Chapter 11 ®
Coordinate Transformations, Tensors ek
and General Relativity

In this chapter, we provide some basic information on coordinate transformations,
tensors, partial covariant differentiation, Christoffel symbols and Ricci and Einstein
tensors, leading to general relativity. As previously stated, this is necessarily a
limited progressive introduction, termed progressive, in the sense that the reader is
invited to read on to later sections if more information and further detail are required.
Einstein’s general theory of relativity was published over a century ago, and up to
this point in time provides the best description of a gravitation field, and is capable of
describing a myriad of interesting phenomena in the universe, such as the bending
of light through gravitational lensing, the slowing of clocks in gravitational fields
and the recently detected ripples in space time due to cataclysmic astrophysical
events, such as the coalescence of dense stellar objects. The next generation of GPS
systems will require a detailed mapping of the earth’s gravitational field combined
with the development of accurate predictive mathematical models. Accordingly
for such applications, a superficial understanding may not be sufficient for future
space scientists, but rather some prior experience of the actual “gory” details of the
discipline may be required.

The first two sections of the chapter deal with an introduction to Cartesian
tensors and an alternative derivation of the basic identity (3.7), previously derived
in Chap. 3. The two sections thereafter deal with general curvilinear coordinates
and the important notion of partial covariant differentiation, including briefly
mentioning the fundamental tensors of general relativity, which are the Riemann-
Christoffel tensor, the covariant curvature tensor, the Ricci tensor, the curvature
invariant and the Einstein tensor. Bianchi’s identity is also briefly mentioned, and
the subsequent section provides an illustrative example involving a single spatial
Cartesian dimension.

Throughout we follow the approach to general relativity adopted in the excellent
recent text of [15] and the older texts of [78, 100, 102], and we follow the
development of tensor analysis as pursued by [97, 101] or the Appendix of [31].
While there exist a number of exact space-times for the Einstein field equations
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of general relativity, such as those listed in [42, 81, 98] and to a lesser extent in
[84, 91, 107], in the search for new exact space-time solutions of general relativity,
the major prohibiting factors include the shear complexity of the underlying equa-
tions and the lack of any strategic perspective to guide the analysis. In Sect. 11.6,
we deduce some general formulae for a line element involving seven arbitrary
metric tensor components, and each component is assumed to depend only on two
spatial variables and the temporal variable. While the assumed line element is not
completely general, it nevertheless includes many known exact space-time solutions
of general relativity. Some general formulae are presented for the Ricci and Einstein
tensors expressed in terms of six components of the covariant curvature tensor,
and two well-known cosmological models are presented as illustrative examples
of the formulation in the section thereafter. In the final section of the chapter, we
examine a possible cosmological model involving logarithmic spirals and seven
arbitrary constants. While spiral structures frequently occur in the universe, at
present there appears to be no known formal solutions of the general relativistic field
equations reflecting such structures. A particular case of the spiral model gives rise
to an Einstein tensor, which is reminiscent of the tensor involving the cosmological
constant.

11.1 Summation Convention and Cartesian Tensors

In this section, we present the background material required to give an alternative
derivation of the identity (3.7) for the spatial physical force f using a suffix or index
notation, for which we represent the Cartesian coordinates (x, y, z) as (xl, x2, x3),
and accordingly, we would write (x, y, z) as simply xJ for j = 1,2,3. In order to
achieve this, there are four important ideas and results that we need to introduce.
These ideas provide an elementary introduction to the general topic of tensor
analysis, which deals with the transformations of curvilinear coordinates for which
the issue regarding the level of the index, namely either upper of lower, is critical,
and this is the case in the subsequent sects. 11.3 and 11.4. In this and the following
section, however, we deal only with Cartesian coordinates for which the level of the
index is not relevant. Also, we comment that we could if necessary deal with a four-
dimensional space time with coordinates (ct, x, y, z) as (xo, xL, %2, x3) or x/ for
Jj =1,2,3,4, but since the identity (3.7) involves only the three spatial dimensions
(x, y, z), we restrict attention to xJ forj =1,2,3.

Einstein Summation Convention We first need to mention the Einstein sum-
mation convention, which is an important accepted convention that any repeated
index implies that a summation is taken over that index. Thus, for the two vectors
u= (U, Uy, U;) = (ul, u?, u3) and p = (px, py, p;) = (pl, pz, p3), their scalar
product u.p would be written as

U-p=uipe+uypy +up,=u'p +utp? +upd =uipl,
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and the repeated j index implies that a summation must be made over j = 1, 2, 3.

Kronecker Delta 84 The second idea that is needed is the Kronecker delta symbol
8%, which is defined to have a unit value if i = j and the value zero otherwise, thus

1 ifi =,
0 ifij.

8 =

so as an example, combining the two notions of the Einstein summation convention
and the Kronecker delta symbol §"/, we might write the above scalar vector product
u - p as follows:

u-p=38Vup =upl =u'p' +u’p*+u’p’.

We would observe that repeated indices occur over both i and j, so that in reality
the first equality reveals a summation of precisely nine terms, thus

5ijuipj — 811u1p1 +812u1p2+813u1p3 +821u2p1 +822u2p2+823u2p3
+831u3p1 +532u3p2 —{—833143[73,

but of course, only the three terms arising from s §22 and §33

contribution to the summation.

provide a non-zero

Levi-Civita Symbol Denoted by ¢/ The third notion that is required is the
mathematical symbol, often referred to as the Levi-Civita symbol denoted by
€7k which represents numbers arising from the sign of a permutation of the
natural numbers 1, 2 and 3. They are also referred to as the permutation symbols,
antisymmetric symbols or alternating symbols, referring to their antisymmetric
property and their definition in terms of permutations. The Levi-Civita symbols /¥
are defined to be unity if ijk is a cyclic permutation of 1, 2 and 3, minus one if i jk
is an anticyclic permutation of 1, 2 and 3 and zero otherwise, thus

+1 ifijk is cyclic permutation of 123

eF = 1 1 ifijk is anticyclic permutation of 123 (11.1)

0  ifijkis otherwise

Vector Product u A p Armed with this symbol, we are now able to express a num-
ber of important vector relations and vector differential relations and, principally,
those vector relations involving either the vector product or the differential operator,
known as the curl of a vector. For example, the three components of the vector
product u A p, which has the formal determinant definition
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ijk ij k
UAP= Uy Uy Uz| = u' u2u3,
px py Pzl |p' p? P

are given by (u A p)’ = &'/¥uJ p*, where there are implied summations over both j
and k, and the specific ordering of ijk is critical, where as usual (i, j, k) denote the
unit vectors in the three Cartesian directions. Thus, for example

k=812323 132,32

@ap) =e*uip w?p® + &% p? = u?p* —uwp* = uyp, —u.py,

since £!2> = 1 and £!32 = —1 are the only non-zero values of &'/
the indices.

Further, we may use these symbols to write the i’ component of the curl
differential operator V A p, which has the formal determinant definition

involving 1 in

ijk i j k
d 9 J|_1|.0 d d
V/\p—ﬁa—y& Wl,%a—%;,
Px Py Pz p p P
thus
) apk
VA '—s”k—.,
(VAP ™y

again noting the summations over both repeated indices j and k and their specific
placement in the above expression.

Fundamental Identity Involving 5/ and /% The fourth and final result that
we need is the following fundamental identity involving both the Kronecker delta
symbol 8/ and the Levi-Civita symbol £/¥, thus

glikgimn _ sjmgkn _ 31"51‘”” (11.2)

for which we observe the implied summation over the repeated index i and the
specific association of the indices in the positive and negative contributions. This is
the fundamental identity from which the vast majority of all other vector identities
involving either the vector product or the curl differential operator can be quickly
established.
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11.2 Alternative Derivation of Basic Identity

We are now well placed to establish the identity (3.7) for the spatial physical force
f, and we start with the i’” component of the triple vector differential product u A
(V A p), thus

L L. . op"
Eljkuj (VA p)k — El'/kskmnu‘/ P
ax™m
= skijskm"uj—apn = (§imgin — gingimyy, op” ,
ax™m ax™m

on using the fundamental identity (11.2); the fact that the indices of ¥/ are a cyclic
permutation of those of &'/¥, therefore the two symbols have the same value. On
applying the values of the Kronecker delta symbols, we finally have that the i'”
component of the triple vector differential product u A (V A p) is given by

; Lo dp" ap’
WA (VAP =% (v Apk =un P ym P (11.3)
ox! axm

In this equation, we recognise the term u"dp"/dx’ as arising from the rate-of-
working equation de = dx - dp/dt = u - dp, so that

9 ap" ap! ap? ap3
g _ o _ 0% 2% 300

dxi dx! dxt dxt axt’
while the term u™dp’/dx™ we recognise as that arising in the total or material
derivative defined by (3.6), namely (u - V)p'. Thus, on rearrangement of (11.3),
we obtain

n 00"

W'——=uA VAP + @ - V)p,
ox!

so that finally from (3.4), we may deduce

. ap! de ap' : .
=2 4 — == -V)p' AV AP,
fr=agrtai= 3 T@ VP +nVap)

and the required result follows, thus

"—d—pi+< AV AP
f_dt u p ’

where the total or material derivative is defined by Eq. (3.6).
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11.3 General Curvilinear Coordinates

In this section, we present the main details for the extended force formulation
given by (3.4) but in terms of a general spatial curvilinear coordinate system x/
for j = 1, 2,3, where now the index level shown here as upper is critical. We
follow the development of tensor analysis as pursued in the standard text [97], and
the reader might be referred to any of [15, 97, 101] or the Appendix of [31] for
much of the necessary background detail. In this section, we utilise the notion of
the partial covariant derivative without giving the full details. For the interested
reader, these details are presented in a subsequent section along with the notion
of Christoffel symbols. For a general curvilinear coordinate system (x!, x2, x3),
we assume a symmetric metric tensor with components g;; for i, j = 1,2, 3. The
metric tensor g;; may be expressed in terms of rectangular Cartesian coordinates
(z',2%,2%) = (x,y,z) and is defined by the following equation for the three-
dimensional line element, thus

ds? = (dx)* + (dy)* + (d2)* = dZ*d* = gijdx'dx/, (11.4)
so that formally the metric tensor is given by

dzk a7k
817 = oxi oxd”

noting the implied summation over k = 1, 2, 3, the apparent symmetry in i and j,
and that both sides of this equation are lower in the indices i and j, and we say that
gij 18 a covariant tensor of rank 2. Further, we remind the reader that the index level
for Cartesian vectors and tensors is not relevant. We also remind the reader that we
would refer to the general curvilinear coordinate system x/ as either a contravariant
vector or as a contravariant tensor of rank 1, and we observe from Eq. (11.4) that, in
such a coordinate system, the Einstein summation convention only applies over one
raised index and one lower index and that it has no meaning if both indices are on
the same level. Formally, the proper tensorial version of the Kronecker delta symbol
8", would be defined, thus

S (11.5)

0 ifi #j.

and we would refer to § ; as a mixed tensor of rank 2, contravaraint in i and covariant
in j.

Associated with the symmetric metric tensor with components g;; is the conju-

gate symmetric metric tensor with components g/ for i, j = 1, 2, 3, which is such
that
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jk k
gijg’" =46, (11.6)

so that viewing g;; as a matrix, the conjugate metric tensor with components gl
is simply the formal matrix, which is the inverse to g;;. We would refer to the
metric tensor g;; as a symmetric covariant tensor of rank 2, while the conjugate
metric tensor g'/ would be referred to as a symmetric contravariant tensor of rank
2. We further note that in this section, we use the symbol g to denote the formal
determinant of the matrix, which has components g;;, thus g = |g;;|, and there
should be no confusion with the same symbol g, which is used for the force in the
direction of time.

The metric tensor and its conjugate are fundamental in terms of raising and
lowering indices, thus for example, we have

Aij = gikgjmA*™, A; = g% Ay;, AT = g™* g™ Ay,
most importantly noting that in all cases the indices i and j appear on the same level
on each side of the equations and that summation only occurs over two indices on
different levels. In this manner, with the Kronecker delta 8; defined by (11.5), we

might give meaning to the covariant and contravaraint tensors of rank 2, namely §;;
and &Y, respectively, thus

8ij = gik31} = gij> 8 = g'*s] =g",

so that §;; is simply the covariant metric tensor g;;, while 8% is the contravariant
conjugate metric tensor g'/.

Spherical Polar Coordinates (r, 0, ¢) As asimple example, for the spherical polar
coordinates (r, 8, ¢) defined by the relations

Xx =rsinf cos ¢, y = rsinf sin ¢, zZ=rcos0,
from Eq. (11.4), we might deduce
ds* = (dx)* + (dy)* + (d2)* = (dr)* + r*(d0)* + (rsin6)*(d)>,

so that the metric tensor g;; and its conjugate g/ are given, respectively, by

10 0 ) 10 0
gj=10r* 0 . gl=1or2 0
0 0 (rsin®)? 0 0 (rsinf)2

With these preliminary observations in tensor calculus, we may proceed to
present the main details for the extended force formulation given by (3.4) in a
general spatial curvilinear coordinate system (x1 L x2, x3). The velocity vector u has
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components u' = dx' /dt with magnitude u arising from (11.4), thus

2 ds\’ dx\* N dy\? N dz\* dx' dx’ .
u = _— = _— _— J— — PP — U U s
dt dt dt dt 8ii%ar ar — U
while the momentum vector p has components p' = mu' and magnitude p, where
P =g p' p’, and as usual the mass m is defined in terms of the magnitude of the

velocity vector by m (1) = mo[1 — (u/c)2]’1/2, where m( denotes the rest mass.
On taking the total derivative of the usual energy equation in tensorial form

e =+ (pe)? = e+ Pgijp' p’,

where p denotes the magnitude of the momentum vector given explicitly by
P = gii 174 i pl, we might deduce the rate- -of-working equation ede = cgii ip idp/,
which using e = mc? simplifies to give de = giju'dp! = gijdp' 'u/ on using the
symmetry of the metric tensor g;;. Further, in tensor calculus, the notion of partial
differentiation is generalised to become partial covariant differentiation, which is
designated by a semicolon, thus ; and since here the energy e is a scalar quantity
(namely a tensor of rank 0), the partial derivatives of e coincide with the partial
covariant derivative, so that from de = g; juidp/ we might deduce the important
relation

de .
Tk = Gk = giju' pli, (11.7)

where p,]k refers to the partial covariant derivative with respect to x* of the

contravariant vector p/. For further information relating to the partial covariant
derivatives, we refer the reader to the following section or again to either [97] or
the Appendix of [31]. Here, it suffices to mention that partial covariant derivatives
satisfy the usual rules of differentiation, such as the product rule, and they possess
the very curious properties that all partial covariant derivatives of both the metric
tensor and its conjugate vanish, thus g;;.,x = 0 and g = 0, results which are
used frequently below. Maybe it is worth noting that, for example these two partial
covariant derivatives with respect to x* are formally quite distinct. The first is the
partial covariant derivative of a covariant tensor of rank 2, while the second is the
partial covariant derivative of a contravariant tensor of rank 2, which are different.
Fori = 1,2, 3, the tensorial version of (3.4) in a general curvilinear coordinate

system (x1 L x2, x3) becomes
- apt ; ap' o de
=20 gtke = 2 4 otk = 11.8
f o T8len=—-+g -3 (11.8)
o lde . 1ade 1 3(/gp"
8§ =755, Thx= 2 "5 Ay k
c* dat ’ at J& 0x
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where p,kk is the divergence of the contravariant vector p¥, and in the last part of
Eq. (1 1.8), we have used a standard formula of tensor calculus for the divergence of
a vector p that is verified in the following section and given on page 32 of Spain
[97], namely

19 k
divp = pt, = L 2EPD (11.9)
: «/E 9xk
where we again remind the reader that g denotes the determinant of the metric tensor
gij, thus g = |g;;|, and that in this present section, we have momentarily added

a zero to the force g in the direction of time, thus go, to ensure that there is no
confusion when the two quantities are used in the same equation.

Work Done Or Energy Function W(x',t) On assuming the existence of a work
done or energy function W (x', ¢) which is defined by

dW =f-dx + gcdt

ap' ., de 19e 1 3(/gp5
=—+&" = )egmdx"+| 5= +—=——7—]4dt,
(az & axk)g”" * <c2 o " Jg oxk

and using gijgjk = 5Ik and & = W — e, we might deduce

< averh
Jg  oxk ’

for which the following partial differential relations evidently apply

P i
d& = gim a_ptdxm +

3E ap' 3&  * a(yerh
22 gl —=——‘/_k . (11.10)
ax™m ot ot J&  0x

Basic Identity (3.7) In order to provide a formal tensorial proof of the identity
(3.7), we have from both (11.7) and (11.8),
fl= 4 e pl = — = + g gmju" pl = " p,, (11.11)

where d/dt denotes the total or material time derivative that is defined by

Now on using (11.6) in the form 8%, = g%/ g,,;, we have from (11.11)
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- dp' )
fl=— i + g gju™ pk—u " LS, (11.12)

i

14
=—+ gmjum(g

lk] jkl)
dt k

and the tensorial versions of the curl operator (V A p) and the vector product u A
(V A p) are given by

(VAP = €,87 pl. (WA (VAP = gju™(V APk,

where the tensorial permutation symbols el.*j « and €*i7k are defined in terms of the
Cartesian permutation symbols €'/¥ (see Eq. (11.1)) by the following formulae that
may be found in Eringen [31] (pages 441 and 442), thus
. . elik
€ =\/§6l]k’ 6*1]](:_‘
k ﬁ

The identity (3.7) now follows on using both

m _ns r

(WA (VAP =g ume,, ¢ ply = ™ el gjmu™ " pli,
and the tensorial version of the identity (11.2) becomes
i =il —5is)
so that together we obtain
(WA (VAP = (818) — 8580 gjmu™ g™ ply = gjmu™ (8" pl, — g7° pl)),
which coincides precisely with the term in (11.12),, and therefore, we have provided
a formal tensorial proof of (3.7).

Now on using gijgjk = (Sf, Eq. (11.10); may be rewritten as

—— =g — = g*g, = &)1,
oy =8 3 =8 Gk (8" E):k

and together the two relations (11.10) become

, 3
LA &% &)k, — =cpk. (11.13)

From these relations, we may deduce that there exists a scalar function ¢ (xj , 1) such
that
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. . 0
— g6 = (™ d)r, &= B—‘f,

. o 00
i _ ik 7Y
p =8 9k

and that ¢ (x/, t) satisfies the equation

P 2k ok 292
BTZCP;kZCg ¢;ik=cv¢a

which is the wave equation, where Vi = g”‘¢>;,-k is the tensorial version of the
Laplacian operator for which further details may be found in the following section or
in [97] (page 32). The existence of the scalar function ¢(xj , t) ensures the vanishing
of the curl of the vector p, since from

(VAP = €58/ Pl = €618 (8" ®)mn = €487 8" bun
we may, for example, deduce that in particular for i = 1, we have

123 2 3 1'52 3m 2
(VApnr= f(é " n¢mn+f " n¢mn)
which evidently vanishes, since €!?> = 1 and €'32 = —1, the conjugate metric
tensor g/ is symmetric and assuming the partial derivatives coincide ¢. ., = @.pm-

Wave Energy & (x/, 1) Satisﬁes Wave Equation From Eq.(11.13), we observe
that the wave energy & (x/, t) satisfies the wave equation

328 apt
Froe 2 (%) =c? ((gkmé");m> = czgk’"é?km =*V2é, (11.14)
ik ;

while the momentum vector pi (x/, t) satisfies

*p’ k 2 ik
h=c <gl p'") e (p;";n)k. (11.15)

We note that while the double covariant partial differentiations appear to be the
same in both cases, there is a distinction arising from the fact that in the former
case we are undertaking the double partial covariant derivative of the scalar quantity
&(x/, 1), while in the second case we are undertaking the double partial covariant
derivative of the momentum vector p™ (x/, t), the first leading to the divergence
of the momentum vector and the second simply the partial derivative of a scalar.
In the former case, the first covariant derivative is simply the partial derivative
3¢ /9x*, while the second differentiation involves the partial covariant derivative of
a covariant vector. This is in contrast to the two differentiations of the momentum
vector p™(x/,t), for which the first p is the partial covariant derivative of a
contravariant vector, namely the dlvergence of the vector p. Now the divergence
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of p is a scalar, and the second partial covariant derivative with respect x¥ is that of
differentiation of a scalar, namely the partial derivative, even though it arises from
p;”r‘l, which a mixed tensor of rank 2. This distinction corresponds to the distinction
between the divergence of the gradient, which is the former case, and the gradient
of the divergence, corresponding to the latter case.

The reader may find it instructive to compare the above Eqs. (11.14) and (11.15)
directly with the corresponding general equations (3.22) and (3.19) and those for
centrally symmetric systems, namely (9.4). For the general equations, we have for
the de Broglie wave energy & (x, t) and the momentum vector p(x, 1),

08 292 2 9°p 2
ﬁzcvéa:cv-(vg), W:cV(V-p),

while for the centrally symmetric systems, the de Broglie wave energy &(r, t) and
the radial component of momentum p(r, t), satisfy

ot? ar2  ror)’ ar? ar \ or r )’

since under these circumstances the gradient V.= d/9dr.

11.4 Partial Covariant Differentiation

In the previous section, we have utilised the notion of the partial covariant derivative
without giving a full explanation and presenting all the details, and this can only be
achieved by introducing the Christoffel symbols which is the major objective of this
section. Again the reader is referred to any of [15, 97, 101] or the Appendix of [31]
for a fuller explanation and much of the necessary background detail. Essentially,
both the notions of partial covariant differentiation and Christoffel symbols arise
in consequence that when we transform from rectangular Cartesian coordinates
(x,y,2) = (z', 2%, %) with corresponding fixed unit base vectors (i, j, k) to a
general curvilinear coordinate system (xl,xz,xS), then the corresponding base
vectors (eq, e, e3) are no longer fixed in space, and the Christoffel symbols are
the mechanism required to describe their variability. In addition, and as a secondary
issue, we note that the base vectors (e, ez, e3) are not necessarily unit vectors.

In rectangular Cartesian coordinates, the position vector r is defined by the
equation

r=x§+yj+zf(=zli+zzj+z3f(,

and we might conceive that the three fixed base vectors (i, j ﬁ) are defined by the
three equations
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or _ or
ax’ ay’ 9z

i=

In fact, in general curvilinear coordinates (xl, x2, x3), we adopt this definition as
the defining equation for the base vectors (e, ez, e3), thus

ar ar ar
€= T € =—, e3 = —,
b7 ol 27 a2 37 90
or equivalently
ar

;= —, 11.16
€= 5y ( )
for j = 1,2,3. So, for example, suppose that we transform to cylindrical polar

coordinates (7, 8, z), then, with the usual relations x = r cos6 and y = r siné, the
position vector becomes

r= xi—i—yj—i—zf( = rcos@f—l—rsin@j—i—zl},
while the three base vectors (e, ey, e;) are given by

or Y or N 2 ) G
e, = — =cosfi+sinfj, ey =-— = —rsinfi+rcosfj, e,=— =Kk,
ar a0 0z
and we notice that, in this particular case, the three base vectors are mutually
orthogonal to one another and that e, and e, are both unit vectors, while eg is not a
unit vector, since eg.eg = r>.
In general curvilinear coordinates (!, x2, x3), we have from (11.4) that the line

element becomes on using (11.16)

or . or . or or . o
ds* =dr-dr = —ax' - 2Laxd = 2L T griand = gydxldxd |
ax! ox/ ax'  dx/J

and therefore we may make the important identification

Jr Jr

o 3 =6 (11.17)

8ij =
for i, j = 1,2, 3. From this equation, it is apparent that if the base vectors are
mutually orthogonal, then g;; = 0 for i # j, and that for a particular i, the quantity
gii provides the magnitude squared of the base vector e;; thus, we have g;; = e; - e;,
with no implied summation over the i in this particular instance.
In an analogous manner, we might introduce a set of base vectors (el, e2, e3)
of simply e/ for j = 1,2,3, so that for an arbitrary vector u, we have the two
representations
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u=ule; = ue, (11.18)

with implied summations over both j and k, noticing that each of these summations
occurs over two levels, namely one index is an upper index and one index is a lower
index. We refer to u/ as the contravariant components of the vector u, while uy are
referred to as the covariant components of the vector u. Thus, without being overly
specific, when we consider a tensor of higher rank, say the mixed tensor of rank 4,
A/, then we have in mind that the contravariant indices Jk somehow relate to the
base vectors e;, while the covariant indices mn somehow relate to the base vectors
e/ . Further, in addition to (11.17) the complete set of relations connecting the scalar
products of the two sets of base vectors e; and e/ with the metric tensor g;;, the
conjugate metric tensor g/ and the Kronecker delta 8; are as follows:

i _ ol .o i
gij =€ -ej, gl =e e, 8 =¢-ej.

Christoffel Symbols of the Second Kind Ffj The Christoffel symbols arise on
taking the partial derivative of the vector u, and from Eq. (11.18), we have

du  ou’ N joe; _ dux o 4 dek (11.19)
_— = _<e' M _— = oy .
axi  oxi J oxi oxi o Mkaxi

and the Christoffel symbols of the second kind F;‘j arise as follows:

de; gek ;

— —rhe, — =-Tke/,

oxt J ox! Y
and, of course, with summation over repeated indices. On using these results, we
obtain from (11.19) the formulae for the partial covariant derivatives of contravariant
and covariant vectors, respectively, thus

| du’ 8u,~
= =+t =

k
u; oxi — Ijjuk, (11.20)

and it is instructive to examine such formulae carefully, noticing that corresponding
indices on one side of the equation are at the same level on the other side of the
equation, and if an index is repeated on one side of the equation, one index is upper
while the other is lower. If the reader keeps these two simple rules in mind, then
in tensor analysis, it is very difficult to write down an equation that is incorrect.
We note further that the partial covariant derivatives are themselves well-defined
tensors, so that u is a mixed tensor of rank 2, while u;.; is a covariant tensor
of rank 2. Also 1f we bear in mind the two formulae (11.20) with the plus sign for
contravariant vectors and the minus sign for convariant vectors, then we may readily
write down the partial covariant derivative of a tensor of any rank. For example, for
the mixed tensor of rank 3 A?, which is contravariant in two indices and covariant in
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one, we have two plus signs and one minus sign, and the partial covariant derivative
is given by the formula

Al = 5 b+ T AL + T, AL = Th A7 (11.21)

Christoffel Symbols of the First Kind [ij, k] The Christoffel symbols of the
second kind Ffj are defined in terms of the metric tensor g;; and the conjugate

metric tensor g/ through the Christoffel symbols of the first kind [i, k], which are
defined in terms the partial derivatives of the metric tensor, thus

. 1 (0gix | 0gjk  08ij
k)= - (S8, S8k 98 ) 11.22
. k=3 <8x1 T T ok (11.22)

and these are related to the Christoffel symbols of the second kind through the
formulae

lij k] = gen D). T =g"lij.nl.

and are such that both symbols are symmetric with respect to the paired indices,
thus

lij, k] = [ji, k], rf =1k

Partial Covariant Derivatives of Metric Tensors Are Zero: g;;.x = 0 and g'i =
0 The definition of the Christoffel symbols in terms of the metric tensor g;; and
the conjugate metric tensor g' is such that the partial covariant derivatives of all
components of the metric tensor and its conjugate vanish, thus g;;.x = 0 and gli =
0. In order to formally prove these important results, we proceed as follows:

08ij 08ij . .
8ijik = 5 &~ Ujigim = Tigjn = - — 8" Ljk. plgim — 8"1ik. q1gn,
98ij , . 0%ij (. o i
= o — 8Lk pl = 8]lik, 1 = == = [jk. il = ik, j],
_Ogij 1 (9gji  dgik  dgjk\ 1 (dgij | 0gjk  Igik
oxk 2\ axk  ox/  ox 2 \axk ~ oaxt 9x/ )’

=0,
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and similarly for the conjugate metric tensor, we have

ij agij i im J _in agij i im j in

8k =t L8’ +T8" = ok T8 Plmk, plg’™ + g'¥[nk, q1g",

_ agij gipgjm agmp agkp _ 08mk gquin agnq agkq _ 0gnk
xk 2 dxk oxm oxP 2 dxk ax" axe )’

_ g &g (dgmp | dgkp  Ogmk\ | €7&M™ (dgpm _ dgem  Igpk
axk 2 axk dxm axp 2 axk axp axm )’
agij ip jm agml’

T oaxk ters dxk ’

where in the final term of the second last equality we have changed the repeated
indices n —> p and ¢ —> m. Now on taking the partial derivative with respect to
x¥ of Eq. (11.6), namely g, &P = 4,,, the above equality becomes

i agij jmagip _ 8gij 8j agip _o

Bk = Gk T EmET G T Gk P axk

and the result is established.

In order to verify the formula (11.9) for the divergence of a contravariant vector
p/, we first recall that if g denotes the determinant of the metric tensor g; j» thus
g = lgijl; then, gg'/ is the cofactor of the element g;; in the determinant, and from
the rule for differentiating determinants, we have

g ij08ij
dxk axk’

Now the partial covariant derivative of the contravariant vector p/ is given by

. apl .
J _ J ok
Pi = g T TP

and therefore summation over the repeated index j gives

. J . ap/ .

i _ P Jok_ 9P jmy k

0,87 (e )
oxJ 2 dxk axJ axm ’

ap/  gMMogim y _dp) 1 dg
oxi T2 axk P T i T ogaxk?
apl 19 ;1 9(J/8p))

oxJ  2gdxJ P Vg oxJ
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as required. We comment that in this derivation, we have also established the
formula

; 19 19
rf.kz__g:_ﬁ, (11.23)
J 2g axk /Jg axk
where g is replaced by —g if g < 0, and this identity becomes important as a useful

check on any expressions obtained for the Chistoffel symbols of the second kind.

Formula for the Laplacian of a Scalar We may exploit the above formalism to
obtain the following useful formula for the Laplacian of a scalar function ¢ (x', 1),

thus
, o 9% ;09 1
V2 — oikgp . ik . _Tr/ = 1k
b=g" bir=2¢ (8x’8xk ik ] faxk (T
(11.24)

which follows, since on using the fact that the partial covariant derivatives of all
metric tensors are zero, we have

2 ik, _ [ k99 1 ik
V=g ¢;lk_<g Bxf);k faxk <\/— )

where the final equality follows on using the above result for the divergence of a
contravariant vector p/, since the quantity g'¥d¢/dx’ operates as a contravariant
vector. The expression (11.24) provides a convenient means to evaluate the Lapla-
cian in a particular given coordinate system.

The full import of the notions of partial covariant differentiation and Christoffel
symbols comes to fruition in the formulation of the four-dimensional theory of
general relativity, and indeed these notions are fundamental to the development of
the subject. For this reason, we briefly state some of the major results underpinning
general relativity theory. Now we have previously established that the partial
covariant derivatives of a covariant vector A; and a covariant tensor of rank 2 B;;
are given by the formulae

8A 0B

= ———T{A,  Biju=——t—T{Bin — TBjn,

dxk
and for both partial covariant derivatives, we may take a further partial covariant
derivative A;; jx and B;j .k, and pose the question as to the circumstances under
which these partial covariant derivatives commute. A full investigation reveals the
following relations:

A jk — Aiskj = RijjAm, Bijskm — Bijimk = Ry, Bin + R Bjp,

ikm
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where le’?k is a tensor of rank 4 covariant in three indices and contravariant in one,
and can be shown to be given by (see, e.g. [97], page 53)

m_arﬁc_ ir;!_i_rm n_rml—wp
ijk — axj axk jnt ik kp®ij

and altogether there are five major tensors leading to the development of general

relativity as follows:

¢ Riemann-Christoffel tensor R{;?k defined above
 Covariant curvature tensor R;jxm = &in Rf;km

* Ricci tensor R;; = Rf‘jk B

e Curvature invariant R = g R;;

¢ Einstein tensor G; = g"kR.,'k - R(S;/Z

for which there are many known results and many formulae are known to exist such
as

Rijon = l( azgimk 3%gjk B 3%81‘1{ B 82$jmk> (11.25)
2\ 0x/0x axtox™  dxJ/ox™  Ox'0x
+ 8" (Ljk. nllim, p] — [jm, nllik, p),
Rijkm = 8[2’:,; 1 a[ajf’;li] + F?k[im,n] — F;?m[ik, nj, (11.26)
and Bianchi’s identity
Rijkm:n + Rijni;m + Rijmn:k = 0. (11.27)

Further, we have the relation

’

2 k
0 log\/g_ar,-ijme _F[{alog\/g
Y Axidx/ axk e gm o 9xp

from which the symmetry R;; = Rj; is apparent. We further note that on careful
inspection of (11.25), we may verify the following symmetries of the covariant
curvature tensor R; jkms namely

Rijktm = —Rjikm, Rijktm = —Rijmk, Rijkm = Rimij, (11.28)
Rijkm + Rikmj + Rimjx = 0.

For a proof of Bianchi’s identity and further details on these symmetries, we refer
the reader to either Spain [97] or to the Appendix of Eringen [31].
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On making use of Bianchi’s identity, by purposeful construction, the Einstein
tensor is divergence free, namely G’j = 0 (also refer to Spain [97]). Briefly, this
may be established using the fact that all partial covariant derivatives of all metric
tensors vanish, and therefore in Bianchi’s identity (11.27), we may raise and lower
the symbols freely. Thus, from Bianchi’s identity and the above symmetries, so that
Rijmn;k = _Rijnm;k’ W€ may deduce

+R! R, =0,

i
Jkm;n jnkim T Y jnm;

which on contracting i and m produces
i —
Rjkn + Rjppi = Rjnik = 0,

and these are referred to as the contracted Bianchi identity. A second contraction
of this identity may be shown to yield R,; = 2Rk x> Which are equivalent to the

vanishing of the divergence of the Einstein tensor namely G’ . = 0. While the
vanishing of the divergence of the Einstein tensor is a fundamental result in general
relativity, the above abbreviated derivation belies the underlying complexities
involved in demonstrating the result in a particular coordinate representation. Two
illustrative examples are provided in Sect. 11.7, and the result is also verified for the
spiral gravitating structures examined in the final section of the chapter.

In the verification of the equations G’ = 0, sometimes it is simpler to express
the equations in terms of the covariant Elnsteln tensor G;; through the relations
= =g¢'G jk» so that on taking the partial covariant derivative with respect to x™

we have

G j

o —F;jGnk—r,j’,ijp}, (11.29)

G;c;m =8"Gjm = g" {
noting again that all partial covariant derivatives of the metric tensor g;; and its
conjugate g" are zero. On contracting this equation, that is, setting m = i and then
summing over i, the equations G’/., ; = 0 become

0G jk

P TGk — r,.’}cG,-p} =0, (11.30)

Gri=8"Gjri=2g" {
and the latter equality is sometimes the most convenient formulation to use. We

note that in a stress-free vacuum space, the Einstein tensor is assumed to vanish
identically, namely G;; = 0.
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11.5 Illustration for Single Space Dimension

To provide an illustration of the machinery for the above tensors, in a four-
dimensional space (xo, x!, %2, x3) = (ct, x, y, z) where (x, y, z) denote rectangu-
lar Cartesian coordinates, we consider the particular four-dimensional line element,
thus

ds® = gijdxidxj
= a(x, 1)(cdt)? — b(x, 1)(dx)* — 2 f (x, t)edtdx — (dy)* — (d2)?,

where a(x, 1), b(x,t) and f(x, ) denote three functions to be determined from
G’j,i = 0, and the indices i, j run through 7, j = 0, 1, 2, 3. The metric tensor g;;
has components given by

a(x,t) —f(x,t) 0 0

—f(x,t) =b(x,t) 0 O
0 0 -1 0|’
0 0 0 —1

8ij =

while the conjugate metric tensor g’/ has components given by

b(x,t)/§ —f(x,0)/6§ 0 O
—f(x,1)/6 —a(x,t)/§ 0 O
0 0 -1 0|’
0 0 0 -1

g = (11.31)

where 8(x, t) is defined by 8§ = ab + f2 and the determinant g = lgij| = —6.
Using the formula (11.22) for the Christoffel symbols of the first kind [ij, k],
namely

ij, k] = = - -
Lij. k] dxJ ax? dxk

1(3gik 08 jk 3gij>
2 9

we may deduce the following expressions for the non-zero Christoffel symbols of
the first kind, thus

0.0 =% o1 1=—21? 100.0= L% 1=
T 209x] T 2¢ 9t T t’ T x’

__(Loa 10f _(Lob_of
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noting that other non-zero components may be deduced from the symmetry [ij, k] =
[ji, k]. From these relations and the formulae Fl’.‘j = gk" [ij, n], we may deduce that
the only non-zero Christoffel symbols of the second kind are as follows:

1 da fob 1 [adb da
FO - —= b— _—— N Fl = — _—— = —_ s
o1 23( 8x+c8t> o1 25(c ar f8x>

| [ .da bda 2fdf . 1 da foa 2aodf
r0 — — (p2&, 2% 2O plo_ Z (04 S0, 2at]
00 26<f8x+c8t+c8t> 0=25\%x " car T ¢ o

0 1 fab+bab 2b8f - 1 [/ ab f3b+2f8f
= — —_— _—— —_— , = — a— — —— _— .
W=as \"ax  cor dx W=os\"ox ¢ ot dx

We may make use of (11.23) to check these formulae, thus

J 0 1
o =Too + o

1 da boa 2fdf aadb da
——(fa—ﬁza*TE*m‘fa—x)
1038
T 28 ot

and
' 0
i =T + T4
1 0 ab ob ab a
(b @ 1 UL f)

w\ ot oo T e T
1 36

28 0x’
as required.

Withi = k = 1 and j = m = 0, we may deduce from the symmetries of
the covariant curvature tensor R; i, (see Eq. (11.28)) the following results Rig10 =
—Ro110 = Ro101 and Roo11 = 0, and since there is essentially only one non-zero
component, we chose to adopt Rpjo; and express the other non-zero components in
terms of Ro101. Again withi = k = 1 and j = m = 0, we may deduce from (11.25)
the following expression for Ryj¢; in terms of the metric tensor and the Christoffel
symbols of the first kind, thus

Reinr — X 9’801 g0 g0 ¥gn
OOT =5\ 9xTax0 © 9x19x0  axlox!  9x09x0

+ &" ([10, n][01, p] —[11, n][00, p])
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L/ gt 3%goo g
2\ ox1ax0  axlox!  9x09x0

+ ¢"%([10, n][01, 0] — [11, n][00, O]) + g"' ([10, n][01, 1] — [11, ][00, 1])

_! ( ’gor g0 d%gn
2 U ax1ax0 512 9,02

+ g% ([10, 0][01, 0] — [11, 0][00, 0]) + g'° ([10, 1][01, O] — [11, 1][00, O])

+ ¢ ([10,0][01, 1] — [11, 0][00, 1]) + g"! ([10, 1][01, 1] — [11, 1][00, 1]) .

After much simplification and rearrangement, this expression can be shown to
become

1(1 b 2 9%f 82a>

- 2 c2 912 c 0x0t 9x2

+1 8a+18f a8 10b 9f\ 1038
45 ox ¢ dt) ox c ot ox ) ¢ ot
1 0
[ D) e ) | aba) )
4cé a(t, x) a(t, x) a(t, x)

where 8(x, t) is defined by 8 = ab + f? and closer inspection of the final term
reveals the structure of the scalar triple product, thus

= a5 |or
4¢d Sa
ax

4cs

+f

1{8(f,b) 2. f) 8(b,a)} 1|2
oo T et

SIS
FS2~,

We use Rj; = gim Rijim to determine the components of the Ricci tensor R;; =
Rl'fj &> thus

Roo = & Rioom = &'°Riooo + &' Rioo1
= g% Ro000 + g""Ri000 + £ Rooor + &' Rioor
= ¢'""Rioo1 = g'""Ro110 = —g"' Roio1,

on using the above symmetries of the covariant curvature tensor R;ji, given by
(11.28), since from Eq. (11.25) it is apparent that any component of the tensor R;jxm,
with three indices coinciding must be zero. Proceeding further in this manner and
making use of (11.31) for the components the conjugate metric tensor g'/, we may
show that the only non-zero components of the Ricci tensor R i are given by
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Roo = aRo101/6, R10 = Ro1 = — f Ro101/9, Ri1 = —bRo101/3,
so that the curvature invariant R = g/ R;; becomes
R =g Rij = g"Roo + 28" Ro1 + g'' Ri1 = 2(ab + fH)Ro101/8* = 2Ro101/8,

since by definition 8 (x, ¢) is defined by § = ab+ f2. From the relation G; i = Rij—
Rgij/2, it is apparent that the only non-zero components of the covariant Einstein
tensor G;; arising through the term —Rg;;/2 are G2 = G33 = Rg101/6 with all
others identically zero, so that the equations for the vanishing of the divergence of
the Einstein tensor become simply dG22/dy = 0 and dG33/dz = 0, which are
trivially satisfied. In the following section, we provide some general formulae for
the Riemann and Einstein tensors applying to a particular metric of some generality.

11.6 Formulae for Ricci and Einstein Tensors

While there exist a number of exact space-times for the Einstein field equations of
general relativity, such as those listed in [42, 81, 98] and to a lesser extent in [84,
91, 107], as previously stated, in the search for further exact space-time solutions
of general relativity, the major prohibiting factors include the shear complexity of
the underlying equations and the lack of any strategic perspective that might guide
the analysis. For any given line element, the Riemann-Christoffel tensor itself has a
complicated dependence on the components of the particular assumed metric tensor.
The metric tensor for the most general four-dimensional line element involves ten
arbitrary components, which are possibly dependent upon three spatial variables and
the temporal variable.

We attempt to reduce the complexity of the problem in the determination of
exact solutions by considering a line element involving only seven arbitrary metric
tensor components, and each component is assumed to depend only on two of the
spatial variables and the temporal variable. Of course, while not completely general,
the assumed line element includes many existing exact space-time solutions of
general relativity. We show that six components of the covariant curvature tensor
act as a basis, and we present some general formulae for the Ricci and Einstein
tensors expressed in terms of these six components of the covariant curvature tensor.
In the next section, we illustrate this general formulation with two well-known
cosmological models. Although similar general metrics have been studied in the
past and it is known that the four-dimensional structure can be represented in terms
of the corresponding three-dimensional tensors (see, e.g. [30] or [42]), the present
approach differs in the sense that it involves the determination of explicit formulae.

In four-dimensional space (xo, x!, X2, x3), we consider the line element with the
particular structure,
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ds? = gijdx'dx’) = goo(dx®)? + g11(dx")? + g (dx*)? + g33(dx®)?  (11.32)
+ 2g01dxodx1 + 2gozdxodx2 + 2g12dx1dx2,

where x° = c¢t, and we assume that the non-zero components of the metric tensor g;
depend only on x°, x! and x? and are independent of the x> coordinate. Specifically,

we assume that the metric tensor has the structure

g00(x%, x1, x2) gor1 (x0, x1, x2) goo(x, x!, x?) 0

L g01(x% xt x2) g1 (9, x1, x?) g12(x¥, x1, x2) 0

Y 8020, x 1 x%) gia(xf, X1, x2) g (a0, X1, x?) 0
0 0 0 g33(x%, x1, x?)

(11.33)

This particular metric, although not completely general, includes many of the
metrics for which exact space-time solutions have been determined (see, e.g. [81]).

Working Notation Now in order to undertake lengthy algebraic calculations with
this tensor, we may facilitate these manipulations and without loss of generality, we
may employ the notation (ct, x, y, z) for (xo, x!, X2, x3) and in place of the above
equations we use a notation devoid of indices, thus

ds® = gijdx'dx) = a(x, y,1)(cdt)’* = b(x, y, )(dx)> — h(x,y,1)(dy)*
(11.34)

—2f(x,y,t)edtdx —2j(x,y,t)cdtdy — 2k(x, y, t)dxdy —m(x, y, t)(dz)z,

where a(x,y,t), b(x,y,t), f(x,y,t), h(x,y,t), j(x,y,t), k(x,y, t) and
m(x,y,t) all denote functions to be ultimately determined from the Einstein
equations Gi’;i = 0, and the indices i, j here run through i, j = 0, 1, 2, 3. Thus, the
metric tensor g;; has components given by

a(-xsyst) _f(x1y7t) _j(-x9y9t) O
_f(xv yvt) _b(-x7 y7t) _k(-x1 y7t) O

o , 11.35
ST iy kv —heeyn 0 (13
0 0 0 —m(x,y,1)
while the conjugate metric tensor g’/ has components given by
m(k* — bh)/g* m(fh— jk))/g* m(bj— fk)/g* 0
i _ | m(n—jk)/e* miah+ j/g* —mak +jf)/g* 0
m(bj — fk)/g* —m(ak + jf)/g* m(f*+ab)/g* O |’
0 0 0 —1/m

where g*(x, y, t) is the determinant g* = |g;;| given by
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¢* = m(ak® + 2jkf — abh — bj> — hf?),

and we emphasise that the specific line element (11.34) with the symbols (x, y, z)
is for working purposes only and that they do not necessarily represent rectangular
Cartesian coordinates and might represent any three-dimensional spatial coordinates
(xl, xz, x3).

The assumptions underlying the metric tensor g;; mean that in many respects,
and specifically in terms of the conjugate metric tensor g'/, the three-dimensional
and four-dimensional problems uncouple and the conjugate metric tensor becomes

(bh —k*)/g (k= fh)/g (fk—bj)/g 0
ij _ | Gk—fh)/g —(ah +j*)/g (ak+jf)/g O
(fk=bj)/g (ak+jf)/g —(f*+ab)/g 0
0 0 0 —1/m
where g(x, y, t) is the three-dimensional determinant g = |g;;| given by
g = abh + bj> + hf? — ak® — 2jkf,
and g* = g33¢.

Christoffel Symbols of the First Kind [ij, k] Using the standard formula for the
Christoffel symbols of the first kind [ij, k], namely

ogik . 0gjk  0gij
k 98jk %8
Ly, k1= (a Tt T axk

we may deduce the following expressions for the non-zero Christoffel symbols of
the first kind in a straightforward manner, thus

10 a 10 a 10
(00, 0] — . 2800 [00,1]:< g 1 goo)’ [00’2]:< g 1 goo>,

2 9x0° 9x0 2 gyl 90 2 9x2
o= (G55 50). mn=gg w5505
(22,01 = <a§§ - %%) , [22,11= <x ag— [22,2] = %%
T TS R C )
[02,0] = ;388020’ [02,1] = % +oe o e

1 /0 0 0
[12,0] = = (2892 , 9801 _ 812
2 8x1 dx2

ax0
d d 10
< gor 98 goz)’ 02.2] = 822

1 dg1 [12.2] = 1 a5’22

12,1] = = ——,
[ ] 2 9x2 2 9x!
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which in terms of the working symbols become

1 da <18a 18f> <18a 18])
[00,0] = — —, [00,1]= —(=— + . [00,2]=— (=22 +

2c ot 2 0x ot 29y c ot
1 0b of 10b 10b ok
nLo=(=—=-L),  nmn=-22, [pna=(==-2),
2c 0t 0x 2 0x 29y  0x
1 oh aj 10h ok 10h
22.01=(—= -}, 2u=(-2-=2), p22=--—,
2c ot ay 2 0x 0 20
10 1 0b 1 a7 10k
o0 =22 o y=-L1% oy L (Y2 1K
2 0x 2c ot 2\0 Jdx ¢ ot
10 1 /0j 0 10k 1 0h
02.00= 224 oo =2 (L2 10K gy gy _ LR
28y 2\dx Jdy cot 2c ot
] 0 10k 10b 10h
12,00 = —~ (2,00 1O oy g2 JL0P g2 1O
ax ay c ot 20y 2 9x

noting that other non-zero components may be deduced from the symmetry [ij, k] =
[ji, k], and with the convention that i and j immediately below refer only to O, 1, 2,
we have

1 om 1 om
.‘,3 = 3., j :0, 3,3 = — =, 33’ | = _—
lij, 31 =131, j1 (3¢, 3] 2 ox [33,i] 2o

Christoffel Symbols of the Second Kind Ffj The Christoffel symbols of the
second kind are more complicated, and we derive the following formulae as follows.
From the above 4 x 4 matrix, we formulate the 3 x 3 matrix

800 801 802
8ij = | o1 &11 812 | » (11.36)
802 812 822
and we assign g to be the determinant of this matrix, so that g* = |g;;| = gg33.

Basically, in terms of the index-free notation, we need to individually calculate
each of the Christoffel symbols of the second kind using the above formulae for
the Christoffel symbols of the first kind along with the formulae Ff‘j = g"[ij, n].
Having undertaken these extensive algebraic calculations, it becomes apparent that
we may express the final formulae for each of the non-zero Christoffel symbols
of the second kind Ff‘j in terms of three 3 x 3 determinants, two of positive sign
and one of negative sign, no doubt emanating from the corresponding signatures
involved in the three terms in the Christoffel symbols of the first kind [ij, k]. With
the designation of i, j and k as in the symbol Ff‘j, we proceed as follows:
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« In each of the three determinants, we delete the k'”* row.

« In one of the determinants of positive sign, we replace the k" row by

(9gio/0x7, 0gi1/dx/, dgin/dx7).

« In the other determinant of positive sign, we replace the k' row by

(dgjo/dx", 8gj1/9x", 3gj2/0x").
+ In the determinant of negative sign, we replace the k' row by

(88i/0x°, 8gij/0x", dgij/0x).
* Each of the three determinants is weighted with a factor 1/2g.

* In the event thati = j, the two determinants of positive sign coincide and merge

to produce one determinant of positive sign of weight 1/g.

The final expressions are as follows:

0 _
FOO_

9800
9x0

810
820

800
9800
9x0
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9820 9g21 9822 dg2n 982 0dg»
0 9x2 9xZ ax2 1 |ax9 ax! 8x2
F22=§ 810 g1 g12| = 5 |g10 11 g1
820 821 822 820 821 822
1 800 &01 802 1 800 £01 £02
rl — — |90 38 3| _ |382 98n dsn
22 g 9x2  9x2 9x2 2g ax0 ax! ax2 |’
820 821 822 820 821 822
1 800 801 802 1 800 801 802
2
'y =—180 &1 &2 ~ 5. |80 81 g2,
8 19820 821 g2 8 |98 g2 dgn
ax2  9x? o9x2 ax0  ax! 9x2
dgio 9811 9812 9800 9go1 09802 dg10 9g10 9810
]"0 1 | 9xY ax0 8x0 1 | axt ax! ax! 1 | ax% ax! 9x2
01 = 5_|&10 &11 812 + 5= 810 811 12| — 5| 810 811 812>
2g 2g 2g
820 821 822 820 821 822 820 821 822

1 800 801 802 1 800 801 802 1 800 801 802

Fél - 381(;) 3g101 38102 + — 38010 9801 9802 | _ _— |9810 9810 9810
2g ax0 9xY  ax 2g axl  axl  ax! 2g axY axl axZ |’
820 821 822 820 821 822 820 821 822

1 800 801 802 1 800 801 802 1 800 801 802

2

F01=2— g10 811 812 +2— 810 811 812| = 51810 &Il LI,

8 |dg10 dg11 9812 8 |dg00 9go1 9g02 8 |3g10 9810 9g10

9x0  9x9  9x0 axl ax!  ax! ax0  ax! 9x2

9820 0821 982 dgoo 9801 9802 0820 9820 9820

]"0 1 | 8x0 ax0 9x0 1 | 9x2 9x2 9x2 1 | 8x9 ax! ax2
= — + J— - ,

02 2g 810 811 812 2g 810 811 &12 Zg 810 811 812

820 821 822 820 821 822 820 821 &22

1 800 801 802 1 800 801 802 1 800 801 802

9820 9821 082 9800 9go1 9802 9820 9g20 9820
Zg ax0  9x0 9x0 2g ax2  9x? 9x2 28 ax0  ax! ax2 |’
820 821 822 820 821 822 820 821 822
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1 800 801 802 1 800 801 802 1 800 801 802

2

I‘()22_ g10 811 &12|+ — &0 &1 &12|— — &0 &1 &12,

28 |ogy 9821 dgm 28 |9g00 9801 9802 28 |9g dg0 90

ax0  9x9 9x0 9x2  9x2 9x2 ax0  ax! 9x2

9820 0821 982 9g10 9811 9812 0821 0821 0821

0 1 | ax! ax! ax! 1 | ax2 ax2 9x2 1 | ax% ax! ax2
ri, =— + — - — ,

12 2g 810 811 812 2g 810 811 812 2g 810 811 812

820 821 822 820 821 822 820 821 822

1 800 801 802 1 800 801 802 1 800 801 802

Fl — | 9820 9821 982 4+ — dg10 9g11 9gip| _ _~ |9g21 0g21 9ga1
12 2g axl ax! ox! 2g ax2  9x? o9x2 Zg ax0  axl axZ |’
820 821 822 820 821 822 820 821 822

1 800 801 802 1 800 801 802 1 800 801 802

2
F12=2— g0 g1 &12 +2— g0 &11 &12 5 glo &1l &2
8 |0g20 dg21 9g22 8 |3g10 dg11 3g12 8 |9g21 0g21 g
ax! ax! ax! ax2  9x2 ox2 ax0  ax! 9x2

Since these expressions involve the scalar triple product, no doubt there exists any
number of equivalent alternative expressions dependent upon one’s own personal
preferences. We may use the well-known formula

rio— L%
Yo 2g 0x!

to check the above expressions obtained for the Chistoffel symbols of the second
kind. These calculations are not entirely trivial, and for purposes of illustration, the
proof for the particular value i = 0 is as follows. On writing the identity out in full
fori = 0, we have

J 0 1 2
g = Too + Tor + T

and from the above formulae, we obtain

J
r ij
dgoo 9go1 9802 0800 9801 9802 9go0 9800 9goo
1 | 3ax0 9ax0 9x0 1 | ax0 8x0 9x0 1 | 8x0 axl 9x2
= — + — R —
2g 810 811 812 2g 810 811 &12 2g g10 811 &12

820 821 822 820 821 822 820 821 822
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1 800 801 802 1 800 go1 &02 1 800 801 802

+ — 9810 9811 9812 4+ — 9goo0 9go1 9go2 | _ _— | 9810 9gi0 98I0
2g 3x0 9x0 9x0 2g ax!l 9x! oax! 2g ax0  ax! 9x2
820 821 £22 820 821 822 820 821 822

1 800 801 802 1 800 801 802 1 800 801 802

+2_ 810 811 £12 +2_ 810 &11 &12 _2_ g10 811 812 |,
8 19820 821 g2 8 |9go0 dgo1 dgo2 8 |9g20 g0 dg20
9x0  9x0 9x0 ax2  9x? 92 ax0  ax! 9x2

where we have specifically written the first term of this equation as two identical
terms, so that the sum of the first three terms on the left-hand side gives the desired
result as the partial derivative of g with respect to x° divided by 2g, and it is left
to show that the remaining six terms are zero. This is most easily achieved using
the permutation symbols &'/% and the summation convention. In this notation, the
determinant g of the 3 x 3 metric tensor becomes g = &'/*gg; g &2k, and the
six determinants in the above expression that are required to be shown to be zero
become

9800 9go1 9802 9go0 9goo 9800
1 9x0 9x0 9x0 1 9x0 x! 9x2 1 é%’OO 501 3g02
_ _ + — |80 3801 3802
2g | 810 811 8127 5,810 811 812 T 50 1G0T Bl gy
820 821 822 820 821 822 820 821 822
1 800 801 802 1 800 801 802 1 800 801 802

_ = |9g10 9810 9gi0 4= _

2 axO axl 9x2 2 810 811 812 ) 810 811 g12
8 8 |9g00 0801 9802 8 |0g20 9820 9820
821 822 BxZ 9xZ 9x2 0x0  axl  9x2

etk 980, 980,
= 8Ogljg2k+g018 182k+g0181182

ljk

9810 082
8182k + 80i - 82k T 80i81 4 1 ok

dx/

980i agoo C+ 9go;  9g10
axo gl]g

(
|
(**)
G

dx! J

o »
\_/\_/\_/
S
o3

dgor 9820
i82k t\ 75 — ok ) 808l

g ox axk

| =

(812820 — 810822) + ) (810821 — gugzo)}

) (801820 — googzl)}

—_ N‘_

ox
{ ( g0z 9800
9x0 3
9800 8glo dgn2 9810
(802821 — g01822) + Ll ax2
< 201
dx2

1 { (3800 9820

22 |\ o2~ 9x0 ) (801812 — g02811) +

gzo
) (802810 — 800812)}

each term of which can be seen to have a corresponding term that cancels, and
therefore, the sum total produces zero as required, and a similar proof can be
presented fori = 1 and i = 2.
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Christoffel Symbols of the Second Kind Fk Involving the Index 3 For the
Christoffel symbols of the second kind mvolvmg the index 3, we again assume
that the indices i and j immediately below refer only to 0, 1, 2, and we have the
following formulae:

Iy =g"lij, nl = g”lij, 31 =0,

; ; . . g 9g33
i, = ¢"[33,n] = g/ [33, j] = -2 =22,
33 =g "'[33,n] = g"[33, j] > x)

gP0gn 1 dgn
2 3x/  2g33 ox/’

r3; = g"[3).nl = ¢3/.3] =
and we observe that these expressions are entirely consistent with the extended
identity

1 ag 1 8g33 1 og”
Zg axi ' 2g33 axi 2g* axi’

r/—r b T+ T2 4T3

where g* is the determinant of the 4 x 4 matrix and g* = |g;;| = gg33, and the
derived identity is as might be expected.

Covariant Curvature Tensor R;ji,, The metric tensor (11.32) (see also (11.34))
has been purposely chosen so that there is an uncoupling of certain aspects
of the three-dimensional problem (xO, x!, x2) and the four-dimensional problem
(xo, x!, X2, x3). Thus, with i, j, k and m restricted to 0, 1 and 2, other than those
connected through the symmetries (11.28), there are essentially only six non-
zero components of the covariant curvature tensor R;jk,, which here we adopt
to be Ro101, Ro202, Ri1212, Ro112, Ro12o0 and Rap12. As far as the author is aware,
there is no immediate way to identify the trivial components of the covariant
curvature tensor R;jim, other than close inspection of the assumed metric tensor
and (11.25) or (11.27) along with the known symmetries (11.28), so for the sake of
completeness, these components are listed below. From the assumed metric tensor
and either Egs. (11.25) or (11.27), we may verify that the following components of
the following components of the covariant curvature tensor R;j, are all zero, thus

Roo00 = Rooo1 = Roooz = Ro111 = Roz22 = Roo1o
= Roo11 = Roo12 = Roo20 = Roo21 = Rooz2 = Roi22
= Ri000 = Ri1110 = Ri111 = Ri112 = Ri222 = Rionn
= Ri022 = Ri1120 = Ri121 = Ri122 = Rogoo = Ra2111

= R0 = Ro221 = Ry222 = Rop11 = Roo22 = Ro122 =0,

while through the symmetries (11.28), we have the results:
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Rot10 = Ri001 = —Ro101,  Rio10 = Roio1,
Ro220 = R2002 = —Ro202,  R2020 = Ro202,
Ri221 = R2112 = —Ri212,  R2121 = R212,

Roi21 = Rio12 = —Ro112,  Rioz21 = Ra110 = Ro112,
Ro102 = R2010 = —Ro120,  Ri002 = R2001 = Ro120,
Ro212 = Ro120 = —R2012,  R2012 = R1220 = Roo12.
Now following similar lines, and with i, j, k and m: still restricted to 0, 1 and 2, we
may show that for the covariant curvature tensor R;jk, involving the index 3, we
have the following results
R3jkm = Rizkm = Rijam = Riji3 = R33pm = Rij33 =0,

Rj3t3 = R3j3r = —R3ji3,

where Rj i3 is given by

1 ( 0%g33 p 0833 g% 9g33 0833
4 9xJ 9xk’

Rjis = 2 \oxioxk ik gxp

and since g33 = 1/g33, it is apparent that

3*./233 0./833
R3jx3 = /€33 < -5 ,

axJaxk 7k gxp

or

32/ —8% dv/—833
R3jiz = —/—833 | ——— —TF, 222
37k3 833 < dxJ 9xk Ik Hxp
in the event that g3 < 0.
The components Rj jx3 involve another six non-zero components of the covariant
curvature tensor R;jk, arising from j, k = 0, 1,2, which contribute to the Ricci
tensor through Rjx = R, = 8" Rijkm = g2 R3 i3, thus

Rjr = 833R3jk3 =

1 3% /833 P 0./833
V833 \ 9x7axk ik axr

and to the curvature invariant R = gij ik = gi’" gjk Rjjkm through the term R*
given by
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. . 3
R* = g% ¢¥Ryjis + g™ ¢P Rizam = 287 P Ry jua,
which becomes

RY — 27 (32\/833 e 3«833) _ 2V2 /233

/833 dxJ dxk Jk gxp 833

where V2 is the conventional generalised Laplacian associated with the three-
dimensional coordinates (xo, xl, xz), namely

. 9? d
V2 =gk — -7 — ).
& <8x18xk ikaxp

In general, there are overall 12 essentially independent non-zero components of
the covariant curvature tensor R;j,, which act as a basis in which we might express
the Ricci tensor and Einstein tensor components R, and G j; and the curvature
invariant R, and we now proceed to do precisely this. As far as the author is aware,
in order to deduce the final expressions, there is no approach other than by direct
individual calculations, since each of the 12 curvature tensor components are not
readily characterised in some general way. By way of illustration, we start with the
calculation for Ryg, thus

Roo = g Rioom
22 33
= g""Rioo1 + "% Ri002 + g*' Raoor + g2 Raoo2 + g°° Raoos
1 12 21 22 33
= —g""Ro101 + g"*Ro120 + 8*' Ro120 — g7 Roooz + 8™ R3003

= —¢" Ro101 + 28" Ro120 — %> R0z + & R3003.
and proceeding similarly, we may deduce the following expressions:

Roo = —g"" Roio1 + 28" Ro120 — %2 Rozoz + ¢ R3003. (11.37)
Rit = —g%Ro101 + 28" Ro112 — g2 Ri212 + 7 Ra1s,
Ry = —g"Roooz + 28" Rooi2 — 8" Rizi2 + 87 Ranos,
Rot = g""Roto1 — g Ro112 — g”°Ro120 + 872 Rao12 + 87 Raoi.
Roy = —g""Ro120 + ' Ro112 + 8%° Roooz — %' Roorz + 87 Raoos.
Riz = —g"Ro102 — 8" Ro112 — 8*° Roorz + g% Ria1z + 87 R3ios.
and R33 = g”" Ri33m = R*g33/2. Now on forming the curvature invariant R =

g/*R k= g™ gI*R; jkm» the x3 spatial direction contributes both through the terms
R3 13 in the above relations and through the term R33, and we have
J g
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R=g"Roo + g""Ri1 + g% Raz + 28" Ro1 + 2¢" Roo + 2¢'2R12 + R,
(11.38)

where R* = ¢3¢/ R3 43 + g g% Riz3;n = 27X g*3 R j3 is the total contribution
to the curvature invariant arising from the x3 spatial dimension and the summations
over j and k in this expression are restricted to 0, 1,2. On using the above
expressions for the Ricci tensor components R ji, we find that

R=R*

11 _ 01,01 22 02,02 11 22 ]2 12
2[(g00 0 O 00 0 O

)Ro101 + (g YRz + (8 YR1212

—2(8%¢" — 26" Ro120 — 28" 8" — g% g Ro112 — 287280 — §%¢*H Rap12].

Now by direct calculation or otherwise, we may deduce the formulae

822 811 800
Q0011 _ 01,01 _ 822 00,02 _ 02,02 _ 811 11,22 12,12 _ 800
g g g
12 20 1 812 11 2 1 .12 802 22 1 2 12 801
s%% —g°g°=—?, g11g? — g0 == ¢ g0 — g% =

where g is the determinant of the 3 x 3 matrix (11.36), and from Eqgs. (11.37) and
(11.38), we may eventually deduce the expression for the curvature invariant R,
namely

R =2(g"" R3mun3)/ 833 (11.39)
— 2(gooR1212 + g11Ro202 + 822 Ro101 + 2812 R0120 + 2802 R1021 + 2801 R2012)/8,

where g* = gg33 is the determinant of the 4 x 4 matrix given by (11.33), and the first
term in this expression can be alternatively written as simply R* = 2g/%g33R; k35
and R* is the contribution to the curvature invariant R arising from the x> spatial
direction.

We are now in a position to evaluate the Einstein tensor from G;; = R;; —
Rgij/2, and to achieve this, we need the particular relations

811822 go() _ 812812 800822 g]] 802802 800811 822 __ 801801

’ - ’ - ’

g g g g g g
802812 _ g()l _ 801822 801812 _ g02 _ 802811 801802 . g]z _ 800812
g g g g g g

On combining these relations with the above Egs.(11.37) and (11.38), we may
deduce the following equations for the Einstein tensor G;; = R;; — Rgij/2, thus

802802 801801 800800 2801802

Go = Roio1 + Ro202 + Riz12 + TRouo (11.40)
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2800802 2800801 R*
+ Roii2 + Ryo12 — — 800 + &% Raoos,
812812 811811 801801 2801812
Gi1 = ——Ro101 + Ro202 + Ri212 + Ro1
2811812 2811801 R*
+ Ro120 + Roo12 — S 8n + ¢ R313,
822822 812812 802802 2812822
G» = ——Ro101 + ——Ro202 + —— Rp212 + ———Ro120
8 8 8
2822802 2812802 R*
+ 22222 Rotin + 2= Rogin — — g0 + 23 Ranos,
g g 2
802812 801811 800801 (800g12 + g01802)
Go) = Ro1o1 + Ro202 + Ri212 + P Roi12
(811802 + go1812) (goog11 + go1&o1) R*
+ Roi20 + Rao12 — =801 + g% Raon3,
g 8 2
802822 801812 800802 (800822 + £02802)
Gop = —Ro101 + + Ro112

Ro202 + =———R1212
8 8

(801822 + 802812) (goog12 + go1802) R*
+ P Ro120 + P Ryo12 — = 802 + g% Raoos,

812822 812811 801802 (801822 + g02812)
= + Roi12

Gz Ropon + Ri212

Roio1 +

(811822 + g12812) (811802 + g01812) R*
+ P Ro120 + P Roo12 — 7g12+g33R3123,

and G33 = R33 — Rg33/2 = (R* — R)g33/2 and all other components involving the
index 3, namely G3; for j = 0, 1, 2 are zero.

Now from the expressions for the Einstein tensor G'. = g*R ik — RB; /2, it is
immediately apparent that the trace G = R — 2R = —R, and we can use this result
to check the veracity of the above expressions for G;; as follows. In the summation
G=gl ijk and because of the essentially three-dimensional nature of the tensors
involved, we first need to perform the summation over j,k = 0, 1,2, and then
we have to include the term involving G33. Further, each of the above expressions
involve three types of terms: the terms involving the six non-zero components of the
covariant curvature tensor R;jx,, which are Roio1, Ro202, R1212, Ro112, Ro120 and
R2012, and then the two terms —R*g /2 and g33R3jk3.

First, we examine the contribution to G = g"ijk arising from the six terms
Ro101, Ro202, R1212, Ro112, Ro120 and Rxp12, and for purposes of illustration, we
examine the contribution from the term Rg1¢1, which becomes

(8%g02802 + g' g12812 + 872822822 + 28 802812
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Roio01
+2¢%g02820 + 2% g12820) P

which we may reorganise as

[(202(8%g02 + g% g1z + €% ¢22) + 212(e% 202 + g 812 + 2'%e2)
Roio1
+£22(8%g02 + 8510 + gzzgzz)]T,

so that on using gikgkj = 55., this term becomes simply g22 Ro101/g. Similarly,
we may show that the contribution arising from the six terms Ro1o1, Ro202, R1212,
Ro112, Ro120 and Rpp12 becomes

(gooR1212 + g11Ro202 + g22Ro101 + 2812R0120 + 2802 R1021 + 2801 R2012)/8,

which from (11.39) we can identify as simply (R*—R) /2. Thus, the total summation
becomes

, (R*—R) R* . .

G=g"Gy= s Tg]kgjk + ¢3¢/ Rajiz + ¢3Gs,
_R-R) 3R R R-R_
2 2 2 2

as required.

Although not particularly illuminating or insightful, with i, j and & all distinct
and taking on only the values 0, 1 and 2, and with no summation over repeated
indices, these formulae can be formally summarised by the following expressions:

Gii = 8ij8ij Riini + 8i ggl Rijij + 8ii&ii Rkjkj + 8ij&i Rkiij
2gii8ij 2giigik R*
+ == R + %Rjkij — 5 8ii + g7 Rz,

_ 8ik&jk

Gij = TRijij + 8ij8ii

Rkjkj+gl]:]J Riini + 8ii&jj T 8ij8&ij R

kijk
8

(8rigjj + 8ij&kj) (8kj&ii + 8ij8ki) R*
B8 T 88D p . (SR8 T BSK) p gt g PRy
g g 2
11.7 Two Hlustrative Line Elements

Ilustration (i) As an illustration of these results, we consider the simple wormhole
geometry of [79], which is given by the four-dimensional line element, thus
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ds? = (cdt)* — (dp)* — (b* + p*)(d6)* — (b* + p*) sin” (de)?,

where b is the throat radius and (p, 6, ¢) are the usual spherical polar coordinates,
so that in this case, we have (xo, xL, %2, x3) = (ct, p, 6, ¢) and the metric and
conjugate metric tensors are given, respectively, by

10 0 0
~_lo-1 0 0
=100 —@2+p) 0 ’
00 0 —(b% + p?)sin? 0
and
10 0 0
y 0-1 0 0
g = R ,
00 -G 0
00 0 1

T (02 +p2)sinZ0

where the determinants g* = —(b% + p2)?2 sin% 0 and g = (b® + p?). The non-zero
Christoffel symbols of the first kind are

22, 11=p, [12,2]=—p, [33,1]=psin’0, [31,3]=—psin®0,
[33,2] = (b> + p?) sin6 cos b, [32,3] = —(b* + p?) sinf cos b,

and from these relations and Eq. (11.25), we may deduce the following non-zero
components of the covariant curvature tensor R; jkms thus

182822 22 102 b?
R = ———2= 12,2][12,2] =1 — = ,
1212 2 onl2 + 77112, 2][12, 2] T AT
19%¢33 45 ) p2sin 6 b%sin? 6
Riiis = — — o®[13,3][13,3] = —sin? 0 =- :
=50 g 113,3][13, 3] sin” 0 + RS s
192
Ry = = =53 4 o122 11133, 1] — g[23, 3][23, 3]

2 922

= (b* + p>)(sin® 6 — cos® 0) — p”sin O + (b> + p?) cos® O = b*sin’ 6.

The latter two components result in a net zero contribution to the curvature invariant
arising from the x> spatial direction, since

2 prsin26  bZsin6
R* =2¢%(g" Ra113 + 622 R3op3) = ( =

- +
b2+ p2)sin20 \ B2 +p2) B +p?)
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so that only the component Rj»1> contributes to the curvature invariant R through
the term —2gooR1212/8, and we have simply R = —2l72/(b2 + ,02)2.

From the relations (11.40), we find that the only non-zero components of the
Einstein tensor G;; become

2 2
800800 b 33 b
Gon = Ry = —————. Gi = gPRy3= —— .
00 212 = Gr s 11 =g R3113 GEWSE
b? Rg33 b?*sin® 0
Gyn =g¥ Ry = ——5——-, Gyp=—"7—=— ,
¢ 7+ p?) RS

where G33 originates from the expression G33 = R33 — Rg33/2 = (R* — R)g33/2
with R* = 0 and noting that correctly G = g" G;; 7 = —R. On noting that the only
non-zero Christoffel symbols of the second kind are

,0 3 p 1
2, = ' =-——5-, 'y =p,
F33 = —psin®6, F§3 = —sinf cos b, FS?, = cotf,

the above expressions for the Einstein tensor can be shown to satisfy the divergence
free equations G}c_l. = 0 in the form of Eqs. (11.35); thus, we have

3G ji

o — TG — F;’}(Gj,,} =0,

Gii=8"Gjri=2¢ {

and for k = 1 we obtain

G,

1
s

] P
= gl] { axi — FZ’;Gnl — FilGj[)

{ G

”l" o —g”l"llG in—g' F11G13}

8G1] 22 22 33
=1 + 87 TG + g TiG 11 + 87°T3, G + 8713, G

G 11 2p o < Gs3 )}
- + G- —L (Gn+ :
{ o B+ T B2 U2 T GinZe

which on performing the differentiation can be shown to be identically zero, and
similarly the three equations G’ = 0 arising from £k = 0, 2 and 3 can be shown
to be trivially satisfied. The reader may be comforted to know that these results are
not completely apparent and are consequences of the particular diagonal structure
of the tensor G;; and the particular non-zero Christoffel symbols of the second kind
and the reader may need to give each equation a close examination before being
convinced.
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Ilustration (ii) As a second illustration of the results of the previous section, we
consider the Einstein universe given by the four-dimensional line element, thus

(dr)?

_ar)t 2 2 2.2 2
ez " (d6)? — r?sin?0(dg)?,

ds® = (cdt)? —

where Z is a constant and (r, 6, ¢) are the usual spherical polar coordinates, so that
in this case, we have (xo, x!, X2, x3) = (ct,r, 0, ¢) and the metric and conjugate
metric tensors are given, respectively, by

1 0 0 0
-1
0o 0 -2 0
0 0 0 —rZsin?6
and
1 0 0 0
i |o-a—=w/m@* o 0
8§ = 1 )
0 0 - 0
0 0 0 T rZsinZe
and for the determinants g* and g, we have g* = —r*sin>60/(1 — (r/#)%) and

g =r2/(1 — (r/%)?). The non-zero Christoffel symbols of the first kind are

r/&?2
(I —(r/B)H*

[31,3] = —rsin?60, [33,2] = r’sinf cos, [32,3] = —r%sinf cos 0,

[11,1] = — [12,2] = —r, [22,1]1=r, [33,1]=rsin’6,

and from these relations and Eq. (11.25), we may deduce the following non-zero
components of the covariant curvature tensor R; jkms thus

182g22 22 11 (r/‘%)2
R = ___°~ 12,2][12,2] — 22, 1][11, 1] = ————FF——,
1212 2 a2 + g7 [12,2][ 1—g [ 1[ ] 1= (/2D
1 32g33 " 3 (r/%’)2 sin? 6
R = — 33, 1][11, 1] — 13,3][13,3] = —————-,
3113 = 5 12 +g [ 1[ 1-g¢71 1[ ] 4= G/
13%g33 11 33 2.2 .2
R3p03 = 3 22 +g [22,1](33, 1] — g7°[23, 3](23,3] = (r/#)“r~sin" 0,
X
3%g33 2 33
R3123 = +g7[12,2][33,2] — g7°[13, 3][23, 3] = 0.

2 axlox2
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The two components R3113 and R3333 both contribute to the curvature invariant R*
arising from the x3 spatial direction, thus

2 R3223
R* = 2g33(g“R3113 + g22R3223) =55 ((1 — (r/%)z)RMlS +—
r#sin“ 6 r

4

<(r/=@)2 sin @ + (r/%#)* sin* 0) =

r2sin? 6

so that altogether along with the contribution to the curvature invariant R from the
component Ry212 we have from Eq. (11.39) the following result:

P 2 5 W 2
7 r2 (1 — /%))~ B

which is well-known.
From Eq.(11.40), we may show that the only non-zero components of the
Einstein tensor G;; become

800800 R* 3

Ri212 — —800 = —

Goo 2 2

1

R*
G| = —— BRyn=——
11 5 811 + & R3113 B0 = ()2

R*
Gn = —58nt &3 Rz = (r/ %),

(R* — R) .
Gy = — sm= (r/2%)* sin” 0,
where G133 originates from the expression G33 = R33 — Rg33/2 = (R* — R)g33/2,
and again as a check, we may confirm that the above expressions correctly satisfy
G = g'Gi; = —6/%’2 = —R. For this metric, the only non-zero Christoffel
symbols of the second kind are

2
1 _ r/%# » 1 3 1 1 _ 2
=0y e M= Ta= e,
Iy = —rsin®0(1 — (r/%)%), I'3; = —sinf cos 6, I35 = cot,

and again the above expressions for the Einstein tensor can be shown to satisfy the
divergence free equation G.; = 0 in the form of Eqs. (11.35); thus, we have

0G ji

o~ THGk — ricjp} =0,

ki =87 Gjki =g" {
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so that for k = 1, we have

; =[0G
G;<;i = g’./ {Txi — F?/Gnl — FiﬁG./‘l’}

3G g g g N
= {g” o] - &'T};Gi —¢'T,Gj1 = ¢'T}G 2 *g”rflGﬂ}

_ {gn% — ("I}, + 2T}, + PTG — "1, G — 6212, G —g33F§]G33},
and again on performing the differentiation and using the above expressions for the
conjugate metric tensor and the Christoffel symbols, this equation may be shown to
be identically zero, and similarly the three equations G;'(; ; = Oarising from k = 0, 2
and 3 can be shown to be trivially satisfied. Again, we remind the reader that none
of these outcomes are immediately obvious, and in formulating each of the results,
we constantly have in mind the particular diagonal structures of the tensors g/ and
G;j and the particular non-zero Christoffel symbols of the second kind, and the
reader should give each outcome a close examination to convince themselves of its
veracity. In the final section of this chapter, we provide an example for which the
details are far more complicated.

11.8 Spiral Gravitating Structures

In this section, we examine a possible cosmological model of general relativity
involving logarithmic spirals and seven arbitrary constants. While there is consid-
erable astronomical evidence that spiral structures commonly occur in the universe,
there appear to be no known formal solutions of the general relativistic field
equations reflecting such structures. The Schwarzschild solution relates to spatially
spherically symmetric gravitational fields, while the stationary Kerr solution is
axially symmetric. However, in nonlinear continuum mechanics, formal similarity
solutions involving logarithmic spiral similarity invariants are well-known, and
indeed the most general similarity forms for isotropic materials satisfying the
principle of material indifference have been given by the author [46]. These formal
similarity solutions essentially arise from rotational invariances and invariance
under the basic length scale that is adopted. We generalise the particular Minkowski
line element given by (11.42) to the line element given by Eq.(11.41), which
involves the seven completely arbitrary constants A, B, C, D, E, F and A. The
motivating Minkowski line element (11.42) is a special case of (11.41) that arises
from the particular values of the constants A, B, C, D, E, F and A given by (11.43),
which satisfy the three relations (11.44).

Below we show that solutions of the Einstein vacuum equations that might
involve logarithmic spirals as a similarity variable arise from the essentially two-
dimensional (spatially) metric given by
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(ds)? = (1 — a2 (cdt)? — A(dr)? — Br?(d0)*> — 2Crdrcdt (11.41)
—2Dr?dbcdt — 2Erdrd6 — F(dz)?,

where (xO, xl, %2, x3) = (ct,1,0,z2), (r,0, 7) denote the usual cylindrical polar
coordinates and where A, B, C, D, E, F and A denote seven arbitrary constants, in
principle, to be determined from the general relativistic field equations. We provide
a detailed verification below that the Einstein tensor for the metric (11.41) is indeed
divergence free for all values of the seven constants without additional restrictions.

From a conventional general relativistic perspective, only five of these constants
would be regarded as essential, since on face value the constants A and F can be
scaled immediately to unity, even though the special case A = 0 would have to be
considered as a separate case. From the author’s perspective, setting A = F = 1,
there is an apparent loss of symmetry and parity in the structure, and moreover as
shown in [59], reducing and simplifying the metric in this manner often closes off
opportunities to determine new solutions. We demonstrate below that the metric
(11.41) provides a formal solution of the divergence free vacuum field equations
for all values of the seven constants without additional restrictions. We comment
that while the two illustrative examples presented above are both such that the
Einstein tensor satisfies the divergence free vacuum condition, it is however non-
vanishing, and therefore, these models are considered to represent some underlying
intrinsic property of space-time that is additional to that generated from the energy-
momentum tensor. It is important to point out that the model examined here also
shares this characteristic, and formally here, we simply verify the vanishing of the
divergence of the Einstein tensor.

The particular structure of this metric is motivated as follows. In the cylindrical
polar coordinates (7, 6, z), a rotation around the z—axis is given simply by 0 =60+
ot , and therefore in order generalise this to generate logarithmic spirals, we consider
the invariant £ = 06 + plogr + wt and the generalised rotational and stretching
transformation which in rectangular Cartesian coordinates (x, y, z) is given by

x =vrcos(of + plogr 4+ wt), y =vrsin(o8 + plogr + wt),

combined with a constant stretch along the z—axis, thus z — kz, where o, i, v, @
and « all denote arbitrary constants. From the differentials

dx = vcosEdr — vrsiné (ade +Bar g a)dt) :
r
. 1

dy =vsinédr + vrcosé& (crd@ + —dr + a)dt) ,
r

the Minkowski line element becomes

(ds)* = (cdt)* — (dx)* — (dy)* — (dz2)? (11.42)
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= (1 — (or/c)»)(cdt)? = v2 (1 + u>)(dr)? — (vor)*(dB)? — 2(uwv?/c)rdredt

—2(cwv?/e)r?docdt — 2uov?rdrdf — k2 (dz),

which evidently assumes the form of the line element (11.41) with the seven
arbitrary constants A, B, C, D, E, F and A taking on the particular valiues

A=v21+u?, B=@Wo)? C=pwm?/c, (11.43)

D = awvz/c, E = ,uavz, F = K2, A= (va)/c)z.

We emphasise that subsequently we regard the seven constants A, B,C, D, E, F
and A to be completely arbitrary, and we exploit the above particular values rather
as reference values to guide the ensuring mathematical analysis. Specifically, we
observe that these particular values satisfy the three relations,

BC — DE =0, CD — AE =0, D? - AB =0, (11.44)

and we subsequently observe these quantities emerging as factors in the analysis.
We further comment that in proposing the metric (11.41) as a potentially interesting
line element, we have in mind certain issues arising from nonlinear continuum
mechanics. If we have in mind a spiral gravitating structure, then note that the
invariant £ = 06 + plogr + wt arises from both the two- and three-dimensional
spatial rotational groups and that use of this invariant has two important features.
Firstly, the constant o # 1 embodies more than a strict rotation and might well
on its own produce an interesting outcome. Secondly, the logr term is a natural
amendment, since it behaves formally like 6 in the sense that the factor 1/r
precedes both 9/06 and 9/0dr. In finite elasticity, this characteristic is well-known
and the invariant 06 + w log r forms the basis of an important exact solution in that
discipline, and further references to this topic may be found in [46]. Accordingly,
these two features in their own right might generate interesting and new outcomes,
but here in proposing the line element (11.41), we are adding further levels of
arbitrariness.

Again noting that (r,0,z) are the usual cylindrical polar coordinates and
%, x1, x2, x3) = (e, 1,0, 7), then corresponding to (11.41) the metric tensor g;;
and conjugate metric tensor g/ are given, respectively, by

1—xr2—Cr =Dr* 0

—Cr —A —Er 0O

—Dr? —Er —Br2 0 |’
0 0 0 -—-F

8ij = (11.45)

and



348 11 Coordinate Transformations, Tensors and General Relativity

(AB — E*r?/g —(BC — DE)r3/g —(AD — CE)r?/g 0
i —(BC — DE)r3/g —[Br? + (D? — »B)r*1/g [Er + (DC —AE)r?]/g 0
£ T —up- CE)r?/g [Er+ (DC —AE)r31/g —[A+ (C2—xA)r%l/g O
0 0 0 —1/F
(11.46)

where the determinant g of the three-dimensional matrix g;; is given by

g =(1—x1r?(AB — E*>)r* + (BC?> = 2CDE + AD»r* (11.47)
= (AB — E>)r> + [(BC — DE)* + (AB — E*)(D* — AB)]r*/B,
while the determinant g* of the four-dimensional matrix g;; is simply given by
g*=—Fg.
Christoffel Symbols of First Kind [ij, k] The only non-zero Christoffel symbols
of the first kind for the metric (11.41) are
[00,1] =Ar, [11,0]=-C, [11,2]=—E, [22,1]= Br, [01,0] = —Ar,
(11.48)

[01,2] = —Dr, [12,2]=—Br, [02,1]= Dr, [12,0] =—Dr.

Covariant Curvature Tensor R;;;, From the relations (11.48) and Eq. (11.25),
we may deduce the following non-zero components of the covariant curvature tensor
Rijkm, thus

_32goo
2 gx!12

Roior = — + &"([01, n][01, p] — [11, n][00, p])

=2 4 ¢%[01, 0][01, p] 4 g>7[01, 2][01, p] — g"'[11, n][00, 1]

= + g%[01, 012 + 2¢%2[01, 0][01, 2] + g*2[01, 2]?
— g1, 01000, 1] — g"?[11, 2][00, 1]

2
— - [A(D* = 1B) + (DC — 1E)*F),
g
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Ro202 = g"P (02, n][02, p] — [22, n][00, p])

= g'7([02, 1][02, p] — [22, 1][00, p])

4
=~ [B+ (D* = AB)r2(D? — 1B).
g

922
Rz = PN
X

= B + g"[12, 0% + g??[12, 21> + 2¢%%[12, 01[12, 2]

— ¢O22, 17111, 0] — g'?[22, 1][11, 2]

r4 5
= ——(BC — DE)?,
g

Roo12 = g"P([01, n1[22, p] — [02, n][12, p])

= g"'([01, n][22, 1] — g'7[02, 11[12, p])

+ 8" ([12, n][12, p] — [22, n][11, p])

349

= g[01, 01122, 11 + g%'[01, 21122, 1] — g°'[02, 1][12, 0] — g'?[02, 1][12, 2]

5
— L (BC - DEYD?-1B),
g

%02
Roii2 = =

2 .12 + g" (11, n][02, p] — [12, n][01, p])
X

= —D + g'°[02, 1][11, 0] + g?'102, 1][11, 2] — g*°[12, 0][01, 0]
— ¢?112, 27101, 0] — g%%[12, 01[01, 2] — g*[12, 2][01, 2]
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4
— L (BC - DE)(DC — AE),
g

Roi20 = g"7([12, n][00, p] — [01, n][02, p])

= g"1([12, n][00, 1] — [01, n][02, 1])

= g[12, 0][00, 1] + g%'[12, 2100, 1] — g°'[01, 01[02, 1] — g>'[01, 2][02, 1]

r3
= —[E 4+ (DC — AE)r?*1(D* — AB),
g

We now introduce five new constants «, 8, v, é and € defined by

« = BC — DE, B = D> — B,

y = AE — DC,

§=AB — E2, e =AD - CE,

so that the above expressions for Roio1, Ro202, R1212, Ro112, Roi2o0 and Rzo12,
simplify to become

2 4 4
_ - 2.2 _ 2.2 _ s
Ro101 = P (BA+yr), R = P (BB + B°ro), Ri212 = gOl ,
(11.49)
5

4

3
Ro112 = ——ay,
8

r r
Rop12 = —Eaﬂ, Ro120 = —E(,BWZ — BE).

We may readily verify that the new constants satisfy
ar+ BC+yD =0, aD+ BE+yB =0,
a«C + BA+yE = AD> + BC* —2CDE — M(AB — E?),

and it proves convenient to introduce yet another new constant 2 defined by

so that we have the important relations

AD? + BC?> —2CDE = Q + A8, Q = (> + BS)/B,
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and, noting that in terms of these new constants, the determinant g given by
Eq. (11.47) becomes

g =08r2 +Qr* =6r° + (& + B8)r*/B.

Curvature Invariant R On using the immediately above relations together with
Eq. (11.39) and the metric tensor (11.45), we may deduce the following expression
for the curvature invariant R, thus

2r 2 209 2 2 2
R=—2[(a —288) — r*(ha® + AB® + By +2Ca,3+2Day+2Eﬁy)].
g

We may simplify the coefficient of 72 in this expression as follows:
ra? + A% + By? +2CaB +2Day + 2EBy
=a(ar+BC+yD)+ B(@C+BA+yE)+y(@D+ BE+yB)
=paC +BA+YE) = pQ,

and therefore, the above expression for the curvature invariant R becomes simply
2rt 2 5
R= —2[(a —288) — B }
8

Einstein Tensor G;; Using the expressions (11.49) for the non-zero components
of the covariant curvature tensor R;j, the components of the metric tensor (11.45),
we may deduce directly from the relations (11.40) the following components of the
Einstein tensor

__ﬁ 2 2 2 2 __f 2 2
Goo = —— {@” + B(AD” + BC* = 2CDE)r‘ | = —— ja + f(Q + A)r |,
g g

(11.50)
r4 r4
Gu=-5 {ﬁA(AB —E) 4 (@C + A+ yE)ZrZ} =—a(BsA+ Q*r),
(11.51)
ré > o r9B5B
Gr=—" [BBAB — B + @D+ BE +y By} = - (e
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5 5

r r
Gor =~ [CaB - ) —atC+pa+vE) = 7 (B3C — ),
(11.53)
ro 2 r%B8D r 2 rBSE
Go=—5BD(AB—E}) =" Gp=-5pEAB-E})=-""",
8 8 8 8
(11.54)
noting that in this case G33 = —(R/2)g33. We observe that these components can
be alternatively expressed as
Bérs r Bért r6
Goo = — goo——z{az-l-ﬂ(r?-i-ﬂrz)}, Gii="—¢gn— 52,
8 8 8 8
pért pért r
G = —582n, Gyz=—F83—-—7 {Ol2 — B+ 972)} )
8 8 8
ort aQr’ pért pért
Gor = —5-g01 + —5—. Go2 = —5—g02. G =—23n.
8 8 8 8
We further observe that in the event = 0, then o2 = — B35 and these expressions
simplify to become
p . 3B
Gij = S8 (i,j=0,1,2), G33 = REER
and R = —68/4, and we note that these equations are slightly reminiscent of
Einstein’s cosmological constant A for which G;; = —Ag;;, but of course here

the constant takes on two distinct values.

Check on Einstein Tensor We may apply a reasonably robust check on the
veracity of these individual expressions by evaluating the trace of the Einstein tensor
Gﬁ = gij Gij + g3SG33 which should give —R. Using the above equations for G;;
and (11.46) for the components of the conjugate metric tensor, which in terms of the
new constants «, 8, v, § and € become

8r2/g —otr3/g —6r2/g 0
ij | —ard/g —(B+BrHr?/g  —(yr?—E)r/g 0
I et 2 1oL I VSR (e b VAT VS O
0 0 0 —1/F

and after some algebra and simplification, the contribution g/ G; j admits g as a
factor and simplifies as follows:
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6
giG; = ;? {5(2ﬁ5 — &)+ [BQ+2(88 — aD)]r? + ﬁsz2r4}

76

= {5(2,35 —o?) + (385 — a2)Qr? + m%“}

oo

6
= L6+ 2288 — o + par?)
g

4

2 2 R
=526 —a”+ BQr7) = —=,
g 2

where we have used B2 = o> + 8 and g = r2(8 + Qr?), and the required result
follows since G33 = —(R/2)g33.

Christoffel Symbols of First Kind Ff‘j The non-zero Christoffel symbols of the
second kind are

Ol)»r4 Ar3 )»}’2
rh=-20 Th=-"¢ 4B, Th=-"0r-E),
00 g 00 2 00 P
aAr? r A
M =-""—  TI== [(ac +yEN? - E2}, r2 = _Aue_p,
OlB}"4 Br3 Br2
Mh=-"" Th=-——@2+B), Th=-—@r-b),
8 g g
3 2
o _ " T _ 2 2 _ T )
Iy =—(BA+yE), Tl =-—(Cr’+DE), T3 =——(yCr’—AD),
8 g g
0 ozDr4 1 Dr3 5 ) Dr2 5
Lo =~ ; Loy = ———(Br"+ B), gy =——@Wr'—E,
0 aEr’ 1 Er* 2 T 2
Iy =- s Flzz—?(ﬁr + B), Flzzg{(“C-FﬂA)r +AB],

and we might provide a limited check on these expressions with the well-known
formula I';; = (1/2g)8g/8xk, and for k = 0, 1, 2, we obtain

4
-
F80+F61+F§2=—E(ak+ﬁC+yD)=0,

1 dg

-
ro +rl +r? =—{8+2 C+BA+yE 2}= ,
10 11 n=g (a B yE)r 22 0r

4
-
I+ T+, = —E(OlD +BE+yB)=0,

as required.
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Verification Einstein Tensor Is Divergence Free Although the Einstein tensor
is purposely constructed to be divergence free, it is often a nontrivial matter
to convince oneself that this is indeed the case, and the following provides a
demonstration of the underlying complexities and detail that are often required. In
order to verify that the metric (11.41) produces a divergence free Einstein tensor,
that is, the equations G;; ; = 0 are indeed satisfied, we proceed as follows. Using

the relations Gj; =G jk» we need the partial covariant derivative with respect to
x™, thus

G jk

aom TGk = r,’,’,ijp} , (11.55)

Gi;m =8"Gjm = g" {
which we contract; that is, we set m = i and then sum over i to obtain

;{;i :gl]ij;i :gl] {_ax_i —FZGnk _Fiijp :0 (1156)
It is clear from these latter relations that for the problem on hand, the summations
in each equation generates a large number of terms, actually 57 separate terms in all
for each of the equations arising from k = 0, 1, 2. We observe that while the scale of
this problem may be greatly reduced with the observation that the above particular

expressions for the Einstein tensor G;; have the structure
Gij = B8y >gij + hij, (11.57)

where ¥ (r) is a function of  only that is defined by v (r) = r?/g and hij is the
tensor defined by

Y (B+a®y) ay?Qr 00
ay?Qr  —WQr)200

0 0 00}’
0 0 00

h,‘j =

we do not however follow this approach, since there is an apparent lack of parity
in the calculation, and it turns out to be more straightforward to deal with the full
equations directly.

However, if we were to adopt this approach, then it would seem worthwhile
noting that the field equations might be manipulated as follows. On observing again
that all the partial covariant derivatives of the metric tensor g;; and its conjugate
g'/ are zero and that the partial covariant derivative of a scalar is simply the partial
derivative, we have from (11.55) and (11.57)

; oAyt [dh
G;c;m = ﬂsg”gfk_ +gl'/ {M_Jm

P
E - Fffqhnk - kahjp} g
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which becomes

. Y .
Gim = ﬁS&Lm—m +gY {

ohjk
—ax'm — Fﬁu'hnk — F’ikhjp} .

Further, since v is a function of » = x! only, on contraction the divergence free
equations become

. o2 .

oh ji
K ax

o T}k — r{;chj,,} =0,

which are the alternative form for the three basic equations for k = 0, 1,2 to be
satisfied.

Proceeding directly, we observe that the three basic equations (11.56) for k =
0, 1, 2 become

G -
& 8—;1 = ¢'T};Guk + &'T},G jp,

since all components G;; are functions of x! =r only, and so
109G ok 119G 1k 129G2%
ox! dx! ox!

= G()kgijr?j + leg“'l“ilj + szgijl_'izj

+8 +8
+ 8" TG jo + TG 1 +8'T7G .

and the three basic equations (11.56) for k = 0, 1, 2 when written out in full are as
given below.

Equation for k = 0 For k = 0, we have

ax! ax! ax!

= Goog" T}y + Gi0g"T}; + G2g"' T,

+8 +8
+8TjGjo+8"TigGj1 + 8" THG .
On writing this equation out in full, we have

dGoo dG 1o 090G
10 11 12
+ +

8)6] Bx] Bx]

= Goo(g%T 9y + T, + T + Goo(g°' 1Y, + 'Y + ¢'°1Y)

(11.58)
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+ Goo(8"T, + g"°TY, + g°T9,) + G10(8™ Ty + "' 10, + ¢T,)
+G1o(g"' Ty +g"'T}) + g"°T],) + G1o(g™ T, + ¢TI}, + g%T)y)
+ G20(g"T%, + g°' T8, + T8, + Goo(8"' T, + ¢''T] +¢'°T])
+ Goo(8" TG, + 8"°Th + 87 T5) + Goo(g™THy + 8°' Ty + g% T'%y)
+ G1o(g"'Tgy + &'y + g"2T%) + G20(82°T + 82Ty + 8225
+ Go1(g™Thy + ¢''T'lg + ¢°°T30) + G11(8”' Tgo + 8 ' Ty + 82'Tg)
+ G (8" Ty + 8"y + 87T + G2 (8™TF, + g'°TT) + 82°T'3))

+Gia(g"" T + 8" Ty + 8"°T30) + G (g™ TGy + ' Ty + £7°T5).

Equation for k = 1 Similarly, the corresponding equation for k = 1 is

0Go1 0G11 G2
10 11 12
ax! + ax! + dx1

= Go1 (g, + &'y, + gy + Gor ("' T, +g''T); + 1Y)
+ Gor (8T, + g"2T, + 82T%) + G11(g™TYy + &' 1), + 8%T3,)
+ G, + &'y, 4+ &) + G (g™, + T, + ¢%T),)
+G1a(g™T3) + g°' T8, + ¢"T3) + G1o(8%' g, + ¢''T + ¢'°T%)
+G12(g"TE, + g"°TE, + ¢T3, + Goo(g™TY, + "' TY, + 19
+ Gio(g''Ty, + &', + "I + Gao(g”°T, + 'Y, + ¢T3
+Gor (81§, + ¢"'T; + 82T + G ('Y, +¢''T, + g%
+ G (8%TY; + g"T) + ¢T3 + Goa (8T, + T + 213

+ G TG, + g''Th +8'°T3) + GG, + ¢°' T + g7°T3)).

Equation for k = 2 For k = 2, we have

109G02 ¢! 3G g123G22
ox! ox! ax!

= Goa (8T + &%'T0; + 8Ty + Goa (8" TG, + g'' Ty + g1

+Go2(8" Ty + 82T + ¢7°T9) + G12(8™Tgo + 8" TG + 87T

(11.59)

(11.60)
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+ G Ty, +g"'T| + T + Gia(g" T, + g'°T ], + g7 T,)
+ G ("%, + g°'T3, + %1%, + G ("' T +¢''T} + 5T
+Gn(g"T3, + ¢TI + 8%T3) + Goo(8™TY, + ¢°' T, + g%°1%)
+ G1o(g"'Tg, + g''TY, + g'°T9,) + Gao(82°T(, + ¢2' T, + ¢7TY,)
+ Go1 (8™, + g'°T}, + g%°T),) + G (g"' T, + ¢''T], + g2'Ty)
+ G21(8"T, + g"°T}, + g%°T3y) + G2 (8T, + ¢'°T], + ¢2°T3,)

+ G12(g"' T3, + g2, + ¢'21'%,) + G (g3, + ¢2'T3, + g2°T3,).

Christoffel Symbol Identities In order to confirm, the given expressions for the
Einstein tensor G;; given by Egs. (11.50), (11.51), (11.52), (11.53) and (11.54)
constitute a bonafide solution of these lengthy divergence equations by means of
the following identities, which take the form gikl“lf;f for fixed j, k and m and with
summation over i, which are no doubt related to the particular case of this formula
given by [15] (page 68), namely

giTk = 1 dGJzg™)
L \/E xm :
By direct individual calculations, we may confirm the following identities:
prl
gm0, + %Y, + %1%, =0, g%ry + &%y, + &% T = - (11.61)
2 4
yr adr
goor(2)0+g01rgl +g02F(2)2 _ ? glor?0+gllr?l +g12F?2 _ o
10-1 111 121 a’r’ 102 112 122 aer?
g Tp+tg I'j+gTp=- 2 g Tp+g I'ii+¢ l“12=_7g27
2070 2110 2210 ar? 207-1 211 2241 2 r
g Tn+g Iy +¢ Fzzz?’ 8 T+ 8" Ty +87 Ty = (Br +B)§’
2072 212 22 _ 0110 110 210_:3r3
87T +8" Ty +87 T3 =0, g To+g Tp+sg on——?’
011 111 201 012 112 22 . Dr
g8 Too+8 Tip+8 Ty =0, g To+g Tp+sg on—_?s
Qsrd Qaur®
grg + "' + 873, = 2 g% + "I}y + 87Ty = - P



358 11 Coordinate Transformations, Tensors and General Relativity

002 012 022 Qer? 0210 120 220 wz
g Ty +g I'i+¢° Ty =— 2 g Top+g Tih+te F20=—7g!
0211 1211 ne _ Dr 02 12 22
g Top+gTit+sg on=?’ g%y + &' Ty + g’ T3 =0,
Qer?
g”T0) + "I + 6713, = - 2
Er? er6
8o + 8Ty + 7Ty = (6 +292r%) 2 2

5
02p2 4 1202 4 202 _ (s 420 AT _ o2 a2
g To+g T +g7 Ty =-0+ r)gz ( A )gz’

g% T + 8" +¢%T5 =0, g™ +¢'T); +¢%T, =0,
0012 102 2012 ar? 0110 110 2110
g Tpt+teg Tihts F22=_?» g Tpt+g Ti+g Ty =0,
.
g, +¢''Tj, + g%y, =0, g, + 8" +¢%'1%, = _(ﬂr2+3)§'

In terms of ¥ (r) = r2/g = 1/(8 + Qr?), the components of the Einstein tensor
become

Go=—v*|e?+p@+297],  Gu=-vipoa+e¥d, (1162
Gn=—y*r*SB,  Gor = —¥’r(BsC —aq),
Gor = —y*r’gsD, G = —y’rpsE,

and we may use the immediately above identities given by (11.61) to show that the
lengthy Eqgs. (11.58), (11.59) and (11.60) simplify as follows. For k = 0, we have

dGoo E\ dGy
- — 11.63
dr (yr r ) dr ( )

+a(l+8¥)Goo + <(ﬁr + g) + Br — azl//V) Gio+ (y —aey)Ga =0,

while for k = 1, we obtain

d01

E\ dG
(yr - —> 21 (11.64)
r dr

+a(l +8v)Go + <<,3r + ?) + Br — a2¢r> G+ (y —aey)Gay

+8QUrGoo + adyGol — eQUrGor — aQyrGor — a*yrGry
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E
+ ((5 +2Qr)— - J/Qr2> UG — QeYrGoy — aey Gy
r
((5 + 292 ) +(C? - AA)Qr) VG =0,

noting that evidently further grouping of terms is possible. The above form is that in
which the terms arise immediately from Eq. (11.59) and in the verification below, it
is useful to leave in this form. For k£ = 2, we have

dG dG E\ dG
ar—2 4 (Br? + B~ 2 (yr-2) 222 (11.65)
dr r dr

+a(l+6y)Go2 + <<,3r + ?) + Br — a2¢r> G+ (y —aey)Gn =0.

We may verify that each of Eqs. (11.63), (11.64) and (11.65) is correctly satisfied
by the expressions for G;; given by (11.62) as follows. All three can be verified in a
similar manner, and for k = 0 and k = 2, there are two important equalities, namely

aGoo + BrGio +yGa = —a*y%,  8Goo — arGig — €Ga = —a*yr, (k = 0)
aGo + prGia+yGan =0, 6Gp —arGip—eGyp =0,k =2)

while for k = 1, there are three important equalities, which are as follows:
aGoi + prGi1 +yGa = (@Y — P)Qyr,  8Gor — arGyy — €Gay = aQyr,
€Goa + yrGia + (C? = 1A) Gy = —p8QyY*r?

In addition to these equalities, we also require the three subsidiary equalities for
k =0, 1 and 2, respectively,

BrGoi — EGox = &®y?r?,  BrGi — EGia = —(@*Qyr? + &)y,
BrG,o — EGy = 0.

The proofs for all three values of k follow a similar approach, so we only give the
details for the case of k = 1, which is the most complicated. In each case, we
purposely rearrange each of Egs. (11.63), (11.64) and (11.65) to exploit the above
equalities. For k = 1, Eq. (11.64) can be shown to become

d 1d
r—(aGo1 + BrG11 +yGa1) + ——(BrG11 — EG12)
dr rdr

+ (@Go1 + BrGi1 + yGa1) + 20 (8Go1 —arGi1 — €Gay)
+ QYr(§Gor —arGiy —e€Gyy) — QYr(eGo + yrGro + (C2 —AMA)Gy)
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+ (8 +2Qr*) (Er Gy — AGzz)% =0,
r

and in this case, we need the additional equality that ErGy1 — AGoy = ,8(81//r)2.
Throughout these proofs, we make frequent use of the relations arising from g =
P28 + Q2 and Y (r) = r?/g = 1/(8 + Qr?), namely
1 d
5+ Qrt=— W _ 0y,
v dr

along with the identity BQ = o + 8.
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