
Revisiting Batch Norm Initialization

Jim Davis and Logan Frank(B)

Department of Computer Science and Engineering,
Ohio State University, Columbus, OH, USA

{davis.1719,frank.580}@osu.edu

Abstract. Batch normalization (BN) is comprised of a normalization
component followed by an affine transformation and has become essen-
tial for training deep neural networks. Standard initialization of each BN
in a network sets the affine transformation scale and shift to 1 and 0,
respectively. However, after training we have observed that these param-
eters do not alter much from their initialization. Furthermore, we have
noticed that the normalization process can still yield overly large val-
ues, which is undesirable for training. We revisit the BN formulation
and present a new initialization method and update approach for BN to
address the aforementioned issues. Experiments are designed to empha-
size and demonstrate the positive influence of proper BN scale initial-
ization on performance, and use rigorous statistical significance tests for
evaluation. The approach can be used with existing implementations at
no additional computational cost. Source code is available at https://
github.com/osu-cvl/revisiting-bn-init.

1 Introduction

Batch normalization (BN) [15] is a standard component used in deep learning,
particularly for convolutional neural networks (CNNs) [7,11,28,30,37] where
BN layers typically fall into a convolutional-BN-ReLU sequence [11,13]. BN
constrains the intermediate per-channel features in a network by utilizing the
statistics among examples in the same batch to normalize (or “whiten”) the data,
followed by a learnable affine transformation to add further flexibility in training.
It has been shown that the aggregation of information in a batch is advanta-
geous as it eases the optimization landscape by creating smoother gradients [29]
and enables larger learning rates for faster convergence [4,15]. Additionally, the
stochasticity from batch statistics can benefit generalization [15,24].

Typically, the default implementation of BN initializes the affine transfor-
mation scale (γ) and shift (β) parameters to 1 and 0, respectively, with the
expectation that they can adapt to optimal values during training and can undo
the preceding normalization if desired [15]. It is common to take this default ini-
tialization “as is”, with extensions of BN typically adding additional parameters
and computations [9,16,22,23] that increase the model complexity.

By inspection of multiple trained BNs, we have observed that the affine
parameters often do not change much from their initial values. So either the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Avidan et al. (Eds.): ECCV 2022, LNCS 13681, pp. 212–228, 2022.
https://doi.org/10.1007/978-3-031-19803-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19803-8_13&domain=pdf
https://github.com/osu-cvl/revisiting-bn-init
https://github.com/osu-cvl/revisiting-bn-init
https://doi.org/10.1007/978-3-031-19803-8_13


Revisiting Batch Norm Initialization 213

affine transformation is hardly needed (staying close to identity) or perhaps there
is a limitation in the learning process keeping these parameters from reaching
more optimal values. It is unlikely the affine parameters are optimal near iden-
tity settings, therefore we question whether the default affine transformation
initialization and update approach are appropriate.

In this work, we present a thorough analysis of BN to address the afore-
mentioned hypothesis and provide a new approach for the initialization and
updating of BN to enhance overall performance. We will show that 1) reducing
the initialization value of the BN scale parameter and 2) decreasing the learning
rate on the BN scale parameter can together lead to significant improvements.
These alterations to BN are straightforward adaptions to standard implemen-
tations with existing libraries (e.g., PyTorch [25], TensorFlow [1]) and have no
impact on model complexity or training time. We additionally present a means
to further apply BN to the task of input data normalization.

Experiments are provided to compare our proposed BN method to standard
BN across multiple popular benchmark datasets and network architectures, and
further compare with alternative and existing methods. Notably, we conduct
multiple training runs, each using a different random seed, for every experiment
to properly show statistically significant differences. Results indicate that the
proposed technique can yield significant gains with no additional computational
costs. Our contributions are summarized as follows:

1. A new BN initialization and update method for improving performance with
no increase in parameters or computations.

2. A method that easily integrates into existing BN implementations.
3. An online BN-based input data normalization process.
4. A statistical schema for reporting/evaluating comparative results that elimi-

nates subjectivity and improvements that could be attributed to randomness.

2 Related Work

BN contains operations for both the normalization and transformation of fea-
tures. Multiple works have proposed related techniques for inter-network feature
normalization and/or transformation to achieve improved performance.

Various types of normalization layers exist and differ on how they select
which features to group for normalization. Layer normalization (LN) [3] applies
to each instance across all input feature channels and is commonly employed
in transformer networks [8,33]. Instance normalization (IN) [32] is computed
in a similar manner, except it normalizes each channel individually for each
instance (example) and is frequently used in image-to-image translation [41].
Group normalization (GN) [36] falls between LN and IN by normalizing groups of
channels in individual instances. When the group size equals the total number of
channels, GN becomes LN. Similarly, when each channel is a separate group, GN
becomes IN. The aforementioned normalization layers were designed to perform
better than BN in situations where the training batch size is limited. However,
BN remains dominant in the context of CNNs and image classification due to



214 J. Davis and L. Frank

the ability of having large batch sizes on common datasets [11,28,31,37]. In our
work, we focus on improving the affine transformation component in BN, though
our work could be applied to any of the normalization layer types.

Related work has appeared to extend the affine transformation component
of BN. Rather than using only learnable scale and shift parameters, the app-
roach of [16] predicts scale and shift values using a small autoencoder network
and combines them with the standard learnable versions. Similarly, in [22] they
combine predicted and learned scale and shift parameters by utilizing a mixture
of affine transformations and a feature attention mechanism to obtain the final
transformation. A convolutional layer is used to replace the affine transforma-
tion in [38]. In [23], an attention-based transformation is introduced to integrate
instance-specific information into an extra scale parameter. In [9], two different
calibration mechanisms are proposed and integrated into BN to calibrate fea-
tures and to incorporate instance-specific statistics. These mechanisms consist
of an initial centering operation that occurs before normalization and a scaling
operation in the affine transformation. Their scaling is similar to [23], differ-
ing by using the normalized features rather than the raw input features for the
instance-specific information, as well as employing a different initialization. In
[2], it is mentioned that the initial value of the scale parameter could be treated
as a hyperparameter, though not experimented or discussed further. Alternative
initialization values for the shift parameter and numerical stability constant (ε)
are explored in [39].

The approaches of [9,16,22,23] all initialize the existing BN affine transfor-
mation parameters to the standard values of γ = 1 and β = 0, but employ
different initializations for their additional parameters. In [16,22], their addi-
tional parameters are initialized using samples from a normal distribution, thus
their initial scale values are not constant across the network and could have a
magnitude >1. In [9], they initialize the additional parameters for their scaling
operation such that they “play no role at the beginning of training” [9], how-
ever, the resulting initial scale value is actually <1. A grid search is performed
in [23] to select the best performing initialization values, which also produces a
resulting initial scale value <1, with the “theoretical understanding of the best
initialization [left as] future work” [23]. For both [9,23], the resulting scale value
is <1, constant across all BNs in the network, and fixed for any scenario. The
approaches of [9,23] are most similar to our work, but unlike these methods, our
approach does not introduce any additional parameters or computations and
instead focuses directly on the initialization and updating of the existing scale
parameter γ for each BN.

3 Framework
In this section, we initially review the BN formulation then describe the two main
tenets of our approach: BN scale initialization and learning rate reduction. We
then derive the influence of BN on the backward gradients and discuss various
aspects that are influenced by the inclusion of BN. Lastly, we introduce a new
BN for input data normalization.



Revisiting Batch Norm Initialization 215

Fig. 1. Flow diagram for a single channel/neuron of BN

3.1 BN Formulation

BN is composed of two sequential channel-wise operations. The first operation,
the “head”, normalizes the data. The second operation, the “tail”, performs an
affine transformation on the normalized data. Both operations are applied to
each individual channel/neuron across a batch of data.

In the forward pass during training, the head operation first obtains the mean
(μB) and variance (σ2

B) of an incoming batch B of data/features containing m
examples (X = {xi}m

1 ) using μB = 1
m

∑m
i=1 xi and σ2

B = 1
m

∑m
i=1(xi − μB)2.

With these statistics, the input batch is then normalized to have zero mean and
unit standard deviation using

X̂ = X − μB√
σ2

B + ε
(1)

where ε is a small value used for numerical stability. Throughout training, μB

and σ2
B are employed to update momentum-based averages of the overall mean

and variance, which serve as global statistics at test time. Last, the tail affine
transformation Y = γ · X̂ + β is applied to the normalized data (X̂) using
learnable scale (γ) and shift (β) parameters (again, one for each channel).

The data flow when using BN is shown in Fig. 1, where BN is typically placed
between a linear operator and an activation function. The figure depicts a fully-
connected layer for ease in explanation and is easily extended to CNNs.

3.2 Proposed Adjustments to γ

The standard procedure for initializing each BN is setting γ = 1 and β = 0, with
the expectation that the affine transformation can learn optimal values and could
undo the preceding normalization if desired [15]. Instead, as we have observed,
the learned BN parameters tend to remain close to their initial values which are
not likely to be optimal. Furthermore, we have noticed that the BN normalization
head (Eq. 1) can often produce overly large values (e.g., >6σ) as input to the BN
affine tail and subsequent convolutional/fully-connected layer (all before another
BN), which can be undesirable for learning [15,20,21]. Therefore, there could
exist more optimal values of γ not achieved with current learning strategies.



216 J. Davis and L. Frank

A possible direct solution based on these observations would be to initialize
γ < 1 such that the data is immediately scaled down at the start of training,
addressing the presence of overly large values, and furthermore enabling the shift
parameter β to have a broader reach on the scaled data before the activation
function. Therefore, we propose to treat γ as a hyperparameter (for all BNs in
the network) to be initialized in the interval (0, 1] while leaving the default ini-
tialization of β = 0. We will show later that there exists a range of γ initialization
values within the interval that can lead to significant increases in test accuracy
over the default γ = 1 initialization.

Since we observed that the learned BN parameters tend to remain somewhat
close to their initialization (regardless of the initial value and other hyperparam-
eter settings), it seems necessary to also consider altering the update strategy
of these parameters. A seemingly intuitive solution would be to increase the
learning rate (α) for the BN parameters only, thus allowing larger updates and
the ability to potentially explore more optimal values in the parameter space.
However, we have seen this degrade performance. Instead, we propose to reduce
the learning rate for only the scale γ to enable a more fine-grained search, leav-
ing the shift β with larger updates to have a broader and more stable search
of the normalized and γ-scaled data. More specifically, we apply a learning rate
reduction on γ using αγ = (α/c), where c is a positive constant. Though the
value of c could be considered another hyperparameter, we experimented with a
wide range of values for c and found that performance gains can be achieved as
long as the learning rate for γ is sufficiently and reasonably reduced. Thus, we
fix this γ learning rate reduction constant to c = 100 for all experiments.

With a proposed smaller initial value for γ, it is important to theoretically
understand any effect it will have on the gradients for learning. We next examine
the gradients of BN to show the influence of γ and other important relationships.

3.3 BN Gradients
To update a network via gradient descent and backpropagation, loss gradients
must be able to propagate through the BN module. For example, parameter w1
in Fig. 1 is updated using gradient descent by

wnew
1 = wold

1 − α · ∂L
∂w1

(2)

Using the chain rule with a batch of data {xi}m
1 , the loss with respect to w1 is

computed as
∂L
∂w1

= 1
m

m∑

i=1

∂L
∂xi

· ∂xi

∂w1
(3)

The BN input xi is computed from the linear operation xi =
∑N

k=1 wk · zk,i,
where zk,i is the ith batch value from the kth channel output from the previous
layer (see Fig. 1). Therefore ∂xi/∂w1 = z1,i and Eq. 3 becomes

∂L
∂w1

= 1
m

m∑

i=1

∂L
∂xi

· z1,i (4)



Revisiting Batch Norm Initialization 217

Similarly, the gradient ∂L/∂xi through the BN is computed using the chain
rule (described in [15]) as

∂L
∂xi

= ∂L
∂x̂i

∂x̂i

∂xi
+ ∂L

∂σ2
B

∂σ2
B

∂xi
+ ∂L

∂μB

∂μB

∂xi
(5)

with the xi dependent gradients

∂x̂i

∂xi
= 1

√
σ2

B + ε

∂σ2
B

∂xi
= 2

m
(xi − μB) ∂μB

∂xi
= 1

m
(6)

and the remaining gradients

∂L
∂x̂i

= ∂L
∂yi

· γ (7)

∂L
∂σ2

B

=
m∑

i=1

∂L
∂x̂i

(xi − μB) · −1
2

(
σ2

B + ε
)− 3

2 (8)

∂L
∂μB

= (
m∑

i=1

∂L
∂x̂i

· 1
√

σ2
B + ε

) + ∂L
∂σ2

B

· 2
m

m∑

i=1
(xi − μB) (9)

where ∂L/∂yi is the gradient accumulated from all downstream layers. For thor-
oughness, the gradients for the affine transformation parameters γ and β are

∂L
∂γ

=
m∑

i=1

∂L
∂yi

· x̂i
∂L
∂β

=
m∑

i=1

∂L
∂yi

(10)

Substituting Eqs. 6–9 into Eq. 5, we show that

∂L
∂xi

=
(

∂L
∂yi

· γ

) (
1

√
σ2

B + ε

)

+
(

m∑

i=1

∂L
∂x̂i

(xi − μB) · −1
2

(
σ2

B + ε
)− 3

2

) (
2
m

(xi − μB)
)

+
(

(
m∑

i=1

∂L
∂x̂i

· 1
√

σ2
B + ε

) + ∂L
∂σ2

B

· 2
m

m∑

i=1
(xi − μB)

) (
1
m

)

(11)

and after multiple reduction steps (novel to our work),

∂L
∂xi

= γ
√

σ2
B + ε

·
[

∂L
∂yi

− 1
m

m∑

i=1

∂L
∂yi

(1 − x̂i)
]

= γ
√

σ2
B + ε

· Gi (12)

where Gi is a function of the downstream gradients of yi (after the BN layer)
and the normalized values X̂ (within the BN layer). We refer to the leading
ratio γ/

√
σ2

B + ε as the BN ‘gradient factor’, which is composed of the affine



218 J. Davis and L. Frank

scale parameter γ for this current BN and the variance σ2
B of the incoming data

to that BN. Therefore the update for w1 (Eq. 2) is computed as

wnew
1 = wold

1 − α · γ
√

σ2
B + ε

(
1
m

m∑

i=1
Gi · zi

)

(13)

We will next show how this gradient factor relates to various aspects of learning.

Gradient Influence of γ. Following Fig. 1 at the beginning of training before
any updates, the incoming data variance σ2

B to the BN is

σ2
B = Var({xi}m

1 ) =
N∑

k=1

w2
k · Var({zk,i}m

1 ) =
N∑

k=1

w2
k · σ2

k (14)

As each of the k input batches {zk,i}m
1 come from the output of a previous

BN (each normalized then scaled with γprev) that is also passed through an
activation function,

N∑

k=1

w2
k · σ2

k = σ2
N∑

k=1

w2
k = σ2

act · γ2
prev

N∑

k=1

w2
k = σ2

act · γ2
prev · ω (15)

where σ2
act is the variance of the normalized (but unscaled) data after being

passed through an activation function. For example, a unit Gaussian passed
through a ReLU yields a rectified normal distribution with an empirical σ2

act ≈
(0.58)2. When the normalized data is scaled by γ and passed through an activa-
tion, the resulting variance is σ2 = σ2

act · γ2.
From Eq. 15, the scale parameter γprev of the previous layer BNs is therefore

embedded in the incoming data variance (σ2
B). At the start of training, where

γprev = γcurr, the scales will essentially cancel in the gradient factor of Eq. 12

γcurr√
σ2

B + ε
= γcurr

γprev ·
√

σ2
act · ω + ε

= 1
√

σ2
act · ω + ε

(16)

again assuming a negligible ε. Thus for the initial backward pass, the initial BN
scale value for γ has no effect on the local BN gradients (the first BN layer will
be addressed in Sect. 3.4). While γ will not affect the initial backward pass, it will
contribute to the forward pass and loss. Though the value of each γ will naturally
migrate toward a more optimal value during training, each BN gradient factor
should remain non-degenerate. Therefore initializing γ < 1 will not cause any
cascading issues during training.

Network Weight Initialization. Most network weight initialization schemes
take into account the number of either incoming or outgoing links in a layer. For
example, Kaiming normal initialization [10] initializes the weights in a network
following a normal distribution N (0, σ2) with σ = gain/

√
fan mode, where ‘gain’

is a constant determined by the activation function used in the network and
‘fan mode’ is a value representing either the number of incoming (fan-in) or



Revisiting Batch Norm Initialization 219

outgoing (fan-out) links. Thus the number of links affects the standard deviation
of the normal distribution, with more links yielding a tighter distribution.

As shown in Eqs. 14 and 15, the variance σ2
B of the data going into a BN at

the start of training is dependent on the sum of the squared incoming weights
(ω). Therefore, weight initialization approaches based on fan-in will initially
balance the gradient factor for each BN across the network. In our experiments
we therefore employed fan-in weight initialization in our networks.

3.4 BN-Based Input Normalization
Traditional methods for normalizing the input data typically utilize either “fixed”
bounds based on the data type min/max or compute “offline” dataset statistics:
– Fixed: Chooses the mean (μ) as the middle value of the data type and

the standard deviation (σ) as the ± maximum possible value of the mean-
subtracted data (e.g., μ = σ = 128 for an 8-bit [0–255] image).

– Offline: Preprocess the data to estimate the μ and σ based on the average of
averages across batches or individual examples in the dataset.

These methods normalize the data using (X − μ) / σ (as used in Eq. 1 for BN).
The fixed input normalization technique can be problematic for images not

spanning the full possible range of values for its data type. For example, with a
dataset of low-contrast imagery the true μ and σ would be much smaller. The
offline statistics approach obviously requires the extra steps of computing the
dataset μ and σ before training.

Consider the BN gradient factor γ/
√

σ2
B + ε for the weights just before the

first BN in the network on the initial backward pass. Here the variance σ2
B is

computed from the input data itself (Eq. 14). Examining Eq. 15, we expect this
variance to be σ2

act · γ2 · ω as for all other layers, however neither the scale γ or
activation are present. Therefore, a smaller/larger σ2 of the input data, where
σ2 �= σ2

act · γ2 · ω, will result in a larger/smaller gradient factor as compared
with the other layers in the network.

This bias with traditional input normalization techniques can be removed
by conveniently prepending a new BN layer to the network. Since it would not
be ideal to immediately threshold the input data with an activation following
this new BN layer, we initialize these BNs to have a modified scale value γ̂
= σact · γ, where γ̂ = 0.58 · γ for a ReLU-based network, to account for the
missing activation function’s influence on the variance. For this BN layer, the
built-in shift parameter β is unnecessary as no activation function follows and
can therefore be removed or fixed to β = 0. Thus, employing this BN-based
input data normalization method will only add a single scale parameter γ̂ per
input channel (e.g., 3 parameters total for an RGB image in a CNN).

4 Experiments
To evaluate our proposed approach, we conducted a series of classification exper-
iments using several datasets and network architectures, examined different pos-
sible versions of our approach, and compared to relevant existing methods.



220 J. Davis and L. Frank

4.1 Datasets and Network Architectures

We employed four established classification datasets for our evaluation. CIFAR-
10 [19] contains 10 classes, each with 5K and 1K images for training and test-
ing, respectively. The larger, yet distinct, CIFAR-100 [19] has 100 classes, each
with 500 training and 100 testing examples. The fine-grained visual classifica-
tion (FGVC) dataset CUB-200 [34] contains 200 classes with 5994 training and
5794 testing examples. Finally, Stanford Cars (ST-Cars) [18] is another FGVC
dataset that consists of 196 classes with 8144 and 8041 images for training and
testing, respectively. In order to have a validation set for each of the datasets,
we randomly sampled 10% of the training examples class-wise for validation.

We primarily employed networks from the ResNet [11] architecture family,
using ResNet-18 for CIFAR-10, ResNet-34 for CIFAR-100, and ResNet-50 for
CUB-200/ST-Cars. Due to the smaller image sizes of CIFAR-10/CIFAR-100,
common modifications to its associated model were made which consisted of
altering the first convolutional layer to have a 3 × 3 kernel with stride of 1 and
padding of 1 (originally a 7 × 7 with stride of 2 and padding of 2) and removing
the max pooling operation that followed the initial convolutional layer. For ini-
tialization, convolutional layer weights used Kaiming normal initialization [10]
with ‘fan-in’ mode for a ReLU nonlinearity, fully connected layer weights were
initialized with a uniform distribution (also using ‘fan-in’), and all biases (includ-
ing the BN shift parameter β) were initialized to 0. The BN scale parameter γ
will be initialized with various values to demonstrate our approach. We addition-
ally examined RepVGG [7], MobileNetV2 [28], and ResNeXt [37] architectures
(with the same initialization strategy).

4.2 Training Details

Training is implemented using a standard regime and in a manner where all
hyperparameters are set using typical values. Across all experiments, we used
SGD with momentum (0.9) and weight decay (1e−4) on the convolutional
and fully connected layer weights. BN parameters and all network biases are
properly excluded from weight decay as it is not necessary to impose a con-
straint to minimize these parameter values. Networks were each trained for 180
epochs with a half-period cosine learning rate scheduler and across multiple
initial learning rates (to be presented). We used a batch size of 128 for CIFAR-
10/CIFAR-100 and 64 for CUB-200/ST-Cars. Data augmentation schemes for
CIFAR-10/CIFAR-100 consisted of random horizontal flipping only and for
CUB-200/ST-Cars images were resized to 256 × 256 then randomly cropped to
224×224, followed by random horizontal flipping. After augmentations, the input
data is normalized online using our proposed BN-based input normalization tech-
nique with the initialization of γ̂ = 0.58 · γ corresponding to ReLU activations
(Sect. 3.4). In our experiments, the epoch yielding the best validation accuracy
was used to select the final model. Our approach was implemented using PyTorch
[25] and all models were trained and evaluated on a single NVIDIA V100 GPU.



Revisiting Batch Norm Initialization 221

We note that we purposefully used minimal regularization techniques in our
experiments to show noticeable improvements that can be attributed solely to
changes within BN using our approach. Our goal is not to provide new SOTA
scores on the datasets used for evaluation. However, if more regularization is
employed to improve baseline performance, our approach may still provide fur-
ther gains (as shown in an experiment below).

To demonstrate our proposed BN scale initialization approach, we explored
a variety of possible γ values in the half-open unit interval (0, 1] and several
learning rates α. Smaller values of γ and larger values of α are typically favored
and thus we examined a subset of values for γ and α after the initial CIFAR-10
experiments. As described in Sect. 3.2, we also divided α by c = 100 for only
γ. For our baseline comparison, referred to as ‘BASE’, we used the default BN
scale initialization (γ = 1) and no learning rate reduction (c = 1), but retained
the BN-based input normalization for fair comparison.

4.3 Statistical Significance

As variations in the final score (accuracy) can be caused by different random
number generator (RNG) seeds resulting in different network weight initializa-
tions and different batching of training data [26,35], we conducted several runs
for each experiment and performed a statistically-grounded comparative analy-
sis on our results. For each experiment (a specific BN scale value γ and learning
rate α), we trained 15 networks (of the same form), each with a different RNG
seed, and reported the mean and standard deviation of test accuracy. Our seeds
were sequential numbers in the range [1, 15], which were made more complex
using MD5 as suggested in [17,27].

A result is judged to be significantly better than BASE according to a one-
sided paired t-test [6] with a significance level of p ≤ 0.05 using the scores from
the 15 runs. All significant improvements over BASE are emphasized in bold in
the following tables and the highest mean for each experiment is underlined. We
suggest this method as a proper technique to evaluate and compare empirical
results to instill confidence for the reader on reported improvements.

4.4 Results

We first conducted experiments on CIFAR-10 using the selected BN scale ini-
tialization values, then compared our method with possible alternative BN scale
formulations. Next, we evaluated our method on different datasets and network
architectures, and then compared with different methods of input normalization.
Finally, we compared to relevant established approaches on all of the datasets.

CIFAR-10. For our initial experiments with CIFAR-10, we used γ ∈ {1.0, 0.75,
0.5, 0.25, 0.1, 0.05, 0.01} and α ∈ {0.1, 0.01, 0.001}. Results on CIFAR-10 are
presented in Table 1a. Using the proposed γ < 1 initialization with the learning
rate reduction (c = 100), significant improvements are found across all learning
rates. These results alone demonstrate that the default settings and learning



222 J. Davis and L. Frank

Table 1. Accuracy on (a) CIFAR-10 and (b) CIFAR-100, CUB-200, and ST-Cars

(a)

Learning Rate (α)
γ 0.1 0.01 0.001

0.01 85.50±0.39 87.11±0.23 80.37±0.58

0.05 90.19±0.32 88.84±0.32 76.98±0.71

0.10 90.80±0.20 87.31±0.37 74.48±0.55

0.25 90.32±0.24 85.33±0.43 73.83±0.64

0.50 90.17±0.19 84.60±0.35 72.80±0.68

0.75 90.19±0.18 84.43±0.30 72.01±0.58

1.00 89.81±0.46 84.48±0.33 71.15±0.56

BASE 89.44±0.45 84.64±0.25 71.32±0.60

(b)

Learning Rate (α)
Dataset γ 0.1 0.01

CIFAR100 0.05 68.18±0.30 64.01±0.54

0.10 68.80±0.49 62.83±0.48

0.50 67.74±0.44 59.05±0.41

BASE 66.01±0.95 58.48±0.53

CUB-200 0.05 58.32±0.54 34.23±0.86

0.10 58.52±0.69 39.92±0.76

0.50 50.45±1.22 45.31±0.59

BASE 46.26±1.59 41.61±1.03

ST-Cars 0.05 78.29±0.44 44.18±1.29

0.10 78.26±0.61 48.60±1.02

0.50 70.17±1.45 51.18±2.16

BASE 64.73±2.87 51.86±1.80

of the BN affine transformation (BASE) are not ideal. For this dataset, there
is a noticeable trend that as the learning rate decreases, a smaller initialization
value for γ is favored, with smaller values for γ preferred in general. Performance
dropped heavily for BASE at lower learning rates, however our approach with
smaller γ initializations had much less of a decrease. We also experimented with
initially setting the BN scale parameter to γ > 1, but experiments produced
degraded results, as expected.

With only the learning rate reduction method (c = 100, γ = 1), there
remained a significant gain over BASE (c = 1, γ = 1) at the highest learn-
ing rate (α = 0.1). To confirm the importance of learning rate reduction, we
ablated it from our method (i.e., c = 1, γ < 1) and results showed degraded per-
formance from the scores presented in Table 1a. Thus, combining our proposed
BN scale initialization and learning rate reduction together is necessary to obtain
the best performance.

In additional experiments with a stronger BASE model (employing Random-
Crop data augmentation [11,12,40]) having 93.79% accuracy, our proposed BN
scale initialization at γ = {1.0, 0.75, 0.5, 0.25, 0.1} and BN scale learning rate
reduction at c = 100 still provided statistically significant improvements.

Alternative Scale Formulation. Given the standard affine formulation y =
γ · X̂ + β of BN (as we employ), two similar scale-based alternatives could be
A1: Y = γ(X̂ + β) and A2: Y = γ(γ0 · X̂ + β). In all three formulations,
initialization is 0 < γ ≤ 1, γ0 = 1, and β = 0. The two alternatives differ from
the standard formulation in that they apply scaling to β as well, which we argue
could limit the ability to shift the data sufficiently before the ReLU activation.
While A1 does not introduce any extra parameters or additional computations
(similar to ours), A2 includes the extra γ0 parameter (and is similar to [14]).

We compared the three formulations on CIFAR-10 using the same γ val-
ues and learning rates presented in Table 1a. All approaches gave significant
improvements over BASE, further indicating that the default initialization of



Revisiting Batch Norm Initialization 223

BN is not appropriate. At the highest learning rate, there was only a slight dif-
ference between the scores (within 0.15% of each other). However, at the lower
learning rates the standard formulation (ours) had a clear and significant advan-
tage (up to 7% gain). These results further support our argument that scaling
down only the normalized data with γ enables the shift parameter β to act on
a broader range for the following activation function.

CIFAR-100, CUB-200, and ST-Cars. We next evaluated our approach on
CIFAR-100, CUB-200, and ST-Cars. As mentioned in Sect. 4.1, we employed
ResNet-34 for CIFAR-100 and used ResNet-50 for CUB-200/ST-Cars. Networks
for CUB-200/ST-Cars typically employ pretrained ImageNet [5] models and
finetune, however since pretrained models utilize the default BN initialization
(which affects the BN statistics and network weights learned), we therefore
train all of our networks from scratch. The results with γ ∈ {0.5, 0.1, 0.05} and
α ∈ {0.1, 0.01} are reported in Table 1b.

It is clear that our approach with smaller γ initialization and reduced γ
updates can still produce significant improvements in test accuracy for these
datasets that contain a larger number of classes than CIFAR-10. For the highest
learning rate, all examined scale values produced significantly better results, but
at the lower learning rate for ST-Cars it was unable to achieve significant gains
with any of the initialization values, though one scale value (γ = 0.5) was not
significantly different from BASE. One could argue that this lower learning rate
is not adequate for ST-Cars.

Network Depth and Architectures. We further examined how our approach
extends to different ResNet depths and other network architectures on CIFAR-
10. In particular, we trained and examined the deeper ResNet-50, ResNet-101,
and ResNet-152 models, and additionally employed MobileNetV2 [28], RepVGG-
A0 [7], and ResNeXt-50 [37]. Again, since CIFAR-10 consists of small input image
sizes, modifications were made to the other architectures. For MobileNetV2, the
initial convolutional layer and second and third bottleneck blocks were changed
to have a stride of 1. Similarly, for RepVGG-A0, stage 0 and stage 1 were adjusted
to have a stride of 1. ResNeXt-50 was modified similar to ResNet (Sect. 4.1).

Results are shown in Table 2a for γ ∈ {0.5, 0.1, 0.05} and α ∈ {0.1, 0.01}.
Our performance increase was even greater with the deeper ResNet models (as
compared to ResNet-18), which suggests our method may be particularly bene-
ficial for training networks containing more parameters/layers faster than with
the default BN initialization. Furthermore, our approach transferred well to the
other network architectures, emphasizing the generality of our γ < 1 initializa-
tion and learning rate reduction.

Input Normalization. We next compared our proposed input data normaliza-
tion BN layer to the standard fixed and offline methods (Sect. 3.4). All experi-
ments were conducted on CIFAR-10 and employed our proposed γ < 1 initializa-
tion and learning rate reduction (c = 100). Therefore, any differences reported
are solely due to how the input data was normalized. Results showed that all
three methods produced similar results. Therefore, our proposed online BN-



224 J. Davis and L. Frank

Table 2. (a) Accuracy on CIFAR-10 employing various network depths and network
architectures. (b) Comparison with RBN and IEBN variations on CIFAR-10, CIFAR-
100, CUB-200, and ST-Cars

(a)

Learning Rate (α)
Network γ 0.1 0.01

ResNet-50 0.05 91.23±0.20 89.60±0.19

0.10 91.28±0.26 87.67±0.20

0.50 89.49±0.27 84.74±0.37

BASE 86.94±1.23 85.04±0.32

ResNet-101 0.05 91.58±0.22 90.02±0.22

0.10 91.26±0.18 88.35±0.28

0.50 89.89±0.74 85.23±0.50

BASE 88.28±1.39 84.74±0.56

ResNet-152 0.05 91.20±0.16 90.00±0.17

0.10 90.89±0.41 88.31±0.33

0.50 90.17±0.23 85.23±0.62

BASE 88.73±0.62 84.15±0.79

RepVGG-A0 0.05 89.71±0.30 88.08±0.26

0.10 90.63±0.26 86.67±0.28

0.50 89.96±0.20 84.28±0.47

BASE 89.59±0.27 83.92±0.38

MobileNetV2 0.05 88.32±0.21 87.02±0.38

0.10 91.14±0.17 85.10±0.30

0.50 91.07±0.21 81.25±0.41

BASE 90.60±0.19 80.03±0.57

ResNeXt-50 0.05 92.04±0.22 89.06±0.24

0.10 92.02±0.19 86.10±0.24

0.50 91.21±0.47 80.31±0.53

BASE 88.60±1.57 82.60±0.43

(b)

Learning Rate (α)
Dataset Method 0.1 0.01

CIFAR10 RBN 90.17±0.22 84.72±0.29

RBN- 90.11±0.24 84.50±0.36

IEBN 90.18±0.26 85.34±0.39

IEBN- 90.15±0.24 85.29±0.35

Ours 90.80±0.20 88.84±0.32

BASE 89.44±0.45 84.64±0.25

CIFAR100 RBN 66.95±0.57 58.95±0.42

RBN- 66.82±0.55 58.90±0.61

IEBN 66.94±0.39 60.61±0.40

IEBN- 66.95±0.32 60.89±0.41

Ours 68.80±0.49 64.01±0.54

BASE 66.01±0.95 58.48±0.53

CUB-200 RBN 48.68±1.56 44.68±0.59

RBN- 47.14±2.72 43.02±1.22

IEBN 54.12±0.60 44.92±0.74

IEBN- 53.81±0.76 44.09±0.65

Ours 58.52±0.69 45.31±0.59

BASE 46.26±1.59 41.61±1.03

ST-Cars RBN 68.17±1.84 51.87±1.34

RBN- 67.84±2.96 52.30±1.73

IEBN 73.60±0.92 51.06±0.87

IEBN- 74.04±1.55 51.08±0.78

Ours 78.29±0.44 51.18±2.16

BASE 64.73±2.87 51.86±1.80

based input normalization method can serve as a replacement for the traditional
techniques, where it automatically handles input normalization and avoids the
previously mentioned issues that may stem from employing the other techniques
(Sect. 3.4).

4.5 Related Approaches

Lastly, we examined the existing related methods of Representative BN (RBN)
[9] and Instance Enhancement BN (IEBN) [23] that utilize instance-specific
statistics to compute an extra scaling parameter (as described in Sect. 2). For this
work, we focused on the scaling aspect of RBN/IEBN for a more direct compar-
ison of methods. The data normalization component for both approaches is the
same as ours (which produces X̂), but the affine transformation of RBN/IEBN
is Y = γ · S · X̂ + β with S = sigmoid(wv · GAP(X ) + wb), where GAP is the
global average pooling operation, wv and wb are additional learnable weights
(one of each per channel), and S is the result of their additional scaling method.



Revisiting Batch Norm Initialization 225

For RBN, X = X̂ (normalized features) and for IEBN X = X (raw input
features). For RBN, the additional parameters wv and wb are initialized to 0
and 1, respectively, while IEBN initializes these parameters to wv = 0 and wb

= -1. The standard BN parameters are initialized to γ = 1 and β = 0 for both
approaches. Thus the resulting BN has an initial effective scale of γ · S ≈ 0.731
for RBN and 0.269 for IEBN. Both approaches have smaller initial scale values
(i.e., <1) similar to ours, though these initial values are fixed for all scenarios.
Related to our use of a reduced learning rate for γ, their use of a sigmoid will
also force smaller gradient updates on wv and wb (that affect the resulting scale)
since the derivative of a sigmoid function is sigmoid(x) · (1 − sigmoid(x)).

We considered two versions of both approaches, one with the instance-specific
statistics (RBN, IEBN) and one that removes the instance-specific statistics
and wv (RBN−, IEBN−). This modifies their scaling method to become S =
sigmoid(wb) and results in the same initial scale value as previously mentioned.
Comparisons of RBN, RBN−, IEBN, IEBN−, and BASE with our approach for
all of the datasets are presented in Table 2. We report results for our approach
using the best performing γ initialization selected from γ ∈ {0.5, 0.1, 0.05}.

When evaluated against each other using a one-sided paired t-test (with a sig-
nificance level of p ≤ 0.05), our approach significantly outperformed RBN/RBN−

and IEBN/IEBN− across all datasets and learning rates except for ST-Cars at
the lower 0.01 learning rate, where no approach was significantly different from
another. As mentioned, this learning rate is arguably insufficient for ST-Cars.

Our work has shown that flexibility in the initialization of γ coupled with
a reduced learning rate is advantageous to achieve larger performance gains as
compared to a fixed initial scale value for all situations. Furthermore, the minor
differences in results between RBN/IEBN and RBN−/IEBN− suggest that the
contribution of instance-specific information is not as important as the scaling
itself. However, it may be possible to incorporate instance-specific statistics with
our approach for further gains.

5 Conclusion

We revisited BN to address the observed issues of learned BN parameters remain-
ing close to initialization and passing forward overly large values from the nor-
malization. We derived and empirically demonstrated across multiple datasets
and network architectures that initializing the BN scale parameter γ < 1 and
reducing the learning rate on γ can yield statistically improved performance over
the default initialization and update strategy, suggesting that current training
strategies are preventing BN from achieving the most optimal γ value. The pro-
posed alterations do not structurally change BN (i.e., no additional parameters)
and can easily be applied to existing implementations. Additionally, we presented
a special prepended BN to automatically handle input data normalization during
training.

Acknowledgements. This research was supported by the U.S. Air Force Research
Laboratory under Contract #GRT00054740 (Release #AFRL-2021-3711). We also
thank the DoD HPCMP for the use of their computational resources.



226 J. Davis and L. Frank

References
1. Abadi, M., Barham, P., Chen, J., Chen, Z., et al.: TensorFlow: a system for large-

scale machine learning. In: 12th USENIX Symposium on Operating Systems Design
and Implementation (2016)

2. Arpit, D., Zhou, Y., Kota, B., Govindaraju, V.: Normalization propagation: a para-
metric technique for removing internal covariate shift in deep networks. In: Inter-
national Conference on Machine Learning (2016)

3. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

4. Bjorck, N., Gomes, C.P., Selman, B., Weinberger, K.Q.: Understanding batch nor-
malization. In: Advances in Neural Information Processing Systems (2018)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition (2009)

6. Devore, J.L.: Probability & Statistics for Engineering and the Sciences, 8th edn.
Brooks/Cole, Cengage Learning (2011)

7. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-
style ConvNets great again. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021)

8. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image
recognition at scale. In: International Conference on Learning Representations
(2021)

9. Gao, S.H., Han, Q., Li, D., Cheng, M.M., Peng, P.: Representative batch normal-
ization with feature calibration. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2021)

10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: IEEE International Conference
on Computer Vision (2015)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

12. Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler, T., Soudry, D.: Augment
your batch: improving generalization through instance repetition. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2020)

13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (2017)

14. Huang, L., Qin, J., Liu, L., Zhu, F., Shao, L.: Layer-wise conditioning analysis in
exploring the learning dynamics of DNNs. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 384–401. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58536-5 23

15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning
(2015)

16. Jia, S., Chen, D.J., Chen, H.T.: Instance-level meta normalization. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2019)

17. Jones, D.: Good practice in (pseudo) random number generation for bioinformatics
applications. Technical report, University College London (2010)

18. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-
grained categorization. In: IEEE Workshop on 3D Representation and Recognition
(2013)

http://arxiv.org/abs/1607.06450
https://doi.org/10.1007/978-3-030-58536-5_23


Revisiting Batch Norm Initialization 227

19. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE (1998)

21. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B.,
Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp.
9–50. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8 2

22. Li, X., Sun, W., Wu, T.: Attentive normalization. In: Vedaldi, A., Bischof, H.,
Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 70–87. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58520-4 5

23. Liang, S., Huang, Z., Liang, M., Yang, H.: Instance enhancement batch normal-
ization: an adaptive regulator of batch noise. In: AAAI Conference on Artificial
Intelligence (2020)

24. Luo, P., Wang, X., Shao, W., Peng, Z.: Towards understanding regularization in
batch normalization. In: International Conference on Learning Representations
(2019)

25. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems (2019)

26. Picard, D.: torch.manual seed(3407) is all you need: on the influence of ran-
dom seeds in deep learning architectures for computer vision. arXiv preprint
arXiv:2109.08203 (2021)

27. PyTorch: Torch Generator. https://pytorch.org/docs/stable/generated/torch.
Generator.html. Accessed Aug 2021

28. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2018)

29. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization
help optimization? In: International Conference on Neural Information Processing
Systems (2018)

30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(2015)

31. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning (2019)

32. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingre-
dient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

33. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (2017)

34. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD
birds-200-2011 dataset. Technical report, California Institute of Technology (2011)

35. Wightman, R., Touvron, H., Jégou, H.: ResNet strikes back: an improved training
procedure in timm. arXiv preprint arXiv:2110.00476 (2021)

36. Wu, Y., He, K.: Group normalization. Int. J. Comput. Vis. 128(3), 742–755 (2019).
https://doi.org/10.1007/s11263-019-01198-w

37. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (2017)

38. Xu, Y., et al.: Batch normalization with enhanced linear normalization. arXiv
preprint arXiv:2011.14150 (2020)

https://doi.org/10.1007/3-540-49430-8_2
https://doi.org/10.1007/978-3-030-58520-4_5
http://arxiv.org/abs/2109.08203
https://pytorch.org/docs/stable/generated/torch.Generator.html
https://pytorch.org/docs/stable/generated/torch.Generator.html
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/2110.00476
https://doi.org/10.1007/s11263-019-01198-w
http://arxiv.org/abs/2011.14150


228 J. Davis and L. Frank

39. Yang, G., Pennington, J., Rao, V., Sohl-Dickstein, J., Schoenholz, S.S.: A mean
field theory of batch normalization. In: International Conference on Learning Rep-
resentations (2019)

40. Zhang, S., Nezhadarya, E., Fashandi, H., Liu, J., Graham, D., Shah, M.: Stochastic
whitening batch normalization. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2021)

41. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: IEEE International Conference on
Computer Vision (2017)


	Revisiting Batch Norm Initialization
	1 Introduction
	2 Related Work
	3 Framework
	3.1 BN Formulation
	3.2 Proposed Adjustments to 
	3.3 BN Gradients
	3.4 BN-Based Input Normalization

	4 Experiments
	4.1 Datasets and Network Architectures
	4.2 Training Details
	4.3 Statistical Significance
	4.4 Results
	4.5 Related Approaches

	5 Conclusion
	References




