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Abstract. Scaling object taxonomies is one of the important steps
toward a robust real-world deployment of recognition systems. We have
faced remarkable progress in images since the introduction of the LVIS
benchmark. To continue this success in videos, a new video benchmark,
TAO, was recently presented. Given the recent encouraging results from
both detection and tracking communities, we are interested in marry-
ing those two advances and building a strong large vocabulary video
tracker. However, supervisions in LVIS and TAO are inherently sparse
or even missing, posing two new challenges for training the large vocab-
ulary trackers. First, no tracking supervisions are in LVIS, which leads
to inconsistent learning of detection (with LVIS and TAO) and tracking
(only with TAO). Second, the detection supervisions in TAO are partial,
which results in catastrophic forgetting of absent LVIS categories during
video fine-tuning. To resolve these challenges, we present a simple but
effective learning framework that takes full advantage of all available
training data to learn detection and tracking while not losing any LVIS
categories to recognize. With this new learning scheme, we show that
consistent improvements of various large vocabulary trackers are capa-
ble, setting strong baseline results on the challenging TAO benchmarks.

Keywords: Large vocabulary · Video object detection and tracking

1 Introduction

A central goal of computer vision is to produce a general-purpose perception
system that robustly works in the wild. Towards this ambitious goal, extending
the current short category regime is one of the essential key milestones. As an
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initial effort in this direction, the large-scale image benchmark, LVIS [16], was
introduced and fostered significant progress in developing solid image domain
solutions [24,58,70,71,76,104]. Recently, a video benchmark, TAO [12], calls for
a shift from image to video, opening the new task of detecting and tracking large
vocabulary objects.

Fig. 1. The Proposed Learning Framework for Large Vocabulary Tracker
Training. While the current learning paradigm learns detection and tracking sepa-
rately from LVIS and TAO (decoupled), our proposal takes all training data to learn
detection and tracking jointly (unified). This is achieved through missing supervision
hallucination.

With these new datasets of images and videos, LVIS and TAO, we are inter-
ested in building a strong large vocabulary video tracker. However, as the annota-
tion difficulty between images and videos is even more severe in large vocabulary
datasets, the significant gap in dataset scale and label vocabularies naturally
exists. Therefore, pre-training the model on images for learning large vocabu-
laries and then fine-tuning on video for seamless video domain adaptation is
a standard learning protocol. Given this context, can the current advances of
large-vocabulary detection and multi-object tracking be successfully unified and
tied into a single model? In particular, we see there are two main challenges for
the successful marriage of two streams: First, no tracking supervisions are
in LVIS. This essentially leads to inconsistent learning of detection (with LVIS
and TAO) and tracking (only with TAO), resulting in sub-optimal video fea-
ture representations. Second, detection supervisions in TAO are partial1.
Thus, catastrophic forgetting [45] is inevitable if one naively fine-tunes the LVIS
tracker directly on the TAO.

In this work, we present simple, effective, and generic methods for halluci-
nating missing supervisions in each dataset. Below, we describe the challenges
and our solutions in turn.

1 TAO dataset annotates 482 classes in total, which are the subset of LVIS dataset [16],
and only 216 classes are in the training set.
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First, how can we simulate the tracking supervisions only with images in
LVIS? Given an image, our idea is to apply spatial jittering artifacts to mimic
temporal changes in video and form a natural pair for tracking. Here, we present
two new spatial jittering methods. The first is strong zoom-in/out augmenta-
tion, which has a large scale-jittering effect that can effectively simulate the
low sampling rate test-time inputs in large vocabulary tracking. It yields signif-
icant performance improvements over the conventional image affine augmenta-
tion [20,48,52,66,102,105]. Plus, our findings are in line with recent work that
shows a large scale jittering is effective in image detection and segmentation [15],
and here we examine this observation on video for robust large vocabulary tracker
training. The second is mosaicing augmentation [5,94], which is originally pre-
sented for object detection with enriched background. We extend this augmen-
tation for combining foreground objects in different images in a class-balanced
manner [16] and simulate test-time hard, dense tracking scenarios suitable for
“many object” trackers. We show that both are effective and complementary to
each other.

Second, how can we fill the missing detection supervisions in TAO? The TAO
training data partially spans the LVIS categories, and thus the direct fine-tuning
of LVIS tracker on TAO causes catastrophic forgetting of absent categories. A
straightforward way to avoid this issue is to learn only the tracking part of
the model with TAO [51]. However, this hinders full model training and aban-
dons all the TAO detection labels, limiting the overall performance. We instead
approach this problem by combining the self-training [60,61,63] with a teacher-
student framework [21,89]. In practice, the teacher and student are identical
copies of the LVIS pre-trained model, and we freeze the weights of the teacher
during training. The overall learning pipeline consists of two steps: First, given
an input, we predict pseudo labels using the teacher model. The idea behind the
pseudo labeling is to leverage the past knowledge acquired from LVIS and fill in
the missing annotations in TAO. Second, using the augmented labels, we train
the student model with both distillation loss and ordinal detection loss. Unlike
the typical teacher-student schemes used in semi-supervised object detection
studies [67,91,92], we introduce two new adaptations suitable for large vocabu-
lary learning setup. The first is using soft pseudo labels, i.e., distilling class logits
directly, to fire all the student’s classifier weights, rather than using common one-
hot (hard) pseudo labels. This is crucial as standard hard pseudo labels tend to
bias distillation only toward the frequent class objects due to inherent classifier
calibration issue [11,50]. The second is to use MSE loss in order to equally impact
all the classifier weights [28,72], rather than using picky KL-divergence loss [21].
We found the type of the loss function is also very important for the success-
ful large vocabulary classifier distillation. Despite the simplicity, we empirically
show that the distillation results are greatly improved with these adaptations.
We also show that our proposal works well on the common vocabulary setup,
e.g., COCO, and can be easily extended to new class learning scenarios, COCO
→ YTVIS.
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Combining all these proposals together, unified learning of detection and
tracking with both LVIS images and TAO videos becomes possible without for-
getting any LVIS categories (see Fig. 1). Furthermore, we also introduce a new
regularization objective, semantic consistency loss. It aims to prevent the com-
mon tracking failure in large vocabulary tracking due to semantic flicker between
similar classes. We study the efficacy of our final framework on the TAO bench-
mark and achieve new state-of-the-art results. Our extensive ablation studies
confirm that the proposals are generic and effective.

2 Related Work

Large Vocabulary Recognition. The object categories in natural images fol-
low the Zipfian distribution [44], and thus, the large vocabulary recognition is nat-
urally tied with the long-tailed recognition [17,42,86]. Based on this connection,
lots of solid approaches are introduced. The existing methods can be roughly cat-
egorized into data re-sampling or loss re-weighting. The data re-sampling meth-
ods more often sample data from rare classes to balance the long-tailed training
distribution [8,16]. The loss re-weighting aims at adjusting the loss of each data
instance based on their labels or train-time accumulated statistics [22,70,71,76].
Some approaches perform multi-staged training upon these methods, which first
pre-train the model in a standard way and then fine-tune using either data
re-sampling or loss re-weighting [23,24,39,58,78,79,82,98]. Also, there are new
approaches based on data augmentations [15,95,97] or test time calibration [50].

Apart from all these previous efforts on the image, we study a new video
extension of the task [12]. We show that our proposal is generic and not sensi-
tive to a specific method, data re-sampling or loss re-weighting, in successfully
converting the current large vocabulary detectors to large vocabulary trackers.

Multi-object Tracking. Most modern multi object trackers [35] follow the
tracking-by-detection paradigm [56]. An off-the-shelf object detector is first
employed to localize all objects in each frame, and then track association
is performed between adjacent frames. The main difference among existing
methods is in how they estimate the similarity between detected objects and
previous tracks for the association. To name a few, Kalman Filter [4,84],
optical flow [88], displacement regression [53,105], and appearance similari-
ties [3,25,34,35,43,47,51,62,68,83,93,99,100] are the representatives. On the
other side, there are also efforts on joining detection and tracking [13,85,101],
and recently by transformer-based architectures [46,69,96]. We note that all
these methods only focus on a few object categories such as people or vehicles,
ignoring the vast majority of objects in the world.

Our work is an early attempt for extending the current short category
regime of modern trackers [12,41,80,107]. In this paper, we build our proposal
upon the tracking-by-detection paradigm. We choose the state-of-the-art method,
QDTrack [51], which adopts Faster R-CNN [59] and lightweight embedding head
for detection and tracking, respectively. The tracking is learned through a dense
matching between quasi-dense samples on the pair of images and optimized with
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multiple positive contrastive learning. Given the state-of-the-art large vocabu-
lary detection [16,70,76] and multi-object tracking [51] methods, we primarily
investigate the new challenges in developing a strong large vocabulary tracker.

Tracking Without Video Annotations. There is a line of recent research on
self-supervised learning for tracking, either using unlabeled videos [32,33,38,55,
73,77,81,90] or images [14,20,48,52,66,102,105]. Our work belongs to the latter
category. Applying random affine augmentation to the original image provides
a spatially jittered version, which mimics the temporal changes in the video. By
letting the model find the correspondence between those two images, meaningful
tracking supervision can be provided [17,48,105]. Sio et al. [66] present that an
image and any cropped region of it can generate a similar effect. Zheng et al.
[102] extend this idea to incorporate only the foreground objects in cropped
regions for stable training.

In this work, we explore this general idea under a more specific large vocab-
ulary tracking setting. First, we focus on the fact that conventional motion cues
are not applicable for large-vocabulary trackers as the input are temporally dis-
tant (1FPS) due to the annotation difficulties and there are severe camera move-
ments in natural videos. This motivate us to train the tracker’s vision feature
matching more discriminative. To this end, we present a strong zoom-in/out aug-
mentation that can not only simulate low sampling rate input but also includes
large scale-jittering effect [15] which is known to be effective in the image domain
vision tasks. Second, we recast the image mosaicing augmentation [5], which was
initially proposed for robust object detection with enriched backgrounds [94], to
simulate test-time dense tracking in the large vocabulary setting. We show that
both are complementary in providing discriminative tracking supervisions for
this task.

Catastrophic Forgetting. The phenomenon wherein neural networks forget
how to solve past tasks because of the exposure to new tasks is known as catas-
trophic forgetting [45]. It occurs because the model weights that contain impor-
tant information for the old task are over-written by information relevant to
the new one. While the catastrophic forgetting can occur in various scenarios,
many existing efforts are focused on the class incremental learning setup, where
it incrementally adds new object categories phase-by-phase, in image classifi-
cation [1,9,29,36,54,57,64,87]. Also, there are some few approaches tackling
incremental object detection [30,65,75,103].

We target a different setup, transfer learning from image to video without
forgetting. Specifically, we aim to train the model on images covering the entire
evaluation categories and then fine-tune it on videos, which partially covers the
evaluation categories, without forgetting. While lots of current video models [27,
49,93] are trained in this way for generic feature learning, the label difference
issue between images and videos has been rarely studied and explored. We study
this issue, as this is a practical setup for training large vocabulary trackers using
both images and videos.
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Fig. 2. Overview of the proposed learning framework. The red colored objective
functions are generated supervisions with our proposals. (Color figure online)

3 Proposed Method

We introduce a general learning framework that allows joint learning of detection
and tracking from all training data, LVIS and TAO, for robust large vocabulary
tracking. The overview of our pipeline is shown in Fig. 2. We first present how
we can learn tracking from images through zoom-in/out and mosaicing augmen-
tations in Sect. 3.1. We then describe how we avoid catastrophic forgetting when
the videos for fine-tuning have fewer label vocabularies than pre-trained images
in Sect. 3.2. Finally, we present a new regularization loss term, namely semantic
consistency loss, for preventing semantic flicker in Sect. 3.3.

3.1 Learn to Track in LVIS

Our approach is straightforward. An original image and a transformed image
with the spatial jittering artifacts can form a natural input pair for tracking.
For the jittering artifacts, we present two new augmentations, zoom-in/out and
mosaicing (see Fig. 2). Note that tracking annotations come for free as we know
the exact transformation relationship between the images. We assign the same
unique track-id to the same object in the transformed image.

Strong Zoom-in/Out Track. Due to the annotation difficulty of the large-
vocabulary tracking dataset, the train and test time inputs are temporally sparse,
i.e., low sampling rate, which naturally results in conventional motion cues not
applicable and rather rely on pure vision feature matching. To make the vision
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feature matching more discriminative, and to effectively simulate test-time low
sampling rate inputs, we present strong zoom-in/out augmentation.

It is mainly composed of scaling and cropping operations, which essentially
vary the scale and position of the objects. Specifically, for an image I, we generate
a input pair, It and It+τ , by applying the scale and crop(·) function to each
image. In practice, it scales an image up to 2 times and crops the image to
have a minimum IoU of 0.4 or above with original bounding boxes to avoid
heavy object truncation and ensure stable tracker training. Prior works either
adopt standard random affine transformation [17,48,105] or cropping without
scaling [66,102], which generally provide weak scale-jittering effect. Instead, we
focus on enlarging the scaling effect and show that our proposal significantly
outperforms the baselines.

Mosaicing Track. While the zoom-in/out augmentation is already effective in
providing tracking supervisions, it is limited in the tracking of a few objects due
to the federated annotations of LVIS [16]. To resolve the issue, we present to
combine multiple images and perform tracking with the increased foreground
objects. We implement our idea by extending the image mosaicing augmenta-
tion [5], which stitches four random training images with certain ratios. While it
was originally presented for object detection with enriched background [94], we
recast it to simulate hard, dense tracking scenarios in large vocabulary tracking.
In practice, four random images, {Ia, Ib, Ic, Id}, are sampled from RFS (Repeat
Factor Sampling)-based dataset [16] to maintain the class-balance. Then, image
stitching followed by random affine (with large scale jittering within a range
of 0.1 to 2) and crop is applied. We summarize these procedure as mosaic(·).
The tracking pair then can be obtained by applying the mosaic(·) function to
the sampled images twice. However, we see that unnatural layout pair results
in train and test time inconsistency. To this end, we propose to sample tracking
input pairs in a mixed way from two different augmentations, zoom-in/out and
mosaicing, with equal probability during training. We empirically confirm that
this works well in practice.

With our proposal, the model can receive tracking supervisions from all
LVIS object categories. The tracking objective function is adopted from the
QDtrack [51] (see Fig. 2-top), and we call this model LVIS-Tracker. While the
model is only trained on LVIS dataset, it already outperforms the previous state-
of-the-art tracker (trained with the standard decoupled learning scheme) signif-
icantly (see Table 2a).

3.2 Learn to Unforget in TAO

Due to the fundamental annotation difficulties in videos, the images are in gen-
eral bigger in dataset scale and larger in taxonomies. Therefore, pre-training the
model on images to acquire generic features and fine-tuning on videos for target
domain adaptation has become a common protocol for obtaining satisfactory
performance in various video tasks [27,49,93]. This also applies to training the
large vocabulary video trackers, where we first learn a large number of vocab-
ulary from LVIS images and then adapt to the evaluation domain with TAO
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videos. However, as TAO partially spans the full LVIS vocabularies, a naive
transfer learning scheme results in catastrophic forgetting.

Here, our goal is to keep the ability to detect the previously seen object
categories while also adapting to learn from new video labels. We mainly focus
on the catastrophic forgetting in the detector, as the tracking head is learned in a
category-agnostic manner. We detail the proposal using the standard two-staged
Faster-RCNN detector (FPN backbone) [40,59]. Without loss of generality, the
proposals can be extended to multi-staged architectures [6,7,10,74], where we
apply the proposal for each RCNN head and average them. In fact, the main issue
is missing annotations for the seen, known object categories during the image
to video transfer learning. Since they are not annotated, we can neither provide
detection supervision nor prevent them from being treated as background. This
basically perturbs the pre-trained classifier boundaries of both RPN and RCNN,
leading to catastrophic forgetting. We remedy this issue by presenting a pseudo-
label guided teacher-student framework.

Our key idea is intuitive. The pre-trained model already has sufficient knowl-
edge to detect the seen, known categories. Based on this fact, we first fill in the
missing annotations by pseudo-labeling the input. We adopt the basic pseudo-
labeling scheme with a threshold of 0.3. The redundant pseudo labels that highly
overlap with the current labels are filtered out with NMS. With these augmented
labels, we 1) design a teacher-student network to provide (soft) supervisions, i.e.,
class logit, for preserving the past knowledge, and 2) update the incorrect back-
ground samples, i.e., negatives, in RPN and RCNN to prevent seen objects from
being background (see Fig. 2-bottom). Using soft class logit is important for the
large vocabulary classifier distillation, as the hard pseudo labels bias the oper-
ation towards the frequent class objects. Moreover, we use MSE loss instead of
Kullback-Leibler (KL) divergence loss [21] for the logit matching. This is because
the MSE loss treats all classes equally and thus it allows the rare classes with
low probability also to be updated properly [72]. This two new adaptation leads
to the successful distillation of the previous knowledge of the large vocabulary
classifier (see Table 2b).

Teacher-Student Framework Setup. To effectively retain the previous knowl-
edge, we design a teacher-student framework. We first make identical copies of
the image pre-trained model, teacher (T) and student (S). The teacher model
(T) is frozen to keep the previous knowledge and guide the student. The student
model (S) adapts to the new domain with incoming video labels (via detection
loss) and also mimics the teacher model to preserve the past information (via
distillation loss). We detail the components in the following.

RPN Knowledge Distillation Loss. The RPN takes multi-level features from
the ResNet feature pyramid [40]. In particular, each feature map is embedded
through the convolution layer, followed by two separate layers, one for objectness
classification and the other for proposal regression. We collect the outputs of both
heads from the teacher and student to compute RPN distillation loss, which is
defined as LRPN

KD = 1
Ncls

∑
i=1 Lcls(ui, u

∗
i ) + 1

Nreg

∑
i=1 Lreg(vi, v

∗
i ). Here, i is the

index of an anchor. ui and u∗
i are the mean subtracted objectness logits obtained
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from the student and the teacher, respectively. vi and v∗
i are four parameterized

coordinates for the anchor refinement obtained from the student and teacher,
respectively. Lcls and Lreg are MSE loss and smooth L1 loss, respectively. Here,
we note that Lreg is only computed for the positive anchors that have an IoU
larger than 0.7 with the augmented ground-truth boxes. Ncls(= 256) and Nreg are
the effective number of anchors for the normalization.

RCNN Knowledge Distillation Loss. We perform RoIAlign [18] on top-
scoring proposals from RPN, extracting the region features from each feature
pyramid level. Each region feature is embedded through two FC layers, one for
classification and the other for bounding box regression. We collect the outputs
of both heads from the teacher and student to compute RCNN distillation loss,
which is defined as LRCNN

KD = 1
Mcls

∑
j=1 Lcls(pj , p

∗
j )+

1
Mreg

∑
j=1 Lreg(tj , t∗j ). Here,

j is the index of a proposal. pj and p∗
j are the mean subtracted classification

logits obtained from the student and the teacher, respectively. tj and t∗j are
four parameterized coordinates for the proposal refinement obtained from the
student and teacher, respectively. Lcls and Lreg are MSE loss and smooth L1
loss, respectively. We only impose Lreg for the positive proposals that have an
IoU larger than 0.5 with the augmented ground-truth boxes. Mcls(= 512) and
Mreg are the effective number of proposals for the normalization.

Correcting Negatives in Computing the Detection Loss. We avoid sam-
pling the anchors or proposals that have significant IoU overlaps with the aug-
mented ground-truth boxes as a background (>0.7 for RPN and >0.5 for RCNN).
We note that positives are only sampled based on the provided original ground
truth labels. This is because the detectors, especially the large vocabulary detec-
tors, suffer from predicting the precise labels [11,50] while they are good at
recalling the objects. We empirically verify this in the experiment.

Extension to Other Transfer Learning Setup. COCO to YTVIS is another
important transfer learning setup (see Fig. 3-(a)). This is more challenging than
LVIS to TAO, as the superset-subset relationship does not hold, and new object
categories to learn are added. To deal with this new pattern, we take a two-step
approach (see Fig. 3-(b)). First, we adapt the RCNN classifier of the pre-trained
model, increasing the number of output channels to accommodate newly added
classes, and train on the videos, YTVIS − COCO, that contain new object cate-
gories. In practice, we freeze the original detector, and thus the past information
is intact, and only the newly added weight matrices are updated accordingly. The
key idea here is to use the original pretrained weight as an anchor and update
the newly added weight to be compatible. Second, after sufficient training of the
new weights, we now unlock the original detector and update the whole weights
with the remaining videos, YTVIS∩COCO, using the presented teacher-student
scheme.

3.3 Regularizing Semantic Flickering

One of the common tracking failures in large vocabulary tracking is due to
semantic flicker between similar object categories [12]. To cope with this issue,
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Fig. 3. (a) Two standard image to video transfer learning setups. In typical,
a naive transfer learning from images to videos leads to catastrophic forgetting due
to the missing annotations in the video. We present a generic teacher-student scheme
that works on both scenarios. (b) Two-step approach for COCO → YTVIS
transfer learning setup. We first learn new object classifier weights with the pre-
trained classifier as a fixed anchor and then fine-tune the whole classifier through
the proposed teacher-student scheme. The red-dotted line along the circle in the set
relationship figure indicates the training data used in each stage. The shape figures
(e.g., square, triangle) and the separating line denote class instances and the associated
classifier. (Color figure online)

we attempt to regularize the model during training with a new objective function,
namely semantic consistency loss. The proposal is motivated by the temporal
consistency loss [2,26,31,37], which enforces the outputs of the model for corre-
sponding pixels (or patches) in video frames to be consistent. It is often used
in video processing tasks to ensure the output temporal smoothness at a pixel
level. The proposal extends this idea from pixels to instances; We enforce the
class predictions of the same instances in two different frames to be equivalent.
In practice, we forward the ground truth bounding boxes of the same instance
in two different frames to the RCNN head. The mean subtracted classification
logits, p, are used for the consistency regularization as, LSemcon = |pt − pt+τ |2.
ere, pt and pt+τ denote the logits of the same instance in two different frames,
It and It+τ .
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3.4 Unified Learning

Within our proposed learning framework (see Fig. 2), we can train the whole
video model, learning detection and tracking jointly, using all available image
and video datasets. The final objective function can be summarized as

L = λ1LDet + λ2LTrack + λ3LKD + λ4LSemcon, (1)

which consists of four loss terms in total. The detection (LDet) and tracking losses
(LTrack) are adopted from [59] and [51]. Note that the LKD(= LRPN

KD + LRCNN
KD )

and LSemcon are used only when fine-tuning on the videos.

4 Experiments

In this section, we conduct extensive experiments to analyze our methods. We
investigate the results mainly in two aspects: image-level prediction and cross-
frame association, which will be reflected in the BBox AP and Track AP [12],
respectively. Considering the task difficulty, we mainly focus on the Track AP
of 50, 75 and their average. For the TAO test, we provide Track AP*, a full
Track AP average for IoU from 0.5 to 0.95 with a step size of 0.05. We study
the impact of unified learning on TAO dataset (Sect. 4.1). We consistently out-
performed the current decoupled learning paradigm with healthy margins using
various models, and pushed the state-of-the-art performance significantly. Sec-
ond, to investigate the importance of the major components in our proposals, we
provide ablation studies on TAO validation set (Sect. 4.2). Lastly, we evaluate
our teacher-student scheme on two representative image-video transfer learning
scenarios, LVIS → TAO and COCO → YTVIS2(Sect. 4.3). In the following, we
provide experiment setups, evaluation protocol and results for each section. More
details are in supplementary materials.

4.1 Main Results

Upon the state-of-the-art tracking-by-detection framework [51], we instanti-
ate various large vocabulary trackers. In specific, we consider two important
detection architecture, two-staged (Faster-RCNN [59]) and multi-staged (Cen-
terNet2 [106]), and three different long-tailed learning methods, Repeat Factor
Sampling (RFS) [16], Equalization Loss V2 (EQLv2) [70], and Seesaw Loss [76].
All the models use the same ResNet-101 [19] with feature pyramid [40] backbone
following the previous works [12,51]. Based on these baseline models, we compare
our learning framework with the current standard learning protocol, decoupled
learning. The comparison is in Table 1. We observe that our unified learning
scheme consistently outperforms the current decoupled learning paradigm on
various models, showing the strong generalizabilty of the proposal. With our
method, we push the state-of-the-art performance significantly, achieving 21.6
and 20.1 Track AP50 on TAO-val and TAO-test, respectively.
2 For the experiment, we contact the authors for the YTVIS-val annotations.
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4.2 Ablation Studies

Impact of Image Spatial Jitterings. The results are presented in Table 2b.
Compared to the standard affine transformation [17,48,105] or simple cropping
without scaling [66,102], the presented strong zoom-in/out and mosaicing pro-
vides a large Track AP improvement. This indicates both the low sampling rate
input simulation (with large-scale jittering) and dense tracking simulation (with
mosaicing) enables more accurate large vocabulary object associations at test-
time. To concretely investigate the scaling effects of zoom-in/out, we also provide
its variant with small scale-jittering, Z-in/out*, and confirm that the large scale-
jittering [15] is indeed important for the performance. We notice that mosaicing
augmentation drops the Box AP. We conjecture this happens due to the train
and test time inconsistency of input pairs. To this end, we present to form a
tracking pair from two different augmentations in equal probability. We found
that this mixed sampling strategy provides the best Track AP.

Impact of Teacher-Student Framework. In Table 2b, we study the impact
of the key proposals in teacher-student framework. For the baselines, we provide
the Naive-ft and Vanilla Teacher-Student schemes. Naive-ft indicates fine-tuning
on TAO videos without any proper regulation for forgetting, which results in a
significant performance drop. Vanilla Teacher-Student scheme samples the dis-
tillation targets only from the original ground truth labels, and no negative
correction is performed. While it shows the past knowledge preservation effect
to some extent, the performance is still worse than the LVIS-tracker. The vanilla
scheme starts to improve over the LVIS-tracker when our proposal is added. This
implies that pseudo labeling is essential, and 1) keeping the past knowledge of
seen objects (by sampling distillation targets from the augmented labels) and
2) preventing the seen objects from being background (by correcting negatives
using the augmented labels) are the key to avoid catastrophic forgetting.

One may wonder if the standard (hard) pseudo-labeling approach can directly
preserve the previous knowledge as typical teacher-student scheme do [67,91,92].
However, as can be shown in the results, we instead observe inferior results than
the baseline. The large vocabulary classifier fundamentally suffers from the confi-
dence calibration issue [11,50] as it is trained on the long-tailed class-imbalanced
data. It results in the classifier bias; predictions are made mainly toward the fre-
quent object categories, missing rare objects in one-hot hard pseudo labels. In
contrast, the (soft) pseudo labels essentially affect all classes. Furthermore, we
suggest to employ MSE loss rather than standard KL-loss [21] as objective func-
tion in distillation. As MSE loss treats all classes equally the impact of the
gradient is not attenuated for the rare classes. Recent study also reveals that
MSE loss offers better generalization capability due to the direct matching of
logits compared to the KL loss [28].

Impact of Semantic Consistency Loss. Finally, we study the impact of
semantic consistency loss. It regularizes the model’s class logits of the same
instance in different frames to be the equivalent. In Table 2b, we observed mean-
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ingful improvement in Track AP. This implies that semantic flicker regularization
is indeed effective for the large vocabulary object tracking.

4.3 Image to Video Transfer Learning

Here, we evaluate our teacher-student scheme on two representative image to
video transfer learning setups (see Fig. 3). In LVIS → TAO setup, we pre-train
FasterRCNN-RFS tracker on LVIS (with 482 categories) and fine-tune on TAO
(with 216 categories). We evaluate the model on TAO-val with Track AP metric.
In COCO → YTVIS setup, we pre-train Mask-RCNN [18] on COCO, transfer
the weights to MaskTrack RCNN [93], add new randomly initialized classifier
weights to accommodate newly added classes, and fine-tune on YTVIS. More
details of the setup are in supplementary materials. We evaluate the model on
YTVIS-val with Mask AP [93] metric. To quantitatively analyze whether the
proposal properly preserves the past knowledge and benefits from the new video
labels, we provide the scores of OLD and NEW. Here, OLD indicates the classes
that only reveal in the image pre-training stage. NEW denotes the classes that
appears in the video fine-tuning stage. For each setup, we provide a baseline of
naive fine-tuning, which results in a severe catastrophic forgetting. The results
are summarized in Table 3 and Table 4.

Table 3. Teacher-student framework in LVIS → TAO transfer learning setup. Eval-
uated on TAO-val.

Method OLD (LVIS − TAO) NEW (TAO) ALL

Box AP Track AP50 Track75 Box AP Track AP50 Track75 Box AP Track AP50 Track75

LVIS-
tracker

15.7 16.1 5.7 21.1 17.2 9.0 18.5 17.8 5.8

Naive-ft 7.1 7.7 1.3 16.2 14.9 3.7 11.7 11.4 2.6

Track-
only

15.7 15.3 5.5 21.1 16.9 7.1 18.5 16.1 6.3

Teacher-
Student

15.7 16.3 6.5 23.1 20.6 9.0 19.5 18.5 7.5

Table 4. Teacher-Student framework in COCO → YTVIS transfer learning setup.
Evaluated on YTVIS-val.

Method OLD (COCO − YTVIS) NEW (YTVIS) ALL

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Naive-ft 5.2 2.6 2.7 38.2 21.0 20.6 30.0 16.4 16.1

Teacher-Student (1-step) 38.9 31.2 26.2 36.2 19.4 20.1 36.9 22.4 21.6

Teacher-Student (2-step) 51.0 44.3 36.1 43.3 23.8 23.8 45.2 28.9 26.9

Full-ft (Oracle) 54.9 46.9 38.9 40.7 25.1 23.3 44.3 30.6 27.2

LVIS → TAO Transfer Learning. Especially in this setup, all necessary vocab-
ularies are already learned at the image pre-training stage. Therefore, we can
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avoid catastrophic forgetting by fine-tuning only the tracking part. However, as it
only updates the video model partially, it leads to inconsistent video representa-
tions, and thus performance rather slightly drops from the baseline LVIS-tracker.
Instead, our method preserves the performance of OLD classes (preventing catas-
trophic forgetting) and significantly improves the NEW class performance (ben-
efiting from labeled learning).

COCO → YTVIS Transfer Learning. This setup is more challenging as the
model is required to achieve two goals, new class learning and old class preserving
simultaneously. We decompose these goals and approach this setup in two-step
as described in Sect. 3.2. As can be shown in the results, the proposed two-step
approach performs better than the direct application of teacher student scheme.
The final performance is comparable with, and in NEW classes outperforms,
the oracle setup that use all the YTVIS training videos. This shows that our
proposal is generic and effective for standard image to video transfer learning
setups.

5 Conclusion

In this paper, we tackle the challenging problem of learning a large vocabulary
video tracker. We present a simple learning framework that uses all LVIS images
and TAO videos to jointly learn the detection and tracking. In specific, first, two
spatial jittering methods, strong zoom-in/out and mosaicing, which effectively
simulate the test-time large vocabulary object tracking are presented to enable
tracker training with LVIS. Second, a generic teacher-student scheme is proposed
to prevent catastrophic forgetting while fine-tuning the image pre-trained models
on videos. We show that two new adaptation of using soft labels with MSE
loss is crucial for the large vocabulary classifier distillation. We hope our new
learning framework settles as a baseline learning scheme for many follow-up
large-vocabulary trackers in the future.

Acknowledgement. This work was supported in part supported by Samsung Elec-
tronics Co., Ltd (G01200447).
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106. Zhou, X., Koltun, V., Krähenbühl, P.: Probabilistic two-stage detection.
arXiv:2103.07461 (2021)
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