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Abstract. Vision Transformers have shown state-of-the-art results for
various visual recognition tasks. The dot-product self-attention mecha-
nism that replaces convolution to mix spatial information is commonly
recognized as the indispensable ingredient behind the success of vision
Transformers. In this paper, we thoroughly investigate the key differences
between vision Transformers and recent all-MLP models. Our empirical
results show the superiority of vision Transformers mainly comes from
the data-dependent token mixing strategy and the multi-head scheme
instead of query-key interactions. Inspired by this observation, we pro-
pose a computationally and parametrically efficient operation named
adaptive weight mixing to generate attention weights without token-
token interactions. Based on this operation, we develop a new architec-
ture named as AMixer to capture both long-term and short-term spatial
dependencies without self-attention. Extensive experiments demonstrate
that our adaptive weight mixing is more efficient and effective than pre-
vious weight generation methods and our AMixer can achieve a better
trade-off between accuracy and complexity than vision Transformers and
MLP models on both ImageNet and downstream tasks. Code is available
at https://github.com/raoyongming/AMixer.
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1 Introduction

Recent advances on vision Transformers have pushed the state-of-the-art of vari-
ous visual recognition tasks, including image classification [12,28,35,54], seman-
tic segmentation [8,28,55], object detection [4,28] and action recognition [1,2].
As a step towards less inductive bias in architecture designs, Vision Transformers
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(ViT) [12] and its variants utilize the self-attention mechanism [45] to capture
the interactions between different spatial locations by directly learning from the
raw data, different from conventional CNNs that are largely relied on human
prior knowledge and hand-made choices. More recently, the pure multi-layer
perceptrons (MLP) models [41,42] are proposed to further simplify the designs
of vision Transformers. By replacing the self-attention layers with spatial MLPs,
all-MLP models exhibit a simple and more efficient approach to mix spatial
information for visual recognition tasks. However, empirical results suggest all-
MLP models without self-attention usually perform inferiorly compared to vision
Transformers [28,42].

Adaptive Global Relative

Convolution
Dynamic Conv
Self-Attention
Spatial MLP

Adaptive Weight Mixing

Fig. 1. The main idea of AMixer. By analyzing the differences between self-attention
and spatial MLP, we propose a new operation named adaptive weight mixing to effi-
ciently generate data-dependent spatial mixing weights without token-token interac-
tion. We compare the proposed adaptive weight mixing with prevalent operations by
considering three key factors: the input-dependent weight (adaptive), global interac-
tions among spatial locations (global) and weights based on the relative positions (rel-
ative) “indicates that only a weak regularization of position-relative weight based on
positional embeddings is imposed to self-attention”. Our method combines the advan-
tages of previous operations.

The self-attention mechanism is commonly recognized as the key ingredient
behind the success of vision Transformers. Self-attention fully considers the rela-
tionships among all spatial locations by generating the spatial mixing weights
(i.e., attention weights) using the dot product of two projected versions of the
input (i.e., queries and keys) and applying the weights to another projected
input (i.e., values). Benefiting from the communications among all tokens, vision
Transformers can better model long-range dependencies with fewer blocks com-
pared to convolutions [12,51]. Since spatial MLP models also consider all possible
interactions between any two spatial locations with learnable mixing weights, it
is natural to ask: which specific designs make self-attention more effective? Is
there a more efficient way to learn the spatial mixing weights?
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In this paper, we thoroughly investigate the key differences between vision
Transformers and recent all-MLP models. Starting from a simple and neat all-
MLP architecture [42], we gradually add the designs in vision Transformers to ver-
ify their effects. Our empirical results show the superiority of vision Transformers
mainly comes from the data-dependent spatial mixing strategy and the multi-head
scheme instead of the query-key interactions in self-attention. Based on this obser-
vation, we propose a computationally and parametrically efficient operation called
Adaptive Weight Mixing to generate attention weights without token-token inter-
actions.Our operation is inspired by the spatialMLP in all-MLPmodels, where the
spatial mixing weights are memory-like model parameters and are learned through
standard back-propagation. Different from previous methods that generate the
weights with dot-product (e.g., self-attention) or another MLP (e.g., dynamic con-
volution [15]), our solution makes the static memory adaptive to the input by pre-
dicting a small weight mixing matrix that linearly blends a set of static weights
from a weight bank. By doing so, we avoid the heavy computation of dot-product
(O(N2D) forN tokens withD-dim features) and a large number of parameters for
weight generation (O(N2D) for generating N ×N weights from a D-dim feature).
Moreover, inspired by the relative positional embeddings [28,37,38], we propose to
add the symmetric regularization to the weight bank, where the weight of two posi-
tions is only related to their relative position instead of their absolute positions.
This strategy can largely reduce the number of parameters in the weight bank since
only O(N) parameters need to be stored. The relative weight also adds the struc-
tural priors to the model and makes the input resolution of our model more flexible.
Our key idea is illustrated in Fig. 1. We also summarize the differences between our
method and other prevalent operations in deep vision models.

Our new adaptive weight mixing operation can serve as a plug-and-play
module to replace the self-attention in vision Transformers or spatial MLP in
all-MLP models. We propose a new architecture AMixer by replacing the self-
attention in various vision Transformers with the new operation, which is able
to adaptively capture both long-term and short-term spatial dependencies like
vision Transformers while having a more efficient weight generation strategy.
Equipped with our adaptive weight mixing operation, the enhanced all-MLP
models ResMLP [42] and Swin-Mixer [28] can surpass their vision Transformers
counterparts DeiT [43] and Swin Transformers [28]. We also scale up AMixer
to obtain a series of hierarchical models with different complexities. Extensive
experiments show that our adaptive weight mixing is more efficient and effective
than previous weight generation methods. AMixer can attain a better trade-off
between accuracy and complexity than vision Transformers and MLP models on
both ImageNet [36] and downstream tasks.

2 Related Work

Vision Transformers. The Transformer architecture that is originally designed
for the NLP tasks [45] has shown promising results on various vision problems
since Dosovitskiy et al. [12] introduce it to the image classification problem
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with a patch-based design. A large number of works aim to design more suit-
able architectures for vision tasks. Some methods are also proposed to improve
the training strategy and inference efficiency. Although quite a few kinds of
powerful models are designed, most of them are still based on the dot-product
self-attention mechanism. In this work, we show that the query-key interaction
in vision Transformer may not be necessary, which may provide a new view to
design more efficient vision Transformers.

MLP-Like Models. Recently, there are several works that question the impor-
tance of self-attention in the vision Transformers and propose to use spatial MLP
to replace the self-attention layer in the Transformers [27,41,42]. Although these
models are more efficient than the counterpart vision Transformers by removing
the dot-product self-attention, this simple modification may bring two draw-
backs: (1) the memory-like static spatial MLP usually exhibit weaker expressive
power compared to Transformers [28,42]; (2) unlike Transformers, MLP-based
models are hard to scale up to a new resolution since the weights of the spatial
MLPs have fixed sizes. Our work aims to resolve the above issues in MLP-like
models by introducing a new weight generation scheme. Since we store the rel-
ative weights instead of the absolute weights in the weight bank, our model can
adapt to different input resolutions by interpolating the weight bank.

Dynamic Weights. The self-attention mechanism [45] can be viewed as one
of the most popular methods to generate dynamic weights. Learning dynamic
weights that are conditioned on the input is also a widely studied problem for
CNN models. Previous efforts based on convolutional networks usually focus on
predicting adaptive convolution kernels that are shared for the different loca-
tions [7,14,21]. Some works also propose to generate region or position-specific
weights to better exploit the location information in CNNs [20,26]. However,
their methods are designed for generating relatively small kernels (e.g., 3 × 3),
which are widely used in CNN-based models. We argue that their generation
methods are computational and parametrically expensive to generate large ker-
nels, which makes them hard to scale up to the global interactions considered in
this paper. The most related work is Synthesizer [40] which proposes to predict
the attention weights using an MLP for NLP tasks. Different from them, we
propose a new framework to generate weights by linearly blending weights in a
bank, avoiding the large computation and storage cost.

3 Approach

3.1 Vision Transformers and MLP Models: An Unified View

Since vision Transformers [12,28] start to dominate vision tasks, many
Transformer-style architectures that pursue the same goal of reducing induc-
tive bias emerged [33,41,42]. Among those, MLP models [27,41,42] replace the
self-attention by MLPs that are applied across spatial locations, which are very
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efficient on modern accelerators. However, the performances of current all-MLP
models lag far behind their Transformer counterparts, e.g., 76.6% (ResMLP-
12 [42]) vs79.8% (Deit-S [43]) on ImageNet. To examine where the performance
drop comes from, we aim to provide an in-depth analysis of the two families of
models from a unified perspective. Both vision Transformers and MLP models
are built with the following basic block (X ∈ R

N×D is the input, N = NHNW ):

X ← X + Mixer(X), (1)
X ← X + MLP(X), (2)

where the Mixer and the MLP perform spatial mixing and channel mixing,
respectively. Generally, the Mixer function can be written in the following form:

Mixer(X) = Concat
1≤h≤H

(Mh(X)Vh(X))C,

Mh ∈ R
N×N ,Vh ∈ R

N×Dh ,C ∈ R
D×D.

(3)

We consider the multi-head occasion in the above formula. For the h-th head,
the Mh matrix characterizes the interactions among the tokens, and the Vh

projects input to Dh = D/H dimension as the value. The {Vh}Hh=1 weighted
by the {Mh}Hh=1 are then concatenated and projected by another matrix C.
For vision Transformers [12,28,43], the widely used multi-head self-attention
(MHSA) can be derived from Eq. (3) by setting Vh(X) = XWV

h ,C = WO, and

Mh(X) = Softmax
(

Qh(X)Kh(X)�
√
Dh

)
,

Qh(X) = XWQ
h ,Kh(X) = XWK

h ,

(4)

where the WQ
h ,W

K
h ,WV

h ∈ R
D×Dh and WO ∈ R

D×D are the learnable param-
eters. For all-MLP models [41,42], the spatial mixing operation is simply per-
formed by a linear layer without the multi-head operation, i.e.,

H = 1,V1(X) = X,M1(X) = W,C = I. (5)

3.2 Rethinking Self-attention in ViTs

From the analysis in Sect. 3.1, we can identify the differences between the vision
Transformers and the all-MLP models. Specifically, vision Transformers con-
tain four components that the all-MLP models do not have: (1) the multi-
head scheme; (2) the softmax operation; (3) the V-projection (Vh) and the
C-projection (C); (4) the dot-product between the query and the key. In this
section, we will investigate whether these factors can bring improvements to the
vanilla MLP models. The step-by-step results of our analysis are summarized in
Table 1.

Multi-head Scheme. The multi-head self-attention [45] is originally proposed
to help the model to attend to multiple positions. One nice property of the multi-
head scheme is that it does not induce extra FLOPs. However, it is interesting
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Table 1. Starting from ResMLP [42] and surpassing DeiT [43]. We gradually add key
ingredients to an all-MLP model ResMLP [42] and show the final model (AMixer)
outperform the Transformer DeiT [43] with fewer FLOPs and parameters.

Model Params. FLOPs Acc. (%)

ResMLP-12 [42] 15 M 3.0 G 76.6

+ Multi-head scheme 19 M 3.0 G 77.4(+0.8)

+ Extra projections 22 M 3.7 G 78.0(+1.4)

+ Softmax 22 M 3.7 G 78.2(+1.6)

+ Adaptive weight mixing 26 M 3.9 G 79.9(+3.3)

+ Relative attention weight 19 M 3.9 G 80.3(+3.7)

DeiT-S [43] 22 M 4.6 G 79.8

to see that there are rare previous efforts that apply the multi-head scheme to
MLPs except [28]. In our experiments, we implement a multi-head MLP model
based on ResMLP [42] and find the accuracy on ImageNet can be improved from
76.6% to 77.4%.

Extra Projections. The V-projection and the C-projection are also important,
especially when the multi-head scheme is used. Without these projections, inter-
actions across different heads are cut off. We then add the extra projections and
find they can further boost the performance by 0.6%.

Softmax. Another difference between self-attention and MLP is the softmax
operation. Softmax makes the weighted sum of the row of Vh(X) bounded and
we find it can improve the accuracy to 78.2%.

By far, the performance of the modified MLP is still lower than DeiT [43]
and the only difference now is how Mh is generated. In vision Transformers,
the Mh(X) matrix is adaptive because the dot-product between Qh and Kh is
conditioned on the input X while Mh is simply a memory-like weight in MLPs.
Then we ask: can we find another implementation of the adaptive Mh(X), which
is better than the standard dot-product self-attention? To make an attempt
towards this interesting question, we propose adaptive weight mixing, a better
alternative to self-attention.

3.3 Adaptive Weight Mixing

To obtain the adaptive weights {Mh}Hh=1, self-attention requires 2ND2 FLOPs
to compute the query and key and N2D to perform the dot-product, such that
the total FLOPs is

FLOPs(SA) = N2D︸ ︷︷ ︸
dot-product

+ 2ND2︸ ︷︷ ︸
compute query and key

. (6)
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In this paper, we propose a more efficient method named adaptive weight mixing
to achieve a similar function to self-attention. Briefly speaking, our adaptive
weight mixing learns a weight bank of size B and predicts a mixing policy for
each token to generate the Mh adaptively. Formally, let the weight bank be
W ∈ R

B×N×N , which is learnable during training. We then use an adapter to
predict the mixing policy based on the input X:

Π(X) = Adapter(X) ∈ R
N×H×B . (7)

The mixing policy Π(X) is sample-specific and head-specific, which largely
increases the diversity. To reduce extra costs induced by predicting the policy,
our adapter is designed to be very lightweight as a two-layer MLP.

Y = GELU
(
XWD×D′

1

)
WD′×HB

2 ,Adapter(X) = Reshape(Y), (8)

where D′ = D/r is the hidden dimension with reduction ratio r to reduce com-
putational costs following [21]. With the mixing policy, we can construct the Mh

by

Mh,i = Softmax

(
B∑

b=1

Πi,h,bWb,i

)
, (9)

where Mh,i denotes the weighting coefficient for the h-th head and the i-th token.
The above equation also suggests that our Mh,i is taken from a B-dimension
linear space spanned by W :,i. Distinct from self-attention, our method only
requires

FLOPs(Ada) =
ND2

r
+

NDHB

r︸ ︷︷ ︸
adapter

+N2BH︸ ︷︷ ︸
mixing

(10)

to generate Mh. In our experiments, the typical values of the hyper-parameters
are: B = 16,H = 8, r = 4. It is easy to show our adaptive weight mixing is
more efficient than self-attention since D is usually much larger than BH (e.g.,
D = 384 in DeiT-S [43]). With adaptive weight mixing, we can achieve 79.9%
top-1 accuracy on ImageNet, surpassing DeiT-S [43].

Relative Attention Weight. The vanilla design of the weight bank contains
too many parameters (O(BN2)). To make the weight bank more memory-
friendly, we propose another variant that considers 2D relative position follow-
ing the practice in [28]. Consider two points i, j with coordinates (ih, iw) and
(jh, jw), we assume the relation between i, j is only related to their relative posi-
tion (ih − jh, iw − jw) and irrelevant to their absolute positions. Therefore, there
are only (2NH − 1) × (2NW − 1) possible relative positions and we only need to
store a weight bank Wrel ∈ R

B×(2NH−1)×(2NW −1) instead of the vanilla version
W ∈ R

B×NHNW ×NHNW . As is shown in Table 1, the relative attention weight
can further bring an improvement of 0.4% on accuracy and significantly reduce
the number of parameters of our model.
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Fig. 2. Comparisons of different weight generation methods. We categorize the meth-
ods by whether the weights are data-dependent, spatial-aware, or channel-specific.
Some typical operations in each category are: (a) Spatial MLP [42]; (b) Multi-
head MLP (Sect. 3.2); (c) Convolution; (d) Dynamic Convolution [7,14]; (e) Self-
attention [45], Synthesizer [40], and Adaptive Weight Mixing (Sect. 3.3).

Discussions. In Fig. 2, we illustrate various weight generation methods in
terms of whether they are data-dependent, spatial-aware, or channel-specific.
Among those, Dynamic Convolution [7] aggregates the whole convolutional
weights through predicted attention coefficients. Our adaptive weight mixing,
however, allows more diverse weights since our mixing policies are different across
the heads. Besides, convolution-based methods (Dynamic Convolution [7] and
Dynamic Depth-wise Convolution [14]) generate spatial-shared weights while our
method can produce unique weights for different spatial locations. Our method is
also much more efficient than methods that directly predict the parameters using
an MLP including Synthesizer [40] and Dynamic Depth-wise Convolution [14].
Our empirical results also show our method is more effective and efficient than
existing dynamic weight generation models (see Sect. 4.3).

3.4 Architecture Variants

The adaptive weight mixing can be easily applied to various network architec-
tures based on self-attention and spatial MLP. Apart from the ViT-like archi-
tectures, as is already shown in Table 1, our method is conceptually compatible
with hierarchical architectures like Swin Transformers and Swin Mixer [28]. We
directly apply our adaptive weight mixing to Swin Transformers to build our
hierarchical models, including three variants named AMixer-T, AMixer-S, and
AMixer-B. We follow the hierarchical design in Swin [28], where a 4-stage archi-
tecture is adopted with [2, 2, n, 2] blocks in each stage. We adjust the number of
blocks in the third stage, number of heads, and the MLP ratio to scale our model
to have similar FLOPs with the Swin [28] series. Different from Swin, we find
setting the MLP ratio to 3 can lead to a better trade-off between accuracy and
complexity for our models. We also enlarge the window size to 14 for the third
stage benefiting from the proposed highly efficient weight generation method
without query-key interactions. We also further scale the ViT-like architecture
to 17 layers to match the complexity of the original DeiT-S model. We fix the
ratio of the bank size B to the number of heads H as 1.5 for our models due to
the decent trade-off between complexity and performance. Note that our models
enjoy more diversity with more heads but the performance of standard vision
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Table 2. Main results on ImageNet. We apply our adaptive weight mixing to ViT-
style and hierarchical architectures. We also include the results of multi-head MLP
(MH-MLP) for comparison. We find the multi-head mechanism can bring notable
improvements to MLPs and show our adaptive weight mixing can further enhance
the performance of MLPs, surpassing self-attention.

Model Params FLOPs Acc(%)

DeiT-S [43] 22 M 4.6 G 79.8

ResMLP-12 [42] 15 M 3.0 G 76.6

ResMLP-24 [42] 30 M 6.0 G 79.4

MH-MLP-DeiT-S 22M 4.5 G 79.2

AMixer-DeiT-S 21M 4.5 G 80.8

Model Params FLOPs Acc(%)

Swin-T [28] 29 M 4.5 G 81.3

Swin-Mixer-T/D6 [28] 23 M 4.0 G 79.7

Swin-Mixer-B/D24 [28] 61 M 10.4 G 81.3

MH-MLP-T 27 M 4.5 G 80.7

AMixer-T 28 M 4.5 G 82.0

Transformers saturates with the number of heads increasing as shown in [44]. We
follow the settings of Swin and do not add any extra convolutional layers except
the patch embedding [12] and merging layers [28], while many previous works
obtain significant improvement by adding more convolutional layers to capture
local patterns [10,22,47,49]. Moreover, we develop a series of pure MLP models
that have identical architecture and designs (including all techniques discussed
in Sect. 3.2 and relative attention weight) to AMixer series except the adap-
tive weight mixing strategy as the static counterpart of our models. We refer to
them as “MH-MLP” (multi-head MLP) models. More details can be found in
Supplementary Material.

4 Experiments

We conduct extensive experiments to verify the effectiveness of our AMixer mod-
els and the new adaptive weight mixing operation. We present the main results
on ImageNet [36] and compare them with various state-of-the-art vision Trans-
formers and MLP-like architectures. We also test our models on the downstream
transfer learning task on relatively small datasets [24,25,31] and semantic seg-
mentation task on the challenging ADE20K [56] dataset. Lastly, we investigate
the effectiveness and efficiency of our new designs, and provide the visualization
for a better intuitive understanding of our method.

4.1 ImageNet Classification

Setups. We conduct our main experiments on ImageNet [36], a large-scale
benchmark dataset for image classification. We follow the standard protocol
to train our model on the training set that contains 1.2 M images and evalu-
ate the model on the 50,000 validation images reporting the single-crop top-1
classification accuracy over the 1,000 categories. To fairly compare with previous
works on vision Transformers and MLP-like models, we follow the training strat-
egy proposed in DeiT [43], where the model is trained for 300 epochs with the
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Table 3. Comparisons with state-of-the-art vision Transformers and MLP-like mod-
els on ImageNet. We report the top-1 accuracy on ImageNet as well as the number
of parameters and the theoretical complexity in FLOPs. We divide models into three
groups based on their complexities. AMixer series exhibit very competitive perfor-
mances with previous state-of-the-art methods.

Model Params FLOPs Acc(%)

gMLP-S [27] 20 M 4.5 G 79.4

DeiT-S [43] 22 M 4.6 G 79.8

PVT-M [47] 44 M 6.7 G 81.2

Swin-T [28] 29 M 4.5 G 81.3

CPVT-S [11] 23 M 4.6 G 81.5

GFNet-H-S [33] 32 M 4.6 G 81.5

T2T-ViT-14 [53] 22 M 5.2 G 81.5

CycleMLP-B2 [6] 27 M 3.9 G 81.6

AMixer-T 26 M 4.5 G 82.0

Model Params FLOPs Acc(%)

ResMLP-36 [42] 45 M 8.9 G 79.7

PVT-Large [47] 61 M 9.8 G 81.7

T2T-ViTt-19 [53] 39 M 9.8 G 82.2

CrossViT-18 [5] 43 M 9.0 G 82.5

GFNet-H-B [33] 54 M 8.6 G 82.9

Swin-S [28] 50M 8.7 G 83.0

CycleMLP-B4 [6] 52 M 10.1 G 83.0

Twins-SVT-B [10] 56 M 8.3 G 83.2

AMixer-S 46 M 9.0 G 83.5

Model Params FLOPs Acc(%)

MLP-Mixer-B [41] 46 M − 76.4

ViT-B [12] 86 M 17.5 G 79.7

gMLP-S [27] 73 M 15.8 G 81.6

DeiT-B [43] 86 M 17.5 G 81.8

CPVT-B [11] 88 M 17.6 G 82.3

T2T-ViTt-24 [53] 64 M 15.0 G 82.6

Swin-B [28] 88 M 15.4 G 83.3

Twins-SVT-L [10] 99 M 14.8 G 83.7

AMixer-B 83 M 16.0G 84.0

AdamW optimizer [29] and cosine learning rate scheduler. For ViT-style mod-
els, we directly adopt the data augmentation and training strategy of DeiT [43].
For hierarchical models, we follow the training techniques of Swin Transform-
ers [28], where EMA model [32] and repeated augmentation [19] are not used
during training. Note that we do not use any extra training tricks [22] to directly
compare with baseline methods.

Comparisons with Baseline Models. We apply our new adaptive weight
mixing operation to two types of widely used architectures: the original ViT [43]
model enhanced with DeiT training strategy [43], and high-performance hierar-
chical models based on Swin Transformers [28]. We also include the results of
our multi-head MLP (MH-MLP) for comparison. The results are presented in
Table 2. With similar network architecture and identical training configurations,
we see our AMixer achieves +1% performance improvement over DeiT model.
By applying our operations to a Swin-Mixer-T/D6 and scaling the model to
match the complexity, we also observe that our method outperforms the orig-
inal Swin-T model by 0.7%. Besides, we find that the multi-head mechanism
can bring notable improvements to MLPs, where our modified MLP models can
largely improve the ResMLP-12 [42] and Swin-Mixer-T/D6 models by 2.6% and
1.0%. The performance gap between AMixer and MH-MLP (+1.6% and 1.3% for
ViT and Swin style model respectively) also clearly shows the neat improvement
brought by the adaptive weight mixing. These results strongly demonstrate that
our adaptive weight mixing is a more efficient and effective method to generate
attention weights than self-attention.

Comparisons with State-of-the-Art Models. By further scaling up AMixer
models, we build a series of models based on Swin Transformers to compare with
state-of-the-art vision Transformers and MLP-like models as shown in Table 3.
We see our method achieves very competitive results compared to previous state-
of-the-art networks with a relatively simple design. The building block of AMixer
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Table 4. Results on transfer learning datasets. We report the top-1 accuracy on the
four datasets and the FLOPs of the models.

Model FLOPs CIFAR10 CIFAR100 Flowers Cars

ResNet50 [16] 4.1 G − − 96.2 90.0

EfficientNet-B7 [39] 37 G 98.9 91.7 98.8 94.7

ViT-L/16 [12] 190.7 G 97.9 86.4 89.7 −
DeiT-B/16 [43] 17.5 G 99.1 90.8 98.4 92.1

ResMLP-24 [42] 6.0 G 98.7 89.5 97.9 89.5

Swin-T [28] 4.5 G 98.7 88.7 99.6 91.6

AMixer-T 4.5 G 98.9 89.9 99.6 92.9

AMixer-B 16.0 G 99.1 91.0 99.8 92.9

consists of only MLPs and our adaptive weight mixing operations, while many
previous works add convolutions [10,47] to better capture local information or
use a more sophisticated architecture [5] instead of the standard four-stage net-
work. Since the mainstream research of developing more powerful vision Trans-
formers still uses self-attention as an indispensable ingredient, we believe our
method has the potential of applying to most vision Transformers variants and
improving their efficiency.

4.2 Downstream Tasks

Transfer Learning. To evaluate the transferability of our AMixer architec-
ture and the learned representation, we follow the commonly used experimental
settings [12,39,43] to evaluate AMixer on a set of transfer learning benchmark
datasets that contain a relatively small number of samples while having substan-
tial domain gaps from the upstream ImageNet dataset. Specifically, we test our
lightweight AMixer-T model and a more powerful model AMixer-B on CIFAR-
10 [25], CIFAR-100 [25], Stanford Cars [24] and Flowers-102 [31]. Following the
setting of previous works, we initialize the models with the ImageNet pre-trained
weights and fine-tune them on the new datasets. The results are presented in
Table 4. Our models generally have strong transferability on various downstream
datasets. Our models also show competitive performance compared to state-of-
the-art CNNs and large-scale vision Transformers with relatively low complexity.

Semantic Segmentation. Semantic segmentation is a widely used downstream
task to verify the generality of vision Transformers on dense prediction tasks
with high input resolution. We evaluate our AMixer model on the challeng-
ing ADE20K [56] dataset following previous works [28,47], where we train two
AMixer models that have similar computational complexities with the basic
ResNet-50 and ResNet-101 models [16]. We see in Table 5 that our model outper-
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forms the strong Swin models with a similar level of complexity, which suggests
our method generalizes well to dense prediction tasks.

4.3 Analysis and Visualization

Robustness & Generalization Ability. We further perform experiments
to show our AMixer also has better robustness and generalization ability. For
robustness, we consider ImageNet-A, ImageNet-C, FGSM and PGD. ImageNet-
A [18] (IN-A) is a challenging dataset that contains natural adversarial examples.
ImageNet-C [17] (IN-C) is used to validate the robustness of the model under
various types of corruption. We use the mean corruption error (mCE, lower
is better) on ImageNet-C as the evaluation metric. FGSM [13] and PGD [30]

Table 5. Semantic segmentation on ADE20K. We report the mIoU on the validation set
as well as the number of parameters and theoretical complexity in FLOPs. The models
are equipped with the prevalent semantic segmentation method Semantic FPN [23]
and UperNet [50]. The FLOPs are measured with 1024 × 1024 input. We divide the
models into two groups that have the similar complexities of widely used ResNet-50
and ResNet-101 models [16] respectively.

Backbone Semantic FPN [23] 80 k UperNet [50] 160 k

FLOPs Params mIoU (%) FLOPs Params mIoU (%)

ResNet50 [16] 183 G 29 M 36.7 952 G 67 M 42.1

Swin-T [28] 182 G 32 M 41.5 940 G 60 M 44.5

AMixer-T 169 G 31 M 43.7 927 G 58 M 46.0

ResNet101 [16] 260 G 48 M 38.8 1029 G 86 M 43.8

Swin-S [28] 274 G 53 M 45.2 1033 G 81 M 47.6

AMixer-S 249 G 51 M 45.9 1021 G 78 M 47.7

Table 6. Evaluation of robustness and generalization ability. We measure the robust-
ness from different aspects, including the adversarial robustness by adopting adversarial
attack algorithms including FGSM and PGD and the performance on corrupted/out-of-
distribution datasets including ImageNet-A [18] (top-1 accuracy) and ImageNet-C [17]
(mCE, lower is better). The generalization ability is evaluated on ImageNet-V2 [34]
and ImageNet-Real [3].

Model FLOPs Params ImageNet Generalization Robustness

Top-1↑ Top5↑ IN-V2↑ IN-Real↑ FGSM↑ PGD↑ IN-C↓ IN-A↑
DeiT-S 4.6 G 22 M 79.8 95.0 68.4 85.6 40.7 16.7 54.6 18.9

Swin-T 4.5 G 28 M 81.2 95.5 69.6 86.6 33.7 7.3 62.0 21.6

AMixer-T 4.5 G 26 M 82.0 96.0 71.2 87.3 40.8 13.3 54.0 25.4

DeiT-B 17.6 G 87 M 82.0 95.6 70.9 86.7 46.4 21.3 48.5 27.4

Swin-B 15.4 G 88 M 83.4 96.5 72.5 87.8 49.2 21.3 54.4 35.8

AMixer-B 16.0 G 83 M 84.0 96.7 73.5 88.0 51.1 26.8 48.6 36.5
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are two widely used algorithms that are targeted to evaluate the adversarial
robustness of the model by single-step attack and multi-step attack, respec-
tively. For generalization ability, we adopt two variants of ImageNet validation
set: ImageNet-V2 [34] (IN-V2) and ImageNet-Real [3] (IN-Real). ImageNet-V2 is
a re-collected version of ImageNet validation set following the same data collec-
tion procedure of ImageNet, while ImageNet-Real contains the same images as
ImageNet validation set but has reassessed labels. We compare two of our mod-
els AMixer-T and AMixer-B to both the DeiT [43] and Swin [28] counterparts
and find the AMixer models enjoy better generalization ability and robustness
(Table 6).

Comparisons with Existing Weight Generation Methods. We first ana-
lyze the effectiveness of our new weight generation method compared to previous
ones as shown in Table 7. We compare our method with self-attention (DeiT [43]),
Synthesizer [40], location-shared weight generation with MLP (DyConv-G [14])
and weight selection (DyConv-S [7]). Under a carefully controlled setting (iden-
tical training method following DeiT [43] and same network configurations), we
show that our method achieves the best performance among competitive base-
line methods with high efficiency, where suggests our method is more suitable
and efficient in the scenarios of vision Transformers.

Comparisons with Other Efficient Self-attentions. We compare our adap-
tive weight mixing with other methods to efficiently approximate self-attention,
including Linformer [46], Performer [9], Nystroformer [52] and the linear atten-
tion in PVTv2 [48]. For fair comparisons, we use DeiT-S [43] as the basic archi-

Table 7. Comparisons with other weight generation and efficient attention methods.
We fix the training strategy and the number of layers or FLOPs to test the effectiveness
of different methods.

Model Params FLOPs Acc (%)

DeiT-S [43] 22 M 4.6 G 79.8

Synthesizer [40] 19 M 3.9 G 78.4

DyConv-G [14] 287 M 4.0 G 79.2

DyConv-S [7] 30 M 3.7 G 78.6

AMixer 19 M 3.9 G 80.3

Model FLOPs Acc (%)

Linformer [46] 4.5 G 77.8

Performer [9] 4.6 G 72.1

Nystroformer [52] 4.6 G 77.1

PVTv2 [48] 4.5 G 79.1

AMixer 4.5 G 80.8

Table 8. Data efficiency & convergence speed. We compare the performance of our
model and the baseline vision Transformer when trained with fewer data or fewer
epochs on ImageNet.

Model Data ratio Training epoch

10% 50% 100% 50 100 300

DeiT-S [43] 34.0 72.9 79.8 65.7 74.4 79.8

AMixer-DeiT-S 48.7 76.3 80.8 69.2 76.9 80.8
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tecture and directly replace the standard self-attention with different efficient
self-attentions. We also ensure the FLOPs of all the models to be ∼4.6G by
stacking enough layers. The results are summarized in Table 7b. We find those
efficient self-attentions all fail to bring improvement over the DeiT-S, while our
AMixer-Deit-S can outperform the baseline by a significant margin.

Data Efficiency and Convergence Speed. We compare the performance of
our model and the baseline vision Transformer when trained with fewer data
or fewer epochs on ImageNet. The results are shown in Table 8. We see the
advantage of our model becomes more significant when the model is trained
with fewer data or epochs. The results indicate that our adaptive weight mixing
operation performs better when data and computation resources are limited.

Adaptive Weights Visualization. To investigate how our M matrices vary
with the input images, we visualize our adaptive weights M in Fig. 3. For each
image, we first find the token (indicated by the red box) that has the highest
classification score on the ground truth category, and visualize the weights corre-
sponded to that token. We include the weights of the 1, 3, 5, 7, 10 and 12-th layer
and weights of different heads are averaged. Firstly, we find the weights exhibit
notable diversity across different images. Secondly, we show our model tends to
attend to the most discriminative part of the images (e.g., in the first row, the
weights have higher values near the head of the dog). These visualizations show
that our adaptive weights generated without token-token interactions have the
similar behavior to the weights obtained by self-attention [12].

Fig. 3. Our method can generate data-dependent attention weights without token-
token interactions. The attention weights in shallow layers usually focus on local regions
while the weights of deeper layers adaptively attends to the shape of the whole object.

5 Conclusion

In this paper, we have thoroughly studied the key differences between vision
Transformers and recent all-MLP models. Inspired by our empirical results, we
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have proposed a new operation named adaptive weight mixing to generate atten-
tion weights without token-token interactions. Based on this operation, we have
developed a new architecture AMixer that is computationally and parametrically
more efficient than vision Transformers. Extensive experiments have shown that
our adaptive weight mixing is more efficient and effective than previous weight
generation methods. Our models achieve a better trade-off between accuracy
and complexity than vision Transformers and MLP models on both ImageNet
and downstream tasks.
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3. Beyer, L., Hénaff, O.J., Kolesnikov, A., Zhai, X., Oord, A.v.d.: Are we done with
imagenet? arXiv preprint arXiv:2006.07159 (2020)

4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: ECCV. pp. 213–229. Springer (2020)

5. Chen, C.F., Fan, Q., Panda, R.: Crossvit: Cross-attention multi-scale vision trans-
former for image classification. arXiv preprint arXiv:2103.14899 (2021)

6. Chen, S., Xie, E., Ge, C., Liang, D., Luo, P.: Cyclemlp: A mlp-like architecture for
dense prediction. arXiv preprint arXiv:2107.10224 (2021)

7. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution:
Attention over convolution kernels. In: CVPR. pp. 11030–11039 (2020)

8. Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need
for semantic segmentation. NeurIPS (2021)

9. Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T.,
Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., et al.: Rethinking attention with
performers. ICLR (2021)

10. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.: Twins:
Revisiting the design of spatial attention in vision transformers. In: NeurIPS 2021
(2021)

11. Chu, X., Tian, Z., Zhang, B., Wang, X., Wei, X., Xia, H., Shen, C.: Conditional
positional encodings for vision transformers. arXiv preprint arXiv:2102.10882
(2021)

12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929 (2020)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

http://arxiv.org/abs/2103.15691
http://arxiv.org/abs/2102.05095
http://arxiv.org/abs/2006.07159
http://arxiv.org/abs/2103.14899
http://arxiv.org/abs/2107.10224
http://arxiv.org/abs/2102.10882
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1412.6572


AMixer 65

14. Han, Q., Fan, Z., Dai, Q., Sun, L., Cheng, M.M., Liu, J., Wang, J.: Demystifying
local vision transformer: Sparse connectivity, weight sharing, and dynamic weight.
arXiv preprint arXiv:2106.04263 (2021)

15. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural
networks: A survey. arXiv preprint arXiv:2102.04906 (2021)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

17. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)

18. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial
examples. In: CVPR. pp. 15262–15271 (2021)

19. Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler, T., Soudry, D.: Augment
your batch: Improving generalization through instance repetition. In: CVPR. pp.
8129–8138 (2020)

20. Hu, J., Shen, L., Albanie, S., Sun, G., Vedaldi, A.: Gather-excite: Exploiting feature
context in convolutional neural networks. arXiv preprint arXiv:1810.12348 (2018)

21. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR. pp. 7132–
7141 (2018)

22. Jiang, Z., Hou, Q., Yuan, L., Zhou, D., Jin, X., Wang, A., Feng, J.: Token label-
ing: Training a 85.5% top-1 accuracy vision transformer with 56m parameters on
imagenet. arXiv preprint arXiv:2104.10858 (2021)

23. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks.
In: CVPR. pp. 6399–6408 (2019)

24. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-
grained categorization. In: ICCVW. pp. 554–561 (2013)

25. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

26. Li, D., Hu, J., Wang, C., Li, X., She, Q., Zhu, L., Zhang, T., Chen, Q.: Involution:
Inverting the inherence of convolution for visual recognition. In: CVPR. pp. 12321–
12330 (2021)

27. Liu, H., Dai, Z., So, D.R., Le, Q.V.: Pay attention to mlps. arXiv preprint
arXiv:2105.08050 (2021)

28. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030 (2021)

29. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

30. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

31. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: ICVGIP. pp. 722–729 (2008)

32. Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averag-
ing. SIAM journal on control and optimization 30(4), 838–855 (1992)

33. Rao, Y., Zhao, W., Zhu, Z., Lu, J., Zhou, J.: Global filter networks for image
classification. In: NeurIPS (2021)

34. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do imagenet classifiers generalize
to imagenet? In: ICML. pp. 5389–5400. PMLR (2019)

35. Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M., Jenatton, R., Pinto, A.S.,
Keysers, D., Houlsby, N.: Scaling vision with sparse mixture of experts. arXiv
preprint arXiv:2106.05974 (2021)

http://arxiv.org/abs/2106.04263
http://arxiv.org/abs/2102.04906
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1810.12348
http://arxiv.org/abs/2104.10858
http://arxiv.org/abs/2105.08050
http://arxiv.org/abs/2103.14030
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/2106.05974


66 Y. Rao et al.

36. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. IJCV 115(3), 211–252 (2015)

37. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position represen-
tations. arXiv preprint arXiv:1803.02155 (2018)

38. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck
transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 16519–16529 (2021)

39. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: ICML. pp. 6105–6114. PMLR (2019)

40. Tay, Y., Bahri, D., Metzler, D., Juan, D.C., Zhao, Z., Zheng, C.: Synthesizer:
Rethinking self-attention for transformer models. In: ICML. pp. 10183–10192.
PMLR (2021)

41. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,
Yung, J., Keysers, D., Uszkoreit, J., Lucic, M., et al.: Mlp-mixer: An all-mlp archi-
tecture for vision. arXiv preprint arXiv:2105.01601 (2021)

42. Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-Nouby, A., Grave, E., Joulin,
A., Synnaeve, G., Verbeek, J., Jégou, H.: Resmlp: Feedforward networks for image
classification with data-efficient training. arXiv preprint arXiv:2105.03404 (2021)

43. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877 (2020)

44. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper
with image transformers. arXiv preprint arXiv:2103.17239 (2021)

45. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L., Polosukhin, I.: Attention is all you need. In: NeurIPS. pp. 5998–6008 (2017)

46. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768 (2020)

47. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions (2021)

48. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pvtv 2: Improved baselines with pyramid vision transformer. Computational
Visual Media 8(3), 1–10 (2022)

49. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: Introduc-
ing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

50. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene
understanding. In: ECCV. pp. 418–434 (2018)

51. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer:
Simple and efficient design for semantic segmentation with transformers. arXiv
preprint arXiv:2105.15203 (2021)

52. Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y., Singh, V.:
Nyströmformer: A nyström-based algorithm for approximating self-attention
(2021)

53. Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z., Tay, F.E., Feng, J., Yan,
S.: Tokens-to-token vit: Training vision transformers from scratch on imagenet.
ICCV (2021)

54. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. arXiv
preprint arXiv:2106.04560 (2021)

http://arxiv.org/abs/1803.02155
http://arxiv.org/abs/2105.01601
http://arxiv.org/abs/2105.03404
http://arxiv.org/abs/2012.12877
http://arxiv.org/abs/2103.17239
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2103.15808
http://arxiv.org/abs/2105.15203
http://arxiv.org/abs/2106.04560


AMixer 67

55. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T.,
Torr, P.H., et al.: Rethinking semantic segmentation from a sequence-to-sequence
perspective with transformers. arXiv preprint arXiv:2012.15840 (2020)

56. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: CVPR. pp. 633–641 (2017)

http://arxiv.org/abs/2012.15840

	AMixer: Adaptive Weight Mixing for Self-attention Free Vision Transformers
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Vision Transformers and MLP Models: An Unified View
	3.2 Rethinking Self-attention in ViTs
	3.3 Adaptive Weight Mixing
	3.4 Architecture Variants

	4 Experiments
	4.1 ImageNet Classification
	4.2 Downstream Tasks
	4.3 Analysis and Visualization

	5 Conclusion
	References




