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Abstract. State-of-the-art methods for optical flow estimation rely on
deep learning, which require complex sequential training schemes to
reach optimal performances on real-world data. In this work, we intro-
duce the COMBO deep network that explicitly exploits the brightness
constancy (BC) model used in traditional methods. Since BC is an
approximate physical model violated in several situations, we propose to
train a physically-constrained network complemented with a data-driven
network. We introduce a unique and meaningful flow decomposition
between the physical prior and the data-driven complement, including
an uncertainty quantification of the BC model. We derive a joint training
scheme for learning the different components of the decomposition ensur-
ing an optimal cooperation, in a supervised but also in a semi-supervised
context. Experiments show that COMBO can improve performances over
state-of-the-art supervised networks, e.g. RAFT, reaching state-of-the-
art results on several benchmarks. We highlight how COMBO can lever-
age the BC model and adapt to its limitations. Finally, we show that our
semi-supervised method can significantly simplify the training procedure.

1 Introduction

Optical flow estimation is a classical problem in computer vision, consisting in
computing the per-pixel motion between video frames. This is a core visual task
useful in many applications, such as video compression [1], medical imaging [4]
or object tracking [11]. Yet, this remains a particularly challenging task for real-
world scenes, especially in presence of fast-moving objects, occlusions, changes
of illumination or textureless surfaces.

Traditional model-based estimation methods [17,35] assume that the inten-
sity of pixels is conserved during motion w: It−1(x) = It(x + w), which is
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known as the brightness constancy (BC) model. Linearizing this constraint for
small motion leads to the famous optical flow partial differential equation (PDE)
solved by variational methods since the seminal work of Horn and Schunk [17]:

∂I

∂t
(t,x) + w(t,x) · ∇I(t,x) = 0 (1)

Fig. 1. Proposed COMBO model for flow estimation between two images I1
and I2. We explicitly leverage the brightness constancy (BC) assumption in Eq. (1)
for estimating the physical flow prediction ŵp. Since BC is an approximate model
violated in several usual situations, COMBO learns an uncertainty map α̂ specifying
areas where ŵp is relevant, and an augmentation data-driven flow ŵa to compensate for
the BC violations (in this example, related to fog and occlusions). The final COMBO
prediction combining (ŵa, ŵp, α̂) is both physically-regularized and accurate.

However this physical model for optical flow is only a rather coarse approx-
imation of the reality. The BC assumption is violated in many situations: in
presence of occlusions, global or local illumination changes, specular reflexions,
or complex natural situations such as fog. The correspondence problem is also
ambiguous for textureless surfaces. To solve this ill-posed inverse problem, this is
necessary to inject prior knowledge about the flow, such as spatial smoothness,
sparsity or small total variation.

In contrast to these traditional model-based approaches, deep neural net-
works have become state-of-the-art for learning optical flow in a pure data-driven
fashion [13,18,20,44,51,53,61]. However, since flow labelling on real images is
expensive, supervised deep learning methods mostly use complex curriculum
training schemes on synthetic datasets to progressively adapt to the complexity
of real-world scenes.

More recently, unsupervised deep learning approaches are closer in spirit to
traditional approaches [22,24,30,39,45,49]. Without ground-truth labels, they
rely on a photometric reconstruction loss based on the BC assumption, and
additional regularization losses like spatial smoothness. They also use of specific
modules, e.g. occlusion detection, to identify images areas where the BC in
Eq. (1) is violated.
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In this work, we introduce a hybrid model-based machine learning (MB/ML)
model dedicated to optical flow estimation, which COMplements Brightness con-
stancy with deep networks for accurate Optical flow prediction (COMBO). As
illustrated in Fig. 1, COMBO decomposes the estimation process into a physical
flow based on the simplified Brightness Constancy (BC) hypothesis and a data-
driven augmentation for compensating for the limitations of the physical model.
COMBO also simultaneously learns an uncertainty model of the brightness con-
stancy, useful for fusing the two flow branches into an accurate flow estimation.
Importantly, the two branches are learned jointly and a principled optimization
ensures an optimal cooperation between them.

Our contributions are the following:

– We propose a principled way to regularize supervised flow models with an
explicit exploitation of the BC assumption. We introduce with COMBO a
meaningful and unique flow decomposition into a physical part optimizing
the BC and an augmentation part compensating for its limitations.

– We propose to jointly learn the physical, augmented flows and a uncertainty
measure of the BC validity, generalizing occlusion detection approaches or
robust photometric losses. It also enables to exploit the model in semi-
supervised contexts for non-annotated pixels where we know that the BC
assumption is satisfied.

– To learn the COMBO model, we define and compute a fine-grained supervi-
sion by decomposing the ground-truth flow into a BC flow, a residual flow
and an uncertainty map.

– Experiments (Sect. 4) show that when included into a state-of-the-art super-
vised network, i.e. RAFT, COMBO can improve performances consistently
over datasets and training curriculum steps. COMBO also reaches state-of-
the-art performances on several benchmarks, and we show that the semi-
supervised scheme can be leveraged to grandly simplify the training curricu-
lum. We also provide detailed ablations and qualitative analyses attesting the
benefits of our principled decomposition framework.

2 Related Work

Traditional Optical Flow. Since the seminal works of Lucas-Kanade [35] and
Horn-Schunck [17], optical flow estimation is traditionally casted as an optimiza-
tion problem over the space of motion fields between a pair of images [8,40,58].
As mentionned in introduction, the cost function is usually based on the con-
servation assumption of an image descriptor during motion, i.e. the brightness
constancy (BC). Since the number of optical flow variables is twice the number
of observations, the search problem is underconstrained. Existing methods typ-
ically add spatial smoothness constraints on the flow to regularize the problem,
enabling to propagate information from non-ambiguous to ambiguous pixels,
e.g. occluded. Since, progress has been made for handling the limitations of the
brightness constancy with more robust matching loss, such as the gradient con-
stancy [7], the structural similarity (SSIM), the Charbonnier loss [9], the census
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loss [39] or involving descriptors learned by deep neural networks [3,59]. How-
ever, these traditional methods are limited for handling large motion and often
suffer from a high computational cost.

Deep Supervised Methods. Deep neural networks have proven effective for
directly learning the optical flow end-to-end from a labelled dataset [13,18,20,
23,44,51,53]. Although some methods borrow ideas from traditional methods
such as cost volume processing [61] and pyramidal coarse-to-fine warping [44],
they do not rely anymore on the conservation of an image descriptor. One of the
current state-of-the-art architectures is the Recurrent All-Pairs Field Transforms
(RAFT) [53]. This model exploits the correlation volume between all pairs of
pixels and iteratively refines the flow with a recurrent neural network. Since
obtaining ground-truth flow annotations is very expensive, supervised methods
mostly train on synthetic datasets. This leads to a non-negligible generalization
gap when transferring to real-world datasets. Consequently, complex curriculum
learning schemes are needed to progressively adapt the learned optical flow from
synthetic data to real scenarios [50,53].

Deep Unsupervised Methods. More recently, unsupervised approaches proved
to outperform traditional methods even without flow labels [22,24,30,39,45,49].
They revisit the brightness constancy assumption by warping the target image
with the estimated flow and optimizing a photometric loss. However they still
lag behind supervised methods and require additional mechanisms for overcom-
ing the limitations of the BC assumption, e.g. occlusion reasoning [39,57] or
self-supervision [24,31,32]. Occlusions were traditionally treated as outliers in a
robust estimation setting [7], or estimated with a forward-backward consistency
check [2,39]. More recent approaches jointly learn occlusion maps with convo-
lutional neural networks in a supervised way (i.e. with ground-truth occlusions)
[19,20,37] or unsupervised way [15,21,63]. Nonetheless, most of these methods
focus on specific cases of deviations from the brightness constancy assumption,
e.g. occlusions or illumination changes. Our approach is more general and learns
to compensate for any failure case of this simplified assumption. Besides, we
learn from supervised flow data a confidence model of the BC assumption, which
enables to learn our model in a semi-supervised setting [26,60].

Hybrid MB/ML. Combining model-based (MB) and machine learning (ML)
models is a long-standing subject [42,46,54] that yet remains widely open
nowadays. Leveraging physical knowledge enables to design machine learning
models that learn from less data, and offer better generalization while con-
serving physical plausibility. Many ideas were explored, such as imposing soft
physical constraints [28,34,43,48,56] in the training loss function or hard con-
straints in the network architectures [6,12,16,27,36,41]. However, most existing
approaches assume a fully-known prior physical model. Very few works have
investigated how to exploit incomplete physical models with deep neural net-
works [29,33,38,47,62]. Besides, exploiting incomplete physical knowledge in a
deep hybrid model has never been explored for optical flow to the best of our
knowledge.
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3 COMBO Model for Optical Flow

Given a pair of frames It−1 and It ∈ R
W×H×3, the optical flow task consists in

estimating the dense motion field w = (u, v) ∈ R
W×H×2 that maps each pixel

from the source image It−1 to its corresponding relative location in the target
image It.

Fig. 2. Our proposed COMBO model for optical flow estimation. Given a pair of input
frames (It−1, It), COMBO first extract convolutional features. The model is composed
of three branches that compute an estimate for the physical flow ŵp, the augmentation
flow ŵa and the uncertainty map α̂.

We introduce COMBO, a deep learning model that explicitly exploits the
brightness constancy (BC) assumption and learns the complementary informa-
tion to compensate for the BC modeling errors.

The COMBO model is depicted in Fig. 2. The model takes a pair of input
frames (It−1, It) and first encodes them into a feature space. From this common
representation space, the rationale of COMBO is to decompose the dense flow ŵ
using 3 main quantities: a physical term ŵp ∈ R

W×H×2 fulfilling the BC assump-
tion, an augmentation term ŵa ∈ R

W×H×2 dedicated to capture the remaining
information for accurate flow prediction. For each pixel, our decomposition also
involves an uncertainty map α̂ ∈ [0, 1]W×H representing the violation of the BC
assumption at each pixel.

In Sect. 3.1, we present our proposed BC augmentation framework, ensuring a
unique and meaningful decomposition of ŵ between the physical ŵp, augmented
ŵa and uncertainty α̂ terms. From this formulation, we derive in Sect. 3.2 a
training scheme to learn the model parameters, including a supervised but also
a semi-supervised variant leveraging the learned BC confidence α̂.

3.1 BC-Augmented Flow Decomposition

We consider the flow w(x) representing the displacement of pixel x = (x, y)
from It−1(x) to It(x). Let us define the brightness constancy divergence as
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LBC(x,w) := �(It−1(x) − It(x + w)) measured with the photometric loss �
(e.g. the L1 loss). In COMBO, we propose to decompose the ground truth flow
w∗ between a physical flow w∗

p, an augmentation flow w∗
a and an uncertainty

map α∗:
w∗(x) = (1 − α∗(x)) w∗

p(x) + α∗(x) w∗
a(x). (2)

Since the decomposition in Eq. (2) is not necessarily unique, we define the
COMBO decomposition (w∗

p,w∗
a, α∗) as the solution of the following constrained

optimization problem:

min
wp,wa

‖(wa,wp)‖ subject to: (3)
⎧
⎪⎨

⎪⎩

(1 − α∗(x)) wp(x) + α(x) wa(x) = w∗(x)
(1 − α∗(x)) |I1(x) − I2(x + wp(x))| = 0
α∗(x) = σ (|I1(x) − I2(x + w∗(x))|) .

Theoretical Properties of the Decomposition: Under these constraints,
the decomposition problem in Eq. (3) admits a unique solution (w∗

p,w∗
a, α∗) (we

detail the proof in supplementary 1). The uniqueness in decomposition of a given
flow into the three (w∗

p,w∗
a, α∗) components is important since it ensures a well

posed problem for learning the different terms.

Beyond its sound mathematical formulation, the decomposition in Eq. (3)
is also meaningful. It ensures to properly and explicitly exploit the BC model
and to overcome its limitations to represent real data in diverse and complex
situations. We detail now each component of this decomposition problem:

Brightness Constancy Flow ŵp(x): We define the brightness constancy flow
ŵp as a minimizer of the BC condition, similarly to traditional and unsu-
pervised methods. The BC is a very useful constraint not fully exploited in
deep supervised methods. However, as mentioned in introduction, this BC
assumption is often violated in real data, e.g. in case of occlusions, illumina-
tion changes, textureless surfaces, etc.. When directly minimizing LBC(x,w) =
�(It−1(x)−It(x+w)), for a given pixel x in the source image, there may exist mul-
tiple possible matches in the target image satisfying the BC constraint. There-
fore, the BC constraint is only applied to wp in Eq. (3), not to the final flow
vector w∗, and is weighted by the BC confidence measure (1 − α∗(x)). This is
done on purpose, since the BC constraint is not always verified when training
a model from ground truth supervision, making this term possibly conflicting
with the supervised objective. We verify experimentally that a naive incorpora-
tion of the BC loss during training is not effective. In contrast, COMBO exploits
an augmented flow to jointly incorporate the BC knowledge with an adaptive
compensation for its violation.

BC Augmented Flow ŵa(x): In contrast to traditional and unsupervised
methods, we do not leverage prior knowledge on the flow but instead rely on
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a data-driven augmentation ŵa to learn how to optimally compensate for the
simplified model, as investigated by several recent augmented physical models
[29,33,38,47,55,62]. To ensure a unique decomposition in Eq. (3), we minimize
the norm of the concatenated vector (ŵa, ŵp). The rationale is to compensate
with the minimal correction ‖ŵa‖ from the brightness constancy assumption.
This least-action augmentation also prevents ŵp(x) from being too large: the
BC flow is enforced to be as close as possible to the ground-truth flow w∗.
Minimizing the norm of ŵp also prevents degenerate cases with possibly several
admissible ŵp equidistant to w∗ (see supplementary 1 for a discussion).
BC Uncertainty α∗(x): We weight the decomposition between ŵp and ŵa

in Eq. (3) with the uncertainty map α∗(x) = σ(LBC(x,w∗)) quantifying the
per-pixel validity of the BC assumption, where σ is a nonlinear function1 ensur-
ing that the uncertainty values spread over [0; 1]. When α∗(x) = 0, the BC
assumption is verified; in that case, our decomposition reduces to the physical
flow ŵ(x) = ŵp(x) as in traditional methods. On the contrary, when the BC is
violated (α∗(x) > 0), the errors of the brightness constancy modelling are com-
pensated by the data-driven model ŵa. This leads to a meaningful decomposition
between ŵp and ŵa.

3.2 Training

In this section, we propose to jointly learn the three quantities w∗
p, w∗

a and α∗ of
the flow decomposition Eq. (2) with a deep neural architecture named COMBO.
We introduce a practical learning framework to solve the decomposition problem
in Eq. (3) in the supervised and semi-supervised settings. Given a dataset of
labelled image pairs Dsup = {(It−1, It,w∗)i}Nsup

i=1 and unlabelled image pairs
Dunsup = {(It−1, It)i}Nunsup

i=1 , the goal is to learn the parameters θ = {θb, θp, θa}
of the COMBO model depicted in Fig. 2, where θb are the backbone encoder
parameters, θp the parameters of the BC flow model, θa are the parameters of
the augmented flow model.

The general loss for learning the COMBO model is the following:

L(D, θ) =λp ‖ŵp − w∗
p‖22 + λa ‖ŵa − w∗

a‖22 + λtotal ‖ŵ − w∗‖22
+ λphoto Lphoto(D, θ) + λw ‖(ŵa, ŵp)‖2 + λα Lα(D, θ), (4)

where ŵ(x) = (1− α̂(x)) ŵp(x)+ α̂(x) ŵa(x) is the flow predicted by COMBO.
The total loss in Eq. (4) is composed of supervised losses on the final flow ŵ,

the BC flow ŵp and the augmentation flow ŵa. In addition to the supervised loss
on ŵp, we also use a photometric loss similarly to traditional and unsupervised
methods. We use the L1 loss weighted by the certainty measure (1 − α∗(x)):

Lphoto(D, θ) =
∑

I1,I2∈D

∑

x

(1 − α∗(x)) |I1(x) − I2(x + ŵp)|1. (5)

1 We choose in this work the sigmoid function centered at 0.5 for image pixels in the
range [0; 1].
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With the L1 loss, the physical branch of COMBO directly models the bright-
ness conservation at the pixel level and the learned uncertainty captures the limi-
tations of this hypothesis. Other photometric losses more robust to the brightness
constancy limitations could have been chosen, e.g. the Charbonnier [9], SSIM
[24] or census loss [39], that would produce a different physical flow. Our aug-
mentation framework can seamlessly adapt to the level of approximation of the
BC model at each pixel. Note that the photometric loss is complementary with
the supervised loss ‖ŵp − w∗

p‖22: a small error on the predicted flow ŵp results
in a small endpoint error (EPE) but can have a large photometric error if ŵp

leads to a large photometric change in the target image.
Finally, we define the uncertainty loss as:

Lα(Dsup, θ) =
∑

I1,I2∈Dsup

∑

x

‖α̂(x) − σ(LBC(x,w∗))‖22. (6)

Curriculum Learning for the BC Uncertainty: In the COMBO decompo-
sition ŵ(x) = (1− α̂(x)) ŵp(x)+ α̂(x) ŵa(x), a bad estimate of the uncertainty
α could be harmful for learning ŵp and ŵa. Therefore, similarly to the teacher
forcing strategy in sequential models, we choose a scheduled sampling strategy
[5] where we use the ground truth α∗ with high probability at the beginning of
learning, and decrease progressively this probability towards 0 to rely more and
more on the prediction α̂ (see Algorithm 1).

Supervised Learning: In the supervised learning setting, we only exploit the
supervised set Dsup. We minimize the total loss in Eq. (4) by using the fine-
grained supervision on (w∗

p,w∗
a, α∗) that we have created (see supplementary

3.1 for examples of tuples (w∗
p,w∗

a, α∗) for each dataset).

Semi-supervised Learning: COMBO can be also favorably used in a semi-
supervised training setting, which consists in exploiting the information of non-
annotated images in Dunsup in addition to the annotated frames in Dsup. This is
an important context in practice since labelling flow images is expensive at scale
(in general Nunsup � Nsup). Leveraging unlabelled data directly on the target
dataset is an appealing way for unsupervised domain adaptation.

When learning in semi-supervised mode (see Algorithm 1), we mix in a mini-
batch labelled image pairs from Dsup and unlabelled image pairs from Dunsup.
For labelled images, we again minimize the supervised loss L defined in Eq. (4).
For unlabelled frames, we refine the estimation of ŵp by exploiting the photo-
metric loss on pixels that are likely to satisfy the BC constraint (measured by the
uncertainty map α learned with ground-truth data). We only minimize in that
case the photometric loss Lphoto(Dunsup, θ), which corresponds to the particu-
lar case of Eq. (4) by setting λphoto = 1 and λp = λa = λtotal = λw = λα = 0.
Importantly, for unlabelled images, we block the gradient flow in the uncertainty
branch α since α can only be estimated in supervised mode.
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Algorithm 1: COMBO optimization:
Parameters: λp, λa, λtotal, λphoto, λw, λα ≥ 0, τ > 0 ;
for epoch = 1 : Nepochs do

for each batch b = (bsup, bunsup) do
If Rand(0, 1) < 1 − epoch/50 Then: # scheduled sampling

ŵ(x) = (1 − α∗(x)) ŵp(x) + α∗(x) ŵa(x)
Else:
ŵ(x) = (1 − α̂(x)) ŵp(x) + α̂(x) ŵa(x)
Compute Lsup = L(bsup, θ, λsup, λphoto, λw, λα) with Eq. (4)
Compute Lunsup = Lphoto(bunsup, θ)
θj+1 = θj − τ ∇(Lsup + Lunsup)

4 Experiments

We evaluate and compare COMBO to recent state-of-the-art models on the
optical flow datasets FlyingChairs [13], MPI Sintel [10] and KITTI-2015 [14], in
the supervised and semi-supervised contexts. For model analysis, we perform a
train/test resplit of the Sintel and KITTI training datasets, as done by [30]. Our
code is available at https://github.com/vincent-leguen/COMBO.

4.1 Experimental Setup

We adopt for the backbone encoder and flow network the RAFT architecture
[53], which is one of the current state-of-the-art methods for supervised opti-
cal flow. The encoder is composed of convolutional layers that extract features
from images It−1 and It at resolution 1/8. Then visual similarity is modelled
by constructing a 4D correlation volume that computes matching costs for all
possible displacements. The optical flow branch is a gated recurrent unit (GRU)
that progressively refines the flow from an initial estimate, with lookups on the
correlation volume. The final flow is the sum of residual refinements from the
GRU, upsampled at full resolution.

Table 1. Performances of COMBO compared to the RAFT model (run with online
code). COMBO consistently outperforms RAFT on the three training stages, illustrat-
ing the relevance of leveraging the BC physical model and complementing its failure
cases.

Stage Method Chairs Sintel-test-resplit KITTI-test-resplit

Clean Final Fl-epe Fl-all

C RAFT 0.82 1.11 1.76 10.7 39.7

C COMBO 0.74 1.04 1.58 10.2 39.3

C+T RAFT 1.15 0.82 1.17 5.67 17.9

C+T COMBO 1.09 0.77 0.96 5.46 17.3

C+T+ RAFT 1.23 0.57 0.76 1.79 7.12

S+H+K COMBO 1.16 0.56 0.71 1.75 6.58

https://github.com/vincent-leguen/COMBO
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Table 2. State-of-the-art performance comparison on FlyingChairs, Sintel-train and
KITTI-train, when learning on FlyingChairs (C) and FlyingChairs+FlyingThings
(C+T). Scores are reported from corresponding papers.

Stage Method Chairs Sintel (train) KITTI-15 (train)

Clean Final Fl-epe Fl-all

C RAFT [53] 0.82 2.26 4.52 10.67 39.72

C GMA [23] 0.79 2.32 4.10 10.32 36.91

C COMBO 0.74 2.19 4.37 10.19 39.02

C+T LiteFlowNet [20] - 2.48 4.04 10.39 28.5

C+T PWC-Net [51] - 2.55 3.93 10.35 33.7

C+T VCN [61] - 2.21 3.68 8.36 25.1

C+T MaskFlowNet [63] - 2.25 3.61 - 23.1

C+T RAFT [53] 1.15 1.43 2.71 5.01 17.5

C+T GMA [23] 1.19 1.31 2.73 4.69 17.1

C+T COMBO 1.09 1.31 2.58 4.69 16.5

In the COMBO model, the encoder and correlation volume are shared, and
each branch has its own GRU initialized from zero. The uncertainty branch
is simply adapted to provide a unique output channel. We give details on the
network architectures and hyperparameters in supplementary 2. The code of
COMBO will be released if accepted. Note that our method is agnostic to the
optical flow backbone. Any other deep architecture than RAFT could be used
for computing the physical, augmentation flow and the uncertainty map.

4.2 Supervised State-of-the-Art Comparison

Following the supervised learning curriculum of prior works [23,52,53,63], we
pretrain our models successively on the synthetic datasets FlyingChairs [13] and
FlyingThings3D [37]. We then finetune on Sintel [10] by combining data from
Sintel, KITTI-2015 and HD1K [25]. We finally finetune on KITTI-2015 with
only data from KITTI.

In Table 1, we compare the endpoint error (EPE) of COMBO with RAFT
[53], by running the code from the authors. Since we rely on a RAFT architec-
ture, the results in Table 1 directly evaluate the impact of the proposed aug-
mented model and learning scheme. We see that COMBO consistently outper-
forms RAFT on FlyingChairs, Sintel-test-resplit and KITTI-test-resplit from all
stages of the curriculum. This confirms the relevance of leveraging the BC con-
straint for regularizing supervised models, and the use of the augmentation for
compensating its violations.

In Table 2, we compare COMBO to competitive supervised optical flow base-
lines, from the stages FlyingChairs (C) and FlyingChairs+FlyingThings (C+T).
When generalizing to Sintel-train and KITTI-train, COMBO outperforms RAFT
[53] in all cases, and is superior or equivalent to the recent GMA model [23] in 6/8
cases. Note also that COMBO outperforms all other methods on FlyingChairs.
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Table 3. Comparison with RAFT on KITTI-test-resplit from the FlyingChairs (C)
and Sintel (S) checkpoints, with supervised and semisup training on KITTI. We see
that COMBO in semisup from Chairs is almost equivalent to COMBO from Sintel,
showing that the training curriculum can be drastically reduced.

Model Mode Checkpoint KITTI (test-resplit)

F1-epe F1-all

RAFT [53] sup C 2.28 7.60

COMBO sup C 2.19 7.30

COMBO semisup C 1.75 6.88

RAFT [53] sup S 1.79 7.12

COMBO sup S 1.75 6.58

COMBO semisup S 1.74 6.58

4.3 Semi-supervised Results

We analyze the performances of COMBO in a semi-supervised learning setting in
Table 3. We evaluate the different models on KITTI test-resplit, using for training
the annotated images of KITTI train-resplit (sup) and the additional unlabelled
images of KITTI (semisup). When training on KITTI from the earliest stage of
the curriculum (FlyingChairs), we can see that COMBO-semisup (Fl-epe=1.75)
largely improves over RAFT-sup (2.28) and COMBO-sup (2.19). It confirms that
leveraging the vast amount of unlabelled frames is crucial for adapting the model
to a target dataset from an early checkpoint. Interestingly, the semisup training
from Chairs is almost equivalent to the COMBO model trained from the Sintel
checkpoint (1.74). It shows that COMBO trained in a semisup context enables
to greatly simplify the training curriculum to reach similar performances. This
feature of COMBO is of crucial interest in many domains for transferring models
to target datasets from a single synthetic training stage.

Fig. 3. Performances on KITTI-resplit
trained from the Chairs, w.r.t. the
number of labelled frames.

To further analyze the semi-supervised
learning ability of COMBO, we pro-
gressively reduce the number of train-
ing images on KITTI-resplit and compare
the performances of RAFT and COMBO-
semisup trained from the FlyingChairs
checkpoint. In Fig. 3, we observe that
RAFT degrades much more sharply than
COMBO with fewer training images, and
the difference in EPE becomes very large
with 10% of training images (EPE=11.6
for RAFT v.s. 4.4 for COMBO). It high-
lights the crucial ability of COMBO to
leverage the BC assumption on unlabelled
frames.
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Fig. 4. Qualitative prediction results on MPI Sintel. We observe that in zones of high
uncertainty of the BC, the physical flow ŵp is ill-defined; the augmentation flow ŵa

successfully complements it for accurate flow estimation. We also show that the uncer-
tainty learned by COMBO is consistent with the GT BC uncertainty, and that it
detects other cases of violation of the BC different from occlusions.

Fig. 5. Qualitative prediction results on KITTI 2015. We see that at the bottom of
the image where the road becomes occluded, the physical flow ŵp is ill-defined and is
complements by ŵa for accurate prediction.

Fig. 6. Failure cases of the brightness constancy detected by COMBO different from
occlusions. The last column corresponds to image 1 masked by the map of thresholded
uncertainty α̂ deprived of the ground-truth occlusions. From top to bottom, COMBO
captures: illumination change, motion blur and fog.

4.4 Ablation Study

We perform in Table 4 an ablation study on FlyingChairs to analyze the
behaviour of the COMBO model. We first show that two RAFT branches trained
with different seeds and mixed 50:50 improve over RAFT but is largely inferior
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to COMBO, show that the performances of COMBO do not simply come from
an augmentation of the parameters or an ensembling effect. Then, we see that a
single RAFT branch with the photometric loss Lphoto in Eq. (5) (epe = 0.794)
is far inferior to COMBO (0.743). This is because the BC regularization helps
in improving generalization in regions where the BC assumption is fulfilled, but
is detrimental in regions where the BC assumption does not hold. In contrast,
COMBO can leverage the BC assumption and complement it in an adaptive
manner when it is violated, overcoming the conflict issues between the two terms.

Moreover, the linear decomposition ŵ = ŵp + ŵa without the uncertainty
branch, i.e. we set α(x) = 1/2 everywhere, is clearly inferior to COMBO. It shows
the crucial necessity to account for the uncertainty of the BC. Finally, when we
remove the minimization of ‖(ŵa, ŵp)‖ from COMBO (then the decomposition
is not unique anymore), the performances also decrease, highlighting the supe-
riority of the well-posed and unique decomposition of COMBO.

We then report in Table 5 the performances of the individual ŵp (resp. ŵa)
branches weighted by the certainty of the BC (resp. uncertainty). For example,
we compute EPEweighted(ŵp,w∗) =

∑
x(1 − α∗(x))‖ŵp(x) − w∗(x)‖2. We see

that both ŵp and ŵa are superior to RAFT on areas where they apply. In
particular the performance gap compared to RAFT widens on areas with high
BC uncertainty (EPE= 2.20 v.s. 0.52), showing the benefits of the COMBO
decomposition to greatly improve the estimation on challenging zones.

Table 4. Ablation study on FlyingChairs, showing the benefits of the meaningful and
principled decomposition of COMBO, compared to the backbone RAFT.

Method EPE (FlyingChairs)

RAFT [53] 0.818

2 RAFT branches mixed equally 0.800

RAFT + BC photometric loss 0.794

COMBO ŵp + ŵa (no weighting by uncertainty) 0.769

COMBO without min ‖(ŵa, ŵp)‖ 0.752

COMBO 0.743

4.5 COMBO Analysis

We provide qualitative flow predictions of the COMBO model for Sintel-test-
resplit in Fig. 4 and KITTI-test-resplit in Fig. 5. In uncertain zones (α̂ ≈ 1, for
example in the occluded region of the bird in Fig. 4 or at the bottom of Fig. 5),
we can see that ŵp gives incoherent results, as expected. In that case, the flow
is efficiently complemented by ŵa to produce the COMBO flow.
Occlusion Detection: To analyze the ability of COMBO to detect occlusions,
we represent in supplementary 3.2 the precision-recall curve of the COMBO
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Table 5. Performances of the individual BC ŵp and residual ŵa flow branches on
areas with high BC confidence (resp. high BC uncertainty).

Method EPE weighted (FlyingChairs)

RAFT on BC certain zones 0.48

COMBO ŵp on certain zones 0.30

RAFT on BC uncertain zones 2.29

COMBO ŵa on uncertain zones 0.52

uncertainty detector with respect to the ground-truth occlusion masks (which
are known for Sintel). COMBO obtains an Average Precision (AP) of 59%, which
is a lower bound of the true AP of COMBO for occlusions (since COMBO also
captures other failure cases than occlusions). This means that COMBO is able
to efficiently detect occlusions without any ground-truth occlusion supervision,
compared to the random classifier which reaches 7% (ratio of occluded pixels).
Detection of Other Failure Cases of the BC: In the third line of Fig. 4,
we show the ground-truth (GT) BC uncertainty mask (defined as LBC > ε,
ε = 0.01 in Fig. 4) and the ground-truth occlusions of Sintel. We observe that
the COMBO uncertainty globally aligns with the GT BC uncertainty, and covers
a larger area than the GT occlusions. To investigate this, we display the thresh-
olded uncertainty mask α deprived of the GT occlusions: it shows that COMBO
can capture other failure cases of the BC different than occlusions. Applying
this mask on image 1 (bottom right of Fig. 4) shows that this corresponds to
illumination changes for this example.

We further analyze the other failure cases of the BC in Fig. 6. We can see that
COMBO can detect other cases of violation of the BC, without any supervision
masks on these cases. The top row of Fig. 6 shows that the uncertainty α detects
the illumination change on the arm of the woman. On the middle row, the
uncertainty concentrates on the woman running, which causes motion blur. The
bottom row shows a BC uncertainty on a large part of the image, caused by the
presence of fog. We provide additional visualizations in supplementary 3.4.

5 Conclusion

We have introduced COMBO, a new physically-constrained architecture for opti-
cal flow estimation that explicitly exploits the simplified brightness constancy
constraint. COMBO learns the uncertainty of the BC and how to complement
it with a data-driven network. COMBO reaches state-of-the-art results on sev-
eral benchmarks, and is able to greatly simplify the training curriculum with a
semi-supervised learning scheme. An appealing perspective would be to investi-
gate the application of augmented physical models to multi-frame optical flow
estimation.
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