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Abstract. Image-to-image translation has played an important role in
enabling synthetic data for computer vision. However, if the source and
target domains have a large semantic mismatch, existing techniques often
suffer from source content corruption aka semantic flipping. To address
this problem, we propose a new paradigm for image-to-image transla-
tion using Vector Symbolic Architectures (VSA), a theoretical frame-
work which defines algebraic operations in a high-dimensional vector
(hypervector) space. We introduce VSA-based constraints on adversar-
ial learning for source-to-target translations by learning a hypervector
mapping that inverts the translation to ensure consistency with source
content. We show both qualitatively and quantitatively that our method
improves over other state-of-the-art techniques.
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1 Introduction

Image-to-image translation techniques [8,12,14,23,25,30,33,39] have been
instrumental in improving synthetic data for computer vision. They have been
used to bridge the domain gap for synthetic data [12,30,39] and for photo-
realistic enhancement in virtual reality and gaming applications [33]. Some
researchers [7,16,31] argue that the domain gap can be further factorized into a
content (shift in semantic statistics) and appearance gap. In this work, we are
interested in the unpaired image-to-image translation method in the challenging
scenario where the content gap between the source and target domains is large.

There are several techniques for unpaired image-to-image translation [12,30,
39]. Some approaches assume that content and style can be separated in order
to translate style without corrupting content (e.g., [12]). Others have used a
bijective mapping to reconstruct the source image from the translated image (i.e.,
a “cyclic loss” [39]). However, these methods do not work well if there is a large
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Fig. 1. We propose Vector Symbolic Architecture based image-to-image translation
technique (VSAIT) which addresses semantic flipping (source content corruption) that
happens when the distribution gap (shift in semantic statistics) between source and
target domains is large. Our method learns a mapping in high-dimensional vector space
(hyperspace), which encourages translated images to be consistent with the source
domain. Conceptually, our approach aims to “unbind” source-related information (e.g.,
texture and color) and “bind” target-related information as well as vice versa to recover
source content. (Color figure online)

shift in distribution between source and target domains leading to the problem of
semantic flipping. Semantic flipping is characterized by image artifacts, object or
feature hallucinations that are a result of adversarial training for datasets with
a large content gap. Specifically, this is observed as a change in content between
source and translated images (e.g., sky to trees in Fig. 1). Semantic flipping is a
critical issue for improving photorealism in computer graphics applications [33]
as well as training downstream tasks using translated images, as we want to
preserve the source semantic labels of translations.

Relatively few works have directly focused on the semantic flipping problem;
however, they can be broadly categorized into three approaches: image-level con-
sistency, domain-invariant encoding, and task-level consistency. Methods using
an image-level consistency loss attempt to ensure that pixel-level information
is highly correlated between source and translated images [3,8]. Such meth-
ods may fail to account for feature-level differences that do not correlate well
with pixel-level differences. Approaches that focus on domain-invariant encod-
ing train the generator to encode domain-invariant content either using a shared
latent space [23] or contrastive learning [14]. These methods will fail to reduce
semantic flipping if content and style cannot be sufficiently disentangled. Finally,
others have used pre-trained task networks to generate pseudo-labels for each
domain to ensure a consistent translation with respect to source labels (i.e.,
semantic masks) [11,33]. However, these methods fail if the task network cannot
generate pseudo-labels for both domains. We instead focus on a method that
provides feature-level consistency between source and translated images without
explicit assumptions of domain-invariant encoding or quality of pseudo-labels.
This addresses gaps in previous methods which make them vulnerable to seman-
tic flipping.
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In the current paper, we propose a novel usage of a theoretical framework
known as vector symbolic architectures (VSA [9,15]; also referred to as hyperdi-
mensional computing) as a new paradigm for unpaired image-to-image transla-
tion. Although much of the VSA research has been conducted in theoretical neu-
roscience (see [20,21]), it has more recently been applied to computer vision prob-
lems using extracted features from deep neural networks [27,28]. VSA defines
a high-dimensional vector (hypervector) space and operators used for symbolic
computation, which allows for mathematical formulations of conceptual queries
such as, “what color is the car?”. In the case of unpaired image translation, such
formulations are useful because they enable us to recover attributes from the
source image and ensure consistent relationships among features when trans-
lating images from one domain to another. VSA is well suited for this app-
roach as it can represent arbitrary symbols and formulations generally without
supervision or training [32]. The important difference from previous methods
addressing semantic flipping is that VSA ensures that hypervector representa-
tions of different semantic content are almost orthogonal to each other (e.g., sky
and trees) [15]. The cosine distance between translated and source hypervectors
therefore is greatest when semantic flipping occurs.

Using this framework, we propose a method for learning a hypervector map-
ping between source and target domains that is robust to semantic flipping
(Fig. 1). By inverting this mapping, we are able to minimize the distance between
features extracted from source and translated images without requiring that con-
tent and style be fully disentangled. We demonstrate qualitatively and quanti-
tatively that this approach significantly reduces the image artifacts and halluci-
nations observed for unpaired image translation between domains with a large
content gap. We hope that our work provides inspiration for incorporating VSA
into new areas of computer vision research. Our contributions include:

– Our method addresses important artifacts and feature hallucinations (seman-
tic flipping) that often occur with other unsupervised image translation meth-
ods as a result of content gap between source and target domains.

– To the best of our knowledge, we are the first to show that Vector Symbolic
Architectures (VSA) can be used for a challenging task of image translations
in the wild. We hope this opens up an exciting area of research around VSA.

– We demonstrate qualitative and quantitative improvement over state-of-the-
art methods that directly address semantic flipping across multiple experi-
ments with unmatched semantic statistics.

2 Related Work

Unpaired Image-to-Image Translation. Unpaired image-to-image transla-
tion is a widely studied problem with many existing techniques [2,3,8,12–14,
18,23,25,30,33,38,39]. One popular approach is to impose the cycle-consistency
constraint [18,38,39], which states that a source-to-target generator and a target-
to-source generator are bijections. Building on cycle-consistency, UNIT [25]
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Fig. 2. Example GTA translations from our method (VSAIT) alongside representative
examples from Cityscapes. We can see that VSAIT successfully translates GTA images
to Cityscapes’ style and that, in particular, our method is able to learn specific textures
and attributes (e.g. gray cobblestone, white lane lines rather than yellow) that are
commonly found in Cityscapes images. Moreover, VSAIT is able to handle unseen
scenarios (e.g. tunnel) that do not occur in Cityscapes without semantic flipping. (Color
figure online)

mapped the source and target domains to a shared latent space, while DRIT [23]
and other methods [2,12] factorized the latent space into a shared content space
and a domain-specific style space. DistanceGAN [3] showed that source to tar-
get translations can be learnt unidirectionally. CUT [30] subsequently proposed
a unidirectional method based on contrastive learning. Whereas some of these
methods require separate networks per domain or assume that content and style
can be disentangled, our method uses a single generator without assumption of
disentanglement.

Semantic Flipping. The body of research on semantic flipping is relatively
small. Methods based on cycle-consistency combat semantic flipping through
pixel-level reconstruction, but they are unable to prevent semantic flipping in
the face of large distributional shifts. GcGAN [8] enforces geometry-consistent
constraints on image translations by ensuring robustness for transformations
such as flipping or rotation. This does not necessarily address semantic flip-
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ping for small, local features that could still be geometry-consistent. EPE [33]
addresses semantic flipping by conditioning on G-buffers (e.g. albedo, glossiness,
depth, normals) as well as incorporating semantic segmentation pseudo-labels
into the discriminator. Although their method addresses semantic flipping, it
does not generalize to many tasks or datasets since it assumes access to the syn-
thetic image rendering process and a downstream task network that can generate
pseudo-labels for both source and target domains. Alternatively, SRUNIT [14]
proposed to address semantic flipping by using contrastive learning (following
CUT [30]) to encode domain-invariant semantic representations that are robust
to small feature-space perturbations. Although their approach does not require
access to any labels or rendering process like EPE, it does not sufficiently address
semantic flipping. Unlike these approaches, we reduce semantic flipping by invert-
ing the translation in hyperspace using VSA in order to ensure recovery of source
information.

Computer Vision Applications of VSA. Although much of the research
associated with VSA has been conducted in theoretical neuroscience, Neubert
et al. [28] provided examples of how VSA can be used for computer vision tasks
such as object and place recognition, which demonstrated how image features
extracted from pre-trained neural networks can be used within the VSA frame-
work. Other works have used VSA for visual question answering [26] and scene
transformation [17], albeit with simple shapes or MNIST digits. More recently,
Osipov et al. [29] used VSA to learn to unbind category representations among
unlabelled data vectors bound to a shared representational space. This is most
similar to the challenge that we are addressing in the current paper, as we can
consider the source and target features to be bound to a similar content space;
however, unlike their study we do not have access to the underlying shared rep-
resentational space.

3 Method

3.1 Preliminary: VSA

Vector Symbolic Architectures (VSA) [9,15] provide a framework for encoding
and manipulating information in a hypervector space (hyperspace) with high
capacity and robustness to noise [15]. In VSA framework, hypervectors are ran-
domly sampled from a vector space V = [−1, 1]n (where n >> 1000) in order
to represent symbols that can be typically manipulated using two operators
– binding/unbinding (element-wise multiplication) and bundling (element-wise
addition). The binding operator can be used to assign an attribute to a symbol
(e.g., “gray car”), whereas bundling can be used to group symbols together (e.g.,
“gray car and red bike”). These operators define the Multiplication-Addition-
Permutation (MAP) architecture. Other operators and architectures (see [35])
are beyond the scope of our work.

The benefit of using VSA framework for image translation is its versatility
in representing arbitrary symbols without supervision. This allows us to infer
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underlying representational spaces (e.g., content distribution) without explicitly
defining them. Since the challenge of semantic flipping in unpaired image trans-
lation is typically to constrain the generator, we do not need to learn how to
generate images from hypervectors but instead learn a mapping that ensures we
recover the same source information for a given translated hypervector.

In order to assign random hypervectors to image features, Neubert et al. [28]
used locality sensitive hashing (LSH) to project image features extracted using
a pre-trained neural network (AlexNet [22]) to a relatively lower-dimensional
space (from 13 × 13 × 384 to 8192). In this case, the entire image was encoded
into a single hypervector; however, image patches can also be encoded as sepa-
rate hypervectors [27]. As an example, imagine an image patch from the source
domain that contains a car and pedestrian. We can assume without loss of gen-
erality that the image patch is represented as a hypervector:

vsrc = c ⊗ csrc + p ⊗ psrc, (1)

where c and p are hypervectors representing the car and pedestrian bound with
source-specific hypervectors csrc and psrc, respectively.

Since we do not have access to the underlying symbols associated with source
and target domains, instead we must learn a mapping that unbinds source-
specific information and binds target-specific information (and vice versa).
Specifically, we would like to learn a hypervector mapping that can unbind these
source-specific attributes and bind target-specific attributes in order to obtain a
target representation vtgt as shown in Eq. 2.

vsrc ⊗ usrc↔tgt ≈ vtgt,

where usrc↔tgt = (csrc ⊗ ctgt + psrc ⊗ ptgt)
(2)

Since the binding/unbinding operation is invertible, csrc and psrc are
unbound while ctgt and ptgt are correspondingly bound. Importantly, since these
random hypervectors are very likely to be almost orthogonal, binding/unbinding
the incorrect attributes (i.e., c ⊗ psrc) simply adds noise to the resulting vector
as demonstrated in Eq. 3.

vsrc ⊗ usrc↔tgt = c ⊗ csrc ⊗ (csrc ⊗ ctgt + psrc ⊗ ptgt)
+ p ⊗ psrc ⊗ (csrc ⊗ ctgt + psrc ⊗ ptgt)
= (c ⊗ ctgt + noise) + (noise + p ⊗ ptgt)
= c ⊗ ctgt + p ⊗ ptgt + noise ≈ vtgt

(3)

It is also worth noting that usrc↔tgt is equivalent to utgt↔src, which means a
single vector can be used to map between the domains. Hence, vtgt ⊗usrc↔tgt ≈
vsrc. Note that hypervectors in the VSA framework are distributed representa-
tions that are very robust to noise [1] and further that cosine similarity will still
be high relative to similarity with random vectors. The above example demon-
strates the unique properties of the VSA framework, which allow for algebraic
formulations of symbolic representations.
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Fig. 3. Our method addresses semantic flipping by learning an invertible mapping
in a high-dimensional vector space (VSA hyperspace) in order to ensure consistency
between source and translated images. We extract features and use locality sensitive
hashing (LSH) to encode source (x, blue), target (y, green), and translated (G(x),
striped green) images into this random VSA hyperspace. We use a GAN loss to train
G to generate images with hypervectors similar to those in the target domain. Finally,
the hypervector mapping (ux↔y, green-and-blue vertical bar) is used to invert our
translation (Eq. 4) to recover the source hypervectors (VSA Loss). See Sect. 3.3 for
more details. (Color figure online)

3.2 VSA-Based Image Translation (VSAIT)

Overview. Our goal is to translate images from a source to target domain, while
minimizing semantic flipping caused by differences in the content distribution
between the two domains. As shown in Fig. 3, our method uses a hypervector
adversarial loss (GAN Loss in Fig. 3) that operates on VSA-based hypervec-
tor representations of image patches. In order to address semantic flipping we
constrain the generator to preserve the content of the source domain via a VSA-
based cyclic loss (VSA Loss in Fig. 3). We do so by leveraging VSA to invert our
translation in hypervector space to ensure consistency with the source content.
We will cover these two loss functions later in this section. Our method has
three major network components– Generator G, Discriminator DY and Mapper
F that we will discuss next. We present training details in Sect. 3.3.

Generator. Our approach uses a generator G : X → Y (shown in Fig. 3) and
feature-level discriminator DY in order to learn an unpaired image translation
between X (source) and Y (target) domains, where DY is trained to discriminate
between hypervectors extracted from target and translated images.
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As previously introduced in Sect. 3.1, to assign hypervectors to image patches,
we follow Neubert et al. [28] and extract features using a pre-trained neural net-
work (in our case, concatenated multiple layers of VGG19 [36]). These concate-
nated features are then randomly projected from the extracted feature vector
fi ∈ R

m to the random vector space V = [−1, 1]n where m >> n. Using this
approach, we denote hypervectors extracted from target images as vY , source
images as vX , and translated images as vG(X) (see Fig. 3).

Source ↔ Target Mapper. Furthermore, we train a network F to generate a
hypervector mapping uX↔Y (e.g., Eq. 3) between source and target domains. We
use this hypervector mapping to invert our translation, providing a VSA-based
cyclic loss in hyperspace. The invertible mapping accomplishes two operations
with a single step: unbinding of source (resp. target) representations and binding
of target (resp. source) representations. This means that if we apply this map-
ping to our translated hypervectors vG(X), we should approximately obtain the
original source hypervectors vX . Similarly, if we apply this mapping to source
hypervectors vX , we approximately obtain translated hypervectors vG(X). We
denote translated hypervectors that have been mapped to the source domain as
vG(X)→X and those mapped from source to target domain as vX→Y as shown in
Eq. 4 as well as Fig. 3.

vG(X) ⊗ uX↔Y = vG(X)→X ≈ vX

vX ⊗ uX↔Y = vX→Y ≈ vG(X)

(4)

Hypervector Adversarial Loss. In order to train G, DY and F to translate
images that match the target distribution, we use an adversarial loss [10]. Specif-
ically, we want the hypervectors of our translated image vG(X) to be similar to
those from the target domain vY . Furthermore, by binding the hypervector map-
ping uX↔Y to source vectors vX , we should obtain a hypervector of the source
features mapped to the target domain (Eq. 4). Therefore, we train F along with
G and DY using the following adversarial loss:

LGAN (G,DY , F,X, Y ) =Ey∼pY (y)[logDY (vy)]
+Ex∼pX(x)[log(1 − DY (vG(x))]
+Ex∼pX(x)[log(1 − DY (vx ⊗ F (vx))],

(5)

where G and F networks are trained to fool the discriminator DY , thereby
minimizing the objective while DY attempts to maximize it.

VSA-Based Cyclic Loss. Although adversarial training provides a method
to generate images that match the target distribution, the differences in content
between domains will result in semantic flipping. We therefore need a loss that
constrains the generator to preserve source content and reduce semantic flipping.
To do so, we incorporate our VSA-based cyclic loss, which ensures that the same
hypervectors are obtained when mapping translated vectors back from target to
source domain (vG(X)→X):
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LV SA(G,X) = Ex∼pX(x)

[
1
n

n∑
i=1

dist
(
vi

x, vi
G(x)→x

)]
, (6)

where dist(·, ·) is the cosine distance averaged across the n hypervectors (repre-
senting image patches indexed by i) for the image x. By minimizing the cosine
distance (1 − cosine similarity) between vG(X)→X and vX , we ensure that the
same features are recovered after inverting our translation (i.e., representations
of “car” and “pedestrian” are maintained in the example from Eq. 1).

Our overall objective combines our adversarial and VSA-based cyclic losses,
training G to generate images matching the target domain and F to invert the
translation to ensure consistency with the source domain:

L(G,DY , F,X, Y ) = LGAN (G,DY , F,X, Y ) + λLV SA(G,X), (7)

where λ controls the relative importance of our VSA-based cyclic loss.

3.3 VSAIT Training

We train our method with a GAN-based training framework using the objective
described in Eq. 7. We begin by randomly sampling an image from each domain
and translating the source image into the target domain via the generator G. In
order to use the VSA framework, we must first encode data into the hypervector
space. Therefore, we extract features from each image (source, target, and trans-
lated) at multiple layers of a pre-trained neural network (Feature Extractor in
Fig. 3) as the first step in encoding image patches into the VSA hyperspace. We
consider each image patch to be represented by the extracted features sharing its
receptive field. We flatten and concatenate these features across layers, resulting
in a set of feature vectors (one per image patch) with a dimensionality of m.

We then use LSH (Fig. 3) to reduce the dimensionality of the extracted fea-
ture vectors into our random hyperspace V, which reduces the dimensionality
to n << m. Specifically, we normalize and project the extracted feature vectors
using a random matrix where each row is sampled from a standard normal dis-
tribution and normalized to unit length. The resulting vectors are therefore in
the range [−1, 1], which is necessary to implement the VSA binding operation
as described in Sect. 3.1. These hypervectors represent the image patches for the
source, target, and translated images as shown in Fig. 3. Note that this process
does not require training nor is it necessarily dependent on a specific feature
extractor, although different feature extractors may encode different informa-
tion.

Finally, we use F to generate a hypervector mapping for each source hyper-
vector. We use these hypervector mappings (ux↔y in Fig. 3) to unbind source
(resp. target) information and correspondingly bind target (resp. source) infor-
mation (Eq. 4). By applying this mapping to the source hypervectors, we should
obtain a hypervector representation of the source image translated into the tar-
get domain (vx→y in Fig. 3), which is used in our adversarial loss (Eq. 5) to
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train F . The ultimate goal of this step, however, is to use the mapping to invert
our translation vG(x) and ensure that we recover the same source information
vx (Eq. 6). Doing so will reduce semantic flipping by constraining G to generate
images that have hypervectors that are consistent with the source domain.

4 Experiments

We evaluate our method using experiments across multiple datasets. First, we
compare against baseline techniques for GTA [34] to Cityscapes [6], where the
two domains have inherent semantic differences. We then perform experiments
using datasets sub-sampled to create differences in semantic statistics. Specifi-
cally, we follow the method in [14] to sub-sample the Google Maps [13] dataset,
which is typically designed for paired image translation tasks. We show that
VSAIT works as intended to reduce semantic flipping while still generating
diverse image translations. Our qualitative results in Fig. 2 demonstrate that
the hyperspace mapping constrains the generator to translate features that are
consistent between source and target domains. Furthermore, we show that other
methods still have significant artifacts and hallucinations related to semantic
flipping (Fig. 4). Our quantitative results show improvements against the other
baselines, particularly for the GTA to Cityscapes task. Finally, we perform an
ablation study to evaluate the contributions of different components in VSAIT.

4.1 Implementation Details

We follow CUT [30] in our choice of the generator network architecture. For
the discriminator network, we use a three-layer fully-convolutional network with
1× 1 convolutional filters. For the mapping network F , we use a two-layer fully-
convolutional network. We train VSAIT using the Adam optimizer [19] (β1 = 0,
β2 = 0.9) with a batch size of 1 and learning rate of 0.0001 for the generator (and
mapping network F ) and 0.0004 for the discriminator. To improve adversarial
training, we use the “hinge loss” [24] rather than the negative log-likelihood
objective in LGAN (Eq. 5). For GTA to Cityscapes, we use λ = 10 in Eq. 7 and
λ = 5 for other experiments. See Supplemental for more details.

4.2 Datasets

We perform our experiments using three datasets: GTA [34], Cityscapes [6],
and Google Maps [13]. GTA [34] is a synthetic dataset of 24966 images gener-
ated from the video game Grand Theft Auto V. Cityscapes [6] is a real dataset
of driving scenarios accompanied with finely-annotated semantic segmentation
labels, which includes 2975 training and 500 validation images. The Google Maps
dataset [13] is a collection of 2194 paired maps and aerial photos (1096 training
and 1098 validation images).
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4.3 Baselines

We compare our method against several baselines that are relevant to the seman-
tic flipping problem: GcGAN, DRIT, CUT, SRUNIT, and EPE. We choose these
methods for comparison as they reflect the recent approaches focused on reduc-
ing semantic flipping. Specifically, they represent methods that use image-level
consistency (GcGAN [8]), domain-invariant encoding (DRIT [23], CUT [30],
SRUNIT [14]), and task-level consistency (EPE [33]). It is worth reiterating
that EPE only works for synthetic datasets with access to G-buffers (e.g., albedo,
glossiness, depth, normals), which are not publicly available for GTA and do not
exist for real datasets (e.g., Google Maps). Therefore we compare qualitatively
to EPE and rely on quantitative values reported in their work.

4.4 GTA → Cityscapes

We first demonstrate our method using GTA to Cityscapes, which are unpaired
datasets that naturally differ in their semantic statistics. For training, we use
20000 of GTA images for our source dataset and all 2975 training images for our
target dataset. Following [33], we evaluate our image translation performance
using the Kernel Inception Distance (KID) [4] which measures the distance of
extracted features from translated and target images using the pre-trained Incep-
tionV3 network [37]. As seen in the Table 2, our method outperforms the baseline
methods in the KID metric. As shown in Fig. 4, only EPE has similar quality
of image translations for GTA to Cityscapes. However, whereas other methods
hallucinate trees and Mercedes hood ornaments, EPE has a tendency to remove
palm trees and add unnatural lighting to cars even in dark scenes.

We additionally evaluate translation quality via semantic segmentation met-
rics computed using DeepLab V3 [5] pretrained on Cityscapes. In line with [14],
we report three metrics related to semantic segmentation performance (Table 1):
pixel accuracy, class accuracy, and mean intersection over union (mIoU). As
shown in Table 1, we outperform the other baselines by a wide margin. Whereas
KID computes the distance between translated and target images in feature
space, semantic segmentation metrics better reflect semantic flipping directly.
As seen in Fig. 4, other methods often generate trees and other features in the
sky, which will lower semantic segmentation performance in those regions.

4.5 Google Map → Aerial Photo

We then demonstrate performance on the Google Maps [13] dataset. Here we
sub-sample the 1096 training images using K-means clustering of the histograms
from grayscale map images to obtain two datasets with different semantic statis-
tics (as in [14]). We evaluate translation performance on all 1098 validation
images and report three pixel-level metrics (Table 1). The first metric is the L2
distance between translated and target images. We also report pixel accuracy
defined as the percentage of pixels with a maximum absolute difference less
than a given threshold (i.e., max(|ri − r′

i|, |gi − g′
i|, |bi − b′

i|) < δ). For the map
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Fig. 4. We compare our VSAIT translation to those of baseline methods on an example
GTA image. Typical methods often suffer from semantic flipping in open sky regions
of GTA, as such regions are observed less often in Cityscapes (i.e., content gap). Here
we see that SRUNIT [14], CUT [30], GcGAN [8] and DRIT [23] each suffer from
sky hallucinations, while EPE [33] removes palm trees (features that are absent from
Cityscapes) in the distance. Meanwhile, our method is able to translate to Cityscapes
style while preserving semantics from the original GTA image.

to aerial photo task, we use thresholds of δ = 30, 50 [14]. Similar to GTA to
Cityscapes, our approach substantially outperforms the baseline methods. Par-
ticularly interesting is the improvement we see in the pixel accuracy for both
thresholds (δ = 30, 50), whereas the other methods perform very similarly.
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Table 1. Quantitative evaluation across datasets with unmatched semantics. The met-
rics included are average pixel prediction accuracy (pxAcc), average class prediction
accuracy (clsAcc), mean IoU (mIoU), average L2 distance (Dist), and pixel accuracy
with task-specific thresholds (Acc).

GTA → Cityscapes Map → Photo Photo → Map

Method pxAcc clsAcc mIoU Dist Acc (δ1) Acc (δ2) Dist Acc (δ1) Acc (δ2)

GcGAN [8] 65.62 32.38 22.64 71.47 28.87 43.48 23.62 15.00 30.65

DRIT [23] 64.28 32.17 20.99 70.87 28.97 43.56 24.19 13.94 29.01

CUT [30] 64.59 32.19 20.35 70.28 28.86 44.07 23.44 16.25 31.34

SRUNIT [14] 67.21 32.97 22.69 68.55 30.41 45.91 23.00 17.67 32.78

VSAIT (ours) 76.48 45.33 30.89 64.98 45.3 69.28 22.86 15.2 32.13

4.6 Aerial Photo → Google Map

We additionally demonstrate performance for the task of photo to map using the
same sub-sampled datasets obtained from the Google Maps training dataset as
described above. For this experiment, we evaluate the same metrics as with map
to photo but with pixel accuracy threshold of δ = 3, 5 [14] (Table 1). Although
we outperform the baseline methods on the L2 distance metric (Dist in Table 1),
we did not observe improvements in the pixel accuracy metrics. We do believe
that our approach using VSA is capable of improving these metrics with a more
suitable encoding method (as opposed to VGG) for images that have regions
without contours or complex features (as is the case for some regions in Google
Map images representing landscape or water). However, we leave study of encod-
ing methods for VSA in computer vision applications to future research.

4.7 Ablation Study

We demonstrate the effect of VSAIT by evaluating the contribution of the
VSA-based cyclic loss (Eq. 6), the learned hypervector mapping uX↔Y , and
the hypervector dimensionality. We use the GTA to Cityscapes task to eval-
uate these ablations on semantic segmentation performance metrics (Table 2).
We first demonstrate that by removing the VSA-based cyclic loss, the generator
learns to translate images without preserving content, demonstrating the seri-
ous problem of semantic flipping (Fig. 5B). Next, we show the importance of the
invertible mapping uX↔Y by generating a random hypervector mapping instead
of learning the mapping adversarially (Eq. 5). When using a random hypervec-
tor instead of the learned mapping generated by F , the generator maintains
global structure but since the invertible mapping does not recover the source
hypervector (Eq. 4) the local content is often changed (semantic flipping shown
in Fig. 5C). Finally, we demonstrate the importance of using the VSA hypervec-
tor space by reducing the dimensionality of V from 4096 to 128. Reducing the
dimensionality of the hyperspace from 4096 to 128 results in noisy image trans-
lations that seem to only reflect global changes in style. However, even using a
low-dimensional hypervector VSAIT still outperforms most methods compared
in Table 1.
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Table 2. Evaluations on GTA to Cityscapes. Left: quantitative comparison for KID
metric. *Mean values reported in [33]. Right: ablation study task demonstrating the
contributions for each component of VSAIT method.

Method KID

CUT 21.18*

SRUNIT 16.27

DRIT 14.69

GcGAN 12.32

EPE 10.95*

VSAIT (ours) 8.74

Ablation pxAcc clsAcc mIoU

w/o VSA Loss 52.17 16.14 10.21

Random Hypervector Mapping 65.75 29.32 17.53

Reduced Hypervector Dim 66.42 40.34 25.04

VSAIT (ours) 76.48 45.33 30.89

Fig. 5. Ablation study for GTA to Cityscapes. (A) and (F) show the ground truth
image and semantic labels for the GTA source image, respectively. (B) demonstrates the
challenge of semantic flipping when using GAN-based methods without constraining
the generator. (C) shows the importance of learning the hypervector mapping. (D)
demonstrates the importance of high-dimensional space for this method. (E) shows the
effect on image translation when incorporating all components of our approach.

5 Conclusion

In this paper, we address the semantic flipping problem in unpaired image trans-
lation using a novel approach based on VSA framework [9,15]. We show impor-
tant qualitative and quantitative improvements over previous methods that have
attempted to address this problem, demonstrating that VSA can be used to
invert image translations and ensure consistency with the source domain. Given
its inherent versatility, we hope this work inspires future research using VSA in
more computer vision applications.
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