the correspondence discovery
for the clip vt. 3) A context warping head is employed to warp the contextual fea-
ture vt+δ and a temporal aware contrastive loss Lt is applied based on the warped
feature zt.

Three types of contrastive methods are then performed to learn cross-modal
features: 1) The coarse-grained contrastive loss builds the video-sentence level
alignment; 2) A correspondence discovery strategy is proposed to build clip-word
relations, based on which the fine-grained contrastive loss is applied; 3) Temporal
aware contrastive loss with the context warping pretext task is proposed to
encode temporal information into video representations.
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3.2 Coarse-Grained Contrastive Learning

We firstly conduct contrastive alignment at the global video-sentence level.
Specifically, to obtain the video and sentence level features, we average pool
v and q along the temporal and word index dimension, respectively. The global
features are represented as v, q ∈ R

D. Then we formulate this video-sentence
alignment into the contrastive framework [18] as follows:

Lc = − log
exp (v·q/τ)

∑N
i=1 exp (v·qi/τ)

, (1)

where qi, i ∈ [1, N ], is the sentence feature for other samples within the batch. N
denotes the batch size and τ is the temperature parameter. The coarse-grained
contrastive loss Lc serves as a base loss to conduct video-sentence level con-
straint and induces a basic latent space where the detailed cross-modal match-
ing is achieved. Though usually coarse and noisy, this latent space encodes prior
for fine-grained clip-word correspondence discovery. In Sect. 4.6, we design and
analyze three potential ways to use this cross-modal matching prior.

3.3 Fine-Grained Contrastive Learning

Beyond the coarse-grained video-sentence alignment, we propose to conduct con-
trastive learning in a fine-grained manner, i.e., clip-word matching. We contend
that introducing such alignment learning into the pre-training stage could narrow
down its gap with downstream localization tasks and calibrate the pre-trained
feature to be more temporally aware.

Clip-Word Correspondence Discovery. Before performing fine-grained con-
trastive learning, we firstly need to estimate the clip-word correspondences from
video-sentence pairs. Thanks to the priors well established by the coarse-grained
contrastive learning, we compute the cosine similarities between the video clips
and their corresponding caption words in the pre-built latent space and choose
the most similar K words as the correspondence for each video clip. Note that
we select multiple positive words rather than simply pick one with the highest
similarity because individual words may have vague meanings while sense-group2

conveys more precise information (cf. Sect. 4.7).
Given the video sentence pair {v, q}, for the encoded tth video clip vt, we

compute its cosine similarities with the sth word embedding qs and apply the
topk operation to select the most matched K ones. Following [57], these K
selected items are average pooled to form the final positive sample:

qt
+ = avgpool

(
arg topk
s∈[1,Sq]

(
vt·qs

) )
, (2)

where qt
+ is the final positive sample for vt. (u·v) = u�v/‖u‖‖v‖ represents the

cosine similarity between �2 normalized u and v. This process can be efficiently
performed for all the video clips using matrix operations.
2 A group or sequence of words conveying a particular meaning or idea in linguistics..
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Fine-Grained Contrastive Loss. With the selected clip-word correspondence
as positive pairs, we perform fine-grained representation learning following the
cross-modal InfoNCE [18] loss (cf. Fig. 4a). The negative samples are taken from
the other words within the batch. Therefore, the fine-grained contrastive loss is
defined as follows.

Lf =
1
T

T∑

t=1

− log
exp(vt·qt

+/τ)
∑N

i=1

∑Sqi
s=1 exp (vt·qs

i /τ)
, (3)

where qs
i is the sth word feature of the ith sentence qi.

3.4 Temporal Aware Contrastive Learning

Fig. 4. Illustrations of (a) fine-grained contrastive Loss and (b) temporal aware con-
trastive loss. vt is the tth clip of video v. qt

+ is the pooled positive word features. zt is
the warped feature. We only present positive samples and omit negative ones.

Compared with the video-level retrieval task, which favors temporal invariant
features [40,42], the clip-level localization task [6–8,33,60,61,70–72] prefers tem-
poral aware video embeddings. Specifically, correlated actions in the same video
should perceive each other. This characteristic is however not embodied in the
aforementioned contrastive learning.

Context Warping Head. To alleviate this, we set up a context-warping oper-
ation to enforce the video clip to perceive the context. For the video clip vt in
a matched clip-word pair {vt, qt

+} (cf. Sect. 3.3), we warp its contextual video
clip with δ temporal distance, i.e., vt+δ, to “reconstruct” itself. To supervise this
warping process, we set up a temporal aware contrastive loss to maintain the
established correspondence. Specifically, we propose a context warping head g(·)
to instantiate this warping process, by taking the context clip feature vt+δ and
temporal distance δ as input.

zt = g(vt+δ; δ)

= ReLU
(
W [vt+δ, sgn(δ), |δ|]) ,

(4)

where zt is the warped feature. W ∈ R
(D+2)×D are the trainable weights. δ is

randomly sampled within the range of [−δmax, δmax]. sgn(·) is the sign function
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which returns 1 for positive values and −1 for negative ones. Here sgn(δ) and |δ|
indicate the direction and distance of the temporal difference δ, respectively.

Temporal Aware Contrastive Loss. Through the context warping head, the
warped feature zt should mimic the reference feature vt. Since vt has the clip-
word alignment with qt

+, such correspondence should be preserved between the
warped feature zt and qt

+ (cf. Fig. 4b).

Lt =
1
T

T∑

t=1

− log
exp(zt·qt

+/τ)
∑N

i=1

∑Sqi
s=1 exp (zt·qs

i /τ)
. (5)

This process enforces video features to learn the ability of temporally rea-
soning, thus leading to more localization-friendly video features.

Integrating the above constraints, our final loss function is as follows.

L = λcLc + λfLf + λtLt, (6)

where λc, λf , and λt balance the focus on different constraints during training.

4 Experiments

4.1 Settings of Pre-training

Datasets. We pre-trained our model on three public datasets: 1)
HowTo100M [39]. It consists of more than 1.2M videos accompanied with ASR-
generated speech transcription. The provided transcription is used to create
video-sentence pairs separated by each timestamp. 2) WebVid-2M [39]. It con-
tains about 2.5M well-aligned web video-text pairs. 3) Google Conceptual Cap-
tions [48]. It contains 3.3M image and description pairs harvested from the web.

Encoders. Following [4,54,67], we adopted ViT-B/16 [13] with space-time
attention [5] as the video encoder. The spatial attention weights in the trans-
former were initialized with ImageNet-21k pre-trained weights while the tempo-
ral attention weights were set to zero. We chose a lightweight DistilBERT [47] as
the language encoder. Following [3,4,41,52], the language encoder was initialized
with the weights pre-trained on English Wikipedia and Toronto Book Corpus.

Implementation Details. For the video in each video-sentence pair, we sam-
pled 8 clips of 16 frames equidistantly and fed them to the video encoder to
obtain clip-level features. All frames were resized to 224 × 224. For downstream
transfer, we extracted video features with the well-trained model in a dense man-
ner, i.e., every 16 consecutive frames were grouped to compute one clip feature.

Experiments were conducted on 64 V100 GPUs with a batch size of 256 and
lasted for 200 epochs. We used Adam [32] with the initial learning rate 10−4 as
the optimizer. The learning rate decayed by 0.1 at the 100th and 160th epoch.
Random flip, random crop, and color jitter for video data augmentation were
included. The loss balance factors λc, λf , and λt were set to 0.5, 1, 1, respectively.
The temperature factor τ used in contrastive learning was set to 0.07 following
[43,59] and K in Eq.(2) was set to 3. Features in all three contrastive losses were
�2-normalized before computation (Table 1).
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4.2 Transfer Results on Video Retrieval

Datasets. We evaluate our LocVTP on the widely-used benchmark MSR-VTT
dataset [64]. It is composed of 10K YouTube videos (9K for training and 1K for
test). We report results on the train/test splits introduced in [69].

Results. 1) As can be seen, we achieve state-of-the-art performance under
both sets of data, i.e., HowTo100M and CC3M+WV2M. Specifically, when pre-
trained on CC3M+WV2M, LocVTP outperforms Frozen [4] by an absolute lift
of 4.8% on R@5. 2) It should be pointed out that although using RGB data only,
our LocVTP achieves better performance than the methods using multi-modal
expert features including motion, face, and speech, e.g., MMT [14]. 3) The recent
work CLIP [43] provides a stronger vision encoder and we also evaluate the per-
formance based on it. It is shown that the CLIP’s weights greatly improve the
performance of LocVTP with R@5 achieving 72.8%, surpassing top-performing

Table 1. Video retrieval performance on MSR-VTT. Vis Enc. Init.: Datasets
used for pre-training visual encoders. Methods using multi-modal features are grayed
out. COCO: Coco Captions [10]; VGen: Visual genome [25]; CC3M: Conceptual cap-
tions [48]; WV2M: WebVid-2M [4]; † denotes the technical report available on ArXiv.

Method Vis Enc. Init. Pre-trained Data #pairs R@1 R@5 R@10 MdR

UniVL [35] - HowTo100M 136M 21.2 49.6 63.1 6.0

ClipBERT [26] - COCO, VGen 5.6M 22.0 46.8 59.9 6.0

CE [31] Multi-modal HowTo100M 136M 20.9 48.8 62.4 6.0

MMT [14] Multi-modal HowTo100M 136M 26.6 57.1 69.6 4.0

HIT [30] Multi-modal HowTo100M 136M 30.7 60.9 73.2 2.6

Clip4clip† [36] CLIP HowTo100M 136M 44.5 71.4 81.6 2.0

VideoClip [63] CLIP HowTo100M 136M 30.9 55.4 66.8 -

OA-Trans [54] CLIP CC3M, WV2M 5.5M 40.9 70.4 80.3 2.0

Frozen [4] ImageNet CC3M, WV2M 5.5M 31.0 59.5 70.5 3.0

ActBERT [76] VisGenome HowTo100M 136M 16.3 42.8 56.9 10.0

SupportSet [41] IG65M, ImageNet HowTo100M 136M 30.1 58.5 69.3 3.0

HERO [27] ImageNet, Kinetics HowTo100M 136M 16.8 43.4 57.7 -

AVLnet [46] ImageNet, Kinetics HowTo100M 136M 27.1 55.6 66.6 4.0

NoiseEstimation [3] ImageNet, Kinetics HowTo100M 136M 17.4 41.6 53.6 8.0

DECEMBER [52] ImageNet, Kinetics HowTo100M 136M 30.7 60.9 73.2 2.6

OA-Trans [54] ImageNet CC3M, WV2M 5.5M 35.8 63.4 76.5 3.0

RegionLearner† [67] ImageNet CC3M, WV2M 5.5M 36.3 63.9 72.5 3.0

LocVTP (Ours) ImageNet HowTo100M 136M 37.4 66.6 80.5 3.0

LocVTP (Ours) CLIP HowTo100M 136M 46.3 72.8 82.0 2.0

LocVTP (Ours) ImageNet CC3M,WV2M 5.5M 36.5 64.3 76.8 3.0

Zero-shot

SupportSet [41] IG65M, ImageNet HowTo100M 136M 8.7 23.0 31.1 31.0

Frozen [4] ImageNet CC3M, WV2M 5.5M 18.7 39.5 51.6 10.0

OA-Trans [54] ImageNet CC3M, WV2M 5.5M 23.4 47.5 55.6 8.0

OA-Trans [54] CLIP CC3M, WV2M 5.5M 31.4 55.3 64.8 4.0

LocVTP (Ours) ImageNet HowTo100M 136M 24.7 48.9 56.1 8.0

LocVTP (Ours) CLIP HowTo100M 136M 32.7 55.7 64.9 4.0

LocVTP (Ours) ImageNet CC3M,WV2M 5.5M 22.1 48.0 55.3 8.0



LocVTP 47

CLIP-based methods. 4) Our LocVTP also outperforms previous methods under
the zero-shot setting, showing its generalization ability.

4.3 Transfer Results on Temporal Grounding

Settings. We validate the performance of pre-trained representations on tem-
poral grounding, which aims to localize actions corresponding to the sentence
from an untrimmed video. Specifically, we re-train the mainstream temporal
grounding method 2D-TAN [74]3 by only replacing the original input features
with pre-trained ones. For ease of feature extraction, we choose representative
VTP methods with publicly-available codes for comparisons.

Datasets and Metrics. 1) ActivityNet Captions (ANet) [24]. It contains 20K
untrimmed videos with 100K descriptions. By convention, we use 37,417 video-
query pairs for training, 17,505 pairs for validation, and 17,031 pairs for testing.
2) Charades-STA [15]. Following the official split, 12,408 video-query pairs are
used for training, and 3,720 pairs for testing. 3) TACoS [44]. It has 10,146 video-
query pairs for training, 4,589 pairs for validation, and 4,083 pairs for testing.

Following prior works, we adopt R@n, IoU@m (abbreviated as Rm
n ) as the

metric, Specifically, Rm
n is defined as the percentage of at least one of top-n

retrieved moments having IoU with the ground-truth moment larger than m.

Table 2. Temporal grounding performances using pre-trained representa-
tions. Sep.Pre.: separately pre-training, i.e., the video encoder supervisedly pre-
trained on Kinetics and text encoder taken from BERT. We retrain the temporal
grounding method 2D-TAN [74] using the pre-trained features. HT: HowTo100M;
CO: Coco Captions [10]; VG: Visual genome [25]; CC: Conceptual captions [48]; WV:
WebVid-2M [4]; HT ‡: the subset of HowTo100M with the same training volume as
Kinetics (300K pairs). Methods with ∗ are not open source and we implement them
ourselves. † denotes the technical report available on ArXiv.

Models PT Data
ANet Captions Charades-STA TACoS

R0.5
1 R0.7

1 R0.5
5 R0.7

5 R0.5
1 R0.7

1 R0.5
5 R0.7

5 R0.3
1 R0.5

1 R0.3
5 R0.5

5

Sep.Pre. [74] Kinetics 44.4 27.1 77.6 62.1 39.7 23.8 79.6 52.3 37.2 25.6 58.2 45.5

LocVTP (Ours) HT‡ 45.2 27.1 78.3 63.5 40.3 24.2 80.6 52.7 38.4 25.9 59.0 45.9

VideoBERT∗[49] HT 37.2 21.0 66.7 53.6 32.7 19.5 68.1 46.2 33.8 22.2 51.6 41.0

MIL-NCE [38] HT 41.8 24.5 73.5 57.7 37.0 21.2 74.3 50.4 35.1 23.5 53.7 42.5

UniVL [35] HT 42.2 25.4 75.3 60.5 38.2 22.7 77.2 51.4 35.7 23.7 55.8 43.7

SupportSet∗ [41] HT 41.9 25.2 74.7 58.3 37.4 21.6 75.6 50.9 35.5 23.5 54.2 43.2

LocVTP (Ours) HT 48.2 30.5 80.1 64.7 43.6 26.3 81.9 55.3 41.6 28.9 61.4 47.6

Frozen [4] CC,WV 43.3 25.8 75.8 59.3 38.8 22.9 77.6 50.3 35.7 23.5 54.4 43.7

OA-Trans∗[54] CC, WV 43.6 25.9 76.5 60.2 39.2 22.6 78.5 50.8 35.2 22.5 53.4 42.6

LocVTP (Ours) CC,WV 46.1 27.6 78.9 63.7 41.2 24.8 81.3 53.5 39.6 27.8 60.4 47.9

December [52] HT 43.0 25.1 76.0 60.2 37.2 21.6 78.3 50.6 34.8 22.9 55.1 43.9

ClipBERT [26] CO,VG 42.6 24.6 75.3 59.7 37.0 20.8 77.7 50.2 33.7 21.0 54.3 43.3

3 We choose 2D-TAN since it is relatively simple without too many dataset-specific
parameters, which can fairly verify the effectiveness of pre-training features. Results
on more advanced baselines are available in the supplementary material.
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Results. 1) As shown in Table 2, even trained with a much larger dataset, the
current popular video-text pre-training frameworks achieve inferior performance
compared to the separately pre-trained one. For example, Frozen [4] reaches
43.3% at R0.5

1 on ANet Captions, which is 1.1% absolute value lower than the
separately pre-trained counterpart. 2) Either pre-trained on HowTo100M or CC
+ WV, our LocVTP outperforms both video-text pre-training methods by a
large margin on all three datasets. For example, pre-trained on HowTo100M,
LocVTP surpasses the separately pre-trained method by 3.8% on R0.5

1 of ANet
Captions. 3) For more fair comparisons, we sample a subset of HowTo100M by
selecting the same training sample as Kinetics [23] (300K training pairs), denoted
as HT‡ in Table 2. Although using noisy ASR captions, the results demonstrates
that under the same training data volume, our LocVTP still shows better per-
formance compared to the separately pre-trained method. This manifests that
our performance improvement is brought by the sound architecture design rather
than just the use of the large-scale dataset.

4.4 Transfer Results on Action Step Localization

Settings. In action step localization, each video belongs to a task and is anno-
tated with multiple action steps described with short natural languages. The
goal is to align each frame with the correct step in the text form. Following
[35,39,68,76], we take [77] as the downstream localization method. Specifically,
we compute the similarity between each frame and the action step descriptions
in feature space to find the optimal frame-wise order of action steps for a video.

Table 3. Comparison results of action
step localization (CTR: average recall) and
action segmentation (FA: frame-wise accu-
racy).

Method CTR FA

Zhukov et al. [77] 31.6 –

NN-Viterbi [1] – 21.2

CBT [38] – 53.9

MIL-NCE [38] 40.5 61.0

ActBERT [76] 41.4 57.0

UniVL [35] 42.0 70.0

TACo [68] 42.5 68.4

VideoClip [63] 47.3 68.7

VLM [62] 46.5 68.4

LocVTP (Ours) 51.7 72.9

Datasets and Metrics. We exper-
iment on the instructional video
dataset CrossTask [77], which includes
83 tasks and 4.7K videos. Each task
is described with an ordered list of
steps with manual natural language
descriptions. We perform the same
evaluation protocol as in [77] by
reporting the average recall (CTR).

Results. Table 3 reports the action
step localization performance on
CrossTask dataset. Our LocVTP pre-
trained feature achieves state-of-the-
art performance with CTR reach-
ing 51.7%, surpassing the previous
method VideoClip by 4.4%. Our com-
petitive performance demonstrates
that LocVTP features can effectively
perceive detailed action steps.
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4.5 Transfer Results on Action Segmentation

Settings. We assess our LocVTP on action segmentation, which aims to predict
the action label frame-wisely for each video frame. It is a pure vision task without
the use of the text encoder. Following [35,68,76], we encode the input video
frames with the well-trained video encoder and apply a linear classifier upon the
features to predict action labels.

Datasets and Metrics. We conduct experiments on the widely used COIN
dataset [51] and the frame-wise accuracy (FA) is taken as the evaluation metric.

Results. As shown in Table 3, our LocVTP achieves state-of-the-art perfor-
mance with FA reaching 72.9%. This further demonstrates the superiority of
our feature in localization tasks even in the absence of language guidance.

4.6 Ablation Study on Training Objective4

Training Strategy. Coarse-grained contrastive alignment loss Lc provides a
basic cross-modal matching prior and we introduce three potential ways to use
it: 1) multi-stage training : first perform coarse-grained training and then use
the trained model to initialize other stages. 2) warm-up training : decrease λc

exponentially from 1 to 0 throughout the training process. 3) weighted training :
set λc to a constant value. Here we set λc = 0.5. As shown in Table 4a, we
find the weighted training strategy achieves the best performance and warm-up
training is slightly behind. Multi-stage training is the least effective one.

Loss Component. We present the loss component ablations in Table 4b. As
shown, both fine-grained loss Lf and temporal aware loss Lt are crucial. For
example, compared to the full version (exp.#1), removing Lf and Lt brings
about 1.4% and 1.5% performance degradation on the R0.5

1 metric, respectively.

More Downstream Temporal Grounding Baselines. We take another tem-
poral grounding method CSMGAN [29] as the downstream baseline. As shown
in Table. 4c, our LocVTP pre-trained feature consistently benefits this more
advanced baseline.

4.7 Ablations on Fine-grained Contrastive Loss (see Footnote 4)

Correspondence Discovery Strategies. We experiment four potential strate-
gies to extract cross-modal correspondences: 1) random: randomly select K
words for each clip; 2) 2d-topk : select the most similar K ×T clip-word pairs; 3)
word-topk : select the most similar K clips for each word; 4) clip-topk : select the
most similar K words for each clip, namely the method illustrated in Sect. 3.3.
As indicated in Table 5a, the random and 2d-topk matching strategies are the

4 If not specified, all ablation studies are conducted on the downstream temporal
grounding task at ActivityNet Captions dataset. We use LocVTP pre-trained on
HowTo100M with ImageNet initialization..
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Table 4. Ablations studies of (a) training strategies; (b) loss component; (c) compar-
ison results on temporal grounding method CSMGAN [29]. Sep.Pre.: separately pre-
training, i.e., the video encoder supervisedly pre-trained on Kinetics and text encoder
taken from BERT.

Mode R0.5
1 R0.7

1

multi-stage 47.4 29.7

warm-up 47.7 30.1

weighted 48.2 30.5

(a)

Lc Lf Lt R0.5
1 R0.7

1

#1 ✓ ✓ ✓ 48.2 30.5

#2 ✓ ✓ 46.7−1.5 29.4−1.1

#3 ✓ ✓ 46.8−1.4 29.6−0.9

#4 ✓ 45.6−2.6 29.0−1.5

(b)

Method R0.5
1 R0.7

1

Sep.Pre. [29] 48.9 29.0

Frozen [4] 47.3 26.8

LocVTP 53.9 34.6

(c)

two worst options. For the word-topk matching, it is also sub-optimal, which can
be attributed to the possibility of introducing words without concrete meanings
(e.g., articles or pronouns) into matched pairs.

Number of Selected Pairs K. We further ablate the hyper-parameter K
used in the clip-topk strategy. Table 5b shows that the performance saturates at
K = 3 and slightly decreases for K = 4. We conjecture that this may be because
too few words have vague meanings while too large K value leads to the inability
to establish accurate correspondences.

4.8 Ablations on Temporal Aware Contrastive Loss (see Footnote 4)

Table 5. Ablations studies of (a) correspondence discovery strategies; (b) selected
pair number K; (c) context projection head. sgn(δ), |δ| denotes the direction and
distance; (d) the maximum bias distance; (e) intra-modal v.s. cross-modal Lt; (f) linear
localization accuracy. Accuo and Accud are order and distance prediction accuracy.

R0.5
1 R0.7

1

random 42.0 25.8

2d-topk 44.8 27.2

word-topk 47.0 28.7

clip-topk 48.2 30.5

(a)

K R0.5
1 R0.7

1

1 46.3 28.8

2 47.5 29.7

3 48.2 30.5

4 48.0 29.8

(b)

sgn(δ) |δ| R0.5
1 R0.7

1

✓ ✓ 48.2 30.5

✓ ✗ 47.3 29.3

✗ ✓ 47.1 29.0

✗ ✗ 46.2 28.1

(c)

δmax R0.5
1 R0.7

1

2 47.6 29.2

3 47.8 29.5

4 48.2 30.5

5 47.7 28.9

(d)

Lc Mode R0.5
1 R0.7

1

intra-modal 47.7 29.8

cross-modal 48.2 30.5

(e)

Method Accuo Accud

LocVTP (w/ Lc) 72.8 58.2

LocVTP (w/o Lc) 69.0 56.5

UniVL [35] 64.2 52.8

MIL-NCE [38] 61.3 51.4

(f)

Context Projection Head Components. In Eq. (4), the warped feature is
generated based on both the direction sgn(δ) and distance |δ|. Here we investigate
eliminating either of them to see the difference. We observe in Table. 5c that
removing either component decreases the performance, which indicates that both
the direction and distance of bias δ are crucial for feature warping.



LocVTP 51

Maximum Bias Distance δmax. Here we ablate different values for δmax. From
Table 5d, we can see that δmax = 4 achieves the best performance. This may be
because that small bias makes the model unable to perceive enough context,
while a large bias makes contextual reasoning too difficult.

Intra-modal v.s. Cross-modal Constraint. In Sect. 3.4, given the matched
clip-word pair {vt, qt

+} and the warped feature zt, we force the cross-modal
supervision, i.e., zt ↔ qt

+. Here, we apply the temporal aware contrastive loss Lt

in a intra-modal manner which regards zt and vt as positive pairs, i.e., zt ↔ vt.
The results in Table 5 e show that our adopted cross-modal mode outperforms
the intra-modal one.

Temporal Sensitivity Analysis. As a sanity check, we devise two proxy tasks
to evaluate the temporal sensitivity of pre-trained video features. As shown in
Fig. 5a, n equidistantly sampled clips from one video are fed into the frozen
video backbone to extract their corresponding features. Two linear classifiers
are trained to perform two tasks: order prediction and distance estimation. The
first task predicts the temporal index while the second one estimates the tem-
poral distance of two clips. The results in Table 5f show that our LocVTP with
temporal aware loss Lt outperforms the variant without it as well as two typ-
ical VTP methods (i.e., UniVL and MIL-NCE), which shows that Lt clearly
contributes to the localization ability.

4.9 Visualization5

Cross-modal Correspondence Visualizations. Figure 5b shows two frames6

and their corresponding similarity scores with caption words. The top K highest
scored words are marked with red (K = 3). Frame #1 and frame #2 have sim-
ilar appearance views yet correspond to different action processes. Our method
pinpoints the subtle differences and accurately finds the most relevant words.

Fig. 5. (a) Linear localization evaluations including order and distance prediction; (b)
Cross-modal correspondence visualizations. Top K responsive words are marked with
red. (c) Gaussian distributions of the reference, biased, and projected similarities.
(Color figure online)

5 More visualizations are left in the supplementary materials..
6 Here we use “frame” to indicate the center frame of a video snippet.
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Fig. 6. UMAP visualizations. Clips corresponding to ground-truth caption are marked
with green while others are with gray. (Color figure online)

UMAP Visualizations. As shown in Fig. 6, we provide UMAP [37] visual-
izations for fused multi-modal features, which are generated by multiplying the
extracted video feature by one query feature. With the temporal aware loss Lt,
our LocVTP shows more separable distributions compared with LocVTP w/o
Lt, manifesting that Lt helps distinguish action-of-interest from background.

Similarity Distribution Visualizations. In Eq.(4), context projection head
warps contextual clip vt+δ to the reference one vt. Here we collect 10K paired
training samples and compute three sets of cosine similarities: reference similarity
(vt, qt

+), bias similarity (vt+δ, qt
+), and projection similarity (zt, qt

+). Figure 5c
plots the histogram of these similarities. We can see that the distribution of
projection similarity is close to that of reference similarity while far away from
that of bias similarity. This demonstrates that our context projection head can
effectively warp contextual features conditioned on the temporal information.

5 Conclusions

In this paper, we propose LocVTP, the first video-text pre-training framework
for temporal localization tasks. Specifically, we apply cross-modal contrastive
learning at both coarse-grained video-sentence and fine-grained clip-word lev-
els. Besides, we propose a context warping pretext task and a temporal aware
contrastive loss to enhance the temporal awareness of video features. Experi-
mental results show that LocVTP achieves state-of-the-art performance when
transferred to both retrieval-based and localization-based downstream tasks.

Acknowledgement. This paper was partially supported by NSFC (No: 62176008)
and Shenzhen Science & Technology Research Program (No: GXWD20201231165
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