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Abstract. Shortcut learning occurs when a deep neural network overly
relies on spurious correlations in the training dataset in order to solve
downstream tasks. Prior works have shown how this impairs the composi-
tional generalization capability of deep learning models. To address this
problem, we propose a novel approach to mitigate shortcut learning in
uncontrolled target domains. Our approach extends the training set with
an additional dataset (the source domain), which is specifically designed to
facilitate learning independent representations of basic visual factors. We
benchmark our idea on synthetic target domains where we explicitly con-
trol shortcut opportunities as well as real-world target domains. Further-
more, we analyze the effect of different specifications of the source domain
and the network architecture on compositional generalization. Our main
finding is that leveraging data from a source domain is an effective way
to mitigate shortcut learning. By promoting independence across differ-
ent factors of variation in the learned representations, networks can learn
to consider only predictive factors and ignore potential shortcut factors
during inference.

1 Introduction

Humans seamlessly categorize objects in the real world by their basic visual factors
(e.g., shape, texture, color). For example, we perceive a red fire truck as a object
with red color and the shape of a fire truck. We are able to do this because we have
learned abstract concepts of shape and color, which easily generalize to common
objects including unseen, out-of-distribution (OOD) data [28]. Unlike humans,
modern deep neural networks (DNNs) do not possess a generalized notion of basic
visual factors and therefore tend to perform poorly on OOD data. This is especially
true when networks exploit shortcuts inherent in the data, i.e., when they exces-
sively rely on visual factors that are easy to learn and predictive on in-distribution
data but fail to generalize on OOD samples [8,27]. For example, DNNs trained on
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Fig. 1. Our task is to predict attribute/object labels in the target domain whose cor-
related training labels induce high shortcut opportunities. To improve generalization,
we propose to augment the training set with a cheap source domain to learn repre-
sentations of visual factors. In this given example, attribute and object in the target
domain associate to color and shape factors respectively.

a dataset in which all fire trucks are red might use color as a shortcut to recognize
fire trucks while ignoring the more semantically meaningful attribute of shape. As
a result, such a network may misclassify a yellow fire truck as a school bus.

In this work, we study the ability of DNNs to recognize OOD samples in the
context of compositional generalization, i.e., the ability to understand unseen
combinations of known elements. While a few approaches have already been
proposed to improve generalization in compositional zero-shot recognition tasks
[2,22,23], the performance of all these methods heavily depends on the number
of combinations observed during training. This is due to the fact that a low
number of seen combinations generates more shortcut opportunities [8]. A näıve
remedy to shortcut learning is to collect missing combinations but this could
be costly as some combinations can be rare in practice. In this work, we aim
to investigate the underpinning of compositional generalization in DNNs and
hence focus on the challenging and unexplored regime in which different visual
attributes are fully-correlated in the training data (e.g. where one attribute such
as color is a deterministic function of another one, such as shape). In the rest of
this paper, we will refer to the domain in which we aim to achieve compositional
generalization as the target domain.

We propose a novel approach to mitigate shortcut learning in such a target
domain by introducing a well-controlled source domain in the form of an addi-
tional training dataset, which can be cheaply generated. This source dataset is
specifically designed to facilitate learning of basic visual factors by constrain-
ing them to be uncorrelated (all factor combinations appear uniformly during
training). With this source dataset, we aim to learn independent representations
of generic visual factors in order to improve OOD generalization in the target
domain. Overview of our setup is shown in Fig. 1. We show practical benefits
of such a simple and easy-to-generate source domain for improving the perfor-
mance across multiple, more complex, target domains. Our approach provides a
low-cost and effective strategy to improve compositional generalization.

Considering our source dataset, we employ DiagVib [6], a framework to gen-
erate datasets whose visual factors (i.e., shape, color, texture, lightness and
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background) can be customized (see Fig. 3). These factors are suitable for our
purpose for the following reasons. Firstly, they are generic for common objects.
Additionally, as suggested by previous studies [9,27], some visual factors (e.g.,
background and texture) are likely to introduce spurious correlations while other
factors (e.g., shape) are more robust when used for recognizing objects. By
including these key factors in the source dataset, our models can learn to focus
more on important factors, ignore potential shortcut factors and thus improve
the models’ robustness to shortcuts.

Our contributions are as follows: firstly, we introduce a novel framework to
improve compositional generalization in fully-correlated target domains. This is
achieved by leveraging a source domain in order to alleviate shortcut learning.
Secondly, we propose a simple network architecture exploiting the source domain
to learn independent representations of visual factors. We also show that, if the
target domain is not strictly fully-correlated, we can require less a priori knowl-
edge for our approach. Lastly, we perform ablation studies to investigate effects
of different source dataset configurations. Our main finding is that the source
domain can act as a regularizer that encourages the internal representations of
basic visual factors in DNNs to be less entangled. We show that this consistently
improves compositional generalization across different target domains.

2 Related Works

Compositional Generalization (CG). We study CG in the context of com-
positional zero-shot learning, where the goal is to recognize images of unseen
attribute-object combinations given only some combinations seen during train-
ing. A simple baseline VisProd [19,22] uses multiple classifiers to predict
attribute and object labels. More recently, [2,14,17,21–23] learn to map images
and labels (i.e., attribute-object combinations) to their joint feature space. It is
commonly assumed that the same object can be seen in combination with cer-
tain number of attribute values during training. In our work, we study the corner
case where the number of seen combinations is minimal, e.g., a fully-correlated
attribute-object combinations setting, which introduces severe shortcut oppor-
tunities. A recent work [2] shows dramatic performance degradation of DNNs
when reducing the number of seen combinations. The objective of this work is to
mitigate this effect by incorporating a suitable source domain. We remark that,
in most CG approaches, the label space has only two dimensions (i.e., attribute
and object types). Instead, in our work the label space of the source domain is
not restricted to two dimensions but can be as high-dimensional as the number
of annotated factors. In particular, we consider basic visual factors as considered
in [6], which are more likely to generalize across different tasks.

Domain Generalization. The aim of domain generalization is to learn models
that generalize to unseen domains at test time. The problem we address in this
work is therefore related to this line of research. More specifically, our problem
setting loosely resembles Heterogeneous Domain Generalization (HeDG) [12,13,
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26,30,31], because we assume that the label distributions in the source and target
domains have different, possibly disjoint, support (e.g., the labels represent objects
in the source domain and animals in the target domain). Nevertheless, it should
be noted that our work stems from a different motivation compared to the domain
generalization literature. Unlike domain generalization, we do not assume the tar-
get data distribution to be unavailable during training. Instead, we assume to have
access to a heavily biased sample from the target domain. From this perspective,
our setup is also related to domain adaptation [5,7], where training is performed
on both the source and target domains together.

Learning Independent Representations. The topic of compositional gener-
alization is also linked to the notion of disentanglement in generative modeling.
The goal of disentangled representation learning is to construct a compact and
interpretable latent representation, by discovering independent factors of varia-
tion (FoVs) in the data [4,11,24]. Most methods proposed in the disentanglement
literature assume statistical independence between the factors of variation and
perform learning without supervision. Thus, they are predominantly trained and
evaluated on synthetic data where the ground truth FoVs are perfectly uncorre-
lated [16]. This is an idealized setting, which is almost never encountered in the
real world. Therefore, the usefulness and generalization ability of these meth-
ods when the training data is biased remains unclear. For instance, a recent
large-scale empirical study found that several state-of-the-art methods from the
disentanglement literature fail to disentangle pairs of correlated factors [25]. Our
work is also concerned with learning independent representations of basic visual
factors, but, as opposed to prior works, we specifically focus on the problem
of mitigating shortcut learning. It should be noted that, in contrast to unsu-
pervised representation learning, we train representations of visual factors with
factor annotations. However, we will discuss a scenario in which unsupervised
representation learning can be integrated into our framework in Sect. 4.3.

3 Methodology

3.1 Problem Formulation

Our task measures generalization performance in the presence of shortcuts from
the perspective of compositional generalization. Specifically, let us consider a
target domain/dataset t, where each sample consists of an image xt ∈ Xt ⊂ I
containing a single object. Such object is associated with one attribute: yt =
(a, o) ∈ Yt = At × Ot, where At = {a1, a2, . . .} and Ot = {o1, o2, . . .} are sets of
attribute and object type values respectively. In our task, not all attribute-object
combinations are seen during training. The goal is to learn a model for the joint
probability distribution p(a, o | xt) which yields good predictive performance on
images of both seen and unseen attribute-object combinations.

The target dataset may be heavily biased, and thus naively training a
classifier to predict object and attribute types can lead to shortcut learning
resulting in poor OOD generalization. We define a dataset in a target domain,
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Fig. 2. Architectures with different image representations. a) Global: a single vector
contains all visual clues. b) Factor: multiple factor representations encode different
visual factors provided in source domain.

to be fully-correlated when each annotated attribute label appears together with
only one annotated object label or vice versa. We aim to investigate whether
introducing an additional, specifically designed, dataset from a different source
domain s can discourage DNNs from exploiting shortcuts when trained for
attribute and object prediction in the target domain. For this purpose, each
image xs ∈ Xs ⊂ I in the source domain s is assumed to be labeled with a tuple
ys = (f1, f2, . . . , fK) ∈ F1

s × F2
s × . . . × FK

s , where K is the number of factors
and each Fk

s denotes the set possible values for an individual basic visual factor
capturing generic image properties such as shape, color, texture, etc.

To utilize source factor information in the target domain, we build an asso-
ciation matrix that models the connection between different source factor repre-
sentations to target attribute or object. For fully-correlated target domains, we
assume that the association is given as a priori knowledge regarding the possible
source factor(s) the model is expected to rely to avoid shortcuts. For example, in
the Color-Fruit dataset (Fig. 4c/4d), attribute and object can be manually asso-
ciated to color and shape factors respectively. This a priori knowledge require-
ment can be relaxed in semi-correlated setting as presented in Sect. 3.4.

3.2 Network Architecture

Architecture. We study a simple baseline model (similar to VisProdNN [22]),
which naturally lends itself to exploiting the availability of a source dataset.
The baseline model (Fig. 2a) consists of an encoder backbone G and multiple
prediction heads. It maps an input image to a global latent representation, which
is then used to predict both the attribute and object labels. A crucial limitation
of this model is that, without additional inductive biases, its latent representation
will encode all predictive image factors. This makes the model more vulnerable
to learning shortcuts, since it will be free to rely on easy to learn, predictive
signals irrespective of their (in)ability to generalize to novel combinations [10].



Overcoming Shortcut Learning Using a Source Domain 299

We extend the model of Fig. 2a by splitting the latent representation into
multiple factor representations, as in Fig. 2b. As opposed to Fig. 2a, the encoder
G produces K non-overlapping factor representations. Each representation is
intended to contain only information related to its corresponding basic factor
(e.g., shape, color, texture). The encoder’s output can then be written as G(x) =
Z =

[
z1 z2 . . . zK

] ∈ R
D×K (D is the size of a factor representation).

The prediction heads are divided in two subsets for predicting labels in source
and target domains respectively. While in principle we could feed Z as an input
to all the prediction heads, as discussed above, this approach leads to poor
compositional generalization. Instead, we introduce an additional inductive bias,
namely that each source prediction logit should only depend on a single factor
representation. Therefore, predictions for the source data Hs are:

ŷs = Hs(Z) =
[
h1
s(z1) h2

s(z2) . . . hK
s (zK)

]
, (1)

where ŷs =
[
ŷ1
s ŷ2

s . . . ŷK
s

]
contains the predicted factor values for a sample from

the source domain. Ideally, each ŷk
s should only depend on zk to discourage

the latent representation from encoding information irrelevant to predict the k-
th factor. Due to biases in the target domain, and in the absence of additional
constraints, the architecture introduced above does not ensure invariance of every
representation to the other factors. We explore different strategies to promote
independence of the learned representations in Sect. 3.3.

In fully-correlated scenario, the association matrix can manually be defined
as a binary matrix A ∈ {0, 1}K×2 where Ak1 and Ak2 are set to 1 only if
the k-th factor informs the attribute and object prediction respectively. The
representations of attribute (za) and object (zo) can be obtained by

[
za zo

]
=

ZA. The prediction on target data can then be computed as follows:

ŷt = Ht(ZA) =
[
ha
t (za) ho

t (zo)
]

, (2)

where ŷt = (â, ô) is a tuple of the predicted attribute and object labels.

Loss. To train the encoder and the predictors, we use a linear combination of the
two loss terms Lsource = 1

K

∑
∀k CE(ŷk

s , yk
s ) and Ltarget = 1

2

∑
l∈{a,o} CE(ŷl

t, y
l
t),

where CE denotes the cross-entropy loss. λ ≥ 0 is a hyperparameter weighting
the importance of the regularizing loss term Lsource, which encourages a factor
representation via the source samples.

Training. An equal number of samples from the source and target domains are
sampled for every minibatch and fed to the network in order to compute Lsource

and Ltarget separately. The network is optimized via gradient-based minimiza-
tion of the total loss. In this regard, all source samples will affect G and Hs and
all target samples will affect G and Ht.

3.3 Additional Constraints

The factor representations {zk}Kk=1 may still be correlated when using the loss
and model architecture described above. Consequently, in the target domain,
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za (attribute representation) may be predictive of the object label, and zo (object
representation) may be predictive of the attribute label. These are unintended
shortcuts that lead to poor compositional generalization. We explore two addi-
tional constraints to further encourage independence among factor representa-
tions: the Isolated Latent Constraint and the Cross Independence Constraint.

Isolated Latent (IL) Constraint completely prevents factor representations
from being influenced by the target domain. While this suppresses the effect of
biases in the target dataset, it may harm discriminative performance in the target
domain. This constraint is implemented by stopping gradients from Ltarget to
the encoder G.

Cross-Factor Independence (CI) Constraint promotes independence of
factor representations, by adding a set of small auxiliary networks

{
H ′

k1k2

}
k1 �=k2

for cross-factor predictions. While each H ′
k1k2

is trained to predict yk2
s from zk1 ,

G is trained to produce Z such that all H ′ are poor predictors. More details
are presented in the Appendix A.8. Although the CI constraint only encourages
independence with respect to the source domain, we investigate if this property
can be transferred to target domains in Sect. 4.2.

3.4 Learning Factor Association Matrix A

In non-fully-correlated target domains (e.g., semi-correlated setting mentioned
in Sect. 4.3), we can relax the requirement that the association matrix A must be
manually given a priori and, instead, learn it in an end-to-end fashion together
with the network parameters. To this end, we apply a continuous relaxation of
the binary matrix A, and allow it to contain real numbers within [0, 1] such that
each column sums to 1 (i.e. overall weightage across source factors) to maintain
scales of the attribute/object representations using the softmax function.

We found that näıvely learning A without any additional constraints can
lead to poor properties of the association matrix. Ideally, the association matrix
should match the target attribute or object type to only one (or a few) robust
source factor(s), and ignore factors vulnerable to shortcuts. For this reason, we
propose to add an additional regularization LReg = αLEntropy + βLSuppress.

LEntropy is the sum of the entropy values of both columns of A. Minimizing
this entropy loss will reduce the number of source factors used to predict target
properties, encouraging only robust factors to be considered when minimizing
together with cross-entropy losses. On the other hand, LSuppress applies a regu-
larization along the rows of A to make sure no same source factor is predictive
of both target predictions. In particular, for each row i, if its maximum value
Aijmax is higher than a threshold τ , all other entries will be suppressed by adding(∑

j �=jmax Aij

)
∗ (sg(Aijmax) − τ) to the loss term. The symbol sg(Aijmax) indi-

cates the stop gradient operation, such that minimizing LSuppress only affects
the cell whose values are not maximum in each row. Detailed experiments on
the automatic learning of the association matrix are presented in Sect. 4.3.
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Fig. 3. Illustration of DiagVib-Caltech (main source dataset) showing its multiple inde-
pendent factors. More details of each factor is presented in the Appendix A.1. (Color
figure online)

4 Experiments

We conduct several experiments to understand how incorporating the source
domain affects compositional generalization in scenarios which are vulnerable to
shortcut learning. We start by describing our experiment setup below.

Datasets. We use the following datasets in our experiments:
DiagVib. [6] We extend the original framework to use shapes other than MNIST
to increase variances. Our main configurations based on this framework are a)
DiagVib-Caltech: With 50 non-animal shapes from Caltech101 [18] in 12 colors.
5 basic visual factors are available as shown in Fig. 3. This dataset is our main
source dataset. We will later show that compositional generalization can be
improved by this low-cost dataset even in more complex target domains. b)
DiagVib-Animal : With 10 animal shapes from [3] in 10 colors on 3 backgrounds
and scales (see Fig. 4a/4b).

Color-Fruit. This dataset is comprised of real fruit images (of 5 types) from
the Fruit-360 dataset [20]. Additionally, we control colors of the fruits using the
recolorization approach from [29] (see Fig. 4c/4d). More details on this dataset
generation are described in the appendix A.10.

AO-CLEVR. This dataset is proposed in [2] to benchmark compositional gener-
alization. It contains 3 basic shapes in 7 different colors. We will use this dataset
as an additional target domain. We simulate correlation between attributes and
objects by limiting one color to appear with only one shape during training.

Color-Fashion. This dataset is originally proposed in [15] in which each image
sample depicts a person dressed with cloth combinations. For each sample,
cloth type and color segmentations are provided. In this paper, original images
are cropped so that only one cloth type is appeared in individual images (see
Fig. 4e/4f). 5 cloth types (T-shirt, skirt, jeans, shoes and dress) and 5 colors
(Black, White, Yellow, Green and Blue) are selected from the original dataset.
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Fig. 4. Samples from target domains. A column of each grid corresponds to an object
type. Notice that each object (shape) corresponds to a single attribute (color) during
training (see a, c and e) but not during testing (see b, d and f). (Color figure online)

For all target domains in our work, if a manual factor association matrix
A is required for any algorithms, attribute and object types (i.e., shapes, fruit
types, cloth types) are associated to color and shape factors respectively. This is
intuitive since shape can robustly predict object types in general. Poorly assigned
association can lead to poor performance as detailed in the Appendix A.4.

Evaluation. We evaluate compositional generalization in the open world setting
as in [23] by computing predictive accuracies on seen and unseen attribute-object
combinations as well as their harmonic mean (HM). One difference to [23] is that,
for fair comparison, we do not use an additional hyperparameter (i.e. bias term)
to calibrate the likelihood of predicting unseen attribute-object combinations
(More details regarding the bias term are described in the Appendix A.6). During
testing, any attribute-object combinations in the target domain can appear. All
quantitative results are averaged across 6 different random training seeds.

Network Configurations. We follow the same convention as in [2,22,23] by
using ImageNet pretrained features from ResNet-50 as network inputs. G, Hs

and Ht are modeled as fully-connected networks. Factor-0 and FactorSRC refers
to our architecture when a source domain is ignored and used, respectively.
IL and CI constraints are appended as suffixes if the constraints are applied.
Also, we benchmark the architecture with the global image representation (Fig.
2a). Similarly, Global-0 and GlobalSRC denote its configurations where a source
domain is not incorporated and incorporated respectively. More implementation
details can be found in the Appendix A.5. The code for our implementation is
publicly available at https://github.com/boschresearch/sourcegen.

Baselines. We compare our approach against the following baselines (1)
LabelEmbed+ [22]: a vanilla baseline, which performs recognition with a joint
feature space for images and labels. (2) TMN [23], which employs automatic
network rewiring conditioned on attribute-object pair hypotheses. (3) CGE [21],
which exploits graph structure to regularize the joint feature space.

https://github.com/boschresearch/sourcegen
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4.1 Compositional Generalization in Fully-Correlated Scenario

We investigate the impact of using an uncorrelated source domain (all factor
combinations can appear uniformly) across different target domains whose labels
are fully-correlated. We compare several variants of our approach against base-
lines that do not use a source domain. The results are shown in Table 1.

We begin by noting that, without a source domain (first five rows), baselines
generally perform well only on the seen combinations but not on the unseen ones.
E.g., Factor-0 on the Color-Fruit dataset has seen accuracy of 100% compared
to only 2.9% on unseen combinations (Low seen accuracies of some baselines
are discussed in the Appendix A.6). This occurs as these networks are trained
only on the target datasets with correlated combinations so that they learn to
excessively exploit the easiest predictive visual factors present in the datasets. On
the unseen combinations, these predictive factors do not necessarily generalize
to the intended labels. This degrades the generalization of the networks.

In contrast, using a source domain (see FactorSRC variations) consistently
improves the HM accuracy by increasing accuracy on unseen combinations, at
the expense of a partial loss of performance on seen combinations. For example,
the FactorSRC-IL baseline on the Color-Fruit dataset has a seen accuracy of
95.5%, which is lower compared to baselines that do not use the source domain,
but in turn exhibits the highest unseen accuracy (40.7%). This shows a reduction
of shortcut learning. The same trend holds for all other datasets we consider,
with different seen/unseen accuracy trade-offs across datasets.

Compared to previous works, our results show that a single and simple source
domain improves generalization performance on unseen combinations across dif-
ferent target domains. An alternative näıve solution would be to collect data
corresponding to unseen combinations directly in the target domain and include
them in the training set. However, this is in practice not a viable solution: not
only is collecting data in a real-world target domain expensive but, perhaps more
importantly, the biases that affect the training set are often unknown, which
makes collecting an uncorrelated dataset difficult in practice. Rather, general-
ization improvement on those target domains can be achieved without much
additional costs if we have a universal (a source domain can be used for multi-
ple target domains) source domain at hand that can be generated cheaply. One
open problem is the trade-off between generalization and in-distribution accu-
racy, which in some cases is still sub-optimal, especially when the target domain
has a large domain shift from the source domain (see the drop of seen accuracy
of the FactorSRC-IL on the Color-Fashion dataset). Improving this trade-off is
an open research question leaving a scope for improvement in future works.

Global vs Factor Image Representations. Our results suggest that a factor
representation is essential to exploit the source domain for compositional gener-
alization. In fact, all GlobalSRC variations, in spite of incorporating the source
domain during training, exhibit significantly lower unseen accuracy compared
to the FactorSRC variants. This is due to the fact that the global represen-
tation contains information about all visual factors that are relevant for the
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Table 1. Accuracies on DiagVib-Animal, Color-Fruit, AO-CLEVR (each has random
chance accuracy of 1%, 4% and 4.7% respectively) and Color-Fashion target domains.
DiagVib-Caltech is used as the source domain.

Approach Use source? DiagVib-Animal Color-Fruit AO-CLEVR Color-Fashion

Seen Unseen HM Seen Unseen HM Seen Unseen HM Seen Unseen HM

LabelEmbed+ ✗ 69.6 7.3 13.2 100 6.8 12.5 100 0.7 1.5 37.0 7.1 11.9

TMN ✗ 95.5 0.1 0.3 100 0.0 0.0 100 0.0 0.0 86.5 0.7 1.4

CGE ✗ 43.8 9.1 15.0 84.4 7.8 14.3 94.0 9.3 16.9 21.6 20.5 21.0

Global-0 ✗ 96.1 0.0 0.1 100 1.5 3.0 100 0.3 0.5 93.6 0.0 0.0

Factor-0 ✗ 95.2 0.8 1.5 100 2.9 5.5 100 2.2 4.3 92.7 1.8 3.6

GlobalSRC ✓ 94.2 0.3 0.5 100 1.1 2.2 100 0.3 0.7 85.5 0.2 0.4

GlobalSRC-IL ✓ 92.4 0.3 0.7 100 0.7 1.4 98.9 0.8 1.6 61.8 2.2 4.2

FactorSRC ✓ 90.0 7.0 13.0 99.7 27.3 42.4 99.9 3.2 6.3 76.4 8.3 15.0

FactorSRC-CI ✓ 91.2 7.9 14.5 100 10.9 19.6 100 2.3 4.5 87.3 8.2 14.8

FactorSRC-IL ✓ 56.3 32.6 41.3 95.5 40.7 57.0 89.5 19.6 32.1 32.7 17.0 22.3

Table 2. Cross prediction accuracies on DiagVib-Animal. These are obtained by using
each associated factor representation (za or zo) to predict each target label (attribute
or object) with a linear model. Ideal independence representations will have high direct
prediction accuracies (predict their own labels well) but low cross prediction accuracies
(predict others’ labels poorly).

Approach Direct-Prediction ↑ Cross-Prediction ↓
za → â zo → ô za → ô zo → â

FactorSRC 62 86 77 44

FactorSRC-CI 54 83 73 35

FactorSRC-IL 58 85 46 23

object-attribute prediction task, thus offering easy-to-learn shortcuts that harm
generalization performance. In contrast, by using factor representations, we pro-
mote factor disentanglement such that shortcuts are harder to learn.

4.2 Impact of Additional Constraints

We investigate the role of IL and CI constraints. We begin by noting that
FactorSRC-IL gives the best HM accuracies across all target domains. Our
hypothesis is that this result can be explained by a larger cross-factor infor-
mation flow into the learned factor representations when adding the CI con-
straint compared to IL. To quantitatively measure the magnitude of cross-factor
leakage, we extract zk from all test samples and use them to predict all labels
(y1

s , y
2
s , . . . y

K
s for a source domain or â, ô for a target domain) with linear models.

Ideally, zk should predict its associated label (direct prediction) well but should
fail to predict other labels (cross-prediction). We present these results in Table 2.

First, we are interested whether the CI constraint can encourage indepen-
dence, not only in the source domain, but more importantly in the target domain.
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Table 3. Accuracies on various target domains in semi-correlated scenarios.

Approach DiagVib-Animal Color-Fruit Color-Fashion

Seen Unseen HM Seen Unseen HM Seen Unseen HM

TMN 83.4 3.2 6.2 99.9 3.1 6.0 68.6 3.7 6.9

CGE 51.8 1.9 3.6 72.0 8.4 15.0 42.5 13.0 19.9

FactorSRC-IL 52.8 35.0 42.1 93.7 36.3 52.3 32.5 15.0 20.5

FactorSRC-IL-LA 72.7 3.7 7.1 99.0 17.5 29.6 53.1 8.0 13.9

FactorSRC-IL-LAR 60.9 24.2 34.7 96.0 32.7 48.6 35.2 14.3 20.2

We observe that, while independence is promoted by FactorSRC-CI in the source
domain well (see the Appendix A.3), in the target domain, cross-prediction accu-
racies decrease only slightly compared to FactorSRC. Thereby, we can infer that
the independence enforced by LH′ in the source domain is not necessarily trans-
ferable to the target domain. One possible reason is that factor representations
are still affected by the dataset biases in the target domain via Ltarget.

On the other hand, dataset bias in the target domain cannot affect the factor
representations with the IL constraint. In Table 2, although an explicit indepen-
dent constraint is not introduced, the factor representations are less entangled in
the target domain, which is indicated by lower cross-prediction accuracies (while
high direct-prediction accuracies are preserved). The independence which is indi-
rectly encouraged only by Lsource enables shortcut-robust factor representations
resulting in better HM accuracies in Table 1.

4.3 Learning Association Matrix for Semi-correlated Scenario

The association matrix A must be known a priori for fully-correlated target
domains because the target data alone does not contain enough information
to distinguish object types from their attributes. For a semi-correlated target
domain, a more general solution is viable, in which the association matrix is
learned. In this case, each object type is observed in combination with at least
two attribute values. The additional combinations make it possible to distinguish
attribute from object type. In order to learn the association matrix A, we adopt
the algorithm introduced in Sect. 3.4.

Table 3 reports performance of different algorithms. FactorSRC-IL-LA and
FactorSRC-IL-LAR indicate algorithms that learn the association matrix with-
out and with association regularization respectively. Results suggest that näıvely
backpropagating through the matrix A is not an effective strategy as indicated
by the large gap between HM accuracy of FactorSRC-IL and FactorSRC-IL-LA.
This is due to an undesired property of the association matrix which we will later
investigate. Fortunately, this undesired property can be alleviated by incorpo-
rating our proposed regularization constraints during training, as indicate by the
comparable performance of FactorSRC-IL and FactorSRC-IL-LAR.

To qualitatively assess the correctness of learned associations, we visualize
A as heatmaps in Fig. 5a. In addition, we compare the association matrix that
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Fig. 5. Factor association matrices learned from different target datasets with various
approaches resulted from representative runs. Manual Association Matrix in Figure a
is only used for our manual association (not the groundtruth).

we manually assigned in FactorSRC* (Fig. 5a) and the learned ones. First we
consider the simplest target dataset, DiagVib-Animal. In this case, FactorSRC-
IL-LA, which does not apply any regularization, fails to retrieve the association
matrix (Fig. 5b). Even if the association matrix has the high weights that asso-
ciate shape factor to shape target and color factor to color target correctly,
the matrix is still far from sparse, making the model vulnerable to shortcuts
(see results in Table 3). On the other hand, when regularization constraints are
introduced in FactorSRC-IL-LAR, the learned matrix is more sparse and closer
to the manually assigned matrix (see Fig. 5c), which results in lower shortcut
vulnerability of the model and higher compositional generalization performance.

In the more realistic case of the Color-Fruit dataset, we find that with mul-
tiple random seeds, FactorSRC-IL-LAR can converge to two possible configu-
rations for the estimated matrix A. The first configuration (Fig. 5d) is close to
our manual association as it matches the fruit type to the shape factor. Another
configuration, on the other hand, associates the fruit type to the texture factor
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(Fig. 5e). This is not surprising, since in the color-fruit dataset, both shape and
texture factors are predictive of fruit type. The same observation has already
been made in the context of conventional image classification [9] especially with
complex object shapes. We observed the same behaviour in the case of the Color-
Fashion dataset where the learned matrix associates garment type to the texture
factor (Fig. 5f). Another advantage of our approach indicated by this observa-
tion is that it yields higher model interpretability, as we can understand which
visual factors are important for network predictions.

The fact that learning of the association is possible when target datasets are
not fully-correlated makes our approach well suited to practical applications.
As the association is determined automatically, minimal a priori knowledge is
required. In other words, factor representations can also be learned from images by
any approaches including unsupervised representation learning that disentangle
image representations into multiple independent factor representations [11].

4.4 Properties of the Source Domains

We also investigate the properties of source domains which encourage generaliza-
tion. Our main findings can be summarized as follows: first, basic visual factors
represented in the source domain should be sufficiently diverse and aligned with
visual properties of the target data. Second, the fact that all factor combinations
are available in the source domain during training is crucial. This allows deep
networks to learn meaningful representation for each factor. Lastly, large intra-
class variation of factors is also important to encourage better generalization.
More details of our ablation studies can be found in the Appendix A.2.

5 Conclusion

We study vulnerability of DNNs to shortcuts by evaluating their compositional
generalization on target domains with correlated attribute-object combinations.
We provide empirical evidence that incorporating an additional source domain can
improve generalization on unseen combinations on target domains. The source
domain enables certain networks to represent inputs in terms of multiple inde-
pendent visual factors. From our findings, the impact of the source domain on
compositional generalization relies on two major conditions: (1) Choice of net-
work model: networks should have internal representations in which visual fac-
tors are disentangled and independent with respect to target domains (2) Choice
of source domain: the source domain should be uncorrelated and cover main basic
factors. The fact that our source domain is simple also shows a practical benefit
that performance on certain target tasks can efficiently improve using an easy-
to-generate source domain. This is relatively cheaper compared to acquiring sam-
ples from complex target domains. If target domains are not fully-correlated, some
requirements of manual labels/annotations can be relaxed, leading to more prac-
tical applications of this work. We hope this work will serve as an inspiration to
integrate inductive biases in the forms of datasets and network design.
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