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Abstract. Source-free domain adaptation (SFDA) aims to adapt a clas-
sifier to an unlabelled target data set by only using a pre-trained source
model. However, the absence of the source data and the domain shift
makes the predictions on the target data unreliable. We propose quan-
tifying the uncertainty in the source model predictions and utilizing it
to guide the target adaptation. For this, we construct a probabilistic
source model by incorporating priors on the network parameters induc-
ing a distribution over the model predictions. Uncertainties are estimated
by employing a Laplace approximation and incorporated to identify tar-
get data points that do not lie in the source manifold and to down-
weight them when maximizing the mutual information on the target
data. Unlike recent works, our probabilistic treatment is computation-
ally lightweight, decouples source training and target adaptation, and
requires no specialized source training or changes of the model architec-
ture. We show the advantages of uncertainty-guided SFDA over tradi-
tional SFDA in the closed-set and open-set settings and provide empirical
evidence that our approach is more robust to strong domain shifts even
without tuning.
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1 Introduction

Deep neural networks have proven to be very successful in a myriad of computer
vision tasks such as categorization, detection, and retrieval. However, much of
the success has come at the price of excessive human effort put into the manual
data-labelling process. Since collecting annotated data can be prohibitive and
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impossible at times, domain adaptation (DA, see [8] for an overview) methods
have gained increasing attention. They enable training on unlabelled target data
by conjointly leveraging a previously labelled yet related source data set while
mitigating domain-shift [60] between the two. Such methods predominantly
comprise of minimizing statistical moments between distributions [37,53,57,62],
using adversarial objectives to maximize domain confusion [14,61], or recon-
structing data with generative methods [23].
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Fig. 1. Illustrative sketch of source-free domain adaptation (SFDA) on a labelled source

domain , and an unlabelled target domain , potentially containing addi-

tional classes . The top-row shows conventional methods which ignore model
uncertainties; the bottom-row shows our method which incorporates uncertainties
about the predictive model, enabling uncertainty-guided SFDA that is more robust to
distribution shifts

Albeit successful, the preceding methods mandate access to the source data
set during the target adaptation phase as they require an estimate of the source
distribution for the alignment. With the emergence of regulations on data pri-
vacy and bottleneck in data transmission for large data sets, access to the source
data can not always be guaranteed. Thus, paving the way to a relatively new
and more realistic DA setting, called source-free DA (SFDA, [8]), where the
task is to adapt to the target data set when the only source of supervision is a
source-trained model. SFDA facilitates maintaining data anonymity in privacy-
sensitive applications (e.g., surveillance or medical applications) and at the same
time reduces data transmission and storage overhead. Towards this goal, recently,
several SFDA methods have been proposed that utilize the hypotheses learned
from the source data [27,33,58]. Notably, SHOT [33] – an information maximiza-
tion (IM) [17] based SFDA method – has demonstrated to work reasonably well
on DA benchmarks, sometimes outperforming traditional DA methods. While
promising, these conventional SFDA techniques do not account for the uncer-
tainty in the predictions of the source model on the target data. As a by-product,
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solely maximizing mutual information [17] on the target data can lead to erro-
neous decision surfaces (see Fig. 1 top).

This work argues that quantification of the uncertainty in predictions is
essential in SFDA. Depending on the inductive biases of the model, the source
model may predict incorrect target pseudo-labels with high confidence, e.g.,
due to the extrapolation property in ReLU networks [22] (see Fig. 2b left). In
the literature, uncertainty-guided methods have been proposed in the context
of traditional UDA and SFDA settings, employing Monte Carlo (MC) dropout
to estimate the uncertainties in the model predictions [51,72]. However, MC
dropout requires specialized training and specialized model architecture, suf-
fers from manual hyperparameter tuning [13], and is known to provide a poor
approximation even for simple (e.g., linear) models [10,46,47].

In this work, we propose to construct a probabilistic source model by incor-
porating priors on the network parameters, inducing a distribution over the
model predictions, on the last layer of the source model. This enables us to per-
form an efficient local approximation to the posterior using a Laplace approxi-
mation (LA, [41,59]), see Fig. 2a. This principled Bayesian treatment leads to
more robust predictions, especially when the target data set contains out-of-
distribution (OOD) classes (see Fig. 1 bottom) or in case of strong domain
shifts. Once the uncertainty in predictions is estimated, we selectively guide
the target model to maximize the mutual information [17] in the target predic-
tions. This alleviates the alignment of the target features with the wrong source
hypothesis, resulting in a domain adaptation scheme that is robust to mild and
strong domain shifts without tuning. We call our proposed method Uncertainty-
guided Source-Free AdaptatioN (U-SFAN). Our approach requires no special-
ized source training or specialized architecture, opposed to exiting works (e.g.,
[30,72]), introduces little computational overhead, and decouples source training
and target adaptation.

We summarize our contributions as follows. (i) We emphasize the need to
quantify uncertainty in the predictions for SFDA and propose to account for
uncertainties by placing priors on the parameters of the source model. Our app-
roach is computationally efficient by employing a last-layer Laplace approxi-
mation and greatly decouples the training of the source and target. (ii) We
demonstrate that our proposed U-SFAN successfully guides the target adap-
tation without specialized loss functions or a specialised architecture. (iii) We
empirical show the advantage of our method over SHOT [33] in the closed-set
and the open-set setting for several benchmarks tasks and provide evidence for
the improved robustness against mild and strong domain shifts.

2 Related Work

Closed-set Domain Adaptation, often abbreviated as UDA, refers to the
family of DA methods that aim to learn a classifier for an unlabelled target
data set while simultaneously using the labelled source data set, which differ
in their underlying data distributions. In the literature [64] mainly three cate-
gories of UDA methods can be found. First, discrepancy-based UDA methods
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Fig. 2. (a) The Laplace approximation is mode-seeking and adapts to the local cur-
vature around the mode θMAP. It does not necessarily capture the (intractable) full
posterior, but gives a proxy for it, is principled, and efficient to evaluate. (b) Example
of predictive uncertainty (un certain) captured by a ReLU network vs. a Laplace

approximation that assigns higher uncertainty to inputs ( ) of an unseen class

aim to diminish the domain-shift between the two domains with maximum mean
discrepancy (MMD, [37,39,62]), or with correlation alignment [43,53,57]. The
second category of UDA methods exploits the adversarial objective [18] to pro-
mote domain confusion between the two data distributions by using domain dis-
criminator [14,38,61]. Finally, the third category comprises reconstruction-based
UDA methods [4,16,23] that casts data reconstruction as an auxiliary objective
in order to ensure invariance in the feature space. However, these methods can
only work in the presence of the source data set during the adaptation stage,
which might be limited in practice due to data privacy or storage concerns.

Open-set Domain Adaptation (OSDA), originally proposed in [48], refers
to the DA setting where both the domains have some shared and private classes,
with explicit knowledge about the shared classes. However, such a setting was
deemed impractical, and later Saito et al. [56] proposed the open-set setting
where the source labels are a subset of the target labels. Thereon, several OSDA
methods have been proposed which use image-to-image translations [71], pro-
gressive filtering [36], ensemble of multiple classifiers [11] and one-vs-all classi-
fiers [55] to detect OOD samples. Similar to the UDA, the OSDA methods also
require support from the source data to detect target private classes, which make
them unsuitable for source-free DA.

Source-free Domain Adaptation (SFDA) aims to adapt a model to the
unlabelled target domain when only the source model is available and the source
data set is absent during target adaptation. Existing SFDA methods use pseudo-
label refinement [1,5,33], latent source feature generation using variational infer-
ence [70], or disparity among an ensemble of classifiers [30]. Certain SFDA meth-
ods resort to ad hoc source training protocols to enable the source model to be
adapted on the target data. For instance, [30] requires an ensemble of classifiers
to be trained during source training so that the disparity among them could be
utilized for target adaptation. Similarly, USFDA [27] requires artificially gener-
ated negative samples in the source training stage for the model to detect OOD
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samples. Such coupled source and target training procedures make these SFDA
methods less viable for practical applications. On the other hand, our proposed
U-SFAN does not require specialized source training except a computationally
lightweight approximate inference, which can be done with a single pass of the
source data during the source training. Moreover, unlike [1,30], our U-SFAN
works well on both closed-set and open-set SFDA without ad hoc modifications.

Uncertainty Quantification in the form of Bayesian deep learning (e.g.,
[24,45]) is concerned with formalizing prior knowledge and representing uncer-
tainty in model predictions, especially under domain-shift or out-of-distribution
samples. Even though the Bayesian methodology gives an explicit way of formal-
izing uncertainty, computation is often intractable. Thus, approximate inference
methods such as Monte Carlo (MC) dropout [12], deep ensembles [29,66], other
stochastic methods (e.g., [42]), variational methods [3], or the Laplace approxi-
mation [52] are typically employed in practice. Prior works in semantic segmen-
tation [72] and UDA [20,28,30,51,65] applied MC dropout or deep ensembles,
respectively, for uncertainty quantification if DA. However, none of those above
approaches can be considered practical for the more challenging source-free DA
scenario as MC dropout, ensembles, and other stochastic methods do not lend
themselves well to the source-free case. In particular, they either require retrain-
ing several models on the source, changing the model architecture or requiring a
tailored learning procedure on the source data. Thus we take a Laplace approach
which allows re-using the source model by linearizing around a point-estimate
(see Fig. 2), which is post hoc, yet grounded in classical statistics [15].

3 Methods

Problem Definition and Notation. We are given a labelled source data set,
having n[S] instances, D[S] = {(x[S]

i ,y[S]
i )}n[S]

i=1, where x[S] ∈ X [S] are D-dimensional
inputs and y[S] ∈ Y [S] where we assume K-dimensional one-hot encoded class
labels, i.e., Y [S] = B

K . Moreover, we have n[T] unlabelled target observations
D[T] = {x[T]

j }n[T]

j=1, where x[T] ∈ X [T] are D-dimensional unlabelled inputs. As in
any DA scenario, the assumption made is that the marginal distributions of the
source and the target are different, but the semantic concept represented through
class labels does not change. Formally, we assume that p(y[S] |x[S]) ≈ p(y[S] |x[T])
and p(x[S]) �= p(x[T]). In the SFDA scenario we further assume that the source
data set is only available while learning the source function f : X [S] → Y [S] and
becomes unavailable while adapting on the unlabelled data. The goal of SFDA is
to adapt the source function f to the target domain solely by using the data in
D[T]. The resulting target function, denoted as f ′ : X [T] → Y [T], can then be used
to infer the class assignment for x[T] ∈ X [T]. In this work we have considered two
settings of the SFDA: i) vanilla closed-set SFDA where the label space of the
source S and the target T is the same, L[S] = L[T]; and ii) open-set SFDA where
the label space of the S is a subset of the T, i.e., L[S] ⊂ L[T], and L[T] \ L[S] are
denoted as target-private or OOD classes.
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We model the source and target functions f with a neural network that is
composed of two sub-networks: feature extractor g and hypothesis function h,
such that f = h ◦ g. The feature extractor g and the hypothesis function h are
parameterized by parameters β and θ, respectively. During target adaptation, the
model is initialized with parameters learned on D[S] and subsequently the feature
extractor parameters are updated using backpropagation, i.e., the hypothesis
function is kept frozen.

Feature
extractor

D[S] g h

source
images β[S]

θ[S]

Feature
extractor

D[S] g h

source
images β[S] p(θ | D[S])

Step 1: Source model training Step 2: Laplace approximation

(a) Source training

Feature
extractor × Lug

ent

D[T] g

N(θj | θ[S]
MAP,H−1)

target
images β[T]

θ[T] = θ[S]

wi

f ′(x[T]
i )

(b) Target adaptation

Fig. 3. The pipeline for U-SFAN: (a) Initial source model training (1) and the addi-
tional step (2) of composing a Laplace approximation for assessing the posterior over
model parameters, p(θ | D[S]). (b) At target adaptation, we keep the posterior over the

parameters fixed ( ) and train g under a uncertainty-aware composite loss that
weights samples according to predictive uncertainty

Overall Idea. Our proposed method for SFDA operates in two stages. We
begin the first stage (see Fig. 3a) by training a source model on the data set
D[S], which gives us the maximum-a-posteriori probability (MAP) estimate of
the source network parameters ({β

[S]
MAP, θ

[S]
MAP}). The second stage (see Fig. 3b)

comprises of maximization of mutual information [17] in the predictions for the
target inputs D[T]. However, due to the overconfidence of ReLU networks [22],
maximizing mutual information for all inputs equally, including those that are
far away from the source data, could be detrimental. To overcome this pathology,
we derive a per-sample weight using the model’s uncertainty and use it to mod-
ulate the mutual information objective in SHOT. To estimate the uncertainty in
the predictions on the target data, we perform approximate posterior inference
over the parameters of the hypothesis function, i.e., p(θ[S] | D[S]). Inspired by
recent works on approximate inference in Bayesian neural networks [25,40,59],
we propose to estimate the posterior predictive distribution p(y |x,D) using a
Laplace approximation, introducing little computational overhead and without
the need for specialized source training. We briefly describe the preliminaries to
our approach in the following section.
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3.1 Preliminaries

Liang et al. [33] proposed SHOT (Source HypOthesis Transfer) for the task of
SFDA, where the goal is to find a parameterization β[T] of the feature extractor
g such that the distribution of latent features z[T] = gβ[T](x[T]) matches the
distribution of the latent source features. This enables that the target data can
be accurately classified by the hypothesis function parameterized by θ[S]. To this
end, the authors address the SFDA task in two stages where the first and second
stage comprise of source model training and maximizing the mutual information
[17] between the latent representations and the classifier output, respectively.

The source model f : X [S] → Y [T] for a K-way classification task is learned
using a label-smoothed cross-entropy objective [44], i.e.,

Lsrc = −Ep(x[S],y[S])

∑K
k=1 ỹ

[S]
k log φk(f(x[S])), (1)

where φk(a) = exp(ak)/
∑

j exp(aj) denotes the likelihood for the kth component of
the model output and ỹ

[S]
i,k = y

[S]
i,k(1 − α) + α/K the class label for the ithlabel

smoothed datum.
After the source training, the D[S] is discarded and the target adaptation

is conducted on D[T] only. To adapt on the target domain, the target function
f ′ is initialized based on the learned source function f and learned with the
information maximization (IM) loss [17]. The IM loss ensures that the func-
tion mapping will produce one-hot predictions while at the same time enforcing
diverse assignments, i.e.,

Lent=−Ep(x[T])

∑K
k=1 φk(f ′(x[T])) log φk(f ′(x[T])), (2)

Ldiv=DKL(p̂ ‖K−11K) − log K, (3)

where 1K is a vector of all ones, and p̂k = Ep(x[T])[φk(f ′(x[T]))] is the expected
network output for the kthclass. Intuitively, Lent is in charge of making the
network output one-hot, while Ldiv is responsible for equally partitioning the
network prediction into K classes. In practice Ldiv operates on a mini-batch
level. In this work we start from SHOT-IM to adapt to the target domain.

3.2 Uncertainty-Guided Source-Free DA

Distributional shift between source and target data sets causes the network out-
puts to differ, even for the same underlying semantic concept [8]. In a stan-
dard UDA scenario, where the source data is available during target adaptation,
it is still possible to align the marginal distributions by using a quantifiable
discrepancy metric. The task becomes more challenging in the SFDA scenario
because it is not possible to align the target feature distribution to a reference
(or source) distribution. Moreover, standard ReLU networks are known to yield
overconfident predictions for data points which lie far away from the training
(source) data [22]. In other words, the MAP estimates of a neural network has
no notion of uncertainty over the learned weights. Thus, blindly trusting the
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source model predictions for x[T] ∈ D[T] while performing information maximiza-
tion [33] or entropy minimization [19] can potentially lead to misalignment of
clusters between the source and target.

In this work we propose to incorporate the uncertainty of the neural net-
work’s weights into the predictions. This mandates a Bayesian treatment of the
networks parameters (θ), which gives a posterior distribution over the model
parameters by conditioning onto observed data (D), i.e., p(θ | D) = p(θ) p(D | θ)

p(D) ∝
p(θ) p(D | θ). The prediction of the network hθ for an observation x is given by
the predictive posterior distribution, i.e.,

p(yk |x,D) =
∫

θ

φk(hθ(x)) p(θ | D) dθ. (4)

Note that the posterior p(θ | D) in Eq. (4) does not have an analytical solution
in general and need to be approximated. For this, we employ a local approxima-
tion to the posterior using a Laplace approximation (LA, [59]). The LA locally
approximates the true posterior using a multivariate Gaussian distribution cen-
tred at a local maximum and with covariance matrix given by the inverse of
the Hessian H of the negative log-posterior, i.e., p(θ | D) ≈ N(θ | θMAP,H−1)
with H := −∇2

θ log p(θ | D) | θMAP . Details can be found in the appendix. Note
that the LA is a principled and simple, yet effective, approach to approximate
posterior inference stemming from a second-order Taylor expansion of the true
posterior around θMAP. Next we will discuss LA in the context of SFDA.

Bayesian Source Model Generation. In the source training stage (see
Fig. 3a), by optimizing Eq. (1), we obtain a MAP estimate of the weights for our
source model, comprising βMAP and θMAP for g and h, respectively. Since f is
often modelled by a very deep neural network (e.g., ResNet-50), computing the
Hessian can be computationally infeasible owing to the large number of parame-
ters. So we make another simplification by applying a Bayesian treatment only to
hypothesis function h, known as the last-layer Laplace approximation [25]. This
gives us a probabilistic source hypothesis with posterior distribution p(θ | D[S])
for the parameters. The feature extractor g remains deterministic. Formally,
let z = gβ[S](x) be the latent feature representation from the feature extractor.
Following Eq. (4), the predictive posterior distribution is given as:

p(yk | z,D[S]) ≈
∫

θ

φk(hθ(z))N(θ | θMAP,H−1) dθ. (5)

While the last-layer LA greatly simplifies the computational overhead for large
networks, the Hessian can still be difficult to compute in the case the num-
ber of classes is large. To simplify computations, we assume that H can be
Kronecker-factored H := V ⊗ U and the resulting approximation is referred to
as Kronecker-factored Laplace approximation (KFLA, [52]). Such probabilistic
treatment allows us to quantify uncertainty in the predictions for data points
from the target with little computational overhead. Also, the LA can be readily
computed using a single forward pass of the source data through the network.
Next, we describe how to use the uncertainty estimates during target adaptation.
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Uncertainty-Guided Information Maximization. Upon completion of the
source model generation stage, we exploit the probabilistic source hypothesis to
guide the information maximization in the target adaptation stage. SHOT puts
equal confidence on all the target predictions and do not make any distinction for
the target feature that lies outside of the source manifold. We emphasize that in
case of strong domain-shift näıvely maximizing the IM loss could lead to cluster
misalignment. For that reason, we propose to weigh the entropy minimization
objective (Eq. (2)) with a weight which is proportional to the certainty in the
target predictions (see Fig. 3b). To get the per-sample weight for a x[T] we need
to compute the predictive posterior distribution, as outlined in Eq. (5). However,
exactly solving the integration is intractable in many cases and we, therefore,
resort to Monte Carlo (MC) integration. Let z[T] = gβ[T](x[T]), the approximate
predictive posterior distributions is:

p(yk | z[T],D[S]) ≈ 1
M

M∑

j=1

φk

(
hθj

(z[T])
)

, (6)

where θj ∼ N(θj | θMAP,H−1) and M denotes the number of MC steps. To encour-
age low entropy predictions we additionally scale the outputs of the hypothesis
by 1/τ , where 0 < τ ≤ 1. The final weight of each observation x[T]

i is then com-
puted as wi = exp(−H) where H denotes the entropy of the predictive mean.
The uncertainty-guided entropy loss is then given as:

Lug
ent = −Ep(x[T])

K∑

k=1

w σk(f ′(x[T])) log σk(f ′(x[T])). (7)

The final training objective is then given as: LU-SFAN = (1 − γ)Lug
ent + γ Ldiv.

Pseudocode for our U-SFAN can be found in the appendix.

How Does this Differ from Conventional Uncertainty Estimation? The
importance and advantages of adopting a Laplace approximation (LA) over
Monte Carlo (MC) dropout to estimate uncertainty in SFDA can be summarized
as follows: (i) LA does not require specialized network architecture (e.g., dropout
layers), loss function, or re-training (as in MC dropout) to estimate predictive
uncertainties. This greatly decouples the source training from target adaptation,
which is essential to be applicable in SFDA; (ii) To have well-calibrated uncer-
tainties, MC dropout requires a grid search over the dropout probabilities [13],
a prohibitive operation in deep neural networks, especially as the future target
data is not available at source training. LA is a more principled approach that
does not require a grid search, making it better suited for SFDA. (iii) LA is com-
putationally lightweight since it requires just a single forward pass of the source
data through the network after the source training to estimate the posterior
over the parameters of the sub-network. (iv) LA does not impact the training
time during target adaptation because, unlike MC dropout, only a single forward
pass is needed to quantify the predictive uncertainties. Because LA employs a
Gaussian approximation to the posterior, MC integration is cheap and efficient
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to compute. (v) As used in our work, LA estimates the full posterior over the
weights and biases, while MC dropout can only account for the uncertainties
over the weights [12] and is known to be a poor approximation to the poste-
rior [10,46,47]. (vi) LA preserves the decision boundary induced by the MAP
estimate, which is not the case for MC dropout [25]. In summary, our contribu-
tion goes beyond the uncertainty re-weighting scheme [32,35] commonly used in
UDA, while carrying many advantages over existing works.

4 Experiments

We conduct experiments on four standard DA benchmarks: Office31 [54],
Office-Home [63], Visda-C [50], and the large-scale DomainNet [49] (0.6
million images). The details of the benchmarks are summarized in appendix.
For the experiments in the open-set DA setting we follow the split of [33] for
shared and target-private classes.

Evaluation Protocol. We report the classification accuracy for every possible
pair of source �→ target directions, except for the Visda-C where we are only
concerned with the transfer from synthetic �→ real domain. For the open-set
experiments, following the evaluation protocol in [33], we report the OS accuracy
which includes the per-class accuracy of the known and the unknown class and
is computed as OS = 1

K+1

∑K+1
k=1 acck, where k = {1, 2, . . . ,K} denote the

shared classes and (K + 1)this the target-private or OOD classes. This metric
is preferred over the known class accuracy, OS∗ = 1

K

∑K
k=1 acck, as it does not

take into account the OOD classes.

Implementation Details. We adopted the network architectures used in the
SFDA literature, which are ResNet-50 or ResNet-101 [21]. Following [33], we
added a bottleneck layer containing 256 neurons which is then followed by a
batch normalization layer. The network finally ends with a weight normalized
linear classifier that is kept frozen during the target adaptation. Details about
hyperparameters can be found in the appendix. For computing the KFLA we
use the PyTorch package of Dangel et al. [9]. Our code is available at https://
github.com/roysubhankar/uncertainty-sfda

4.1 Ablation Studies

As discussed in Sect. 3.2, conventional SFDA methods that rely on optimizing the
IM loss on the unlabelled target data (e.g., SHOT) are prone to misalignment of
the target data with the source hypothesis under strong domain shift. To visually
demonstrate this phenomenon, we design an experiment of a 3-way classification
task on toy data (see Fig. 4). Given a set of source data points, belonging to
three classes, we simulate two kinds of domain-shift: mild shift (Fig. 4a) and
strong shift (Fig. 4b). In the case of mild shift, the target data points stay very
close to the source manifold, and the conventional approach (only using the
MAP estimate) can classify a majority of target data points without the need

https://github.com/roysubhankar/uncertainty-sfda
https://github.com/roysubhankar/uncertainty-sfda
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of adaptation. Whereas, in the case of strong shift, the target data points for
the blue class, in particular, shift drastically away from the source points. The
source model based on the MAP estimate misclassifies most of the target data
points with high confidence. On the other hand, our uncertainty-guided source
model remains certain only for those target points which lie within the source
support and assigns low certainty otherwise (proportional to the strength of
colours depicting the decision surface in Fig. 4), robustifying the adaptation on
the target data in case of domain shift.

Source Target SFDA (IM) Source Target SFDA (IM)
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(a) Mild domain shift (b) Strong domain shift

Fig. 4. Comparison of conventional IM (MAP) with our uncertainty-guided IM on
target data under mild and strong domain-shift. The solid vs. hollow circles represent
the source and the target data, respectively. Each class is colour coded and the decision
boundaries are shaded with the corresponding colours. Under strong domain-shift, IM,
when used with a MAP estimate, finds a completely flipped decision boundary.
U-SFAN finds the decision boundary by down-weighting the far away target data

Given such a set-up, we optimize the IM loss (i.e., SHOT-IM) for both the
conventional and the uncertainty-guided source models. In the case of mild shift,
both can reliably partition the target data points under the right decision sur-
faces (see Fig. 4a (right)). This is intuitive because the decision boundary of the
target model already passes through the low-density regions. Hence, the opti-
mization of the IM loss leads to correct target classification with both methods.
However, when the domain shift is more substantial, the conventional approach
results in completely flipped decision boundaries. This happens because most
blue target points fall under the red decision surface, and thus, the IM loss
assigns them to class ‘red’. On the contrary, our uncertainty-guided approach
down-weights the blue points, and safely optimizes the IM loss as the model is
uncertain about the class assignment for those points (Fig. 4b (right)). This pro-
tects from major changes in the decision boundaries and allows the optimization
to find the correct decision boundaries for the target data. Therefore, highlight-
ing the importance of having a notion of uncertainty in the model predictions
during adaptation. We show later that this intuition also holds well for real-world
data sets where our U-SFAN offers more robustness when the domain-shift in a
data set becomes challenging.
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To gain further insights, we visualize the entropy density plots of the source
model predictions before and after adaptation with conventional (MAP esti-
mate) and uncertainty-guided models on an image data set (CIFAR [26] as
source data set and STL [7] as target). As shown in Fig. 5a, the MAP estimate
has lower entropy predictions for both the correct and incorrect predictions,
when compared to our uncertainty-guided model. Reduced over-confidence for
our approach is expected before the adaptation phase, however, it is non-trivial
that this behavior also bears in the post-adaptation phase. The reduced over-
confident allows our U-SFAN to down-weight the incorrect predictions during
target adaptation, resulting in improved target accuracy over SHOT-IM (77.04%
for U-SFAN vs 75.69% for SHOT-IM). This effect can be noticed in Fig. 5b where
U-SFAN has overall higher entropy incorrect predictions, which is desirable in
SFDA.
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Fig. 5. Entropy density plots for CIFAR9 → STL9 in the closed-set SFDA setting using
the MAP estimate ( correct, incorrect) or our approach ( correct, incor-
rect). Our uncertainty-guided SFDA approach places less mass on low-entropy incorrect
samples before and after adaptation

Table 1. Comparison of model performance using entropy weighting during target
adaptation on the Office-Home data set. The weights computed using the LA is
more beneficial than the weights computed with a MAP network

Method Source-Only SHOT-IM [33] SHOT-IM + Ent. weighting U-SFAN (ours)

Avg. Acc. 60.3 70.5 71.2 71.8

To further understand the contribution of our uncertainty-guided re-
weighting, we run an ablation where the approximate posterior distribution
of our method (Eq. (7)) is replaced by a weight computed from a point
estimate from a MAP source model. This model is denoted as SHOT-IM +
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Table 2. Comparison of the classification accuracy on the Office-Home for the closed-
set setting using ResNet-50. High overall performance signifies milder distributional
shift between domains. The improvement of U-SFAN upon SHOT is moderate, but
competitive w.r.t. A2Net [67] or SHOT++ [34], which require complex training objec-
tives

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [14] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
DWT [53] 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6
CDAN [38] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SAFN [68] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
SHOT-IM [33] 55.4 76.6 80.4 66.9 74.3 75.4 65.6 54.8 80.7 73.7 58.4 83.4 70.5
LSC [69] 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
U-SFAN (Ours) 58.5 78.6 81.1 66.6 75.2 77.9 66.3 57.9 80.6 73.6 61.4 84.1 71.8
A2Net[67] 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
SHOT++ [34] 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
SHOT [33] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
U-SFAN+ (Ours) 57.8 77.8 81.6 67.9 77.3 79.2 67.2 54.7 81.2 73.3 60.3 83.9 71.9

Table 3. Comparison of the OS classification accuracy on the Office-Home for the
open-set setting using ResNet-50. U-SFAN improves over SHOT without the need for
nearest-centroid pseudo-labelling in the case of open-set SFDA

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

ResNet-50 53.4 52.7 51.9 69.3 61.8 74.1 61.4 64.0 70.0 78.7 71.0 74.9 65.3
ATI-λ[48] 55.2 52.6 53.5 69.1 63.5 74.1 61.7 64.5 70.7 79.2 72.9 75.8 66.1
OpenMax [2] 56.5 52.9 53.7 69.1 64.8 74.5 64.1 64.0 71.2 80.3 73.0 76.9 66.7
STA [36] 58.1 53.1 54.4 71.6 69.3 81.9 63.4 65.2 74.9 85.0 75.8 80.8 69.5
SHOT-IM [33] 62.5 77.8 83.9 60.9 73.4 79.4 64.7 58.7 83.1 69.1 62.0 82.1 71.5
SHOT [33] 64.5 80.4 84.7 63.1 75.4 81.2 65.3 59.3 83.3 69.6 64.6 82.3 72.8
U-SFAN (Ours) 62.9 77.9 84.0 67.9 74.6 79.6 68.8 61.3 83.3 76.0 63.9 82.3 73.5

ENT. WEIGHTING in Table 1. We observe that such weighting scheme indeed
improves the performance over SHOT-IM. However, it still lacks behind our pro-
posed U-SFAN which uses weights computed from the uncertainty-guided model.
This clearly shows that the improvement in performance with U-SFAN is not
simply caused by the re-weighting but also due to better identification of target
samples that are not well explained under the source model.

4.2 State-of-the-Art Comparison

We compare our U-SFAN with UDA and SFDA methods on multiple data sets for
closed-set and open-set settings. First, we compare U-SFAN with the baselines
on the most common benchmark of office-home for both closed-set and open-
set settings. As can be seen from Table 2 and Table 3 we improve the performance
over majority of the baselines. Especially, we consistently improve over SHOT-IM
with our method. We also combine the nearest centroid pseudo-labelling, used in
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Table 4. (a) Comparison of the classification accuracy on the Visda-C for the closed-
set DA, pertaining to the Synthetic → Real direction, using ResNet-101. † indicates
the numbers of [33] that are obtained using the official code from the authors. Note
that several SFDA methods perform equally well for visda-c, hinting at saturating
performance. (b) Comparison of the average accuracy on the Domainnet for the closed-
set SFDA using ResNet-50. The source column indicates the domain where the source
model has been trained. The data set being challenging (exhibiting strong domain-
shift), the improvement with our U-SFAN over [33] is substantial

(a) Visda-C

Method Acc.

ResNet-101 52.4
CDAN+BSP [6] 75.9
SAFN [68] 76.1
SHOT-IM† [33] 80.3
U-SFAN (Ours) 81.2
3C-GAN [31] 81.6
A2Net[67] 84.3
SHOT† [33] 82.4
U-SFAN+ (Ours) 82.7

(b) Visda-C

Source SHOT-IM [33] U-SFAN

clipart 25.04 30.88
infograph 21.58 26.44
painting 23.89 29.91
quickdraw 10.76 10.44
real 21.74 29.32
sketch 28.87 29.99

Avg. 21.98 26.13

SHOT [33], with U-SFAN (indicated as U-SFAN+ in Table 2 and Table 4a), and
we find that it further helps improving the performance. Notably, the recently
proposed A2Net [67] (which just addresses closed-set SFDA) outperforms our U-
SFAN in a couple of data sets, but uses a combination of several loss functions.
Interplay of multiple losses can be hard to tune in practice. On the other hand,
our method is simpler, more versatile and works for both the SFDA settings. Due
to lack of space, we report the numbers for office31 in the appendix. Given
the performance of the SFDA baseline methods in Office-home and visda-c

are relatively high and closer to each other, the domain shift can be considered
milder with respect to more challenging data set like domain-net.

When we compare U-SFAN with SHOT-IM on the challenging SFDA bench-
mark domain-net the advantage of our U-SFAN over SHOT-IM becomes immi-
nent (cf. Table 4b), which is in line with the ablation study in Sect. 4.1. Different
from the previous data sets, the difficulty in mitigating domain-shift for domain-
net is evident from the low overall performance of both SHOT-IM and U-SFAN.
This data set can be seen as a real-world example of strong domain-shift. The
improvement in the performance of U-SFAN over SHOT-IM for domain-net

demonstrates that incorporating the uncertainty in the model’s predictions plays
a crucial role in SFDA. The conventional approach may overfit to noisy model
predictions, leading to poor performance. Whereas, U-SFAN can capture the
uncertainty in predictions and down-weight the impact of noisy predictions.
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5 Discussion and Conclusion

In this work, we demonstrated the need for uncertainty quantification in
SFDA and proposed U-SFAN for leveraging it during target adaptation. Our
uncertainty-guided approach employs a Laplace approximation to the posterior,
does not require specialized source training, and allows for efficient computation
of predictive uncertainties. Our experiments showed that down-weighting dis-
tant target data points in our novel uncertainty-weighted IM loss alleviates the
misalignment of target data with the source hypothesis. We ran experiments on
closed and open-set SFDA settings and show that U-SFAN consistently improves
upon the existing methods. Moreover, U-SFAN has shown to be robust under
mild distribution shifts and shows promising results under severe distribution
shifts.

While we mainly focused on the popular IM-based SFDA methods, our pro-
posed uncertainty-guided adaptation is also applicable to other SFDA frame-
works, e.g., neighbourhood clustering [69] or extensions to the multi-source
SFDA problem. Moreover, the principles we build upon are general, inter-
pretable, and have strong backing in classical statistics. We believe that
uncertainty-guided SFDA will become a backbone tool for future methods in
DA that generalize over different problem domains, are less sensitive to the
training setup, and will provide good results without extensive ad hoc tuning to
each problem.
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