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Abstract. Active learning (AL) is a label-efficient technique for training
deep models when only a limited labeled set is available and the manual
annotation is expensive. Implicit semantic data augmentation (ISDA)
effectively extends the limited amount of labeled samples and increases
the diversity of labeled sets without introducing a noticeable extra com-
putational cost. The scarcity of labeled instances and the huge annota-
tion cost of unlabelled samples encourage us to ponder on the combina-
tion of AL and ISDA. A nature direction is a pipelined integration, which
selects the unlabeled samples via acquisition function in AL for label-
ing and generates virtual samples by changing the selected samples to
semantic transformation directions within ISDA. However, this pipelined
combination would not guarantee the diversity of virtual samples. This
paper proposes diversity-aware semantic transformation active learning,
or DAST-AL framework, that looks ahead the effect of ISDA in the selec-
tion of unlabeled samples. Specifically, DAST-AL exploits expected par-
tial model change maximization (EPMCM) to consider selected samples’
potential contribution of the diversity to the labeled set by leveraging
the semantic transformation within ISDA when selecting the unlabeled
samples. After that, DAST-AL can confidently and efficiently augment
the labeled set by implicitly generating more diverse samples. The empir-
ical results on both image classification and semantic segmentation tasks
show that the proposed DAST-AL can slightly outperform the state-of-
the-art AL approaches. Under the same condition, the proposed method
takes less than 3 min for the first cycle of active labeling while the existing
agreement discrepancy selection incurs more than 40 min.

Keywords: Active learning - Implicit semantic data augmentation -
Expected partial model change maximization - Diversity

1 Introduction

In recent years, deep learning has achieved a new height in performing various
tasks like image classification, object detection, semantic segmentation etc.. How-
ever, they suffer from huge annotation labor and incur long time due to the
requirement of large-scale labeled data to train the deep models [41]. In some
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tasks, it is difficult to accumulate the data and it requires skilled professional to
annotate. Therefore, the dependency on large-scale labeled data has become
a major bottleneck for deep learning methods [12]. To alleviate this depen-
dency, many methods like, unsupervised learning [6,11,27,43], semi-supervised
learning [17,20,34,40], weakly supervised learning [24,28,29,44], active learning
[1,2,9,41] etc., have received significant attentions. Although weakly supervised
learning and semi-supervised learning have made rapid progresses, active learn-
ing remains the foundation of many vision tasks due to its simplicity and better
performance [39].

AL is an iterative process. It overcomes the limited labeling budget by select-
ing a set of samples from an unlabeled pool at each iteration [41] and labels the
selected ones. These unlabeled samples will be added to the labeled set after
being labeled by an oracle. Different unlabeled samples will yield different results.
Therefore, the key question for AL is how to acquire data that can achieve better
performance.

To solve this problem, many state-of-the-art works [13,19,41] achieve com-
petitive results by designing the customized modules that make full use of the
labeled samples and unlabeled samples. For example, in [32], the authors pro-
pose variational adversarial active learning (VAAL) that uses variational autoen-
coder and a discriminator to learn the uncertainty of the unlabeled samples
implicitly. To better leverage both the annotation and the labeled/unlabeled
samples’ information, state-relabeling adversarial active learning (SRAAL) [41]
designs a compact model composed of the unified representation generator and
a labeled/unlabeled state discriminator. In [13], the authors propose agreement
discrepancy selection (ADS) by designing adversarial classifiers to the convo-
lutional neural network for the selection of informative samples. The above
approaches achieve satisfying results by training the customized module with
the labeled and unlabeled data in an adversarial manner, involving excessive
training time. However, for robots with minimal computing resources and lim-
ited runtime, it is hard to get adopted in a new scenario in quick time without
extensive training. Hence, enhancing the efficiency of the AL scheme without
designing the customized modules remains a critical challenge.

The approaches based on the expected model change principle(EMCP) [4,5]
address the efficiency challenge by querying the examples that maximally change
the current model without designing the customized modules. Specifically,
EMCP follows the stochastic gradient descent rule to estimate the ability of
a candidate example to change the model by the gradient of the loss at the
current candidate example [4,5]. Notably, most of these methods deal with the
regression problem with the small model, and as a result, the existing EMCP
methods are not directly applicable to classification tasks for the deep networks.

Besides the existing EMCP methods, ISDA [36] is another efficient approach
for training the deep networks that provide diverse instances, which can be
generated by changing the original instance to semantic transformation direc-
tions sampled from the feature covariance matrix. Next, it is straightforward to
consider the feasibility of combining EMCP and ISDA. One simple direction is
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a naive pipelined combination, which selects unlabeled samples by an acquisi-
tion function that follows the EMCP, and generates virtual instances from the
selected samples by ISDA afterward. However, such an acquisition function fails
to consider the potential gain from ISDA with respect to diversity. Hence, with-
out any feedback during the acquisition process, the augmented samples from
ISDA would not guarantee diversity (Fig.1).

To solve the above problem, the
assumption in this paper is two-
fold: (1) unlabeled samples have Labeled Augment samples of labeled
an unequal contribution to increas-
ing the diversity of the label
set after being labeled and aug-
mented by ISDA, (2) the aug-
mented samples with a higher diver-
sity should have a higher ability to
change the classifier. Based on these
assumptions, this paper proposes Fig.1. An overview of DAST-AL. DAST-AL
the diversity-aware semantic trans- looks ahead the effect of ISDA in the pro-
formation active learning, or D AST- cess of acquisition while avoiding the costly
AL framework. DAST-AL develops sampling process. Note that the translated
EPMCM to look ahead the effect of features are mapped to the image space and
ISDA in advance of the acquisition shown as augment samples in the above
process, by selecting unlabeled sam- figure.
ples considering the ability of their
augmented virtual samples to change the current classifier. The proposed
EPMCM algorithm of DAST-AL enables us to select the unlabeled samples that
have higher gain for increasing the diversity of labeled sets when augmented
via ISDA. Furthermore, DAST-AL realizes the previously mentioned gain by
labeling and augmenting the selected samples by using ISDA.

Our contributions are summarized as follows:

e Firstly, we propose EPMCM for selecting the unlabeled samples. The aug-
mented samples of these unlabeled samples bring maximum change to the
current partial model, and achieve a higher gain from ISDA in the assess-
ment of diversity contributes to the labeled set.

e Then, we propose DAST-AL that overcomes the limited labeling budget by
using the proposed EPMCM to efficiently select the unlabeled samples. After
labeling and adding these unlabeled samples to the labeled set, DAST-AL
efficiently augments the labeled set by using ISDA without the costly burden
of explicitly generating the augmented samples.

e Finally, we compare the performance of our proposed method with existing
methods in [13,30,32,37,41]. Although we find performances of ADS and
DAST-AL are closely comparable, ADS takes 44 minutes in the first iteration
of AL which is much higher compared to the proposed DAST-AL.
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2 Related Work

With a decade’s study, AL has proven its superiority over the other methods.
Based on the existing methods, we group them into two categories: parameter-
ized sampler and non-parameterized sampler. The difference between the two
categories lies in whether the customized modules are introduced for selecting
the most informative samples.

The parameterized sampler approaches can further be decomposed into
the synthesizing approaches and the pool-based approaches. The synthesizing
approaches introduce the generative model to produce new synthetic samples
that are informative to the current model [23,26,42]. These approaches intro-
duce or design various generative adversial networks (GAN) [23] or variational
auto-encoders (VAE) [33] to enhance the diversity of labeled set by generating
diverse data. The pool-based approaches use the customized modules to query
the most informative instances from the unlabeled pool. A loss prediction mod-
ule is designed to select data that is likely to make the target model producing a
wrong prediction [37]. VAAL [32] and task aware VAAL [19] build a latent space
by a VAE that learns together with the ranking conditional GAN. SRAAL [41]
build an unsupervised image reconstructor and a supervised target learner to
help relabel the state of unlabeled data with different importance. ADS [13]
introduces a customized classifier to play the min-max game to select the most
informative samples. By introducing the customized modules, these methods
achieve the state-of-arts results. However, these approaches suffer from exces-
sive training time during their iterative procedure for selecting the unlabeled
samples.

The non-parameterized sampler approaches can also be decomposed into two
parts: the uncertainty-based and ECMP-based approaches. The uncertainty-
based approaches select the most informative samples by evaluating the uncer-
tainty in the model prediction. To do so, previous works [18,22,35] simply utilize
class posterior probabilities to define uncertainty. The probability of a predicted
class [22] or an entropy of class posterior probabilities [18,35] defines uncer-
tainty of a data point. To better quantify uncertainty, multiple forward passes
with Monte Carlo Dropout are used [15]. However, it involves large computation
for large-scale learning, as each data point in the large-scale unlabeled pool needs
to be performed with multiple forward passes to measure its uncertainty. The
EMCP approaches are based on the decision-theoretic. They select the unlabeled
data by estimating expected model changes [4,5] that is based on the current
model. These approaches have been well applied on regression tasks. As deep
network involves a large number of parameters to estimate their changes, the
approaches are hard to be applied to these networks.

Our method fits into the category of EMCP approaches with an exception.
We estimate the partial model change for the classification tasks, rather than
estimating the expected model change of the full network for regression. Also,
our method is different from the synthetic approaches in the sense that we do not
design any customized module and have no need to explicitly generate augmented
images.
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3 Method

In this section, we introduce the proposed DAST-AL. We first introduce how to
obtain augmented instances in the feature space by following ISDA in Sect. 3.1.
Then, we present details of the proposed EPMCM that served as the acquisition
function in Sect. 3.2. In each iteration of DAST-AL, the following two steps are
successively carried out.

1. Train the backbone network (feature extractor) and classifier on the current
labeled set by using ISDA for augmenting this set to introduce more diversity.
At the same time, we use the extracted features of the labeled samples at hand
to calculate the covariance matrix for each category, where the covariance
matrix represents all the feature semantic transformation directions of each
category.

2. Use the proposed EPMCM to select the unlabeled sample. Then, the trans-
lated feature (i.e., the augmented samples) of these selected samples along
infinite semantic transformation directions result in the maximum change to
the current partial model. To overcome the limited labeling budget, these
selected samples, which are expected to have higher diversity, will be labeled
and added to the labeled set for step 1 in the next iteration.

3.1 Implicit Data Augmentation via Semantic Transformation

Let M€ be the feature extractor, M be the classifier, L be the labeled set, U be
the unlabeled set, C' be the number of classes, and y; be the label of a sample
x; from L.

For a sample z; in a class y;, we extract its feature with a; = M¢(x;). By
following ISDA, the semantic directions for class y; can then be obtained by
sampling random vectors from a zero-mean multi-variate distribution NV (0, Xy, ),
where Yy, is the class-conditional covariance matrix estimated from the features
of the labeled samples in class ¥;. As the semantic transformation directions of
different categories are different, we use the online estimation algorithm [36] to
get the covariance matrixes of all classes X' = {X, X5, -+, Yo }. Referring to
ISDA, we can randomly sample along N (0, X, ) to generate augmented features
with different semantic transformations, i.e., a; ~ N (a;, 2y, ).

Consequently, unlimited a; can be generated to augment the labeled set
for diversity by exploiting ezpected cross-entropy loss in ISDA [36]. As for the
unlabeled samples, suppose an unlabeled sample x, can be selected in the AL
cycle and labeled by a human expert with the label y,,, then it will be added to
L, and its augmented feature @, can also be obtained from a, ~ N (a,, Xy, ),
where a,, = M®(x,). The potential gain from ISDA in the assessment of diversity
contributes to the labeled set is up to the diversity of the a,. Therefore, it is
crucial to measure the diversity contributing to the labeled set under unlimited
a,, so that we can confidently rank the unlabeled samples with the potential
gain from ISDA and select the better ones.
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3.2 The Proposed Expected Partial Model Change Maximization

For selecting samples from the unlabeled set by considering their augmented
features, the key is to find a reasonable way to evaluate the diversity contribution
of each augmented feature sampling from the multivariate normal distribution.
Intuitively, if the augmented feature is useless for the classifier updating, then
this feature also has no use to augment the labeled set for more diversity. Inspired
by this intuition, we propose EPMCM which is expected to evaluate the diversity
contribution of the unlabeled sample under the unlimited augmented features
by considering the partial classifier change. A detailed description of EPMCM
is given below.

Different from existing EMCP-based methods that deal with regression prob-
lems at the instance level [4], we consider training the classifier M¢ under an
augmented labeled set D = {(&f, yl) }jzl in the feature space with cross-entropy

loss £, where &f is sampled from N (a;, Xy,) with label y;. Then, following the
empirical risk minimization principle [4], M€ is trained by minimizing the empir-
ical error on D. The corresponding empirical error is shown as follows:

€D = ZE [MC (a}) ,yl] . (1)

i=1

Suppose that M€ is defined by the last fully connected layer, and its param-
eters consist of the weight matrix W = [wy,... ,'wc]T € RE*F and biases
b= [by,.. .,bC]T € RC. For learning the best W and b, stochastic gradient
descent (SGD) [3] can be used to update the parameters iteratively according
to the negative gradient of the loss £ with respect to each augment features a}
that follows Eq. 2,

0L, ({W b))

{W, b} o(W.b}

—{W,b} -« i=1,...,n, (2)

new

where the o denotes learning rate.

With the understanding from the discussion above, now we describe the SGD
rule in our AL scheme. Let us suppose the augmented feature a,, of unlabeled
sample x,, with label y, is added to the D. The empirical error on the extended
DT =D U (@y,y.) can be represented in the form of the following equation:

épr = Y LM (a]) y] + LM (@) ,yu] - (3)

=1 —La, ({W.b})

As a consequence of the change in the augmented unlabeled set, the param-
eters W and b are also get changed. Considering the SGD update rule, as
the model change is equivalent to parameters change, the parameters change
Cw ) (@y) can be approximated as the gradient of the £ at the a,, described
by Eq.4,
aﬁdu ({W7 b})

C{W b} ((NLu) = A{W,b} ~ o 8{W,b} . (4)
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It should be noted that the dimension of W is C' x F' that will lead to a large
computational burden with the increasing dimension of the feature. Hence, we
only consider estimating the change of the b, and then the partial classifier
change can be represented as Cypy (@,). Since the goal of our AL acquisition
function is to select the unlabeled sample, the augmented features of which lead
to the maximum partial classifier change, we firstly consider an easy implementa-
tion that explicitly samples M times from the distribution N (ay, Xy,) to com-
pose an limited augmented feature set Dy, = { (@b, yu), (@, vu)+-- -, (@' yu)}

of size M. Here au denotes k™ sampled augmented features for the unlabeled
sample z,. Then, the potential of each z, to augment the labeled set can be
represented by summing the partial classifier change caused by each augmented
feature in D, . Consequently, the acquisition function in our AL scheme can be
formulated as follows:

—argmaXZHCb< ) .a* eD, (5)

z, €U

where z}, denotes the selected unlabeled samples.

To calculate Eq. 5, the following two issues must be tackled. Firstly, the
true label y, is unknown before querying. Therefore, calculation over all possi-
ble labels ¥, can be a costly affair for an increasing number of classes. Secondly,
when considering sampling M times, the sampling variance is unstable and lim-
ited. An ideal way is to generate as much data as possible (i.e., set M as large
as possible). However the increasing M will incur an excessive time complexity.

To address the first issue, we use a maximum a-posteriori approximation by
only considering the most likely label g, of a,, predicted by the current M€. As
for the second issue, aiming at simplifying computation while generating more
data, we try to implicitly generate the unlimited augmented samples. When M
grows to infinity, it is equivalent to considering the expectation of the Eq. 5 under
all possible augmented features. Then, the Eq. 5 under the cross-entropy loss can
be rewritten as:

*

x argmax(]E&uNN(am ,.) I1Cb (@ )H)

z, €U
0La,(b) Oz
= E& ~N(a o =
arigi[?x( u~N(aw,Xy,) ‘ Oz " 9b
oW ,7 ayu+bg, (6)
= Ez, ~ 3 1l —F—
arELIEnI?X Gy~N(ay,2g,) ch:l oWl auth;

= argmax (£°),
T, €U

where z is the output of the a, by using M¢. Specifically speaking, z can be

obtained by the formula z = w”a, + b, and then we have g—i = 1, where

1 represents a vector of dimension C' with each value 1. By assuming that the
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learning rate « is identical for each augmented feature, the third equation is then
obtained by unfolding the second equation with the expanded cross-entropy loss.

However, it is infeasible to compute £2° precisely, we derive an upper bound
% as an alternative to that. Although the maximum upper bound is not strictly
guaranteed to be numerically maximum, in Sect. 4.1, we demonstrate that the
selection of unlabeled samples by the upper bounds is effective. The reason for
this effect is that the gap between the upper-bound and £2° will decrease with
the increase of sampling times (shown in Table 2). Since we consider the infinite
sampling times, the large upper-bound could indicate that £7° would be large
too. Moreover, to prove that the selected unlabeled samples are able to augment
the labeled set for more diversity, we visualize the augmented features of the
selected unlabeled samples (ref. to Sect. 4.3). The corresponding @ is derived
in the following manner:

e Uu “eryu ]

S SR . -
53?u - EauNN(amzﬁu) [1 ZC’ Vs T@,+b;

j=1
ch 1€w7a wtb;

<E; - _ | —1
Ay N(auvzyu) 6 y a.+byg,

3 - 7)
= EauN(a0,5y,) Z( w] —w] Ja,+b;— yu>_1

Jj=1

C
:Ze("’T*"’ aut(b;—bg, ) +5(w] *wzu)ﬂa;u(wj*wyu)_l

where the second inequality is hold by obeying the Jensen’s inequality 2 <

1 1 eu7§u6u+bgu
r+ - < 1—2 < =—1, where z = =———+—— 0 < z < 1. Because
x x le} ewjau+bj
j=1

of a, ~ N (ay,Xy,), we can obtain that (wJT — w? ) a, +b; — by, is also a

Gaussian random variable, i.e., (wT — w@ ) a,+ (b; —by,) ~
N ((w? - Wy ) ay + (b — by,), (’w;‘r - wgu) Yo (w; — wz?u))- Then, the

fourth equatlon can be obtained by leveraging the moment-generating function
E [¢"*] = eth+39°  where X ~ N (1,0?) [8]. Finally, by calculating the £2°,
we can select the unlabeled samples more efficiently. Since we do not need to
explicit sampling and design the customized modules, the proposed EPMCM
can be smoothly integrated into the AL scheme without excessive training time.

4 Experiments

Under the scope of this part, we evaluate DAST-AL against state-of-the-art
AL approaches on image classification in Sect. 4.1 and segmentation task in
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Sect. 4.2. To further verify the efficiency of our method, we perform ablation
study in Sect. 4.3 and time analysis in Sect. 4.4.

4.1 Active Learning for Image Classification

Dataset. To verify our methods, we follow the same experimental settings
proposed in [13,32,37,41] that fine-tune the network from the previous cycle if
available. We choose commonly used CIFAR-10 and CIFAR-100 datasets for the
image classification task. CIFAR-10 consists of 60000 images of 32 x 32 x 3 pixels
where 5000 images are used for the training and 1000 images are used for the
testing. The CIFAR-10 and CIFAR-100 have 10 categories and 100 categories,
respectively, while each category contains 600 images. We also follow the same
setting in [32] that uses ImageNet [10] for the validation.

Compared Methods. For image classification tasks, we evaluate our method
against state-of-the-art AL approaches, including Core-set [30], LL4AL [37],
VAAL [32], SRAAL [41], ADS [13]. We also use the random selection method
as the baseline. It is important to note that these methods are evaluated by the
same target model that consists of feature extractor and classifier.

Training Settings. We use ResNet-18 [16] and VGG-16 [31] as the fea-
ture extractor in the target model to evaluate the accuracy. By following the
experiment setting in [13], we initialize the labeled set L by randomly sam-
pling 1000 data points from the whole unlabeled set U for the CIFAR-10 when
using ResNet-18 or VGG-16, and randomly sampling 2500 data points for the
CIFAR-100 when using ResNet-18. In the each iteration of AL, the number of
labeled samples added to L for CIFAR-10 and CIFAR-100 are 1000 and 2500,
respectively. We then re-train the target model. We adopt the same image nor-
malization as reported in the experiment part [13], and the data augmentation
strategies including 32 x 32 random image crop and horizontal flip. In each AL
iteration, according to the previous work experiment setting [13], the training
epoch is set to 200, mini-batch size is set to 128, the initial learning rate is set to
0.1 before 160 epochs and it decreases to 0.01 after 160 epochs on CIFAR-10. The
momentum and weight decay are set to 0.9 and 0.0005, respectively. To obtain
the mean and standard deviation of performance, each experiment is repeated
three times.

Sub-set Sampling. To make a fair comparison, we adopt the sub-set sampling
from [13]. Since the entire training set is considered as the initial unlabeled set
U, the sample size is very large, e.g., 50,000 for CIFAR-10 and CIFAR-100.
According to the study [25,30], it is less efficient to directly select top-k samples
from the U, because of the information overlap among the samples [13]. To
address this problem, we follow the same settings reported in [2,13] that first
selects a random subset Sr and then selects top-k samples from Sg by different
methods. Here, the sample size R is set to 10000 based on the study [13].
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Fig. 2. Comparison of DAST-AL with Core-set [30], LL4AL [37], VAAL [32], SRAAL
[41], ADS [13], and random selection method as a baseline: (a) on the CIFAR-10 using
the VGG-16 as the target model, (b) on CIFAR-100 using the VGG-16 as the target
model, (c) on ImageNet using the same target model in [32], (d) on cityscapes using
the DRN as the target model.

Performance on CIFAR-10. Figure2(a) shows the performances on the
CIFAR-10 with the VGG-16 as the feature extractor. We can observe that,
first, our DAST-AL achieves an accuracy close to 90% by using 20% of the
labeled samples. The highest accuracy of the ResNet-18 with full dataset reaches
93.5% as reported in [41], and this is only 3.05% better than DAST-AL with
20% samples. Second, although the state-of-the-art ADS outperforms proposed
DAST-AL when using 2% samples, The proposed DAST-AL can outperform
ADS when using over 4% samples. The following two are the reasons: (1) At
early iterations, ADS can improve feature representation by taking a long time
(see the time analysis in Sect. 4.4) to train the customized classifier with a large
number of unlabeled samples. (2) Our proposed EPMCM is able to consistently
select the unlabeled sample, augmented samples of which have a large diversity
contribution for the label set. Notably, the effect of the ADS would decay with
the decrease of the unlabeled samples. Moreover, using ResNet-18 as the feature
extractor, the proposed DAST-AL has the higher mean accuracy as shown in
Table 1, demonstrating the robustness of proposed method comparing the others.

Performance on CIFAR-100. Although CIFAR-10 and CIFAR-100 have the
same number of training images, CIFAR-100 has 100 categories while CIFAR-10
has 10 categories only. Hence, CIFAR-100 is much more challenging to tackle
and needs larger proportions of training samples for achieving gratifying perfor-
mance. As we can see from Fig. 2(b), at early iteration, DAST-AL outperforms
all other methods, except ADS. Meanwhile, when using over 20% samples, our
method is marginally better than ADS. The primary reason for the performance
improvement of DAST-AL at the above iterations lies in the ability to select the
unlabeled samples that can augment the challenging labeled set for more diver-
sity. And, our DAST-AL outperforms the state-of-the-art SRAAL when using
the same initial labeled samples. This indicates that DAST-AL can increase the
diversity of the labeled samples by using ISDA. In addition, since DAST-AL does
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not use any unlabeled samples for training, our method does not suffer from the
decrease in the number of the unlabeled samples.

4.2 Active Learning for Semantic Segmentation

Dataset. Semantic segmentation tasks can be viewed as pixel-level classifi-
cation tasks, which is more challenging than the image-level classification [41].
Here, we follow the experiment in [41], and choose the dataset Cityscapes [7]
to evaluate DAST-AL against state-of-the-art AL approaches. The Cityscapes
dataset consists of 3475 frames with instance segmentation annotations. To make
a fair comparison, we also modify this dataset into 19 classes following the exper-
iment in [41].

Compared Methods. We evaluate our DAST-AL against a number of existing
AL methods that reports performance on the semantic segmentation Cityscapes
dataset. These methods contain Core-set [30], MC-Dropout [14], VAAL [32],
QBC [21], and SRAAL [41]. As mentioned earlier, we introduce the random
selection method as the baseline.

Training Settings. Following the works in [32,41], the target model in our
semantic segmentation experiment consists of the dilated residual networks
(DRN) [38] as the feature extractor and a convolution layer as a classifier. Sim-
ilar to the previous image classification setting, we initialize the labeled set L
by randomly sampling 348 data points from the whole unlabeled dataset U. In
the i*? iteration of AL, the number of labeled samples added to L is 150, and
then re-train the target model. In addition, we only adopt the random horizontal
flips as the data augmentation strategy in [32]. In each AL iteration, according
to the previous work experiment setting [32,41], the training epoch is set to 50,
mini-batch size is 8, the initial learning rate is set to 5 x 1074, To obtain the
mean performance, each experiment is repeated 5 times with the same initial
labeled pool.

Performance Comparison. For the semantic segmentation task, following
the setting in the SRAAL [41], we use the mean intersection over union, denoted
as Miou to evaluate the performances of various methods. Since semantic seg-
mentation tasks can be viewed as pixel-level classification tasks, we select the
unlabeled samples by averaging @ from Eq. 7 of each pixel. In our experiments,
we use the same initial labeled set and the same selection budget for different
methods.

Figure 2(d) shows our result on various AL methods. We can observe that,
first, SRAAL and VAAL obtain better performance than other methods, such as
QBC, MC-Dropout, and core-set. This is because both VAAL and SRAAL take
a long time to train the VAE module with a large number of unlabeled samples,
and then they can select the most informative unlabeled samples. Second, our
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DAST-AL outperforms the SRAAL and with a large margin. It verifies that
although the maximum upper bound in the Eq. 7 is not strictly guaranteed to
be numerically maximum, DAST-AL still can effectively select the unlabeled
samples, the augmented samples of which have large diversity shown in Eq.7.
Moreover, our method achieves high performance without being trained with the
unlabeled samples and designing any extra modules.

4.3 Ablation Study and Discussion

To evaluate the effect of ISDA and EPMCM in DAST-AL, we conduct a series of
ablation studies on CIFAR-10 with the ResNet18 as the feature extractor. As we
can see from Tab. 1, by using ISDA and EPMCM, DAST-AL significantly boosts
the performance at later iterations. By using ISDA only, the accuracy of Ran™
increases close to 2% when compared with Ran under 10% labeled samples.
The reason behind the performance improvement of Ran™ is that ISDA can be
used to increase the diversity of the labeled set, particularly when the labeled
set is small. With the increase of the labeled sample selected by the random
method, the accuracy of Ran™ is less than the Ran when using 40% labeled
data. This observation firstly verifies that the effect of ISDA is decayed with the
random method, and then it proves that the proposed EPMCM can enhance the
power of ISDA by selecting the unlabeled samples, augmented samples of which
have a larger diversity contribution for the labeled set. For further verifying our
remark, we conduct the visualization experiment in Sect. 4.3. Moreover, DAST-
AL achieves better results compared to the Maxp™. Notably, it illustrates that
ISDA works better with EPMCM as ISDA and EPMCM share the same intuition
that how to effectively increase the diversity for the labeled set.

Table 1. Comparison of ISDA and EPMCM in DAST-AL on CIFAR-10 under different
proportion of labeled samples. Ran denotes DAST-AL random selects the unlabeled
samples without ISDA, Maxp denotes DAST-AL select the unlabeled samples by its
max prediction probability without ISDA. (-)" represents the supervision under ISDA.
It should be noted that Maxp™ represent the simple pipeline that combines ISDA with
existing AL methods.

Method | Accuracy (%) on labeled proportion (%)

5 10 15 20 25 30 35
Ran 67.13 | 80.06 | 85.25 |87.14 |89.25]90.36 |91.21
Maxp 67.13 | 76.37|79.88 |81.40 |82.84 | 83.46 |84.60
Ran* 69.27 | 80.76 | 85.60 |87.82 |89.30 | 90.67 |91.15

Maxp™ 69.27 | 76.35|81.13 |81.72 | 82.85 83.24 |84.03
DAST-AL | 69.27 | 82.98 | 87.84 | 90.42 | 92.10 | 93.06 | 93.32
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The Gap Coming from the Upper-Bound Term. We randomly select 1000
queried samples from CIFAR-10 and get their upper-bound. Meanwhile, we also
explicitly generate the different number of augmented samples to compute an
acquisition score of the queried sample. Then, we get the mean and std of the
gap. The following table shows that the mean of the gap decrease with the
increase of the sampling times. Hence, we are allowed to use upper-bound as we
are considering the case of infinite augmented samples.

Table 2. We compute he gap coming from the upper-bound term with ResNet18.

Sampling times | 100 1000 10000 100000
Gap (ResNet18) | 0.85 + 0.49 | 0.57 &+ 0.34 | 0.35 &+ 0.10 | 0.11 £ 0.07

Visualization Results. To demon-
strate that EPMCM can select
the unlabeled samples, augmented
features of which are able to
increase diversity for the labeled
set, we obtain the ‘Augmented
Images’ by utilizing the revers-
ing convolutional networks [36] to
map the augmented features of
the unlabeled samples back to the
image space. Specifically speak-
ing, since the ImageNet [10] has
a high resolution, we compose
a high resolution labeled set by
randomly selecting 20000 labeled
images from the ImageNet. In our
case, 10000 images served as an Table 3. Visualization of the semantically
unlabeled set. Then, we train the augmented feature of the selected samples
labeled set with ISDA to obtain from EPMCM and random. These ‘Augmented
Images’ are generated with features sampled
from feature distribution. It should be noted
that these ‘Augmented Images’ are only for
visualization.

T4l

i
s e

Initial Augmented Images

|| EPMCM

Random

the semantic directions, and select
the images from the unlabeled set
by random method and EPMCM.
For the selected samples, their
‘Augmented Images’ of the corresponding augmented features are shown in right.

In Table3, the first two pictures from the first column and the last two
from the same column represent the unlabeled samples selected by EPMCM
and random, respectively. The ’Augmented Images’ columns denote the images
generated by the augmented features of the unlabeled samples. It can be observed
that the unlabeled samples selected by EPMCM are more diverse.
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4.4 Timing Analysis

Table 4 shows the comparison results including DAST-AL and other methods
on CIFAR-10. For a fair comparison, all of these methods are tested in the
same torch version using the same NVIDIA TITAN Xp. Table 4 shows the extra
params for the customized modules in these methods, the time needed to train for
the first iteration in AL, sample a fixed budget of samples from the unlabeled set,
and the total time. LL4AL only takes 2.06 min for one iteration in AL but it does
not perform as well as DAST-AL considering its achieved mean accuracy. VAAL
and SRAAL introduce the customized modules that involve 88.12 M and 90.22
M extra parameters, which need to be trained with the labeled and unlabeled
samples in an adversarial manner. This explains why both the methods appear
to be very slow in the training steps. ADS is the most competitive baseline to
DAST-AL in terms of its achieved accuracy when using the small proportion
of the labeled samples. However, DAST-AL takes 128.3s while ADS requires
2688.6s for the training in one iteration in AL. This can be explained by the
fact that ADS introduces adversarial classifiers with 0.98 M extra parameters to
minimize classifiers’ prediction discrepancy and maximize prediction agreement
with a large number of the unlabeled samples.

Table 4. Comparison of the extra params (EP) introduced by DAST-AL and other
methods, the sampling time (ST) is taken to select the data from the unlabeled set on
the CIFAR-10 dataset, the training time (TT) is taken to train the target model in
AL. The total time (ToT) is composed by the training time and sampling time for one
iteration in AL.

Method EP (M) | TT (s) | ST (s)| ToT (m)
Core-set [30] | — 114.98 | 73.29 | 3.14
LL4AL [37] |0.2 120.72 | 2.97 2.06

VAAL [32] |88.18 |62855 36.12 1048
SRAAL [41] |90.22 | 17897 |41.67 |298.9
ADS [13]  |0.98 | 2688.6 4.83 |44.91
DAST-AL |- 12830 | 7.59 | 2.26

5 Conclusion and Future Work

In this paper, we propose a novel diversity-aware semantic transformation active
learning method to overcome a limited labeling budget for achieving better per-
formance. By looking ahead the effect of ISDA in the process of acquisition, we
can select the unlabeled samples to augment the labeled set for more diversity
with ISDA. Since we can not always guarantee that the expected partial model
change to be numerically maximum, we will continue our research to calculate
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this change more accurately. In addition, as our method is able to construct a
high-quality label set, we do believe our method can be a complement for exist-
ing works i.e., semi-supervised learning which employs unlabeled samples for
training. By combining the proposed method with such a method, our method
will have much potential for larger-scale datasets.
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