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Abstract. It is a highly desirable property for deep networks to be
robust against small input changes. One popular way to achieve this
property is by designing networks with a small Lipschitz constant. In
this work, we propose a new technique for constructing such Lipschitz
networks that has a number of desirable properties: it can be applied to
any linear network layer (fully-connected or convolutional), it provides
formal guarantees on the Lipschitz constant, it is easy to implement and
efficient to run, and it can be combined with any training objective and
optimization method. In fact, our technique is the first one in the liter-
ature that achieves all of these properties simultaneously.

Our main contribution is a rescaling-based weight matrix parametriza-
tion that guarantees each network layer to have a Lipschitz constant of at
most 1 and results in the learned weight matrices to be close to orthogo-
nal. Hence we call such layers almost-orthogonal Lipschitz (AOL). Exper-
iments and ablation studies in the context of image classification with
certified robust accuracy confirm that AOL layers achieve results that are
on par with most existing methods. Yet, they are simpler to implement
and more broadly applicable, because they do not require computation-
ally expensive matrix orthogonalization or inversion steps as part of the
network architecture.

We provide code at https://github.com/berndprach/AOL.
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1 Introduction

Deep networks are often the undisputed state of the art when it comes to solving
computer vision tasks with high accuracy. However, the resulting systems tend
to be not very robust, e.g., against small changes in the input data. This makes
them untrustworthy for safety-critical high-stakes tasks, such as autonomous
driving or medical diagnosis.

A typical example of this phenomenon are adversarial examples [20]: imper-
ceptibly small changes to an image can drastically change the outputs of a
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deep learning classifier when chosen in an adversarial way. Since their discov-
ery, numerous methods were developed to make networks more robust against
adversarial examples. However, in response a comparable number of new attack
forms were found, leading to an ongoing cat-and-mouse game. For surveys on
the state of research, see, e.g., [6,17,26].

A more principled alternative is to create deep networks that are robust
by design, for example, by restricting the class of functions they can represent.
Specifically, if one can ensure that a network has a small Lipschitz constant, then
one knows that small changes to the input data will not result in large changes
to the output, even if the changes are chosen adversarially.

A number of methods for designing such Lipschitz networks have been pro-
posed in the literature, which we discuss in Sect. 3. However, all of them have
individual limitations. In this work, we introduce the AOL (for almost-orthogonal
Lipschitz ) method. It is the first method for constructing Lipschitz networks that
simultaneously meets all of the following desirable criteria:

Generality. AOL is applicable to a wide range of network architectures, in
particular most kinds of fully-connected and convolutional layers. In contrast,
many recent methods work only for a restricted set of layer types, such as only
fully-connected layers or only convolutional layers with non-overlapping recep-
tive fields.

Formal Guarantees. AOL provably guarantees a Lipschitz constant 1. This is
in contrast to methods that only encourage small Lipschitz constants, e.g., by
regularization.

Efficiency. AOL causes only a small computational overhead at training time
and none at all at prediction time. This is in contrast to methods that embed
expensive iterative operations such as matrix orthogonalization or inversion steps
into the network layers.

Modularity. AOL can be treated as a black-box module and combined with
arbitrary training objective functions and optimizers. This is in contrast to meth-
ods that achieve the Lipschitz property only when combined with, e.g., specific
loss-rescaling or projection steps during training.

AOL’s name stems from the fact that the weight matrices it learns are approx-
imately orthogonal. In contrast to prior work, this property is not enforced
explicitly, which would incur a computational cost. Instead, almost-orthogonal
weight matrices emerge organically during network training. The reason is that
AOL’s rescaling step relies on an upper bound to the Lipschitz constant that is
tight for parameter matrices with orthogonal columns. During training, matri-
ces without that property are put at the disadvantage of resulting in outputs
of smaller dynamic range. As a consequence, orthogonal matrices are able to
achieve smaller values of the loss and are therefore preferred by the optimizer.
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2 Notation and Background

A function f : Rn → R
m is called L-Lipschitz continuous with respect to norms

‖.‖Rn and ‖.‖Rm , if it fulfills

‖f(x) − f(y)‖Rm ≤ L‖x − y‖Rn , (1)

for all x and y, where L is called the Lipschitz constant. In this work we only con-
sider Lipschitz-continuity with respect to the Euclidean norm, ‖.‖2, and mainly
for L = 1. For conciseness of notation, we refer to such 1-Lipschitz continuous
functions simply as Lipschitz functions.

For any linear (actually affine) function f , the Lipschitz property can be
verified by checking if the function’s Jacobian matrix, Jf , has spectral norm
‖Jf‖spec less or equal to 1, where

[Jf ]ij =
∂fi

∂xj
and ‖M‖spec = max

‖v‖2=1
‖Mv‖2. (2)

The spectral norm of a matrix M can in fact be computed numerically as it
is identical to the largest singular value of the matrix. This, however, typi-
cally requires iterative algorithms that are computationally expensive in high-
dimensional settings. An exception is if M is an orthogonal matrix, i.e. M�M =
I, for I the identity matrix. In that case we know that all its singular values
are 1 and ‖Mv‖2 = ‖v‖2 for all v, so the corresponding linear transformation is
Lipschitz.

Throughout this work we consider a deep neural network as a concatenation
of linear layers (fully-connected or convolutional) alternating with non-linear
activation functions. We then study the problem how to ensure that the resulting
network function is Lipschitz.

It is known that computing the exact Lipschitz constant of a neural network
is an NP-hard problem [24]. However, upper bounds can be computed more
efficiently, e.g., by multiplying the individual Lipschitz constants of all layers.

3 Related Work

The first attempts to train deep networks with small Lipschitz constant used
ad-hoc techniques, such as weight clipping [2] or regularizing either the network
gradients [10] or the individual layers’ spectral norms [14]. However, these tech-
niques do not formally guarantee bounds on the Lipschitz constant of the trained
network. Formal guarantees are provided by constructions that ensure that each
individual network layer is Lipschitz. Combined with Lipschitz activation func-
tions, such as ReLU, MaxMin or tanh, this ensures that the overall network
function is Lipschitz.

In the following, we discuss a number of prior methods for obtaining Lipschitz
networks. A structured overview of their properties can be found in Table 1.
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Table 1. Overview of the properties of different methods for learning Lipschitz net-
works.Columns indicate: E (efficiency): no internal iterative procedure required, scales
well with the input size. F (formal guarantees): provides a guarantee abound the Lips-
chitz constant of the trained network.G (generality): can be applied to fully-connected
as well as convolutional layers. M (modularity): can be used with any training objec-
tive and optimization method. ∼ symbols indicate that a property is partially fulfilled.
Superscripts provide further explanations: 1 requires a regularization loss. 2 internal
methods would have to be run to convergence. 3 iterative procedure that can be split
between training steps. 4 requires matrix orthogonalization. 5 requires inversion of an
input-sized matrix. 6 requires circular padding and full-image kernel size. 7 requires
large kernel sizes to ensure orthogonality

Method E F G M Methodology

WGAN [2] ✓ ✓ ✓ ✗ Weight clipping

WGAN-GP [10] ✓ ✗ ✓ ∼1 Regularization

Parseval Networks [7] ✓ ✗ ✓ ∼1 Regularization

OCNN [25] ✓ ✗ ✓ ∼1 Regularization

SN [14] ✗ ∼2 ✓ ✓ parameter rescaling

LCC [9] ✗ ∼2 ✓ ✗ Parameter rescaling

LMT [23] ∼3 ✗ ✓ ✗ Loss rescaling

GloRo [12] ∼3 ∼2 ✓ ✗ Loss rescaling

BCOP [13] ✗4 ✓ ✓ ✓ Explicit orthogonalization

GroupSort[1] ✗4 ∼2 ✗ ✓ Explicit orthogonalization

ONI [11] ✗ ∼2 ✓ ✓ Explicit orthogonalization

Cayley Convs [21] ∼5 ✓ ∼6 ✓ Explicit orthogonalization

SOP [18] ✗ ∼2 ∼7 ✓ Explicit orthogonalization

ECO [27] ✗4 ✓ ∼6 ✓ Explicit orthogonalization

AOL (proposed) ✓ ✓ ✓ ✓ Parameter rescaling

Bound-Based Methods. The Lipschitz property of a network layer could be
achieved trivially: one simply computes the layer’s Lipschitz constant, or an
upper bound, and divides the layer weights by that value. Applying such a step
after training, however, does not lead to satisfactory results in practice, because
the dynamic range of the network outputs is reduced by the product of the scale
factors. This can be seen as a reduction of network capacity that prevents the
network from fitting the training data well. Instead, it makes sense to incorporate
the Lipschitz condition already at training time, such that the optimization can
attempt to find weight matrices that lead to a network that is not only Lipschitz
but also able to fit the data well.

The Lipschitz Constant Constraint (LCC) method [9] identifies all weight
matrices with spectral norm above a threshold λ after each weight update and
rescales those matrices to have a spectral norm exactly λ. Lipschitz Margin
Training (LMT) [23] and Globally-Robust Neural Networks (GloRo) [12] approxi-
mate the overall Lipschitz constant from numeric estimates of the largest singular
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values of the layers’ weight matrices. They integrate this value as a scale factor
into their respective loss functions.

In the context of deep learning, controlling only the Lipschitz constant of
each layer separately has some drawbacks. In particular, the product of the indi-
vidual Lipschitz constants might grossly overestimate the network’s actual Lips-
chitz constant. The reason is that the Lipschitz constant of a layer is determined
by a single vector direction of maximal expansion. When concatenating multi-
ple layers, their directions of maximal expansion will typically not be aligned,
especially with in between nonlinear activations. As a consequence, the actual
maximal amount of expansion will be smaller than the product of the per-layer
maximal expansions. This causes the variance of the activations to shrink dur-
ing the forward pass through the network, even though in principle a sequence
of 1-Lipschitz operations could perfectly preserve it. Analogously, the magni-
tude of the gradient signal shrinks with each layer during the backwards pass of
backpropagation training, which can lead to vanishing gradient problems.

Orthogonality-Based Method. A way to address the problems of variance-
loss and vanishing gradients is to exploit orthogonality, which has been found
useful in computer vision and machine learning [3,8,15]. Specifically one uses net-
work layers that encode orthogonal linear operations. These are 1-Lipschitz, so
the overall network will also have that property. However, they are also isotropic,
in the sense that they preserve data variance and gradient magnitude in all direc-
tions, not just a single one.

For fully-connected layers, it suffices to ensure that the weight matrices them-
selves are orthogonal. The GroupSort [1] architecture achieves this using classic
results from numeric analysis [4]. The authors parameterize an orthogonal weight
matrix as a specific matrix power series, which they embed in truncated form into
the network architecture. Orthogonalization by Newton’s Iterations (ONI) [11]
parameterizes orthogonal weight matrices as

(
V V �)−1/2

V for a general param-
eter matrix V . As an approximate representation of the inverse operation the
authors embed a number of steps of Newton’s method into the network. Both
methods, GroupSort and ONI, have the shortcoming that their orthogonalization
schemes require the application of iterative computation schemes which incur a
trade-off between the approximation quality and the computational cost.

For convolutional layers, more involved constructions are required to ensure
that the resulting linear transformations are orthogonal. In particular, enforc-
ing orthogonal kernel matrices is not sufficient in general to ensure a Lipschitz
constant of 1 when the convolutions have overlapping receptive fields.

Skew Orthogonal Convolutions (SOC) [18] parameterize orthogonal matrices
as the matrix exponentials of skew-symmetric matrices. They embed a trunca-
tion of the exponential’s power series into the network and bound the resulting
error. However, SOC requires a rather large number of iterations to yield good
approximation quality, which leads to high computational cost.

Block Convolutional Orthogonal Parameterization (BCOP) [13] relies on a
matrix decomposition approach to address the problem of orthogonalizing con-
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volutional layers. The authors parameterize each convolution kernel of size k ×k
by a set of 2k−1 convolutional matrices of size 1×2 or 2×1. These are combined
with a final pointwise convolution with orthogonal kernel. However, BCOP also
incurs high computation cost, because each of the smaller transforms requires
orthogonalizing a corresponding parameter matrix.

Cayley Layers parameterize orthogonal matrices using the Cayley trans-
form [5]. Naively, this requires the inversion of a matrix of size quadratic in
the input dimensions. However, in [21] the author demonstrate that in certain
situations, namely for full image size convolutions with circular padding, the
computations can be performed more efficiently.

Explicitly Constructed Orthogonal Convolutions (ECO) [27] rely on a theorem
that relates the singular values of the Jacobian of a circular convolution to the
singular values of a set of much smaller matrices [16]. The authors derive a
rather efficient parameterization that, however, is restricted to full-size dilated
convolutions with non-overlapping receptive fields.

The main shortcomings of Cayley layers and ECO are their restriction to
certain full-size convolutions. Those are incompatible with most well-performing
network architectures for high-dimensional data, which use local kernel convo-
lutions, such as 3 × 3, and overlapping receptive fields.

Relation to AOL. The AOL method that we detail in Sect. 4 can be seen as a
hybrid of bound-based and orthogonality-based approaches. It mathematically
guarantees the Lipschitz property of each network layer by rescaling the corre-
sponding parameter matrix (column-wise for fully-connected layers, channel-wise
for convolutions). In contrast to other bound-based approaches it does not use
a computationally expensive iterative approach to estimate the Lipschitz con-
stant as precisely as possible, but it relies on a closed-form upper bound. The
bound is tight for matrices with orthogonal columns. During training this has the
effect that orthogonal parameter matrices are implicitly preferred by the opti-
mizer, because they allow fitting the data, and therefore minimizing the loss, the
best. Consequently, AOL benefits from the advantages of orthogonality-based
approaches, such as preserving the variance of the activations and the gradi-
ent magnitude, without the other methods’ shortcomings of requiring difficult
parameterizations and being restricted to specific layer types.

4 Almost-Orthogonal Lipschitz (AOL) Layers

In this section, we introduce our main contribution, almost-orthogonal Lipschitz
(AOL) layers, which combine the advantages of rescaling and orthogonalization
approaches. Specifically, we introduce a weight-dependent rescaling technique
for the weights of a linear neural network layer that guarantees them to be
1-Lipschitz. It can be easily computed in closed form and is applicable to fully-
connected as well as convolutional layers.

The main ingredient is the following theorem, which provides an elementary
formula for controlling the spectral norm of a matrix by rescaling its columns.
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Theorem 1. For any matrix P ∈ R
n×m, define D ∈ R

m×m as the diagonal

matrix with Dii =
(∑

j

∣
∣P�P

∣
∣
ij

)−1/2

if the expression in the brackets is non-
zero, or Dii = 0 otherwise. Then the spectral norm of PD is bounded by 1.

Proof. The upper bound the spectral norm of PD follows from an elementary
computation. By definition of the spectral norm, we have

‖PD‖2spec = max
‖�v‖2=1

‖PD�v‖22 = max
‖�v‖2=1

�v�D�P�PD�v. (3)

We observe that for any symmetric matrix M ∈ R
n×n and any w ∈ R

n:

wT Mw ≤
n∑

i,j=1

|Mij ||wi||wj | ≤
n∑

i,j=1

1
2
|Mij |(w2

i + w2
j ) =

n∑

i=1

( n∑

j=1

|Mij |
)
w2

i

(4)

where the second inequality follows from the general relation 2ab ≤ a2 + b2.
Evaluating (4) for M = P�P and w = D�v, we obtain for all �v with ‖�v‖2 = 1

�v�D�P�PD�v ≤
n∑

i=1

( n∑

j=1

|P�P |ij
)
(Diivi)2 ≤

n∑

i=1

v2
i = 1 (5)

which proves the bound.

Note that when P has orthogonal columns of full rank, we have that P�P
is diagonal and D = (P�P )−1/2, so D�P�PD = I, for I the identity matrix.
Consequently, (5) holds with equality and the bound in Theorem 1 is tight.

In the rest of this section, we demonstrate how Theorem 1 allows us to control
the Lipschitz constant of any linear layer in a neural network.

4.1 Fully-Connected Lipschitz Layers

We first discuss the case of fully-connected layers.

Lemma 1 (Fully-Connected AOL Layers). Let P ∈ R
n×m be an arbitrary

parameter matrix. Then, the fully-connected network layer

f(x) = Wx + b (6)

is guaranteed to be 1-Lipschitz, when W = PD for D defined as in Theorem 1.

Proof. The Lemma follows from Theorem 1, because the Lipschitz constant of
f is bounded by the spectral norm of its Jacobian matrix, which is simply W .

Discussion. Despite its simplicity, there are a number aspects of Lemma 1 that
are worth a closer look. First, we observe that a layer of the form f(x) = PDx+b
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can be interpreted in two ways, depending on how we (mentally) put brackets
into the linear term. In the form f(x) = P (Dx)+b, we apply an arbitrary weight
matrix to a suitably rescaled input vector. In the form f(x) = (PD)x + b, we
apply a column-rescaling operation to the weight matrix before applying it to
the unchanged input. The two views highlight different aspects of AOL. The
first view reflects the flexibility and high capacity of learning with an arbitrary
parameter matrix, with only an intermediate rescaling operation to prevent the
growth of the Lipschitz constant. The second view shows that AOL layers can
be implemented without any overhead at prediction time, because the rescaling
factors can be absorbed in the parameter matrix itself, even preserving potential
structural properties such as sparsity patterns.

As a second insight from Lemma 1 we obtain how AOL relates to prior
methods that rely on orthogonal weight matrices. As derived after Theorem 1, if
the parameter matrix, P , has orthogonal columns of full rank, then W = PD is
an orthogonal weight matrix. In particular, when P is already an orthonormal
matrix, then D will be the identity matrix, and W will be equal to P . Therefore,
our method can express any linear map based on an orthonormal matrix, but
it can also express other linear maps. If the columns of P are approximately
orthogonal, in the sense that P�P is approximately diagonal, then the entries
of D are dominated by the diagonal entries of the product. The multiplication
by D acts mostly as a normalization of the length of the columns of P , and the
resulting W is an almost-orthogonal matrix.

Finally, observe that Lemma 1 does not put any specific numeric or structural
constraints on the parameter matrix. Consequently, there are no restrictions on
the optimizer or objective function when training AOL-networks.

4.2 Convolutional Lipschitz Layers

An analog of Lemma 1 for convolutional layers can, in principle, be obtained by
applying the same construction as above: convolutions are linear operations, so
we could compute their Jacobian matrix and determine an appropriate rescaling
matrix from it. However, this naive approach would be inefficient, because it
would require working with matrices that are of a size quadratic in the number
of input dimensions and channels. Instead, by a more refined analysis, we obtain
the following result.

Lemma 2 (Convolutional AOL Layers). Let P ∈ R
k×k×cI×cO , be a convo-

lution kernel matrix, where k×k is the kernel size and cI and cO are the number
of input and output channels, respectively. Then, the convolutional layer

f(x) = P ∗ R(x) + b (7)

is guaranteed to be 1-Lipschitz, where R(x) is a channel-wise rescaling that mul-
tiplies each channel c ∈ {1, . . . , cI} of the input by

dc =
( ∑

i,j

cI∑

a=1

∣
∣
∣

cO∑

b=1

P (a,b) ∗ P (c,b)
∣
∣
∣
i,j

)−1/2

. (8)
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We can equivalently write f as f(x) = W ∗ x + b, where W = P ∗ D with
D ∈ R

1×1×cI×cI given by D
(c,c)
1,1 = dc, and D

(c1,c2)
1,1 = 0 for c1 �= c2.

The proof consists of an explicit derivation of the Jacobian of the convolution
operation as a linear map, followed by an application of Theorem 1. The main
step is the explicit demonstration that the diagonal rescaling matrix can in fact
be bounded by a per-channel multiplication with the result of a self-convolution
of the convolution kernel. The details can be found in the supplemental material.

Discussion. We now discuss some favorable properties of Lemma 2. First, as
in the fully-connected case, the rescaling operation again can be viewed either
as acting on the inputs, or as acting on the parameter matrix. Therefore, the
convolutional layer also combines the properties of high capacity and no overhead
at prediction time. In fact, for 1 × 1 convolutions, the construction of Lemma 2
reduces to the fully-connected situation of Lemma 1.

Second, computing the scaling factors is efficient, because the necessary oper-
ations scale only with the size of the convolution kernel regardless of the image
size. The rescaling preserves the structure of the convolution kernel, e.g. sparsity
patterns. In particular, this means that constructs such as dilated convolutions
are automatically covered by Lemma 2 as well, as these can be expressed as
ordinary convolutions with specific zero entries.

Furthermore, Lemma 2 requires no strong assumption on the padding type,
and works as long as the padding itself is 1-Lipschitz. Also, the computation of
the scale factors is easy to implement in all common deep learning frameworks
using batch-convolution operations with the input channel dimension taking the
role of the batch dimension.

5 Experiments

We compare our method to related work in the context of certified robust accu-
racy, where the goal is to solve an image classification task in a way that provably
prevents adversarial examples [20]. Specifically, we consider an input x as certifi-
ably robustly classified by a model under input perturbations up to size ε, if x+δ
is correctly classified for all δ with ‖δ‖ ≤ ε. Then the certified robust accuracy of
a classifier is the proportion of the test set that is certifiably robustly classified.

Consider a function f that generates a score for each class. Define the margin
of f at input x with correct label y as

Mf (x) =
[
f(x)y − max

i�=y
f(x)i

]
+

with [·]+ = max{·, 0}. (9)

Then the induced classifier, Cf (x) = argmaxi f(x)i, certifiably robustly classifies
an input x if Mf (x) >

√
2Lε, where L is the Lipschitz constant L of f . This

relation can be used to efficiently determine (a lower bound to) the certified
robust accuracy of Lipschitz networks [23].

Following prior work in the field, we conduct experiments that evaluate the
certified robust accuracy for different thresholds, ε, on the CIFAR-10 as well
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Table 2. Patchwise architecture. For all layers we use zero padding to keep the size
the same. For AOL-Small we set w to 16, and we choose w = 32 and w = 48 for
AOL-Medium and AOL-Large. Furthermore, l is the number of classes, and l = 10 for
CIFAR-10 and l = 100 for CIFAR-100. Concatenation Pooling stacks all the inputs
into a single vector, and First channels just selects the first channels and ignores the
rest

Layer name Kernel size Stride Activation Output size Amount

Concatenation Pooling 4 × 4 4 × 4 - 8 × 8 × 48 1

AOL Conv 1 × 1 1 × 1 MaxMin 8 × 8 × 192 1

AOL Conv 3 × 3 1 × 1 MaxMin 8 × 8 × 192 12

AOL Conv 1 × 1 1 × 1 None 8 × 8 × 192 1

First Channels – – – 8 × 8 × w 1

Flatten – – – 64w 1

AOL FC – – MaxMin 64w 13

AOL FC – – None 64w 1

First Channels – – – l 1

as the CIFAR-100 dataset. We also provide ablation studies that illustrate that
AOL can be used in a variety of network architectures, and that it indeed learns
matrices that are approximately orthogonal. In the following we describe our
experimental setup. Further details can be found in the supplemental material.
All hyperparameters were determined on validation sets.

Architecture: Our main model architecture is loosely inspired by the ConvMixer
architecture [22]: we first subdivide the input image into 4×4 patches, which are
processed by 14 convolutional layers, most of kernel size 3 × 3. This is followed
by 14 fully connected layers. We report results for three different model sizes,
we will refer to the models as AOL-Small, AOL-Medium and AOL-Large. The
full architectural details can be found in Table 2.

Other network architectures are discussed in an ablation study in Sect. 6.1.

Initialization: In order to ensure stable training we initialize the parameter
matrices so that our bound is tight. In particular, for layers preserving the size
between input and output (e.g. the 3×3 convolutions) we initialize the parameter
matrix so that the Jacobian is the identity matrix. For any other layers we
initialize the parameter matrix so that it has random orthogonal columns.

Loss Function: In order to train the network to achieve good certified robust
accuracy we want the score of the correct class to be bigger than any other score
by a margin. We use a loss function similar to the one proposed for Lipschitz-
margin training [23] with a temperature parameter that helps encouraging a
margin during training. Our loss function takes as input the model’s logit vector,
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Table 3. Experimental results: robust image classification on CIFAR-10 for AOL and
methods from the literature.Results for concurrent unpublished works (ECO and SOC
with Householder activations) are printed in italics. Standard CNN refers to our imple-
mentation of a simple convolutional network trained without enforcing any robustness,
for details see the supplemental material.

Method Standard Certified Robust Accuracy

Accuracy ε = 36
255

ε = 72
255

ε = 108
255

ε = 1

Standard CNN 83.4% 0% 0% 0% 0%

BCOP Large [13] 72.2% 58.3% – – –

GloRo 6C2F [12] 77.0% 58.4% – – –

Cayley Large [21] 75.3% 59.2% – – –

SOC-20 [18] 76.4% 61.9% – – –

SOC-25 (from [27]) – 60.2% 43.7% 28.6% –

ECO-25 [27] 75.7 % 66.1 % 55.6 % 45.3 % –

SOC-15 (from [19]) 76.4 % 63.0 % 48.5% 35.5 % –

AOL-Small 69.8% 62.0% 54.4% 47.1% 21.8%

AOL-Medium 71.1% 63.8% 56.1% 48.6% 23.2%

AOL-Large 71.6% 64.0% 56.4% 49.0% 23.7%

s, as well as a one-hot encoding y of the true label as input, and is given by

L(s,y) = crossentropy
(
y, softmax

(s − uy

t

)
t
)
, (10)

for some offset u and some temperature t. For our experiments, we use u =
√

2,
which encourages the model to learn to classify the training data certifiably
robustly to perturbations of norm 1. Furthermore we use temperature t = 1/4,
which causes the gradient magnitude to stay close to 1 as long as a training
example is classified with margin less than 1/2.

Optimization: We minimize the loss function (10) using SGD with Nesterov
momentum of 0.9 for 1000 epochs. The batch size is 250. The learning rate
starts at 10−3 and is reduced by a factor of 10 at epochs 900, 990 and 999. As
data augmentation we use spatial transformations (rotations and flipping) as
well as some color transformation. The details are provided in the supplemental
material. For all AOL layers we also use weight decay with coefficient 5 × 10−4.

6 Results

The main results can be found in Tables 3 and 4, where we compare the certified
robust accuracy of our method to those reported in previous works on orthogonal
networks and other networks with bounded Lipschitz constant. For methods that
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Table 4. Experimental results: robust image classification on CIFAR-100 for AOL
and methods from the literature.We report the standard accuracy on the test set as
well as the certified robust accuracy under input perturbations up to size ε for different
values of ε.Results for concurrent unpublished works (ECO and SOC with Householder
activations) are printed in italics.

Method Standard Certified Robust Accuracy

Accuracy ε = 36
255

ε = 72
255

ε = 108
255

ε = 1

SOC-30 [18] 43.1% 29.2% – – –

SOC (from [27]) – 28.6% 18.2% 10.9% –

ECO-25 [27] 41.7 % 32.6 % 25.1 % 19.2% –

SOC (from [19]) 47.8 % 34.8 % 23.7 % 15.8 % –

AOL-Small 42.4% 32.5% 24.8% 19.2% 6.7%

AOL-Medium 43.2% 33.7% 26.0% 20.2% 7.2%

AOL-Large 43.7% 33.7% 26.3% 20.7% 7.8%

are presented in multiple variants, such as different networks depths, we include
the variant for which the authors list results for large values of ε.

The table shows that our proposed methods achieves results comparable with
the current state-of-the-art. For small robustness thresholds, it achieves certified
robust accuracy on par with published earlier methods, though slightly below
that reported in two concurrent preprints [19,27]. Focusing on (more realistic)
medium or higher robustness thresholds, AOL achieves certified robust accuracy
comparable to or even higher than all other methods. As a reference for future
work, we also report values for an even higher robustness threshold than what
appeared in the literature so far, ε = 1.

Another observation is that on the CIFAR-10 dataset the clean accuracy of
AOL is somewhat below other methods. We attribute this to the fact that we
mainly focused our training towards high robustness. The accuracy-robustness
trade-off can in fact be influenced by the choice of margin at training time, see
our ablation study in Sect. 6.1.

6.1 Ablation Studies

In this section we report on a number of ablation studies that shed light on
specific aspect of AOL.

Generality: One of the main advantages of AOL is that it is not restricted to
a specific architecture or a specific layer type. To demonstrate this, we present
additional experiments for a broad range of other architectures. AOL-FC consists
simply of 9 fully connected layers. AOL-STD resembles a standard convolutional
architecture, where the number of channels doubles whenever the resolution is
reduced. AOL-ALT is another convolutional architecture that keeps the number
of activations constant wherever possible in the network. AOL-DIL resembles
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Fig. 1. Evaluation of the orthogonality of the trained model. We consider the third
layer of the AOL-Small model. It is a 3×3 convolutions with input size 8×8×192. We
show a center crop of J�J , for J the Jacobian, as well as two further crops. Note that
most diagonal elements are close to 1, and most off-diagonal elements are very close
to 0 (note the different color scale in the third subplot). This confirms that AOL did
indeed learn an almost-orthogonal weight matrix. Best viewed in color and zoomed in

the architectures used in [27] in that it uses large dilated convolutions instead of
small local ones. It also uses circular padding. The details of the architectures
are provided in the supplemental.

The results (shown in the supplemental material) confirm that for any of these
architectures, we can train AOL-based Lipschitz networks and achieve certified
robust accuracy comparable to the results of earlier specialized methods.

Approximate Orthogonality: As a second ablation study, we demonstrate that
AOL indeed learns almost-orthogonal weight matrices, thereby justifying its
name. In order to do that, we evaluate J�J for J the Jacobian of an AOL con-
volution, and visualize it in Fig. 1. More detailed results including a comparison
to standard training are provided in the supplemental material.

Table 5. Experimental results for AOL-Small for different value of u and t in the loss
function in Equation (10).We report the standard accuracy on the test seWe report
the standard accuracy on the test set as well as the certified robust accuracy under
input perturbations up to size ε for different values of ε.t as well as the certified robust
accuracy under input perturbations up to size ε for different values of ε.

u t Standard Certified Robust Accuracy

Accuracy ε = 36
255

ε = 72
255

ε = 108
255

ε = 1√
2/16 1/64 79.8% 45.3% 16.7% 3.3% 0.0%√
2/4 1/16 77.4% 63.0% 47.6% 33.0% 2.5%√
2 1/4 70.4% 62.6% 55.0% 47.9% 22.2%

4
√

2 1 59.8% 55.5% 50.9% 46.5% 30.8%

16
√

2 4 48.2% 45.2% 42.2% 39.4% 28.6%
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Accuracy-Robustness Tradeoff: The loss function in Eq. (10) allows trading off
between clean accuracy and certified robust accuracy by changing the size of
the enforced margin. We demonstrate this by an ablation study that varies the
offset parameter u in the loss function, and also scales t proportional to u.

The results can be found in Table 5. One can see that using a small mar-
gin allows us to train an AOL Network with high clean accuracy, but decreases
the certified robust accuracy for larger input perturbations, whereas choosing
a higher offset allows us to reach state-of-the-art accuracy for larger input per-
turbations. Therefore, varying this offset gives us an easy way to prioritize the
measure that is important for a specific problem.

7 Limitations

Despite its flexibility, AOL also has limitations. Some of those need to be over-
come in order to enable training on high-resolution datasets in the future.

Firstly, while AOL in principle can handle skip connections, as they are used
e.g. in ResNets, the bound will (generally) not be tight, and the network will
lose dynamic range. We only recommend using skip connections for problems
where that is acceptable.

Secondly, optimization seems to be harder for AOL layers. They take longer
to converge than unconstrained layers, which manifests itself in more training
epochs needed. We believe the reason for this is that the optimizer needs to keep
the matrices approximately orthogonal in addition to fitting the training data,
and that doing both takes more iterations. Also, local minima emerge, avoiding
which needs a careful choice of initialization and learning rate.

Thirdly, AOL is designed for L2-Lipschitzness. Consequenty, the robustness
certificates also hold only for L2-perturbations, and we can only give very weak
guarantees for example for perturbations with bounded L1 norm.

Finally, the rescaling factors are simple to compute using a matrix multiplica-
tion or a convolution. However, the complexity of this calculation grows with the
number of channels of the input. A more detailed analysis of the computational
complexity can be found in the supplemental material.

8 Conclusion

In this work, we proposed AOL, a method for constructing deep networks that
have Lipschitz constant of at most 1 and therefore are robust against small
changes in the input data. Our main contribution is a rescaling technique for net-
work layers that ensures them to be 1-Lipschitz. It can be computed and trained
efficiently, and is applicable to fully-connected and various types of convolutional
layers. Training with the rescaled layers leads to weight matrices that are almost
orthogonal without the need for a special parametrization and computationally
costly orthogonalization schemes. We present experiments and ablation studies
in the context of image classification with certified robustness. They show that
AOL-networks achieve results comparable with methods that explicitly enforce
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orthogonalization, while offering the simplicity and flexibility of earlier bound-
based approaches.
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