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Abstract. Automatic Check-Out (ACO) aims to accurately predict the
presence and count of each category of products in check-out images,
where a major challenge is the significant domain gap between train-
ing data (single-product exemplars) and test data (check-out images).
To mitigate the gap, we propose a method, termed as PSP, to perform
Prototype-based classifier learning from Single-Product exemplars. In
PSP, by revealing the advantages of representing category semantics, the
prototype representation of each product category is firstly obtained from
single-product exemplars. Based on the prototypes, it then generates cat-
egorical classifiers with a background classifier to not only recognize fine-
grained product categories but also distinguish background upon product
proposals derived from check-out images. To further improve the ACO
accuracy, we develop discriminative re-ranking to both adjust the pre-
dicted scores of product proposals for bringing more discriminative abil-
ity in classifier learning and provide a reasonable sorting possibility by
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considering the fine-grained nature. Moreover, a multi-label recognition
loss is also equipped for modeling co-occurrence of products in check-out
images. Experiments are conducted on the large-scale RPC dataset for
evaluations. Our ACO result achieves 86.69%, by 6.18% improvements
over state-of-the-arts, which demonstrates the superiority of PSP. Our
codes are available at https://github.com/Hao-Chen-NJUST/PSP.

Keywords: Automatic check-out · Prototype · Classifier learning

Fig. 1. (a) shows the significant domain gap between single-product exemplars (as
training) and check-out images (as testing) in Automatic Check-Out (ACO). (b) illus-
trates the basic idea of our Prototype-based classifier learning with Single-Product
exemplars (PSP) method. To mitigate this gap, we hereby develop a prototype-based
classifier generator to learn both product categorical classifiers and a background clas-
sifier based product prototypes to recognize product proposals derived from the input
check-out image, and finally return a shopping list.

1 Introduction

As a crucial field of intelligent retail [7,8,17,29,35,50], Automatic Check-Out
(ACO) [26,39,41,46] has been evolving and promoting in recent years. The basic

https://github.com/Hao-Chen-NJUST/PSP
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design requirement for an automatic check-out system is to automatically iden-
tify and count the products purchased by customers. Thus, how to accurately
count the fine-grained subordinate categories and quantities of products in check-
out images becomes a key task in ACO [21,41,46].

There exist three main challenges in ACO [41], i.e., the large-scale data of
products images, the domain gap between training and test (cf. Fig. 1 (a)), and
the fine-grained [42,43] characteristics of product categories. To deal with these
issues, Wei et al. [41] proposed a baseline approach based on object detection
to achieve domain adaptation by synthesizing and rendering check-out images.
This baseline approach provides a way for dealing with the domain gap in ACO.
Then, two latter works [21,46] modified the synthesized-and-rendered strategy
of [41] for achieving better domain adaptation ability, and thus improved ACO
accuracy. Different from these methods [21,41,46], in this paper, we attempt
to mitigate the significant domain gap between single-product exemplars (as
training) and check-out images (as test) by learning corresponding categorical
classifiers directly from the categorical prototype of each product, cf. Fig. 1.

More specifically, the so-called prototype refers to a vector representation
that can accurately represents the semantics of the category (i.e., genuine class
representation) in the visual space, which is usually realized by the feature center
of a specific class [38]. For ACO, beyond the potential of handling domain gap,
another advantage of using product prototypes is to avoid the multi-view issue
of single-product exemplars. Thanks to the generalization and robustness, com-
pared with using single view or several views from exemplar images, categorical
prototypes can more accurately represent category semantics of products. As
shown in Fig. 2, we first feed the single-product exemplars {Ik,is } into the pro-
posed prototype-based classifier generator to obtain the categorical classifier wk

corresponding to product category k. Meanwhile, a background classifier is also
generated based on all categorical prototypes to learn general patterns and thus
distinguish product proposals containing background or incomplete products in
check-out images. After that, the learned categorical classifiers and the back-
ground classifier can be employed for recognizing product proposals returned by
a traditional proposal generation process, e.g., RPN [34].

To further improve the discriminative ability of these learned classifiers, we
develop a discriminative re-ranking approach by adjusting the predicted scores
of these product proposals, cf. Fig. 2. In concretely, we rank the predicted score
of the ground truth category as the highest to improve the prediction confidence,
and meanwhile re-rank the score of background as the second highest due to the
characteristics of the background classifier (cf. Sect. 3.3). Moreover, by further
considering the fine-grained nature of products, we introduce a slack variable as
a soft re-ranking strategy to provide a reasonable sorting possibility w.r.t. the
predicted scores of fine-grained products. Additionally, we also equip a multi-
label recognition loss with PSP for modeling co-occurrence of products in check-
out images, which could further bring improvements of the ACO accuracy.

For empirical comparisons, we conduct experiments on the large-scale bench-
mark dataset in ACO, i.e., RPC [41], by comparing with competing meth-
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ods [21,41,46] in the literature. In experiments, we evaluate our PSP method on
two detection backbones, i.e., Faster RCNN [34] and Cascade RCNN [2] with
Feature Pyramid Network (FPN) [24] for justifying its generalization ability.
Our check-out accuracy of Faster RCNN and Cascade RCNN are 86.69% and
92.05%, which are improved by 6.18% and 11.54% over state-of-the-arts. The
results of ablation studies are also reported for validating the effectiveness of the
main components of PSP.

The main contributions of our work are three-fold. (1) We propose a novel
method, i.e., prototype-based classifier learning from single-product exemplars,
for dealing with the ACO task, especially for the domain gap. (2) We design a
discriminative re-ranking approach to enhance the discriminative ability of these
prototype-based classifiers. (3) Experimental results on the benchmark RPC
dataset show that our PSP achieves significant improvements over competing
methods.

2 Related Work

2.1 Automatic Check-Out

Automatic check-out [41] is a branch of intelligent retail that aims to automat-
ically and accurately detect the products selected by customers and complete
the check-out. The popular used ACO datasets in the related works include
SOIL-47 [18], Grozi-120 [28], Grocery Products Dataset [9], Freiburg Groceries
Dataset [17], MVTec D2S [7] and RPC [41]. To drive the development of ACO,
RPC [41] also proposed an object detection baseline. This baseline approach
enabled domain adaptation at the data level by segmenting single-product exem-
plar images to synthesize and render check-out images. Afterwards, Li et al. [21]
improved the aforementioned baseline method, which restricted the pose of
single-product images to create synthesized check-out images. Moreover, Li et
al. [21] proposed DPNet to accurately detect single-product from the check-out
image by collaborating detection and counting. Then, based on DPNet [21] as
a pipeline, Yang et al. [46] proposed IncreACO with photorealistic exemplar
augmentation (PEA). PEA was developed to generate physically reliable and
photorealistic check-out images from typical samples scanned for each product,
with an incremental learning strategy to match the updated nature of the ACO
system and reduce the training effort. Different from the existing ACO methods,
our PSP applies prototype-based classifiers derived from single-product exem-
plars to directly mitigate the domain gap between training and test in ACO.
These prototype-based classifiers are able to both recognize fine-grained prod-
ucts in check-out scenario and distinguish background bounding box proposals,
without requiring synthesized-rendered process or complicated data augmenta-
tion.

2.2 Object Detection

Object detection is one of the basic tasks of computer vision, which includes two
sub-tasks of object localization [12] and recognition [27]. The current mainstream
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object detection methods include both single-stage [1,3,5,25,27,31–33,49] and
two-stage [2,11,12,14,22,24,34,36,45] detection paradigms. Faster RCNN [34]
introduced Region Proposal Network (RPN) to generate proposals. FPN [24]
built a top-down architecture with lateral connections to extract features across
multiple layers. Cascade RCNN [2] constructed a sequence of detection heads
trained with increasing Intersection of Union (IoU) thresholds. Double-Head
RCNN [45] rethought classification and localization for object detection and
proposed the double-head network with a fully-connected head for classification
and a convolution head for bounding box regression. I3Net [3] aimed at learning
instance-level features with invariance from different layers for one-stage cross-
domain detection. Different from these previous object detection methods, we
improve the product proposal classifier for the object detection. Particularly, We
develop a prototype-based classifier generator to handle the multi-view issue of
single-product exemplars and the domain adaptation issue between exemplars
with check-out images.

2.3 Classifier Boundary Transformation

Classifier boundary transformation is a kind of strategies for learning discrimi-
native classifier boundaries, which is always conducted within the meta learning
framework. Several related work [19,40,44] involved the boundary transforma-
tion where a mapping from a decision boundary (or a sample) to another deci-
sion boundary is learned. Specifically, in early years, Wang and Hebert [40]
proposed a model regression network which learns how to transform from a
classifier trained with large-scale data to another one trained with easy small
samples. Wei et al. [44] utilized the meta learning method to create piecewise
classifiers for few-shot fine-grained classification. In CLEAR [19], the authors
proposed a cumulative learning approach by meta learning for the one-shot one-
class classification task. Different from these previous work, our PSP method is
able to directly generate both categorical classifiers and the background classi-
fier, rather than requiring the meta learning process, which shows its efficiency
and practicality.

3 Methodology

3.1 Overall Framework and Notations

As shown in Fig. 2, our proposed PSP method consists of two crucial compo-
nents, i.e., prototype-based classifier generator and discriminative re-ranking.
More specifically, the prototype-based classifier generator is developed to map
product prototypes derived from single-product exemplars towards both cate-
gorical classifiers and a background classifier. Such a mapping is designed to
handle not only the multi-views issue of exemplar images but also the domain
change issue between training and test of ACO, cf. Fig. 1 (a). The discriminative
re-ranking component could adjust the predicted scores of the corresponding
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Fig. 2. Overall framework of our PSP method. Regarding the check-out image Ic, after
product proposal generation, a set of product proposals is obtained, which involves both
effective proposals and non-effective proposals (i.e., background or incomplete prod-
ucts). By performing the proposed prototype-based classifier generator based on the
prototype of single-product exemplars {Ik,i

s }, we have categorical classifiers (i.e., wk,
k ∈ {1, . . . , K}) for recognizing these fine-grained products of K classes in Ic, as well
as a background classifier (i.e., wBG) for distinguishing background proposals contain-
ing no products. Based on these learned classifiers, for the n-th proposal, a series of
corresponding predicted scores is returned as s·

n. To further improve the discrimina-
tive ability of {w}, we develop discriminative re-ranking to push the score synn highest
and the score sBG

n the second highest (cf. Sect. 3.3). Particularly, synn is the predicted
score of its ground truth label yn, and sBG

n represents the probability as predicted as
background. (Best viewed in colors.) (Color figure online)

proposals, which further improves the discriminative ability of the learned clas-
sifiers.

In the following subsections, we present these components in details, and
introduce the notations as follows.

Let S = {Ik,is } (k ∈ {1, . . . , K}, i ∈ {1, . . . , Nk
s }) denote the set of the single-

product exemplar images, where Ik,is indicates the i-th single-product exemplar
of the k-th product category. K is the number of product categories and Nk

s

is the number of exemplar images belonging to category k. Also, we notate the
check-out image set as C = {(Ic, Yc)}, where Yc includes the category label and
the bounding box coordinate parameters of each product. Let x̄k denote the
product prototype representation of the k-th category, and x̄BG represents the
prototype feature of the background. Regarding the learned classifiers, let wk

denote the classifier weights of the k-th categorical prototype-based classifier,
and wBG is the classifier corresponding to the background. In addition, mn

indicates the feature of the n-th product proposal from an check-out image Ic.

3.2 Prototype-Based Classifier Generation

As illustrated in Fig. 2, given an input check-out image Ic, a product proposal
generator firstly returns product proposals mn from Ic. These product proposals
(including proposals containing background or incomplete products) are then
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categorized by the generated prototype-based classifiers {w}. Regarding {w},
in concretely, we first obtain the categorical prototypes x̄k of category k based
on single-product exemplars {Ik,is } of each product category as training, which
is formulated as

x̄k =
1

Nk
s

Nk
s∑

i=1

[
fGMP (fCNN (Ik,is ;Θ)

]
, (1)

where fCNN (·;Θ) represents the backbone CNN model (a pre-trained ResNet-
50 [15] by feeding with merely Nk

s product exemplars for category k) for extract-
ing features of {Ik,is }, fGMP (·) is the global max-pooling function to aggregate
and obtain the categorical prototypes, and Θ indicates the model parameters.
These prototypes are used for both training and testing processes. Then, we can
generate categorical classifiers wk based on x̄k.

Beyond wk for recognizing fine-grained products, it is also desirable to learn a
classifier for distinguishing non-effective proposals, i.e., bounding box proposals
containing no or incomplete products (aka “background proposals”). However,
there is no exemplar of “background proposals” in the training data {Ik,is } to
learn such a classifier. Therefore, we average the category prototypes of all prod-
uct categories as the “background prototype”, since the background prototype
should correspond to a meta concept with general patterns, rather than specific
product concepts with discriminative patterns. The background prototype x̄BG

can be represented by

x̄BG =
1
K

K∑

k=1

x̄k . (2)

After obtaining both x̄k and x̄BG, they are fed into the prototype-based clas-
sifier generator fgenerator(·; θ) to learn the corresponding categorical classifiers
wk and the background classifier wBG as outputs:

wk = fgenerator(x̄k; θ) , (3)
wBG = fgenerator(x̄BG; θ) , (4)

where θ is the parameter of the generator and it is realized as a multi-layer
perceptron with two fully connected layers plus ReLU as the activation function.

Finally, the weight matrix W = [w1;w2; . . . ;wK ; wBG] is obtained and
employed for recognizing the proposals mn as fine-grained product categories or
background by

sn = W · mn ∈ R
K+1 , (5)

where the elements in sn are the predicted scores belonging to the product
categories or as background.

3.3 Discriminative Re-Ranking

Based on the predicted scores sn, the predictions of these proposals can be
obtained by ranking sn, where the corresponding category with the highest score
indicates the predicted category.
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Fig. 3. Proposed discriminative re-ranking. The original ranking order of predicted
scores is directly obtained by Eq. (5). Compared with hard re-ranking, our soft re-
ranking not only re-ranks the predicted scores for bringing more discriminative ability
in classifier learning, but also provides a more reasonable sorting possibility for the
predicted scores of fine-grained products.

In order to further achieve a better discriminative ability during training,
we propose to adjust the score of the ground truth category (i.e., syn

n ) as the
highest and the score of background (i.e., sBG

n ) as the second highest, while other
scores of the rest categories are smaller than syn

n and sBG
n . The process can be

formulated by
syn
n > skn, ∀k ∈ Ω − {yn} ,

sBG
n > sjn, ∀j ∈ Ω − {yn, BG} ,

(6)

where yn is the ground truth category of the n-th product proposal, and Ω =
{1, 2, . . . ,K − 1,K,BG}.

In particular, it is straightforward to rank syn
n as the highest. The reason

why we set up the constraint of ranking sBG
n as the second highest is that: the

background classifier wBG is derived from the meta prototype x̄BG (containing
information of all categories). Thus, regarding a proposal mn, its value of dot
product upon wBG is natural expected to be larger than the values upon other
categorical classifiers, since the ability of discriminative classifiers is to clearly
distinguish different product categories, even similar categories.

Another advantage of Eq. (6) is that: for the background proposal, its highest
predicted score is sBG. Therefore, we can use it as a clue to filter out the false
positive bounding box predictions in check-out images during testing.

However, in ACO, products are always belonging to subordinate categories,
aka fine-grained categories. That is to say that, there exist product categories
from one meta-category are extremely visually similar, cf. Fig. (2) in the supple-
mentary materials. For these sub-categories, the re-ranking constraint in Eq. (6)
might be not strictly obeyed. Thus, in order to not only deal with the fine-grained
nature of products, but also remain the discriminative ability of re-ranking, we
modify Eq. (6) into a soft re-ranking by introducing a slack variable ε, which
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is as follows:
syn
n > skn, ∀k ∈ Ω − {yn} ,

sj
′

n > sBG
n − ε, ∀j′ ∈ Ω′ ,

sBG
n > sj

′′
n , ∀j′′ ∈ Ω − {yn, BG} − Ω′ ,

(7)

where Ω′ = {j′|sj′
n > α · max sjn,∀j} and α is a hyper-parameter in the range

of (0, 1). For more clearly presentations, we show the proposed discriminative
re-ranking approach in Fig. 3. Specifically, compared with our soft re-ranking,
the re-ranking constraint in Eq. (6) can be termed as hard re-ranking.

Collaborated with Eq. (7), the discriminative re-ranking process can be writ-
ten as a loss function by

Lrank =
N∑

n=1

K+1∑

k=1

yk,n
cls skn + (1 − yk,n

cls )
[
sBG
n − skn

]
+

+ Cε , (8)

where yk,n
cls ∈ {0, 1} is the k-th category ground truth label of the n-th proposal,

[·] indicates the hinge function max(0, ·), and C is the penalty factor on the
slack variable. In addition, except for the re-ranking loss function, the whole
model of PSP is further driven by the traditional regression/classification loss
in detection, as well as a multi-label learning loss for modeling the correlation
of purchased products (i.e., the co-occurrence), cf. Sect. 3.4.

3.4 Loss Functions

Detection Loss. According to the general two-stage object detection frame-
work [13,34], the detection loss Ldet in our PSP consists of two parts as well, i.e.,
the region proposal network (RPN) [34] detection loss LRPN

det in the first stage
and the RCNN detection loss LRCNN

det in the second stage. In particular, the
detection loss of each stage contains both losses of classification and regression
for proposals. For more details of the detection loss, please refer to [13,34] for
detailed techniques.

Multi-label Loss. Multi-label recognition is a fundamental computer vision
topic in the literature [20,47], which aims to model the label dependencies among
multiple labels associated with images to improve the recognition performance.
Recently, multi-label recognition shows its advantages in object detection tasks,
e.g., [6]. We hereby introduce the multi-label loss upon the check-out images Ic to
model the correlation of co-occurrence products in the check-out scenario. More
specifically, we denote F as the feature map of the last layer from Ic, and utilize
a fully connected layer fFC(·;φ) with its parameter φ to conduct multi-label
recognition, which can be presented by

ŷmll = fFC(fGAP (F ) + fGMP (F );φ) , (9)

where fGAP (·) and fGMP (·) are global average- and max-pooling for aggregating
F into a single vector. In general, GAP captures common information while
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GMP captures the most salient information. In Eq. (9), the sum of GAP and
GMP can jointly exploit these two complementary information. ŷmll is the multi-
label predictions and its each element is a confidence score. We assume that the
ground truth label of an image is ymll, where yk

mll = {0, 1} denotes whether
product of category k appears in the image or not. Thus, the multi-label loss
Lmll can be formulated as

Lmll =
K∑

k=1

yk
mll log(σ(ŷk

mll)) + (1 − yk
mll) log(1 − σ(ŷk

mll)) , (10)

where σ(·) is the sigmoid function.
Finally, the whole network of our PSP is driven by

L = Ldet + Lrank + Lmll , (11)

where the weight of each loss is the same because they are equally important
and be set as the default setting. Additionally, for performing post-processing,
we apply a class-agnostic NMS [37] to keep the bounding boxes with the top
confidence score for similar locations, and filter out the false positives.

4 Experiments

4.1 Dataset

We adopt the large-scale Retail Product Check-out (RPC) dataset [41] as bench-
marks to evaluate our method. It includes 200 categories and 83,739 images,
where these 200 fine-grained categories belong to 17 meta-categories. It means
that the RPC dataset is currently the largest dataset in ACO tasks, which is prac-
tical and challenging. The training data of RPC contains 53,739 single-product
images in total, where each image has a particular instance of a product cate-
gory. The RPC test data contains three sub-sets with different clutter modes,
each containing 10,000 images. Notably, according to the number of items in
an image, the three clutter modes in the RPC dataset consist of easy (3∼5
categories and 3∼10 instances), medium (5∼8 categories and 10∼15 instances),
and hard (8∼10 categories and 15∼20 instances). In our experiments, the single-
product image set is applied to obtain the prototype-based classifiers, and 6,000
(RPC valid set) and 24,000 (RPC test set) check-out images are used for training
and test, respectively. Meanwhile, we apply the four evaluation metrics [41] to
measure the advantages and disadvantages between our method and the com-
parison methods, including check-out accuracy (cAcc), average counting distance
(ACD), mean category counting distance (mCCD), mean category intersection of
union (mCIoU). The specific formulas are given in the supplementary materials.
In addition, other related datasets such as Products-6K [10] and Product1M [48]
lack the necessary conditions to satisfy the ACO task or our PSP design, e.g.,
check-out images or bounding box annotations.
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4.2 Baseline Methods and Implementation Details

Baseline Methods. Specifically, we adopt the method of [41], DPNet [21] and
IncreACO [46] as the baselines. [41] first proposed an object detection based ACO
pipeline to locate and count products by detecting them in check-out images.
Specifically, the backbone of object detection is Faster RCNN [34] with Feature
Pyramid Networks (FPN) [24]. To reduce the gap where the check-out image has
multiple objects and the training exemplar has only one, [41] proposed a copy and
paste method to synthesize the image, denoted as Syn. In addition, Render was
used to represent rendered synthesized images using Cycle-GAN [51] for more
realistic lighting and shading effects. Then, DPNet [21] modified and improved
this baseline. DPNet [21] was an improved FPN [24] and Mask RCNN [13] detec-
tor with both detection and counting heads, which is optimized by collaborative
detection and counting learning. In particular, DPNet designed a pose pruning
step when synthesizing the images to remove exemplars with too small relative
areas. IncreACO [46] improved the DPNet by incremental learning LwF [23]
and knowledge distillation [16], where the output of the teacher provides the
student with the soft label of the old categories. All three approaches utilize a
large amount of synthesized and rendered data to train the detection network
to achieve domain adaptation at the data level.

Implementation Details. Our proposed method is implemented by
PyTorch [30] and MMDetection [4]. The relevant parameters in experiments
basically follow the default settings in [4] and the backbone network we use is
ResNet-50 [15]. In concretely, we set the size of input images to 800×800. The
number of Nk

s is all set to 8. The total number of training epochs is 36. While,
different from existing methods [21,41,46], our method only requires a smaller
iteration time until convergence. The learning rate, momentum and weight decay
of the stochastic gradient descent optimizer are initialized to 0.0025, 0.9 and
10−4, respectively. α, C and ε are set in 0.97, 5 and 10−6 in Eq. (8), respectively.
Our training strategy is to decrease the learning rate as 0.1 time of the previous
one at the 24-th and 33-th epoch. All experiments are conducted with a GeForce
RTX 2080 Ti GPU card (11G memory).

4.3 Main Results

Table 1 presents the four evaluation metrics of our method and the existing
methods. All the three existing methods have the Syn+Render training setting.
Specifically, the Syn+Render training setting trains the detector with 100,000
synthesized images and 100,000 rendered images simultaneously. Meanwhile,
“Faster RCNN + FPN ” and “Cascade RCNN + FPN ” represent the Faster
RCNN [34] and Cascade RCNN [2] frameworks with the addition of the FPN
module, respectively. We apply our proposed method on basis of these two object
detection frameworks. In addition, the structure of “Faster RCNN + FPN ” is
the closest to that of existing methods. For fair comparisons, we report the
results of different clutter modes. As shown in this table, our method achieves
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the best experimental results in all clutter modes and evaluation metrics. For
example, in the average clutter mode, the cAcc measure of our PSP method is
86.69%, which is an improvement of 6.18% compared to the previous optimal
result. The cAcc results of “Faster RCNN + FPN ” in easy, medium, and hard
modes are improved by 1.80%, 6.60%, and 9.91%, over the results of the previ-
ous state-of-the-art methods when analyzed for each of the three clutter modes.
The amount of improvement, especially in the hard and medium modes, is very
significant. In addition, we use our method on a more powerful object detection
framework, i.e., “Cascade RCNN + FPN ”, with a cAcc result of 92.05%, which
is 5.36% higher than the result of “Faster RCNN + FPN ”.

4.4 Ablation Studies

Table 1. Experimental results on the RPC dataset. “↑” indicates that the larger the
value, the better, and “↓” indicates that the smaller the value, the better. The best
results are marked in red and the second best results are in blue.

Clutter mode Methods cAcc↑ ACD↓ mCCD↓ mCIoU↑
Easy Wei et al. [41] (Syn+Render) 73.17% 0.49 0.07 93.66%

IncreACO [46] (Syn+Render) 88.06% 0.21 0.03 96.95%

DPNet [21] (Syn+Render) 90.32% 0.10 0.02 97.87%

PSP (Faster RCNN + FPN) 92.12% 0.11 0.02 98.40%

PSP (Cascade RCNN + FPN) 94.90% 0.08 0.01 98.88%

Medium Wei et al. [41] (Syn+Render) 54.69% 0.90 0.08 92.95%

IncreACO [46] (Syn+Render) 77.31% 0.40 0.03 96.82%

DPNet [21] (Syn+Render) 80.68% 0.32 0.03 97.38%

PSP (Faster RCNN + FPN) 87.28% 0.18 0.01 98.59%

PSP (Cascade RCNN + FPN) 92.94% 0.11 0.01 99.12%

Hard Wei et al. [41] (Syn+Render) 42.48% 1.28 0.07 93.06%

IncreACO [46] (Syn+Render) 66.14% 0.64 0.04 96.35%

DPNet [21] (Syn+Render) 70.76% 0.53 0.03 97.04%

PSP (Faster RCNN + FPN) 80.67% 0.29 0.02 98.29%

PSP (Cascade RCNN + FPN) 88.33% 0.19 0.01 98.88%

Averaged Wei et al. [41] (Syn+Render) 56.68% 0.89 0.07 93.19%

IncreACO [46] (Syn+Render) 77.15% 0.41 0.03 96.72%

DPNet [21] (Syn+Render) 80.51% 0.34 0.03 97.33%

PSP (Faster RCNN + FPN) 86.69% 0.19 0.02 98.44%

PSP (Cascade RCNN + FPN) 92.05% 0.13 0.01 98.98%

Effectiveness of Our Proposed PSP. Beyond the main results, we also
perform ablation studies to determine the effectiveness of main components of
PSP with “Faster RCNN + FPN ”. Table 2 reports the results in the aver-
aged clutter mode. Specifically, “Prototype” indicates that the inputs of our
proposed prototype-based classifier learning are either single-product “Exem-
plars” or ground truth product instances in “Check-out” images. Comparisons
on “Exemplars” and “Check-out” can reveal the ability of our PSP on handling
the domain gap challenge. Besides, “Re-ranking” in Table 2 denotes our dis-
criminative re-ranking strategy, including hard re-ranking or soft re-ranking, cf.
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Table 2. Experimental results of ablation studies. “↑” indicates that the larger the
value, the better, and “↓” indicates that the smaller the value, the better. “Exemplars”
denotes that a prototype-based classifier is generated from single-product exemplars,
while “Check-out” denotes a prototype-based classifier generated from ground truth
product instances in check-out images. Best results are marked in bold.

Methods cAcc↑ ACD↓ mCCD↓ mCIoU↑
Prototype Re-ranking Multi-label loss

FC – – – 82.87% 0.31 0.02 98.04%

# 1 Check-out – – 85.31% 0.22 0.02 98.26%

# 2 Exemplars – – 85.12% 0.22 0.02 98.28%

# 3 Check-out Hard – 85.60% 0.21 0.02 98.34%

# 4 Check-out Soft – 85.56% 0.21 0.02 98.30%

# 5 Exemplars Hard – 85.75% 0.21 0.02 98.34%

# 6 Exemplars Soft – 85.93% 0.20 0.02 98.37%

# 7 Check-out Hard � 85.90% 0.20 0.02 98.39%

# 8 Check-out Soft � 85.65% 0.21 0.02 98.31%

# 9 Exemplars Hard � 85.90% 0.20 0.02 98.40%

# 10 Exemplars Soft � 86.69% 0.19 0.02 98.44%

Sect. 3.3. In addition, “Multi-label loss” represents whether using the multi-label
loss for capturing the co-occurrence of products in check-out images. Meanwhile,
the “FC” row is the baseline with a fully-connected layer as the bounding box
classifier.

As the results shown in that table, comparing the results of “FC” and row #2,
the effectiveness of our prototype-based classifier learning is validated, i.e., cAcc
is improved by 2.25%. Similarly, we can justify the effect of “Re-ranking” and
“Multi-label loss” by comparing the results of row #2, #6 and #10, which can
improve the cAcc results by 0.81% and 0.76%, respectively. Such improvements of
cAcc are significant. In addition, comparing the results in row #9 and #10, it can
be found that soft re-ranking performs 0.79% higher than hard re-ranking, which
shows the effectiveness and rationality of considering the fine-grained nature by
introducing the slack variable. Moreover, comparing #8 with #10, the classifiers
generated from the single-product exemplars have 1.04% improvement with these
from the check-out instances.

Overall, our PSP improves the cAcc results by 3.82% over the baseline meth-
ods in Table 2. Furthermore, we also verify the effectiveness of PSP for miti-
gating the domain gap challenge. In particular, we generate another prototype-
based classifier by feeding the ground truth product instances from the check-out
images. Comparing these cAcc results from row #3 to #10, it can be observed
the learned classifiers based on “Exemplar” perform equally or even slightly bet-
ter than the classifiers based on “Check-out” in different empirical settings. The
phenomenons demonstrate that our PSP can effectively mitigate the domain
gap between the source and target domains. In addition, we discuss the domain
adaptation mechanism of PSP in the supplementary materials.

Sensitivity to Hyper Parameters Nk
s , C and ε. It is also noteworthy to

know that how the exemplars and their number are collected will affect the per-
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Fig. 4. The analysis results of these three hyper parameters Nk
s , C and ε. (a) is the

cAcc results of different numbers of exemplars Nk
s and (b) is the cAcc results of different

settings of the penalty factor C and the slack variable ε.

formance of the prototype-based classifiers. Thus, we compare the cAcc results
of different numbers of exemplars Nk

s (i.e., 1, 4, 8, 80 and all exemplars) col-
lected by certain rules, which is reported in Fig. 4 (a). The specific sampling rules
for these five cases are as follows. (1) Nk

s = 1: Only one exemplar is randomly
selected to form the k category prototype. (2) Nk

s = 4: Four exemplars at a
certain angle are selected based on the front and back of the product and two of
the camera viewpoints. (3) Nk

s = 8: All the four camera viewpoints at the same
angle are considered to sample 8 exemplars compared to Nk

s = 4. (4) Nk
s = 80:

Based on the rule of Nk
s = 8, a total of 80 exemplars with 10 randomly selected

angles are used to obtain the k-th category prototype. (5) Nk
s = All: All exem-

plars of the k-th category are utilized to generate the prototype. It is apparent
from Fig. 4 (a) that the prototype-based classifiers perform best when Nk

s is set
to 8. As analyzed, the lack of exemplar features (i.e., Nk

s ≤ 8) may result in
that the prototypes are under-represented for distinguishing subtle visual dif-
ferences, while redundant multi-angle exemplar features (i.e., Nk

s > 8) might
caused redundancies in exemplar feature representation, leading to a reduction
in classifier performance. Those might be the reasons why Nk

s is too small or large
will cause slightly cAcc drops. Moreover, the cAcc results of different Nk

s values
show that our PSP is not sensitive to Nk

s . Except for using only 1 exemplar,
there is no significant difference between 4, 8, 80 and all exemplars (the precise
cAcc gap is less than 0.8%). Meanwhile, even using 1 exemplar, the cAcc score
(85.21%) is greatly larger than state-of-the-art results (e.g., 80.51% of DPNet).

Subsequently, we similarly analyze the sensitivity of the penalty factor C and
the slack variable ε in Eq. (8). As shown in Fig. 4 (b), the values of C and ε are
1, 3, 5, 7, 9 and 10−5, 10−6, 10−7, respectively. We can see that our soft re-ranking
is not sensitive to the values of C and ε, and the difference between the best and
worst cAcc should not exceed 0.7%. Moreover, we show some other qualitative
results and the analyses of working mechanism in the supplementary materials.

5 Conclusion

In this paper, we proposed a prototype-based classifier learning from single-
product exemplars with a discriminative re-ranking for Automatic Check-Out.
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The prototype-based classifier learning was developed to mitigate the domain
gap between exemplars as training and check-out images as test. Furthermore,
we designed a discriminative re-ranking to improve ACO accuracy by bringing
more discriminative ability in classifier learning. Also, the multi-label loss was
applied to model the co-occurrence of products in check-out images. On the
large-scale benchmark RPC dataset, our PSP achieved 86.69% ACO accuracy,
which outperformed previous competing methods by 6.18%. In the future, we
will investigate PSP for class incremental learning to meet the practical and
realistic requirement in ACO.
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