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Abstract. In the real world, the degradation of images taken under haze
can be quite complex, where the spatial distribution of haze varies from
image to image. Recent methods adopt deep neural networks to recover
clean scenes from hazy images directly. However, due to the generic
design of network architectures and the failure in estimating an accurate
haze degradation model, the generalization ability of recent dehazing
methods on real-world hazy images is not ideal. To address the problem
of modeling real-world haze degradation, we propose a novel Separable
Hybrid Attention (SHA) module to perceive haze density by captur-
ing positional-sensitive features in the orthogonal directions to achieve
this goal. Moreover, a density encoding matrix is proposed to model the
uneven distribution of the haze explicitly. The density encoding matrix
generates positional encoding in a semi-supervised way – such a haze den-
sity perceiving and modeling strategy captures the unevenly distributed
degeneration at the feature-level effectively. Through a suitable combina-
tion of SHA and density encoding matrix, we design a novel dehazing net-
work architecture, which achieves a good complexity-performance trade-
off. Comprehensive evaluation on both synthetic datasets and real-world
datasets demonstrates that the proposed method surpasses all the state-
of-the-art approaches with a large margin both quantitatively and quali-
tatively. The code is released in https://github.com/Owen718/ECCV22-
Perceiving-and-Modeling-Density-for-Image-Dehazing.

Keywords: Image dehazing · Image restoration · Deep learning

T. Ye, Y. Zhang and M. Jiang—Equal contribution.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-19800-7 8.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Avidan et al. (Eds.): ECCV 2022, LNCS 13679, pp. 130–145, 2022.
https://doi.org/10.1007/978-3-031-19800-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19800-7_8&domain=pdf
https://github.com/Owen718/ECCV22-Perceiving-and-Modeling-Density-for-Image-Dehazing
https://github.com/Owen718/ECCV22-Perceiving-and-Modeling-Density-for-Image-Dehazing
https://doi.org/10.1007/978-3-031-19800-7_8
https://doi.org/10.1007/978-3-031-19800-7_8


PMDNet for Image Dehazing 131

1 Introduction

Single image dehazing aims to generate a haze-free image from a hazy image. It
is a classical image processing problem, which has been an important research
topic in the vision communities within the last decade [3,4,21,23]. Numerous
real-world vision tasks (e.g., object detection and auto drive) require high-quality
clean images, while the fog and haze usually lead to degraded images. Therefore,
it is of great interest to develop an effective algorithm to recover haze-free images.

Fig. 1. Overview of network architecture. The Tail Module is formulated by a con-
volution layer and an activation layer. The shallow layers, consisting of a stack of
Multi-branch Hybrid Attention modules with Contextual Transformer (MHAC) blocks
and a Tail Module, are used to generate a pseudo-haze-free image. Then, the density
encoding matrix is generated by a density estimation module. The deep layers empha-
size on detailed reconstruction by using the Adaptive Features Fusion (AFF) module
and Multi-branch Hybrid Attention Block (MHA). α is a learnable factor.

Haze is a common atmospheric phenomenon in our daily life. Images with
haze and fog lose details and color fidelity. Mathematically, the image degrada-
tion caused by haze can be formulated by the following model:

I(x) = J(x)t(x) + A(x)(1 − t(x)), (1)

where I(x) is the hazy image, J(x) is the clear image, t(x) is the transmission
map and A(x) stands for the global atmospheric light.

Methods [5,9,11,14] based on priors first estimate the above two unknown
parameters t(x) and A(x), then infer J(x) according the Eq. 1 inversely. Unfor-
tunately, these hand-crafted priors do not always hold in diverse real-world hazy
scenes, resulting in inaccurate estimation of t(x). Therefore, in recent years, more
and more researchers have begun to pay attention to data-driven learning algo-
rithms [8,12,16,21,23]. Different from traditional methods, deep learning meth-
ods achieve superior performance via training on large-scale datasets. However,
methods introduce generic network architectures by simply stacking more layers
or using wider layers, ignoring the uneven distribution that causes the unknown
depth information which varies at different positions. Some approaches aim at
introducing complex loss functions and designing fancy training strategies, leads
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to high training-costs and poor convergence. Due to the airlight-albedo ambi-
guity and the limited number of datasets with ground-truth data of transmis-
sion maps, these methods result in poor performance degradation in real-world
scenes. Moreover, inaccurate estimation of transmission map can significantly
deteriorate the clean image restoration.

To address the above problems, we learn the implicit representation and esti-
mate the explicit supervision information for modeling the uneven haze distribu-
tion. From Eq. 1, we can notice that the haze degradation model is highly asso-
ciated with the absolute position of image pixels. The key to solve the dehazing
problem lies in accurately encoding the haze intensity with its absolute position.
As is demonstrated in Fig. 1, we propose a network to perceive the density of haze
distribution with tailor designed modules that captures the positional-sensitive
features. Moreover, we introduce a haze density encoding matrix to encode the
image-level co-relationship between haze intensity and its absolute position.

We propose the method from three different levels: primary block of the net-
work, architecture of the network and map of haze density information to refine
features:

• Primary Block: We propose an efficient attention mechanism to perceive the
uneven distribution of degradation of features among channel and spatial dimen-
sions: Separable Hybrid Attention (SHA), which effectively samples the input
features through a combination of different pooling operations, and strengthens
the interaction of different kinds of dimensional information by scaling and shuf-
fling channels. Our SHA based on horizontal and vertical encoding can obtain
sufficient spatial clues from input features.

• Density Encoding Matrix: We design a coefficient matrix called as density
encoding matrix, which encodes the co-relationship between haze intensity and
absolute position. The density encoding matrix explicitly models the intensity
of the haze degradation model at corresponding spatial locations. The density
encoding matrix is obtained in an end-to-end manner, and semantic information
of the scene is also introduced implicitly, which makes the density encoding
matrix more consistent with the actual distribution.

• Network Architecture: We design a novel network architecture that restores
hazy images with the coarse-to-fine strategy. The architecture of our network
mainly consists of three parts: shallow layer, deep layer and density encoding
matrix. We build the shallow layer and deep layer of our method based on SHA.
The shallow layer will generate the coarse haze-free image, which we call as the
pseudo-haze-free image. For modeling the uneven degradation of a hazy image
to refine features explicitly, we utilize the pseudo-haze-free image and the input
hazy sample to generate the density encoding matrix.

Our main contributions are summarized as follows:

– We propose the SHA as a task-specified attention mechanism, which perceives
haze density effectively from its design of operation on orthogonal separated
direction operations and enlarged perception fields.

– We propose the density encoding matrix as an explicit model of haze density,
which enhances the coupling of our model. In addition, the proposed method
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demonstrates the potential of dealing with the non-homogeneous haze distri-
bution.

– We formulate a novel dehazing method that incorporates the implicit percep-
tion of haze features and explicit model of haze density in a unified framework.
Our method confirms the necessity of perceiving and modeling of haze den-
sity and achieves the best performance compared with the state-of-the art
approaches.

2 Related Works

2.1 Single Image Dehazing

Single image dehazing is mainly divided into two categories: a prior-based defog-
ging method [11,15] and a data-driven method based on deep learning. With the
introduction of large hazy datasets [17,20], image dehazing based on the deep neu-
ral network has developed rapidly. MSBDN [8] uses the classic Encoder-Decoder
architecture, but repeated up-sampling and down-sampling operations result in
texture information loss. The number of parameters of MSBDN [8] is large, and
the model is complex. FFA-Net [21] proposes an Feature Attention (FA) block
based on channel attention and pixel attention, obtains the final haze-free image
by fusing features of different levels. With the help of two different-scale attention
mechanisms, FFA-Net has obtained impressive PSNR and SSIM, but the entire
model performs convolutional operations at the resolution of the original image,
resulting in a large amount of calculation and slow speed. AECR-Net [23] reuses
the FA block and proposes to use a novel loss function based on the contrast learn-
ing to make full use of hazy samples, and use a deformable convolution block to
improve the expression ability of the model, pushing the index on SOTS [17] to a
new height, but memory consumption of the loss function is so high. Compared
with AECR-Net [23], our model only needs to utilize a simple Charbonnier [7] loss
function to achieve higher PSNR and SSIM.

2.2 Attention Mechanism

Attention mechanisms have been proven essential in various computer vision
tasks, such as image classification [13], segmentation [10], dehazing [12,21,23]
and deblurring [24]. One of the classical attention mechanisms is SENet [13],
which is widely used as a comparative baseline of the plugin of the backbone
network. CBAM [22] introduces spatial information encoding via convolutions
with large-size kernels, which sequentially infers attention maps along the chan-
nel and spatial dimension. The modern attention mechanism extends the idea of
CBAM [22] by adopting different dimension attention mechanisms to design the
advanced attention module. This shows that the key of the performance of the
attention mechanism is to sample the original feature map completely. There is
no effective information exchange of attention encoding across different dimen-
sions in existing networks, thus limiting the promotion of networks. In response
to the above problems, we utilize two types of pooling operations to sample the
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original feature map and smartly insert the channel shuffle block in our atten-
tion module. Experiments demonstrate that the performance of our attention
mechanism has been dramatically improved due to sufficient feature sampling
and efficient feature exchange among different dimensions.

Fig. 2. Illustrations of the Separable Hybrid Attention (SHA) Module and our basic
blocks. (a) The Separable Hybrid Attention Module. (b) The Multi-branch Hybrid
Attention (MHA) Block. (c) The MHAC block of shallow layers. (d) The tail module
of the shallow and deep layers. Our SHA focuses on directional embedding, which
consists of unilateral directional pooling and convolution. @k denotes the kernel size
of the convolution layer.

3 Proposed Methods

We formulate the image dehazing task from two aspects: designing basic blocks
to capture positional-sensitive features from orthogonal directions, and modeling
haze density from the image-level to the feature-level explicitly.

3.1 Implicit Perception of Haze Density - Separable Hybrid
Attention Mechanism and Its Variants

Previous image dehazing methods [12,21,23] follow the paradigm of subsequently
calculating attention weights on spatial dimensions and channel dimensions,
which lacks useful information exchange among dimensions and leads to the
sub-optimal perceptual ability in capturing uneven distributions.

In order to introduce the effective cross-dimension information exchange, we
propose a novel attention mechanism called Separable Hybrid Attention (SHA).
Different from previous methods that treat attention across the dimension indi-
vidually, the SHA mechanism acts in a unified way: It harvests contextual infor-
mation by compressing features from the horizontal and vertical axises, which
guarantees that a pixel at any position perceives contextual information from all
pixels. Specifically, it first compresses spatial information in separated directions,
exchanges information across channel dimensions, reduces the channel dimen-
sion and then recovers channel information and spatial information sequentially.
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Specifically, a hybrid design of the pooling layer is proposed to preserve abun-
dant spatial information. It combines the maximum pooling layer and the average
pooling layer to minimize the loss on capturing high-frequency information and
maximize noise resistances among spatial dimensions.

The details and formulas are as follows:

vh
avg = AvgPoolh(Fin), vv

avg = AvgPoolv(Fin), (2)

vh
max = MaxPoolh(Fin), vv

max = MaxPoolv(Fin), (3)

We get the direction encode features vh and vv from Eq. 2 and Eq. 3 respectively,
so we can make distribution of features like a normal distribution, which can
better preserve the important information of input features:

vh = vh
avg + vh

max, v
v = vv

avg + vv
max, (4)

We concatenate the encoded features and utilize the channel shuffle to interac-
tion channel information, aiming to exchange the encoding information between
different channels. Then, we utilize the 1x1 convolution to reduce the dimension
of features, which pass through the nonlinear activation function, so that the
features of different channels are fully interactive. The formulas are as follows:

[yh
c/r, y

v
c/r] = δ(Conv(cat([vh

c , vv
c ]))), (5)

wherein Eq. 5, δ is ReLU6 activation function, c is the number of dimensions and
r is the channel scaling factor, r is usually 4. We use the shared 3x3 convolution
to restore the number of channel dimensions for encoded features of different
directions, making the isotropic features get similar attention weight values.
The final weights can be determined by the larger receptive field of the input
features.

yh
c = Conv(yh

c/r), y
v
c = Conv(yv

c/r), (6)

After restoring the channel of the feature, multiply yh
c and yw

c to obtain the atten-
tion weight matrix with the same size as the input feature. Finally, a Sigmoid
function works to get the attention map Wc×h×w:

Wc×h×w = Sigmoid(yh
c × yv

c ), (7)

We multiply the attention weight matrix Wc×h×w with the input feature Fin to
get the output feature Fout:

Fout = Wc×h×w ⊗ Fin. (8)

Multi-branch Hybrid Attention. We design the Multi-branch Hybrid Attention
(MHA) Block, mainly consisting of the SHA module with parallel convolution.
The multi-branch design will improve the expressive ability of the network by
introducing multi-scale receptive-filed. The multi-branch block comprises parallel
3x3 convolution, 1x1 convolution, and a residual connection, as shown in Fig. 2
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(a). The degradation is often uneven in space in degraded images, such as hazy
images and rainy images, and the spatial structure and color of some areas in
the picture are not affected by the degradation of the scene, so we set the local
residual learning to let the feature pass the current block directly without any
process, which also avoids the disappearance of the gradient.

Adaptive Features Fusion Module. We hope that the network can adjust the
proportion of feature fusion adaptively according to the importance of different
kinds of information. Different from the MixUP [23] operation that fuses the
information from different layers for feature preserving in AECR-Net, we uti-
lize the Adaptive Features Fusion Module to combine two different blocks. The
formula is as follows:

Fout = AFF(block1,block2),
= σ(θ) ∗ block1 + (1 − σ(θ)) ∗ block2,

(9)

wherein, block denotes the block module, which has the same output size, σ is
the Sigmoid activation function, and θ is a learnable factor.

Multi-branch Hybrid Attention with Contextual Transformer. Long-range depen-
dence is essential for feature representation, so we introduce an improved Con-
textual Transformer (CoT) [18] block combined with the MHA block in the
shallow layers to mine the long-distance dependence of sample features that fur-
ther expand the receptive field. Specifically, we design a parallel block that uses
the MHA block and the improved CoT block to capture local features and global
dependencies simultaneously. To fuse the attention result, an Adaptive Features
Fusion module is followed back as shown in Fig. 2 (b), we call this as MHAC
block. The formulas are as follows:

Fout = AFF(MHAB(Fin),CoT(Fin)),
= σ(θ) ∗ (MHAB(Fin) + (1 − σ(θ)) ∗ CoT(Fin),

(10)

Fin denotes the input features, Fout is the adaptive mixing results from MHA
and CoT block. Considering that the BN layer will destroy the internal features
of the sample, we use the IN layer to replace the BN layer in the improved CoT
Block and use ELU as the activation function.

3.2 Shallow Layers

The shallow layers are stacked by several Multi-branch Hybrid Attention mod-
ules with CoT [18] blocks. We use the shallow layers to generate the pseudo-
haze-free image, which has high-level semantic information.

Tail Module. As shown in Fig. 2 (c), we design the Tail module, which fuses
the extracted features and restores the hazy image. The tanh activation func-
tion is often used on degradation reconstructions. Therefore, we use that as the
activation of the output after a stack of 3x3 convolution.
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Architecture of Shallow Layers. As shown in Fig. 1, we use the shallow layers to
reconstruct the degraded image context content. In order to effectively reduce
the amount of calculation and expand the receptive field of the convolution of
MHAC, we utilize 2 convolutions with a stride of 2 to reduce the resolution of
the feature map to 1/4 of the original input firstly; each convolution follows a
SHA module. Then, we use a stack of 8 MHAC blocks with 256 channels, which
has 2 skip connections to introduce shallow features before up-sampling, and
utilize the Tail module for obtaining the residual of the restored image of the
shallow layers:

S(x) = Shallowlayers(x) + x, (11)

wherein S(x) denotes the pseudo-haze-free image, x denotes the hazy input
image.

3.3 Explicit Model of Haze Density - Haze Density Encoding
Matrix

Previous methods mainly focus on modeling haze density in an implicit man-
ner. Methods based on physical model focus on obtaining an approximate esti-
mation of haze distribution with direct supervision (e,g. transmission maps, K
estimation) , which is limited with their inherent incompleteness in haze den-
sity modeling and their vulnerability in error that is introduced by degraded
sub-tasks. Methods based on implicit constraints mainly rely on a complicated
regularization term of loss functions, which only boosts the perception ability
of the feature-level, ignoring the hidden spatial clue in the image-level. Some
approaches based on explicit modeling haze density from haze images, lacks
careful consideration of the mismatching between explicit image-level informa-
tion and implicit feature-level distribution, resulting in sub-optimal dehazing
results.

The proposed haze density encoding matrix addresses these problems from
these aspects: Firstly, the haze density encoding matrix is an attention map that
shares the shape prior of haze degradation. Secondly, the haze density encoding
matrix, which is derived from haze image, encodes spatial clue from image-level
to feature-level, bridging the gap between the channel mismatching between
image space and feature space . Thirdly, the haze density encoding matrix is
fully optimized with the network, which does not require any direct supervision,
avoiding the incompleteness of hand-crafted priors.

As is mentioned in Fig. 2, the SHA mechanism perceives haze density effec-
tively with its spatial-channel operation. It is obvious that shallow layers have
the ability to generate sub-optimal results. The proposed density estimation
module encodes spatial clues in the image-level information by a concatenation
of input haze image I(x) and sub-optimal haze-free image J̄(x). The formulas
are as follows:

F (x) = G(I(x); J̄(x)) (12)

The simple convolution network encodes the spatial clues in image-level to a 64-
channel feature map with a 3x3 convolution after utilizing the Reflected Padding
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Fig. 3. Visualization of different representations of haze density. The transmission map
in (c) are predicted by DehazeNet [6]. The Norm‖I(x) − J(x)‖ [12] in (d) is the
normalized result of the difference map. Our Density Encoding Matrix is shown in (e).

Fig. 4. (i) An illustration of the pipeline that generates the density encoding matrix. (ii)
An illustration of the histogram of the difference map and density encoding matrix.
The difference map is the numerical difference between the pseudo-haze-free images
and haze images. The value of the density encoding matrix is mapped from [0, 1] to
[0, 255]. The difference map and density encoding matrix are visualized by ColorJet
for observation and comparison. Note that the histograms of the difference map and
density encoding matrix have similar intensity distributions.

to avoid the detail loss of the feature edge. Afterwards, we utilize the SHA
module to explore perceiving the uneven degeneration of input features fully,
and finally use a convolution operation to compress the shape of the feature.
The sigmoid function is used to get the density encoding matrix M ∈ R

1×H×W .
After getting the density encoding matrix M , we multiply M by the input feature
Fin ∈ R

C×H×W to get the final output Fout ∈ R
C×H×W :

Fout = Fin ⊗ M, (13)

3.4 Deep Layers

To preserve abundant pixel-level texture details, we utilize the deep layers with
the supervised signal from density encoding matrix. As shown in Fig. 1, we utilize
10 MHA blocks with 16 channels to extract features at the resolution of the
original input. In order to avoid unnecessary calculations caused by repeated
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extraction of features, we use the AFF module to introduce and mix features
refined by our density encoding matrix from the shallow layers adaptively.

4 Experiments

4.1 Datasets and Metrics

We choose the PSNR and SSIM as experimental metrics to measure the perfor-
mance of our network. We perform comprehensive evaluation on both synthetic
datasets and real datasets.

To evaluate performance on synthetic datasets, we train on two large syn-
thetic datasets, RESIDE [17] and Haze4K [20], and testing on SOTS [17] and
Haze4K [20] testing sets, respectively. The indoor training set of RESIDE [17]
contains 1,399 clean images and 13,990 hazy images generated by correspond-
ing clean images. The indoor testing set of SOTS contains 500 indoor images.
The outdoor testing set of SOTS contains 500 outdoor images. The training set
of Haze4K [20] contains 3,000 hazy images with ground truth images and the
testing set of Haze4K [20] contains 1,000 hazy images with ground truth images.

To evaluate performance on real-world datasets, i.e., Dense-Haze [1], NH-
HAZE [3] and O-HAZE [2], we train the network following the official train-val
split for fair comparison with other methods.

4.2 Loss Function

We only use Charbonnier loss [7] as our optimization objective:

L(Θ) = Lchar (S(x), Jgt(x)) + Lchar (D(x), Jgt(x))), (14)

where Θ denotes the parameters of our network, the S(x) denotes pseudo-haze-
free image, D(x) denotes output of deep layers, which is the final output image,
Jgt stands for ground truth, and Lchar is the Charbonnier loss [7]:

Lchar =
1
N

N∑

i=1

√
‖Xi − Y i‖2 + ε2, (15)

with constant ε emiprically set to 1e−3 for all experiments.

4.3 Ablation Study

To demonstrate the effectiveness of separated hybrid attention mechanism, we
design a baseline network with the minimized design. The network consists of
one convolution with kernel size of 3 and stride of 2, followed by four residual
blocks, one upsample layer and one tail module. The baseline network is trained
and evaluated on the Haze4K [20] dataset. We employ the Charbonnier loss [7]
as the training loss function for ablation study, and utilize Haze4K [20] dataset
for both training and testing. Detailed implementation of the baseline model is
demonstrated in the supplementary material.
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Effectiveness of Separated Hybrid Attention Module. In order to make a
fair comparison between attention modules on implicit perceiving haze density,
we replace the residual blocks in our baseline model with different kinds of
attention blocks. The performance of above models are summarized in Table 1.
We provide visualization results of high-level feature maps in the supplementary
material.

Table 1. Comparisons on Haze4K [20] testset for different configurations of Shallow
Layers. The number of parameters and flops is calculated only on the attention modules.

Settings Model # of Params # of Flops PSNR

1 Baseline – – 24.40

2 SE 512 520 24.71

3 ECA 3 114 24.78

4 CBA 4.9 K 78.69 M 25.36

5 FA 8.25 K 4.6 M 25.30

6 SWRCA 10.3 K 302 M 25.87

7 SHA (Ours) 2.6 K 368 K 26.39

8 MHAB (Ours) 22.2 K 321 M 27.02

9 MHA-C (Ours) 38.3 K 587.3 M 27.58

As is depicted in Table 1, we can see that attention modules boost the per-
formance of image dehazing network. Comparing with the models of Setting 1,
Setting 2, Setting 3, haze specific attention mechanisms gain a noticeable per-
formance boost. Unfortunately, the performance of Setting 5 is worse than the
performance of Setting 4, indicate the brute design of Setting 5 is not optimal.
Compared with Setting 5 and Setting 6, the proposed modules obtain higher
PSNR scores while maintaining the appropriate efficiency. The key to the perfor-
mance lies in the mutual interaction between spatial and channel dimensions, and
the extracted positional-sensitive features is effective in perceiving haze density.
Furthermore, We find that MHAC and MHAB can achieve better performance,
but the number of parameters also increases. Therefore, the careful design of
shallow layers and deep layers is essential.

Effectiveness of Density Encoding Matrix. Compared with previous meth-
ods that explores haze density from a variety of forms, we perform an experi-
ment on validating the effectiveness of the proposed Density Encoding Matrix.
Since the haze density representation can be obtained by attaching direct super-
visions on the density estimation module, we compare different forms of haze
density. First, we replace the haze density encoding matrix (as is denoted with
doted orange line in Fig. 1) with the identity matrix as the baseline. Second,
We replace the haze density encoding matrix with a ground-truth transmission
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map provided with Haze4K [20] as the validation of the effectiveness of classical
model derives from the physical model. Third, we modify the Density Estima-
tion Module with an extra transmission map supervision, enabling the output
of online estimation of transmission map. As is depicted in KDDN, a normed
difference map is introduced as another unsupervised haze density representa-
tions. Finally, the proposed Density Encoding Matrix is optimized without any
direction supervision.

As is depicted in Table 2, we can observe that different kinds of density rep-
resentations boost the performance of the dehazing network than the identity
matrix, which indicates that the ability of the implicit perception of haze distri-
bution is limited and it is necessary to introduce external image-level guidance to
the dehazing network. The comparison between Setting 2 and Setting 3 indicates
that methods with direct supervisions are vulnerable to error introduced by the
auxiliary task, which suffer from more severe performance degradation in real-
world scenes. Compared with Settings 2, 3 and Setting 4, the online estimation of
the normalized difference map achieves a higher score than online estimation of
the transmission map, which indicates no direct constraint or joint optimization
allows better performance in feature-level. Unfortunately, it suffers from serious
performance degradation than ground-truth transmission map, which indicates
that image-level spatial distribution is mismatched with feature-level distribu-
tion. The proposed density encoding matrix achieves the highest score than its
competitors, which adopts a fully end-to-end manner in training, shares a shape
prior with haze degradation model and aligns the uneven image-level distribu-
tion with feature-level distribution. In addition, we provide visualization results
of different representations of haze density.

Table 2. Comparison with different forms of haze representations.

Settings Density representations Online inference/Supervision Type PSNR

1 Identity matrix Offline/-. 30.33

2 GT Transmission Map Offline/Sup. 31.42

3 Est. Transmission Map Online/Sup. 31.17

4 Norm ‖I(x) − J(x)‖ [12] Online / UnSup 32.21

5 Density Encoding Matrix Online / UnSup 33.49

Fig. 5. Visual comparison of dehazing results of one image from Haze4k [20] dataset.
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5 Compare with SOTA Methods

5.1 Implementation Details

We augment the training dataset with randomly rotated by 90, 180, 270 degrees
and horizontal flip. The training image patches with the size 256 × 256 are
extracted as input Iin of our network. The network is trained for 7.5 × 105,
1.5× 106 steps on Haze4K [20] and RESIDE [17] respectively. We use the Adam
optimizer with initial learning rate of 2×10−4, and adopt the CyclicLR to adjust
the learning rate, where on the triangular mode, the value of gamma is 1.0, base
momentum is 0.8, max momentum is 0.9, base learning rate is initial learning
rate and max learning rate is 3×10−4. PyTorch is used to implement our model
with 4 RTX 3080 GPUs with total batchsize of 40.

Fig. 6. Visual comparison of dehazing results on Haze4k [20] dataset.

Fig. 7. Visual comparision of dehazing results on real-world images.

5.2 Qualitative and Quantitative Results on Benchmarks

Visual Comparisons. To validate the superiority of our method, as shown in
Fig. 5, 6, 7, firstly we compare the visual results of our method with previous
SOTA methods on synthetic hazy images from Haze4K [20] and real-world hazy
images. It can be seen that other methods are not able to remove the haze
in all the cases, while the proposed method produced results close to the real
clean scenes visually. Additionally, the visualization results of the density encod-
ing matrix demonstrates the ability of capturing uneven haze distribution. Our
method is superior in the recovery performance of image details and color fidelity.
Please refer to the supplementary materials for more visual comparisons on the
synthetic hazy images and real-world hazy images.
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Quantitative Comparisons. We quantitatively compare the dehazing results of
our method with SOTA single image dehazing methods on Haze4 K [20], SOTS
[17] datasets, Dense-Haze [1], NH-Haze [3] and O-HAZE [2]. As shown in Table 3,
our method outperforms all SOTA methods, achieving 33.49 dB PSNR and 0.98
SSIM on Haze4 K [20]. It increases the PSNR by 4.93 dB compared to the second-
best method. On the SOTS [17] indoor test set, our method also outperforms all
SOTA methods, achieving 38.41 dB PSNR and 0.99 SSIM. It increases the PSNR
by 1.24 dB, compared to the second-best method. Our method also outperforms
all SOTA methods on the SOTS [17] outdoor test set, achieving 34.74 dB PSNR
and 0.97 SSIM. In conclusion, our method achieves the best performance on the
6 synthetic and real-world benchmarks compared to previous methods.

Table 3. Quantitative comparisons of our method with the state-of-the-art dehazing
methods on Haze4K [20] and SOTS [17] datasets (PSNR(dB)/SSIM). Best results are
underlined.

Method Haze4K [20] SOTS Indoor [17] SOTS Outdoor [17] Dense-Haze [1] NH-HAZE [3] O-HAZE [2]

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DCP [11] 14.01 0.76 15.09 0.76 19.13 0.8148 10.06 0.39 10.57 0.52 16.78 0.653

DehazeNet [6] 19.12 0.84 20.64 0.80 20.29 0.88 13.84 0.43 16.62 0.52 17.57 0.77

AOD-Net [16] 17.15 0.83 19.82 0.82 24.14 0.92 13.14 0.41 15.40 0.57 15.03 0.54

GDN [19] 23.29 0.93 32.16 0.98 30.86 0.98 – – – – 23.51 0.83

MSBDN [8] 22.99 0.85 33.79 0.98 23.36 0.88 15.37 0.49 19.23 0.71 24.36 0.75

FFA-Net [21] 26.96 0.95 36.39 0.98 33.57 0.98 14.39 0.45 19.87 0.69 22.12 0.77

AECR-Net [23] – – 37.17 0.99 – – 15.80 0.47 19.88 0.72 – –

DMT-Net [20] 28.53 0.96 – – – – – – – – – –

Ours 33.49 0.98 38.41 0.99 34.74 0.99 16.79 0.51 20.42 0.73 24.64 0.83

6 Conclusion

In this paper, we propose a powerful image dehazing method to recover haze-
free images directly. Specifically, the Separable Hybrid Attention is designed to
better perceive the haze density, and a density encoding matrix is to further
refine extracted features. Although our method is simple, it is superior to all
the previous state-of-the-art methods with a very large margin on two large-
scale hazy datasets. Our method has a powerful advantage in the restoration
of image detail and color fidelity. We hope to further promote our method to
other low-level vision tasks such as deraining, super-resolution, denoising and
desnowing.

Limitations: The proposed method recovers high-fidelity haze-free images in
common scenarios. However, as is shown in Fig. 7 (top), the dense hazy area
with high-light scenes still has residues of haze. Following the main idea of this
work, future research can be made in various aspects to generate high-quality
images with pleasant visual perceptions.
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