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Abstract. We present a unified method, termed Unicorn, that can
simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS)
with a single network using the same model parameters. Due to the frag-
mented definitions of the object tracking problem itself, most existing
trackers are developed to address a single or part of tasks and over-
specialize on the characteristics of specific tasks. By contrast, Unicorn
provides a unified solution, adopting the same input, backbone, embed-
ding, and head across all tracking tasks. For the first time, we accomplish
the great unification of the tracking network architecture and learning
paradigm. Unicorn performs on-par or better than its task-specific coun-
terparts in 8 tracking datasets, including LaSOT, TrackingNet, MOT17,
BDD100K, DAVIS16-17, MOTS20, and BDD100K MOTS. We believe
that Unicorn will serve as a solid step towards the general vision model.
Code is available at https://github.com/MasterBin-IIAU/Unicorn.

Keyword: Object tracking

1 Introduction

Compared with weak AI designed for solving one specific task, artificial general
intelligence (AGI) is expected to understand or learn any intellectual task that
a human being can. Although there is still a large gap between this ambitious
goal and the intellectual algorithms of today, some recent works [19,20,48,76]
have begun to explore the possibility of building general vision models to address
several vision tasks simultaneously.

Object tracking is one of the fundamental tasks in computer vision, which
aims to build pixel-level or instance-level correspondence between frames and
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to output trajectories typically in the forms of boxes or masks. Over the
years, according to different application scenarios, the Object tracking problem
has been mainly divided into four separate sub-tasks: Single Object Tracking
(SOT) [17,39], Multiple Object Tracking (MOT) [37,75], Video Object Segmen-
tation (VOS) [43], and Multi-Object Tracking and Segmentation (MOTS) [57,
75]. As a result, most tracking approaches are developed for only one of or part
of the sub-tasks. Despite convenience for specific applications, this fragmented
situation brings into the following drawbacks: (1) Trackers may over-specialize
on the characteristic of specific sub-tasks, lacking in the generalization ability.
(2) Independent model designs cause redundant parameters. For example, recent
deep-learning-based trackers usually adopt similar backbones architectures, but
the separate design philosophy hinders the potential reuse of parameters. It is
natural to ask a question: Can all main-stream tracking tasks be solved by a
unified model?

Although some works [33,36,58,60,66] attempt to unify SOT&VOS or
MOT&MOTS by adding a mask branch to the existing box-level tracking system,
there is still little progress towards the unification of SOT and MOT. There are
mainly three obstacles hindering this process. (1) The characteristics of tracked
objects vary. MOT usually tracks tens even hundreds of instances of specific cat-
egories. In contrast, SOT needs to track one target given in the reference frame
no matter what class it belongs to. (2) SOT and MOT require different types
of correspondence. SOT requires distinguishing the target from the background.
However, MOT needs to match the currently detected objects with previous
trajectories. (3) Most SOT methods [3,5,9,15,27,72] only take a small search
region as the input to save computation and filter potential distractors. How-
ever, MOT algorithms [2,8,36,63,69,79,84] usually take the high-resolution full
image as the input for detecting instances as completely as possible.

To conquer these challenges, we propose two core designs: the target prior
and the pixel-wise correspondence. To be specific, (1) the target prior is an addi-
tional input for the detection head and serves as the switch among four tasks.
For SOT&VOS, the target prior is the propagated reference target map, enabling
the head to focus on the tracked target. For MOT&MOTS, by setting the target
prior as zero, the head degenerates into the usual class-specific detection head
smoothly. (2) The pixel-wise correspondence is the similarity between all pairs
of points from the reference frame and the current frame. Both the SOT corre-
spondence (CSOT ∈ R

h′w′×hw) and the MOT correspondence (CMOT ∈ R
M×N )

are subsets of the pixel-wise correspondence (Cpix ∈ R
hw×hw). (3) With the

help of the informative target prior and the accurate pixel-wise correspondence,
the design of the search region becomes unnecessary for SOT, leading to unified
inputs as the full image for SOT and MOT.

Towards the unification of object tracking, we propose Unicorn, a single
network architecture to solve four tracking tasks. It takes the reference frame
and the current frame as the inputs and produces their visual features by a
weight-shared backbone. Then a feature interaction module is exploited to build
pixel-wise correspondence between two frames. Based on the correspondence,
a target prior is generated by propagating the reference target to the current
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frame. Finally, the target prior and the visual features are fused and sent to the
detection head to get the tracked objects for all tasks.

With the unified network architecture, Unicorn can learn from various sources
of tracking data and address four tracking tasks with the same model parameters.
Extensive experiments show that Unicorn performs on-par or better than task-
specific counterparts on 8 challenging benchmarks from four tracking tasks.

We summarize that our work has the following contributions:

– For the first time, Unicorn accomplishes the great unification of the network
architecture and the learning paradigm for four tracking tasks.

– Unicorn bridges the gap among methods of four tracking tasks by the target
prior and the pixel-wise correspondence.

– Unicorn puts forwards new state-of-the-art performance on 8 challenging
tracking benchmarks with the same model parameters. This achievement will
serve as a solid step towards the general vision model.

2 Related Work

2.1 Task-Specific Trackers

SOT typically specifies one tracked target with a bounding box on the first
frame, then requires trackers to predict boxes for the tracked target in the follow-
ing frames. Considering the uniqueness and the motion continuity of the tracked
target, most of the algorithms in SOT [3,5,9,15,27,70,72] track on a small search
region rather than the whole image to reduce computation and to filter distrac-
tors. Although achieving great success in the SOT field, search-region-based
trackers suffer from the following drawbacks: (1) Due to the limited visual field,
it is difficult for these methods to recover from temporary tracking failure, espe-
cially in the long-term tracking scenarios. (2) The speed of these methods drops
drastically as the number of tracked instances increases. The inefficiency prob-
lem restricts the application of SOT trackers in scenarios such as MOT, where
there are tens or hundreds of targets to track. To overcome the first problem,
some works [23,58] propose a global-detection-based tracking paradigm. How-
ever, these methods either require large modifications to the original detection
architecture to integrate the target information or rely on complicated dynamic
programming to pick the best tracklet. Besides, both Global-Track [23] and Siam
R-CNN [23] are developed on two-stage Faster R-CNN, whose detection pipeline
is tedious and relies on hand-crafted anchors and ROI-Align. By contrast, in this
work, we build our method based on a one-stage, anchor-free detector [18]. Fur-
thermore, we demonstrate that only with minimal change to the original detector
architecture, we could transform an object detector into a powerful SOT tracker.

Different from SOT, MOT does not have any given prior on the first frame.
Trackers of MOT are required to find and associate all instances of specific classes
by themselves. The mainstream methods [41,49,63,79,84] follow the tracking-
by-detection paradigm. Specifically, an MOT system typically has two main
components, an object detector and a certain association strategy. Commonly
used detectors include Faster R-CNN [45], the YOLO series [18,44], CenterNet
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[85], Sparse R-CNN [50], and Deformable DETR [88], etc. Popular association
methods include IoU matching [4,49], Kalman Filter [4,63,79], ReID embed-
ding [41,63,65,79], Transformer [36,49,77], or the combination of them [78].
Although there are some works [12,87] introducing SOT trackers for the asso-
ciation, these SOT trackers [3,14] are completely independent with the MOT
networks, without any weight sharing. There is still a large gap between meth-
ods of SOT and MOT.

The goal of VOS is to predict masks for the tracked instances based on
the high-quality mask annotations of the first frame. This field is now domi-
nated by memory-network-based methods [10,40,74]. Although achieving great
performance, these methods suffer from the following disadvantages: (1) The
memory network brings huge time and space complexity, especially when deal-
ing with high spatial resolution and the long sequence. While these scenarios are
quite common in sequences of SOT and MOT. Specifically, the long-term track-
ing benchmarks [17,55] in SOT usually have thousands of frames per sequence,
being more than 20x longer than DAVIS [43]. Meanwhile, the image size in
MOT [75] can reach 720 × 1280, while the image size of DAVIS is usually only
480× 854. (2) SOTA methods assume that there are always high-quality mask
annotations on the first frame. However, high-quality masks demand expensive
labor costs and are usually unavailable in real-world applications. To overcome
this problem, some works [33,58,60] attempt to develop weakly-annotated VOS
algorithms, which only require box annotation on the first frame.

MOTS is highly related to MOT by changing the form of boxes to fine-grained
representation of masks. MOTS benchmarks [57,75] are typically from the same
scenarios as those of MOT [37,75]. Besides, many MOTS methods are devel-
oped upon MOT trackers. Representative approaches include 3D-convolution-
based Track R-CNN [57] and Stem-Seg [1], Transformer-based TrackFormer [36],
tracking-assisting-detection Trades [66] and Prototype-based PCAN [26].

2.2 General Vision Models

Despite the great success of specialized models for diverse tasks, there is still a
large gap between the current AI with human-like, omnipotent Artificial Gen-
eral Intelligence (AGI). An important step towards this grand goal is to build
a generalist model supporting a broad range of AI tasks. Recent pioneering
works [19,20,48,76] attempt to approach this goal from different perspectives.
Specifically, MuST [19] introduces a multi-task self-training pipeline, which har-
nesses the knowledge in independent specialized teacher models to train a single
general student model. INTERN [48] proposes a new learning paradigm, which
learns with supervisory signals from multiple sources in multiple stages. The
developed general vision model generalizes well to different tasks but also has
lower requirements on downstream data. Florence [76] is a new computer vision
foundation model, which expands the representations to different tasks along
space, time, and modality. Florence has great transferability and achieves new
SOTA results on a wide range of vision benchmarks. OMNIVORE [20] proposes
a modality-agnostic model which can classify images, videos, and single-view 3D
data using the same model parameters.
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Fig. 1. Comparison between previous solutions and Unicorn.

2.3 Unification in Object Tracking

In the literature, some works [60,62,66] attempted to design a unified frame-
work for supporting multiple tracking tasks. Specifically, SiamMask [60] is the
first work to address SOT and VOS simultaneously. Similarly, TraDes [66] can
solve both MOT and MOTS by introducing an extra mask head. Besides, Uni-
Track [62] proposes a high-level tracking framework, which consists of a shared
appearance model and a series of unshared tracking heads. It demonstrates that
different tracking tasks can share one appearance model for either propaga-
tion or association. However, the large discrepancy in tracking heads hinders
it from exploiting a large amount of tracking data. Consequently, its perfor-
mance lags far behind that of SOTA task-specific methods. Moreover, when
used for MOT or MOTS, UniTrack requires extra, independent object detectors
to provide observation. The extra object detector and the appearance model do
not share the same backbone, bringing heavy burdens in parameters. By con-
trast, Unicorn solves four tracking tasks with one unified network with the same
parameters. Besides, Unicorn can learn powerful representation from a large
amount of labeled tracking data, achieving superior performance on 8 challeng-
ing benchmarks. Figure 1 shows the comparison between task-specific methods
and Unicorn.

2.4 Correspondence Learning

Learning accurate correspondence is the key to many vision tasks, such as optical
flow [51], video object segmentation [25,80], geometric matching [53,54], etc. The
dense correspondence is usually obtained by computing correlation between the
embedding maps of two frames. Most existing methods [25,51,80] obtain the
embedding maps without considering the information exchange between two
images. This could lead to ambiguous or wrong matching when there are many
similar patterns or instances on the input images. Although some works [53,
54] attempt to relieve this problem, they usually require complex optimization
or uncertainty modeling. Different from the local comparison, Transformer [56]



738 B. Yan et al.

Fig. 2. Unicorn consists of three main components: (1) Unified inputs and backbone
(2) Unified embedding (3) Unified head.

and its variants [88] exploit the attention mechanism to capture the long-range
dependency within the input sequence. In this work, we demonstrate that these
operations can help to learn precise correspondence in object tracking.

3 Approach

We propose a unified solution for Object tracking, called Unicorn, which consists
of three main components: unified inputs and backbone; unified embedding and
unified head. Three components are responsible for obtaining powerful visual
representation, building precise correspondence and detecting diverse tracked
targets respectively. The framework of Unicorn is demonstrated in Fig. 2. Given
the reference frame Iref , the current frame Icur, and the reference targets, Unicorn
aims at predicting the states of the tracked targets on the current frame for four
tasks with a unified network.

3.1 Unified Inputs and Backbone

For efficiently localizing multiple potential targets, Unicorn takes the whole
image (for both the reference frame and the current frame) instead of local
search regions as the inputs. This also endows Unicorn high resistance to track-
ing failure and the ability to re-detect tracked target after disappearance.

During the feature extraction, the reference frame and the current frame are
passed through a weight-sharing backbone to get feature pyramid representa-
tions(FPN) [30]. To maintain important details and reduce the computational
burden during computing correspondence, we choose the feature map with stride
16 as the input of the following embedding module. The corresponding features
from the reference and the current frame are termed Fref and Fcur respectively.
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3.2 Unified Embedding

The core task of Object tracking is to build accurate correspondence between
frames in a video. For SOT and VOS, pixel-wise correspondence propagates the
user-provided target from the reference frame (usually the 1st frame) to the tth

frame, providing strong prior information for the final box or mask prediction.
Besides, for MOT and MOTS, instance-level correspondence helps to associate
the detected instances on the tth frame to the existing trajectories on the refer-
ence frame (usually the t − 1th frame).

In Unicorn, given the spatially flattened reference frame embedding Eref ∈
R

hw×c and the current frame embedding Ecur ∈ R
hw×c, pixel-wise correspon-

dence Cpix ∈ R
hw×hw is computed by the matrix multiplication between them.

For SOT&VOS taking the full image as the inputs, the correspondence is the
pixel-wise correspondence itself. For MOT&MOTS, assume that there are M tra-
jectories on the reference frame and N detected instances on the current frame
respectively, the instance-level correspondence Cinst ∈ R

N×M is the matrix mul-
tiplication of the reference instance embedding eref ∈ R

M×c and the current
instance embedding ecur ∈ R

N×c. The instance embedding e is extracted from
the frame embedding E, where the center of the instance is located.

Cpix = softmax(EcurEref
T )

Cinst = softmax(ecurerefT )
(1)

It can be seen that the instance-level correspondence Cinst required by MOT and
MOTS is the sub-matrix of the pixel-wise correspondence Cpix. Besides, learn-
ing highly discriminative embedding {Eref ,Ecur} is the key to building precise
correspondence for all tracking tasks.

Feature Interaction. Due to its advantages of capturing long-range depen-
dency, Transformer [56] is an intuitive choice to enhance the original feature
representation {Fref ,Fcur}. However, this could lead to huge memory cost when
dealing with high-resolution feature maps, because the memory consumption
increases with the length of the input sequence quadratically. To alleviate this
problem, we replace the full attention with more memory-efficient deformable
attention [88]. For more accurate correspondence, the enhanced feature maps
are upsampled by 2× to obtain high-resolution embeddings on the stride of 8.

{Eref ,Ecur} = Upsample(Attention(Fref ,Fcur)) (2)

Loss. Ideal embedding should work well on both propagation (SOT, VOS)
and association (MOT, MOTS). For SOT&VOS, although there is no human-
annotated label for dense correspondence between frames, the embedding can be
supervised by the difference between the propagated result ˜Tcur and the ground-
truth target map Tcur. Specifically, the shape of target map T is hw × 1. The
regions where the tracked target exists are equal to one and the other regions
are equal to zero. During the propagation, the pixel-wise correspondence Cpix
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transforms the reference target map Tref to the estimation of the current target
map ˜Tcur.

˜Tcur(i, j) =
∑

k

Cpix(i, k) · Tref(k, j) (3)

Besides, for MOT and MOTS, the instance-level correspondence can be learned
with standard contrastive learning paradigm. Specifically, assume that the
instance i from the current frame is matched with the instance j from the ref-
erence frame, then the corresponding ground-truth matrix G should satisfies
that

Gi,k =
{

0 k �= j
1 k = j

(4)

Finally, the unified embedding can be optimized end-to-end by Dice Loss [38]
for SOT&VOS or Cross-Entropy Loss for MOT&MOTS.

Lcorr =
{

Dice(˜Tcur,Tcur) task in {SOT,VOS}
CrossEntropy(Cinst,G) task in {MOT,MOTS} (5)

3.3 Unified Head

To achieve the grand unification of Object tracking, another important and chal-
lenging problem is designing a unified head for four tracking tasks. Specifically,
MOT shall detect objects of specific categories. However, SOT needs to detect
any target given in the reference frame. To bridge this gap, Unicorn introduces
an extra input (called target prior) to the original detector head [18,52]. With-
out any further modification, Unicorn can easily detect various objects needed
for four tasks with this unified head. More details about the head architecture
can be found in the supplementary materials.

Target Prior. As mentioned in Sect. 3.2, given the reference target map Tref ,
the propagated target map ˜Tcur can provide strong prior information about the
state of the tracked target. This motivates us to take it as a target prior when
detecting targets for SOT&VOS. To be compatible with the original input of
the detection head, we first reshape it to h × w × 1 (i.e. ˜Treshape

cur ∈ R
h×w×1).

Meanwhile, when dealing with MOT&MOTS, we can simply set this prior to
zero. Formally, the target prior P satisfies that

P =
{

˜Treshape
cur task in {SOT,VOS}
0 task in {MOT,MOTS} (6)

Feature Fusion. The unified head takes the original FPN feature F ∈ R
h×w×c

and the target prior P ∈ R
h×w×1 as the inputs. Unicorn fuses these two

inputs with broadcast sum and passes the fused feature F
′ ∈ R

h×w×c to the
original detection head. This fusion strategy has the following advantages. (1)
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The fused features are seamlessly compatible with four tasks. Specifically, for
MOT&MOTS, the target prior is equal to zero. Then the fused feature F

′
degen-

erates back to the original FPN feature F to detect objects of specific classes.
For SOT&VOS, the target prior with strong target information can enhance
the original FPN feature and makes the network focus on the tracked target.(2)
The architecture is simple, without introducing complex changes to the original
detection head. Furthermore, the consistent architecture also enables Unicorn to
fully exploit the pretrained weights of the original object detector.

3.4 Training and Inference

Training. The whole training process divides into two stages: SOT-MOT joint
training and VOS-MOTS joint training. In the first stage, the network is end-
to-end optimized with the correspondence loss and the detection loss using data
from SOT&MOT. In the second stage, a mask branch is added and optimized
with the mask loss using data from VOS&MOTS with other parameters fixed.

Inference. During the test phase, for SOT&VOS, the reference target map is
generated once on the first frame and kept fixed in the following frames. Uni-
corn directly picks the box or mask with the highest confidence score as the
final tracking result, without any hyperparameter-sensitive post-processing like
cosine window. Besides, Unicorn only needs to run the heavy backbone and
the correspondence once, while running the lightweight head rather than the
whole network N times, leading to higher efficiency. For MOT&MOTS, Unicorn
detects all objects of the given categories and simultaneously outputs corre-
sponding instance embeddings. The later association is performed based on the
embeddings and the motion model for BDD100K and MOT17 respectively.

4 Experiments

4.1 Implementation Details

When comparing with state-of-the-art methods, we choose ConvNeXt-Large [31]
as the backbone. In ablations, we report the results of our method with
ConvNeXt-Tiny [31] and ResNet-50 [21] as the backbone. The input image size is
800×1280 and the shortest side ranges from 736 to 864 during multi-scale train-
ing. The model is trained on 16 NVIDIA Tesla A100 GPU with a global batch
size of 32. To avoid inaccurate statistics estimation, we replace all Batch Nor-
malization [24] with Group Normalization [67]. Two training stages randomly
sample data from SOT&MOT datasets and VOS&MOTS datasets, respectively.
Each training stage consists of 15 epochs with 200,000 pairs of frames in every
epoch. The optimizer is Adam-W [32] with weight decay of 5e−4 and momentum
of 0.9. The initial learning rate is 2.5e−4 with 1 epoch warm-up and the cosine
annealing schedule. More details can be found in the supplementary materials.
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Table 1. State-of-the-art comparison on LaSOT [17] and TrackingNet [39].

Method Source LaSOT [17] TrackingNet [39]

Success Pnorm P Success Pnorm P

SiamFC [3] ECCVW2016 33.6 42.0 33.9 57.1 66.3 53.3

UniTrack [62] NeurIPS2021 35.1 – 32.6 – – –

ATOM [15] CVPR2019 51.5 57.6 50.5 70.3 77.1 64.8

SiamPRN++ [27] CVPR2019 49.6 56.9 49.1 73.3 80.0 69.4

DiMP [5] ICCV2019 56.9 65.0 56.7 74.0 80.1 68.7

GlobalTrack [23] AAAI2020 52.1 – 52.7 70.4 75.4 65.6

SiamFC++ [70] AAAI2020 54.4 62.3 54.7 75.4 80.0 70.5

D3S [33] CVPR2020 – – – 72.8 76.8 66.4

PrDiMP [16] CVPR2020 59.8 68.8 60.8 75.8 81.6 70.4

Siam R-CNN [58] CVPR2020 64.8 72.2 – 81.2 85.4 80.0

KYS [6] ECCV2020 55.4 63.3 – 74.0 80.0 68.8

Ocean [82] ECCV2020 56.0 65.1 56.6 – – –

TrDiMP [59] CVPR2021 63.9 – 61.4 78.4 83.3 73.1

TransT [9] CVPR2021 64.9 73.8 69.0 81.4 86.7 80.3

AutoMatch [81] ICCV2021 58.2 – 59.9 76.0 – 72.6

SAOT [86] ICCV2021 61.6 70.8 – – – –

KeepTrack [35] ICCV2021 67.1 77.2 70.2 – – –

STARK [72] ICCV2021 67.1 77.0 – 82.0 86.9 –

Unicorn Ours 68.5 76.6 74.1 83.0 86.4 82.2

In Sect. 4.2, 4.3, 4.4 and 4.5, we compare Unicorn with task-specific counter-
parts in 8 tracking datasets. In each benchmark, the red bold font and the blue
font indicate the best two results. Unicorn in four tasks uses the same model
parameters.

4.2 Evaluations on Single Object Tracking

We compare Unicorn with state-of-the-art SOT trackers on two popular and
challenging benchmarks, LaSOT [17] and TrackingNet [39]. Both datasets eval-
uate the tracking performance with the following measures: Success, precision
(P ) and normalized precision (Pnorm). All these measures are the higher the
better.

LaSOT. LaSOT [17] is a large-scale long-term tracking benchmark, which con-
tains 280 videos in the test set with an average length of 2448 frames. Table 1
shows that Unicorn achieves new state-of-the-art Success and Precision of 68.5%
and 74.1% respectively. It is also worth noting that Unicorn surpasses the pre-
vious best global-detection-based tracker Siam R-CNN [58] by a large margin
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Table 2. State-of-the-art comparison on MOT17 [37] test set.

Tracker MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ FP↓ FN↓ IDs↓
TrackFormer [36] 65.0 63.9 – – – 70443 123552 3528

Chained-Tracker [42] 66.6 57.4 49.0 37.8% 18.5% 22284 160491 5529

CenterTrack [84] 67.8 64.7 52.2 34.6% 24.6% 18498 160332 3039

QuasiDense [41] 68.7 66.3 53.9 40.6% 21.9% 26589 146643 3378

TraDes [66] 69.1 63.9 52.7 36.4% 21.5% 20892 150060 3555

SOTMOT [83] 71.0 71.9 – 42.7% 15.3% 39537 118983 5184

TransCenter [68] 73.2 62.2 54.5 40.8% 18.5% 23112 123738 4614

MOTR [77] 73.4 68.6 57.8 42.9% 19.1% 27939 119589 2439

FairMOT [79] 73.7 72.3 59.3 43.2% 17.3% 27507 117477 3303

CSTrack [28] 74.9 72.6 59.3 41.5% 17.5% 23847 114303 3567

TransTrack [49] 75.2 63.5 54.1 55.3% 10.2% 50157 86442 3603

OMC [29] 76.3 72.3 – 44.8% 15.5% – – –

CorrTracker [61] 76.5 73.6 60.7 47.6% 12.7% 29808 99510 3369

TransMOT [13] 76.7 75.1 61.7 51.0% 16.4% 36231 93150 2346

Unicorn 77.2 75.5 61.7 58.7% 11.2% 50087 73349 5379

Table 3. State-of-the-art comparison on BDD100K [75] tracking validation set.

Method Split mMOTA↑ mIDF1↑ MOTA↑ IDF1↑ FN↓ FP↓ ID Sw.↓ MT↑ ML↓ mAP↑
Yu et al. [75] val 25.9 44.5 56.9 66.8 122406 52372 8315 8396 3795 28.1

QDTrack [41] val 36.6 50.8 63.5 71.5 108614 46621 6262 9481 3034 32.6

Unicorn val 41.2 54.0 66.6 71.3 95454 41648 10876 10296 2505 41.4

(68.5% vs 64.8%) with a much simpler network architecture and tracking strat-
egy (directly picking the top-1 vs tracklet dynamic programming).

TrackingNet. TrackingNet [39] is a large-scale short-term tracking benchmark
containing 511 videos in the test set. As reported in Table 1, Unicorn surpasses
all previous methods with a Success of 83.0% and a Precision of 82.2%.

4.3 Evaluations on Multiple Object Tracking

We compare Unicorn with state-of-the-art MOT trackers on two challenging
benchmarks: MOT17 [37] and BDD100K [75]. The common metrics include
Multiple-Object Tracking Accuracy (MOTA), Identity F1 Score (IDF1), False
Positives (FP), False Negatives (FN), the percentage of Mostly Tracked Trajec-
tories (MT) and Mostly Lost Trajectories (ML), Identity Switches (IDS). Among
them, MOTA is the primary metric to measure the overall detection and tracking
performance, IDF1 is used to measure the trajectory identity accuracy.

MOT17. The MOT17 focuses on pedestrian tracking and includes 7 sequences
in the training set and 7 sequences in the test set. We compare Unicorn with
previous methods under the private detection protocol on the test set of MOT17.
Table 2 demonstrates that Unicorn achieves the best MOTA and IDF1, surpass-
ing the previous SOTA method by 0.5% and 0.4% respectively.
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Table 4. State-of-the-art comparison on the validation set of the DAVIS-2016 and the
DAVIS-2017. OL: online learning, Memory: using an external memory bank.

Init Method OL Memory (J &F)16 J 16 F16 (J &F)17 J 17 F17

mask FAVOS [11] ✗ ✗ 81.0 82.4 79.5 58.2 54.6 61.8

OSMN [34] ✗ ✗ 73.5 74.0 72.9 54.8 52.5 57.1

VideoMatch [22] ✗ ✗ – 81.0 – 56.5 – –

UniTrack [62] ✗ ✓ – – – – 58.4 –

RANet [64] ✗ ✗ 85.5 85.5 85.4 65.7 63.2 68.2

FRTM [46] ✓ ✓ 83.5 83.6 83.4 76.7 73.9 79.6

TVOS [80] ✗ ✓ – – – 72.3 69.9 74.7

LWL [7] ✓ ✓ – – – 81.6 79.1 84.1

STM [40] ✗ ✓ 89.3 88.7 89.9 81.8 79.2 84.3

CFBI [74] ✗ ✓ 89.4 88.3 90.5 81.9 79.1 84.6

HMMN [47] ✗ ✓ 90.8 89.6 92.0 84.7 81.9 87.5

STCN [10] ✗ ✓ 91.6 90.8 92.5 85.4 82.2 88.6

bbox SiamMask [60] ✗ ✗ 69.8 71.7 67.8 56.4 54.3 58.5

D3S [33] ✗ ✗ 74.0 75.4 72.6 60.8 57.8 63.8

Siam R-CNN [58] ✗ ✗ – – – 70.6 66.1 75.0

Unicorn ✗ ✗ 87.4 86.5 88.2 69.2 65.2 73.2

BDD100K MOT. BDD100K is a large-scale dataset of visual driving scenes
and requires tracking 8 categories of instances. To evaluate the average per-
formance across 8 classes, BDD100K additionally introduces two measures:
mMOTA and mIDF1. Different from MOT17, BDD100K is annotated at only 5
FPS. The low frame-rate brings difficulty to motion models commonly used for
MOT17. As shown in Table 3, Unicorn achieves the best performance, largely
surpassing the previous SOTA method QDTrack [41] on the val set. Specifi-
cally, the improvement is up to 4.6% and 3.2% in terms of mMOTA and mIDF1
respectively.

4.4 Evaluations on Video Object Segmentation

We further evaluate the ability of Unicorn to perform VOS on DAVIS [43] 2016
and 2017. Both datasets evaluate methods with the region similarity J , the
contour accuracy F , and the average of them J &F .

DAVIS-16. DAVIS-16 includes 20 single-object videos in the validation set.
Table 4 demonstrates that Unicorn achieves the best results among methods with
bounding-box initialization, even surpassing RANet [64] and FRTM [46] with
mask initialization. Meanwhile, Unicorn outperforms its multi-task counterparts
SiamMask [60] by a large margin of 17.6% in terms of J &F .

DAVIS-17. DAVIS-17 contains 30 videos in the validation set and there could be
multiple tracked targets in each sequence. As shown in Table 4, compared with
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Table 5. State-of-the-art comparison on the MOTS [57] test set.

Method sMOTSA↑ IDF1↑ MT↑ ML ↓ FP↓ FN↓ ID Sw.↓
Track R-CNN [57] 40.6 42.4 38.7% 21.6% 1261 12641 567

TraDeS [66] 50.8 58.7 49.4% 18.3% 1474 9169 492

TrackFormer [36] 54.9 63.6 – – 2233 7195 278

PointTrackV2 [71] 62.3 42.9 56.7% 12.5% 963 5993 541

Unicorn 65.3 65.9 64.9% 10.1% 1364 4452 398

Table 6. State-of-the-art comparison on the BDD100K MOTS validation set.

Method Online mMOTSA↑ mMOTSP↑ mIDF1↑ ID Sw.↓ mAP↑
SortIoU ✓ 10.3 59.9 21.8 15951 22.2

MaskTrackRCNN [73] ✓ 12.3 59.9 26.2 9116 22.0

STEm-Seg [1] ✗ 12.2 58.2 25.4 8732 21.8

QDTrack-mots [41] ✓ 22.5 59.6 40.8 1340 22.4

QDTrack-mots-fix [41] ✓ 23.5 66.3 44.5 973 25.5

PCAN [26] ✓ 27.4 66.7 45.1 876 26.6

Unicorn ✓ 29.6 67.7 44.2 1731 32.1

the previous best box-initialized method Siam R-CNN [58], Unicorn achieves
competitive results with a much simpler architecture. Specifically, Siam R-
CNN [58] uses an extra Box2Seg network, which is completely independent from
the box-based tracker without any weight sharing. However, Unicorn can predict
both boxes and masks with a unified head. Although there is still gap between the
performance of Unicorn with that of SOTA VOS methods with mask initializa-
tion, Unicorn can address four tracking tasks with the same model parameters,
while HMMN [47] and STCN [10] can only be used in the VOS task.

4.5 Evaluations on Multi-object Tracking and Segmentation

Finally, we evaluate the ability of Unicorn for MOTS on MOTS20 [57]
and BDD100K MOTS [75]. The main evaluation metrics are sMOTSA and
mMOTSA.

MOTS20 Challenge. MOTS20 Challenge has 4 sequences in the test set. As
shown in Table 5, Unicorn achieves state-of-the-art performance, surpassing the
second-best method PoinTrackV2 [71] by a large margin of 3.3% on sMOTSA.

BDD100K MOTS Challenge. BDD100K MOTS Challenge includes 37
sequences in the validation set. Table 6 demonstrates that Unicorn outperforms
the previous best method PCAN [26] by a large margin (i.e. mMOTSA +2.2%,
mAP +5.5%). Meanwhile, Unicorn does not use any complex design like space-
time memory or prototypical network as in PCAN, bringing into a simpler
pipeline.
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Table 7. Ablations and comparisons. Our baseline model are underlined.

Experiment Method SOT MOT VOS MOTS FPS

LaSOT (AUC) BDD (mMOTA) DAVIS17 (J &F) BDD (mMOTSA)

Backbone ConvNeXt-Tiny 67.7 39.9 68.0 29.7 14

ResNet-50 65.3 35.1 66.2 30.8 13

Interaction Deformable Att 67.7 39.9 68.0 29.7 14

Full Att 67.1 38.5 66.9 26.7 13

Conv 66.8 37.6 66.6 27.0 15

Fusion Broad Sum 67.7 39.9 68.0 29.7 14

Concat 66.8 38.3 66.7 27.2 14

W/o Prior 50.9 37.6 29.2 27.8 14

Single task Unification 67.7 39.9 68.0 29.7 14

SOT only 67.5 – – – 14

MOT only – 39.6 – – 14

VOS only – – 68.4 – 14

MOTS only – – – 28.1 14

Speed Ours 67.7 39.9 68.0 29.7 14

Ours-RT 67.1 37.5 66.8 26.2 23

4.6 Ablations and the Other Analysis

For the ablations, we choose Unicorn with ConvNeXt-Tiny [31] backbone as the
baseline. The detailed results are demonstrated in Table 7.

Backbone. We implement a variant of Unicorn with ResNet-50 [21] as the
backbone. Although the overall performance of this version is lower than the
baseline, this variant still achieves superior performance on four tasks.

Interaction. Besides the memory-efficient deformable attention [88], we com-
pare the full attention [56] and the convolution operation, which does not
exchange information between frames. Experiments show that deformable atten-
tion obtains better performance than the full attention, while consuming much
less memory. Moreover, the results of the convolution are lower than the baseline,
showing the importance of interaction for accurate correspondence.

Fusion. Apart from broadcast sum, we compare other two methods: concate-
nation, and without the target prior. The performance of SOT and VOS drops
significantly after removing the target prior, demonstrating the importance of
this design. Besides, broadcast sum performs better than concatenation.

Single Task. We compare with training four independent models for different
tasks. Experiments show that our unified model performs on-par with indepen-
dently trained counterparts, while being much more parameter-efficient.

Speed. We develop a light-weight variant with a lower input resolution of
640× 1024. Experiments show that the real-time version does not only achieves
competitive performance but also can run in real-time at more than 20 FPS.
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5 Conclusions

We propose Unicorn, a unified approach to address four tracking tasks using a
single model with the same model parameters. For the first time, it achieves the
unification of network architecture and learning paradigm for Object tracking.
Extensive experiments demonstrate that Unicorn performs on-par or better than
task-specific counterparts on 8 challenging benchmarks. We hope that Unicorn
can serve as a solid step towards the general vision model.
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