
Chapter 11
Coordinate Transformations, Tensors
and General Relativity

In this chapter, we provide some basic information on coordinate transformations,
tensors, partial covariant differentiation, Christoffel symbols and Ricci and Einstein
tensors, leading to general relativity. As previously stated, this is necessarily a
limited progressive introduction, termed progressive, in the sense that the reader is
invited to read on to later sections if more information and further detail are required.
Einstein’s general theory of relativity was published over a century ago, and up to
this point in time provides the best description of a gravitation field, and is capable of
describing a myriad of interesting phenomena in the universe, such as the bending
of light through gravitational lensing, the slowing of clocks in gravitational fields
and the recently detected ripples in space time due to cataclysmic astrophysical
events, such as the coalescence of dense stellar objects. The next generation of GPS
systems will require a detailed mapping of the earth’s gravitational field combined
with the development of accurate predictive mathematical models. Accordingly
for such applications, a superficial understanding may not be sufficient for future
space scientists, but rather some prior experience of the actual “gory” details of the
discipline may be required.

The first two sections of the chapter deal with an introduction to Cartesian
tensors and an alternative derivation of the basic identity (3.7), previously derived
in Chap. 3. The two sections thereafter deal with general curvilinear coordinates
and the important notion of partial covariant differentiation, including briefly
mentioning the fundamental tensors of general relativity, which are the Riemann-
Christoffel tensor, the covariant curvature tensor, the Ricci tensor, the curvature
invariant and the Einstein tensor. Bianchi’s identity is also briefly mentioned, and
the subsequent section provides an illustrative example involving a single spatial
Cartesian dimension.

Throughout we follow the approach to general relativity adopted in the excellent
recent text of [15] and the older texts of [78, 100, 102], and we follow the
development of tensor analysis as pursued by [97, 101] or the Appendix of [31].
While there exist a number of exact space-times for the Einstein field equations
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306 11 Coordinate Transformations, Tensors and General Relativity

of general relativity, such as those listed in [42, 81, 98] and to a lesser extent in
[84, 91, 107], in the search for new exact space-time solutions of general relativity,
the major prohibiting factors include the shear complexity of the underlying equa-
tions and the lack of any strategic perspective to guide the analysis. In Sect. 11.6,
we deduce some general formulae for a line element involving seven arbitrary
metric tensor components, and each component is assumed to depend only on two
spatial variables and the temporal variable. While the assumed line element is not
completely general, it nevertheless includes many known exact space-time solutions
of general relativity. Some general formulae are presented for the Ricci and Einstein
tensors expressed in terms of six components of the covariant curvature tensor,
and two well-known cosmological models are presented as illustrative examples
of the formulation in the section thereafter. In the final section of the chapter, we
examine a possible cosmological model involving logarithmic spirals and seven
arbitrary constants. While spiral structures frequently occur in the universe, at
present there appears to be no known formal solutions of the general relativistic field
equations reflecting such structures. A particular case of the spiral model gives rise
to an Einstein tensor, which is reminiscent of the tensor involving the cosmological
constant.

11.1 Summation Convention and Cartesian Tensors

In this section, we present the background material required to give an alternative
derivation of the identity (3.7) for the spatial physical force f using a suffix or index
notation, for which we represent the Cartesian coordinates (x, y, z) as (x1, x2, x3),
and accordingly, we would write (x, y, z) as simply xj for j = 1, 2, 3. In order to
achieve this, there are four important ideas and results that we need to introduce.
These ideas provide an elementary introduction to the general topic of tensor
analysis, which deals with the transformations of curvilinear coordinates for which
the issue regarding the level of the index, namely either upper of lower, is critical,
and this is the case in the subsequent sects. 11.3 and 11.4. In this and the following
section, however, we deal only with Cartesian coordinates for which the level of the
index is not relevant. Also, we comment that we could if necessary deal with a four-
dimensional space time with coordinates (ct, x, y, z) as (x0, x1, x2, x3) or xj for
j = 1, 2, 3, 4, but since the identity (3.7) involves only the three spatial dimensions
(x, y, z), we restrict attention to xj for j = 1, 2, 3.

Einstein Summation Convention We first need to mention the Einstein sum-
mation convention, which is an important accepted convention that any repeated
index implies that a summation is taken over that index. Thus, for the two vectors
u = (ux, uy, uz) = (u1, u2, u3) and p = (px, py, pz) = (p1, p2, p3), their scalar
product u.p would be written as

u · p = uxpx + uypy + uzpz = u1p1 + u2p2 + u3p3 = ujpj ,
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and the repeated j index implies that a summation must be made over j = 1, 2, 3.

Kronecker Delta δij The second idea that is needed is the Kronecker delta symbol
δij , which is defined to have a unit value if i = j and the value zero otherwise, thus

δij =
{

1 if i = j,

0 if i �= j.

so as an example, combining the two notions of the Einstein summation convention
and the Kronecker delta symbol δij , we might write the above scalar vector product
u · p as follows:

u · p = δij uipj = ujpj = u1p1 + u2p2 + u3p3.

We would observe that repeated indices occur over both i and j , so that in reality
the first equality reveals a summation of precisely nine terms, thus

δij uipj = δ11u1p1 + δ12u1p2 + δ13u1p3 + δ21u2p1 + δ22u2p2 + δ23u2p3

+ δ31u3p1 + δ32u3p2 + δ33u3p3,

but of course, only the three terms arising from δ11, δ22 and δ33 provide a non-zero
contribution to the summation.

Levi-Civita Symbol Denoted by εijk The third notion that is required is the
mathematical symbol, often referred to as the Levi-Civita symbol denoted by
εijk , which represents numbers arising from the sign of a permutation of the
natural numbers 1, 2 and 3. They are also referred to as the permutation symbols,
antisymmetric symbols or alternating symbols, referring to their antisymmetric
property and their definition in terms of permutations. The Levi-Civita symbols εijk

are defined to be unity if ijk is a cyclic permutation of 1, 2 and 3, minus one if ijk

is an anticyclic permutation of 1, 2 and 3 and zero otherwise, thus

εijk =

⎧⎪⎪⎨
⎪⎪⎩

+1 if ijk is cyclic permutation of 123

−1 if ijk is anticyclic permutation of 123

0 if ijk is otherwise

(11.1)

Vector Product u∧ p Armed with this symbol, we are now able to express a num-
ber of important vector relations and vector differential relations and, principally,
those vector relations involving either the vector product or the differential operator,
known as the curl of a vector. For example, the three components of the vector
product u ∧ p, which has the formal determinant definition
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u ∧ p =
∣∣∣∣∣∣
î ĵ k̂

ux uy uz

px py pz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
î ĵ k̂

u1 u2 u3

p1 p2 p3

∣∣∣∣∣∣ ,

are given by (u ∧ p)i = εijkujpk , where there are implied summations over both j

and k, and the specific ordering of ijk is critical, where as usual (î, ĵ, k̂) denote the
unit vectors in the three Cartesian directions. Thus, for example

(u ∧ p)1 = ε1jkujpk = ε123u2p3 + ε132u3p2 = u2p3 − u3p2 = uypz − uzpy,

since ε123 = 1 and ε132 = −1 are the only non-zero values of εijk involving 1 in
the indices.

Further, we may use these symbols to write the ith component of the curl
differential operator ∇ ∧ p, which has the formal determinant definition

∇ ∧ p =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

px py pz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x1
∂

∂x2
∂

∂x3

p1 p2 p3,

∣∣∣∣∣∣∣ ,

thus

(∇ ∧ p)i = εijk ∂pk

∂xj
,

again noting the summations over both repeated indices j and k and their specific
placement in the above expression.

Fundamental Identity Involving δij and εijk The fourth and final result that
we need is the following fundamental identity involving both the Kronecker delta
symbol δij and the Levi-Civita symbol εijk , thus

εijkεimn = δjmδkn − δjnδkm, (11.2)

for which we observe the implied summation over the repeated index i and the
specific association of the indices in the positive and negative contributions. This is
the fundamental identity from which the vast majority of all other vector identities
involving either the vector product or the curl differential operator can be quickly
established.
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11.2 Alternative Derivation of Basic Identity

We are now well placed to establish the identity (3.7) for the spatial physical force
f, and we start with the ith component of the triple vector differential product u ∧
(∇ ∧ p), thus

εijkuj (∇ ∧ p)k = εijkεkmnuj ∂pn

∂xm

= εkij εkmnuj ∂pn

∂xm
= (δimδjn − δinδjm)uj ∂pn

∂xm
,

on using the fundamental identity (11.2); the fact that the indices of εkij are a cyclic
permutation of those of εijk , therefore the two symbols have the same value. On
applying the values of the Kronecker delta symbols, we finally have that the ith

component of the triple vector differential product u ∧ (∇ ∧ p) is given by

(u ∧ (∇ ∧ p))i = εijkuj (∇ ∧ p)k = un ∂pn

∂xi
− um ∂pi

∂xm
. (11.3)

In this equation, we recognise the term un∂pn/∂xi as arising from the rate-of-
working equation de = dx · dp/dt = u · dp, so that

∂e

∂xi
= un ∂pn

∂xi
= u1 ∂p1

∂xi
+ u2 ∂p2

∂xi
+ u3 ∂p3

∂xi
,

while the term um∂pi/∂xm we recognise as that arising in the total or material
derivative defined by (3.6), namely (u · ∇)pi . Thus, on rearrangement of (11.3),
we obtain

un ∂pn

∂xi
= (u ∧ (∇ ∧ p))i + (u · ∇)pi,

so that finally from (3.4), we may deduce

f i = ∂pi

∂t
+ ∂e

∂xi
= ∂pi

∂t
+ (u · ∇)pi + (u ∧ (∇ ∧ p))i ,

and the required result follows, thus

f i = dpi

dt
+ (u ∧ (∇ ∧ p))i ,

where the total or material derivative is defined by Eq. (3.6).
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11.3 General Curvilinear Coordinates

In this section, we present the main details for the extended force formulation
given by (3.4) but in terms of a general spatial curvilinear coordinate system xj

for j = 1, 2, 3, where now the index level shown here as upper is critical. We
follow the development of tensor analysis as pursued in the standard text [97], and
the reader might be referred to any of [15, 97, 101] or the Appendix of [31] for
much of the necessary background detail. In this section, we utilise the notion of
the partial covariant derivative without giving the full details. For the interested
reader, these details are presented in a subsequent section along with the notion
of Christoffel symbols. For a general curvilinear coordinate system (x1, x2, x3),
we assume a symmetric metric tensor with components gij for i, j = 1, 2, 3. The
metric tensor gij may be expressed in terms of rectangular Cartesian coordinates
(z1, z2, z3) = (x, y, z) and is defined by the following equation for the three-
dimensional line element, thus

ds2 = (dx)2 + (dy)2 + (dz)2 = dzkdzk = gij dxidxj , (11.4)

so that formally the metric tensor is given by

gij = ∂zk

∂xi

∂zk

∂xj
,

noting the implied summation over k = 1, 2, 3, the apparent symmetry in i and j ,
and that both sides of this equation are lower in the indices i and j , and we say that
gij is a covariant tensor of rank 2. Further, we remind the reader that the index level
for Cartesian vectors and tensors is not relevant. We also remind the reader that we
would refer to the general curvilinear coordinate system xj as either a contravariant
vector or as a contravariant tensor of rank 1, and we observe from Eq. (11.4) that, in
such a coordinate system, the Einstein summation convention only applies over one
raised index and one lower index and that it has no meaning if both indices are on
the same level. Formally, the proper tensorial version of the Kronecker delta symbol
δi
j would be defined, thus

δi
j =

{
1 if i = j,

0 if i �= j.
(11.5)

and we would refer to δi
j as a mixed tensor of rank 2, contravaraint in i and covariant

in j .
Associated with the symmetric metric tensor with components gij is the conju-

gate symmetric metric tensor with components gij for i, j = 1, 2, 3, which is such
that
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gij g
jk = δk

i , (11.6)

so that viewing gij as a matrix, the conjugate metric tensor with components gij

is simply the formal matrix, which is the inverse to gij . We would refer to the
metric tensor gij as a symmetric covariant tensor of rank 2, while the conjugate
metric tensor gij would be referred to as a symmetric contravariant tensor of rank
2. We further note that in this section, we use the symbol g to denote the formal
determinant of the matrix, which has components gij , thus g = |gij |, and there
should be no confusion with the same symbol g, which is used for the force in the
direction of time.

The metric tensor and its conjugate are fundamental in terms of raising and
lowering indices, thus for example, we have

Aij = gikgjmAkm, Ai
j = gikAkj , Aij = gikgjmAkm,

most importantly noting that in all cases the indices i and j appear on the same level
on each side of the equations and that summation only occurs over two indices on
different levels. In this manner, with the Kronecker delta δi

j defined by (11.5), we
might give meaning to the covariant and contravaraint tensors of rank 2, namely δij

and δij , respectively, thus

δij = gikδ
k
j = gij , δij = gikδ

j
k = gij ,

so that δij is simply the covariant metric tensor gij , while δij is the contravariant
conjugate metric tensor gij .

Spherical Polar Coordinates (r, θ, φ) As a simple example, for the spherical polar
coordinates (r, θ, φ) defined by the relations

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ,

from Eq. (11.4), we might deduce

ds2 = (dx)2 + (dy)2 + (dz)2 = (dr)2 + r2(dθ)2 + (r sin θ)2(dφ)2,

so that the metric tensor gij and its conjugate gij are given, respectively, by

gij =
⎛
⎝1 0 0

0 r2 0
0 0 (r sin θ)2

⎞
⎠ , gij =

⎛
⎝1 0 0

0 r−2 0
0 0 (r sin θ)−2

⎞
⎠ .

With these preliminary observations in tensor calculus, we may proceed to
present the main details for the extended force formulation given by (3.4) in a
general spatial curvilinear coordinate system (x1, x2, x3). The velocity vector u has
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components ui = dxi/dt with magnitude u arising from (11.4), thus

u2 =
(

ds

dt

)2

=
(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

= gij

dxi

dt

dxj

dt
= giju

iuj ,

while the momentum vector p has components pi = mui and magnitude p, where
p2 = gijp

ipj , and as usual the mass m is defined in terms of the magnitude of the
velocity vector by m(u) = m0[1 − (u/c)2]−1/2, where m0 denotes the rest mass.

On taking the total derivative of the usual energy equation in tensorial form

e2 = e2
0 + (pc)2 = e2

0 + c2gijp
ipj ,

where p denotes the magnitude of the momentum vector given explicitly by
p2 = gijp

ipj , we might deduce the rate-of-working equation ede = c2gijp
idpj ,

which using e = mc2 simplifies to give de = giju
idpj = gij dp

iuj on using the
symmetry of the metric tensor gij . Further, in tensor calculus, the notion of partial
differentiation is generalised to become partial covariant differentiation, which is
designated by a semicolon, thus ; and since here the energy e is a scalar quantity
(namely a tensor of rank 0), the partial derivatives of e coincide with the partial
covariant derivative, so that from de = giju

idpj we might deduce the important
relation

∂e

∂xk
= e;k = giju

ip
j

;k, (11.7)

where p
j

;k refers to the partial covariant derivative with respect to xk of the

contravariant vector pj . For further information relating to the partial covariant
derivatives, we refer the reader to the following section or again to either [97] or
the Appendix of [31]. Here, it suffices to mention that partial covariant derivatives
satisfy the usual rules of differentiation, such as the product rule, and they possess
the very curious properties that all partial covariant derivatives of both the metric
tensor and its conjugate vanish, thus gij ;k = 0 and g

ij

;k = 0, results which are
used frequently below. Maybe it is worth noting that, for example, these two partial
covariant derivatives with respect to xk are formally quite distinct. The first is the
partial covariant derivative of a covariant tensor of rank 2, while the second is the
partial covariant derivative of a contravariant tensor of rank 2, which are different.

For i = 1, 2, 3, the tensorial version of (3.4) in a general curvilinear coordinate
system (x1, x2, x3) becomes

f i = ∂pi

∂t
+ gike;k = ∂pi

∂t
+ gik ∂e

∂xk
, (11.8)

g0 = 1

c2

∂e

∂t
+ pk

;k = 1

c2

∂e

∂t
+ 1√

g

∂(
√

gpk)

∂xk
,
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where pk
;k is the divergence of the contravariant vector pk , and in the last part of

Eq. (11.8), we have used a standard formula of tensor calculus for the divergence of
a vector p that is verified in the following section and given on page 32 of Spain
[97], namely

divp = pk
;k = 1√

g

∂(
√

gpk)

∂xk
, (11.9)

where we again remind the reader that g denotes the determinant of the metric tensor
gij , thus g = |gij |, and that in this present section, we have momentarily added
a zero to the force g in the direction of time, thus g0, to ensure that there is no
confusion when the two quantities are used in the same equation.

Work Done Or Energy Function W(xi, t) On assuming the existence of a work
done or energy function W(xi, t) which is defined by

dW = f · dx + gc2dt

=
(

∂pi

∂t
+ gik ∂e

∂xk

)
gimdxm +

(
1

c2

∂e

∂t
+ 1√

g

∂(
√

gpk)

∂xk

)
dt,

and using gij g
jk = δk

i and E = W − e, we might deduce

dE = gim

∂pi

∂t
dxm + c2

√
g

∂(
√

gpk)

∂xk
dt,

for which the following partial differential relations evidently apply

∂E

∂xm
= gim

∂pi

∂t
,

∂E

∂t
= c2

√
g

∂(
√

gpk)

∂xk
. (11.10)

Basic Identity (3.7) In order to provide a formal tensorial proof of the identity
(3.7), we have from both (11.7) and (11.8)1

f i = ∂pi

∂t
+ gikgmju

mp
j

;k = dpi

dt
+ gikgmju

mp
j

;k − umpi
;m, (11.11)

where d/dt denotes the total or material time derivative that is defined by

dpi

dt
= ∂pi

∂t
+ umpi

;m.

Now on using (11.6) in the form δk
m = gkjgmj , we have from (11.11)
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f i = dpi

dt
+ gikgmju

mp
j

;k − umpi
;kδ

k
m (11.12)

= dpi

dt
+ gmju

m(gikp
j

;k − gjkpi
;k),

and the tensorial versions of the curl operator (∇ ∧ p) and the vector product u ∧
(∇ ∧ p) are given by

(∇ ∧ p)i = ε∗
ijng

jkpn
;k, ((u ∧ (∇ ∧ p))i = ε∗ijkgjmum(∇ ∧ p)k,

where the tensorial permutation symbols ε∗
ijk and ε∗ijk are defined in terms of the

Cartesian permutation symbols εijk (see Eq. (11.1)) by the following formulae that
may be found in Eringen [31] (pages 441 and 442), thus

ε∗
ijk = √

gεijk, ε∗ijk = εijk

√
g

.

The identity (3.7) now follows on using both

((u ∧ (∇ ∧ p))i = ε∗ijkgjmumε∗
knrg

nspr
;s = ε∗kij ε∗

knrgjmumgnspr
;s ,

and the tensorial version of the identity (11.2) becomes

ε∗kij ε∗
knr = δi

nδ
j
r − δi

rδ
j
n,

so that together we obtain

((u ∧ (∇ ∧ p))i = (δi
nδ

j
r − δi

rδ
j
n)gjmumgnspr

;s = gjmum(gisp
j

;s − gjspi
;s),

which coincides precisely with the term in (11.12)2, and therefore, we have provided
a formal tensorial proof of (3.7).

Now on using gij g
jk = δk

i , Eq. (11.10)1 may be rewritten as

∂pi

∂t
= gik ∂E

∂xk
= gikE;k = (gikE );k,

and together the two relations (11.10) become

∂pi

∂t
= (gikE );k,

∂E

∂t
= c2pk

;k. (11.13)

From these relations, we may deduce that there exists a scalar function φ(xj , t) such
that
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pi = gik ∂φ

∂xk
= gikφ;k = (gikφ);k, E = ∂φ

∂t
,

and that φ(xj , t) satisfies the equation

∂2φ

∂t2 = c2pk
;k = c2gikφ;ik = c2∇2φ,

which is the wave equation, where ∇2φ = gikφ;ik is the tensorial version of the
Laplacian operator for which further details may be found in the following section or
in [97] (page 32). The existence of the scalar function φ(xj , t) ensures the vanishing
of the curl of the vector p, since from

(∇ ∧ p)i = ε∗
ijkg

jmpk
;m = ε∗

ijkg
jm(gknφ);mn = ε∗

ijkg
jmgknφ;mn,

we may, for example, deduce that in particular for i = 1, we have

(∇ ∧ p)1 = √
g(ε123g2mg3nφ;mn + ε132g3mg2nφ;mn),

which evidently vanishes, since ε123 = 1 and ε132 = −1, the conjugate metric
tensor gij is symmetric and assuming the partial derivatives coincide φ;mn = φ;nm.

Wave Energy E (xj , t) Satisfies Wave Equation From Eq. (11.13), we observe
that the wave energy E (xj , t) satisfies the wave equation

∂2E

∂t2 = c2
(

∂pk

∂t

)
;k

= c2
(
(gkmE );m

)
;k = c2gkmE;km = c2∇2E , (11.14)

while the momentum vector pi(xj , t) satisfies

∂2pi

∂t2
= c2

(
gikpm

;m
)

;k = c2gik
(
pm

;m
)

;k . (11.15)

We note that while the double covariant partial differentiations appear to be the
same in both cases, there is a distinction arising from the fact that in the former
case we are undertaking the double partial covariant derivative of the scalar quantity
E (xj , t), while in the second case we are undertaking the double partial covariant
derivative of the momentum vector pm(xj , t), the first leading to the divergence
of the momentum vector and the second simply the partial derivative of a scalar.
In the former case, the first covariant derivative is simply the partial derivative
∂E /∂xk , while the second differentiation involves the partial covariant derivative of
a covariant vector. This is in contrast to the two differentiations of the momentum
vector pm(xj , t), for which the first pm

;m is the partial covariant derivative of a
contravariant vector, namely the divergence of the vector p. Now the divergence
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of p is a scalar, and the second partial covariant derivative with respect xk is that of
differentiation of a scalar, namely the partial derivative, even though it arises from
pm

;n, which a mixed tensor of rank 2. This distinction corresponds to the distinction
between the divergence of the gradient, which is the former case, and the gradient
of the divergence, corresponding to the latter case.

The reader may find it instructive to compare the above Eqs. (11.14) and (11.15)
directly with the corresponding general equations (3.22) and (3.19) and those for
centrally symmetric systems, namely (9.4). For the general equations, we have for
the de Broglie wave energy E (x, t) and the momentum vector p(x, t),

∂2E

∂t2 = c2∇2E = c2∇ · (∇E ),
∂2p
∂t2 = c2∇(∇ · p),

while for the centrally symmetric systems, the de Broglie wave energy E (r, t) and
the radial component of momentum p(r, t), satisfy

∂2E

∂t2 = c2
(

∂2E

∂r2 + 2

r

∂E

∂r

)
,

∂2p

∂t2 = c2 ∂

∂r

(
∂p

∂r
+ 2p

r

)
,

since under these circumstances the gradient ∇ = ∂/∂r .

11.4 Partial Covariant Differentiation

In the previous section, we have utilised the notion of the partial covariant derivative
without giving a full explanation and presenting all the details, and this can only be
achieved by introducing the Christoffel symbols which is the major objective of this
section. Again the reader is referred to any of [15, 97, 101] or the Appendix of [31]
for a fuller explanation and much of the necessary background detail. Essentially,
both the notions of partial covariant differentiation and Christoffel symbols arise
in consequence that when we transform from rectangular Cartesian coordinates
(x, y, z) = (z1, z2, z3) with corresponding fixed unit base vectors (î, ĵ, k̂) to a
general curvilinear coordinate system (x1, x2, x3), then the corresponding base
vectors (e1, e2, e3) are no longer fixed in space, and the Christoffel symbols are
the mechanism required to describe their variability. In addition, and as a secondary
issue, we note that the base vectors (e1, e2, e3) are not necessarily unit vectors.

In rectangular Cartesian coordinates, the position vector r is defined by the
equation

r = x î + y ĵ + zk̂ = z1 î + z2 ĵ + z3k̂,

and we might conceive that the three fixed base vectors (î, ĵ, k̂) are defined by the
three equations
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î = ∂r
∂x

, ĵ = ∂r
∂y

, k̂ = ∂r
∂z

.

In fact, in general curvilinear coordinates (x1, x2, x3), we adopt this definition as
the defining equation for the base vectors (e1, e2, e3), thus

e1 = ∂r
∂x1 , e2 = ∂r

∂x2 , e3 = ∂r
∂x3 ,

or equivalently

ej = ∂r
∂xj

, (11.16)

for j = 1, 2, 3. So, for example, suppose that we transform to cylindrical polar
coordinates (r, θ, z), then, with the usual relations x = r cos θ and y = r sin θ , the
position vector becomes

r = x î + y ĵ + zk̂ = r cos θ î + r sin θ ĵ + zk̂,

while the three base vectors (er , eθ , ez) are given by

er = ∂r
∂r

= cos θ î + sin θ ĵ, eθ = ∂r
∂θ

= −r sin θ î + r cos θ ĵ, ez = ∂r
∂z

= k̂,

and we notice that, in this particular case, the three base vectors are mutually
orthogonal to one another and that er and ez are both unit vectors, while eθ is not a
unit vector, since eθ .eθ = r2.

In general curvilinear coordinates (x1, x2, x3), we have from (11.4) that the line
element becomes on using (11.16)

ds2 = dr · dr = ∂r
∂xi

dxi · ∂r
∂xj

dxj = ∂r
∂xi

· ∂r
∂xj

dxidxj = gij dxidxj ,

and therefore we may make the important identification

gij = ∂r
∂xi

· ∂r
∂xj

= ei · ej , (11.17)

for i, j = 1, 2, 3. From this equation, it is apparent that if the base vectors are
mutually orthogonal, then gij = 0 for i �= j , and that for a particular i, the quantity
gii provides the magnitude squared of the base vector ei ; thus, we have gii = ei · ei ,
with no implied summation over the i in this particular instance.

In an analogous manner, we might introduce a set of base vectors (e1, e2, e3)

of simply ej for j = 1, 2, 3, so that for an arbitrary vector u, we have the two
representations
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u = uj ej = ukek, (11.18)

with implied summations over both j and k, noticing that each of these summations
occurs over two levels, namely one index is an upper index and one index is a lower
index. We refer to uj as the contravariant components of the vector u, while uk are
referred to as the covariant components of the vector u. Thus, without being overly
specific, when we consider a tensor of higher rank, say the mixed tensor of rank 4,
Ajk

mn, then we have in mind that the contravariant indices jk somehow relate to the
base vectors ej , while the covariant indices mn somehow relate to the base vectors
ej . Further, in addition to (11.17) the complete set of relations connecting the scalar
products of the two sets of base vectors ej and ej with the metric tensor gij , the
conjugate metric tensor gij and the Kronecker delta δi

j are as follows:

gij = ei · ej , gij = ei · ej , δi
j = ei · ej .

Christoffel Symbols of the Second Kind �k
ij The Christoffel symbols arise on

taking the partial derivative of the vector u, and from Eq. (11.18), we have

∂u
∂xi

= ∂uj

∂xi
ej + uj ∂ej

∂xi
= ∂uk

∂xi
ek + uk

∂ek

∂xi
, (11.19)

and the Christoffel symbols of the second kind �k
ij arise as follows:

∂ej

∂xi
= �k

ijek,
∂ek

∂xi
= −�k

ij e
j ,

and, of course, with summation over repeated indices. On using these results, we
obtain from (11.19) the formulae for the partial covariant derivatives of contravariant
and covariant vectors, respectively, thus

u
j

;i = ∂uj

∂xi
+ �

j
iku

k, uj ;i = ∂uj

∂xi
− �k

ijuk, (11.20)

and it is instructive to examine such formulae carefully, noticing that corresponding
indices on one side of the equation are at the same level on the other side of the
equation, and if an index is repeated on one side of the equation, one index is upper
while the other is lower. If the reader keeps these two simple rules in mind, then
in tensor analysis, it is very difficult to write down an equation that is incorrect.
We note further that the partial covariant derivatives are themselves well-defined
tensors, so that u

j

;i is a mixed tensor of rank 2, while uj ;i is a covariant tensor
of rank 2. Also if we bear in mind the two formulae (11.20) with the plus sign for
contravariant vectors and the minus sign for convariant vectors, then we may readily
write down the partial covariant derivative of a tensor of any rank. For example, for
the mixed tensor of rank 3 A

ij
k , which is contravariant in two indices and covariant in
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one, we have two plus signs and one minus sign, and the partial covariant derivative
is given by the formula

A
ij

k;m = ∂A
ij
k

∂xm
+ �

j
mnA

in
k + �i

pmA
pj
k − �

q
mkA

ij
q . (11.21)

Christoffel Symbols of the First Kind [ij , k] The Christoffel symbols of the
second kind �k

ij are defined in terms of the metric tensor gij and the conjugate

metric tensor gij through the Christoffel symbols of the first kind [ij, k], which are
defined in terms the partial derivatives of the metric tensor, thus

[ij, k] = 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)
, (11.22)

and these are related to the Christoffel symbols of the second kind through the
formulae

[ij, k] = gkm�m
ij , �k

ij = gkn[ij, n],

and are such that both symbols are symmetric with respect to the paired indices,
thus

[ij, k] = [ji, k], �k
ij = �k

ji .

Partial Covariant Derivatives of Metric Tensors Are Zero: gij ;k = 0 and g
ij

;k =
0 The definition of the Christoffel symbols in terms of the metric tensor gij and
the conjugate metric tensor gij is such that the partial covariant derivatives of all
components of the metric tensor and its conjugate vanish, thus gij ;k = 0 and g

ij

;k =
0. In order to formally prove these important results, we proceed as follows:

gij ;k = ∂gij

∂xk
− �m

jkgim − �n
ikgjn = ∂gij

∂xk
− gmp[jk, p]gim − gnq [ik, q]gjn,

= ∂gij

∂xk
− δ

p
i [jk, p] − δ

q
j [ik, q] = ∂gij

∂xk
− [jk, i] − [ik, j ],

= ∂gij

∂xk
− 1

2

(
∂gji

∂xk
+ ∂gik

∂xj
− ∂gjk

∂xi

)
− 1

2

(
∂gij

∂xk
+ ∂gjk

∂xi
− ∂gik

∂xj

)
,

= 0,
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and similarly for the conjugate metric tensor, we have

g
ij

;k = ∂gij

∂xk
+ �i

mkg
jm + �

j
nkg

in = ∂gij

∂xk
+ gip[mk, p]gjm + gjq [nk, q]gin,

= ∂gij

∂xk
+ gipgjm

2

(
∂gmp

∂xk
+ ∂gkp

∂xm
− ∂gmk

∂xp

)
+ gjqgin

2

(
∂gnq

∂xk
+ ∂gkq

∂xn
− ∂gnk

∂xq

)
,

= ∂gij

∂xk
+ gipgjm

2

(
∂gmp

∂xk
+ ∂gkp

∂xm
− ∂gmk

∂xp

)
+ gipgjm

2

(
∂gpm

∂xk
+ ∂gkm

∂xp
− ∂gpk

∂xm

)
,

= ∂gij

∂xk
+ gipgjm ∂gmp

∂xk
,

where in the final term of the second last equality we have changed the repeated
indices n −→ p and q −→ m. Now on taking the partial derivative with respect to
xk of Eq. (11.6), namely gmpgpi = δi

m, the above equality becomes

g
ij

;k = ∂gij

∂xk
− gmpgjm ∂gip

∂xk
= ∂gij

∂xk
− δ

j
p

∂gip

∂xk
= 0,

and the result is established.
In order to verify the formula (11.9) for the divergence of a contravariant vector

pj , we first recall that if g denotes the determinant of the metric tensor gij , thus
g = |gij |; then, ggij is the cofactor of the element gij in the determinant, and from
the rule for differentiating determinants, we have

∂g

∂xk
= ggij ∂gij

∂xk
.

Now the partial covariant derivative of the contravariant vector pj is given by

p
j

;i = ∂pj

∂xi
+ �

j
ikp

k,

and therefore summation over the repeated index j gives

p
j

;j = ∂pj

∂xj
+ �

j
jkp

k = ∂pj

∂xj
+ gjm[jk,m]pk,

= ∂pj

∂xj
+ gjm

2

(
∂gjm

∂xk
+ ∂gkm

∂xj
− ∂gjk

∂xm

)
pk,

= ∂pj

∂xj
+ gjm

2

∂gjm

∂xk
pk = ∂pj

∂xj
+ 1

2g

∂g

∂xk
pk,

= ∂pj

∂xj
+ 1

2g

∂g

∂xj
pj = 1√

g

∂(
√

gpj )

∂xj
,
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as required. We comment that in this derivation, we have also established the
formula

�
j
jk = 1

2g

∂g

∂xk
= 1√

g

∂
√

g

∂xk
, (11.23)

where g is replaced by −g if g < 0, and this identity becomes important as a useful
check on any expressions obtained for the Chistoffel symbols of the second kind.

Formula for the Laplacian of a Scalar We may exploit the above formalism to
obtain the following useful formula for the Laplacian of a scalar function φ(xi, t),
thus

∇2φ = gikφ;ik = gik

(
∂2φ

∂xi∂xk
− �

j
ik

∂φ

∂xj

)
= 1√

g

∂

∂xk

(√
ggik ∂φ

∂xi

)
,

(11.24)

which follows, since on using the fact that the partial covariant derivatives of all
metric tensors are zero, we have

∇2φ = gikφ;ik =
(

gik ∂φ

∂xi

)
;k

= 1√
g

∂

∂xk

(√
ggik ∂φ

∂xi

)
,

where the final equality follows on using the above result for the divergence of a
contravariant vector pj , since the quantity gik∂φ/∂xi operates as a contravariant
vector. The expression (11.24) provides a convenient means to evaluate the Lapla-
cian in a particular given coordinate system.

The full import of the notions of partial covariant differentiation and Christoffel
symbols comes to fruition in the formulation of the four-dimensional theory of
general relativity, and indeed these notions are fundamental to the development of
the subject. For this reason, we briefly state some of the major results underpinning
general relativity theory. Now we have previously established that the partial
covariant derivatives of a covariant vector Ai and a covariant tensor of rank 2 Bij

are given by the formulae

Ai;j = ∂Ai

∂xj
− �k

ijAk, Bij ;k = ∂Bij

∂xk
− �m

kjBim − �n
ikBjn,

and for both partial covariant derivatives, we may take a further partial covariant
derivative Ai;jk and Bij ;km and pose the question as to the circumstances under
which these partial covariant derivatives commute. A full investigation reveals the
following relations:

Ai;jk − Ai;kj = Rm
ijkAm, Bij ;km − Bij ;mk = Rn

jkmBin + R
p
ikmBjp,
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where Rm
ijk is a tensor of rank 4 covariant in three indices and contravariant in one,

and can be shown to be given by (see, e.g. [97], page 53)

Rm
ijk = ∂�m

ik

∂xj
− ∂�m

ij

∂xk
+ �m

jn�
n
ik − �m

kp�
p
ij ,

and altogether there are five major tensors leading to the development of general
relativity as follows:

• Riemann-Christoffel tensor Rm
ijk defined above

• Covariant curvature tensor Rijkm = ginR
n
jkm

• Ricci tensor Rij = Rk
ijk

• Curvature invariant R = gijRij

• Einstein tensor Gi
j = gikRjk − Rδi

j /2

for which there are many known results and many formulae are known to exist such
as

Rijkm = 1

2

(
∂2gim

∂xj ∂xk
+ ∂2gjk

∂xi∂xm
− ∂2gik

∂xj ∂xm
− ∂2gjm

∂xi∂xk

)
(11.25)

+ gnp ([jk, n][im, p] − [jm, n][ik, p]) ,

Rijkm = ∂[jm, i]
∂xk

− ∂[jk, i]
∂xm

+ �n
jk[im, n] − �n

jm[ik, n], (11.26)

and Bianchi’s identity

Rijkm;n + Rijnk;m + Rijmn;k = 0. (11.27)

Further, we have the relation

Rij = ∂2 log
√

g

∂xi∂xj
− ∂�k

ij

∂xk
+ �m

in�
n
jm − �

p
ij

∂ log
√

g

∂xp
,

from which the symmetry Rij = Rji is apparent. We further note that on careful
inspection of (11.25), we may verify the following symmetries of the covariant
curvature tensor Rijkm, namely

Rijkm = −Rjikm, Rijkm = −Rijmk, Rijkm = Rkmij , (11.28)

Rijkm + Rikmj + Rimjk = 0.

For a proof of Bianchi’s identity and further details on these symmetries, we refer
the reader to either Spain [97] or to the Appendix of Eringen [31].
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On making use of Bianchi’s identity, by purposeful construction, the Einstein
tensor is divergence free, namely Gi

j ;i = 0 (also refer to Spain [97]). Briefly, this
may be established using the fact that all partial covariant derivatives of all metric
tensors vanish, and therefore in Bianchi’s identity (11.27), we may raise and lower
the symbols freely. Thus, from Bianchi’s identity and the above symmetries, so that
Rijmn;k = −Rijnm;k , we may deduce

Ri
jkm;n + Ri

jnk;m − Ri
jnm;k = 0,

which on contracting i and m produces

Rjk;n + Ri
jnk;i − Rjn;k = 0,

and these are referred to as the contracted Bianchi identity. A second contraction
of this identity may be shown to yield R;j = 2Rk

j ;k , which are equivalent to the

vanishing of the divergence of the Einstein tensor, namely Gi
j ;i = 0. While the

vanishing of the divergence of the Einstein tensor is a fundamental result in general
relativity, the above abbreviated derivation belies the underlying complexities
involved in demonstrating the result in a particular coordinate representation. Two
illustrative examples are provided in Sect. 11.7, and the result is also verified for the
spiral gravitating structures examined in the final section of the chapter.

In the verification of the equations Gi
j ;i = 0, sometimes it is simpler to express

the equations in terms of the covariant Einstein tensor Gij through the relations
Gi

k = gijGjk , so that on taking the partial covariant derivative with respect to xm,
we have

Gi
k;m = gijGjk;m = gij

{
∂Gjk

∂xm
− �n

mjGnk − �
p
mkGjp

}
, (11.29)

noting again that all partial covariant derivatives of the metric tensor gij and its
conjugate gij are zero. On contracting this equation, that is, setting m = i and then
summing over i, the equations Gi

j ;i = 0 become

Gi
k;i = gijGjk;i = gij

{
∂Gjk

∂xi
− �n

ijGnk − �
p
ikGjp

}
= 0, (11.30)

and the latter equality is sometimes the most convenient formulation to use. We
note that in a stress-free vacuum space, the Einstein tensor is assumed to vanish
identically, namely Gij = 0.



324 11 Coordinate Transformations, Tensors and General Relativity

11.5 Illustration for Single Space Dimension

To provide an illustration of the machinery for the above tensors, in a four-
dimensional space (x0, x1, x2, x3) = (ct, x, y, z) where (x, y, z) denote rectangu-
lar Cartesian coordinates, we consider the particular four-dimensional line element,
thus

ds2 = gij dxidxj

= a(x, t)(cdt)2 − b(x, t)(dx)2 − 2f (x, t)cdtdx − (dy)2 − (dz)2,

where a(x, t), b(x, t) and f (x, t) denote three functions to be determined from
Gi

j ;i = 0, and the indices i, j run through i, j = 0, 1, 2, 3. The metric tensor gij

has components given by

gij =

⎛
⎜⎜⎝

a(x, t) −f (x, t) 0 0
−f (x, t) −b(x, t) 0 0

0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

while the conjugate metric tensor gij has components given by

gij =

⎛
⎜⎜⎝

b(x, t)/δ −f (x, t)/δ 0 0
−f (x, t)/δ −a(x, t)/δ 0 0

0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (11.31)

where δ(x, t) is defined by δ = ab + f 2 and the determinant g = |gij | = −δ.
Using the formula (11.22) for the Christoffel symbols of the first kind [ij, k],

namely

[ij, k] = 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)
,

we may deduce the following expressions for the non-zero Christoffel symbols of
the first kind, thus

[01, 0] = 1

2

∂a

∂x
, [01, 1] = − 1

2c

∂b

∂t
, [00, 0] = 1

2c

∂a

∂t
, [11, 1] = −1

2

∂b

∂x
,

[00, 1] = −
(

1

2

∂a

∂x
+ 1

c

∂f

∂t

)
, [11, 0] =

(
1

2c

∂b

∂t
− ∂f

∂x

)
,
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noting that other non-zero components may be deduced from the symmetry [ij, k] =
[ji, k]. From these relations and the formulae �k

ij = gkn[ij, n], we may deduce that
the only non-zero Christoffel symbols of the second kind are as follows:

�0
01 = 1

2δ

(
b
∂a

∂x
+ f

c

∂b

∂t

)
, �1

01 = 1

2δ

(
a

c

∂b

∂t
− f

∂a

∂x

)
,

�0
00 = 1

2δ

(
f

∂a

∂x
+ b

c

∂a

∂t
+ 2f

c

∂f

∂t

)
, �1

00 = 1

2δ

(
a

∂a

∂x
− f

c

∂a

∂t
+ 2a

c

∂f

∂t

)
,

�0
11 = 1

2δ

(
f

∂b

∂x
+ b

c

∂b

∂t
− 2b

∂f

∂x

)
, �1

11 = 1

2δ

(
a

∂b

∂x
− f

c

∂b

∂t
+ 2f

∂f

∂x

)
.

We may make use of (11.23) to check these formulae, thus

�
j

j0 = �0
00 + �1

10

= 1

2δ

(
f

∂a

∂x
+ b

c

∂a

∂t
+ 2f

c

∂f

∂t
+ a

c

∂b

∂t
− f

∂a

∂x

)

= 1

2cδ

∂δ

∂t
,

and

�
j

j1 = �0
01 + �1

11

= 1

2δ

(
b
∂a

∂x
+ f

c

∂b

∂t
+ a

∂b

∂x
− f

c

∂b

∂t
+ 2f

∂f

∂x

)

= 1

2δ

∂δ

∂x
,

as required.
With i = k = 1 and j = m = 0, we may deduce from the symmetries of

the covariant curvature tensor Rijkm (see Eq. (11.28)) the following results R1010 =
−R0110 = R0101 and R0011 = 0, and since there is essentially only one non-zero
component, we chose to adopt R0101 and express the other non-zero components in
terms of R0101. Again with i = k = 1 and j = m = 0, we may deduce from (11.25)
the following expression for R0101 in terms of the metric tensor and the Christoffel
symbols of the first kind, thus

R0101 = 1

2

(
∂2g01

∂x1∂x0 + ∂2g10

∂x1∂x0 − ∂2g00

∂x1∂x1 − ∂2g11

∂x0∂x0

)

+ gnp ([10, n][01, p] − [11, n][00, p])
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= 1

2

(
2

∂2g01

∂x1∂x0
− ∂2g00

∂x1∂x1
− ∂2g11

∂x0∂x0

)

+ gn0 ([10, n][01, 0] − [11, n][00, 0]) + gn1 ([10, n][01, 1] − [11, n][00, 1])

= 1

2

(
2

∂2g01

∂x1∂x0
− ∂2g00

∂x12
− ∂2g11

∂x02

)

+ g00 ([10, 0][01, 0] − [11, 0][00, 0]) + g10 ([10, 1][01, 0] − [11, 1][00, 0])
+ g01 ([10, 0][01, 1] − [11, 0][00, 1]) + g11 ([10, 1][01, 1] − [11, 1][00, 1]) .

After much simplification and rearrangement, this expression can be shown to
become

R0101 = 1

2

(
1

c2

∂2b

∂t2 − 2

c

∂2f

∂x∂t
− ∂2a

∂x2

)

+ 1

4δ

{(
∂a

∂x
+ 1

c

∂f

∂t

)
∂δ

∂x
−

(
1

c

∂b

∂t
− ∂f

∂x

)
1

c

∂δ

∂t

}

+ 1

4cδ

{
a
∂(f, b)

∂(t, x)
+ b

∂(a, f )

∂(t, x)
+ f

∂(b, a)

∂(t, x)

}
,

where δ(x, t) is defined by δ = ab + f 2 and closer inspection of the final term
reveals the structure of the scalar triple product, thus

1

4cδ

{
a
∂(f, b)

∂(t, x)
+ b

∂(a, f )

∂(t, x)
+ f

∂(b, a)

∂(t, x)

}
= − 1

4cδ

∣∣∣∣∣∣∣
a b f
∂a
∂t

∂b
∂t

∂f
∂t

∂a
∂x

∂b
∂x

∂f
∂x

∣∣∣∣∣∣∣ .

We use Rjk = gimRijkm to determine the components of the Ricci tensor Rij =
Rk

ijk , thus

R00 = gimRi00m = gi0Ri000 + gi1Ri001

= g00R0000 + g10R1000 + g01R0001 + g11R1001

= g11R1001 = g11R0110 = −g11R0101,

on using the above symmetries of the covariant curvature tensor Rijkm given by
(11.28), since from Eq. (11.25) it is apparent that any component of the tensor Rijkm

with three indices coinciding must be zero. Proceeding further in this manner and
making use of (11.31) for the components the conjugate metric tensor gij , we may
show that the only non-zero components of the Ricci tensor Rjk are given by
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R00 = aR0101/δ, R10 = R01 = −f R0101/δ, R11 = −bR0101/δ,

so that the curvature invariant R = gijRij becomes

R = gijRij = g00R00 + 2g01R01 + g11R11 = 2(ab + f 2)R0101/δ
2 = 2R0101/δ,

since by definition δ(x, t) is defined by δ = ab+f 2. From the relation Gij = Rij −
Rgij /2, it is apparent that the only non-zero components of the covariant Einstein
tensor Gij arising through the term −Rgij /2 are G22 = G33 = R0101/δ with all
others identically zero, so that the equations for the vanishing of the divergence of
the Einstein tensor become simply ∂G22/∂y = 0 and ∂G33/∂z = 0, which are
trivially satisfied. In the following section, we provide some general formulae for
the Riemann and Einstein tensors applying to a particular metric of some generality.

11.6 Formulae for Ricci and Einstein Tensors

While there exist a number of exact space-times for the Einstein field equations of
general relativity, such as those listed in [42, 81, 98] and to a lesser extent in [84,
91, 107], as previously stated, in the search for further exact space-time solutions
of general relativity, the major prohibiting factors include the shear complexity of
the underlying equations and the lack of any strategic perspective that might guide
the analysis. For any given line element, the Riemann-Christoffel tensor itself has a
complicated dependence on the components of the particular assumed metric tensor.
The metric tensor for the most general four-dimensional line element involves ten
arbitrary components, which are possibly dependent upon three spatial variables and
the temporal variable.

We attempt to reduce the complexity of the problem in the determination of
exact solutions by considering a line element involving only seven arbitrary metric
tensor components, and each component is assumed to depend only on two of the
spatial variables and the temporal variable. Of course, while not completely general,
the assumed line element includes many existing exact space-time solutions of
general relativity. We show that six components of the covariant curvature tensor
act as a basis, and we present some general formulae for the Ricci and Einstein
tensors expressed in terms of these six components of the covariant curvature tensor.
In the next section, we illustrate this general formulation with two well-known
cosmological models. Although similar general metrics have been studied in the
past and it is known that the four-dimensional structure can be represented in terms
of the corresponding three-dimensional tensors (see, e.g. [30] or [42]), the present
approach differs in the sense that it involves the determination of explicit formulae.

In four-dimensional space (x0, x1, x2, x3), we consider the line element with the
particular structure,
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ds2 = gij dxidxj = g00(dx0)2 + g11(dx1)2 + g22(dx2)2 + g33(dx3)2 (11.32)

+ 2g01dx0dx1 + 2g02dx0dx2 + 2g12dx1dx2,

where x0 = ct , and we assume that the non-zero components of the metric tensor gij

depend only on x0, x1 and x2 and are independent of the x3 coordinate. Specifically,
we assume that the metric tensor has the structure

gij =

⎛
⎜⎜⎝

g00(x
0, x1, x2) g01(x

0, x1, x2) g02(x
0, x1, x2) 0

g01(x
0, x1, x2) g11(x

0, x1, x2) g12(x
0, x1, x2) 0

g02(x
0, x1, x2) g12(x

0, x1, x2) g22(x
0, x1, x2) 0

0 0 0 g33(x
0, x1, x2)

⎞
⎟⎟⎠ .

(11.33)

This particular metric, although not completely general, includes many of the
metrics for which exact space-time solutions have been determined (see, e.g. [81]).

Working Notation Now in order to undertake lengthy algebraic calculations with
this tensor, we may facilitate these manipulations and without loss of generality, we
may employ the notation (ct, x, y, z) for (x0, x1, x2, x3) and in place of the above
equations we use a notation devoid of indices, thus

ds2 = gij dxidxj = a(x, y, t)(cdt)2 − b(x, y, t)(dx)2 − h(x, y, t)(dy)2

(11.34)

− 2f (x, y, t)cdtdx − 2j (x, y, t)cdtdy − 2k(x, y, t)dxdy − m(x, y, t)(dz)2,

where a(x, y, t), b(x, y, t), f (x, y, t), h(x, y, t), j (x, y, t), k(x, y, t) and
m(x, y, t) all denote functions to be ultimately determined from the Einstein
equations Gi

j ;i = 0, and the indices i, j here run through i, j = 0, 1, 2, 3. Thus, the
metric tensor gij has components given by

gij =

⎛
⎜⎜⎝

a(x, y, t) −f (x, y, t) −j (x, y, t) 0
−f (x, y, t) −b(x, y, t) −k(x, y, t) 0
−j (x, y, t) −k(x, y, t) −h(x, y, t) 0

0 0 0 −m(x, y, t)

⎞
⎟⎟⎠ , (11.35)

while the conjugate metric tensor gij has components given by

gij =

⎛
⎜⎜⎝

m(k2 − bh)/g∗ m(f h − jk))/g∗ m(bj − f k)/g∗ 0
m(f h − jk))/g∗ m(ah + j2)/g∗ −m(ak + jf )/g∗ 0
m(bj − f k)/g∗ −m(ak + jf )/g∗ m(f 2 + ab)/g∗ 0

0 0 0 −1/m

⎞
⎟⎟⎠ ,

where g∗(x, y, t) is the determinant g∗ = |gij | given by
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g∗ = m(ak2 + 2jkf − abh − bj2 − hf 2),

and we emphasise that the specific line element (11.34) with the symbols (x, y, z)

is for working purposes only and that they do not necessarily represent rectangular
Cartesian coordinates and might represent any three-dimensional spatial coordinates
(x1, x2, x3).

The assumptions underlying the metric tensor gij mean that in many respects,
and specifically in terms of the conjugate metric tensor gij , the three-dimensional
and four-dimensional problems uncouple and the conjugate metric tensor becomes

gij =

⎛
⎜⎜⎝

(bh − k2)/g (jk − f h))/g (f k − bj)/g 0
(jk − f h))/g −(ah + j2)/g (ak + jf )/g 0
(f k − bj)/g (ak + jf )/g −(f 2 + ab)/g 0

0 0 0 −1/m

⎞
⎟⎟⎠ ,

where g(x, y, t) is the three-dimensional determinant g = |gij | given by

g = abh + bj2 + hf 2 − ak2 − 2jkf,

and g∗ = g33g.

Christoffel Symbols of the First Kind [ij, k] Using the standard formula for the
Christoffel symbols of the first kind [ij, k], namely

[ij, k] = 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)
,

we may deduce the following expressions for the non-zero Christoffel symbols of
the first kind in a straightforward manner, thus

[00, 0] = 1

2

∂g00

∂x0 , [00, 1] =
(

∂g01

∂x0 − 1

2

∂g00

∂x1

)
, [00, 2] =

(
∂g02

∂x0 − 1

2

∂g00

∂x2

)
,

[11, 0] =
(

∂g01

∂x1 − 1

2

∂g11

∂x0

)
, [11, 1] = 1

2

∂g11

∂x1 , [11, 2] =
(

∂g12

∂x1 − 1

2

∂g11

∂x2

)
,

[22, 0] =
(

∂g02

∂x2 − 1

2

∂g22

∂x0

)
, [22, 1] =

(
∂g12

∂x2 − 1

2

∂g22

∂x1

)
, [22, 2] = 1

2

∂g22

∂x2 ,

[01, 0] = 1

2

∂g00

∂x1 , [01, 1] = 1

2

∂g11

∂x0 , [01, 2] = 1

2

(
∂g02

∂x1 + ∂g12

∂x0 − ∂g01

∂x2

)
,

[02, 0] = 1

2

∂g00

∂x2
, [02, 1] = 1

2

(
∂g01

∂x2
+ ∂g12

∂x0
− ∂g02

∂x1

)
, [02, 2] = 1

2

∂g22

∂x0
,

[12, 0] = 1

2

(
∂g02

∂x1
+ ∂g01

∂x2
− ∂g12

∂x0

)
, [12, 1] = 1

2

∂g11

∂x2
, [12, 2] = 1

2

∂g22

∂x1
,
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which in terms of the working symbols become

[00, 0] = 1

2c

∂a

∂t
, [00, 1] = −

(
1

2

∂a

∂x
+ 1

c

∂f

∂t

)
, [00, 2] = −

(
1

2

∂a

∂y
+ 1

c

∂j

∂t

)
,

[11, 0] =
(

1

2c

∂b

∂t
− ∂f

∂x

)
, [11, 1] = −1

2

∂b

∂x
, [11, 2] =

(
1

2

∂b

∂y
− ∂k

∂x

)
,

[22, 0] =
(

1

2c

∂h

∂t
− ∂j

∂y

)
, [22, 1] =

(
1

2

∂h

∂x
− ∂k

∂y

)
, [22, 2] = −1

2

∂h

∂y
,

[01, 0] = 1

2

∂a

∂x
, [01, 1] = − 1

2c

∂b

∂t
, [01, 2] = 1

2

(
∂f

∂y
− ∂j

∂x
− 1

c

∂k

∂t

)
,

[02, 0] = 1

2

∂a

∂y
, [02, 1] = 1

2

(
∂j

∂x
− ∂f

∂y
− 1

c

∂k

∂t

)
, [02, 2] = − 1

2c

∂h

∂t
,

[12, 0] = −1

2

(
∂j

∂x
+ ∂f

∂y
− 1

c

∂k

∂t

)
, [12, 1] = −1

2

∂b

∂y
, [12, 2] = −1

2

∂h

∂x
,

noting that other non-zero components may be deduced from the symmetry [ij, k] =
[ji, k], and with the convention that i and j immediately below refer only to 0, 1, 2,
we have

[ij, 3] = [3i, j ] = 0, [3i, 3] = −1

2

∂m

∂xi
, [33, i] = 1

2

∂m

∂xi
.

Christoffel Symbols of the Second Kind �k
ij The Christoffel symbols of the

second kind are more complicated, and we derive the following formulae as follows.
From the above 4 × 4 matrix, we formulate the 3 × 3 matrix

gij =
⎛
⎝g00 g01 g02

g01 g11 g12

g02 g12 g22

⎞
⎠ , (11.36)

and we assign g to be the determinant of this matrix, so that g∗ = |gij | = gg33.
Basically, in terms of the index-free notation, we need to individually calculate
each of the Christoffel symbols of the second kind using the above formulae for
the Christoffel symbols of the first kind along with the formulae �k

ij = gkn[ij, n].
Having undertaken these extensive algebraic calculations, it becomes apparent that
we may express the final formulae for each of the non-zero Christoffel symbols
of the second kind �k

ij in terms of three 3 × 3 determinants, two of positive sign
and one of negative sign, no doubt emanating from the corresponding signatures
involved in the three terms in the Christoffel symbols of the first kind [ij, k]. With
the designation of i, j and k as in the symbol �k

ij , we proceed as follows:



11.6 Formulae for Ricci and Einstein Tensors 331

• In each of the three determinants, we delete the kth row.
• In one of the determinants of positive sign, we replace the kth row by

(∂gi0/∂xj , ∂gi1/∂xj , ∂gi2/∂xj ).
• In the other determinant of positive sign, we replace the kth row by

(∂gj0/∂xi, ∂gj1/∂xi, ∂gj2/∂xi).
• In the determinant of negative sign, we replace the kth row by

(∂gij /∂x0, ∂gij /∂x1, ∂gij /∂x2).
• Each of the three determinants is weighted with a factor 1/2g.
• In the event that i = j , the two determinants of positive sign coincide and merge

to produce one determinant of positive sign of weight 1/g.

The final expressions are as follows:

�0
00 = 1

g

∣∣∣∣∣∣∣
∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
∂g00
∂x0

∂g00
∂x1

∂g00
∂x2

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ ,

�1
00 = 1

g

∣∣∣∣∣∣∣
g00 g01 g02
∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

g20 g21 g22

∣∣∣∣∣∣∣ − 1

2g
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g00 g01 g02
∂g00
∂x0

∂g00
∂x1

∂g00
∂x2

g20 g21 g22

∣∣∣∣∣∣∣ ,

�2
00 = 1

g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g00
∂x0

∂g00
∂x1

∂g00
∂x2
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�0
11 = 1

g
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∂g10
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∂g11
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∂g12
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g10 g11 g12

g20 g21 g22
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2g
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∂g11
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∂g11
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g10 g11 g12

g20 g21 g22
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�1
11 = 1

g
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g00 g01 g02
∂g10
∂x1

∂g11
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∂g12
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g20 g21 g22
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2g
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�2
11 = 1

g
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g00 g01 g02

g10 g11 g12
∂g10
∂x1

∂g11
∂x1

∂g12
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∣∣∣∣∣∣∣ − 1

2g
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g00 g01 g02

g10 g11 g12
∂g11
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∣∣∣∣∣∣∣ ,
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�0
22 = 1

g
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∂g20
∂x2

∂g21
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∂g22
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g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ − 1

2g
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∂g22
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�2
02 = 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x0

∂g21
∂x0

∂g22
∂x0

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g00
∂x2

∂g01
∂x2

∂g02
∂x2

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x0

∂g20
∂x1

∂g20
∂x2

∣∣∣∣∣∣∣ ,

�0
12 = 1

2g

∣∣∣∣∣∣∣
∂g20
∂x1

∂g21
∂x1

∂g22
∂x1

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
∂g10
∂x2

∂g11
∂x2

∂g12
∂x2

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
∂g21
∂x0

∂g21
∂x1

∂g21
∂x2

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ ,

�1
12 = 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g20
∂x1

∂g21
∂x1

∂g22
∂x1

g20 g21 g22

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g10
∂x2

∂g11
∂x2

∂g12
∂x2

g20 g21 g22

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g21
∂x0

∂g21
∂x1

∂g21
∂x2

g20 g21 g22

∣∣∣∣∣∣∣ ,

�2
12 = 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x1

∂g21
∂x1

∂g22
∂x1

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g10
∂x2

∂g11
∂x2

∂g12
∂x2

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g21
∂x0

∂g21
∂x1

∂g21
∂x2

∣∣∣∣∣∣∣ .

Since these expressions involve the scalar triple product, no doubt there exists any
number of equivalent alternative expressions dependent upon one’s own personal
preferences. We may use the well-known formula

�
j
ij = 1

2g

∂g

∂xi
,

to check the above expressions obtained for the Chistoffel symbols of the second
kind. These calculations are not entirely trivial, and for purposes of illustration, the
proof for the particular value i = 0 is as follows. On writing the identity out in full
for i = 0, we have

�
j

0j = �0
00 + �1

01 + �2
02,

and from the above formulae, we obtain

�
j
ij

= 1

2g

∣∣∣∣∣∣∣
∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
∂g00
∂x0

∂g00
∂x1

∂g00
∂x2

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣
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+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g10
∂x0

∂g11
∂x0

∂g12
∂x0

g20 g21 g22

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g00
∂x1

∂g01
∂x1

∂g02
∂x1

g20 g21 g22

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g10
∂x0

∂g10
∂x1

∂g10
∂x2

g20 g21 g22

∣∣∣∣∣∣∣
+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x0

∂g21
∂x0

∂g22
∂x0

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g00
∂x2

∂g01
∂x2

∂g02
∂x2

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x0

∂g20
∂x1

∂g20
∂x2

∣∣∣∣∣∣∣ ,

where we have specifically written the first term of this equation as two identical
terms, so that the sum of the first three terms on the left-hand side gives the desired
result as the partial derivative of g with respect to x0 divided by 2g, and it is left
to show that the remaining six terms are zero. This is most easily achieved using
the permutation symbols εijk and the summation convention. In this notation, the
determinant g of the 3 × 3 metric tensor becomes g = εijkg0ig1j g2k , and the
six determinants in the above expression that are required to be shown to be zero
become

1

2g

∣∣∣∣∣∣∣
∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
∂g00
∂x0

∂g00
∂x1

∂g00
∂x2

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g00
∂x1

∂g01
∂x1

∂g02
∂x1

g20 g21 g22

∣∣∣∣∣∣∣

− 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g10
∂x0

∂g10
∂x1

∂g10
∂x2

g20 g21 g22

∣∣∣∣∣∣∣ + 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g00
∂x2

∂g01
∂x2

∂g02
∂x2

∣∣∣∣∣∣∣ − 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x0

∂g20
∂x1

∂g20
∂x2

∣∣∣∣∣∣∣
= εijk

2g

(
∂g0i

∂x0
g1j g2k + g0i

∂g0j

∂x1
g2k + g0ig1j

∂g0k

∂x2

)

− εijk

2g

(
∂g00

∂xi
g1j g2k + g0i

∂g10

∂xj
g2k + g0ig1j

∂g20

∂xk

)

= εijk

2g

{(
∂g0i

∂x0
− ∂g00

∂xi

)
g1j g2k +

(
∂g0j

∂x1
− ∂g10

∂xj

)
g0ig2k +

(
∂g0k

∂x2
− ∂g20

∂xk

)
g0ig1j

}

= 1

2g

{(
∂g01

∂x0
− ∂g00

∂x1

)
(g12g20 − g10g22) +

(
∂g02

∂x0
− ∂g00

∂x2

)
(g10g21 − g11g20)

}

+ 1

2g

{(
∂g00

∂x1
− ∂g10

∂x0

)
(g02g21 − g01g22) +

(
∂g02

∂x1
− ∂g10

∂x2

)
(g01g20 − g00g21)

}

+ 1

2g

{(
∂g00

∂x2
− ∂g20

∂x0

)
(g01g12 − g02g11) +

(
∂g01

∂x2
− ∂g20

∂x1

)
(g02g10 − g00g12)

}
,

each term of which can be seen to have a corresponding term that cancels, and
therefore, the sum total produces zero as required, and a similar proof can be
presented for i = 1 and i = 2.
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Christoffel Symbols of the Second Kind �k
ij Involving the Index 3 For the

Christoffel symbols of the second kind involving the index 3, we again assume
that the indices i and j immediately below refer only to 0, 1, 2, and we have the
following formulae:

�3
ij = g3n[ij, n] = g33[ij, 3] = 0,

�i
33 = gin[33, n] = gij [33, j ] = −gij

2

∂g33

∂xj
,

�3
3j = g3n[3j, n] = g33[3j, 3] = g33

2

∂g33

∂xj
= 1

2g33

∂g33

∂xj
,

and we observe that these expressions are entirely consistent with the extended
identity

�
j
ij = �0

i0 + �1
i1 + �2

i2 + �3
i3 = 1

2g

∂g

∂xi
+ 1

2g33

∂g33

∂xi
= 1

2g∗
∂g∗

∂xi
,

where g∗ is the determinant of the 4 × 4 matrix and g∗ = |gij | = gg33, and the
derived identity is as might be expected.

Covariant Curvature Tensor Rijkm The metric tensor (11.32) (see also (11.34))
has been purposely chosen so that there is an uncoupling of certain aspects
of the three-dimensional problem (x0, x1, x2) and the four-dimensional problem
(x0, x1, x2, x3). Thus, with i, j, k and m restricted to 0, 1 and 2, other than those
connected through the symmetries (11.28), there are essentially only six non-
zero components of the covariant curvature tensor Rijkm, which here we adopt
to be R0101, R0202, R1212, R0112, R0120 and R2012. As far as the author is aware,
there is no immediate way to identify the trivial components of the covariant
curvature tensor Rijkm, other than close inspection of the assumed metric tensor
and (11.25) or (11.27) along with the known symmetries (11.28), so for the sake of
completeness, these components are listed below. From the assumed metric tensor
and either Eqs. (11.25) or (11.27), we may verify that the following components of
the following components of the covariant curvature tensor Rijkm are all zero, thus

R0000 = R0001 = R0002 = R0111 = R0222 = R0010

= R0011 = R0012 = R0020 = R0021 = R0022 = R0122

= R1000 = R1110 = R1111 = R1112 = R1222 = R1011

= R1022 = R1120 = R1121 = R1122 = R2000 = R2111

= R2220 = R2221 = R2222 = R2011 = R2022 = R2122 = 0,

while through the symmetries (11.28), we have the results:
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R0110 = R1001 = −R0101, R1010 = R0101,

R0220 = R2002 = −R0202, R2020 = R0202,

R1221 = R2112 = −R1212, R2121 = R1212,

R0121 = R1012 = −R0112, R1021 = R2110 = R0112,

R0102 = R2010 = −R0120, R1002 = R2001 = R0120,

R0212 = R2120 = −R2012, R2012 = R1220 = R2012.

Now following similar lines, and with i, j, k and m still restricted to 0, 1 and 2, we
may show that for the covariant curvature tensor Rijkm involving the index 3, we
have the following results

R3jkm = Ri3km = Rij3m = Rijk3 = R33km = Rij33 = 0,

Rj3k3 = R3j3k = −R3jk3,

where R3jk3 is given by

R3jk3 = 1

2

(
∂2g33

∂xj ∂xk
− �

p
jk

∂g33

∂xp

)
− g33

4

∂g33

∂xj

∂g33

∂xk
,

and since g33 = 1/g33, it is apparent that

R3jk3 = √
g33

(
∂2√g33

∂xj ∂xk
− �

p
jk

∂
√

g33

∂xp

)
,

or

R3jk3 = −√−g33

(
∂2√−g33

∂xj ∂xk
− �

p
jk

∂
√−g33

∂xp

)
,

in the event that g33 < 0.
The components R3jk3 involve another six non-zero components of the covariant

curvature tensor Rijkm arising from j, k = 0, 1, 2, which contribute to the Ricci
tensor through Rjk = Rn

jkn = gimRijkm = g33R3jk3, thus

Rjk = g33R3jk3 = 1√
g33

(
∂2√g33

∂xj ∂xk
− �

p
jk

∂
√

g33

∂xp

)
,

and to the curvature invariant R = gjkRjk = gimgjkRijkm through the term R∗
given by
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R∗ = gjkg33R3jk3 + gimg33Ri33m = 2gjkg33R3jk3,

which becomes

R∗ = 2gjk

√
g33

(
∂2√g33

∂xj ∂xk
− �

p
jk

∂
√

g33

∂xp

)
= 2∇2√g33√

g33
,

where ∇2 is the conventional generalised Laplacian associated with the three-
dimensional coordinates (x0, x1, x2), namely

∇2 = gjk

(
∂2

∂xj ∂xk
− �

p
jk

∂

∂xp

)
.

In general, there are overall 12 essentially independent non-zero components of
the covariant curvature tensor Rijkm, which act as a basis in which we might express
the Ricci tensor and Einstein tensor components Rjk and Gjk and the curvature
invariant R, and we now proceed to do precisely this. As far as the author is aware,
in order to deduce the final expressions, there is no approach other than by direct
individual calculations, since each of the 12 curvature tensor components are not
readily characterised in some general way. By way of illustration, we start with the
calculation for R00, thus

R00 = gimRi00m

= g11R1001 + g12R1002 + g21R2001 + g22R2002 + g33R3003

= −g11R0101 + g12R0120 + g21R0120 − g22R0202 + g33R3003

= −g11R0101 + 2g12R0120 − g22R0202 + g33R3003,

and proceeding similarly, we may deduce the following expressions:

R00 = −g11R0101 + 2g12R0120 − g22R0202 + g33R3003, (11.37)

R11 = −g00R0101 + 2g02R0112 − g22R1212 + g33R3113,

R22 = −g00R0202 + 2g01R2012 − g11R1212 + g33R3223,

R01 = g10R0101 − g12R0112 − g20R0120 + g22R2012 + g33R3013,

R02 = −g10R0120 + g11R0112 + g20R0202 − g21R2012 + g33R3023,

R12 = −g00R0102 − g01R0112 − g20R2012 + g21R1212 + g33R3123,

and R33 = gimRi33m = R∗g33/2. Now on forming the curvature invariant R =
gjkRjk = gimgjkRijkm, the x3 spatial direction contributes both through the terms
R3jk3 in the above relations and through the term R33, and we have
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R = g00R00 + g11R11 + g22R22 + 2g01R01 + 2g02R02 + 2g12R12 + R∗,
(11.38)

where R∗ = g33gjkR3jk3 + gimg33Ri33m = 2gjkg33R3jk3 is the total contribution
to the curvature invariant arising from the x3 spatial dimension and the summations
over j and k in this expression are restricted to 0, 1, 2. On using the above
expressions for the Ricci tensor components Rjk , we find that

R = R∗

− 2[(g00g11 − g01g01)R0101 + (g00g22 − g02g02)R0202 + (g11g22 − g12g12)R1212

− 2(g00g12 − g20g10)R0120 − 2(g11g02 − g01g12)R0112 − 2(g22g10 − g02g21)R2012].

Now by direct calculation or otherwise, we may deduce the formulae

g00g11 − g01g01 = g22

g
, g00g22 − g02g02 = g11

g
, g11g22 − g12g12 = g00

g
,

g00g12 − g20g10 = −g12

g
, g11g20 − g01g12 = −g02

g
, g22g10 − g02g12 = −g01

g
,

where g is the determinant of the 3 × 3 matrix (11.36), and from Eqs. (11.37) and
(11.38), we may eventually deduce the expression for the curvature invariant R,
namely

R = 2(gmnR3mn3)/g33 (11.39)

− 2(g00R1212 + g11R0202 + g22R0101 + 2g12R0120 + 2g02R1021 + 2g01R2012)/g,

where g∗ = gg33 is the determinant of the 4×4 matrix given by (11.33), and the first
term in this expression can be alternatively written as simply R∗ = 2gjkg33R3jk3,
and R∗ is the contribution to the curvature invariant R arising from the x3 spatial
direction.

We are now in a position to evaluate the Einstein tensor from Gij = Rij −
Rgij/2, and to achieve this, we need the particular relations

g11g22

g
− g00 = g12g12

g
,

g00g22

g
− g11 = g02g02

g
,

g00g11

g
− g22 = g01g01

g
,

g02g12

g
− g01 = g01g22

g
,

g01g12

g
− g02 = g02g11

g
,

g01g02

g
− g12 = g00g12

g
.

On combining these relations with the above Eqs. (11.37) and (11.38), we may
deduce the following equations for the Einstein tensor Gij = Rij − Rgij/2, thus

G00 = g02g02

g
R0101 + g01g01

g
R0202 + g00g00

g
R1212 + 2g01g02

g
R0120 (11.40)
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+ 2g00g02

g
R0112 + 2g00g01

g
R2012 − R∗

2
g00 + g33R3003,

G11 = g12g12

g
R0101 + g11g11

g
R0202 + g01g01

g
R1212 + 2g01g12

g
R0112

+ 2g11g12

g
R0120 + 2g11g01

g
R2012 − R∗

2
g11 + g33R3113,

G22 = g22g22

g
R0101 + g12g12

g
R0202 + g02g02

g
R1212 + 2g12g22

g
R0120

+ 2g22g02

g
R0112 + 2g12g02

g
R2012 − R∗

2
g22 + g33R3223,

G01 = g02g12

g
R0101 + g01g11

g
R0202 + g00g01

g
R1212 + (g00g12 + g01g02)

g
R0112

+ (g11g02 + g01g12)

g
R0120 + (g00g11 + g01g01)

g
R2012 − R∗

2
g01 + g33R3013,

G02 = g02g22

g
R0101 + g01g12

g
R0202 + g00g02

g
R1212 + (g00g22 + g02g02)

g
R0112

+ (g01g22 + g02g12)

g
R0120 + (g00g12 + g01g02)

g
R2012 − R∗

2
g02 + g33R3023,

G12 = g12g22

g
R0101 + g12g11

g
R0202 + g01g02

g
R1212 + (g01g22 + g02g12)

g
R0112

+ (g11g22 + g12g12)

g
R0120 + (g11g02 + g01g12)

g
R2012 − R∗

2
g12 + g33R3123,

and G33 = R33 −Rg33/2 = (R∗ −R)g33/2 and all other components involving the
index 3, namely G3j for j = 0, 1, 2 are zero.

Now from the expressions for the Einstein tensor Gi
j = gikRjk − Rδi

j /2, it is
immediately apparent that the trace G = R − 2R = −R, and we can use this result
to check the veracity of the above expressions for Gij as follows. In the summation
G = gjkGjk and because of the essentially three-dimensional nature of the tensors
involved, we first need to perform the summation over j, k = 0, 1, 2, and then
we have to include the term involving G33. Further, each of the above expressions
involve three types of terms: the terms involving the six non-zero components of the
covariant curvature tensor Rijkm, which are R0101, R0202, R1212, R0112, R0120 and
R2012, and then the two terms −R∗gjk/2 and g33R3jk3.

First, we examine the contribution to G = gikGjk arising from the six terms
R0101, R0202, R1212, R0112, R0120 and R2012, and for purposes of illustration, we
examine the contribution from the term R0101, which becomes

(g00g02g02 + g11g12g12 + g22g22g22 + 2g01g02g12
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+ 2g02g02g22 + 2g12g12g22)
R0101

g
,

which we may reorganise as

[(g02(g
00g02 + g01g12 + g02g22) + g12(g

01g02 + g11g12 + g12g22)

+ g22(g
02g02 + g12g12 + g22g22)]R0101

g
,

so that on using gikgkj = δi
j , this term becomes simply g22R0101/g. Similarly,

we may show that the contribution arising from the six terms R0101, R0202, R1212,
R0112, R0120 and R2012 becomes

(g00R1212 + g11R0202 + g22R0101 + 2g12R0120 + 2g02R1021 + 2g01R2012)/g,

which from (11.39) we can identify as simply (R∗−R)/2. Thus, the total summation
becomes

G = gjkGjk = (R∗ − R)

2
− R∗

2
gjkgjk + g33gjkR3jk3 + g33G33,

= (R∗ − R)

2
− 3R∗

2
+ R∗

2
+ (R∗ − R)

2
= −R,

as required.
Although not particularly illuminating or insightful, with i, j and k all distinct

and taking on only the values 0, 1 and 2, and with no summation over repeated
indices, these formulae can be formally summarised by the following expressions:

Gii = gij gij

g
Rkiki + gikgik

g
Rijij + giigii

g
Rkjkj + 2gij gik

g
Rkiij

+ 2giigij

g
Rikkj + 2giigik

g
Rjkij − R∗

2
gii + g33R3ii3,

Gij = gikgjk

g
Rijij + gij gii

g
Rkjkj + gij gjj

g
Rkiki + (giigjj + gij gij )

g
Rkijk

+ (gkigjj + gij gkj )

g
Rkiij + (gkj gii + gij gki)

g
Rkjji − R∗

2
gij + g33R3ij3.

11.7 Two Illustrative Line Elements

Illustration (i) As an illustration of these results, we consider the simple wormhole
geometry of [79], which is given by the four-dimensional line element, thus
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ds2 = (cdt)2 − (dρ)2 − (b2 + ρ2)(dθ)2 − (b2 + ρ2) sin2 θ(dφ)2,

where b is the throat radius and (ρ, θ, φ) are the usual spherical polar coordinates,
so that in this case, we have (x0, x1, x2, x3) = (ct, ρ, θ, φ) and the metric and
conjugate metric tensors are given, respectively, by

gij =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −(b2 + ρ2) 0
0 0 0 −(b2 + ρ2) sin2 θ

⎞
⎟⎟⎠ ,

and

gij =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 − 1

(b2+ρ2)
0

0 0 0 − 1
(b2+ρ2) sin2 θ

⎞
⎟⎟⎟⎠ ,

where the determinants g∗ = −(b2 + ρ2)2 sin2 θ and g = (b2 + ρ2). The non-zero
Christoffel symbols of the first kind are

[22, 1] = ρ, [12, 2] = −ρ, [33, 1] = ρ sin2 θ, [31, 3] = −ρ sin2 θ,

[33, 2] = (b2 + ρ2) sin θ cos θ, [32, 3] = −(b2 + ρ2) sin θ cos θ,

and from these relations and Eq. (11.25), we may deduce the following non-zero
components of the covariant curvature tensor Rijkm, thus

R1212 = −1

2

∂2g22

∂x12 + g22[12, 2][12, 2] = 1 − ρ2

(b2 + ρ2)
= b2

(b2 + ρ2)
,

R3113 = 1

2

∂2g33

∂x12 − g33[13, 3][13, 3] = − sin2 θ + ρ2 sin2 θ

(b2 + ρ2)
= − b2 sin2 θ

(b2 + ρ2)
,

R3223 = 1

2

∂2g33

∂x22
+ g11[22, 1][33, 1] − g33[23, 3][23, 3]

= (b2 + ρ2)(sin2 θ − cos2 θ) − ρ2 sin2 θ + (b2 + ρ2) cos2 θ = b2 sin2 θ.

The latter two components result in a net zero contribution to the curvature invariant
arising from the x3 spatial direction, since

R∗ = 2g33(g11R3113 + g22R3223) = 2

(b2 + ρ2) sin2 θ

(
− b2 sin2 θ

(b2 + ρ2)
+ b2 sin2 θ

(b2 + ρ2)

)
= 0,
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so that only the component R1212 contributes to the curvature invariant R through
the term −2g00R1212/g, and we have simply R = −2b2/(b2 + ρ2)2.

From the relations (11.40), we find that the only non-zero components of the
Einstein tensor Gij become

G00 = g00g00

g
R1212 = b2

(b2 + ρ2)2 , G11 = g33R3113 = b2

(b2 + ρ2)2 ,

G22 = g33R3223 = − b2

(b2 + ρ2)
, G33 = −Rg33

2
= − b2 sin2 θ

(b2 + ρ2)
,

where G33 originates from the expression G33 = R33 − Rg33/2 = (R∗ − R)g33/2
with R∗ = 0 and noting that correctly G = gijGij = −R. On noting that the only
non-zero Christoffel symbols of the second kind are

�2
12 = ρ

(b2 + ρ2)
, �3

13 = ρ

(b2 + ρ2)
, �1

22 = ρ,

�1
33 = −ρ sin2 θ, �2

33 = − sin θ cos θ, �3
23 = cot θ,

the above expressions for the Einstein tensor can be shown to satisfy the divergence
free equations Gi

k;i = 0 in the form of Eqs. (11.35); thus, we have

Gi
k;i = gijGjk;i = gij

{
∂Gjk

∂xi
− �n

ijGnk − �
p
ikGjp

}
= 0,

and for k = 1 we obtain

Gi
k;i = gij

{
∂Gj1

∂xi
− �n

ijGn1 − �
p

i1Gjp

}

=
{
−∂G11

∂ρ
− gij�1

ijG11 − gij�2
i1Gj2 − gij�3

i1Gj3

}

= −
{

∂G11

∂ρ
+ g22�1

22G11 + g33�1
33G11 + g22�2

21G22 + g33�3
31G33

}

= −
{

∂G11

∂ρ
+ 2ρ

(b2 + ρ2)
G11 − ρ

(b2 + ρ2)2

(
G22 + G33

sin2 θ

)}
,

which on performing the differentiation can be shown to be identically zero, and
similarly the three equations Gi

k;i = 0 arising from k = 0, 2 and 3 can be shown
to be trivially satisfied. The reader may be comforted to know that these results are
not completely apparent and are consequences of the particular diagonal structure
of the tensor Gij and the particular non-zero Christoffel symbols of the second kind
and the reader may need to give each equation a close examination before being
convinced.
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Illustration (ii) As a second illustration of the results of the previous section, we
consider the Einstein universe given by the four-dimensional line element, thus

ds2 = (cdt)2 − (dr)2

(1 − (r/R)2)
− r2(dθ)2 − r2 sin2 θ(dφ)2,

where R is a constant and (r, θ, φ) are the usual spherical polar coordinates, so that
in this case, we have (x0, x1, x2, x3) = (ct, r, θ, φ) and the metric and conjugate
metric tensors are given, respectively, by

gij =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1

(1−(r/R)2)
0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎟⎠ ,

and

gij =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −(1 − (r/R)2) 0 0
0 0 − 1

r2 0
0 0 0 − 1

r2 sin2 θ

⎞
⎟⎟⎟⎠ ,

and for the determinants g∗ and g, we have g∗ = −r4 sin2 θ/(1 − (r/R)2) and
g = r2/(1 − (r/R)2). The non-zero Christoffel symbols of the first kind are

[11, 1] = − r/R2

(1 − (r/R)2)2
, [12, 2] = −r, [22, 1] = r, [33, 1] = r sin2 θ,

[31, 3] = −r sin2 θ, [33, 2] = r2 sin θ cos θ, [32, 3] = −r2 sin θ cos θ,

and from these relations and Eq. (11.25), we may deduce the following non-zero
components of the covariant curvature tensor Rijkm, thus

R1212 = −1

2

∂2g22

∂x12 + g22[12, 2][12, 2] − g11[22, 1][11, 1] = − (r/R)2

(1 − (r/R)2)
,

R3113 = 1

2

∂2g33

∂x12 + g11[33, 1][11, 1] − g33[13, 3][13, 3] = (r/R)2 sin2 θ

(1 − (r/R)2)
,

R3223 = 1

2

∂2g33

∂x22 + g11[22, 1][33, 1] − g33[23, 3][23, 3] = (r/R)2r2 sin2 θ,

R3123 = 1

2

∂2g33

∂x1∂x2 + g22[12, 2][33, 2] − g33[13, 3][23, 3] = 0.
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The two components R3113 and R3223 both contribute to the curvature invariant R∗
arising from the x3 spatial direction, thus

R∗ = 2g33(g11R3113 + g22R3223) = 2

r2 sin2 θ

(
(1 − (r/R)2)R3113 + R3223

r2

)

= 2

r2 sin2 θ

(
(r/R)2 sin2 θ + (r/R)2 sin2 θ

)
= 4

R2 ,

so that altogether along with the contribution to the curvature invariant R from the
component R1212 we have from Eq. (11.39) the following result:

R = 4

R2 + 2(1 − (r/R)2)

r2

(r/R)2

(1 − (r/R)2)
= 6

R2 ,

which is well-known.
From Eq. (11.40), we may show that the only non-zero components of the

Einstein tensor Gij become

G00 = g00g00

g
R1212 − R∗

2
g00 = − 3

R2 ,

G11 = −R∗

2
g11 + g33R3113 = 1

R2(1 − (r/R)2)
,

G22 = −R∗

2
g22 + g33R3223 = (r/R)2,

G33 = (R∗ − R)

2
g33 = (r/R)2 sin2 θ,

where G33 originates from the expression G33 = R33 − Rg33/2 = (R∗ − R)g33/2,
and again as a check, we may confirm that the above expressions correctly satisfy
G = gijGij = −6/R2 = −R. For this metric, the only non-zero Christoffel
symbols of the second kind are

�1
11 = r/R2

(1 − (r/R)2)
, �2

12 = 1

r
, �3

13 = 1

r
, �1

22 = −r(1 − (r/R)2),

�1
33 = −r sin2 θ(1 − (r/R)2), �2

33 = − sin θ cos θ, �3
23 = cot θ,

and again the above expressions for the Einstein tensor can be shown to satisfy the
divergence free equation Gi

k;i = 0 in the form of Eqs. (11.35); thus, we have

Gi
k;i = gijGjk;i = gij

{
∂Gjk

∂xi
− �n

ijGnk − �
p
ikGjp

}
= 0,
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so that for k = 1, we have

Gi
k;i = gij

{
∂Gj1

∂xi
− �n

ijGn1 − �
p

i1Gjp

}

=
{
g11 ∂G11

∂x1 − gij�1
ijG11 − gij�1

i1Gj1 − gij�2
i1Gj2 − gij�3

i1Gj3

}

=
{
g11 ∂G11

∂r
− (g11�1

11 + g22�1
22 + g33�1

33)G11 − g11�1
11G11 − g22�2

21G22 − g33�3
31G33

}
,

and again on performing the differentiation and using the above expressions for the
conjugate metric tensor and the Christoffel symbols, this equation may be shown to
be identically zero, and similarly the three equations Gi

k;i = 0 arising from k = 0, 2
and 3 can be shown to be trivially satisfied. Again, we remind the reader that none
of these outcomes are immediately obvious, and in formulating each of the results,
we constantly have in mind the particular diagonal structures of the tensors gij and
Gij and the particular non-zero Christoffel symbols of the second kind, and the
reader should give each outcome a close examination to convince themselves of its
veracity. In the final section of this chapter, we provide an example for which the
details are far more complicated.

11.8 Spiral Gravitating Structures

In this section, we examine a possible cosmological model of general relativity
involving logarithmic spirals and seven arbitrary constants. While there is consid-
erable astronomical evidence that spiral structures commonly occur in the universe,
there appear to be no known formal solutions of the general relativistic field
equations reflecting such structures. The Schwarzschild solution relates to spatially
spherically symmetric gravitational fields, while the stationary Kerr solution is
axially symmetric. However, in nonlinear continuum mechanics, formal similarity
solutions involving logarithmic spiral similarity invariants are well-known, and
indeed the most general similarity forms for isotropic materials satisfying the
principle of material indifference have been given by the author [46]. These formal
similarity solutions essentially arise from rotational invariances and invariance
under the basic length scale that is adopted. We generalise the particular Minkowski
line element given by (11.42) to the line element given by Eq. (11.41), which
involves the seven completely arbitrary constants A,B,C,D,E, F and λ. The
motivating Minkowski line element (11.42) is a special case of (11.41) that arises
from the particular values of the constants A,B,C,D,E, F and λ given by (11.43),
which satisfy the three relations (11.44).

Below we show that solutions of the Einstein vacuum equations that might
involve logarithmic spirals as a similarity variable arise from the essentially two-
dimensional (spatially) metric given by
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(ds)2 = (1 − λr2)(cdt)2 − A(dr)2 − Br2(dθ)2 − 2Crdrcdt (11.41)

− 2Dr2dθcdt − 2Erdrdθ − F(dz)2,

where (x0, x1, x2, x3) = (ct, r, θ, z), (r, θ, z) denote the usual cylindrical polar
coordinates and where A,B,C,D,E, F and λ denote seven arbitrary constants, in
principle, to be determined from the general relativistic field equations. We provide
a detailed verification below that the Einstein tensor for the metric (11.41) is indeed
divergence free for all values of the seven constants without additional restrictions.

From a conventional general relativistic perspective, only five of these constants
would be regarded as essential, since on face value the constants A and F can be
scaled immediately to unity, even though the special case A = 0 would have to be
considered as a separate case. From the author’s perspective, setting A = F = 1,
there is an apparent loss of symmetry and parity in the structure, and moreover as
shown in [59], reducing and simplifying the metric in this manner often closes off
opportunities to determine new solutions. We demonstrate below that the metric
(11.41) provides a formal solution of the divergence free vacuum field equations
for all values of the seven constants without additional restrictions. We comment
that while the two illustrative examples presented above are both such that the
Einstein tensor satisfies the divergence free vacuum condition, it is however non-
vanishing, and therefore, these models are considered to represent some underlying
intrinsic property of space-time that is additional to that generated from the energy-
momentum tensor. It is important to point out that the model examined here also
shares this characteristic, and formally here, we simply verify the vanishing of the
divergence of the Einstein tensor.

The particular structure of this metric is motivated as follows. In the cylindrical
polar coordinates (r, θ, z), a rotation around the z−axis is given simply by θ

′ = θ +
ωt , and therefore in order generalise this to generate logarithmic spirals, we consider
the invariant ξ = σθ + μ log r + ωt and the generalised rotational and stretching
transformation which in rectangular Cartesian coordinates (x, y, z) is given by

x = νr cos(σθ + μ log r + ωt), y = νr sin(σθ + μ log r + ωt),

combined with a constant stretch along the z−axis, thus z −→ κz, where σ,μ, ν, ω

and κ all denote arbitrary constants. From the differentials

dx = ν cos ξdr − νr sin ξ
(
σdθ + μ

r
dr + ωdt

)
,

dy = ν sin ξdr + νr cos ξ
(
σdθ + μ

r
dr + ωdt

)
,

the Minkowski line element becomes

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 (11.42)
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= (1 − (νωr/c)2)(cdt)2 − ν2(1 + μ2)(dr)2 − (νσ r)2(dθ)2 − 2(μων2/c)rdrcdt

− 2(σων2/c)r2dθcdt − 2μσν2rdrdθ − κ2(dz)2,

which evidently assumes the form of the line element (11.41) with the seven
arbitrary constants A,B,C,D,E, F and λ taking on the particular valiues

A = ν2(1 + μ2), B = (νσ )2, C = μων2/c, (11.43)

D = σων2/c, E = μσν2, F = κ2, λ = (νω/c)2.

We emphasise that subsequently we regard the seven constants A,B,C,D,E, F

and λ to be completely arbitrary, and we exploit the above particular values rather
as reference values to guide the ensuring mathematical analysis. Specifically, we
observe that these particular values satisfy the three relations,

BC − DE = 0, CD − λE = 0, D2 − λB = 0, (11.44)

and we subsequently observe these quantities emerging as factors in the analysis.
We further comment that in proposing the metric (11.41) as a potentially interesting
line element, we have in mind certain issues arising from nonlinear continuum
mechanics. If we have in mind a spiral gravitating structure, then note that the
invariant ξ = σθ + μ log r + ωt arises from both the two- and three-dimensional
spatial rotational groups and that use of this invariant has two important features.
Firstly, the constant σ �= 1 embodies more than a strict rotation and might well
on its own produce an interesting outcome. Secondly, the log r term is a natural
amendment, since it behaves formally like θ in the sense that the factor 1/r

precedes both ∂/∂θ and ∂/∂r . In finite elasticity, this characteristic is well-known
and the invariant σθ + μ log r forms the basis of an important exact solution in that
discipline, and further references to this topic may be found in [46]. Accordingly,
these two features in their own right might generate interesting and new outcomes,
but here in proposing the line element (11.41), we are adding further levels of
arbitrariness.

Again noting that (r, θ, z) are the usual cylindrical polar coordinates and
(x0, x1, x2, x3) = (ct, r, θ, z), then corresponding to (11.41) the metric tensor gij

and conjugate metric tensor gij are given, respectively, by

gij =

⎛
⎜⎜⎝

1 − λr2 −Cr −Dr2 0
−Cr −A −Er 0
−Dr2 −Er −Br2 0

0 0 0 −F

⎞
⎟⎟⎠ , (11.45)

and
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gij =

⎛
⎜⎜⎜⎝

(AB − E2)r2/g −(BC − DE)r3/g −(AD − CE)r2/g 0

−(BC − DE)r3/g −[Br2 + (D2 − λB)r4]/g [Er + (DC − λE)r3]/g 0

−(AD − CE)r2/g [Er + (DC − λE)r3]/g −[A + (C2 − λA)r2]/g 0

0 0 0 −1/F

⎞
⎟⎟⎟⎠ ,

(11.46)

where the determinant g of the three-dimensional matrix gij is given by

g = (1 − λr2)(AB − E2)r2 + (BC2 − 2CDE + AD2)r4 (11.47)

= (AB − E2)r2 + [(BC − DE)2 + (AB − E2)(D2 − λB)]r4/B,

while the determinant g∗ of the four-dimensional matrix gij is simply given by
g∗ = −Fg.

Christoffel Symbols of First Kind [ij, k] The only non-zero Christoffel symbols
of the first kind for the metric (11.41) are

[00, 1] = λr, [11, 0] = −C, [11, 2] = −E, [22, 1] = Br, [01, 0] = −λr,

(11.48)

[01, 2] = −Dr, [12, 2] = −Br, [02, 1] = Dr, [12, 0] = −Dr.

Covariant Curvature Tensor Rijkm From the relations (11.48) and Eq. (11.25),
we may deduce the following non-zero components of the covariant curvature tensor
Rijkm, thus

R0101 = −1

2

∂2g00

∂x12
+ gnp([01, n][01, p] − [11, n][00, p])

= λ + g0p[01, 0][01, p] + g2p[01, 2][01, p] − gn1[11, n][00, 1]

= λ + g00[01, 0]2 + 2g02[01, 0][01, 2] + g22[01, 2]2

− g01[11, 0][00, 1] − g12[11, 2][00, 1]

= − r2

g
[A(D2 − λB) + (DC − λE)2r2],
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R0202 = gnp([02, n][02, p] − [22, n][00, p])

= g1p([02, 1][02, p] − [22, 1][00, p])

= − r4

g
[B + (D2 − λB)r2](D2 − λB),

R1212 = −1

2

∂2g22

∂x12 + gnp([12, n][12, p] − [22, n][11, p])

= B + g00[12, 0]2 + g22[12, 2]2 + 2g02[12, 0][12, 2]
− g01[22, 1][11, 0] − g12[22, 1][11, 2]

= − r4

g
(BC − DE)2,

R2012 = gnp([01, n][22, p] − [02, n][12, p])

= gn1([01, n][22, 1] − g1p[02, 1][12, p])

= g01[01, 0][22, 1] + g21[01, 2][22, 1] − g01[02, 1][12, 0] − g12[02, 1][12, 2]

= − r5

g
(BC − DE)(D2 − λB),

R0112 = 1

2

∂2g02

∂x12 + gnp([11, n][02, p] − [12, n][01, p])

= −D + g10[02, 1][11, 0] + g21[02, 1][11, 2] − g00[12, 0][01, 0]
− g20[12, 2][01, 0] − g02[12, 0][01, 2] − g22[12, 2][01, 2]
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= r4

g
(BC − DE)(DC − λE),

R0120 = gnp([12, n][00, p] − [01, n][02, p])

= gn1([12, n][00, 1] − [01, n][02, 1])

= g01[12, 0][00, 1] + g21[12, 2][00, 1] − g01[01, 0][02, 1] − g21[01, 2][02, 1]

= r3

g
[E + (DC − λE)r2](D2 − λB),

We now introduce five new constants α, β, γ, δ and ε defined by

α = BC − DE, β = D2 − λB, γ = λE − DC,

δ = AB − E2, ε = AD − CE,

so that the above expressions for R0101, R0202, R1212, R0112, R0120 and R2012,
simplify to become

R0101 = − r2

g
(βA + γ 2r2), R0202 = − r4

g
(βB + β2r2), R1212 = − r4

g
α2,

(11.49)

R2012 = − r5

g
αβ, R0112 = − r4

g
αγ, R0120 = − r3

g
(βγ r2 − βE).

We may readily verify that the new constants satisfy

αλ + βC + γD = 0, αD + βE + γB = 0,

αC + βA + γE = AD2 + BC2 − 2CDE − λ(AB − E2),

and it proves convenient to introduce yet another new constant � defined by

� = αC + βA + γE,

so that we have the important relations

AD2 + BC2 − 2CDE = � + λδ, � = (α2 + βδ)/B,
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and, noting that in terms of these new constants, the determinant g given by
Eq. (11.47) becomes

g = δr2 + �r4 = δr2 + (α2 + βδ)r4/B.

Curvature Invariant R On using the immediately above relations together with
Eq. (11.39) and the metric tensor (11.45), we may deduce the following expression
for the curvature invariant R, thus

R = 2r4

g2

{
(α2 − 2βδ) − r2(λα2 + Aβ2 + Bγ 2 + 2Cαβ + 2Dαγ + 2Eβγ )

}
.

We may simplify the coefficient of r2 in this expression as follows:

λα2 + Aβ2 + Bγ 2 + 2Cαβ + 2Dαγ + 2Eβγ

= α(αλ + βC + γD) + β(αC + βA + γE) + γ (αD + βE + γB)

= β(αC + βA + γE) = β�,

and therefore, the above expression for the curvature invariant R becomes simply

R = 2r4

g2

{
(α2 − 2βδ) − β�r2

}
.

Einstein Tensor Gij Using the expressions (11.49) for the non-zero components
of the covariant curvature tensor Rijkm, the components of the metric tensor (11.45),
we may deduce directly from the relations (11.40) the following components of the
Einstein tensor

G00 = − r4

g2

{
α2 + β(AD2 + BC2 − 2CDE)r2

}
= − r4

g2

{
α2 + β(� + λδ)r2

}
,

(11.50)

G11 = − r4

g2

{
βA(AB − E2) + (αC + βA + γE)2r2

}
= − r4

g2 (βδA + �2r2),

(11.51)

G22 = − r6

g2

{
βB(AB − E2) + (αD + βE + γB)2r2

}
= − r6βδB

g2 , (11.52)



352 11 Coordinate Transformations, Tensors and General Relativity

G01 = − r5

g2

{
βC(AB − E2) − α(αC + βA + γE)

}
= − r5

g2
(βδC − α�),

(11.53)

G02 = − r6

g2
βD(AB − E2) = − r6βδD

g2
, G12 = − r5

g2
βE(AB − E2) = − r5βδE

g2
,

(11.54)

noting that in this case G33 = −(R/2)g33. We observe that these components can
be alternatively expressed as

G00 = βδr4

g2
g00 − r4

g2

{
α2 + β(δ + �r2)

}
, G11 = βδr4

g2
g11 − r6

g2
�2,

G22 = βδr4

g2 g22, G33 = βδr4

g2 g33 − r4

g2

{
α2 − β(δ + �r2)

}
,

G01 = βδr4

g2 g01 + α�r5

g2 , G02 = βδr4

g2 g02, G12 = βδr4

g2 g12.

We further observe that in the event � = 0, then α2 = −βδ and these expressions
simplify to become

Gij = β

δ
gij , (i, j = 0, 1, 2), G33 = 3β

δ
g33,

and R = −6β/δ, and we note that these equations are slightly reminiscent of
Einstein’s cosmological constant � for which Gij = −�gij , but of course here
the constant takes on two distinct values.

Check on Einstein Tensor We may apply a reasonably robust check on the
veracity of these individual expressions by evaluating the trace of the Einstein tensor
Gk

k = gijGij + g33G33 which should give −R. Using the above equations for Gij

and (11.46) for the components of the conjugate metric tensor, which in terms of the
new constants α, β, γ, δ and ε become

gij =

⎛
⎜⎜⎝

δr2/g −αr3/g −εr2/g 0
−αr3/g −(B + βr2)r2/g −(γ r2 − E)r/g 0
−εr2/g −(γ r2 − E)r/g −[A + (C2 − λA)r2]/g 0

0 0 0 −1/F

⎞
⎟⎟⎠ ,

and after some algebra and simplification, the contribution gijGij admits g as a
factor and simplifies as follows:
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gijGij = r6

g3

{
δ(2βδ − α2) + [B� + 2(βδ − α2)]�r2 + β�2r4

}

= r6

g3

{
δ(2βδ − α2) + (3βδ − α2)�r2 + β�2r4

}

= r6

g3 (δ + �r2)(2βδ − α2 + β�r2)

= r4

g2
(2βδ − α2 + β�r2) = −R

2
,

where we have used B� = α2 + βδ and g = r2(δ + �r2), and the required result
follows since G33 = −(R/2)g33.

Christoffel Symbols of First Kind �k
ij The non-zero Christoffel symbols of the

second kind are

�0
00 = −αλr4

g
, �1

00 = −λr3

g
(βr2 + B), �2

00 = −λr2

g
(γ r2 − E),

�0
11 = −αAr2

g
, �1

11 = r

g

{
(αC + γE)r2 − E2

}
, �2

11 = −A

g
(γ r2 − E),

�0
22 = −αBr4

g
, �1

22 = −Br3

g
(βr2 + B), �2

22 = −Br2

g
(γ r2 − E),

�0
01 = r3

g
(βA + γE), �1

01 = − r2

g
(βCr2 + DE), �2

01 = − r

g
(γCr2 − AD),

�0
02 = −αDr4

g
, �1

02 = −Dr3

g
(βr2 + B), �2

02 = −Dr2

g
(γ r2 − E),

�0
12 = −αEr3

g
, �1

12 = −Er2

g
(βr2 + B), �2

12 = r

g

{
(αC + βA)r2 + AB

}
,

and we might provide a limited check on these expressions with the well-known
formula �i

ki = (1/2g)∂g/∂xk , and for k = 0, 1, 2, we obtain

�0
00 + �1

01 + �2
02 = − r4

g
(αλ + βC + γD) = 0,

�0
10 + �1

11 + �2
12 = r

g

{
δ + 2(αC + βA + γE)r2

}
= 1

2g

∂g

∂r
,

�0
20 + �1

21 + �2
22 = − r4

g
(αD + βE + γB) = 0,

as required.
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Verification Einstein Tensor Is Divergence Free Although the Einstein tensor
is purposely constructed to be divergence free, it is often a nontrivial matter
to convince oneself that this is indeed the case, and the following provides a
demonstration of the underlying complexities and detail that are often required. In
order to verify that the metric (11.41) produces a divergence free Einstein tensor,
that is, the equations Gi

j ;i = 0 are indeed satisfied, we proceed as follows. Using

the relations Gi
k = gijGjk , we need the partial covariant derivative with respect to

xm, thus

Gi
k;m = gijGjk;m = gij

{
∂Gjk

∂xm
− �n

mjGnk − �
p
mkGjp

}
, (11.55)

which we contract; that is, we set m = i and then sum over i to obtain

Gi
k;i = gijGjk;i = gij

{
∂Gjk

∂xi
− �n

ijGnk − �
p
ikGjp

}
= 0. (11.56)

It is clear from these latter relations that for the problem on hand, the summations
in each equation generates a large number of terms, actually 57 separate terms in all
for each of the equations arising from k = 0, 1, 2. We observe that while the scale of
this problem may be greatly reduced with the observation that the above particular
expressions for the Einstein tensor Gij have the structure

Gij = βδψ2gij + hij , (11.57)

where ψ(r) is a function of r only that is defined by ψ(r) = r2/g and hij is the
tensor defined by

hij =

⎛
⎜⎜⎝

−ψ(β + α2ψ) αψ2�r 0 0
αψ2�r −(ψ�r)2 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

we do not however follow this approach, since there is an apparent lack of parity
in the calculation, and it turns out to be more straightforward to deal with the full
equations directly.

However, if we were to adopt this approach, then it would seem worthwhile
noting that the field equations might be manipulated as follows. On observing again
that all the partial covariant derivatives of the metric tensor gij and its conjugate
gij are zero and that the partial covariant derivative of a scalar is simply the partial
derivative, we have from (11.55) and (11.57)

Gi
k;m = βδgij gjk

∂ψ2

∂xm
+ gij

{
∂hjk

∂xm
− �n

mjhnk − �
p
mkhjp

}
,



11.8 Spiral Gravitating Structures 355

which becomes

Gi
k;m = βδδi

k

∂ψ2

∂xm
+ gij

{
∂hjk

∂xm
− �n

mjhnk − �
p
mkhjp

}
.

Further, since ψ is a function of r = x1 only, on contraction the divergence free
equations become

Gi
k;i = βδδ1

k

∂ψ2

∂x1
+ gij

{
∂hjk

∂xi
− �n

ijhnk − �
p
ikhjp

}
= 0,

which are the alternative form for the three basic equations for k = 0, 1, 2 to be
satisfied.

Proceeding directly, we observe that the three basic equations (11.56) for k =
0, 1, 2 become

g1j ∂Gjk

∂x1 = gij�n
ijGnk + gij�

p
ikGjp,

since all components Gij are functions of x1 = r only, and so

g10 ∂G0k

∂x1
+ g11 ∂G1k

∂x1
+ g12 ∂G2k

∂x1

= G0kg
ij�0

ij + G1kg
ij�1

ij + G2kg
ij�2

ij

+ gij�0
ikGj0 + gij�1

ikGj1 + gij�2
ikGj2,

and the three basic equations (11.56) for k = 0, 1, 2 when written out in full are as
given below.

Equation for k = 0 For k = 0, we have

g10 ∂G00

∂x1 + g11 ∂G10

∂x1 + g12 ∂G20

∂x1

= G00g
ij�0

ij + G10g
ij�1

ij + G20g
ij�2

ij

+ gij�0
i0Gj0 + gij�1

i0Gj1 + gij�2
i0Gj2.

On writing this equation out in full, we have

g10 ∂G00

∂x1 + g11 ∂G10

∂x1 + g12 ∂G20

∂x1 (11.58)

= G00(g
00�0

00 + g01�0
01 + g02�0

02) + G00(g
01�0

01 + g11�0
11 + g12�0

12)
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+ G00(g
02�0

02 + g12�0
12 + g22�0

22) + G10(g
00�1

00 + g01�0
01 + g02�2

02)

+ G10(g
01�1

01 + g11�1
11 + g12�1

12) + G10(g
02�1

02 + g12�1
12 + g22�1

22)

+ G20(g
00�2

00 + g01�2
01 + g02�2

02) + G20(g
01�2

01 + g11�2
11 + g12�2

12)

+ G20(g
02�2

02 + g12�2
12 + g22�2

22) + G00(g
00�0

00 + g01�0
10 + g02�0

20)

+ G10(g
10�0

00 + g11�0
10 + g12�0

20) + G20(g
20�0

00 + g21�0
10 + g22�0

20)

+ G01(g
00�1

00 + g10�1
10 + g20�1

20) + G11(g
01�1

00 + g11�1
10 + g21�1

20)

+ G21(g
02�1

00 + g12�1
10 + g22�1

20) + G02(g
00�2

00 + g10�2
10 + g20�2

20)

+ G12(g
01�2

00 + g11�2
10 + g12�2

20) + G22(g
02�2

00 + g21�2
10 + g22�2

20).

Equation for k = 1 Similarly, the corresponding equation for k = 1 is

g10 ∂G01

∂x1
+ g11 ∂G11

∂x1
+ g12 ∂G21

∂x1
(11.59)

= G01(g
00�0

00 + g01�0
01 + g02�0

02) + G01(g
01�0

01 + g11�0
11 + g12�0

12)

+ G01(g
02�0

02 + g12�0
12 + g22�0

22) + G11(g
00�1

00 + g01�0
01 + g02�2

02)

+ G11(g
01�1

01 + g11�1
11 + g12�1

11) + G11(g
02�1

02 + g12�1
12 + g22�1

22)

+ G12(g
00�2

00 + g01�2
01 + g02�2

02) + G12(g
01�2

01 + g11�2
11 + g12�2

12)

+ G12(g
02�2

02 + g12�2
12 + g22�2

22) + G00(g
00�0

01 + g01�0
11 + g02�0

21)

+ G10(g
10�0

01 + g11�0
11 + g12�0

21) + G20(g
20�0

01 + g21�0
11 + g22�0

21)

+ G01(g
00�1

01 + g10�1
11 + g20�1

21) + G11(g
01�1

01 + g11�1
11 + g21�1

21)

+ G21(g
02�1

01 + g12�1
11 + g22�1

21) + G02(g
00�2

01 + g10�2
11 + g20�2

21)

+ G12(g
01�2

01 + g11�2
11 + g12�2

21) + G22(g
02�2

01 + g21�2
11 + g22�2

21).

Equation for k = 2 For k = 2, we have

g10 ∂G02

∂x1 + g11 ∂G12

∂x1 + g12 ∂G22

∂x1 (11.60)

= G02(g
00�0

00 + g01�0
01 + g02�0

02) + G02(g
01�0

01 + g11�0
11 + g12�0

12)

+ G02(g
02�0

02 + g12�0
12 + g22�0

22) + G12(g
00�1

00 + g01�0
01 + g02�2

02)
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+ G12(g
01�1

01 + g11�1
11 + g12�1

12) + G12(g
02�1

02 + g12�1
12 + g22�1

22)

+ G22(g
00�2

00 + g01�2
01 + g02�2

02) + G22(g
01�2

01 + g11�2
11 + g12�2

12)

+ G22(g
02�2

02 + g12�2
12 + g22�2

22) + G00(g
00�0

02 + g01�0
12 + g02�0

22)

+ G10(g
10�0

02 + g11�0
12 + g12�0

22) + G20(g
20�0

02 + g21�0
12 + g22�0

22)

+ G01(g
00�1

02 + g10�1
12 + g20�1

22) + G11(g
01�1

02 + g11�1
12 + g21�1

22)

+ G21(g
02�1

02 + g12�1
12 + g22�1

22) + G02(g
00�2

02 + g10�2
12 + g20�2

22)

+ G12(g
01�2

02 + g11�2
12 + g12�2

22) + G22(g
02�2

02 + g21�2
12 + g22�2

22).

Christoffel Symbol Identities In order to confirm, the given expressions for the
Einstein tensor Gij given by Eqs. (11.50), (11.51), (11.52), (11.53) and (11.54)
constitute a bonafide solution of these lengthy divergence equations by means of
the following identities, which take the form gik�m

ij for fixed j, k and m and with
summation over i, which are no doubt related to the particular case of this formula
given by [15] (page 68), namely

gij�k
ij = − 1√

g

∂(
√

ggkm)

∂xm
.

By direct individual calculations, we may confirm the following identities:

g00�0
00 + g01�0

01 + g02�0
02 = 0, g00�1

00 + g01�1
01 + g02�1

02 = βr3

g
, (11.61)

g00�2
00 + g01�2

01 + g02�2
02 = γ r2

g
, g10�0

10 + g11�0
11 + g12�0

12 = αδr4

g2
,

g10�1
10 + g11�1

11 + g12�1
12 = −α2r5

g2
, g10�2

10 + g11�2
11 + g12�2

12 = −αεr4

g2
,

g20�0
20 + g21�0

21 + g22�0
22 = αr2

g
, g20�1

20 + g21�1
21 + g22�1

22 = (βr2 + B)
r

g
,

g20�2
20 + g21�2

21 + g22�2
22 = 0, g01�0

00 + g11�0
10 + g21�0

20 = −βr3

g
,

g01�1
00 + g11�1

10 + g21�1
20 = 0, g01�2

00 + g11�2
10 + g21�2

20 = −Dr

g
,

g00�0
01 + g01�0

11 + g02�0
21 = �δr5

g2
, g00�1

01 + g01�1
11 + g02�1

21 = −�αr6

g2
,
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g00�2
01 + g01�2

11 + g02�2
21 = −�εr5

g2
, g02�0

00 + g12�0
10 + g22�0

20 = −γ r2

g
,

g02�1
00 + g12�1

10 + g22�1
20 = Dr

g
, g02�2

00 + g12�2
10 + g22�2

20 = 0,

g02�0
01 + g12�0

11 + g22�0
21 = −�εr5

g2
,

g02�1
01 + g12�1

11 + g22�1
21 = (δ + 2�r2)

Er2

g2 − �γ r6

g2 ,

g02�2
01 + g12�2

11 + g22�2
21 = −(δ + 2�r2)

Ar

g2
− (C2 − λA)

�r5

g2
,

g00�0
02 + g10�0

12 + g20�0
22 = 0, g00�1

02 + g10�1
12 + g20�1

22 = 0,

g00�2
02 + g10�2

12 + g20�2
22 = −αr2

g
, g01�0

02 + g11�0
12 + g21�0

22 = 0,

g01�1
02 + g11�1

12 + g21�1
22 = 0, g01�2

02 + g11�2
12 + g21�2

22 = −(βr2 + B)
r

g
.

In terms of ψ(r) = r2/g = 1/(δ + �r2), the components of the Einstein tensor
become

G00 = −ψ2
{
α2 + β(� + λδ)r2

}
, G11 = −ψ2(βδA + �2r2), (11.62)

G22 = −ψ2r2βδB, G01 = −ψ2r(βδC − α�),

G02 = −ψ2r2βδD, G12 = −ψ2rβδE,

and we may use the immediately above identities given by (11.61) to show that the
lengthy Eqs. (11.58), (11.59) and (11.60) simplify as follows. For k = 0, we have

αr
dG00

dr
+ (βr2 + B)

dG10

dr
+

(
γ r − E

r

)
dG20

dr
(11.63)

+ α(1 + δψ)G00 +
((

βr + B

r

)
+ βr − α2ψr

)
G10 + (γ − αεψ)G20 = 0,

while for k = 1, we obtain

αr
dG01

dr
+ (βr2 + B)

dG11

dr
+

(
γ r − E

r

)
dG21

dr
(11.64)

+ α(1 + δψ)G01 +
((

βr + B

r

)
+ βr − α2ψr

)
G11 + (γ − αεψ)G21

+ δ�ψrG00 + αδψG01 − ε�ψrG02 − α�ψr2G01 − α2ψrG11
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+
(

(δ + 2�r2)
E

r2 − γ�r2
)

ψG21 − �εψrG02 − αεψG12

−
(

(δ + 2�r2)
A

r3
+ (C2 − λA)�r

)
ψG22 = 0,

noting that evidently further grouping of terms is possible. The above form is that in
which the terms arise immediately from Eq. (11.59) and in the verification below, it
is useful to leave in this form. For k = 2, we have

αr
dG02

dr
+ (βr2 + B)

dG12

dr
+

(
γ r − E

r

)
dG22

dr
(11.65)

+ α(1 + δψ)G02 +
((

βr + B

r

)
+ βr − α2ψr

)
G12 + (γ − αεψ)G22 = 0.

We may verify that each of Eqs. (11.63), (11.64) and (11.65) is correctly satisfied
by the expressions for Gij given by (11.62) as follows. All three can be verified in a
similar manner, and for k = 0 and k = 2, there are two important equalities, namely

αG00 + βrG10 + γG20 = −α3ψ2, δG00 − αrG10 − εG20 = −α2ψ, (k = 0)

αG02 + βrG12 + γG22 = 0, δG02 − αrG12 − εG22 = 0, (k = 2)

while for k = 1, there are three important equalities, which are as follows:

αG01 + βrG11 + γG21 = (α2ψ − β)�ψr, δG01 − αrG11 − εG21 = α�ψr,

εG02 + γ rG12 + (C2 − λA)G22 = −βδ�ψ2r2.

In addition to these equalities, we also require the three subsidiary equalities for
k = 0, 1 and 2, respectively,

BrG01 − EG02 = α3ψ2r2, BrG11 − EG12 = −(α2�ψr2 + βδ)ψr,

BrG21 − EG22 = 0.

The proofs for all three values of k follow a similar approach, so we only give the
details for the case of k = 1, which is the most complicated. In each case, we
purposely rearrange each of Eqs. (11.63), (11.64) and (11.65) to exploit the above
equalities. For k = 1, Eq. (11.64) can be shown to become

r
d

dr
(αG01 + βrG11 + γG21) + 1

r

d

dr
(BrG11 − EG12)

+ (αG01 + βrG11 + γG21) + 2αψ(δG01 − αrG11 − εG21)

+ �ψr(δG01 − αrG11 − εG21) − �ψr(εG02 + γ rG12 + (C2 − λA)G22)
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+ (δ + 2�r2)(ErG21 − AG22)
ψ

r3 = 0,

and in this case, we need the additional equality that ErG21 − AG22 = β(δψr)2.
Throughout these proofs, we make frequent use of the relations arising from g =
r2(δ + �r2) and ψ(r) = r2/g = 1/(δ + �r2), namely

δ + �r2 = 1

ψ
,

dψ

dr
= −2�ψ2r,

along with the identity B� = α2 + βδ.
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