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Abstract. Multi-scale Vision Transformer (ViT) has emerged as a pow-
erful backbone for computer vision tasks, while the self-attention com-
putation in Transformer scales quadratically w.r.t. the input patch num-
ber. Thus, existing solutions commonly employ down-sampling opera-
tions (e.g., average pooling) over keys/values to dramatically reduce the
computational cost. In this work, we argue that such over-aggressive
down-sampling design is not invertible and inevitably causes informa-
tion dropping especially for high-frequency components in objects (e.g.,
texture details). Motivated by the wavelet theory, we construct a new
Wavelet Vision Transformer (Wave-ViT) that formulates the invert-
ible down-sampling with wavelet transforms and self-attention learning
in a unified way. This proposal enables self-attention learning with loss-
less down-sampling over keys/values, facilitating the pursuing of a bet-
ter efficiency-vs-accuracy trade-off. Furthermore, inverse wavelet trans-
forms are leveraged to strengthen self-attention outputs by aggregating
local contexts with enlarged receptive field. We validate the superiority
of Wave-ViT through extensive experiments over multiple vision tasks
(e.g., image recognition, object detection and instance segmentation).
Its performances surpass state-of-the-art ViT backbones with compa-
rable FLOPs. Source code is available at https://github.com/YehLi/
ImageNetModel.

Keywords: Vision transformer · Wavelet transform · Self-attention
learning · Image recognition

1 Introduction

Recently, leveraging Transformer architecture [53] for visual representation learn-
ing has achieved widespread dominance in computer vision field. Transformer
architecture has brought forward milestone improvement for a series of down-
stream vision tasks [4,9,13,29,35–37,42,43,45,48,56,58,59,67,71,74], including
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Fig. 1. An illustration of (a) Discrete Wavelet Transform (DWT) and Inverse DWT
(IDWT) over an image, (b) our Wavelets block, and the comparison between (c) a
single 3 × 3 convolution and (d) DWT-Convolution-IDWT process in our Wavelets
block.

both image recognition and dense prediction tasks (e.g., object detection and
semantic segmentation). At its heart is a basic self-attention block that trig-
gers long-range interaction among visual tokens. The Vision Transformer (ViT)
[13] is one of the early attempts that directly employs a pure Transformer over
image patches, and manages to attain competitive image recognition perfor-
mance against CNN counterparts. However, applying the primary ViT archi-
tecture using its outputs of single-scale and low-resolution feature map for the
pixel-level dense prediction tasks (e.g., instance/semantic segmentation) is not
trivial. Therefore, considering that visual patterns commonly occur at multiple
scales in natural scenery, there has been research efforts pushing the limits of ViT
backbones by aggregating contexts from multiple scales (e.g., “pyramid” strat-
egy). For example, Pyramid Vision Transformer (PVT) [59,60] integrates pyra-
mid structure into Transformer framework, yielding multi-scale feature maps for
dense prediction tasks. Multiscale Vision Transformers (MViT) [14] learns multi-
scale feature hierarchies in Transformer architecture by hierarchically expanding
the channel capacity while reducing the spatial resolution.

One primary challenge of applying self-attention over multi-scale feature
maps is the quadratical computational cost that scales w.r.t the number of input
patches (i.e., spatial resolution). Thus, typical multi-scale ViT approaches usu-
ally perform down-sampling operations (e.g., average pooling in [59] or pooling
kernels in [14]) over keys/values to reduce computational cost. Nevertheless,
these pooling based operations inevitably result in information dropping (e.g.,
the high-frequency components of object texture details), and thus adversely
affect the performances especially for dense prediction tasks. Furthermore, the
recent studies (e.g., [72]) also have shown that applying pooling operations in
CNNs would hurt the shift-equivariance of deep networks.

In this paper, we propose Wavelets block to perform invertible down-
sampling through wavelet transforms, aiming to preserve the original image
details for self-attention learning while reducing computational cost. Wavelet
transform is a fundamental time-frequency analysis method that decomposes
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input signals into different frequency subbands to address the aliasing problem.
In particular, Discrete Wavelet Transform (DWT) [40] enables invertible down-
sampling by transforming 2D data into four discrete wavelet subbands (Fig. 1
(a)): low-frequency component (ILL) and high-frequency components (ILH , IHL,
IHH). Here the low-frequency component reflects the basic object structure at
coarse-grained level, while the high-frequency components retain the object tex-
ture details at fine-grained level. In this way, various levels of image details are
preserved in different subbands of lower resolution without information drop-
ping. Furthermore, inverse DWT (IDWT) can be applied to reconstruct the
original image. The information preserving transformation motivates the design
of an efficient Transformer block with lossless and invertible down-sampling for
self-attention learning over multi-scale feature maps.

Technically, as shown in Fig. 1 (b), Wavelets block first employs DWT to
transform each input key/value to four subbands of lower resolution. After stack-
ing the four subbands into a down-sampled feature map, a 3 × 3 convolution
is performed to further impose spatial locality over the frequency subbands.
This leads to locally contextualized down-sampled keys/values. The multi-head
self-attention learning is conducted on the down-sampled keys/values and input
query. Meanwhile, IDWT can be applied over the down-sampled keys/values to
reconstruct high-resolution feature map that preserves image details. Compared
to the single 3 × 3 convolution (Fig. 1 (c)), the process of DWT-Convolution-
IDWT (Fig. 1 (d)) enables a stronger local contextualization via enlarged recep-
tive field, with negligible increase in computation and memory. Finally, we com-
bine the attended feature map via self-attention learning and the reconstructed
feature map with local contextualization as the outputs of Wavelets block.

By operating Wavelets block over multi-scale features in the multi-stage
Transformer framework, we present a new Wavelet Vision Transformer (Wave-
ViT) for visual representation learning. Wave-ViT has been properly analyzed
and verified through extensive experiments over different vision tasks, which
demonstrate its superiority against state-of-the-art ViTs. More remarkably,
under a comparable number of parameters, Wave-ViT achieves 85.5% top-1
accuracy on ImageNet for image recognition, which absolutely improves PVT
(83.8%) with 1.7%. For object detection and instance segmentation on COCO,
Wave-ViT absolutely surpasses PVT with 1.3% and 0.5% mAP, with 25.9% less
parameters.

2 Related Work

Visual Representation Learning. Early studies predominantly focused on
exploring CNN for visual representation learning, leading to a series of CNN
backbones, e.g., [21,26,27,46,50]. Most of them stack low-to-high convolutions
by going deeper, targeting for producing low-resolution and high-level repre-
sentations tailored for image recognition. However, dense prediction tasks like
semantic segmentation require high-resolution and even pixel-level representa-
tions. To tackle this, several multi-scale CNNs are established. For example,
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Res2Net [16] presents a multi-scale building block that contains hierarchical
residual-like connections. HRNet [55] connects high-to-low resolution convolu-
tion streams in parallel and meanwhile exchanges the information across resolu-
tions repeatedly.

Recently, due to the powerful long-range interaction modeling in Transformer
[53], Transformer has advanced natural language understanding. Inspired by
this, numerous Transformer-based architectures for vision understanding have
started. A few attempts augment convolutional operators with the global self-
attention [2] or local self-attention [22,44,47,75], yielding a hybrid backbone of
CNN and Transformer. On a parallel note, Vision Transformer (ViT) [13] first
employs a pure Transformer over the sequence of image patches for image recog-
nition. DETR [4] also leverages a pure Transformer to construct an end-to-end
detector for object detection. Different from ViT that solely divides input image
into patches, TNT [19] further decomposes patches into sub-patches as “visual
words”. A sub-transformer is additionally integrated into Transformer to per-
form self-attention over smaller “visual words”. Subsequently, to facilitate dense
prediction tasks, multi-scale paradigm is introduced into Transformer structure,
leading to multi-scale Vision Transformer backbones [14,35,59,60]. In particu-
lar, Swin Transformer [35] upgrades ViT by constructing hierarchical feature
maps via merging image patches in deeper layers. Pyramid Vision Transformer
(PVT) [60] designs a pyramid structure Transformer that produces multi-scale
feature maps in a four-stage architecture. PVTv2 [59] further improves PVT by
using average pooling to reduce spatial dimension of keys/values, rather than
convolutions in PVT. Multiscale Vision Transformers (MViT) [14] integrates
Transformer architecture with multi-scale feature hierarchies, and pooling ker-
nels is employed over query/keys/values for spatial reduction.

Our Wave-ViT is also a type of multi-scale ViT. Existing multi-scale ViTs
(e.g., [14,59,60]) commonly adopt irreversible down-sampling operations like
average pooling or pooling kernels for spatial reduction. In contrast, Wave-ViT
capitalizes on wavelet transforms to reduce spatial dimension of keys/values via
invertible down-sampling for self-attention learning over multi-scale features,
leading to a better trade-off between computation cost and performance.

Wavelet Transform in Computer Vision. Wavelet Transform is effective for
time-frequency analysis. Considering that Wavelet Transform is invertible and
capable of preserving all information, Wavelet Transform has been exploited in
CNN architectures for performance boosting in various vision tasks. For exam-
ple, in [1], Bae et al. validate that learning CNN representations over wavelet
subbands can benefit the task of image restoration. DWSR [18] takes low-
resolution wavelet subbands as inputs to recover the missing details for image
super-resolution task. Multi-level wavelet transform [34] is utilized to enlarge
receptive field without information dropping for image restoration. Williams et
al. [61] utilize Wavelet Transform to decompose input features into a second level
decomposition, and discard first-level subbands to reduce feature dimensions for
image recognition. Haar wavelet CNNs is integrated with multi-resolution anal-
ysis in [15] for texture classification and image annotation. In [41], ResNet is
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remoulded by combining the first layer with a wavelet scattering network, which
achieves comparable performances on image recognition with less parameters.

Although wavelet transform has been exploited as down-sampling/up-
sampling operations in CNNs, it is never explored for Transformer architecture.
In this work, our Wave-ViT goes beyond existing CNNs that operate wavelet
transform over feature maps across different stages, and leverages wavelet trans-
form to down-sample keys/values within Transformer block, making the impact
more thorough for feature learning.

Fig. 2. The detailed architectures of (a) basic self-attention block in ViT Backbones,
(b) self-attention block with down-sampling operation (i.e., DS(2, 2)) that reduces
the spatial scale of both height and width by half, and (c) our Wavelets block that
capitalizes on wavelet transforms to enable lossless down-sampling.

3 Our Approach: Wavelet Vision Transformer

This section starts by briefly reviewing the most typical multi-head self-attention
block in ViTs, particularly on how the self-attention block is scaled down for
reducing computational cost in the existing multi-scale ViTs. After that, a novel
principled Transformer building block, named Wavelets block, is designed to inte-
grate self-attention learning with wavelet transforms in a unified fashion. Such
design upgrades typical self-attention block by exploiting wavelet transforms
to perform invertible down-sampling, which elegantly reduces spatial dimension
of keys/values without information dropping. Furthermore, this block applies
inverse wavelet transforms over down-sampled keys/values to enhance outputs
with enlarged receptive field. Finally, after applying Wavelets block over multi-
scale features in the multi-stage Transformer architecture, we elaborate a new
multi-scale ViT backbone, i.e., Wavelet Vision Transformer.

3.1 Preliminaries

Multi-head Self-attention in ViT Backbones. Mainstream Transformer
architectures, especially Vision Transformer backbones [13], often rely on the
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typical multi-head self-attention that captures long-range dependencies among
inputs in a scalable fashion. Here we present a general formulation of multi-
head self-attention as illustrated in Fig. 2 (a). Technically, let X ∈ R

H×W×D

be the input 2D feature map, where H/W/D denote the height/width/channel
number, respectively. Here X can be reshaped as a patch sequence, consisting
of n = H ×W image patches and the dimension of each patch is D. We linearly
transform the input patch sequence X into three groups in parallel: queries
Q ∈ R

n×D, keys K ∈ R
n×D, and values V ∈ R

n×D. After that, the multi-
head self-attention (MultiHead) module [53] decomposes each query/key/value
into Nh parts along channel dimension, leading to queries Qj ∈ R

n×Dh , keys
Kj ∈ R

n×Dh , and values Vj ∈ R
n×Dh for the j-th head. Note that Nh is head

number and Dh denotes the dimension of each head. Then, we perform self-
attention learning (Attention) over queries, keys and values for each head, and
the outputs of each head are concatenated, followed by a linear transformation
to compose the final outputs:

MultiHead(Q, K, V ) = Concat(head0, head1, ..., headNh)WO,

headj = Attention(Qj , Kj , Vj),

Attention(Qj , Kj , Vj) = Softmax(
QjKj

T

√
Dh

)Vj ,

(1)

where Concat(·) denotes concatenation and WO is the transformation matrix.
According to the general formulation in Eq.(1), the computational cost of multi-
head self-attention for the input feature map X ∈ R

H×W×D is O(H2W 2D),
which scales quadratically w.r.t. the input patch number. Such design inevitably
leads to a sharp rise in computational cost especially for high-resolution inputs.

Self-attention with Down-sampling in Multi-scale ViT Backbones.
To alleviate the heavy self-attention computation overhead for high-resolution
inputs, the existing multi-scale ViT backbones commonly adopt the down-
sampling operations (e.g., average pooling in [59] or pooling kernels in [14])
over keys/values for spatial reduction. Taking the self-attention block with 2
× down-sampling in Fig. 2 (b) as an example, the input 2D feature map X is
first down-sampled by a factor r (r = 2 in this case). Here the down-sampling
operator is denoted as DS(2, 2), that reduces the spatial scale of both height and
width by half. Next, the down-sampled feature map is linearly transformed into
keys Kd ∈ R

n
r2

×D and values V d ∈ R
n
r2

×D to trigger multi-head self-attention
learning. As such, the overall computational cost of multi-head self-attention is
dramatically reduced by a factor of r2 (i.e., O(H2W 2D

r2 )).

3.2 Wavelets Block

Although the aforementioned multi-scale ViT backbones reduce self-attention
computation via down-sampling, the commonly adopted down-sampling oper-
ations like average pooling are irreversible, and inevitably result in informa-
tion dropping. To mitigate this issue, we design a principled self-attention
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block, named Wavelets block, that novelly capitalizes on wavelet transforms
to enable invertible down-sampling for self-attention learning. Such invertible
down-sampling is seamlessly incorporated into the typical self-attention block,
pursuing efficient multi-head self-attention learning with lossless down-sampling.
Figure 2 (c) details the architecture of our Wavelets block.

Formally, given the input 2D feature map X ∈ R
H×W×D, we first linearly

transform it into ˜X = XWd with reduced channel dimension via embedding
matrix Wd ∈ R

D× D
4 . Next, we employ Discrete Wavelet Transform (DWT) to

down-sample the input ˜X ∈ R
H×W× D

4 by decomposing it into four wavelet
subbands. Note that here we choose the classical Haar wavelet for DWT as in [33]
for simplicity. Concretely, DWT applies the low-pass filter fL = (1/

√
2, 1/

√
2)

and high-pass filter fH = (1/
√

2,−1/
√

2) along the rows to encode ˜X into
two subbands XL and XH . Next, the same low-pass filter fL and high-pass
filter fH are employed along the columns of the learnt subbands XL and XH ,
leading to all the four wavelet subbands: XLL ∈ R

H
2 × W

2 × D
4 , XLH ∈ R

H
2 × W

2 × D
4 ,

XHL ∈ R
H
2 × W

2 × D
4 , and XHH ∈ R

H
2 × W

2 × D
4 . XLL refers to the low-frequency

component that reflects the basic object structure at coarse-grained level. XLH ,
XHL, and XHH represent the high-frequency components that retain the object
texture details at fine-grained level. In this way, each wavelet subband can be
regarded as the down-sampled version of ˜X, and all of them cover every detail
of inputs without any information dropping.

We concatenate the four wavelet subbands along the channel dimension to
form X̂ = [XLL,XLH ,XHL,XHH ] ∈ R

H
2 × W

2 ×D. A 3 × 3 convolution is further
applied to impose spatial locality over X̂, yielding the locally contextualized
down-sampled feature map Xc. Next, this down-sampled feature map Xc is
linearly transformed into down-sampled keys Kw ∈ m×D and values V w ∈ m×D,
where m = H

2 × W
2 is the number of patches. Similarly, the wavelet-based multi-

head self-attention learning Attentionw is thus performed over the queries and
the corresponding down-sampled keys/values for each head:

headj = Attentionw(Qj , K
w
j , V w

j ) = Softmax(
QjK

w
j

T

√
Dh

)V w
j , (2)

where Kw
j /V w

j denotes the down-sampled keys/values for the j-th head, respec-
tively. Here the aggregated output of self-attention learning for each head (headj)
can be interpreted as the long-range contextualized information of inputs.

As a beneficial by-product, we additionally apply inverse DWT (IDWT) over
the locally contextualized down-sampled feature Xc. According to the wavelet
theory, the reconstructed feature map Xr is able to retain every detail of primary
input ˜X. It is worthy to note that compared to a single 3 × 3 convolution,
such process of DWT-Convolution-IDWT in Wavelets block triggers a stronger
local contextualization with enlarged receptive field, with negligible increase in
computational cost/memory.
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Finally, we concatenate all the long-range contextualized information of each
head plus the reconstructed locally contextualized information Xr, followed by
a linear transformation to compose the outputs of our Wavelets block:

WaveletsBlock(X) = MultiHeadw(XW q, XcW k, XcW v, Xr),

MultiHeadw(Q, K, V, Xr) = Concat(head0, head1, ..., headNh , Xr)˜WO,
(3)

where ˜WO is the transformation matrix.

3.3 Wavelet Vision Transformer

Recall that our Wavelets block is a principled unified self-attention block, it is
feasible to construct multi-scale ViT backbones with Wavelets blocks. Follow-
ing the basic configuration of existing multi-scale ViTs [35,60], we present three
variants of our Wavelet Vision Transformer (Wave-ViT) with different model
sizes, i.e., Wave-ViT-S (small size), Wave-ViT-B (base size), and Wave-ViT-L
(large size). Note that Wave-ViT-S/B/L shares similar model size and compu-
tational complexity with Swin-T/S/B [35]. Specifically, given the input image
(size: 224 × 224), the entire architecture of Wave-ViT consists of four stages,
and each stage is comprised of a patch embedding layer, and a stack of Wavelets
blocks followed by feed-forward layers. We follow the design principle of ResNet
[21] by progressively increasing the channel dimensions of all the four stages and
meanwhile shrinking the spatial resolutions. Table 1 details the architectures of
all the three variants of Wave-ViT, where Ei, Headi, and Ci is the expansion
ratio of feed-forward layer, head number, and the channel dimension in stage i.

Table 1. Detailed architecture specifications for three variants of our Wave-ViT with
different model sizes, i.e., Wave-ViT-S (small size), Wave-ViT-B (base size), and Wave-
ViT-L (large size). Ei, Headi, and Ci represents the expansion ratio of feed-forward
layer, the head number, and the channel dimension in each stage i, respectively.

Output Size Wave-ViT-S Wave-ViT-B Wave-ViT-L

Stage 1 H
4

× W
4

⎡
⎢⎣

E1 = 8

Head1 = 2

C1 = 64

⎤
⎥⎦×3

⎡
⎢⎣

E1 = 8

Head1 = 2

C1 = 64

⎤
⎥⎦×3

⎡
⎢⎣

E1 = 8

Head1 = 3

C1 = 96

⎤
⎥⎦×3

Stage 2 H
8

× W
8

⎡
⎢⎣

E2 = 8

Head2 = 4

C2 = 128

⎤
⎥⎦×4

⎡
⎢⎣

E2 = 8

Head2 = 4

C2 = 128

⎤
⎥⎦×4

⎡
⎢⎣

E2 = 8

Head2 = 6

C2 = 192

⎤
⎥⎦×6

Stage 3 H
16

× W
16

⎡
⎢⎣

E3 = 4

Head3 = 10

C3 = 320

⎤
⎥⎦×6

⎡
⎢⎣

E3 = 4

Head3 = 10

C3 = 320

⎤
⎥⎦×12

⎡
⎢⎣

E3 = 4

Head3 = 12

C3 = 384

⎤
⎥⎦×18

Stage 4 H
32

× W
32

⎡
⎢⎣

E4 = 4

Head4 = 14

C4 = 448

⎤
⎥⎦×3

⎡
⎢⎣

E4 = 4

Head4 = 16

C4 = 512

⎤
⎥⎦×3

⎡
⎢⎣

E4 = 4

Head4 = 16

C4 = 512

⎤
⎥⎦×3
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4 Experiments

We evaluate the effectiveness of Wave-ViT via various empirical evidence on
several mainstream CV tasks. Concretely, we consider the following evaluations
to compare the quality of learnt features obtained from various vision backbones:
(a) Training from scratch for image recognition task on ImageNet1K [12]; (b)
Fine-tuning the backbones (pre-trained on ImageNet1K) for downstream tasks,
i.e., object detection and instance segmentation on COCO [32], and semantic
segmentation on ADE20K [77]; (c) Ablation studies that support each design in
our Wavelets block; (d) Visualization of learnt representation by Wave-ViT.

4.1 Image Recognition on ImageNet1K

Dataset and Optimization Setups. In the task of image recognition, we
adopt the ImageNet1K benchmark, which comprises 1.28 million training images
and 50K validation images from 1,000 classes. All vision backbones are trained

Table 2. The performances of various vision backbones on ImageNet1K for image
recognition. � indicates that the backbone is additionally trained with Token Labeling
objective with MixToken [24] and convolutional stem [57] for patch encoding. We group
all runs into three categories, and all backbones within each category shares similar
GFLOPs: Small (GFLOPs < 6), Base (6 ≤ GFLOPs < 10), Large (10 ≤ GFLOPs <
22).

Method Params GFLOPs Top-1 Top-5 Method Params GFLOPs Top-1 Top-5

Small Large

ResNet-50 [21] 25.5M 4.1 78.3 94.3 ResNet-152 [21] 60.2M 11.6 81.3 95.5

BoTNet-S1-50 [47] 20.8M 4.3 80.4 95.0 ResNeXt101 [64] 83.5M 15.6 81.5 –

Swin-T [35] 29.0M 4.5 81.2 95.5 DeiT-B [51] 86.6M 17.6 81.8 95.6

ConViT-S [11] 27.8M 5.4 81.3 95.7 SE-ResNet-152 [23] 66.8M 11.6 82.2 95.9

T2T-ViT-14 [68] 21.5M 4.8 81.5 95.7 ResNeSt-101 [70] 48.3M 10.2 82.3 –

RegionViT-Ti+ [6] 14.3M 2.7 81.5 – ConViT-B [11] 86.5M 16.8 82.4 95.9

SE-CoTNetD-50 [30] 23.1M 4.1 81.6 95.8 T2T-ViTt-24 [68] 64.1M 15.0 82.6 95.9

Twins-SVT-S [9] 24.1M 2.9 81.7 95.6 TNT-B [19] 65.6M 14.1 82.9 96.3

CoaT-Lite Small [65] 20.0M 4.0 81.9 95.5 DeepViT-L [78] 58.9M 12.8 83.1 –

PVTv2-B2 [59] 25.4M 4.0 82.0 96.0 RegionViT-B [6] 72.7M 13.0 83.2 96.1

Wave-ViT-S 19.8M 4.3 82.7 96.2 CaiT-S36 [52] 68.4M 13.9 83.3 –

Wave-ViT-S� 22.7M 4.7 83.9 96.6 CrossViT-15-384 [5] 28.5M 21.4 83.5 –

Base BoTNet-S1-128 [47] 75.1M 19.3 83.5 96.5

ResNet-101 [21] 44.6M 7.9 80.0 95.0 Swin-B [35] 88.0M 15.4 83.5 96.5

BoTNet-S1-59 [47] 33.5M 7.3 81.7 95.8 PVTv2-B4 [59] 62.6M 10.1 83.6 96.7

T2T-ViT-19 [68] 39.2M 8.5 81.9 95.7 Twins-SVT-L [9] 99.3M 15.1 83.7 96.5

CvT-21 [62] 32.0M 7.1 82.5 – RegionViT-B+ [6] 73.8M 13.6 83.8 –

Swin-S [35] 50.0M 8.7 83.2 96.2 Focal-Base [66] 89.8M 16.0 83.8 96.5

Twins-SVT-B [9] 56.1M 8.6 83.2 96.3 PVTv2-B5 [59] 82.0M 11.8 83.8 96.6

SE-CoTNetD-101 [30] 40.9M 8.5 83.2 96.5 SE-CoTNetD-152 [30] 55.8M 17.0 84.0 97.0

PVTv2-B3 [59] 45.2M 6.9 83.2 96.5 LV-ViT-M� [24] 55.8M 16.0 84.1 96.7

RegionViT-M+ [6] 42.0M 7.9 83.4 – VOLO-D2� [69] 58.7M 14.1 85.2 –

VOLO-D1� [69] 26.6M 6.8 84.2 – VOLO-D3� [69] 86.3M 20.6 85.4 –

Wave-ViT-B� 33.5M 7.2 84.8 97.1 Wave-ViT-L� 57.5M 14.8 85.5 97.3
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from scratch on the training set, and both top-1 and top-5 accuracies metrics are
used to evaluate the trained backbones on the validation set. During training,
we follow the setups in [69] by applying RandAug [10], CutOut [76], and Token
Labeling objective with MixToken [24] for data augmentation. We adopt the
AdamW optimizer [39] with a momentum of 0.9. In particular, the optimization
process includes 10 epochs of linear warm-up and 300 epochs with cosine decay
learning rate scheduler [38]. The batch size is set as 1,024, which is distributed
on 8 V100 GPUs. We fix the learning rate and weight decay as 0.001 and 0.05.

Performance Comparison. Table 2 summarizes the performance comparisons
between the state-of-the-art vision backbones and our Wave-ViT variants. Note
that the most competitive ViT backbones VOLO variants (i.e., VOLO-D1�,
VOLO-D2�, and VOLO-D3�) are trained with additional Token Labeling objec-
tive with MixToken [24] and convolutional stem (conv-stem) [57] for better patch
encoding. We also adopt the same upgraded strategies to train our Wave-ViT,
yielding the variants in each size (i.e., Wave-ViT-S�, Wave-ViT-B�, Wave-ViT-
L�). Moreover, for fair comparison with other vision backbones without these
strategies, we also implement a degraded version of Wave-ViT in Small size
without Token Labeling objective and conv-stem (i.e., Wave-ViT-S). As shown
in this table, under the similar GFLOPs for each group, our Wave-ViT vari-
ants consistently achieve better performances against the existing vision back-
bones, including both CNN backbones (e.g., ResNet and SE-ResNet), single-scale
ViTs (e.g., TNT, CaiT, and CrossViT), and multi-scale ViTs (e.g., Swin, Twins-
SVT, PVTv2, VOLO). In particular, under the Base size, the Top-1 accuracy
score of Wave-ViT-B� can reach 84.8%, which leads to the absolute improve-
ment of 0.6% against the best competitive VOLO-D1� (Top-1 accuracy: 84.2%).
Moreover, when removing the upgraded strategies as in VOLO for training, our
Wave-ViT-S still manages to outperform the best multi-scale ViT in Small size
(PVTv2-B2). These results generally demonstrate the key advantage of unifying
self-attention learning and invertible down-sampling with wavelet transforms
to facilitate visual representation learning. Most specifically, under the same
Large size, compared to ResNet-152 and SE-ResNet-152 that solely capitalize on
CNN architectures, the single-scale ViTs (e.g., TNT-B, CaiT-S36, and CrossViT-
15-384) outperform them by capturing long-range dependency via Transformer
structure. However, the performances of CaiT-S36 and CrossViT-15-384 are still
lower than most multi-scale ViTs (PVTv2-B5 and VOLO-D3�) that aggregates
multi-scale contexts for image recognition. Furthermore, instead of using irre-
versible down-sampling for self-attention learning in PVTv2-B5, our Wave-ViT-
L� enables invertible down-sampling with wavelet transforms, and thus achieves
better efficiency-vs-accuracy trade-off. It is worthy to note that VOLO-D3� does
not employ down-sampling operations to reduce computational cost for high-
resolution inputs, but instead directly reduces the input resolution (28 × 28) at
initial stage. In contrast, Wave-ViT-L� keeps the high-resolution inputs (56×56),
and exploits wavelet transforms to trigger lossless down-sampling for multi-scale
self-attention learning, leading to performance boosts.
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4.2 Object Detection and Instance Segmentation on COCO

Dataset and Optimization Setups. Here we examine the pre-trained Wave-
ViT’s behavior on COCO for two tasks that localize objects ranging from
bounding-box level to pixel level, i.e., object detection and instance segmenta-
tion. Two mainstream detectors, i.e., RetinaNet [31] and Mask R-CNN [20], are
employed for each downstream task, and we replace the CNN backbones in each
detector with our Wave-ViT for evaluation. Specifically, each vision backbone
is first pre-trained over ImageNet1K, and the newly added layers are initialized
with Xavier [17]. Next, we follow the standard setups in [35] to train all mod-
els on the COCO train2017 (∼118K images). Here the batch size is set as 16,
and AdamW [39] is utilized for optimization (weight decay: 0.05, initial learn-
ing rate: 0.0001). All models are finally evaluated on the COCO val2017 (5K
images). For the downstream task of object detection, we report the Average
Precision(AP ) at different IoU thresholds and for three different object sizes
(i.e., small, medium, large (S/M/L)). For the downstream task of instance seg-
mentation, both bounding box and mask Average Precision (i.e., AP b, APm)
are reported. During training, we resize each input training image by fixing the
shorter side as 800 pixels and meanwhile making the longer side not exceeding
1,333 pixels. Note that for RetinaNet and Mask R-CNN, 1 × training schedule

Table 3. The performances of various vision backbones on COCO val2017 for object
detection and instance segmentation tasks. For object detection, we employ RetinaNet
as the object detector, and the Average Precision(AP ) at different IoU thresholds
or three different object sizes (i.e., small, medium, large (S/M/L)) are reported for
evaluation. For instance segmentation, we adopt Mask R-CNN as the base model, and
the bounding box and mask Average Precision (i.e., AP b and APm) are reported for
evaluation. We group all vision backbones into two categories: Small size and Base size.

Backbone RetinaNet 1x [31] Mask R-CNN 1x [20]

AP AP50 AP75 APS APM APL AP b AP b
50 AP b

75 AP m AP m
50 AP m

75

ResNet50 [21] 36.3 55.3 38.6 19.3 40.0 48.8 38.0 58.6 41.4 34.4 55.1 36.7

Swin-T [35] 41.5 62.1 44.2 25.1 44.9 55.5 42.2 64.6 46.2 39.1 61.6 42.0

Twins-SVT-S [9] 43.0 64.2 46.3 28.0 46.4 57.5 43.4 66.0 47.3 40.3 63.2 43.4

RegionViT-S [6] 43.9 – – – – – 44.2 – – 40.8 – –

PVTv2-B2 [59] 44.6 65.6 47.6 27.4 48.8 58.6 45.3 67.1 49.6 41.2 64.2 44.4

Wave-ViT-S 45.8 67.0 49.4 29.2 50.0 60.8 46.6 68.7 51.2 42.4 65.5 45.8

ResNet101 [21] 38.5 57.8 41.2 21.4 42.6 51.1 40.4 61.1 44.2 40.4 61.1 44.2

ResNeXt101-32x4d [64] 39.9 59.6 42.7 22.3 44.2 52.5 41.9 62.5 45.9 37.5 59.4 40.2

Swin-S [35] 44.5 65.7 47.5 27.4 48.0 59.9 44.8 66.6 48.9 40.9 63.4 44.2

Twins-SVT-B [9] 45.3 66.7 48.1 28.5 48.9 60.6 45.2 67.6 49.3 41.5 64.5 44.8

RegionViT-B [6] 44.6 – – – – – 45.4 – – 41.6 – –

PVTv2-B3 [59] 45.9 66.8 49.3 28.6 49.8 61.4 47.0 68.1 51.7 42.5 65.7 45.7

Wave-ViT-B 47.2 68.2 50.9 29.7 51.4 62.3 47.6 69.1 52.4 43.0 66.4 46.0
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Table 4. The performances of various vision backbones on COCO val2017 for object
detection. Four kinds of object detectors, i.e., GFL [28], Sparse RCNN [49], Cascade
Mask R-CNN [3], and ATSS [73] in mmdetection [7], are adopted for evaluation. We
report the bounding box Average Precision (AP b) in different IoU thresholds.

Backbone Method AP b AP b
50 AP b

75 Backbone Method AP b AP b
50 AP b

75

ResNet50 [21] GFL [28] 44.5 63.0 48.3 ResNet50 [21] Sparse R-CNN [49] 44.5 63.4 48.2

Swin-T [35] 47.6 66.8 51.7 Swin-T [35] 47.9 67.3 52.3

PVTv2-B2 [59] 50.2 69.4 54.7 PVTv2-B2 [59] 50.1 69.5 54.9

Wave-ViT-S 50.9 70.2 55.4 Wave-ViT-S 50.7 70.4 55.5

ResNet50 [21] Cascade

Mask

R-CNN [3]

46.3 64.3 50.5 ResNet50 [21] ATSS [73] 43.5 61.9 47.0

Swin-T [35] 50.5 69.3 54.9 Swin-T [35] 47.2 66.5 51.3

PVTv2-B2 [59] 51.1 69.8 55.3 PVTv2-B2 [59] 49.9 69.1 54.1

Wave-ViT-S 52.1 70.7 56.6 Wave-ViT-S 50.7 69.8 55.5

(i.e., 12 epochs) is adopted to train the two mainstream detectors. In addition
to RetinaNet, we also include four state-of-the-arts detectors (GFL [28], Sparse
RCNN [49], Cascade Mask R-CNN [3], and ATSS [73]) for object detection task.
Following [35,59], we utilize 3 × schedule (i.e., 36 epochs) with multi-scale strat-
egy for training, and the shorter side of each input image is randomly resized
within the range of [480, 800] while the longer side is forced to be less than 1,333
pixels.

Performance Comparison. Table 3 lists the performance comparisons across
different pre-trained vision backbones under the base detector of RetinaNet and
Mask R-CNN for object detection and instance segmentation, respectively. Note
that we follow the evaluation for image recognition by grouping all the pre-
trained backbones into two categories (i.e., Small size and Base size). As shown in
this table, the performance trends in each downstream task are similar to those in
image recognition task. Concretely, under the similar model size for each group,
the multi-scale ViT backbones (e.g., Swin-T/S and PVTv2-B2/B3) consistently
exhibit better performances than CNN backbones (e.g., ResNet50/101) across all
evaluation metrics. Furthermore, by capitalizing on wavelet transforms to enable
lossless down-sampling in multi-scale self-attention learning, Wave-ViT variants
outperform PVTv2-B2/B3 that explore sub-optimal down-sampling with pool-
ing kernels. The results confirm that unifying self-attention learning and lossless
down-sampling with wavelet transforms can improve the transfer capability of
pre-trained multi-scale representations on dense prediction tasks.

To further verify the generalizability of the pre-trained multi-scale features
via Wave-ViT for object detection, we evaluate various pre-trained vision back-
bones on four state-of-the-arts detectors (GFL, Sparse RCNN, Cascade Mask
R-CNN, and ATSS). Table 4 shows the detailed performances of four object
detectors with different pre-trained vision backbones under Small size. Similar
to the observations in the base detector of RetinaNet, our Wave-ViT-S achieves
consistent performance gains against both CNN backbone (ResNet50) and multi-
scale ViT backbones (Swin-T and PVTv2-B2) across all the four state-of-the-
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Table 5. The performances of various vision backbones on ADE20K validation dataset
for semantic segmentation. We employ the commonly adopted base model (UPerNet)
and report the mean IoU (mIoU) averaged over all classes for evaluation. We group all
vision backbones into two categories: Small size and Base size.

Small Base

Method Backbone mIoU Method Backbone mIoU

UPerNet [63] ResNet-50 [21] 42.8 UPerNet [63] ResNet-101 [21] 44.9

UPerNet [63] DeiT-S [51] 43.8 UPerNet [63] DeiT-B [51] 47.2

DeeplabV3 [8] ResNeSt-50 [70] 45.1 DeeplabV3 [8] ResNeSt-101 [70] 46.9

Semantic FPN [25] PVTv2-B2 [59] 45.2 Semantic FPN [25] PVTv2-B3 [59] 47.3

UPerNet [63] RegionViT-S [6] 45.3 UPerNet [63] RegionViT-B [6] 47.5

UPerNet [63] Swin-T [35] 45.8 UPerNet [63] Twins-SVT-B [9] 48.9

UPerNet [63] Twins-SVT-S [9] 47.1 UPerNet [63] Swin-S [35] 49.5

UPerNet [63] Wave-ViT-S 49.6 UPerNet [63] Wave-ViT-B 51.5

arts detectors. This again validates the advantage of integrating multi-scale self-
attention with invertible down-sampling in our Wave-ViT for object detection.

4.3 Semantic Segmentation on ADE20K

Dataset and Optimization Setups. We next evaluate our pre-trained Wave-
ViT in the downstream task of semantic segmentation on ADE20K dataset. This
dataset is the most typical benchmark for evaluating semantic segmentation tech-
niques, which consists of 25K images (20K training images, 2K validation images,
and 3K testing images) derived from 150 semantic categories. Here we choose the
commonly adopted UPerNet [63] as the base model for this task and the CNN
backbone in primary UPerNet is replaced with our Wave-ViT. During training,
we train the models on 8 GPUs for 160K iterations via AdamW [39] optimizer
(batch size: 16, initial learning rate: 0.00006, weight decay: 0.01). Both linear
learning rate decay scheduler and a linear warmup of 1,500 iterations are utilized
for optimization. The scale of input images is fixed as 512 × 512. We perform
the random horizontal flipping, random photometric distortion, and random re-
scaling within the ratio range [0.5, 2.0] as data augmentations. We report the
metric of mean IoU (mIoU) averaged over all classes for evaluation. For fair
comparison with other vision backbones for semantic segmentation downstream
task, we set all the hyperparameters and detection heads as in Swin [35].

Performance Comparison. Table 5 shows the mIoU scores of different pre-
trained vision backbones under the base models (e.g., UPerNet, DeeplabV3,
Semantic FPN) for semantic segmentation. As in the evaluation for image recog-
nition, object detection, and instance segmentation tasks, we group all the pre-
trained backbones into two categories (i.e., Small size and Base size). Similarly,
by upgrading multi-scale self-attention learning with Wavelet based invertible
down-sampling, our Wave-ViT variants yield consistent gains against both CNN
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Fig. 3. Performance comparisons across different ways on designing self-attention
blocks with down-sampling in multi-scale ViT backbones (under Small size): (a) self-
attention block with irreversible down-sampling operation of average pooling, (b) self-
attention block with irreversible down-sampling operation of pooling kernels, (c) a
degraded version of Wavelets block that solely equips self-attention block with invert-
ible down-sampling via wavelet transforms (DWT), and (d) the full version of our
Wavelets block with inverse wavelet transforms (IDWT).

backbones (e.g., ResNet-50/101 and ResNeSt-50/101) and existing multi-scale
ViT backbones (e.g., Swin-T/S and Twins-SVT-S/B). Concretely, under a com-
parable model size within each group, Wave-ViT-S/B achieves 49.6%/51.5%
mIoU on ADE20K validation dataset, which absolutely improves the best com-
petitor Twins-SVT-S/Swin-S (47.1%/49.5%) with 2.5%/2.0%. The results basi-
cally demonstrates the superiority of Wave-ViT for semantic segmentation task.

4.4 Ablation Study

We investigate how each design in Wavelets block influences the overall perfor-
mance on ImageNet1K for image recognition, as summarized in Fig. 3. All the
variants here are constructed under Small size for fair comparison.

Block (a) is a typical self-attention block with irreversible down-sampling.
By directly operating average pooling over the input keys/values, (a) signifi-
cantly reduces the computational cost for self-attention learning and the Top-1
score achieves 82.0%. Block (b) is another typical self-attention block with irre-
versible down-sampling via pooling kernels (convolution), rather than average
pooling in (a). (b) reduces the spatial dimension of keys/values through pool-
ing kernels, leading to the same performances as in (a). However, the number of
parameters is inevitably increased. Block (c) can be regarded as a degraded ver-
sion of our Wavelets block, that solely equips self-attention block with invertible
down-sampling based on wavelet transforms (DWT). Compared to the most effi-
cient (a) with irreversible down-sampling, the Top-1 score of (c) increases from
82.0% to 82.5%. This validates the effectiveness of unifying self-attention block
and invertible down-sampling without information dropping. Block (d) (i.e., the
full version of Wavelets block) further upgrades (c) by additionally exploiting
inverse wavelet transforms (IDWT) to strengthen outputs with enlarged recep-
tive field. Such design leads to performance boosts in Top-1 and Top-5 scores,
with negligible increase in computational cost/memory.
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Fig. 4. Visualization of Score-CAM [54] for PVTv2-B2 [59] and our Wave-ViT-S on
six images in ImageNet1K dataset.

4.5 Visualization of Learnt Visual Representation

In order to further explain the visual representations learnt by our Wave-ViT,
we produce the saliency map through Score-CAM [54] to identify the importance
of each pixel in presenting the class discrimination of the input image. Figure 4
visualizes the saliency map derived from the visual representations learnt by
two backbones with similar model size (PVTv2-B2 and our Wave-ViT-S). As
illustrated in the figure, Wave-ViT-S consistently shows higher concentration
at the semantically relevant object than PVTv2-B2, which validates that the
representations learnt by Wave-ViT-S are more robust.

5 Conclusions

In this paper, we delve into the idea of unifying typical Transformer mod-
ule and invertible down-sampling, thereby pursuing efficient multi-scale self-
attention learning with lossless down-sampling. To verify our claim, we present
a new principled Transformer module, i.e., Wavelets block, that capitalizes
on Discrete Wavelet Transform (DWT) to perform invertible down-sampling
over keys/values in self-attention learning. In addition, we adopt inverse DWT
(IDWT) to reconstruct the down-sampled DWT outputs, which are utilized to
strengthen the outputs of Wavelets block by aggregating local contexts with
enlarged receptive field. Our Wavelets block is appealing in view that it is feasible
to construct multi-scale ViT backbone with Wavelets blocks, with light computa-
tional cost/memory budget. In particular, by operating stacked Wavelets blocks
over multi-scale features in four-stage architecture, a series of Wavelet Vision
Transformer (Wave-ViT) are designed with different model sizes. We empirically
validate the superiority of Wave-ViT over the state-of-the-art multi-scale ViTs
for several mainstream CV tasks, under comparable numbers of parameters.
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