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Author’s Foreword

The present text attempts to develop a combined theory for the two distinct and well-
defined primitive notions of particles and waves. The intended contents are most
aptly characterised in the words of the eminent Irish mathematical physicist John
Lighton Synge, who in describing the contents of his book, Geometrical Mechanics
and de Broglie Waves, writes in the introduction, ‘This book is intended as a
contribution to “mathematical” physics rather than to “naturalistic” physics’ [100].
By this he means, ‘the creation of a coherent mathematical theory, with clearly set
forth assumptions being the primary object, with physical interpretation in terms
of experiment being relegated to a secondary position’ [99]. In the engineering
community when theory and observation no longer coincide, the notion of a ‘fudge
factor’ becomes paramount to reconcile the two positions. In the physics commu-
nity, however, the same predicament forces the introduction of new factors which
are coined mysterious because they can no longer be explained through conventional
thinking, and the word ‘dark’ becomes attached to these mysterious phenomena.
It is clear to the writer that the dark issues of astrophysics are in consequence of
incorrect mechanical accounting, namely omitting insignificant issues at a local
level which become increasingly significant at larger scales. Accordingly, there is a
need to re-assess fundamental mechanical accounting practice while incorporating
the essential aspects of the successful well-established areas of physics. This book
describes one such formulation and attempts to develop the key implications of the
proposal.

As the theory of electro-magnetism developed in the late nineteenth century,
in attempting to formulate the critical electric and magnetic concepts, pioneering
scientists such as Faraday and Maxwell sought inspiration from well-established
mechanical analogues from both solid and fluid mechanics. Subsequently there has
always been a strong interplay between ideas and concepts in electro-magnetism
and mechanics, to the extent that the entire mechanical theory of special relativity
springs directly from Lorentz invariance of the equations of electro-magnetism. One
of the key lessons in electro-magnetism is the more fundamental importance of the
vector and scalar potentials (A, V ) as compared to the fields (E,B). The vector
potential A corresponds to the electromagnetic momentum, and is the analogue of

vii



viii Author’s Foreword

mechanical momentum, and referred to by both Faraday andMaxwell as the electro-
tonic intensity, while the potential V is the analogue of the velocity potential in
fluid mechanics. This book adopts the perspective that a similar situation might
apply in special relativistic mechanics, and it is not just the momentum vector p
that contributes to the work doneW but rather the particle energy e itself also plays
an important role. We develop here a Lorentz invariant modification of Newton’s
second law applying when particle energy itself is of comparable magnitude to the
potential energy of the applied external field.

While the original idea came from electro-magnetism, much later I was able
to reflect on an often-repeated remark of a colleague, who would say that general
relativity specialists do not care which one in particular of their four variables
corresponds to time in their four-dimensional description of space-time. Coming
from continuum mechanics, this struck me as an interesting comment, but if it were
true, then we certainly might be willing to put space and time on equal footings, and
the notion of a force g in the direction of time might not be such a radical thought.
Indeed, at the very heart of the theory of general relativity lies the notion of an ideal
test particle, the presence of which is assumed not to affect the gravitational field.
The theory expounded here attempts to make some accommodation for this energy
omission within the context of the theory of special relativity.

After toying with the replacement formulation (3.4) for Newton’s second law, the
idea seemed to have some merit. I was especially encouraged that the force relations
Eqs. (3.4) are Lorentz invariant, and that Eq. (5.8) admits the two suggestive limits
dE /dp = u and dE /dp = c2/u, where E is wave energy and p is particle
momentum. These two limits are the particle and wave limits, which also arise from
Eq. (3.10) as purely spatial (dt = 0) or purely temporal (dx = 0) extreme limits
of the proposed theory. Also immediate from Eq. (5.8) are the relations E = ±cp,
termed here the de Broglie relations. The positive case is equivalent to the known
relations for light, namely p = h/μ and E = hν, which together imply E = cp

where h is the Planck constant and μ is the wave length (c = μν). These initial
results provided sufficient incentive to contemplate other allowable outcomes.

Also important is that the structure of the standard operator relations of quantum
mechanics p −→ −ih̄∂/∂x and e −→ ih̄∂/∂t is immediately apparent from the
proposed theory, assuming only that the external forces f and g are generated from
a potential V (x, t) such that f = −∂V/∂x and gc2 = −∂V/∂t . Specifically,
from (8.1), we have p = ∂ψ/∂x and E = ∂ψ/∂t , and conservation of energy
e + E + V = constant immediately gives e = −(∂ψ/∂t + V ), which is precisely
the structure of the standard operator relations of quantum mechanics. That is, the
established structure of conventional quantum mechanics is immediately inherent in
the present approach and arises from conservation of energy.

This highlights the fact that particle energy e and wave energy E must be
accommodated separately. Conventionally, energy is just energy, and in quantum
mechanics, particle-like and wave-like states are compromised by restricting the
particle-like properties so that they do not permit the description of an exact
space-time motion (Heisenberg uncertainty) achieved through the introduction of
probability waves. Here, we deal with particle energy e and wave energy E as
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strictly different entities, and for the above-mentioned example of light, we would
say e = 0 and E = cp. The notion of energy commonly referred to as particle
energy is an acquired characteristic arising from the properties of space, while wave
energy is an accumulation of energy arising from time.

Also noteworthy is the fact that a simple and logical analysis of the Einstein
energy statement e2 = e0

2 + (pc)2 immediately gives rise to the prospect of four
distinct types of matter, since either the rest energy e0 is zero or it is non-zero, and
for each of these two alternatives, we may adopt a plus or minus sign. This simple
and logical explanation of at least four distinct types of matter is only meaningful
because it is interpreted within the present proposed extension of special relativity,
and such an interpretation is simply not available within the narrower confines of
traditional special relativity because it lacks the notion of a force in the direction of
time.

Here, we speculate that dark matter and dark energy arise as special or privileged
states occurring for particular alignments of the magnitude of the spatial physical
force f and the force g in the direction of time, which in a single spatial dimension
become simply f = ±gc. The particle and wave energies for these alignments
are such that e = ±E , with dark matter an essentially backward wave and dark
energy an essentially forward wave, both propagating at the speed of light. In a real
circumstance, we might expect a situation comparable to a ‘fuzzy region’ where the
key equalities are constantly switching on and off dependent upon a varying local
environment. The case e = −E is especially interesting since it may operate under
zero potential V = 0, which might account for the abundance of dark energy and
dark matter in the universe.

This text presents an elementary and much expanded introduction to the basic
mathematics and mechanics of the ideas formulated in [47–52] involving a Lorentz
invariant alternative to Newton’s second law. The Lorentz invariant modification of
Newton’s second law extends conventional special relativity theory by developing
a dual particle-wave formulation accommodating both particle and wave energies,
and allowing exceptions to the law that matter cannot be created or destroyed. de
Broglie was first to propose a concrete physical picture of the co-existence of both
particle and its associated wave, and [47–52] make a distinction between particle
and wave energies e and E , respectively, such that the total work done by the particle
W = e + E accumulates from both a spatial physical force f and a force g in the
direction of time. Generally, experiments are undertaken with the classical notions
of either particles or waves in mind, so that in an experiment either particles or
waves are reported, and only one of e or E is measured. Since nature tends to adopt
the least energy structure, for the present theory, we propose that particles appear
for e < E and waves for E < e, but in either event, both a measurable and an
unmeasurable energy exists.

Our specific purpose here is to provide an introduction to the mathematical and
mechanical framework underpinning these ideas with a level of mathematical detail
not included in the original papers, as might be comprehensible to an undergraduate
student in either physics or applied mathematics. However, it is not a definitive
account of a successful completed story, but rather a single proposal and a log for
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some of the mathematical results pertaining to the proposed model. The applied
mathematical and mathematical modelling communities are used to the idea that
there often exist a range of perfectly sensible and meaningful mathematical models
predicting comparable numerical outcomes. While the writer is open to the idea that
the particular model structure advanced here may not be immaculately correct, he
is nevertheless firmly of the view that the ultimate resolution of the dark issues of
mechanics will require a comparable re-thinking of Newton’s second law, and that
the dark issues will emerge as essentially artefacts of the mechanical accounting.
The author is grateful to Professor David Steigmann for his constant support
and encouragement of this work, and to Professor Phil Broadbridge, Dr Barry
Cox, Professor Sam Drake, Dr Joe O’Leary and Mr Arthur Rorris, for numerous
enjoyable discussions over coffee.
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Chapter 1
Introduction

1.1 Introduction

In this chapter we provide an overall background introduction and motivation to
the contents of the book. The following section deals with some of the background
issues which is followed by two brief sections on special relativity and quantum
mechanics that emphasise the importance that any new theories might sensibly be
cognisant of the considerable successes of existing theories. The section thereafter
introduces the general idea of de Broglie particle-wave mechanical systems which
are mechanical systems incorporating both particle and wave energies. The chapter
closes with a brief plan of the text and two tables of the major symbols and basic
equations.

1.2 General Introduction

The latest Planck data [2] gives the relative fractions for dark energy, dark matter
and ordinary or baryonic matter as comprising, respectively, 68.3, 26.8 and 4.9
per cent of all matter in the universe, and it is only for ordinary matter that
existing mechanical and physical theories apply. There are fundamental problems
with mechanical accounting at the astrophysical scale, and the word dark implies a
mysterious aspect that is not properly understood. The dark issues of cosmological
mechanics imply that our accounting for mass and energy at this scale is incorrect,
and in the search to understand the dark issues of astrophysics, a fundamental re-
examination of mechanical theory is necessary, and the most basic of all mechanics
is Newton’s second law involving force, mass and acceleration.

On the other hand, existing theory not only accounts for atomic physics, but does
so to a very high degree of accuracy, and our current knowledge and understanding
of the physical universe, combined with the great achievements of Newtonian
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2 1 Introduction

mechanics and modern physics, are so overwhelming that as time passes, it becomes
increasingly difficult to attempt the fundamental problems with a fresh mind and an
open disposition. If we steadfastly maintain all the fundamental pillars of modern
physics principles, then nothing new can be produced within such a rigid framework.
The major problems can only be solved by venturing outside the pre-confined
paradigm, to gain new insights and new perspectives. It seems to the writer that
we need to start at the beginning while being as inclusive as is possible of well-
established theory, and the mathematical construct described here and in [47–52] is
an attempt to satisfy these two not entirely consistent objectives.

Current astrophysical theory is tending more towards increasing complexity, and
many novel and creative ideas have been proposed to explain the origins of dark
energy and dark matter, including negative and imaginary masses. Many proposals
are compounded with other theories or defined in terms of other equally complex
scientific concepts. Scientific measurement and data are also ambiguous, complex
and shrouded in sophisticated statistical analysis, as is immediately clear from the
briefest examination of the technical summaries of the data arising out of the Planck
mission [1–3] or the data associated with measurement of the Hubble parameter
(see for example [87]). In such a prevailing complex scientific environment that
is characterised by a lack of clarity, and in the absence of the correct mechanical
framework to interpret data, this is not the time for further elaborate theory; rather
there is a need for fundamental questioning of basic mechanical principles, and
the most basic of all mechanical principles is Newton’s second law relating force,
mass and acceleration. This is not to suggest that existing mechanical theory will
need revisiting, but rather Newton’s second law is the place where the fundamental
thinking is required, and that understanding can then be transferred to more
sophisticated gravitational theories.

Both special relativity and quantum mechanics provide accurate mathematical
models that are locally reliable, and therefore the first challenge is to enhance
these theories to explain “dark” mechanics but in a manner that embraces their
successful features. Special relativity is especially relevant as a preliminary testing
ground, since firstly the necessary adjustments to this theory will demonstrate how
more general gravitational theories, such as general relativity, might be modified.
Secondly, within special relativity the criterion of Lorentz invariance is there
to establish the veracity or otherwise of any proposal. In other words, a good
proposition in special relativity must satisfy the criterion of Lorentz invariance,
which is a non-trivial constraint. Our aim is to modify special relativistic mechanics
in a manner that is inclusive of its successful features. It turns out that in this
reappraisal of basic mechanics, unintentionally other doors are opened, including
the role of quantum mechanics and the “long searched for” relationship with special
relativity.

A Lorentz invariant extension of Newton’s second law is proposed within the
context of special relativity that simultaneously produces all the successful results
of classical mechanics, special relativity and quantum mechanics in the form of
Schrödinger’s second order wave equation, and provides a common basis for special
relativity and quantum mechanics, with a single theory. The major achievements of
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these theories are preserved, and the formulation identifies underlying reasons for
our present incorrect accounting of energy at the cosmological scale. It presupposes
that along with the usual spatial physical force f, there is a force g in the “direction
of time”, such that when the external forces are derivable from a potential, the
particle energy itself acts as a boost to the potential. If the external forces f and g are
generated from an underlying potential field, then when the spatial physical force is
switched off, the force in the direction of time is also switched off, and the particle
velocity is zero, indicating that there is nothing that is non-physical concerning the
proposed theory.

In Bohr’s theory of the hydrogen atom (see [35], pages 29–61 for a general
historical account), de Broglie [17] showed that the group velocity of the wave
package coincides with the particle velocity u, and the wave velocity is given
by w = c2/u. Accordingly, if the particle velocity u is sub-luminal, then the
associated wave or phase velocity c2/u through the de Broglie relation is necessarily
superluminal. This is “believed” not to contradict the fact that information cannot
be carried faster than the speed of light c because “supposedly” the wave phase does
not carry energy. However, the superluminal phase velocity may well be physically
significant, and as suggested in [47–49, 51], dark matter or dark energy may well
exist as a consequence that either the particle energy or the de Broglie wave energy
is neglected. If the wave energy through the superluminal wave speed c2/u is
accommodated, then it is clear that there will be interesting outcomes for slowing
particle speeds u tending to zero.

The singularity arising from u = 0 and the consequent logarithmic singularities
that can be produced even for slowly moving mechanical structures are at odds with
our mechanical experience. Traditional mechanical theory and thinking presuppose
smooth and sensible physical behaviour and an absence of singularities. In fact,
expectations of decreasing energy for slowing systems and avoiding singularities lie
at the very heart of mechanical thinking of natural systems. We may accommodate
a singularity at the speed of light because it is believed to constitute an unattainable
physical barrier. The formalism developed here hints at the prospect of physical
singularities, supported by large energies, for possibly slowly moving mechanical
structures, that display characteristics of unstoppable mechanical systems.

Our purpose is to progressively build a picture that a distinction must be made
between particle energy e = mc2 and the de Broglie wave energy E such that
the total work done by the particle is W = e + E which accumulates from both
a spatial physical force f and a force g in the direction of time. Since in any
experiment, either particles or de Broglie waves are reported, so that only one of
e or E is physically measured, and particles appear for e < E and de Broglie
waves occur for E < e, in either event, both a measurable and an unmeasurable
energy exist. The question arises as to whether there are other reasons why it
is important to include both particle and wave energies and for which there is
no simple physical response. However, a simple mathematical response might be
as follows: Formally, known particle energy obtained from e = mc2 is an even
function of velocity, while known wave energy obtained from the de Broglie formula
E = pc is an odd function of velocity. Now it is well known that every function
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can be expressed as the sum of both an even and odd function (namely, f (v) =
[f (v) + f (−v)]/2 + [f (v) − f (−v)]/2) so that both even and odd functions of
velocity might be needed to correctly represent some arbitrary function of velocity.

We propose that dark matter and dark energy might arise as special states, termed
here de Broglie states that are characterised by the relations E = ±pc, where p
denotes the magnitude of the momentum vector, namely, p2 = p.p. Further, we
propose that the conventional particle energy equation e2 = e0

2 + (pc)2, where
e0 = m0c

2 denotes the particle rest mass energy, logically admits four distinct types
of matter. The rest mass energy e0 is either zero or non-zero and so gives rise to
precisely four distinct types of matter: (I) e = (e0

2 + (pc)2)1/2, e0 �= 0; (II) e =
−(e02 + (pc)2)1/2, e0 �= 0; (III) e = pc, e0 = 0; and (IV) e = −pc, e0 = 0. Here
we identify these (I) as baryonic matter; (II) as some form of antimatter; (III) as dark
matter; and (IV) as dark energy, and no doubt using this particular characterisation,
there are numerous elementary particles belonging to each category.

This straightforward identification of the distinct types of matter is only mean-
ingful because it is interpreted within the proposed extension of special relativity
examined in [47–52]. Such an interpretation is simply not available within the
narrower confines of traditional special relativity because it lacks the notion of a
force in the direction of time. We speculate that dark matter and dark energy arise
from a particular alignment of the spatial physical force f and the force g in the
direction of time, namely, f = ±gc, where f denotes the magnitude f 2 = f.f. This
alignment is such that the particle and wave energies coincide, namely, e = E , and
a consistent mathematical framework supports this proposal. The proposed model
also admits e = −E , with the important outcome that such a privileged state might
be sustained under a zero or at least constant potential. In a real circumstance, we
might expect a situation comparable to a “fuzzy region” where the key equalities
are constantly switching on and off dependent upon a varying local environment.
We identify dark matter as a backward wave and dark energy as a forward wave,
in consequence that it is known that there is more dark energy in the universe than
dark matter, which is equivalent to saying that time past is less than future time.

1.3 Special Relativity

While Einstein formulae e = mc2 and m = m0[1 − (u/c)2]−1/2, for the
variation of mass m with its velocity u, where m0 denotes the rest mass, have
been overwhelmingly verified in our own local environment, it is clear that on a
cosmological or astrophysical scale, our understanding of energy and matter is not
so successful and issues such as dark energy and dark matter remain improperly
understood. In our local environment, the rest mass m0 is deemed to be the sole
critical parameter, and yet the mysteries associated with dark energy and dark
matter indicate that matter itself may adopt other forms or possess other defining
characteristics (see for example [90]).



1.4 Quantum Mechanics 5

The notion of invariance refers to formulations of physical laws or quantities
that are left unchanged with respect to changing frames of reference, and the
particular notion of Lorentz invariance refers to invariance of Maxwell’s equations
of electromagnetism with regard to those frames of reference that are moving
with constant relative velocity with respect to each other. The notion of Lorentz
invariance with respect to non-accelerating frames is fundamental to special rela-
tivity, and the Einstein formula for mass m as a function of velocity u, namely,
m(u) = m0[1 − (u/c)2]−1/2, is both a necessary and sufficient condition for force
invariance in two non-accelerating frames.

The underlying philosophy here is firstly the recognition of the importance of
special relativity and secondly to extend the theory in a manner that embraces the
essential features of the existing theory. Now given the veracity of the special theory,
it may not be too unreasonable to expect that somewhere embodied within the
theory are clues as to the notions which have been termed dark matter and dark
energy. However, since the special theory deals only with non-accelerating frames,
we certainly would not expect any such extension to tell the complete story, but
we might expect some definite pointers as to how a more complete picture may be
subsequently developed.

The formulae e = mc2 and m(u) = m0[1 − (u/c)2]−1/2 are fundamental
to the development of special relativity, and these expressions together with the
Lorentz transformations and the law for the addition of velocities are fundamental
to the derivation of other results, including the Lorentz invariant energy-momentum
relations. Here, assuming the Lorentz transformations and their consequences, and
the formulae e = mc2 and m(u) = m0[1 − (u/c)2]−1/2, we seek to extend
the existing formalism of special relativity. The proposed formulation is a natural
extension of special relativity that retains the major features and indicates that dark
matter and dark energy arise from neglecting the work done in the direction of time.

1.4 Quantum Mechanics

In 1980, Bernard Cohen in his book on the Newtonian revolution [12], page 147
writes,“I believe that the outlook of post-Newtonian scientists, using a system based
on the action of a universal force that they could not understand, was not wholly
unlike that of present day physicists with respect to quantum field theory”, and he
quotes Murray Gell-Mann, who said in 1977, “All of modern physics is governed
by that magnificent and thoroughly confusing discipline called quantum mechanics,
invented more than fifty years ago. It has survived all tests and there is no reason
to believe that there is any flaw in it. We suppose that it is exactly correct. Nobody
understands it, but we all know how to use it and how to apply it to problems; and
so we have learned to live with the fact that nobody can understand it”.

The phenomenon of quantum entanglement indicates that systems of particles
exist which individually display certain characteristics while collectively the same
characteristic is absent simply because it has cancelled out between individual
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particles. To understand such complex physical issues, it may be irrelevant whether
or not a particular long held conservation law applies, as long as there is a
framework to include exceptions to the rule. It might be advantageous to formulate
a framework in which there are exceptions to the rule that matter cannot be created
or destroyed, without necessarily believing that it is either absolutely true or not.
In [47–52] a modified special relativistic framework for mechanics is proposed
to properly accommodate both particle and wave energies while still retaining the
major achievements in mechanics and atomic physics.

In conventional quantum mechanics, Schrödinger’s second order wave equation
is typically motivated from the classical wave equation. Conventional quantum
mechanics postulates that the equation be linear, so that different solutions may
be superimposed, and that it involves only fundamental constants, rather than
parameters associated with a particular motion of the particle such as momentum,
energy, frequency or propagation number, and the classical wave equation emerges
as the most likely candidate. It is therefore important to emphasise that within the
theory proposed here, the classical wave equation is not a matter of speculation, and
it is not difficult to envisage the Schrödinger wave equation arising in the present
context as a formal consequence, following the numerous ad hoc derivations of the
Schrödinger wave equation presented in several texts (such as [71], pages 18–19, or
[93], pages 218–220), and we refer the reader to [49] for further details.

The proposed theory extends special relativistic mechanics by invoking the
concept of a “force g in the direction of time”. The model is inclusive of Newtonian
mechanics and of quantum mechanics, in the form of Schrödinger’s second order
wave equation, and therefore inclusive of much existing theory of atomic physics.
In this approach the wave equation emerges as a consequence of the theory, and the
open question arises as to whether quantised energy levels can be deduced directly
from the wave equation without forcing an eigenvalue problem.

Moreover, the operator relations of quantum mechanics p −→ −ih̄∇ and e −→
ih̄∂/∂t , where h̄ = h/2π and h is Planck’s constant, are immediately apparent from
the proposed theory if the external forces f and g are generated from a potential
V (x, t) so that f = −∇V and gc2 = −∂V/∂t , and therefore if p −→ −ih̄∇,
then the theory suggests that the operator relation E −→ −ih̄∂/∂t applies to the
de Broglie wave energy. From these two operator relations and the conservation
of energy e + E + V = constant , we obtain the conventional operator relation
of quantum mechanics that applies to the particle energy; thus e −→ ih̄∂/∂t −
V (x, t). The emergence of the operator relations of quantum mechanics from the
theory highlights the fact that the particle energy e and the wave energy E might be
accommodated separately.

In conventional quantum mechanics, particle-like and wave-like states are
compromised by restricting the particle-like properties so that they do not permit
the description of an exact space-time motion. Of course through the Hilbert space
formalism of quantum mechanics, the mathematical theory of the particle-wave
duality has come a long way since the rudimentary ideas of de Broglie and is
quite capable of dealing with states in which there is neither pure particle behaviour
(characterised by a well-defined position) nor pure wave behaviour (characterised
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by well-defined momentum) with both having significant variances of measurement.
Here we deal with particle energy e and wave energy E as strictly different entities,
and we examine the implications of the conventional quantum mechanical operators
for the two Lorentz invariants ξ = ex − c2pt and η = px − et of special relativity
to identify the “long searched for” formal connection between special relativity and
quantum mechanics, such that η associates with the particle or sub-luminal world,
while ξ associates with the wave or superluminal world.

1.5 de Broglie Particle-Wave Mechanics

Writing in 1970, Louis de Broglie [23] makes clear that at two distinct stages of his
life, his interpretation of the dual particle-wave nature of matter involved a concrete
physical picture of the co-existence of both particle and the associated wave, which
he referred to as “the theory of the double solution”, and for which he formulated an
equation which he called “the guidance formula” (see also de Broglie [21, 24]).
At other times he followed the then current thinking in quantum mechanics, in
which particle-like and wave-like states are compromised by restricting the particle-
like properties so that they do not permit the description of an exact space-time
motion (Heisenberg uncertainty), and this is achieved through the introduction of
probability waves.

Roughly speaking, de Broglie’s guidance equation arises from a combination of
special relativistic and quantum mechanical ideas as follows: The momentum p and
particle energy e are assumed to simultaneously admit the two representations

p = mu = −∇ψ, e = mc2 = ∂ψ

∂t
, (1.1)

where m is assumed to be given by the relativistic expression m = m0/[1 −
(u/c)2]1/2 and therefore the velocity u is given by

u = −c2 ∇ψ
(∂ψ/∂t)

, (1.2)

and de Broglie refers to this formula, which determines the motion of the particle
at each point of its trajectory in the wave, as the “the guidance formula of the
particle by its wave”. Notice that in the approach suggested here, the two Eqs. (3.4)
combined with de Broglie relations (1.1) indicate that f = 0 while

1

c2

∂2ψ

∂t2
− ∇2ψ = g. (1.3)

For the special case of a single spatial dimension, an extended analysis of the above
three relations is provided in Chap. 4.
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In 1923 Louis de Broglie [16, 17] (see also de Broglie [18–20] and Weinberger
[108]) first predicted light to display the dual characteristics both as a collection of
particles, called photons, and as a wave. He predicted that all matter may, under
appropriate circumstances, exhibit either particle-like or wave-like behaviour. He
envisaged that an electron orbiting a hydrogen atom is accompanied by a mysterious
pilot wave (now known as a de Broglie wave) extending the circumferential length
of the orbit, and he speculated that the length of the orbit circumference comprised
an integer number of wavelengths, from which he deduced p = h/μ and E = hν,
where p is momentum, E is energy, h is Planck’s constant, μ is the wave length,
and ν is the frequency and from which on using μν = c, we may deduce the de
Broglie relation E = cp (see [35]). In this text we reserve the symbol λ for the
nondimensional parameter in the exact solution given by Eq. (5.1).

Recently, de Broglie’s quantummechanical pilot-wave ideas have received some-
thing of a boost and a revival following the considerable attention focussed on the
experiments of Yves Couder and colleagues [14], who observed droplets walking on
the surface of a vibrating fluid bath and exhibiting phenomena previously thought
to be exclusive to the microscopic quantum realm. As detailed by John W. M. Bush
and co-workers (see for example [10, 45, 82]), “the walking-drop system displays
comparable effects such as single and double-slit diffraction, tunneling, orbital
quantisation, level-splitting and wave-like statistics in confined geometries. The
walking drop is propelled through resonant interaction with its own wave field, and
represents the first macroscopic realisation of a double-wave pilot-wave quantum
mechanical system envisaged by de Broglie” [45].

John Lighton Synge’s book on “geometrical mechanics and de Broglie waves”
[100] develops Hamilton’s formal methods of geometrical optics in the space-time
of Minkowski, making proper allowance for the four-dimensionality of special
relativity, to formulate a topic which might be termed “relativistic geometric
mechanics”. Synge explains that in optics, Hamilton’s theory of geometrical
optics and Maxwell’s equations of electromagnetism form the two complementary
coherent mathematical theories of optics, while in mechanics the Newtonian theory
of particle motion is the analogue of geometrical optics and Schrödinger’s wave
mechanics is the analogue of Maxwell’s theory, all providing coherent mathematical
theories. Within this framework the topic developed here might be best described as
a contribution to “Newtonian theory of particle motion within the space-time of
Minkowski”, noting that the distinction between the theory here and the existing
subject of this name is as follows: At present the relativistic theory of Newtonian
particle motion deals only with a spatially Lorentz invariant Newton’s second law.
In this text we develop a coherent mathematical theory describing Lorentz invariant
Newton’s second law for both space and time.

The theory proposed here might be viewed as intermediate between special and
general relativity, in the sense that for an energy function to exist, any external forces
f and g must satisfy a compatibility condition (3.11). In the event that the forces
are generated from a potential V (x, t) through Eq. (5.8), then unlike conventional
theory, the potential itself cannot be arbitrarily assigned but is determined as part
of the solution procedure. This feature is reminiscent of general relativity for which
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the field equations determine the metric tensor and the gravitational nature of the
field itself.

In the present theory, we make a distinction between particle energy e = mc2 and
the de Broglie wave energy E , which are such that the total work done by the particle
W = e+E accumulates from both the spatial physical force f and the force g in the
direction of time. We propose that in an experiment, particles appear for e < E and
waves for E < e, but in either event, both a measurable and an unmeasurable energy
exist, and in making this assertion, we are motivated by the fact that, generally
speaking, nature tends to prefer to adopt minimum energy structures. We further
speculate that dark matter and dark energy arise from particular alignments of the
magnitude of the spatial physical force f and the force g in the direction of time,
such that the particle and wave energies coincide, namely, e = E .

Although the theory proposed in [47–52] might be referred to as a “toy theory” in
the sense that it does not involve the full gravitational nature of general relativity, we
might expect that it provides the correct conceptual outcomes which at a later time
might be refined through more sophisticated theory. The mere fact of the existence
of the dark issues of mechanics implies that there is something fundamentally flawed
with mechanical accounting at the cosmological scale, but now may not be the
time for further elaborate theory; rather there is a need for fundamental questioning
of basic mechanical principles, and the most basic of all mechanical principles is
Newton’s second law.

The proposed mathematical theory indicates that dark matter might arise from
an essentially backward wave (time past) while dark energy might arise from an
essentially forward wave (future time), and the conventional wisdom of more dark
matter than dark energy in the universe arises as a consequence that future time
exceeds time past. If the spatial physical force f and the force g in the direction
of time are generated as the gradient of a potential function, then the total particle
energy is necessarily conserved in the conventional manner, and the formulation
predicts the conventional operator structure of quantum mechanics leading to
the Schrödinger wave equation. The present approach links two invariances of
the Lorentz group of special relativity with the corresponding Lorentz invariant
differential operators arising in quantum mechanics and the de Broglie particle and
wave duality and giving rise to the Klein-Gordon equation of relativistic quantum
mechanics.

1.6 Plan of Text

In the following chapter, we present a brief summary of the basic equations of
conventional special relativity including the Lorentz transformations, the addition
of velocities law, several sections on Lorentz invariances, force invariance and the
Lorentz invariant mass-momentum relations. Throughout the text we assume the
Einstein variation of mass with velocity formulae of special relativity. However,
in the final section of Chap. 2, we include a Lorentz invariant alternative, which
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indicates that any departure from the Einstein expressions inevitably introduces
additional complexities to the theory.

We begin Chap. 3 with brief biographies of de Broglie and Maxwell, mentioning
some of their considerable achievements. We then detail the general formulation of
the basic mathematical and mechanical model formulated in [47–52], including the
four types of matter, a discussion of the likely rest mass energy profile, the proposed
extension of Newton’s second law, the introduction of the work done W and the
de Broglie wave energy E , the conservation of energy principle for forces f and
g derivable from a potential V (x, t) and a formal correspondence with Maxwell’s
equations. As an illustrative example, the basic equations corresponding to purely
radial motion in a spherically symmetric environment with no angular effect are
examined. The model proposed here is primarily intended to be interpreted as an
extension of special relativity. However, by way of an introduction to the new theory,
the final three sections of Chap. 3 examine a Newtonian interpretation of the theory
that is based upon the classical interpretations with particle energy e = m0u

2/2 and
particle momentum p = m0u, where the mass m0 is assumed to be constant.

In Chap. 4 we detail special results for the model that apply to one Cartesian
space dimension. In this circumstance, the formal equations take on their simplest
form, and extending some of these results may not be entirely straightforward. In
this chapter, we present the basic equations, a number of reformulations of these
equations and an identity involving the particle energy. The next five sections deal
with various formulations of the basic equations using the Lorentz invariants ξ =
ex − c2pt and η = px − et and culminating in de Broglie’s guidance equation
leading to an insightful formulation in terms of Clairaut’s differential equation with
parameter u. The final two sections of the chapter briefly discuss the Hamiltonian
and Lagrangian for a single dimension.

The next two chapters deal with the derivations and formulae for a specific one-
dimensional exact wave-like solution (5.1) of the basic equations (3.4). In Chap. 5
we discuss the solution and its relationship to a known solution in relativity and its
application to derive an analytical expression for the Hubble parameter. In Chap. 6
we present a formal derivation of this solution and some technical details for the
evaluation of expressions for the corresponding de Broglie wave energy E .

The Lorentz and associated invariances of the underlying one space dimension
model and of the exact solution are examined in detail in Chap. 7. The general
equations are fully Lorentz invariant, so that the model allows the force in all
Lorentz frames to be the same. However, the condition for the existence of a
work done or energy function is not Lorentz invariant, so that not all aspects
of the solutions of the model will be fully Lorentz invariant. This is the case
for the exact wave-like solution examined in Chap. 5, which might be termed
partially Lorentz invariant. The functional forms of the assumed linear forces are
preserved under Lorentz transformation, with new constants dependent upon the
Lorentz translational velocity v, while the actual Lorentz invariants turn out to
involve the products of force and energy. The final two sections of this chapter deal
with force invariance under superluminal Lorentz frames, and using the space-time
transformation x′ = ct and t ′ = x/c, relating sub-luminal particle motion and
superluminal waves, to identify particle, wave and momentum energies.
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In Chap. 8 some further results for a single space dimension are developed. The
general solution in terms of the characteristic coordinates α = ct+x and β = ct−x
is examined in Chap. 8, and a generalisation of the wave-like solution is presented
there. In two subsequent sections, the notion of solving the basic equations for non-
constant or variable rest mass is examined. In the final section of the chapter, a
number of results are developed based on the assumption that the momentum p(x, t)
and wave energy E (x, t) can be treated as independent variables which essentially is
equivalent to the assumption that the applied forces f and g are such that f �= ±cg.

The basic equations and results for centrally or spherically symmetric gravitating
environments are developed in Chap. 9, and it is noted that the special relativistic
estimate of the Schwarzschild radius is precisely one-half of the conventional
Schwarzschild radius obtained from Newtonian mechanics. The four types of matter
are discussed and four partial differential equations are determined for the four
potentials V (r, t) corresponding to each of the predicted distinct types of matter, and
some of the simpler stretching similarity potentials are determined. The final section
of the chapter deals with de Broglie’s centrally symmetric guidance formula.

In Chap. 10, we examine the relationship of the model presented here with
conventional quantum mechanics in the form of Schrödinger’s second order wave
equation, and we show that the two invariants ξ = ex − c2pt and η = px − et
of special relativity (see Eq. (2.48)) provide the formal connection between special
relativity and quantum mechanics that has long attracted many eminent researchers.
This formal connection has always eluded researchers since in conventional quan-
tum mechanics, there is no distinction between particle energy e and wave energy
E . On adopting the standard operator relations of quantum mechanics, ξ and η
give rise to two Lorentz invariant operators leading to the Klein-Gordon partial
differential equation arising as the operator equivalent of the algebraic identity
ξ2 − (cη)2 = e20(x

2 − (ct)2). By incorporating a potential function V (x, t) into
the operator relations, we also deduce the modified second order Klein-Gordon
equation (10.21) which is an entirely new partial differential equation displaying
characteristics of both the Klein-Gordon equation and of Schrödinger’s second order
wave equation.

As an essential perspective for any reader, Chap. 11 of the book provides an
introduction to some of the necessary technical aspects leading to general relativity,
which, although an important topic, is admittedly by any measure a technically
difficult one. At the heart of general relativity theory lies the notion of an ideal test
particle that does not influence the gravitational field in any manner. The present
text attempts to develop a special relativistic theory that applies when the particle
energy itself is comparable to the external potential energy generating the motion,
and the next challenge might be to incorporate a similar feature in general relativity.
The question also arises as to whether the present proposal is already embodied
in the general theory, and if not, how might the general theory be modified to
accommodate particle energy? With this in mind, and given the practical importance
of the subject, a progressive introduction to general relativity theory is provided in
Chap. 11. This chapter presents some notes on general coordinate transformations,
tensors and an introduction to general relativity, which is necessarily a limited
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introduction to the topic and termed progressive in the sense that the reader can
simply read on to further sections if more information and further detail are required.

Beginning with Cartesian tensors and the Einstein summation convention and
progressing through tensors arising from general curvilinear coordinates, the notions
of partial covariant differentiation and the Christoffel symbols are developed leading
to the tensorial equations of general relativity. To provide some insight into the
mathematical and technical detail involved in the discipline, some general formulae
are presented for the Ricci and Einstein tensors expressed in terms of six compo-
nents of the covariant curvature tensor, and two well-known cosmological models
are presented as illustrative examples of the formulation. In the final section of
Chap. 11, some calculations involving logarithmic spirals and demonstrating more
complicated detail are presented. Chapter 12 provides some overall conclusions,
a dot point summary of some of the key results with reference to a single spatial
dimension and some reflective commentary on the text.

1.7 Tables of Major Symbols and Basic Equations

In this section, for convenience, we present Tables 1.1 and 1.2 for the major symbols
and basic equations that are used throughout the text.

Table 1.1 Major symbols and equation number of first appearance

Quantity Symbol Number

Mass m = m0/(1 − (u/c)2)1/2 (2.11)

Rest mass m0 (2.11)

Particle energy e = mc2 (2.11)

Rest particle energy e0 = m0c
2 (2.11)

Wave energy E (3.10)

Position vector x (3.2)

Time t (2.2)

Velocity vector u = dx/dt (3.6)

Momentum vector p = mu (3.2)

One-dimensional position x (2.2)

One-dimensional velocity u = dx/dt (2.2)

Also magnitude of u(x, t) u = (u · u)1/2 (3.33)

Also centrally symmetric radial velocity u = dr/dt (9.13)

One-dimensional momentum p = mu (2.11)

Also magnitude of p(x, t) p = (p · p)1/2 (3.3)

Relative frame velocity v (2.2)

Position from fixed frame X (2.2)

Time from fixed frame T (2.2)

(continued)
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Velocity from fixed frame U = dX/dT (2.6)

Average particle and wave velocity V = (u+ c2/u)/2 (2.42)

Also force potential V (x, t) f = −∇V , gc2 = −∂V /∂t (3.25)

Lorentz invariant ξ(x, t) = ex − c2pt (2.48)

Lorentz invariant η(x, t) = px − et (2.48)

Lorentz invariance angle θ(x, t) = tanh−1(u/c) (2.10)

Velocity angle φ(x, t) = sin−1(u/c) (5.11)

Gauge invariance ψ(x, t) p′ = p + ∇ψ , e′ = e − ∂ψ/∂t (3.5)

Also potential for Lorentz invariants η − tV = ∂ψ/∂x, ξ + xV = −∂ψ/∂t (4.38)

Characteristic variables α = ct + x, β = ct − x (8.37)

Arbitrary functions F(α), G(β) (4.42)

Extended Newton’s 2nd law f = ∂p/∂t + ∇e, g = (1/c2)∂e/∂t + ∇ · p, (3.4)

Table 1.2 Basic equations and first appearance (* denotes assuming force potential)

Name Equation Number

Total time derivative d/dt = ∂/∂t + (u · ∇), (3.6)

Identity for spatial force f(x, t) f = dp/dt + u ∧ (∇ ∧ p), (3.7)

Incremental wave energy E (x, t) dE = ∂p/∂t · dx + c2(∇ · p)dt , (3.10)

Force potential V (x, t) f = −∇V , gc2 = −∂V /∂t , (3.25)*

Conservation of energy e + E + V = constant , (3.26)*

Force formulae f = dp/dt , gc2 = dE /dt , (3.15)*

Wave equation for p(x, t) ∂2p/∂t2 = c2∇2p, (3.21)*

Wave equation for E (x, t) ∂2E /∂t2 = c2∇2E , (3.22)*

General solution for p and E p = ∇φ, E = ∂φ/∂t , ∂2φ/∂t2 = c2∇2φ, (3.23)*

One-dimensional version f = ∂p/∂t + ∂e/∂x, gc2 = ∂e/∂t + c2∂p/∂x, (7.1)

Characteristic variables α = ct + x, β = ct − x, (2.31)

Characteristic variable α f + cg = 2∂(e + cp)/∂α, (8.37)

Characteristic variable β f − cg = −2∂(e − cp)/∂β, (8.37)

Force potential V (x, t) f = −∂V /∂x, gc2 = −∂V /∂t , (8.40)*

Equations for p and E ∂E /∂x = ∂p/∂t , ∂E /∂t = c2∂p/∂x, (8.44)*

General solution for p(x, t) p(x, t) = F(α)+G(β), (4.43)*

General solution for E (x, t) E (x, t) = c (F (α)−G(β)), (4.43)*

General solution for e(x, t) e(x, t) = −V (x, t)− c(F (α)−G(β)), (4.44)*

Lorentz invariant ξ(x, t) ξ(x, t) = −xV (x, t)− c(αF (α)+ βG(β)), (4.43)*

Lorentz invariant η(x, t) η(x, t) = tV (x, t)+ (αF (α)− βG(β)), (4.43)*

Working variable γ (x, t) γ (x, t) = (e + pc)(ct − x)/2c, (2.49)

Working variable δ(x, t) δ(x, t) = (e − pc)(ct + x)/2c, (2.49)

Centrally symmetric systems r = (x2 + y2 + z2)1/2, (3.28)

Momentum p = p(r, t)r̂ = p(r, t)(x î + y ĵ + zk̂)/r , (3.28)

Wave energy E (r, t) ∂E /∂r = ∂p/∂t , ∂E /∂t = c2 (∂p/∂r + 2p/r), (9.3)*

General solution p(r, t) p(r, t) = (∂ψ/∂r)/r − ψ/r2 = ∂ (ψ/r)/∂r , (9.5)*

General solution E (r, t) E (r, t) = (∂ψ/∂t)/r = ∂ (ψ/r)/∂t , (9.5)*

Function ψ(r, t) ∂2ψ/∂t2 = c2∂2ψ/∂r2, (9.6)*



Chapter 2
Special Relativity

2.1 Introduction

In this chapter we summarise some of the standard results of conventional special
relativity theory that are needed to formulate the proposed extension of New-
ton’s second law. The word special alludes to invariance under transformations
relating constant relative velocity frames of reference, which is in contrast to
general relativity which relates to invariance under arbitrary space-time coordinate
transformations. The first section deals with the fundamental notion of Lorentz
transformations and the importance of invariance with respect to frames that are
moving with constant relative velocity. The following section highlights the Einstein
addition of velocities law which is an immediate consequence of the notion of
invariance under Lorentz transformations.

The next six sections provide a number of results dealing with Lorentz invari-
ances, including the determination of Lorentz invariant velocity fields, a general
framework for Lorentz invariances, solving a first order partial differential equation
by Lagrange’s method to determine their general form, a novel method of their
validation and showing that the Jacobian for all Lorentz invariances necessarily
vanishes. Two sections thereafter deal, respectively, with the space-time transfor-
mation x′ = ct and t ′ = x/c and the de Broglie wave velocity u′ = c2/u. In
the subsequent section, the fundamental rate-of-working equation (or work done
equation) is formulated for the determination of the conventional physical energy
of a particle moving under an applied force. The next two sections of the chapter
deal with the Lorentz invariant energy-momentum relations and force invariance for
two frames moving with constant relative velocity. The penultimate section of the
chapter provides a specific example of particle motion in an invariant potential field,
while the final section deals with a possible extension of the conventional Einstein
variation of mass formula with a specific expression arising from a Lorentz invariant
equation for the energy rate de/dp.

We assume throughout the text that the Einstein energy-mass expression e =
e0/(1 − (u/c)2)1/2 applies. In the final section of this chapter, assuming e = mc2,
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p = mu, and a Lorentz invariant equation for the energy rate de/dp, which is
motivated from the energy equation (5.8), we derive an extension of the conventional
Einstein variation of the energy-mass formula. This is the simplest one-parameter
Lorentz invariant extension of the Einstein mass-energy relation. Implicit in the new
expression is space-time anisotropy such that the particle has different rest masses
in the positive and negative x directions. The resulting energy-mass formula (2.59),
involving an arbitrary constant κ , predicts in particular that the rest energies in the
moving and reference frames, respectively, e0 and E0, are related by the equation

e0 = E0

(
1 + (v/c)
1 − (v/c)

)κ/2
, (2.1)

which for κ �= 0 therefore impinges on the basic assumption relating to the isotropy
of space. If e0 = E0, then necessarily κ is zero, and for κ �= 0 the rest mass
values will vary with the direction of motion, namely, two different values are
obtained for positive and negative velocities v. While numerous experiments have
been undertaken aimed at testing such hypothesis, and all indicate the veracity of
the assumed isotropy of space, nevertheless the validity or otherwise of (2.1) might
only be properly tested in those situations for which both rest energies e0 and E0
are non-zero and the fraction (1 + v/c)/(1 − v/c) significantly differs from unity.
Further, since it is generally believed that black holes exist at the centres of galaxies,
space must be intrinsically anisotropic in some sense.

The topic of special relativity has acquired the status of a standard subject
in both physics and mechanics, and almost every text on physics or mechanics
contains either a chapter on special relativity or at least some reference to special
relativity. The older texts tend to be closer to the original motivating issues and the
developments that gave birth to the subject. Both Dingle [25] and McCrea [76] are
concise student texts, while more comprehensive accounts of special relativity can
be found in Bohm [8], French [34] and Resnick [86]. Both Moller [78] and Tolman
[102] are two texts which have become standard works of reference to many aspects
of relativity. The reader may wish to also consult [83] which contains a collection of
the original papers of Einstein, Lorentz, Minkowski and Weyl with additional notes
by Arnold Sommerfeld.

2.2 Lorentz Transformations

At the very heart of special relativistic mechanics lies the notion of invariance with
respect to frames moving with constant relative velocity, and particularly under
those transformations of space and time leaving the wave equation unchanged,
referred to as Lorentz transformations. We consider a rectangular Cartesian frame
(X, Y,Z) and another frame (x, y, z) moving with constant velocity v relative to
the first frame, and the motion is assumed to be in the aligned X and x directions
as indicated in Fig. 2.1. We view the relative velocity v as a parameter measuring
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Fig. 2.1 Two inertial frames
moving along x-axis with
relative velocity v

T

X x

t

v

uU

the departure of the current frame (x, y, z) from the rest frame (X, Y,Z), and for
this purpose we adopt a notation employing lower case for variables associated with
the moving (x, y, z) frame and upper case or capitals for those variables associated
with the rest (X, Y,Z) frame. Accordingly, time is measured from the (X, Y,Z)
frame with the variable T and from the (x, y, z) frame with the variable t . Following
normal practice, we assume that y = Y and z = Z, so that (X, T ) and (x, t) are the
variables of principal interest.

For 0 � v < c, the standard Lorentz transformations are

X = x + vt
[1 − (v/c)2]1/2 , T = t + vx/c2

[1 − (v/c)2]1/2 , (2.2)

with the inverse transformation characterised by −v; thus

x = X − vT
[1 − (v/c)2]1/2 , t = T − vX/c2

[1 − (v/c)2]1/2 , (2.3)

and various derivations of these equations can be found in many standard textbooks
such as Feynmann et al. [33] and Landau and Lifshitz [66], and other novel
derivations are given by Lee and Kalotas [67] and Levy-Leblond [68]. The above
equations reflect, of course, that the two coordinate frames coincide when the
relative velocity v is zero, namely, x = X, t = T , when v = 0.

Throughout the text we adopt the notation α = ct + x and β = ct − x

for the characteristic variables, and from either of the above equations, by direct
substitution, we may readily deduce the relations

ct + x =
(
1 − v/c
1 + v/c

)1/2

(cT +X), ct − x =
(
1 + v/c
1 − v/c

)1/2

(cT −X),
(2.4)

so that in particular we may confirm the simple Lorentz invariance

(ct)2 − x2 = (cT )2 −X2. (2.5)
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2.3 Einstein Addition of Velocities Law

The relative frame velocity v is assumed to be constant, so that with velocities U =
dX/dT and u = dx/dt , on taking the differentials of both equations in (2.3), thus

dx = dX − vdT
[1 − (v/c)2]1/2 , dt = dT − vdX/c2

[1 − (v/c)2]1/2 ,

and on dividing the first differential by the second yields the Einstein addition of
velocity law

u = U − v(
1 − Uv/c2) . (2.6)

An immediate consequence of (2.6) is the identity

[1 − (u/c)2]1/2(1 − Uv/c2) = [1 − (v/c)2]1/2[1 − (U/c)2]1/2, (2.7)

which can be easily established by using (2.6) in the left-hand side of (2.7).
This latter equation is fundamental to the development of special relativity, and in
particular it is necessary to establish Lorentz invariance of certain quantities.

There are special relativity theories which apply for relative velocities greater
than the speed of light and which are complementary to the Einstein special theory
of relativity that applies to relative velocities less than the speed of light. Hill and
Cox [54] derive Lorentz transformations corresponding to (2.3) for superluminal
relative velocities and show that the Einstein addition of velocities law still applies.
The two formulae (2.6) and (2.7), when expressed in the form (2.8), reveal that at
least one of the velocities u, v or U must not exceed the speed of light, and in terms
of taking square roots or logarithms, all need appropriate re-arrangement depending
upon the particular values of the three velocities.

A formula arising from (2.6) that is not so well known is

(
1 + U/c
1 − U/c

)
=
(
1 + u/c
1 − u/c

)(
1 + v/c
1 − v/c

)
, (2.8)

so that on introducing velocity variables (�, θ, ε) defined by

� = tanh−1(U/c), θ = tanh−1(u/c), ε = tanh−1(v/c), (2.9)

equation (2.8) becomes simply the translation � = θ + ε noting again that within
the context of special relativity, v and therefore ε are both assumed to be constants.
The angle θ assumes an important role and is the angle in which Lorentz invariance
appears through a translational invariance, and so for completeness we note the
elementary relations
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θ = 1

2
log

(
1 + u/c
1 − u/c

)
= tanh−1(u/c),

(
1 + u/c
1 − u/c

)1/2

= eθ . (2.10)

Further, with u/c = tanh θ , we have from the usual formulae of special relativity
for energy and momentum, namely, e = mc2 and p = mu, respectively, where
m(u) = m0[1− (u/c)2]−1/2 and m0 denotes the rest mass, the following additional
relations:

m = m0 cosh θ, e = e0 cosh θ, pc = e0 sinh θ, (2.11)

where e0 = m0c
2 denotes the rest mass energy. We comment that the formulation

of Lorentz transformations as a one-parameter group of geometric transformations
is due to Minkowski [77].

Superluminal de Broglie Waves de Broglie [17] showed that while the group
velocity of the wave package coincides with the particle velocity u, the wave
velocity is given by w = c2/u. This means that if the particle velocity u is sub-
luminal, then not only is the associated wave or phase velocity c2/u necessarily
superluminal but also the average velocity (u+ w)/2, and this will be examined in
a subsequent section in this chapter. Furthermore, if the relationship uw = c2 holds
in one Lorentz frame, then it holds in all Lorentz frames. This is most easily seen if
we rearrange (2.6) to read

U = u+ v(
1 + uv/c2) , (2.12)

so that the corresponding respective velocities U and W as measured from the
(X, T ) rest frame and corresponding to u and w in the moving (x, t) frame are
given by

U = u+ v(
1 + uv/c2) , W = w + v(

1 + wv/c2) ,

and from the identity

UW − c2 = (1 − (v/c)2)(uw − c2)(
1 + uv/c2) (1 + wv/c2) ,

so that UW = c2 if and only if uw = c2.
As noted above, an outcome predicted in [54] is that the Einstein velocity

addition formula (2.6) remains valid for the proposed superluminal extension of
special relativity in [54], and in particular, in the limit v → ∞ the de Broglie
relation uU = c2 emerges. It also formally emerges from the envelope [41], namely,
by simultaneously solving (2.6) and
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∂u

∂v
= −1(

1 − Uv/c2) + U(U − v)
c2
(
1 − Uv/c2)2 = − (1 − (U/c)2)(

1 − Uv/c2)2 = 0,

which can only vanish in the limit v → ∞.

2.4 Lorentz Invariances

A Lorentz invariant quantity is one which assumes an identical form under a Lorentz
transformation, and we have previously noted the Lorentz invariant (ct)2 − x2 =
(cT )2 − X2 given by (2.5). In this section we identify a further three important
Lorentz invariances which can all be established by direct substitution using the
above equations. In the following sections, we develop a general understanding of
the origin of these invariances. By substitution of the Lorentz transformations (2.3)
and the addition of velocities law in the form of (2.6) or (2.7) into the left-hand
sides, we may verify directly the following interesting Lorentz invariances:

x − ut(
1 − (u/c)2)1/2 = X − UT(

1 − (U/c)2)1/2 ,
t − ux/c2(

1 − (u/c)2)1/2 = T − UX/c2(
1 − (U/c)2)1/2 ,

(2.13)
which are also verified independently and further discussed in a subsequent section
in this chapter. For the first equality, on substitution of (2.3) and (2.6) into the left-
hand side, we need to simplify

x − ut(
1 − (u/c)2)1/2 =

[
(X − vT ) (1 − Uv/c2)− (U − v) (T − vX/c2)]

[1 − (u/c)2]1/2[1 − (v/c)2]1/2(1 − Uv/c2) ,

which on simplification of the numerator and using (2.7) gives the required right-
hand side. Similarly, for the second equality, on substitution of (2.3) and (2.6) into
the left-hand side, we need to simplify

t − ux/c2(
1 − (u/c)2)1/2 =

[
(T − vX/c2) (1 − Uv/c2)− (U − v) (X − vT )]

[1 − (u/c)2]1/2[1 − (v/c)2]1/2(1 − Uv/c2) ,

which again on simplification of the numerator and using (2.7) gives the desired
outcome.

Similarly, we may establish a third Lorentz invariant

(
ct + x
ct − x

)(
1 − u/c
1 + u/c

)
=
(
cT +X
cT −X

)(
1 − U/c
1 + U/c

)
, (2.14)

since by division of the two Eqs. (2.4) we have
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(
ct + x
ct − x

)(
1 + v/c
1 − v/c

)
=
(
cT +X
cT −X

)
,

and on using the Einstein addition of velocity law in the form of (2.8), this equation
simplifies to give (2.14). Thus, from Eqs. (2.5) and (2.14), we have the two Lorentz
invariants

ζ = ((ct)2−x2)1/2, τ =
(
ct + x
ct − x

)1/2 (1 − u/c
1 + u/c

)1/2

=
(
ct + x
ct − x

)1/2

e−θ ,
(2.15)

where the latter equality arises from (2.10) where θ = tanh−1(u/c). In terms of the
characteristic coordinates α = ct + x and β = ct − x, we have

ζ = (αβ)1/2, τ =
(
α

β

)1/2

e−θ ,

and from the partial derivatives

∂ζ

∂x
= − x

(αβ)1/2
,

∂τ

∂x
=
{

ct

α1/2β3/2
−
(
α

β

)1/2
∂θ

∂x

}
e−θ ,

∂ζ

∂t
= c2t

(αβ)1/2
,

∂τ

∂t
= −

{
cx

α1/2β3/2
+
(
α

β

)1/2
∂θ

∂t

}
e−θ ,

we may deduce that the Jacobian of the transformation (2.15) becomes

∂(ζ, τ )

∂(x, t)
= −e

−θ

β

(
x
∂θ

∂t
− c2t ∂θ

∂x
+ c
)

= ce−θ

β

(
α
∂θ

∂α
− β ∂θ

∂β
− 1

)
. (2.16)

We note that in terms of the velocity u(α, β), from the relations (2.10), the above
Jacobian becomes

∂(ζ, τ )

∂(x, t)
= 1

β(1 − u/c)1/2(1 + u/c)3/2
(
α
∂u

∂α
− β ∂u

∂β
− c

(
1 − (u/c)2

))
.

(2.17)
Assuming that this Jacobian is non-zero, we may express other Lorentz invariants

as functions of both ζ and τ . Thus, for example, for the two Lorentz invariants given
by Eq. (2.13), we have

x − ut(
1 − (u/c)2)1/2 = ((α − β)− (α + β)(u/c))

2(1 − (u/c)2)1/2 (2.18)

= 1

2

{
α

(
1 − u/c
1 + u/c

)1/2

− β
(
1 + u/c
1 − u/c

)1/2
}
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= ζ

2

(
τ − 1

τ

)
,

and

t − ux/c2(
1 − (u/c)2)1/2 = ((α + β)− (α − β)(u/c))

2c(1 − (u/c)2)1/2 (2.19)

= 1

2c

{
α

(
1 − u/c
1 + u/c

)1/2

+ β
(
1 + u/c
1 − u/c

)1/2
}

= ζ

2c

(
τ + 1

τ

)
,

on making use of the following two relations which may be deduced from (2.15),
namely,

α

(
1 − u/c
1 + u/c

)1/2

= αe−θ = ζ τ, β

(
1 + u/c
1 − u/c

)1/2

= βeθ = ζ

τ
.

The above invariants ζ and τ might also be useful in demonstrating that certain
quantities are not Lorentz invariant. For example, for the exact wave-like solution
examined in some detail in Chaps. 5 and 6, the assumed linear force equations

f (u) = f0(1 + λu/c), cg(u) = f0(λ+ u/c).

where λ and f0 denote arbitrary constants, are not Lorentz invariant, and it turns out
that the Lorentz invariant quantities are e(u)f (u) and e(u)g(u). The force relations
themselves are only partially Lorentz invariant in the sense that their functional form
is preserved under a Lorentz transformation with different constants λ and f0. This
is most easily seen from the relations

f (u)+ cg(u) = f0(1 + λ)(1 + u/c), f (u)− cg(u) = f0(1 − λ)(1 − u/c),

so that

e(u) (f (u)+ cg(u)) = e0f0(1 + λ)
(
1 + u/c
1 − u/c

)1/2

,

e(u) (f (u)− cg(u)) = e0f0(1 − λ)
(
1 − u/c
1 + u/c

)1/2

,

which cannot be expressed solely in terms of the invariants ζ and τ . However, on
using (2.9) and � = θ + ε, these relations become
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e(u) (f (u)+ cg(u)) = e0f0(1 + λ)eθ = e0f0(1 + λ)e−εe�,
e(u) (f (u)− cg(u)) = e0f0(1 − λ)e−θ = e0f0(1 − λ)eεe−�,

demonstrating that the Lorentz transformed force relations preserve the functional
dependence on velocity u (viz. on θ ) but with changed force parameters arising
through the translational velocity v (viz. through ε).

In the event that the Jacobian (2.16) is zero, then θ(α, β) satisfies the first order
linear partial differential equation

α
∂θ

∂α
− β ∂θ

∂β
= 1. (2.20)

This partial differential equation may be solved using Lagrange’s characteristic
method which is formally to introduce a characteristic parameter s through the three
equations

dα

ds
= α, dβ

ds
= −β, dθ

ds
= 1,

and then the general solution is obtained by taking one integral of these equations
to be an arbitrary function of a second independent integral. Thus, for example, by
division of the first equation, we have

dβ

dα
= −β

α
,

dθ

dα
= 1

α
,

which can both be integrated to yield αβ = C1 and θ = logα + C2, where
C1 and C2 denote arbitrary constants, and from which we might deduce that the
general solution of (2.20) may be determined from C2 = �(C1) where � denotes
an arbitrary function. Accordingly, in terms of ζ = (αβ)1/2, the general solution
of (2.20) is given by θ(α, β) = logα+�(ζ), where� denotes an arbitrary function.
In this case, with exp θ = αφ(ζ ) where φ(ζ ) = exp�(ζ), we have from Eqs. (2.10)
and (2.11) that the velocity u, energy e and momentum p are given, respectively, by

u

c
= (αφ)2 − 1

(αφ)2 + 1
, e = e0

2

(
αφ + 1

αφ

)
, pc = e0

2

(
αφ − 1

αφ

)
.

We show in the following section that these velocity fields are those for which
dx/dt = u(x, t) remains invariant under Lorentz transformation.
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2.5 Lorentz Invariant Velocity Fields u(x, t)

In this section we pose the question of determining the most general one-
dimensional velocity fields u(x, t) that remain invariant under the Lorentz
transformation (2.3). Alternatively, an equivalent question is to determine those
velocity fields u(x, t) and u(X, T ) which are such that the two differential problems

dx

dt
= u(x, t), dX

dT
= u(X, T ). (2.21)

transform into each other under the Lorentz transformations (2.2) and (2.3). Since
the Lorentz transformations form a one-parameter group of transformations in
the frame velocity v, we need only expand either (2.2) or (2.3) and equate the
corresponding infinitesimals for either differential problem. Thus the infinitesimal
versions of (2.2) are X ≈ x + vt and T ≈ t + vx/c2, and therefore from (2.21)2,
we obtain

dx + vdt
dt + (v/c2)dx = dx/dt + v

1 + (v/c2)(dx/dt) ≈
(
dx

dt
+ v
)(

1 − v

c2

dx

dt

)
≈ dx

dt
+ v

(
1 − 1

c2

(
dx

dt

)2)

= u
(
x + vt, t + vx

c2

)
≈ u(x, t)+ v

(
t
∂u

∂x
+ x

c2

∂u

∂t

)
,

on using Taylor’s theorem to expand the last term. Thus by equating infinitesimals,
we may readily deduce the following first order partial differential equation for
u(x, t); thus

t
∂u

∂x
+ x

c2

∂u

∂t
= 1 −

(u
c

)2
. (2.22)

In terms of the characteristic coordinates α = ct + x and β = ct − x, we have
x = (α − β)/2 and t = (α + β)/2c, and the differential formulae

∂

∂x
= ∂

∂α
− ∂

∂β
,

1

c

∂

∂t
= ∂

∂α
+ ∂

∂β
,

and the first order partial differential equation (2.22) becomes

α
∂u

∂α
− β ∂u

∂β
= c

(
1 −

(u
c

)2)
,

which is precisely the condition for the vanishing of the Jacobian (2.17), as might
be anticipated since essentially we seek a functional relationship between the two
invariants ζ and τ , namely, τ = φ(ζ ). Using Lagrange’s characteristic method
described above, we may formally solve the three characteristic equations with
parameter s; thus



2.6 General Framework for Lorentz Invariances 25

dα

ds
= α, dβ

ds
= −β, du

ds
= c

(
1 −

(u
c

)2)
,

to confirm that the general solution is indeed given by τ = φ(ζ ). From this relation
and (2.15), namely,

ζ = ((ct)2 −x2)1/2 = (αβ)1/2, τ =
(
ct + x
ct − x

)1/2 (1 − u/c
1 + u/c

)1/2

=
(
α

β

)1/2 ( 1 − u/c
1 + u/c

)1/2

,

we might deduce

dβ

dα
=
(
1 − u/c
1 + u/c

)
= β

α
φ2((αβ)1/2) = (αβ)φ2((αβ)1/2)

α2
.

On introducing a new arbitrary function �(ζ) which is defined by �(ζ) =
1/ζ 2φ2(ζ ), we obtain the differential equation

dα

dβ
= α2�((αβ)1/2),

which is readily integrable with the substitution ζ = (αβ)1/2; thus

dζ

dβ
= 1

2

(
α

β

)1/2

+ 1

2

(
β

α

)1/2
dα

dβ
= ζ

2β

(
1 + ζ 2�(ζ)

)
,

or similarly

dζ

dα
= 1

2

(
β

α

)1/2

+ 1

2

(
α

β

)1/2
dβ

dα
= ζ

2α

(
1 + 1

ζ 2�(ζ)

)
,

and both of which are evidently separable.

2.6 General Framework for Lorentz Invariances

In this section we develop a general understanding of the formal origin of Lorentz
invariances, and in particular we provide an independent confirmation of those
established in the previous section. As we have previously stated, in this text we
are considering a rectangular Cartesian frame (X, Y,Z) and another frame (x, y, z)
moving with constant velocity v relative to the first frame, and the motion is assumed
to be in the aligned X and x directions as indicated in Fig. 2.1. The coordinate
notation adopted here is different to that normally used in special relativity which
tends to involve both primed and unprimed variables. We do this purposely here
because we wish to view the relative velocity v as a parameter measuring the
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departure of the current frame (x, y, z) from the rest frame (X, Y,Z), and for this
purpose the notation employed in non-linear continuum mechanics is preferable.
Time is measured from the (X, Y,Z) frame with the variable T and from the
(x, y, z) frame with the variable t , and we assume throughout that y = Y and
z = Z, so that (X, T ) and (x, t) are the variables of principal interest.

We emphasise that although v is a constant, the approach adopted here and in
[54] is to assume that the current frame is defined by the two variables (x, t) and
each of x and t are characterised by the three independent variables (X, T , v), so
that explicitly we have x = x(X, T , v) and t = t (X, T , v). Our basic approach is
not to think of the relative velocity v as a velocity as such, but rather to envisage v
simply as the parameter which provides a measure of the departure of one inertial
from the rest frame. We are then able to exploit the well-trodden formalism from
non-linear continuum mechanics, treating v as the time-like variable for which we
can formally differentiate to produce velocity-like quantities.

In this context, it is important for the reader to fully appreciate that this approach
is motivated from and completely analogous to that in non-linear continuum
mechanics for which in standard notation, the spatial locations defined by (x, y, z)
are viewed as functions of the four independent variables (X, Y,Z, t), namely,
x = x(X, Y,Z, t) and so on. Further, in continuum mechanics we usually introduce
velocities such as u = dx/dt where the total derivative d/dt means partial
differentiation with respect to time keeping (X, Y,Z) fixed, and there is the well-
known connection between this derivative, the velocities (u, v,w) and the spatial
time derivative ∂/∂t , which means partial differentiation with respect to time
keeping the three variables (x, y, z) fixed; thus for φ = φ(x, y, z, t) we have

dφ

dt
= ∂φ

∂t
+ u∂φ

∂x
+ v ∂φ

∂y
+ w∂φ

∂z
,

and there are many other such mathematical formalities that can be exploited in the
context of relativity, treating the relative frame velocity v as a time-like variable.

We have in mind that the Lorentz transformation (2.3) is a one-parameter group
of transformations, with the relative velocity v serving as the parameter, and the
identity x = X and t = T arising from the value v = 0. By the “pseudo-velocity”
equations, we refer to the derivatives dx/dv and dt/dv, subject to the initial data
x = X and t = T for v = 0. We now view x and t defined by (2.3) as functions
of v, and by straightforward differentiation and subsequent simplification, we may
derive the following “pseudo-velocity” equations:

dx

dv
= −t

1 − (v/c)2 ,
dt

dv
= −x/c2

1 − (v/c)2 , (2.23)

where d/dv denotes total differentiation with respect to v, keeping the initial vari-
ables (X, T ) fixed. We may now proceed to show that by formally solving (2.23),
Einstein’s theory emerges from the initial data x = X and t = T for v = 0. On
re-arrangement of (2.23), we obtain
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[
1 −

(v
c

)2] dx
dv

= −t,
[
1 −

(v
c

)2] dt
dv

= − x
c2
,

which becomes a fully autonomous system if we introduce a new parameter ε such
that

d

dε
=
[
1 −

(v
c

)2] d
dv
,

so that dv/dε = 1 − (v/c)2. On making the further substitution v = c sinφ, this
equation becomes dφ/cosφ = dε/c, which integrates to give

1

2
log

(
1 + sinφ

1 − sinφ

)
= ε

c
+ constant.

Suppose we assign the value v = v0 at ε = 0, then from this equation we may
deduce

1 + v/c
1 − v/c =

(
1 + v0/c
1 − v0/c

)
e2ε/c, (2.24)

and the special theory of relativity arises from the initial data x = X and t = T for
v0 = 0.

With v0 = 0 we may deduce from (2.24) v = c tanh(ε/c) for 0 � v < c, and the
two ordinary differential equations (2.23) become

dx

dε
= −t, dt

dε
= − x

c2
,

so that on differentiating either with respect to ε, we may eventually deduce

x(ε) = A sinh(ε/c)+ B cosh(ε/c), t (ε) = −[A cosh(ε/c)+ B sinh(ε/c)]/c,
(2.25)

where A and B denote arbitrary constants of integration. From the initial data
and (2.25), we may deduce that A = −cT and B = X, giving rise to the well-
known pseudo-Euclidean rotation of special relativity (see [66, p. 10])

x(ε) = X cosh(ε/c)− cT sinh(ε/c), t (ε) = T cosh(ε/c)− X

c
sinh(ε/c),

(2.26)

noting that from v = c tanh(ε/c), we have

cosh(ε/c) = 1

[1 − (v/c)2]1/2 , sinh(ε/c) = v/c

[1 − (v/c)2]1/2 , (2.27)
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and together (2.26) and (2.27) yield (2.3), as might be expected. Of particular
relevance in the above discussion are the expressions (2.23) for the infinitesimal
vector of the Lorentz one-parameter group of transformations together with the
initial data x = X and t = T for v = 0. In the following section, we demonstrate
how we might characterise the integral invariants of the Lorentz group.

2.7 Integral Invariants of the Lorentz Group

In a previous section, we have established certain integral invariants of the Lorentz
group such as (2.13) or (2.14) by direct substitution of either the Lorentz transforma-
tions (2.2) or their inverses (2.3). In this section we develop the machinery necessary
to provide an alternative validation of the invariants of the Lorentz group, the details
of which are presented in the following section. From the preceding section, it is
clear that for any integral I (x, t, v) for which dI/dv = 0, its value is determined
by its value at v = 0; thus

dI

dv
= 0, I (x, t, v) = I (X, T , 0), 0 � v < c.

Now on differentiating v = v(x, t), we have from the chain rule for partial
differentiation

dv = ∂v

∂x
dx + ∂v

∂t
dt,

so that

∂v

∂x

dx

dv
+ ∂v

∂t

dt

dv
= 1.

On using the above expressions (2.23) for the infinitesimal vector of the Lorentz
one-parameter group of transformations, we may deduce the following first order
partial differential equation:

t
∂v

∂x
+ x

c2

∂v

∂t
=
(v
c

)2 − 1. (2.28)

Again such first order partial differential equations are formally solved using
Lagrange’s characteristic method, which involves introducing a characteristic
parameter s, and formulating the three ordinary differential relations

dx

ds
= t, dt

ds
= x

c2
,

dv

ds
=
(v
c

)2 − 1,
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and then if I1(x, t, v) and I2(x, t, v) denote any two independent integrals of the
reduced system

dx

dt
= c2t

x
,

dv

dx
= (v/c)2 − 1

t
, (2.29)

the general solution of the first order partial differential equation (2.28) is then given
by I1(x, t, v) = �(I2(x, t, v)), where � denotes an arbitrary function.

The first differential equation readily integrates to give ζ 2 = (ct)2 − x2 =
constant , while the second differential equation becomes

dv

dx
= c (v/c)

2 − 1

(x2 + ζ 2)1/2 ,

and on treating ζ as a constant for the purposes of this integration, the integration
may then be effected through the substitutions,

x = ζ sinhψ, v = c sinφ,

to yield the differential relation dψ + dφ/ cosφ = 0. This equation integrates to
give

ψ + 1

2
log

(
1 + sinφ

1 − sinφ

)
= constant,

and on using the elementary formula sinh−1(z) = log(z + (1 + z2)1/2), we may
deduce, from the above relations, the second independent integral

ρ =
(
ct + x
ct − x

)(
1 + v/c
1 − v/c

)
= constant,

and the validity of ζ = constant and ρ = constant can be verified either directly
from the characteristic relations (2.4) or using the above differential relations (2.23)
to show that dζ/dv = dρ/dv = 0 which we now proceed to describe.

In order to achieve this, we again need the two differential relations (2.23),
namely,

dx

dv
= −t

1 − (v/c)2 ,
dt

dv
= −x/c2

1 − (v/c)2 , (2.30)

which we need to use in the evaluation of dζ/dv and dρ/dv; thus

dζ 2

dv
= d

dv
((ct)2 − x2) = 2

1 − (v/c)2
(
c2t (−x/c2)− x(−t)

)
= 0,
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dρ

dv
= d

dv

[(
ct + x
ct − x

)(
1 + v/c
1 − v/c

)]
=
(
1 + v/c
1 − v/c

)
d

dv

(
ct + x
ct − x

)
+
(
ct + x
ct − x

)
d

dv

(
1 + v/c
1 − v/c

)

= −2

c

(
ct + x
ct − x

)
1

(1 − v/c)2 + 2

c

(
ct + x
ct − x

)
1

(1 − v/c)2 = 0,

as required. Thus, two independent integrals of the system (2.29) are

ζ 2 = (ct)2 − x2, ρ =
(
ct + x
ct − x

)(
1 + v/c
1 − v/c

)
,

so that the general solution of the above first order partial differential equation is
given by ρ = �(ζ), where � denotes an arbitrary function.

This may be formally confirmed as follows: From ρ = �(ζ)we may deduce that

(
1 + v/c
1 − v/c

)
= β2�((αβ)1/2), (2.31)

where � denotes a second arbitrary function and α and β denote the characteristic
coordinates α = ct + x and β = ct − x. From the immediately above equation, we
obtain

v(α, β)

c
=
(
β2�((αβ)1/2)− 1

β2�((αβ)1/2)+ 1

)
, (2.32)

and in terms of the characteristic variables α and β, the first order partial differential
equation (2.28) becomes

1

c

(
α
∂v

∂α
− β ∂v

∂β

)
=
(v
c

)2 − 1, (2.33)

which we observe, apart from a change of sign, coincides with the equation for
u(α, β) that arises from the vanishing of the Jacobian given by (2.17), noting
however that this is an important distinction, and that the two calculations are
distinct, although evidently related. On evaluating the two partial derivatives ∂v/∂α
and ∂v/∂β using the above expression (2.32), we have

1

c

∂v

∂α
= β3� ′(ζ )
ζ(β2�(ζ)+ 1)2

,
1

c

∂v

∂β
= β(4�(ζ)+ ζ� ′(ζ ))

(β2�(ζ)+ 1)2
,

where ζ = (αβ)1/2, and we may now show that (2.32) constitutes a formal
solution of (2.33) for all arbitrary functions �((αβ)1/2). Subsequently, we see
that the Jacobian ∂(X, T )/∂(x, t) vanishes whenever v(x, t) satisfies the above
partial differential equation (2.28) or (2.33), implying that the integral invariants
correspond to families of singular transformations.
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2.8 Alternative Validation of Lorentz Invariants

We are now well placed to establish the integral invariants of the Lorentz group in a
very interesting manner using the “pseudo-velocity” equations (2.23), namely,

dx

dv
= −t

1 − (v/c)2 ,
dt

dv
= −x/c2

1 − (v/c)2 . (2.34)

In order to do this, we need an expression for the velocity u(x, t) which we obtain
by division of the differential relations (2.23) or (2.34) or directly from (2.29); thus

u = dx

dt
= c2t

x
.

As a first example, we consider the Einstein addition of velocities law (2.6)
expressed in the form

U = u+ v
1 + uv/c2 , 0 � v < c.

On replacement of u by c2t/x, we have

u+ v
1 + uv/c2 = xv + tc2

x + vt ,

which we now differentiate with respect to v, and using the differential rela-
tions (2.30), we find that

d

dv

(
u+ v

1 + uv/c2
)

= d

dv

(
xv + tc2
x + vt

)
= 1

(x + vt)
d

dv
(xv + tc2)− (xv + tc2)

(x + vt)2
d

dv
(x + vt)

= x

(x + vt) − 1

(1 − (v/c)2) −
(
xv + tc2
x + vt

)
v

c2(1 − (v/c)2) = 0,

as might be expected. Again, formally the value of the integral is fixed through the
initial data which in this case is u = U when v = 0, which produces the required
result.

Similarly, for the Lorentz invariants ζ and τ defined by (2.15), we have

dζ 2

dv
= d((ct)2 − x2)

dv
= 2

(
c2t
dt

dv
− x dx

dv

)
= 0,

dτ 2

dv
= d

dv

[(
ct + x
ct − x

)(
1 − u/c
1 + u/c

)]
= d

dv

[(
ct + x
ct − x

)(
1 − ct/x
1 + ct/x

)]
= d1

dv
= 0.

Other integral invariants previously given by (2.13) are as follows:
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x − ut(
1 − (u/c)2)1/2 = X − UT(

1 − (U/c)2)1/2 ,
t − ux/c2(

1 − (u/c)2)1/2 = T − UX/c2(
1 − (U/c)2)1/2 ,

which we have previously established by direct substitution of the Lorentz transfor-
mations into the left-hand sides with appropriate use of the addition of velocities
law. Alternatively, we may establish these by differentiation using u = c2t/x; thus

d

dv

(
x − ut(

1 − (u/c)2)1/2
)

= d

dv

(
x − (ct)2/x

(1 − (ct/x)2)1/2
)

= d

dv

(
x2 − (ct)2

)1/2 = 0,

d

dv

(
t − ux/c2(

1 − (u/c)2)1/2
)

= d

dv

(
t − tx/x(

1 − (u/c)2)1/2
)

= 0,

as required.

2.9 Jacobians of the Lorentz Transformations

In this section we deduce formulae for the Jacobians of the Lorentz transfor-
mations (2.2) and their inverses (2.3). We observe from Eq. (2.2) on carefully
calculating the four partial derivatives ∂X/∂x, ∂X/∂t , ∂T /∂x and ∂T /∂t treating v
as a function of x and t , so that, for example, we have

∂X

∂x
= 1

(1 − (v/c)2)1/2 + (xv + c2t)
c2(1 − (v/c)2)3/2

∂v

∂x
, (2.35)

∂X

∂t
= v

(1 − (v/c)2)1/2 + (xv + c2t)
c2(1 − (v/c)2)3/2

∂v

∂t
,

∂T

∂x
= v

c2(1 − (v/c)2)1/2 + (x + tv)
c2(1 − (v/c)2)3/2

∂v

∂x
,

∂T

∂t
= 1

(1 − (v/c)2)1/2 + (x + tv)
c2(1 − (v/c)2)3/2

∂v

∂t
,

and from which we may eventually deduce

∂(X, T )

∂(x, t)
=
(
1 +

t∂v
∂x

+ x
c2
∂v
∂t(

1 − (v/c)2)
)
, (2.36)

and we see that the Jacobian vanishes whenever v(x, t) satisfies the above partial
differential equation (2.28), implying that the integral invariants correspond to
families of singular transformations. Similarly, on treating the relative velocity v
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as a function of X and T , from the inverse Lorentz relations (2.3), we may deduce
the corresponding equation

∂(x, t)

∂(X, T )
=
(
1 −

T ∂v
∂X

+ X
c2
∂v
∂T(

1 − (v/c)2)
)
. (2.37)

For convenience, we introduce the notation J , δ and � such that

1/J = ∂(X, T )

∂(x, t)
= (1 + δ), J = ∂(x, t)

∂(X, T )
= (1 −�),

where δ and � are defined, respectively, by

δ =
t∂v
∂x

+ x
c2
∂v
∂t(

1 − (v/c)2) , � =
T ∂v
∂X

+ X
c2
∂v
∂T(

1 − (v/c)2) ,

and since the product of the two Jacobians is necessarily unity, there follows the
necessary identity (1/�) = 1 + (1/δ) which may be formally verified as follows:

δ =
t∂v
∂x

+ x
c2
∂v
∂t(

1 − (v/c)2) = t
∂(v,t)
∂(x,t)

− x
c2
∂(v,x)
∂(x,t)(

1 − (v/c)2) ,

and multiplication by J gives

δJ
(
1 − (v/c)2

)
= t ∂(v, t)
∂(X, T )

− x

c2

∂(v, x)

∂(X, T )
= ∂

(
v, t2 − (x/c)2)
2∂(X, T )

,

and on using the invariant (ct)2 − x2 = (cT )2 −X2, we have

δJ
(
1 − (v/c)2

)
= ∂

(
v, T 2 − (X/c)2)
2∂(X, T )

= T ∂v

∂X
+ X

c2

∂v

∂T
=
(
1 − (v/c)2

)
�,

and the identity (1/�) = 1 + (1/δ) now follows from J = 1 −�.
As previously mentioned, we view the relative velocity v as a time-like variable

in a manner completely analogous to non-linear continuum mechanics, and by
formal differentiation of J = ∂(x, t)/∂(X, T ) with respect to v, recalling that
(X, T , v) are treated as the independent variables, we may deduce

dJ

dv
= ∂( dx

dv
, t)

∂(X, T )
+ ∂(x, dt

dv
)

∂(X, T )
=
(
∂( dx
dv
, t)

∂(x, t)
+ ∂(x, dt

dv
)

∂(x, t)

)
∂(x, t)

∂(X, T )
,

and on using (2.23) or (2.30), we may eventually deduce
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dJ

dv
= 2v/c2(

1 − (v/c)2) (J − 1),

which may be integrated to yield

J = ∂(x, t)

∂(X, T )
=
(
1 − A(X, T )(

1 − (v/c)2)
)
,

where A(X, T ) is at most a function of X and T , and this equation is entirely
consistent with (2.37).

2.10 Space-Time Transformation x′ = ct and t ′ = x/c

The relation uU = c2 formally arises from the underlying transformation x =
cT , t = X/c. With a primed notation, the space-time transformation x′ = ct

and t ′ = x/c, for which u′ = dx′/dt ′ = c2dt/dx = c2/u, has been widely
used to connect the Galilean and Carroll transformations as significant limits of
Lorentz invariant theories, for example, in electromagnetism. The transformations
x′ = ct and t ′ = x/c were originally introduced by Jean-Marc Levy-Leblond, and
their origin and development is fully detailed by Rousseaux [89] and Houlrik and
Rousseaux [61]. Here we observe that the Lorentz transformations (2.2) or (2.3) are
left unchanged by this transformation, namely,

X′ = cT , T ′ = X

c
, x′ = ct, t ′ = x

c
, (2.38)

assuming the same constant value for the frame velocity v. Further, on making this
transformation for the equation describing Galilean invariance for particles, namely,
x = X − vT and t = T , we obtain the equations x′ = X′ and t ′ = T ′ − vX′/c2
describing Galilean invariance for waves, and for a fuller account, we refer the
reader to Houlrik and Rousseaux [61].

We observe the seemingly curious property that under the space-time transforma-
tion (2.38) with u′ = c2/u,U ′ = c2/U and v′ = c2/v, changing any two means that
the Einstein addition of velocities law (2.6) remains invariant, in the sense that the
same value for the third is recorded as in the unprimed frame, so that, for example,
for u we have from (2.6)

u = U − v(
1 − Uv/c2) =

(
c2/U ′ − c2/v′)(
1 − c2/U ′v′) = U ′ − v′(

1 − U ′v′/c2
) .

This property reflects the symmetry and parity of the Einstein addition of velocities
law which is most apparent when written in the form of (2.8).
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We now examine the changes to the wavelengths and frequencies in the unprimed
and primed frames. We consider a simple wave of wavelength μ and frequency ν in
the unprimed (x, t) frame with μν = c2/u; thus

y(x, t) = A exp

{
2πi

(
x

μ
− tν

)}
, (2.39)

where A denotes the constant amplitude. A corresponding simple wave in the
primed frame becomes

y(x′, t ′) = A exp

{
2πi

(
x′

μ′ − t ′ν′
)}

= A exp

{
−2πi

(
xν′

c
− ct

μ′

)}
, (2.40)

and therefore under the primed transformation x′ = ct and t ′ = x/c, the wavelength
and frequency transform according to the formulae

μ′ = c

ν
, ν′ = c

μ
, (2.41)

with the consequence that μ′ν′ = u.
Remark We emphasise that the space-time transformation x′ = ct and t ′ = x/c

involves only one Cartesian spatial dimension, and reflects a simple invariance of
the operator for the classical one-dimensional wave equation, so that the appropriate
extension and interpretation to three spatial dimensions and other coordinates
involving curvature is by no means obvious. However, while Guemez et al. [44]
have proposed one extension of the de Broglie formula uu′ = c2 to three spatial
dimensions (x, y, z), namely, u.u′ = c2, the most likely coordinate decomposition
of this formula r′ = ctr/r and t ′ = r/c, where r and r′ are the obvious position
vectors and r = (x2 + y2 + z2)1/2, and with the identical inverse transformations
r = ct ′r′/r ′ and t = r ′/cwhere r ′ = (x′2+y′2+z′2)1/2, remains essentially a single
spatial dimension transformation. The coordinate transformation r′ = ctr/r is
spatially spherically symmetric, and polar angles remain unchanged and r ′ = ct and
t ′ = r/c, so that the transformation r′ = ctr/r is essentially one dimensional. We
further comment that although this coordinate decomposition is a natural extension
of the one-dimensional coordinate transformation, it may not be unique. Indeed, the
one-dimensional transformation itself x′ = ct and t ′ = x/c for uu′ = c2 does
not provide a unique decomposition of the equation uu′ = c2, since the negative
transformation x′ = −ct and t ′ = −x/c is equally effective.

2.11 The de Broglie Wave Velocity u′ = c2/u

All matter exhibits wave-like behaviour, and Louis de Broglie [17] first predicted
light to display the dual characteristics both as a collection of particles, called
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photons, and in some respects as a wave. The particle velocity u is the group velocity
of the wave, and if the particle velocity u is sub-luminal, then the associated wave
or phase velocity c2/u through the de Broglie relation is necessarily superluminal.
At various times in his life, de Broglie held a concrete physical picture of the
co-existence of both particle and its associated wave and refers to “the theory of
the double solution”, for which he formulated an equation which he called “the
guidance formula” (see Eq. (1.2) and also [108]). Since uu′ = c2, from (2.6) their
relative velocity is necessarily infinite. However, the average of the particle and
wave velocities, denoted here by V , is given by

V = 1

2
(u+ u′) = 1

2

(
u+ c2

u

)
, (2.42)

and from the elementary identity

(
V

c

)2

− 1 = 1

4

[(u
c

)2 +
( c
u

)2 + 2

]
− 1 = 1

4

( c
u

− u

c

)2 ≥ 0,

so that for sub-luminal particle velocity u, both the wave velocity u′ and their
average V are necessarily both superluminal. In addition, the three velocities
u, u′ and V satisfy the Einstein addition of velocity law in its various forms, but
specifically in the form of (2.8), we have

(
V/c + 1

V/c − 1

)
=
(
1 + u/c
1 − u/c

)(
u′/c + 1

u′/c − 1

)
.

With θ as defined previously by (2.11), we have the following relations:

u = c tanh θ, u′ = c coth θ, e = e0 cosh θ, pc = e0 sinh θ,

where as before e0 = m0c
2 denotes the rest mass energy, and it is not difficult to

establish the formulae

V = c coth 2θ, 1(
(V/c)2 − 1

)1/2 = sinh 2θ,

which may be used to show that

e20(V/c)(
(V/c)2 − 1

)1/2 = e2 + (pc)2, e20(
(V/c)2 − 1

)1/2 = 2epc.

By addition and subtraction of these expressions, we might readily deduce
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e + cp = e0
(
V/c + 1

V/c − 1

)1/4

, e − cp = e0
(
V/c − 1

V/c + 1

)1/4

,

and therefore

e = e0

2

[(
V/c + 1

V/c − 1

)1/4

+
(
V/c − 1

V/c + 1

)1/4
]
,

cp = e0

2

[(
V/c + 1

V/c − 1

)1/4

−
(
V/c − 1

V/c + 1

)1/4
]
.

Now since the average velocity V is a symmetric function of u and u′, we expect
this symmetry to be reflected in the expression V = c coth 2θ , and in order to see
this, we need to determine θ ′ through (2.10); thus formally we have

eθ
′ =

(
1 + u′/c
1 − u′/c

)1/2

=
(
1 + u/c
u/c − 1

)1/2

= 1

i

(
1 + u/c
1 − u/c

)1/2

= eθ e−iπ/2,

and from which we might deduce the relation θ ′ = θ − iπ/2. Using the standard
expressions,

cosh(x + iy) = cosh x cos y + i sinh x sin y,
sinh(x + iy) = sinh x cos y + i cosh x sin y,

from which we obtain

V ′ = c coth 2θ ′ = c cosh 2θ
′

sinh 2θ ′ == c cosh(2θ − iπ)
sinh(2θ − iπ) = c cosh 2θ

sinh 2θ
= V,

as might be expected.

2.12 Force and Physical Energy Arising from Work Done

The basic notions of force, as rate of change of momenta, and physical energy, as
the work done (viz. force times distance) arise in the two rate-of-working equations
(or work done equations) for the physical energies E and e in the (X, T ) and (x, t)
frames, respectively, and these are as follows:

dE = FdX = dP

dT
dX, de = f dx = dp

dt
dx, (2.43)
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where F = dP/dT and f = dp/dt denote the physical force in the two frames and
P = MU and p = mu the momenta where U = dX/dT and u = dx/dt are the
respective particle velocities. Using these relations and the expressions E = Mc2

and e = mc2, the Eqs. (2.43) on multiplication by their respective masses may be
rewritten as

E
dE

dT
= c2P dP

dT
, e

de

dt
= c2pdp

dt
.

These equations evidently integrate to yield the respective equations E2 = (P c)2 +
constant and e2 = (pc)2 + constant . It might be important to appreciate that
the arbitrary constants in these equations are generally fixed by taking the particle
energy at E = e = e0 = m0c

2 at zero velocity, so that we have E2 − (P c)2 = e2 −
(pc)2 = e20. However, this does not necessarily have to be the case and there may be
other interpretations for the constants. Here we assume these arbitrary constants are
as generally prescribed, and we assume the energy statements E2 = e0

2 + (P c)2
and e2 = e02 + (pc)2, so that along with E = Mc2 and e = mc2, we might deduce
the Einstein formulae for the variation of mass with velocity

M(U) = m0

[1 − (U/c)2]1/2 , m(u) = m0

[1 − (u/c)2]1/2 . (2.44)

We comment that the formula m(u) = m0[1 − (u/c)2]−1/2 is only one of the
many expressions showing a particular variation of mass with its velocity, and this
expression has a long and extensive history involving many eminent scientists such
as Abraham, Bücherer, Lorentz, Ehrenfest, Kaufmann and of course Einstein, who
first grappled with the notion that the “transverse and longitudinal” masses may be
distinct. The development of the Einstein expression is fully detailed by Weinstein
[109].

In [56] and [57], the authors generalise the Einstein mass variation for both
sub-luminal and superluminal velocities by supplementing the condition f = F

with the condition that the energy-mass rate is the same in both frames, namely,
de/dm = dE/dM , which for the Einstein expression is simply constant and
equal to c2. Specifically, assuming the Lorentz transformations (2.3), the Lorentz
invariant energy-momentum relations discussed in the following section and the
two invariances

dp

dt
= dP

dT
,

dm

dx
= dM

dX
,

which are known to apply in special relativity, new mass variation formulae
involving two arbitrary constants are obtained, noting that the Einstein expression
involves only the rest mass as a single arbitrary constant. For example, for sub-
luminal velocities 0 < u < c, and with θ and ε defined by Eqs. (2.9) and (2.10), we
may deduce in [56] the mass variation expression
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m(u) = C2

(1 − (u/c)2)1/2
{
C1 + 1

4tanh(ε/2)

ˆ θ+ε/2

0

dρ

(sinhρ)1/2
+ 1

2 [sinh(θ + ε/2)]1/2
}
,

where C1 and C2 denote arbitrary constants and the Einstein expression arises from
the above equation in the limiting case C1 → ∞. The corresponding energy is
found to be given by

e(u) = m(u)c2 − C2c
2

sinh(ε/2)

{
[sinh(θ + ε/2)]1/2 − [sinh(ε/2)]1/2

}
,

noting that in this expression the energy has been normalised such that e = m0c
2

when u = 0. Although to a certain extent this datum energy level is arbitrary, we
observe that for this particular normalisation, the additive constant might become
pure imaginary depending upon whether v > 0 or v < 0. This highlights the issue
that the region of validity of the above expression for m(u) might require careful
consideration since even the seemingly natural choice of datum energy levels may
not be applicable, and this aspect is fully examined in [56].

For superluminal velocities c < u/c < ∞, there are corresponding expressions
derived in [57], essentially with the sinh replaced by cosh; thus

m(u) = C2

((u/c)2 − 1)1/2

{
C1 + 1

4
tanh(ε/2)

ˆ θ+ε/2

0

dρ

(coshρ)1/2
+ 1

2 [cosh(θ + ε/2)]1/2
}
,

with corresponding energy formulae given by

e(u) = m(u)c2 − C2c
2

cosh(ε/2)

{
sinh(θ + ε/2)/2

[cosh(θ + γ /2)]1/2 − sinh(ε/2)

[cosh(ε/2)]1/2

}
,

where again C1 and C2 denote arbitrary constants and in this case the energy is
assumed to vanish for u −→ ∞. We note especially that in the case of superluminal
velocities, from Eq. (2.8), it is clear that at least one of the (U, u, v) must be sub-
luminal and the immediately above expressions are derived on the assumption that
u, v > c and that U < c, so that in this case �, θ and ε must be appropriately
defined; thus

� = log

(
1 + U/c
1 − U/c

)
, θ = log

(
u/c + 1

u/c − 1

)
, ε = log

(
v/c + 1

v/c − 1

)
,

for which again � = θ + ε and with inverses given by

U = c tanh(�/2), u = c coth(θ/2), v = c coth(ε/2).

Applications of the above formulae are given in [56] and [57] and we refer the reader
to these papers for details.
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2.13 Lorentz Invariant Energy-Momentum Relations

Lorentz Invariant Energy-Momentum Relations The Lorentz invariant energy-
momentum relations given by Eq. (2.46) can both be deduced from (2.6) as follows:
For sub-luminal velocities v, u,U < c, the Einstein formulae for mass and energy
in both frames are summarised by the formulae

E = Mc2, M = m0

[1 − (U/c)2]1/2 , e = mc2, m = m0

[1 − (u/c)2]1/2 ,
(2.45)

so that with momenta P = MU and p = mu, we have on multiplication of (2.6) by

m0
[
1 − (u/c)2]−1/2

, and by using Eq. (2.7), we may readily deduce (2.46)1; thus

um0

[1 − (u/c)2]1/2 = m0U −m0v

[1 − (v/c)2]1/2[1 − (U/c)2]1/2 ,

while (2.46)2 arises directly from (2.45)3 and (2.45)4, on using Eq. (2.7); thus

e = m0c
2

[1 − (u/c)2]1/2 = m0c
2(1 − Uv/c2)

[1 − (v/c)2]1/2[1 − (U/c)2]1/2 ,

so that altogether we obtain

p = P − Ev/c2
[1 − (v/c)2]1/2 , e = E − Pv

[1 − (v/c)2]1/2 . (2.46)

The inverse relations are given by

P = p + ev/c2
[1 − (v/c)2]1/2 , E = e + pv

[1 − (v/c)2]1/2 , (2.47)

and together these equations are referred to as the Lorentz invariant energy-
momentum relations. Some authors [13] refer, respectively, to the above notions of
massm and momentum p as “temporal” and “spatial” momentum. We do not follow
that distinction here and we refer to the relations (2.46) as the Lorentz invariant
energy-momentum equations. From these relations, it is also clear that we have the
Lorentz invariant e2 − (pc)2 = E2 − (P c)2 = e20, where e0 = m0c

2 denotes the
rest mass energy.

Lorentz Invariants ξ(x, t) = ex − c2pt and η(x, t) = px − et By direct
substitution we may establish, using Eqs. (2.3) and (2.46), that ξ(x, t) and η(x, t)
as defined by the equations
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ξ = ex − c2pt, η = px − et, (2.48)

constitute two Lorentz invariances of special relativity, which are readily verified as
follows: On evaluating ξ = ex − c2pt and η = px − et using (2.3) and (2.46), we
have

(
(E − Pv)(X − vT )− c2(P − Ev/c2)(T − vX/c2))(

1 − (v/c)2) = EX − c2PT,

and
(
(P − Ev/c2)(X − vT )− (E − Pv)(T − vX/c2))(

1 − (v/c)2) = PX − ET,

as required. We further observe that with γ and δ defined, respectively, by

γ = 1

2c
(e + pc)(ct − x), δ = 1

2c
(e − pc)(ct + x), (2.49)

the two Lorentz invariants ξ and η given by (2.48) become

ξ = ex − c2pt = −c(γ − δ), η = px − et = −(γ + δ), (2.50)

so that we have the expressions

ξ + cη = −(e + pc)(ct − x), ξ − cη = (e − pc)(ct + x), (2.51)

and the Lorentz invariant e2 − (pc)2 = e20 becomes ξ2 − (cη)2 = e20(x
2 − (ct)2).

From these relations we may deduce

e − pc = e20
(
x − ct
ξ + cη

)
=
(
ξ − cη
x + ct

)
, e + pc = e20

(
x + ct
ξ − cη

)
=
(
ξ + cη
x − ct

)
,

revealing that each of the conditions e = ±pc occurs for both x = ±ct and
ξ = ±cη. Further, from (2.51) we observe that

ξ − cη
ξ + cη = −

(
e − pc
e + pc

)(
ct + x
ct − x

)
= −

(
1 − u/c
1 + u/c

)(
ct + x
ct − x

)
= −τ 2,

(2.52)

where τ is the second Lorentz invariant defined by (2.15), and from (2.52), we may
deduce the following relationship between the three Lorentz invariants ξ , η and τ ;
thus
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cη

ξ
=
(
1 + τ 2
1 − τ 2

)
.

Inverse Relations for Lorentz Invariants On writing the Lorentz invariants (2.48)
as follows

x − ut = ξ(x, t)

e0

{
1 −

(u
c

)2}1/2
, x

u

c
− ct = cη(x, t)

e0

{
1 −

(u
c

)2}1/2
,

which we may regard as two equations in the two unknowns x and t , and formally
solve to obtain

x = ξ(x, t)− uη(x, t)
e0(1 − (u/c)2)1/2 , ct = ξ(x, t)u/c − cη(x, t)

e0(1 − (u/c)2)1/2 ,

which are evidently reminiscent of the Lorentz transformations (2.3), and we make
this connection more precise in the following:

Lorentz Invariants as a Coordinate Transformation Clearly we may express the
immediately above equations in the form of a Lorentz transformation, namely,

x∗ = x − ut
[1 − (u/c)2]1/2 , t∗ = t − ux/c2

[1 − (u/c)2]1/2 , (2.53)

where ξ = e0x
∗ and η = −e0t∗, and from which we may deduce the following

expression for the velocity u∗ = dx∗/dt∗; thus

u∗ = dx∗

dt∗
= (dx − udt − tdu)(1 − (u/c)2)+ (x − ut)udu/c2
(dt − udx/c2 − xdu/c2)(1 − (u/c)2)+ (t − xu/c2)udu/c2 ,

(2.54)

= (dx − udt)(1 − (u/c)2)− (t − xu/c2)du
(dt − udx/c2)(1 − (u/c)2)− (x − ut)du/c2 ,

= −(t − xu/c2)du/dt
(1 − (u/c)2)2 − (x − ut)/c2(du/dt) ,

=
− (t−xu/c2)
(1−(u/c)2)3/2

du
dt

(1 − (u/c)2)1/2 − (x−ut)
c2(1−(u/c)2)3/2

du
dt

,

on using u(x, t) = dx/dt . Subsequently, we show that the two fundamental total
derivatives underpinning the model structure are the material or total time derivative
following the particle and the spatial or total space derivative following the wave,
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which are defined below in terms of partial differential operators (see also (4.56)).
It is therefore tempting to investigate the transformation properties under (2.53) of
the two total differential operators

d

dt
= ∂

∂t
+ u ∂

∂x
,

d

dx
= ∂

∂x
+ u

c2

∂

∂t
.

We find that with the transformed velocity given by (2.54), the structure of the first
is preserved while that of the second is not. We need the following expressions for
the partial derivatives, which are essentially those arising from (2.35), with (X, T )
replaced by (x∗, t∗) and v replaced by −u; thus

∂x∗

∂x
= 1

(1 − (u/c)2)1/2 − (t − xu/c2)
(1 − (u/c)2)3/2

∂u

∂x
,

∂x∗

∂t
= −u
(1 − (u/c)2)1/2 − (t − xu/c2)

(1 − (u/c)2)3/2
∂u

∂t
,

∂t∗

∂x
= −u
c2(1 − (u/c)2)1/2 − (x − ut)

c2(1 − (u/c)2)3/2
∂u

∂x
,

∂t∗

∂t
= 1

(1 − (u/c)2)1/2 − (x − ut)
c2(1 − (u/c)2)3/2

∂u

∂t
.

On making use of these expressions, we obtain

d

dt
= ∂

∂t
+ u ∂

∂x
,

=
(
∂

∂t∗
∂t∗

∂t
+ ∂

∂x∗
∂x∗

∂t

)
+ u

(
∂

∂t∗
∂t∗

∂x
+ ∂

∂x∗
∂x∗

∂x

)
,

=
{
(1 − (u/c)2)1/2 − (x − ut)

c2(1 − (u/c)2)3/2
(
∂u

∂t
+ u∂u

∂x

)}(
∂

∂t∗
+ u∗ ∂

∂x∗

)
,

and similarly for d/dx we have

d

dx
= ∂

∂x
+ u

c2

∂

∂t
,

=
(
∂

∂t∗
∂t∗

∂x
+ ∂

∂x∗
∂x∗

∂x

)
+ u

c2

(
∂

∂t∗
∂t∗

∂t
+ ∂

∂x∗
∂x∗

∂t

)
,

=
{
(1 − (u/c)2)1/2 − (t − ux/c2)

(1 − (u/c)2)3/2
(
∂u

∂x
+ u

c2

∂u

∂t

)}(
∂

∂x∗ + w∗

c2

∂

∂t∗

)
,

where w∗/c is given by
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w∗

c
=

− (x−ut)
c(1−(u/c)2)3/2

(
∂u
∂x

+ u
c2
∂u
∂t

)
{
(1 − (u/c)2)1/2 − (t−ux/c2)

(1−(u/c)2)3/2
(
∂u
∂x

+ u
c2
∂u
∂t

)} ,

which in general does not coincide with u∗/c as given by (2.54), namely,

u∗

c
=

− (t−xu/c2)
c(1−(u/c)2)3/2

(
∂u
∂t

+ u∂u
∂x

)
{
(1 − (u/c)2)1/2 − (x−ut)

c2(1−(u/c)2)3/2
(
∂u
∂t

+ u∂u
∂x

)} .

However, it is more than curious to observe that their product

u∗w∗

c2
=

(x − ut)(t − xu
c2
)
(
∂u
∂t

+ u ∂u
∂x

) (
∂u
∂x

+ u
c2
∂u
∂t

)

c2
(
1 − ( u

c

)2)3 {(1 − ( u
c

)2)−
(
t ∂u
∂x

+ x
c2
∂u
∂t

)}
+ (x − ut)(t − xu

c2
)
(
∂u
∂t

+ u ∂u
∂x

) (
∂u
∂x

+ u
c2
∂u
∂t

) ,

becomes unity in the event that either u(x, t) = ±c or that u(x, t) satisfies the
following first order partial differential equation:

t
∂u

∂x
+ x

c2

∂u

∂t
= 1 −

(u
c

)2
, (2.55)

corresponding to (2.28), and for which we have previously noted is the condition for
which the Jacobian of the transformation (2.53) becomes singular (see Eqs. (2.35)
and (2.36)). Further in general, u∗ and w∗ are complementary velocities satisfying
the de Broglie condition, contingent on the vanishing of the single parameter, �,
which is defined by

� =
c2
(
1 − (u

c

)2)3 {(1 − (u
c

)2)−
(
t ∂u
∂x

+ x
c2
∂u
∂t

)}

(x − ut)(t − xu
c2
)
(
∂u
∂t

+ u∂u
∂x

) (
∂u
∂x

+ u
c2
∂u
∂t

) ,

since then the product u∗w∗/c2 becomes simply u∗w∗/c2 = 1/(1 + �). We
comment that u(x, t) = ±c are also formally solutions of (2.55) and that this may
be relevant in terms of the continuity and matching of the solutions of this equation.

2.14 Force Invariance for Constant Velocity Frames

Fundamental to special relativistic mechanics is the physically motivated assump-
tion that force, as defined to be the rate of change of momentum, remains invariant
in the direction of relative motion for frames moving with constant relative velocity.
This assumption is related to Newton’s first law that particles remain at rest or
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in uniform motion unless operated on by an external force. Thus, although force
equality f = F for non-accelerating frames is a basic physical hypothesis of special
relativity, it nevertheless formally hinges on assuming the Einstein mass variation
(2.44), and this can be established in at least two different ways.

Firstly, on taking the differentials of (2.46)1 and (2.3)2, and using dE = UdP

which arise from the rate-of-working equation (2.43)1, we have

f = dp

dt
= dP − v dE/c2
dT − v dX/c2 = dP (1 − Uv/c2)

dT (1 − Uv/c2) = dP

dT
= F.

Alternatively,

f = d

dt

(
m0u

[1 − (u/c)2]1/2
)

= m0 du/dt

[1 − (u/c)2]3/2 ,

and on using the differential of (2.3)2 and the velocity addition formula (2.6), we
have

f = m0
[
1 − (v/c)2]3/2 dU[

1 − (u/c)2]3/2 [1 − vU/c2]3 dT = m0 dU/dT[
1 − (U/c)2]3/2 ,

where the final step follows from (2.7) and again gives f = F . This result is well
known and can be found, for example, in Moller [78] (page 73). Thus although one
might expect force invariance f = F in the direction of relative motion for non-
accelerating frames to be a fundamental physical hypothesis of special relativity, it is
formally equivalent to the Einstein relations (2.45) and the Lorentz transformations,
and their consequences.

The equation dp/dt = dP/dT is the starting point for the model developed in
[47–52] and described in subsequent chapters; that is, instead of simply a spatial
force being Lorentz invariant, we investigate a model for which both a spatial
physical force f and a new force g in the direction of time are defined by two
Lorentz invariant equations. In the final two sections of this chapter, we present
an illustration for particle motion in an invariant potential field, and we derive one
possible extension of the conventional Einstein variation of mass formula with a
specific expression arising from a Lorentz invariant equation for the energy rate
de/dp.

2.15 Example: Motion in an Invariant Potential Field

In special relativity, the full integration of the equation corresponding to Newton’s
second law, along with appropriate boundary or initial data, may well constitute
a non-trivial problem. As an illustration of this formal integration procedure, we
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consider the general problem of the determination of the motion a single particle
that is moving under the action of a properly invariant potential field that might
arise, for example, from electromagnetism, gravity or some other force-generating
field. As usual, we view the particle from two frames of reference (X, T ) and (x, t)
with the latter moving with relative velocity v in the aligned x and X direction, and
we assume that Hamilton’s equations apply in both frames. Thus, for Hamiltonians
K(X,P, T ) and H(x, p, t) where P = MU and p = mu, we assume that

dP

dT
= −∂K

∂X
,

dX

dT
= ∂K

∂P
,

dp

dt
= −∂H

∂x
,

dx

dt
= ∂H

∂p
,

and for a single particle, we assume that the Hamiltonians take the specific forms

K(X,P, T ) =
(
e20 + (P c)2

)1/2 + V (X, T ),

H(x, p, t) =
(
e20 + (pc)2

)1/2 + V (x, t),

where the potential functions V (X, T ) and V (x, t) are the same function of the
variables (X, T ) and (x, t), respectively. For conventional special relativity, we have
from the previous section dp/dt = dP/dT , and therefore the partial derivative
∂V (x, t)/∂x must either be at most a constant or an invariant function. Now each of
the second Hamiltonian equations is automatically satisfied, while the first equations
yield simply

dP

dT
= −∂V (X, T )

∂X
,

dp

dt
= −∂V (x, t)

∂x
,

so that from dP/dt = dp/dt we may conclude that

∂V (x, t)

∂x
= �(ζ, τ ),

where �(ζ, τ ) denotes any arbitrary function of ζ and τ , which are the Lorentz
invariants defined by (2.15); thus

ζ = ((ct)2 − x2)1/2 = (αβ)1/2,

τ =
(
ct + x
ct − x

)1/2 (1 − u/c
1 + u/c

)1/2

=
(
α

β

)1/2

e−θ ,

and α and β denote the characteristic coordinates defined by α = ct + x and β =
ct − x.
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For purposes of illustration, we might consider the case when �(ζ, τ ) depends
only on ζ ; thus � = �(ζ), so that we need to integrate the momentum equation

d(mu)

dt
= −�(ζ),

and we assume that appropriate boundary or initial data is adequately prescribed.
On using dζ/dt = (c2t − xu)/ζ we may deduce the equation

(xu− c2t)d(mu) = ζ�(ζ )dζ ,

which on integration by parts using u = dx/dt yields

(xu− c2t)mu−
ˆ
mu
(
udx + xdu− c2dt

)

= (xu− c2t)mu+
ˆ {

mc2
(
1 −

(u
c

)2)
dx −muxdu

}

= m0u(xu− c2t)
(1 − (u/c)2)1/2 +m0c

2x(1 − (u/c)2)1/2

=
ˆ ζ

ζ�(ζ )dζ .

Subsequent simplification readily yields the formal first integral

x − ut(
1 − (u/c)2)1/2 =

ˆ ζ ζ�(ζ )dζ

m0c2
+ C1,

where C1 denotes an arbitrary constant, and we note that the expression on the left-
hand side is one of the invariants in Eq. (2.13). If we now introduce �(ζ) defined
by

�(ζ) =
ˆ ζ ζ�(ζ )dζ

m0c2
+ C1,

then with u = dx/dt we require to obtain a further integral of the first order ordinary
differential equation for x = x(t), namely,

x − tdx/dt(
1 − 1

c2
( dx
dt
)2
)1/2 = �(ζ),

where ζ = (
(ct)2 − x2)1/2. This equation may be formally integrated by introduc-

ing the two angles (θ, φ) such that
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ct = ζ cosh θ, x = ζ sinh θ,

and

coshφ = 1(
1 − 1

c2
( dx
dt
)2
)1/2 , sinhφ =

1
c
dx
dt(

1 − 1
c2
( dx
dt
)2
)1/2 ,

and we assume that any boundary or initial data, perhaps involving velocity, position
and time, may be transferred to boundary or initial data for θ and φ. Using dx/dt =
c tanhφ, we may deduce from the above relations

sinh(θ − φ) = �

ζ
, coth(θ − φ) = −1

ζ

dζ

dθ
,

from which we may deduce the second formal integral

θ = ±
ˆ ζ �(ζ )dζ

ζ
[
�(ζ)2 + ζ 2]1/2 + C2,

where C2 denotes a further arbitrary constant of integration.
As a specific example, given that ∂V (x, t)/∂x = �(ζ), it follows that

V (x, t) =
ˆ x

�(ζ )dx +W(t),

where the integration is partial with respect to x and W(t) denotes an arbitrary
function of time. Thus, for the partial derivatives, we have

∂V

∂x
= �(ζ), ∂2V

∂x2
= −x�(ζ )

′

ζ
,

∂V

∂t
= c2t

ˆ x �(ζ )
′

ζ
dx +W(t)′ , ∂2V

∂t2
= c4t2

ˆ x
(
�(ζ)

′′ − �(ζ)
′

ζ

)
dx

ζ 2
+W(t)′′ ,

so that in particular we have

∂2V

∂x2
= −x�(ζ )

′

ζ
= −

ˆ x ∂

∂x

(
x�(ζ )

′

ζ

)
dx =

ˆ x
{
x2

ζ 2

(
�(ζ)

′′ − �(ζ)
′

ζ

)
− �(ζ)

′

ζ

}
dx,

and from which we may verify that

∂2V

∂t2
− c2 ∂

2V

∂x2
= −c2

ˆ x

�(ζ )
′′
dx +W(t)′′ ,
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where primes denote differentiation with respect to the indicated argument. Thus
for a specific example, we might assume that

�(ζ)
′′ = −k2�(ζ),

for some constant k, which then implies that the assumed potential V (x, t) satisfies
a partial differential equation of the form

∂2V

∂t2
− c2 ∂

2V

∂x2
= (kc)2V + [W(t)′′ − (kc)2W(t)].

Accordingly, an example might be �(ζ) = A sin(kζ ) for certain constants A and k,
so that �(ζ) is given by

�(ζ) = A

e0

ˆ ζ

ζ sin(kζ )dζ + C1 = − A

e0k2
{kζ cos(kζ )− sin(kζ )} + C1,

where e0 = m0c
2, and with the constant C1 = 0 giving rise to the formal integral

θ = ±
ˆ ζ {kζ cos(kζ )− sin(kζ )} dζ

ζ
[{kζ cos(kζ )− sin(kζ )}2 + (e0k2ζ/A)2

]1/2 + C2.

With the substitution z = kζ and the constant δ defined by δ = ke0/A simplifies
somewhat to give

θ = ±
ˆ z (z cos z− sin z) dz

z
[
(z cos z− sin z)2 + (δz)2]1/2 + C2,

but no doubt would still require to be evaluated numerically.

2.16 Alternative Energy-Mass Velocity Variation

Throughout the text we assume that the Einstein energy-mass expression e =
e0/(1 − (u/c)2)1/2 applies, which is not an essential assumption other than being
the simplest and most logical, and any other hypothesis would necessarily be more
complicated and might involve additional implied consequences. The author [53]
derives the simplest one-parameter Lorentz invariant extension of the Einstein mass-
energy relation, and implicit in the new expression is space-time anisotropy such
that the particle has different rest masses in the positive and negative x directions.
This alternative energy-mass velocity variation formula arises from the following
general Lorentz invariant equation:
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de

dp
= c

(
κ + u/c
1 + κu/c

)
, (2.56)

which for κ �= 0 implies a non-isotropy of space. This equation is motivated
from Eq. (5.8) and involves an arbitrary constant κ for which the particle and wave
velocities arise as two special cases corresponding, respectively, to the values κ = 0
and κ = ±∞; thus

de

dp
= u, de

dp
= c2

u
. (2.57)

The case κ = 0 arises by re-writing the standard relationsm = m0[1− (u/c)2]−1/2,
e = mc2 and p = mu using momentum as the variable; thus

u

c
= pc

(e20 + (pc)2)1/2 , e = (e20 + (pc)2)1/2, (2.58)

where e0 = m0c
2 denotes the rest mass energy. The relationship (2.57)1 then arises

immediately on differentiating (2.58)2 with respect to p and then using (2.58)1. The
case κ = ±∞ corresponds to the de Broglie wave that is associated with a particle
moving with velocity u and moving with the superluminal wave velocity w = c2/u
(see de Broglie [17]).

Equation (2.56) is Lorentz invariant in the sense that for fixed relative frame
velocities v, by division of the differentials of the inverse energy-momentum
relations (2.47), namely,

dP = dp + vde/c2
[1 − (v/c)2]1/2 , dE = de + vdp

[1 − (v/c)2]1/2 ,

we may deduce the equation

dE

dP
=
(
de

dp
+ v
)
/

(
1 + v

c2

de

dp

)
,

and on substitution of (2.56) into this equation, we obtain

dE

dP
=
(
(u+ v)+ cκ(1 + uv/c2)
(1 + uv/c2)+ κ(u+ v)/c

)
= c

(
κ + U/c
1 + κU/c

)
,

on using (2.12). Thus, there is the same velocity dependence in both the moving and
reference frames, and therefore equation (2.56) is a Lorentz invariant equation.

Assuming the usual relations e = mc2 and p = mu, we have p = eu/c2, and
therefore from (2.56) we obtain
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dp

de
= 1

c2

(
u+ edu

de

)
= 1

c

(
1 + κu/c
κ + u/c

)
,

which simplifies to become

de

e
= (κ + u/c)du
c(1 − (u/c)2) = 1

2c

(
(κ + 1)du

(1 − (u/c)) + (κ − 1)du

(1 + (u/c))
)
,

and this integrates to give

e(u) = e0

(1 − (u/c)2)1/2
(
1 + (u/c)
1 − (u/c)

)κ/2
, (2.59)

where as usual e0 denotes the rest energy, and evidently the Einstein variation arises
from the special case κ = 0. In terms of the angle θ defined by (2.10) in which the
Lorentz invariance appears through a translational invariance, we have the following
alternative expressions on using Eq. (2.10):

e(u) = e0

(1 − (u/c)2)1/2 e
κθ = e0 cosh θeκθ = e0

2

(
e(κ+1)θ + e(κ−1)θ

)
, (2.60)

and the following relations also apply:

e(u)− cp(u) = e0e(κ−1)θ , e(u)+ cp(u) = e0e(κ+1)θ ,

so that in this case we have

e(u)2 − (cp(u))2 = e20e2κθ = e20
(
1 + (u/c)
1 − (u/c)

)κ
.

With the angles (�, θ, ε) defined by (2.9) and the Lorentz invariance represented
by the translation � = θ + ε, it is clear from (2.60)1 that the energy-momentum
relations (2.47) remain properly Lorentz invariant, noting however that the rest mass
as perceived from the reference frame becomes E0 = e0e−κε .

Specifically, from the inverse energy-momentum relation (2.47)2, we have

E = e + pv
[1 − (v/c)2]1/2 = e0e

κθ (1 + uv/c2)
(1 − (u/c)2)1/2(1 − (v/c)2)1/2 ,

and on using (2.6) to replace u in the denominator of this equation, we might deduce

E = e0e
κθ (1 − (v/c)2)

(1 − (u/c)2)1/2(1 − (v/c)2)1/2(1 − Uv/c2) = e0e
−κεeκ�

(1 − (U/c)2)1/2 , (2.61)
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demonstrating that E has the same dependence on U as e has on u, except that the
rest energy E0 = e0e−κε which is dependent on the constant relative frame velocity
v through ε = tanh−1(v/c); thus

E0 = e0e−κε = e0
(
1 − (v/c)
1 + (v/c)

)κ/2
. (2.62)

We further comment that the final line of (2.61) follows from Eq. (2.7) and that a
similar calculation applies to the inverse energy-momentum relation (2.47)1.

We observe that if we require e(u) = e(−u), then necessarily κ = 0, but note
that conventionally this requirement does not hold for light for which the de Broglie
relations become e = ±pc, dependent upon the direction. For κ �= 0 Eqs. (2.59)
and (2.62) impinge on one of the most basic postulates in special relativity relating
to the assumed isotropy of space. These equations predict that for κ �= 0 the rest
mass values will vary with the direction of motion, namely, two different values are
obtained for positive and negative velocities v. While numerous experiments have
been undertaken aimed at testing such hypothesis, and all indicate the veracity of the
assumed isotropy of space, nevertheless the validity or otherwise of (2.62) might
only be properly tested in those situations for which both rest masses e0 and E0
are non-zero and the fraction (1 + v/c)/(1 − v/c) significantly differs from unity.
Accordingly, any test must involve speeds close to the speed of light but involving
finite (non-zero) rest masses which therefore excludes those tests dealing with light
such as the Michelson-Morley experiments.

It might also be worth noting that since it is generally believed that black holes
exist at the centres of galaxies, then space-time must be intrinsically anisotropic
in some sense. It is conceivable that space-time is anisotropic at galactic scales
and possibly a massive black hole might cause particle rest mass to depend on the
direction of particle velocity. This might be the case when the black hole is not at
rest in the rest frame of the cosmic microwave background. The cosmic microwave
background does have a sizeable dipole component, and its rest frame is measured
to be travelling at 627 km/s relative to the centre of mass of our galaxy group (see
the mini-review of cosmic microwave background by Scott and Smoot [92]).

Further, while the space-time of special relativity is assumed to be isotropic,
this is not taken as an assumption in general relativity. The use of the isotropy
assumption in cosmology to select the basic models tends to reflect known
experimental outcomes rather than being a necessary part of the theory. We further
comment that [96] provides a very general approach to mechanical anisotropy in
relativistic mechanics which includes the simple model described here, although
derived differently.

We note that for κ = 1 and κ = −1, we have, respectively, from (2.59) the
following relations:

e(u) = e0

1 − (u/c) , p(u) = e0(u/c)

c(1 − (u/c)) , e(u)− cp(u) = e0,
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e(u) = e0

1 + (u/c) , p(u) = e0(u/c)

c(1 + (u/c)) , e(u)+ cp(u) = e0,

allowing the possibility of e = ±pc + e0 with non-zero rest energy e0.
Finally, we comment that it is a very curious fact that both the conventional

Einstein energy-mass expression e = e0/(1 − (u/c)2)1/2 and the generalisation
derived here (2.59) bear a relationship with certain singular integral equations
associated with aerofoil problems, fluid mechanics and punch problems in elasticity
and that this relationship is not some vague intangible connection but involves an
exact correspondence. Linear singular equations arise in many areas of applied
mathematics but particularly within fluid and solid mechanics. Specifically, in
nondimensional variables, the formal solution of the singular integral equation of
the second kind

φ(x)+ λ

π

ˆ 1

−1

φ(y)dy

(x − y) = g(x), (2.63)

is given by

φ(x) = Cλ

π(1 + λ2)1/2(1 − x2)1/2
(
1 + x
1 − x

)γ
(2.64)

+ g(x)

(1 + λ2) + λ

π(1 + λ2)(1 − x2)1/2
(
1 + x
1 − x

)γ ˆ 1

−1
(1 − y2)1/2

(
1 − y
1 + y

)γ
g(y)dy

(y − x) ,

where here λ and γ are related by λ = cot(πγ ) and the constant C is defined by

C =
ˆ 1

−1
φ(x)dx. (2.65)

The singular integral appearing in (2.63) is sometimes referred to as the finite
Hilbert transform. There are numerous standard results available such as (see for
example [39, 60] or [63])

1

π

ˆ 1

−1

dy

(1 − y2)1/2(x − y) = 0,
1

π

ˆ 1

−1

(1 − y2)1/2dy
(x − y) = x, 1

π

ˆ 1

−1

y(1 − y2)1/2dy
(x − y) = x2 − 1

2
,

1

π

ˆ 1

−1

y3(1 − y2)1/2dy
(x − y) = x4 − x2

2
− 1

8
,

1

π

ˆ 1

−1

y5(1 − y2)1/2dy
(x − y) = x6 − x4

2
− x2

8
− 1

16
,

and there are usually other constraints such as φ(±1) = 0, and the function g(x)
is assumed to be an odd function, but since the major issue here is simply the
connection with the Einstein expression, we do not need concern ourselves with
such details.

Strictly speaking, the Einstein expression arising from the case γ = 0 corre-
sponds to λ −→ ∞ and accordingly arises from the integral equation
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1

π

ˆ 1

−1

φ(y)dy

(x − y) = f (x),

which has solution given by Tricomi [103] (pages 173–185)

φ(x) = C

π(1 − x2)1/2 + 1

π(1 − x2)1/2
ˆ 1

−1
(1 − y2)1/2 f (y)dy

(y − x) , (2.66)

with the constant C as previously given by (2.65), and since the function f (x) is
necessarily orthogonal to (1 − x2)−1/2, thus

ˆ 1

−1

f (x)dx

(1 − x2)1/2 = 0,

there are several equivalent expressions available for this solution (see [103], page
179). We comment that the expression (2.66) formally emerges from (2.64) with
g(x) = λf (x) and in the limit λ −→ ∞ and γ −→ 0. Evidently with x = u/c,
there is an exact correspondence with e = e0/(1 − (u/c)2)1/2 and Eq. (2.66), and
with the new expression (2.59) and (2.64), and both of which arise as the solution
of the homogeneous problem (f (x) = g(x) = 0).

The correspondence between Einstein’s fundamental energy expression and areas
of classical fluid and solid mechanics is very curious to say the least, and perhaps it is
just one of those coincidences. However, perhaps also if these interconnections were
properly understood, they might spark the onset of some fundamental revelations in
particle physics. In particular, it is natural to pose the question as to what might
be the physical meaning for the corresponding energy-mass expressions arising
from the above singular integral equations with f (x), g(x) �= 0? Apart from the
Newtonian interpretation using the classical kinetic energy e = m0u

2/2 in the final
three sections of Chap. 3, in the remainder of the text, we deal exclusively with the
Einstein energy-mass expression e = e0/(1− (u/c)2)1/2 as applying to the particle
energy.



Chapter 3
General Formulation and Basic
Equations

3.1 Introduction

In this chapter we present the proposed reformulation of Newton’s second law
and a number of general results relating to this extension. Since the origin and
motivation for the proposed model emanate from both the particle-wave duality of
de Broglie and Maxwell’s formulation of electromagnetism, in the following two
sections, we mention some of their considerable achievements. These two sections
provide some of the background motivation leading to the model developed here. In
the subsequent section, we show that a straightforward analysis of the integrated
rate-of-working equation indicates four distinct states of matter. In five sections
thereafter, we progressively state the proposed extension of Newton’s second law
and then develop a number of general outcomes relating to this proposal, including
an important identity for the spatial physical force. In addition, assuming the
existence of either a work done function or if the external forces are generated from
an applied external potential, then in either case a conservation of energy statement
applies. In either of these cases or if we assume the Einstein energy-mass variation
with velocity, then Newton’s second law as the total rate of change of momentum
emerges from the proposed reformulation.

The model presented here is analogous to the use of potentials in Maxwell’s
equations of electromagnetism, and there is an interesting connection between the
two formulations which sheds much light on the approach adopted here, and this
is examined in the next section of the chapter. The following section illustrates
the general equations for centrally or spherically symmetric systems applicable to
a central body generating a spherically symmetric environment such that particle
motion occurs in a radial direction only with no angular contribution or dependence.
In the final three sections of the chapter, we briefly examine the model that is
generated assuming the conventional Newtonian expressions for kinetic energy
and momentum and assuming that the mass remains constant. The Newtonian
interpretation of the proposed model although mathematically simple is nevertheless
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instructive since it embodies the essential solution types of the full theory. For a
single spatial dimension, we show that the Newtonian version of this model admits
a simple wave-like solution for which the corresponding full relativistic solution
is examined in considerable detail in subsequent chapters. Assuming the existence
of a work done function defined by (3.8), we make explicit the allowable solution
options exhibited by the linearised Newtonian theory.

3.2 Louis Victor de Broglie

Early in the twentieth century, the long-standing debate about the nature of light
as to whether it was particle-like or wave-like was finally concluding as scientists
began to accept that light could assume both characteristics. The possibility that the
same duality might also apply to all other forms of matter was first proposed in
1923 by the French physicist Louis de Broglie [16–20] (Fig. 3.1), for whom much
has been written and a detailed biography can be found in [37] or [65].

Louis Victor de Broglie FRS (15 August 1892–19 March 1987) was born into a
French aristocratic family with a long history of both political and military service.
Born Louis Victor Pierre Raymond de Broglie in Dieppe, Seine-Maritime, he was
destined to become the seventh Duc de Broglie in 1960 following the death of his
elder brother Maurice, the sixth Duc de Broglie. As the youngest child in the family,
Louis grew up in relative loneliness, read extensively and was fond of history,

Fig. 3.1 Louis Victor de
Broglie FRS (15 August
1892–19 March 1987)
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especially politically related subjects. He had a good memory and could always
provide a complete listing of the ministers of the Third Republic (1870–1940) to
the extent that in his youth, he considered a career as a diplomat but later turned
to science and pursued theoretical physics. His brother, Maurice, who had also
decided to become a physicist and made many advances in the study of X-rays,
was a considerable influence on his younger brother and indeed was the person to
introduce him to the work of both Planck and Einstein.

Louis’s first degree was in history, but afterwards, he turned his attention towards
mathematics and physics and received a second degree in physics in 1913. With
the outbreak of the First World War in 1914, he offered his services to the army
and joined the engineering forces to undergo compulsory service as a sapper.
However, on the initiative of his brother, he was soon seconded to the Wireless
Communications Service to work on the radio transmitter at the Eiffel Tower, and
during the war he was stationed there as part of the Army’s Wireless Telegraphy
Subdivision. He remained in military service throughout the First World War,
dealing with purely technical issues, and with Leon Brillouin and brother Maurice
established wireless communications with submarines. He was demobilised in
August 1919 with the rank of adjutant. Later in life he would regret that period
of time spent away from his real passion for the fundamental problems of science.

During his war service, when not occupied with official duties, de Broglie spent
many hours thinking about science, and this helped him to continue his studies in
1920 after the war had ended. His first research in the early 1920s was undertaken
in the laboratory of his older brother Maurice and dealt with the photoelectric
effect and properties of X-rays. The brothers examined the absorption of X-rays
and described the phenomenon using Bohr’s theory, applied quantum principles
to the interpretation of photoelectron spectra, and gave a systematic classification
of X-ray spectra. Optical spectra are used to determine the structure of the outer
electron orbits, and their studies of the X-ray spectra were important for elucidating
the structure of the internal electron orbits of the atoms. The results of de Broglie’s
experiments with Dauvillier revealed the shortcomings of existing schemes for the
distribution of electrons in atoms. Other research work at this time involved the
elucidation of the insufficiency of the Sommerfeld formula for determining the
position of the lines in X-ray spectra, and this discrepancy was resolved after the
discovery of the electron spin.

Upon de Broglie’s return to Paris, his research focus shifted to mathematical
physics and his doctoral thesis consisted of research on quantum theory. Studying
the nature of X-ray radiation and discussing its properties with his brother Maurice,
who considered these rays to be some combination of waves and particles, gave
de Broglie an awareness of the need to build a theory linking particle and wave
representations. He was also familiar with the work of Marcel Brillouin, who
proposed a hydrodynamic model of an atom and attempted to relate it to Bohr’s
theory. In his first article on this subject, de Broglie’s starting point was an idea
of Einstein about the quanta of light, where he considered blackbody radiation
as a gas of light quanta, and using classical statistical mechanics, he derived
the Wien radiation law. In his second publication, he interpreted light quanta as
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relativistic particles of very small mass to reconcile the phenomena of interference
and diffraction, with the conclusion that it was necessary to associate a certain
periodicity with light quanta.

It remained to extend the wave considerations to all matter, and in the summer of
1923, de Broglie outlined his ideas in a short note [16], “Ondes et quanta” (“Waves
and quanta”) presented at a meeting of the Paris Academy of Sciences on 10
September 1923, an event which marked the beginning of quantum wave mechanics.
In this paper, de Broglie suggested that a moving particle with energy e and velocity
v is characterised by some “internal periodic process” with a frequency e/h, where
h is Planck’s constant. To reconcile these quantum considerations with the ideas of
special relativity, de Broglie was forced to postulate a “fictitious wave” associated
with a moving body, which propagates with the velocity c2/v. Such a wave, later to
be referred to as a de Broglie wave, was speculated to occur in the process of body
movement and remain in phase with the “internal periodic process”. On examining
the motion of an electron in a closed orbit, he showed that phase matching led to
the Bohr-Sommerfeld quantisation condition for angular momentum. In his next
two notes reported at the Paris Academy of Sciences meetings on 24 September
and 8 October 1923, de Broglie concluded that the particle velocity is equal to
the group velocity of phase waves and that the particle moves along the normal
to surfaces of equal phase. In general, the trajectories can be determined using
Fermat’s principle for waves or the principle of least action for particles, indicating
a connection between geometrical optics and classical mechanics.

In his 1924 PhD thesis [17], “Recherches sur la theorie des quanta” (“Research
on the theory of the quanta”), de Broglie conjectured that the electron has an
internal clock that constitutes part of the mechanism by which a pilot wave guides
a particle. While attempts at verifying the internal clock hypothesis and measuring
clock frequency are so far not conclusive, experimental data is at least compatible
with de Broglie’s conjecture. In his PhD thesis, he introduced his theory of electron
waves, and he postulated that just as light has both wave-like and particle-like
properties, electrons also adopt these dual characteristics. Moreover, based on
the work of Planck and Einstein on light, he extended the particle-wave duality
theory of matter by suggesting that all matter might display wave properties. This
research culminated in the de Broglie hypothesis stating that any moving particle
or object had an associated wave, and he thus created the new field in physics of
wave mechanics, uniting the physics of energy (waves) and the physics of matter
(particles).

In the second part of his PhD thesis, de Broglie used the equivalence of the
mechanical principle of least action with Fermat’s optical principle, stating that
“Fermat’s principle applied to phase waves is identical to Maupertuis’ principle
applied to the moving body; the possible dynamic trajectories of the moving body
are identical to the possible rays of the wave”. This equivalence had been pointed
out by the Irish mathematician, Hamilton, almost a century earlier, and published
by him around 1830, in an era where atomic phenomena were not directly related to
the fundamental principles of physics.
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Within de Broglie’s PhD thesis, many of his most profound ideas were pro-
posed, including his ground-breaking theory of electron waves. He had previously
published work on electron waves in scientific journals, but these articles were
given little attention. It was not until Einstein read a copy of the thesis that the
revolutionary nature of his ideas began to be appreciated. Due to Einstein’s attention,
other physicists became familiar with de Broglie’s wave theory and utilised it in
shaping their own work.

Most notably, de Broglie’s theory served as the foundation upon which
Schrödinger and others developed quantum mechanics. Indeed, his concept now
known as the de Broglie hypothesis is an example of particle-wave duality and
has become a central part of quantum mechanics. In his PhD thesis, de Broglie
rearranged the momentum equation to obtain a relationship between the wavelength
λ, associated with an electron and its momentum p, through the Planck’s constant
h; thus λ = h/p. This relationship has since been shown to hold for all types of
matter; that is, all matter exhibits properties of both particles and waves, and he
subsequently wrote:

When I conceived the first basic ideas of wave mechanics in 1923–1924, I was guided by
the aim to perform a real physical synthesis, valid for all particles, of the co-existence of the
wave and of the corpuscular aspects that Einstein had introduced for photons in his theory
of light quanta in 1905.

Although his ideas were subsequently extended by the work of Schrödinger,
Schrödinger’s generalisation was probabilistic in nature, and de Broglie did not
approve, saying:

that the particle must be the seat of an internal periodic movement and that it must move in
a wave in order to remain in phase with it, was ignored by the physicists (who are) wrong
to consider a wave propagation without localisation of the particle, quite contrary to my
original ideas.

Far from claiming to make “the particle-wave contradiction disappear” which
Born thought could be achieved with a probabilistic approach, de Broglie extended
the particle-wave duality to all particles and to those crystals which revealed the
effects of diffraction and extended the principle of duality to the laws of nature. In
his Nature article on waves and quanta written from Paris, in 12 September 1923
(Nature, no. 2815, Vol. 112, October 13, 1923, page 540), de Broglie writes:

The quantum relation, energy = h× frequency, leads one to associate a periodical
phenomena with any isolated portion of matter or energy. An observer bound to the portion
of matter will associate with it a frequency determined by its internal energy, namely, by
its “matter at rest”. An observer for whom the portion of matter is in steady motion with
velocity βc, will see this frequency lower in consequence of the Lorentz-Einstein time
transformation. I have been able to show (Comptes Rendus, September 10th and 24th, of the
Paris Academy of Sciences) that the fixed observer will constantly see the internal periodical
phenomenon in phase with a wave the frequency of which is ν = m0c

2/h(1 − β2)1/2 is
determined by the quantum relation using the whole energy of the moving body, provided
that it is assumed that the wave spreads with the velocity c/β. This wave, the velocity of
which is greater than c, cannot carry energy.
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A radiation of frequency ν has to be considered as divided into atoms of light of very small
internal mass (≈ 10−10 gm.) which move with a velocity very nearly equal to that given by
hν = m0c

2/(1 − β2)1/2. The atom of light slides slowly upon the non-material wave, the
frequency of which is ν and velocity c/β, very little higher that c.

The “phase wave” has a very great importance in determining the motion of any moving
body, and I have been able to show that the stability conditions in Bohr’s atom express that
the wave is tuned with the length of the closed path.

The path of a luminous atom is no longer straight when this atom crosses a narrow opening;
that is, diffraction. It is then necessary to give up the inertia principle, and we must suppose
that any moving body follows always the ray of its “phase wave”; its path will then bend by
passing through a sufficiently small aperture. Dynamics must undergo the same evolution
that optics has undergone when undulations took the place of purely geometrical optics.
Hypotheses based upon those of the wave theory allowed us to explain interferences and
diffraction fringes. By means of these new ideas, it will probably be possible to reconcile
also diffusion and dispersion with the discontinuity of light, and to solve almost all the
problems brought up by the quanta.

At first there was no experimental data to support de Broglie’s theory that
electrons behaved like waves as well as particles. However, the theory did help
to explain many previously unaccountable phenomena. For example, experimental
evidence had shown that electrons must move around the nucleus of an atom with
certain restrictions on the motion. de Broglie’s consideration of the electron as a
wave suggested a plausible explanation for the constrained nature of the motion. In
a closed loop like that for an electron moving around a nucleus, the undulations of
a wave must stretch evenly around the entirety of the loop and consist of a whole
number of wavelengths. If they do not, then the wave is cancelled. These conditions
on a closed-loop wave are consistent with the evidence that an electron in an atom
has only a number of possible energy configurations. Also, the de Broglie view of
electrons may be used to rationalise how subatomic particles may materialise in
unexpected locations, since the waves are believed to travel through obstacles.

A few years after de Broglie’s theory was published, in 1927 it was confirmed
experimentally, by the electron diffraction experiments of the American physicists
Thomson, Davisson and Germer, that electrons do indeed exhibit wave-like char-
acteristics when scattered from the surface of a solid crystal. Additional support
for the wave-like behaviour of electrons was provided around the same time by the
British scientist George Paget Thomson, and soon after by the German physicist
Otto Stern, who carried out experiments on helium atoms and hydrogen molecules
that supported de Broglie’s additional claim that complex particles, and not just
electrons, also exhibit properties similar to waves. With this experimental evidence,
and the support of Einstein, de Broglie’s particle-wave duality theory of matter
gained widespread acceptance as the framework of wave mechanics, and de Broglie
was recognised with the Nobel Prize for Physics in 1929.

Previously, in 1925 and 1926, the Leningrad physicist Orest Khvolson had
nominated the de Broglie brothers for the Nobel Prize for their work in the field
of X-rays. The 1925 pilot-wave model and the wave-like behaviour of particles
were subsequently used by Schrödinger in his 1926 formulation of wave mechanics.
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Schrödinger published an equation describing how a matter wave should evolve,
which is the matter wave analogue of Maxwell’s equations, and he used it to derive
the energy spectrum of hydrogen. Following Schrödinger’s success, the pilot-wave
model and de Broglie’s interpretation were abandoned in favour of the quantum
formalism. In his later career, de Broglie worked to develop a causal explanation
of wave mechanics, in opposition to the wholly probabilistic models which now
dominate quantum mechanical theory. de Broglie’s approach was rediscovered and
refined by David Bohm in the 1950 and is now referred to as the de Broglie-Bohm
theory.

Originally, de Broglie had thought that a real wave was associated with the parti-
cles, that is, a wave with a direct physical interpretation. In fact, the wave aspect of
matter was formalised by the wave function introduced by Schrödinger’s equation,
which is a purely mathematical entity requiring a probabilistic interpretation and
without support of any real physical elements. That is, Schrödinger’s wave function
gives the appearance of the wave behaviour of matter, without the appearance of any
real physical waves. The de Broglie-Bohm theory is today the only interpretation
giving real status to matter waves in representing the predictions of quantum theory.

Between 1930 and 1950, de Broglie worked on various aspects of wave
mechanics, including Dirac’s electron theory, the new theory of light, the general
theory of spin particles and applications of wave mechanics to nuclear physics.
During the remainder of his long and illustrious career, he published numerous
notes and several papers on these subjects and is the author of more than 25
scientific texts. In addition to his scientific work, he also taught theoretical physics
at the Sorbonne in Paris and composed several books exploring the relationship
between physics and philosophy. He thought and wrote about the philosophy of
science, including the value of modern scientific discoveries. From a philosophical
viewpoint, his dual particle-wave theory has contributed greatly to the ruin of the
atomism of the past. According to de Broglie, the neutrino and the photon have non-
zero rest masses, although necessarily extremely small to preserve the coherence of
his theory. His rejection of the hypothesis of the massless photon enabled him to
doubt the hypothesis of the expansion of the universe. In addition, he believed that
the true mass of particles is not constant, but variable, and that each particle can be
represented as a thermodynamic machine equivalent to a cyclic integral of action.

de Broglie’s final idea [22] was the hidden thermodynamics of isolated particles,
and he attempted to bring together the three distinct principles of physics, namely,
those of Fermat, Maupertuis and Carnot. In this work, action becomes opposed
to entropy, through an equation relating the two universal dimensions of the form
action/h = entropy/k, where k is thermal conductivity. One consequence is that
this theory brings back the uncertainty principle to distances around the extrema of
action, distances that correspond to reductions in entropy. He became the physicist
who most sought that dimension of action which Planck, at the beginning of the
twentieth century, had shown to be the only universal unity with his own dimension
of entropy. de Broglie’s last work made a single system of laws from the two large
systems of thermodynamics and of mechanics, saying that:
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When Boltzmann and his continuators developed their statistical interpretation of Ther-
modynamics, one could have considered Thermodynamics to be a complicated branch of
Dynamics. But, with my actual ideas, it’s Dynamics that appear to be a simplified branch
of Thermodynamics. I think that, of all the ideas that I’ve introduced in quantum theory in
these past years, it’s that idea that is, by far, the most important and the most profound.

That idea seems to match the continuous-discontinuous duality, since its dynamics could
be the limit of its thermodynamics when transitions to continuous limits are postulated. It
is also close to that of Leibniz, who posited the necessity of “architectonic principles” to
complete the system of mechanical laws.

However, according to de Broglie, there is less duality, in the sense of opposition,
than synthesis since one is the limit of the other, and the effort of synthesis is
constant according to him, like in his first formula mc2 = hν in which the first
symbol relates to mechanics and the second to optics. His neutrino theory of light
dates from 1934 and introduces the idea that the photon is equivalent to the fusion
of two Dirac neutrinos. It shows that the movement of the centre of gravity of these
two particles obeys Maxwell’s equations, which implies that the neutrino and the
photon both have rest masses that are non-zero, although very small.

Since 1951, together with young colleagues, de Broglie [21, 23, 24] resumed the
study of an attempt which he made in 1927 under the name of the “theory of the
double solution” to give a causal interpretation to wave mechanics in the classical
terms of space and time, an attempt which he had then abandoned in the face of
almost universal adherence of physicists to the purely probabilistic interpretation of
Born, Bohr and Heisenberg. Back again in his former field of research, he obtained
several new and encouraging results published in notes to Comptes Rendus de
L’Academie des Sciences and elsewhere.

In 1929 the Academie des Sciences awarded him the first Henri Poincare Medal
and then, in 1932, the Albert I of Monaco Prize. In 1929 the Swedish Academy
of Sciences conferred on him the Nobel Prize for Physics “for his discovery of the
wave nature of electrons”. de Broglie became a member of the French Academy of
Sciences in 1933, and he served as the Perpetual Secretary of the French Academy
of Sciences from 1942. He was asked to join Le Conseil de L’Union Catholique
des Scientifiques Francaise but declined because he was nonreligious. In 1944, he
was the 16th member elected to occupy the First Seat of the Académie Française,
replacing the mathematician Emile Picard. However, because of the deaths and
imprisonments of academy members during the German occupation, the academy
was unable to gather a quorum of 20 members for his election. Nevertheless, despite
the exceptional circumstances, his unanimous election was accepted by the 17
members present. In an event unique in the history of the Académie des Sciences,
he was received as a member by his own brother Maurice, who had been elected in
1934.

In addition to the Nobel Prize, de Broglie received a large number of other
honours, including a number of honorary doctorate degrees and an appointment
as an adviser to the French Atomic Energy Commissariat. He held honorary
doctorates from the Universities of Warsaw, Bucharest, Athens, Lausanne, Quebec
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and Brussels and was a member of 18 foreign academies in Europe, India and
the USA. He was a member of the Bureau des Longitudes since 1944, and he
made major contributions to the fostering of international scientific co-operation.
He was the first eminent scientist to call for the establishment of a multi-national
laboratory, a proposal that ultimately led to the European Organisation for Nuclear
Research (CERN). de Broglie was awarded a post as the Consular to the French
High Commission of Atomic Energy in 1945 for his efforts to bring industry and
science closer together. He established a centre for applied mechanics at the Henri
Poincare Institute, where research into optics, cybernetics and atomic energy were
carried out. He inspired the formation of the International Academy of Quantum
Molecular Science and was an early member.

In 1952 he was awarded the first Kalinga Prize by the United Nations Economic
and Social Council (UNESCO) for his contributions to popularising scientific
knowledge and his efforts to explain modern physics to the layman. He was elected
a Foreign Member of the Royal Society on 23 April 1953 and awarded the gold
medal of the French National Scientific Research Centre in 1956. He is an Officer
of the Order of Leopold of Belgium, and in 1960 he became the seventh Duc de
Broglie, following the death without heir of his elder brother Maurice, the sixth Duc
de Broglie. In 1961 he received the title of Knight of the Grand Cross of the Legion
d’Honneur. He never married, and when he died in Louveciennes, he was succeeded
as the duke by his distant cousin, Victor-Francois, the eighth Duc de Broglie. His
funeral was held on 23 March 1987 at the Church of Saint-Pierre-de-Neuilly.

3.3 James Clerk Maxwell

James Clerk Maxwell FRS FRSE (13 June 1831–5 November 1879) (Fig. 3.2) was
a Scottish scientist in the field of mathematical physics, for whom an extensive
and detailed biography can be found in [38]. His most notable achievement was
to formulate the classical theory of electromagnetic radiation, bringing together
for the first time electricity, magnetism and light as different manifestations of the
same phenomenon. Maxwell’s equations for electromagnetism have been called the
“second great unification in physics” after the first in mechanics achieved by Sir
Isaac Newton. From the long view of the history of mankind, Maxwell may well
be viewed as the greatest theoretical physicist of the nineteenth century, and there
can be little doubt that the most significant event of the nineteenth century will be
his discovery of the laws of electrodynamics. His discoveries helped usher in the
era of modern physics, laying the foundation for such fields as special relativity and
quantum mechanics. He also helped develop the Maxwell-Boltzmann distribution,
a statistical means of describing aspects of the kinetic theory of gases. He is
also known for presenting the first durable colour photograph in 1861 and for his
foundational work on analysing the rigidity of rod-and-joint frameworks (trusses)
like those in many bridges. His tutor at Cambridge, William Hopkins, wrote, “it
appears impossible for Maxwell to think incorrectly on physical subjects”. Maxwell



64 3 General Formulation and Basic Equations

Fig. 3.2 James Clerk
Maxwell FRS FRSE (13 June
1831–5 November 1879)

has said, “it is of great advantage to the student of any subject to read the original
memoirs on that subject, for science is almost completely assimilated when it is in
the nascent state”.

Maxwell had studied and commented on electricity and magnetism as early
as 1855 when his paper titled “On Faraday’s Lines of Force” was read to the
Cambridge Philosophical Society [72]. The paper presented a simplified model of
Faraday’s work and how electricity and magnetism are related. He reduced all of
the current knowledge into a linked set of differential equations with 20 equations
in 20 variables, and the work was later published as “On Physical Lines of Force”
in March 1861 in the Philosophical Magazine [73].

Around 1862, while lecturing at King’s College London, Maxwell calculated
that the speed of propagation of an electromagnetic field is approximately that
of the speed of light. He obtained a velocity of 310,740,000 metres per second
and considered this to be more than just a coincidence. In his 1865 paper [74]
appearing in the Philosophical Transactions of the Royal Society of London and
titled “A dynamical theory of the electromagnetic field”, he comments that “The
agreement of the results seems to show that light and magnetism are affections
of the same substance, and that light is an electromagnetic disturbance propagated
through the field according to electromagnetic laws” and “We can scarcely avoid
the conclusion that light consists in the transverse undulations of the same medium
which is the cause of electric and magnetic phenomena”. In this paper Maxwell
derives an electromagnetic wave equation with a wave velocity in close agreement
with that for light. He deduces that light is an electromagnetic wave and that light
is an undulation in the same medium that is the cause of electric and magnetic
phenomena. Subsequently Maxwell was proved to be correct, and his quantitative
connection between light and electromagnetism is considered to be one of the
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great accomplishments of nineteenth-century mathematical physics that led to the
prediction of the existence of radio waves.

The origins of his 1865 paper lay in his earlier papers of 1855–1856, in which he
began the mathematical elaboration of Faraday’s researches into electromagnetism,
and his papers during the period 1861–1862, in which the displacement current was
introduced. Of particular interest to the present text is that much of this earlier work
was motivated from mechanical analogies, while in the 1865 paper, the focus shifts
to the role of the fields themselves as descriptions of electromagnetic phenomena,
and the mechanical models by which he had arrived at the field equations a few
years earlier were stripped away. Maxwell’s introduction of the concept of fields to
explain physical phenomena provided the essential link between the mechanical
world of Newtonian physics and the theory of fields, as elaborated by Einstein
and others, which lies at the heart of twentieth- and twenty-first-century physics.
The 1865 paper provided a new theoretical framework for the subject, based on
experiment and a few general dynamical principles, from which the propagation of
electromagnetic waves through space followed without any special assumptions.

In the treatise (A Treatise on Electricity and Magnetism) [75], Maxwell presents
electromagnetic theory and advanced ideas and thinking that were to become essen-
tial for modern physics, including his landmark hypothesis that light and electricity
correspond in their ultimate nature. His treatise did for electromagnetism what
Newton’s Principia had done for classical mechanics. It provided a mathematical
basis for the investigation and representation of the whole electromagnetic theory
and altered the framework of both theoretical and experimental physics. It was this
work that finally displaced action-at-a-distance physics and substituted the physics
of the field.

His famous 20 equations first appear in their modern form of four partial
differential equations in the treatise [75], and most of this work was done at
Glenlair during the period between holding his King’s College London post and
taking up the Cavendish Chair at Cambridge. He expressed electromagnetism in the
algebra of quaternions and made the electromagnetic potential the centrepiece of his
theory. Subsequently, in 1881 Oliver Heaviside reduced the complexity of his theory
to four differential equations, now collectively known as Maxwell’s equations of
electromagnetism, and the electromagnetic potential field was replaced by force
fields as the centrepiece of electromagnetic theory which later became the cause
of some debate concerning the relative merits of vector analysis and quaternions.
The end result was the realisation that there was no need for the greater physical
insights provided by quaternions if the theory was purely local, and the use of scalar
and vector potentials is now standard in the solution of Maxwell’s equations.

His treatise on electromagnetism extended the dynamical formalism through a
more rigorous application of Lagrange’s equations than he had attempted in 1865
and coincided with a general movement in Britain and Europe towards a wider
use of the methods of analytical dynamics in physical problems, by expressing
the Lagrangian for an electromagnetic system in its most general form. George
Green and others had developed similar arguments to study the dynamics of
the luminiferous aether. However, Maxwell’s use of Lagrange’s techniques was
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a new to physics, and many years passed before other physicists adopted these
ideas. In 1865, and again in the treatise, Maxwell’s next step after completing the
dynamical analogy was to develop eight equations describing the electromagnetic
field. Their underlying principle is that electromagnetic processes are transmitted
by the separate and independent action of each charge (or magnetised body) on the
surrounding space rather than by direct action at a distance. Force formulae between
moving charged bodies may be derived from Maxwell’s equations, but the action is
not along the line joining them and can only be reconciled with dynamical principles
by taking into account the exchange of momentum with the field.

Maxwell once remarked that the aim of the treatise was not to expound the final
view of his electromagnetic theory, which he had developed in a series of five major
papers between 1855 and 1868; rather it was to educate himself by presenting a view
of the stage that he had reached in his thinking. Accordingly, the work is loosely
organised on historical and experimental rather than systematically deductive lines.
It extends Maxwell’s ideas beyond the scope of his earlier work in many directions,
demonstrating the special importance of electricity to physics as a whole. He began
the investigation of moving frames of reference, which in Einstein’s hands were
to revolutionise physics; gave proofs of the existence of electromagnetic waves
that paved the way for Hertz’s discovery of radio waves; worked out connections
between electrical and optical qualities of bodies that would lead to modern solid-
state physics; and applied Tait’s quaternion formulae to the field equations, from
which Heaviside and Gibbs would later develop. Viewing electromagnetism as a
mathematical model, Hertz would comment that Maxwell’s equations seemed to
contain more than their constituent parts.

Maxwell also introduced the concept of the electromagnetic field in compar-
ison to force lines that Faraday described. By understanding the propagation of
electromagnetism as a field emitted by active particles, Maxwell could advance
his work on light. At that time, Maxwell believed that the propagation of light
required a medium for the waves, dubbed the luminiferous aether or space-time
fabric. Over time, the existence of such a medium, permeating all space and yet
apparently undetectable by mechanical means, proved impossible to reconcile with
experiments such as the Michelson and Morley experiment. Moreover, it seemed
to require an absolute frame of reference in which the equations were valid, and in
consequence the equations might change their form for a moving observer. These
difficulties inspired Einstein to formulate the theory of special relativity and to
dispense with the requirement of a stationary luminiferous aether.

Einstein’s work on relativity was founded directly upon Maxwell’s electromag-
netic theory, and it was this that led him to equate Faraday with Galileo and
Maxwell with Newton. On the occasion of the centenary of Maxwell’s birth in 1931,
Einstein summed up Maxwell’s achievement: “We may say that, before Maxwell,
physical reality, in so far as it was to represent the process of nature, was thought
of as consisting in material particles, whose variations consist only in movements
governed by ordinary differential equations. Since Maxwell’s time, physical reality
has been thought of as represented by continuous fields, governed by partial
differential equations, and not capable of any mechanical interpretation. This change
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in the conception of reality is the most profound and the most fruitful that physics
has experienced since the time of Newton”. Many physicists regard Maxwell as
the nineteenth-century scientist having the greatest influence on twentieth-century
physics. His contributions to science are considered by many to be of the same
magnitude as those of Isaac Newton and Albert Einstein. In a survey of 100 of the
most prominent physicists, Maxwell was voted as the third greatest physicist of all
time, behind only Newton and Einstein. On the centenary of Maxwell’s birthday,
Einstein described Maxwell’s work as the “most profound and the most fruitful that
physics has experienced since the time of Newton”.

The key idea formulated in [47–52] and expounded below originally arose from
a series of five lectures by Professor Germain Rousseaux presented at the University
of Poitiers on five successive Tuesdays, 9 May–6 June 2017. Professor Rousseaux,
as a passionate and lifelong student of the life and work of James Clerk Maxwell,
presented five remarkably insightful lectures, principally dealing with the life of
Maxwell and his numerous outstanding contributions to electromagnetism that
included three important themes. First is that much of our present understanding of
electromagnetism developed from mechanical analogues from both solid and fluid
mechanics. Second is the recognition as to the importance as to which variables
constitute the force and which identify the associated flux, and the assumed linear
connection between them, such as in standard notation in electromagnetic theory
B = μH, D = εE and J = σE. The third and perhaps the most important theme
that permeated throughout the five lectures was the more fundamental importance
of the vector and scalar potentials (A, V ) as compared to the fields (E, B) that are
related by the formulae

B = ∇ ∧ A, E = −∂A
∂t

− ∇V. (3.1)

The vector potential A corresponds to the electromagnetic momentum and is the
analogue of mechanical momentum and referred to by both Faraday and Maxwell
as the electro-tonic intensity, while the potential V is the analogue of the velocity
potential in fluid mechanics.

While the recognition of the relative importance of the potentials (A, V ) has
waxed and waned over the past 150 years, it is clear that mechanical analogues
and models have been critical to our present advanced understanding of electro-
magnetism. Maxwell has remarked, “a physical analogue is that partial similarity
between the results of one science and those of another which makes each of
them illustrate the other”, and later in relation to the electro-tonic state, “using
the mechanical illustrations to assist the imagination, but not to account for
the phenomena”. Writing on the physical lines of force in 1861, Maxwell, in
extending Thomson’s idea that magnetism represents the alignment of the axes of
vortices, commented, “it appears the phenomena of induced currents are part of a
communication of the rotatory velocity of the vortices from one part of the fluid to
another”, and he developed the idea that the vortices might be thought of as elastic
cells or balls and wrote, “the electric field exerts a force to the fixed charge balls,
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they tend to distort the vortices, and the charges are displaced from their stationary
location by a distance proportional to the electric force. In this way the electric force
is transferred through the medium because of the elasticity”, and later described
“electric deformation as a kind of elastic yielding”.

Regarding the interplay between developments in mechanics and those in
electromagnetism and on the electro-tonic intensity, Maxwell wrote, “what I have
called the electromagnetic momentum is the same quantity which is called by
Faraday the electro-tonic state of the circuit, every change of which involves the
action of an electromotive force”. Later he wrote, “the electro-tonic intensity is the
fundamental quantity in the theory of electromagnetism. By a careful study of the
laws of elastic solids and of the motions of viscous fluids, I hope to discover a
method of forming a mechanical conception of this electro-tonic state”. And later
he wrote, “Faraday was led to recognise the existence of something which we now
know to be a mathematical quantity and which may even be called the fundamental
quantity in the theory of electromagnetism”.

These lengthy preliminary comments are designed to convince the reader that
progress in mechanics and electromagnetism did not occur in isolation of each
other. Indeed, after Maxwell had fully settled the fundamentals of electromagnetism,
its importance and the importance of Lorentz invariance were fundamental to
the development of the theory of special relativity. After attending Professor
Rousseaux’s lectures, it occurred to the author that if the four potentials (A, V ) play
such an important role in electromagnetism, might there not also be a corresponding
set of potentials that might play a similar role in mechanics? And the question posed
here is that, “if we accept the proposition that the potentials (A, V ) are indeed fun-
damental to the theory of electromagnetism, does this result hold any implications
for mechanics fundamentals, such as the validity or otherwise of Newton’s second
law?” Given that momentum and mass conservation are necessarily partnered in
a special relativistic four-vector sense, and the requirement of Lorentz invariant
energy-momentum relations, the only available option is the adoption of momentum
p = mu, particle energy e = mc2 and necessarily the Einstein mass variation.
This choice appears to be fortuitous, since the proposed work done expression
automatically makes accommodation for the de Broglie wave energy.

3.4 Four Types of Matter and Variable Rest Mass

Assuming all quantities are position x and time t dependent along with the usual
formulae of special relativity, namely, e = mc2 and m(u) = m0[1 − (u/c)2]−1/2

where m0 denotes rest mass and u is the magnitude of the particle velocity, thus
u2 = u · u; the conventional rate-of-working Eq. (2.43) for the physical energy e of
a particle is as follows:

de = f · dx = dp
dt

· dx, (3.2)
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where f = dp/dt denotes the physical force and p = mu is the momentum where
u = dx/dt is the particle velocity. Using these relations, Eq. (3.2) may be rewritten

e
de

dt
= c2p · dp

dt
= c2pdp

dt
, (3.3)

which evidently integrates to yield e2 = (pc)2 + constant , where p denotes the
magnitude of the momentum vector, namely, p2 = p · p. Again we comment that
this constant is generally fixed by taking the particle energy at e = e0 = m0c

2 at
zero velocity, so that e2 = e02 + (pc)2, but this does not necessarily have to be the
case, and there might be other interpretations for the constant, although here again
we assume that this arbitrary constant is as generally prescribed. In the analysis
of the energy statement e2 = e0

2 + (pc)2, either e0 is zero or it is non-zero, and
therefore four distinct alternatives arise:

• (I) e = (e02 + (pc)2)1/2, e0 �= 0
• (II) e = −(e02 + (pc)2)1/2, e0 �= 0
• (III) e = pc, e0 = 0,
• (IV) e = −pc, e0 = 0,

and while it is straightforward to assign distinct types of matter to each of the four
distinct alternatives, other than (I) as baryonic matter, at this point in time, we may
only speculate to correlate the others with the various known distinct types, such
as dark energy and dark matter. Here we identify (III) and (IV) with dark matter
and dark energy, respectively, while we propose (II) corresponds perhaps to a form
of antimatter. This seemingly naive identification of the distinct types of matter is
subsequently discussed at length and is only meaningful because it is interpreted
within the extension of special relativity examined here. Such an interpretation is
simply not available within the narrower confines of traditional special relativity
because it lacks the notion of a force in the direction of time. We further note that
[32] puts forwards the interesting notion of negative mass as one explanation of dark
matter and dark energy.

In the following extension of Newton’s second law, we assume throughout the
text the Einstein formulae of special relativity and in particular that the rest energy
e0 = m0c

2 is a constant. However, it is generally believed that for baryonic matter
the rest mass is constant for speeds u < c and zero at the speed of light u = c.
Further, de Broglie believed that the rest mass of particles is not constant, but
variable, and that both the neutrino and the photon have non-zero rest masses.
Following de Broglie, the superluminal world u > c is in all probability the world
of waves, and by inverting the Einstein relation pc = e0(u/c)/(1 − (u/c)2)1/2 for
velocity and momentum magnitudes u = (u · u)1/2 and p = (p · p)1/2 respectively,
we obtain the simple but important relation

u

c
= pc

(e20 + (pc)2)1/2 ,
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e20

1− (u/c)2

Rest energy (squared)

sub-luminal particles

superluminal waves

{
{
u = c

e∗2
0

−e∗2
0

Fig. 3.3 Variable rest mass energy e20 in terms of the Heaviside unit step function

which reveals the inescapable consequences that e20 > 0 for u < c, e20 = 0 for u = c
and e20 < 0 for u > c, and therefore the square of the rest mass energy e20 must adopt
a profile something like that represented in Fig. 3.3. This means, at the very least,
that we need to entertain the possibility of a variable rest mass energy e0 = e0(x, t)
and that the square of a variable rest mass energy e0(x, t)2 might involve generalised
functions and in particular the Heaviside unit step function.

For example, the profile of the square of the rest energy e0(x, t)2 shown in
Fig. 3.3 might be represented as follows:

e0(x, t)2 = e∗20

⎧⎪⎪⎨
⎪⎪⎩
H(1 − (u/c)2), if u < c sub-luminal,

0, if u = c speed of light,

−H((u/c)2 − 1), if u > c superluminal,

and given explicitly by the equation

e0(x, t)2 = e∗20
(
H

(
1 −

(u
c

)2)−H
((u
c

)2 − 1

))
,
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where e∗0 is assumed to be a positive real number and H denotes the Heaviside
unit step function. Equally well, the profile shown in Fig. 3.3 might be represented
alternatively as

e0(x, t)2 = e∗20

⎧⎪⎪⎨
⎪⎪⎩
H((ct)2 − x2), if u < c sub-luminal,

0, if u = c speed of light,

−H(x2 − (ct)2), if u > c superluminal,

and given explicitly by the equation

e0(x, t)2 = e∗20 (H((ct)2 − x2)−H(x2 − (ct)2)),

where x here denotes the magnitude of the position vector, namely, x = (x · x)1/2,
and for both representations any derivatives of e0(x, t) will involve the Dirac delta
function, either δ(1 − (u/c)2) or δ((ct)2 − x2).

Some of the basic properties of both the Dirac delta function and the Heaviside
unit step function are discussed briefly in Chap. 9, along with the basic references
to these important generalised functions. Two sections of Chap. 8 deal with non-
constant rest energy e0 = e0(x, t), and at least for a single space dimension, the
formal equations for the extension of Newton’s second law that are presented in the
following section appear to be perfectly well-defined and meaningful for variable
rest energy. Although we assume throughout the text that the rest energy e0 remains
constant, Eqs. (3.4) in terms of momentum p = mu and energy e = mc2 appear to
be equally sensible in the absence of this assumption, that is, e2−(pc)2 = e0(x, t)2,
and this seems to apply without further restriction on e0(x, t), including, perhaps,
generalised functions.

3.5 Modified Newton’s Laws of Motion

We assume that all quantities are both position x and time t dependent, and assuming
the usual formulae of special relativity, so that e = mc2 and m(u) = m0[1 −
(u/c)2]−1/2 wherem0 is the rest mass and u is the magnitude of the particle velocity,
thus u2 = u · u. Specifically, in view of the above considerations, for sub-luminal
particle velocity u with an associated superluminal wave velocity w, where uw =
c2, we have in mind developing a mechanical framework within which the following
might apply:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

epart = e0

(1 − (u/c)2)1/2 ,
elight = cplight ,
ewave = e0

((w/c)2 − 1)1/2
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ppart = e0u

c2(1 − (u/c)2)1/2 , 0 � u/c < 1,

cplight = elight , u/c = 1,

pwave = e0w

c2((w/c)2 − 1)1/2
, 1 < w/c <∞,
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so that the combined or total energies etotal = epart + ewave and momenta ptotal =
ppart + pwave are given by

etotal = cptotal = e0
(
1 + u/c
1 − u/c

)1/2

= eθ ,

where the angle θ which is previously defined by (2.10) is the angle in which a
Lorentz invariance appears as a translational invariance, so that the energy totals
involve only a multiplicative factor under Lorentz transformation. Further, at the
speed of light, privileged or singular states exist which are generalisations of the
known relations for light, namely, plight = h/μ and elight = hν, which together
imply elight = cplight where h is the Planck’s constant, μ is the wave length, and
ν is the frequency (c = μν), and we refer to such privileged states as de Broglie
states. It is important to note that throughout we are making the implicit hypothesis
that any superluminal motion is only possible within the energy interpretation e =
e0/(1 − (u/c)2)1/2, provided either that e20 < 0 or that for u/c > 1 the formulae
e = e0/((u/c)2 − 1)1/2 and p = e0u/c2((u/c)2 − 1)1/2 apply.

In order to formulate the proposed model, we need to make a distinction between
the particle energy e = mc2 and the actual work done by the particle W , and it
is not just the momentum vector p = mu that contributes to the work done W ,
but also the intrinsic particle energy e itself plays an important role through the
combined potentials (p, e/c) as a well-defined four vector within special relativity.
Specifically, we propose the following formal extension of Newton’s second law,
such that the force f and energy-mass production g are given by

f = ∂p
∂t

+ ∇e, g = 1

c2

∂e

∂t
+ ∇ · p, (3.4)

noting that this formulation assumes that space and time are on an equal footing so
that all derivatives in (3.4) are assumed to be partial. This is an important point since
unlike conventional dynamics the equation f = dp/dt = 0 does not necessarily
imply that p is necessarily a constant vector, since the total time derivatives

dp
dt

= ∂p
∂t

+ (u · ∇)p = 0,

constitute connections between partial differentials which can be satisfied without
the individual partial derivatives of p necessarily all vanishing. For example,
adopting de Broglie’s guidance formula (see Eqs. (1.1), (1.2) and (1.3)) provides
non-trivial illustrations of solutions for which f = 0, and yet both p and e are non-
constant with e2 − (pc)2 = e20 where p2 = p · p, and specific examples are given in
Chaps. 4 and 9 for the cases of a single spatial dimension and centrally symmetric
mechanical systems, respectively. Accordingly for g �= 0, the above proposal also
has implications for Newton’s first law, giving rise to the possibility of motion in the
absence of any spatial force.
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Clearly the proposed formulation (3.4) is by no means novel and is well rooted
in conventional continuum mechanics. The second equation of (3.4) is merely
the generally accepted mass continuity equation but including an energy-mass
production term g and might be viewed as Newton’s second law in the direction of
time. We observe that these relations are left unchanged by the gauge transformation

p′ = p + ∇ψ, e′ = e − ∂ψ

∂t
, (3.5)

where ψ(x, t) satisfies the wave equation

∂2ψ

∂t2
= c2∇2ψ.

In Chap. 7 we show that the expressions for both f and g are Lorentz invariant so
that (f, gc) is a well-defined four vector.

We further comment that adopting the Einstein mass variation is necessitated by
the requirement that the Lorentz invariant energy-momentum relations (2.46) are
satisfied. If the (x, t) frame is moving with velocity v with respect to the (X, T )
frame, then without any assumptions as to the mass variation, but with p = mu,
e = mc2 in the (x, t) frame and P = MU , E = Mc2 in the (X, T ) frame, where
u = (U − v)/(1−Uv/c2), the requirement of Lorentz invariant energy-momentum
relations yields the two consistent equations

m(u+ v) = MU
(
1 − (v/c)2

)1/2
, M(U − v) = mu

(
1 − (v/c)2

)1/2
.

On locating a particle at the origin of the (x, t) frame, we have U = v, u = 0 and
m = m0 and therefore necessarilyM(v) = m0[1 − (v/c)2]−1/2.

3.6 Identity for Spatial Physical Force f

Throughout most of the book, we assume the Einstein mass variation so that the
energy e and momentum p satisfy the relation e2 = e20 + c2p · p, where e0 = m0c

2

and m0 is the rest mass. We also frequently assume that the forces f and g are
generated from a potential function V (x, t) through the relations (3.25). In both
situations we are able to establish the conventional formula for Newton’s second
law, namely, f = dp/dt , where p = mu is the momentum vector and d/dt denotes
the material or total time derivative which is defined by

d

dt
= ∂

∂t
+ (u · ∇). (3.6)
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However, in general without restriction on the forces f and g, the spatial physical
force f admits the interesting formula

f = dp
dt

+ u ∧ (∇ ∧ p), (3.7)

and this equation may be established in component form as follows: Using the
subscript notation for Cartesian components u = (ux, uy, uz) and p = (px, py, pz),
we have from the rate-of-working equation de = dx · dp/dt = u · dp, so that for
the x-component, we have from (3.4)1

fx = ∂px

∂t
+ ∂e

∂x
= ∂px

∂t
+ ux ∂px

∂x
+ uy ∂py

∂x
+ uz ∂pz

∂x
,

which with some re-arrangement becomes

fx = ∂px

∂t
+ ux ∂px

∂x
+ uy ∂px

∂y
+ uz ∂px

∂z
+ uy

(
∂py

∂x
− ∂px

∂y

)
+ uz

(
∂pz

∂x
− ∂px

∂z

)
.

This equation can be seen to further simplify to give

fx = dpx

dt
+ uy(∇ ∧ p)z − uz(∇ ∧ p)y,

where ∇ ∧ p has the formal determinant definition

∇ ∧ p =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

px py pz

∣∣∣∣∣∣∣
,

where as usual (î, ĵ, k̂) denote the unit vectors in the three Cartesian directions, and
(3.7) now follows where u ∧ (∇ ∧ p) is formally given by the determinant

u ∧ (∇ ∧ p) =
∣∣∣∣∣∣

î ĵ k̂
ux uy uz

(∇ ∧ p)x (∇ ∧ p)y (∇ ∧ p)z

∣∣∣∣∣∣ .

We observe that Eq. (3.7) implies that for general forces f and g, the scalar product,
f ·u, becomes f ·u = u ·dp/dt = de/dt . Further, in the following section, assuming
the existence of an energy or work done function W(x, t) implies that the curl of
the momentum vector is the zero vector, namely, ∇ ∧ p = 0, which we prove
subsequently. We further comment that an alternative derivation of (3.7) is presented
in Chap. 12 using Cartesian tensors.
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3.7 Assumed Existence of Work Done Function W(x, t)

To extend the conventional notion of work done, say dW from the accepted notion
of force times distance, we propose that the incremental work done dW arises as
the scalar product of the two four vectors (f, gc) and (dx, cdt); thus

dW = f · dx + gc2dt =
(
∂p
∂t

+ ∇e
)

· dx +
(
∂e

∂t
+ c2∇ · p

)
dt, (3.8)

which may be simplified to yield

d(W − e) = ∂p
∂t

· dx + c2(∇ · p)dt, (3.9)

and therefore we propose that (3.8) generalises the conventional work done equation
de = (dp/dt) · dx, with the additional equation for the wave energy; thus

dE = ∂p
∂t

· dx + c2(∇ · p)dt, (3.10)

and we adopt this statement as the defining equation for the determination of the
incremental de Broglie wave energy dE (x, t). The term c2(∇ ·p)dt does not appear
in conventional special relativistic mechanics, and automatically accommodates the
de Broglie wave energy.

Assuming the existence of either W or E imposes certain constraints, and it is
apparent from (3.8) that f and g must satisfy the compatibility condition

∂f
∂t

= c2∇g, (3.11)

in order that either (3.8) or (3.10) represents well-defined differential relations for
W and E , respectively. At this juncture, it is important to observe that while the
proposed force equations (3.4) are fully Lorentz invariant, the above compatibility
equation (3.11) is not automatically Lorentz invariant without further restriction, and
this is discussed at length subsequently in Chap. 7. This fact gives rise to the notion
of partial Lorentz invariance which is exhibited by the exact wave-like solution
discussed in Chaps. 5 and 6, for which the assumed linear force expressions satisfy
another Lorentz invariance involving the product of force times energy, or in other
words, force times mass.

Einstein Mass Variation e2 = e20 + c2p · p From the Einstein mass variation, the
energy e and momentum p satisfy the relation e2 = e20 + c2p · p, where e0 = m0c

2

and m0 is the rest mass, so the following relations are known to apply:

∂e

∂t
= u · ∂p

∂t
, ∇e = (u · ∇)p, de

dt
= u · dp

dt
, (3.12)
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which we may exploit to establish the identities:

f = ∂p
∂t

+ ∇e = ∂p
∂t

+ (u · ∇)p = dp
dt
,

so that in this case, the force f coincides precisely with the usual notion as the total
time derivative of momentum. This is an important point since it means that all the
great achievements of Newtonian mechanics remain essentially unaltered. Further
from (3.10) on division by dt , we have

dE

dt
= u · ∂p

∂t
+ c2(∇ · p),

which on using (3.12) can be shown to become

g = 1

c2

∂e

∂t
+ ∇ · p = 1

c2

(
∂e

∂t
+ ∇ · (eu)

)
= 1

c2

(
de

dt
+ e(∇ · u)

)
, (3.13)

so that from (3.10) we may view the equation

dE = ∂p
∂t

· dx + c2(∇ · p)dt, (3.14)

as the defining statement for the de Broglie wave energy E (x, t), extending the
conventional notion of work done de = (dp/dt) · dx. Thus, there are two energies:
the conventional particle energy e(x, t) arising from de = (dp/dt) · dx and the de
Broglie wave energy E (x, t), for which we may deduce the companion formulae

f = dp
dt
, g = 1

c2

dE

dt
, (3.15)

the latter equation also following directly from Eqs. (3.4)2 and (3.12)1, so that

g = 1

c2

∂e

∂t
+ ∇ · p = u

c2
· ∂p
∂t

+ ∇ · p = 1

c2

dE

dt
,

where the final equality arises from (3.14).

The equation W = e + E takes into account both the particle energy e(x, t) and
the de Broglie wave energy E (x, t), and it is the contribution arising from the de
Broglie wave energy E (x, t) that is not accommodated in traditional mechanical
thinking. From (3.13) and (3.15), we may deduce the important rate equation
connecting the particle and wave energies; thus

dE

dt
= de

dt
+ e(∇ · u), (3.16)
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where the divergence of the velocity field ∇ · u can be related to the Jacobian of the
transformation between material coordinates X = (X, Y,Z) and spatial coordinates
x = (x, y, z); thus

∇ · u = 1

J

dJ

dt
, J =

∣∣∣∣∣∣
∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

∣∣∣∣∣∣ , (3.17)

the proof of which may be found in any textbook on non-linear continuum
mechanics (see for example [31], page 71). The existence of this relation means
that we may formulate the following incremental equation connecting the particle
energies with the Jacobian of the transformation between material and spatial
coordinates; thus

dE = de + e

J
dJ. (3.18)

While the particle energy e = mc2 can be calculated for any sub-luminal velocity
field, the de Broglie wave energy E (x, t) is only generated from velocity fields u for
which the corresponding momentum p(x, t) satisfies the wave-like equation

∂2p
∂t2

= c2∇(∇ · p), (3.19)

arising from the compatibility of either differential relations (3.8). This equation
may be further simplified using the standard vector identity

∇∧(∇∧p) = ∇(∇ · p)− ∇2p, (3.20)

and since assuming the existence of V (x, t) or W(x, t) implies ∇ ∧ p = 0,
Eq. (3.19) becomes simply

∂2p
∂t2

= c2∇2p, (3.21)

so that both the momentum vector p and the wave energy E (x, t) satisfy the wave
equation,

∂2E

∂t2
= c2∇2E . (3.22)

If φ(x, t) satisfies the wave equation, we may formally solve equations (3.21) and
(3.22) through the relations:
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p = ∇φ, E = ∂φ

∂t
,

∂2φ

∂t2
= c2∇2φ, (3.23)

and ∇ ∧ p = 0 which is apparent immediately from the well-known vector identity
curl grad φ is zero for all φ(x, t), namely, ∇ ∧ (∇φ) = 0.

Conservation Equation for Energy Density W (x, t) and Instantaneous Power
Q(x, t) On using the standard vector identity

∇ · (E p) = E∇ · p + (p · ∇)E ,

the above force relations may be expressed in the form of a conservation equation
in the following manner: From Eq. (3.10) we may deduce four equations

∂p
∂t

= ∇E ,
∂E

∂t
= c2(∇ · p).

On taking the scalar product of the first of these with c2p, by multiplying the second
by E and then by addition we have

1

2

∂

∂t

(
E 2 + c2p · p

)
= c2∇ · (E p).

In conservation form, this equation becomes

∂W

∂t
+ ∇ · Q = 0, (3.24)

where the energy density W (x, t) and energy flow or instantaneous power Q(x, t)
are defined by

W = 1

2

(
E 2 + c2p · p

)
, Q = −c2E p,

and Eq. (3.24) relates the time rate of increase (decrease) of the energy density
W (x, t) that is balanced by a decrease (increase) in the instantaneous power Q(x, t).
Subsequently, we examine the form of the conservation equation (3.24) for the two
special cases of a single spatial dimension and for centrally symmetric mechanical
systems for which motion is in the radial direction only with no angular effect.

Remark We comment that in principle, we may postulate the existence of any
energy or work done function E or W , and in doing so, we are inevitably making
certain assumptions and inheriting certain implied consequences. In formulating
the particular four-vector scalar product (3.8), we assume the spatial and temporal
coordinates x and ct have equal footings, so that for this purpose we are not adopting
the conventional signature (1, 1, 1,−1) of special relativity. The latter approach
would generate a minus sign in the above Eqs. (3.8) and (3.10) which may well
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lead to physically interesting outcomes in its own right. The wave equation is also
associated with special relativity, and we have adopted the positive sign in the above
equations for the following four reasons given below. The question as to whether
there is a positive or negative sign in (3.8) is reminiscent of the positive or negative
signs appearing in the Hamiltonian and the Lagrangian for conservative systems in
classical mechanics, namely,H = T +V andL = T −V , with the usual notation
for kinetic energy T and potential energy V . Here we are dealing with energy, and
so the positive sign is chosen, and we provide the following detailed reasoning in
support of this choice.

Firstly, the positive sign means that the terms ∇e and ∂e/∂t reinforce each other
to produce the total differential de, which secondly leads to Eq. (3.10) involving
the momentum p only on the right-hand side, and which satisfies the linear wave
equation, rather than some more complicated coupled equation involving both p and
e and their derivatives. Thirdly, and perhaps most importantly, as noted below the
two terms of (3.10) produce two extreme limits, one involving the particle velocity
u and the other the de Broglie wave velocity c2/u, and specifically it is+c2/u that is
required if the de Broglie wave energy is to be correctly incorporated in the theory.
Finally, the positive sign always generates the classical Einstein formula as the
leading term (see the general Eqs. (6.13) and (6.14)), and indeed even in the extreme
de Broglie limit (see Eq. (5.5)), the Einstein expression emerges as the leading term.
These four important outcomes do not occur if the minus sign is adopted in (3.8).

3.8 Forces f and g Derivable from a Potential V (x, t)

In the present formulation, the compatibility condition (3.11) represents a new
equation and an important constraint that is not present in conventional theory. For
example, if the particle is exposed to some external field such as gravity, then (3.11)
implies that on extending the conventional approach, we might propose that (f, gc)
are generated as external forces from a scalar potential V (x, t) such that

f = −∇V, gc2 = −∂V
∂t
, (3.25)

and such mechanical systems are conservative in the sense that a conservation of
energy principle applies. If these relations apply, then (3.4) becomes

∂p
∂t

+ ∇(e + V ) = 0,
1

c2

∂(e + V )
∂t

+ ∇ · p = 0,

so that by taking the divergence of the first equation and the partial time derivative
of the second, it implies that e + V satisfies the classical wave equation; thus
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∂2(e + V )
∂t2

= c2∇2(e + V ).

Further, from the definition of E , Eq. (3.10), we find that

dE = ∂p
∂t

· dx + c2(∇ · p)dt = −∇(e + V ) · dx − ∂(e + V )
∂t

dt = −d(e + V ),
(3.26)

and therefore d(e+ E +V ) = 0, and a conventional type of conservation of energy
applies, namely,W +V = e+E +V = constant , or in words Particle Energy+
Wave Energy + Potential Energy = constant .
∇ ∧ p = 0 for Conservative Mechanical Systems Assuming the existence of an
energy potential V (x, t) or equivalently a work done function W(x, t) implies that
the curl of the momentum vector is the zero vector, namely, ∇ ∧ p = 0, since the
three spatial force equations become

f = ∂p
∂t

+ ∇e = −∇V,

so that in component form for the momentum vector p = (px, py, pz), we have
∂px

∂t
= ∂E

∂x
,

∂py

∂t
= ∂E

∂y
,

∂pz

∂t
= ∂E

∂z
.

On examination of each of these three equations in turn, we may progressively
deduce that there exists a function φ(x, y, z, t) such that

px = ∂φ

∂x
, py = ∂φ

∂y
, pz = ∂φ

∂z
, E = ∂φ

∂t
,

and therefore trivially we have ∇ ∧ p = 0, since, for example, ∂px/∂y = ∂py/∂x

and therefore each component of ∇ ∧ p vanishes.

3.9 Correspondence with Maxwell’s Equations

In view of the fact that the model developed here springs from electromagnetic
theory, it will come as no surprise that there is a correspondence between the two
sets of equations, and the relationship sheds much light on the notion of a force in
the direction of time. Specifically, within this correspondence the “electric field”
E = f, the “magnetic induction” B = ∇ ∧ p, and the gradient ∇g of the force g in
the direction of time is equivalent to the “current” j; that is, if there is no force in
the direction of time, there is no “current”.
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In this section we examine this formal connection between Eqs. (3.4) and
Maxwell’s equations of electromagnetism. Maxwell’s equations might appear in a
variety of forms depending upon the particular electrical and magnetic units that are
adopted. For our purposes, the relationship to be established is most apparent if we
do not specify units and we examine Maxwell’s equations in a form with unspecified
units and involving four arbitrary constants, as given by Wachter and Hoeber [106]
(page 124). Specifically, we establish a formal connection between Eqs. (3.4), (3.7)
and (3.11), namely,

f = ∂p
∂t

+ ∇e = dp
dt

+ u ∧ (∇ ∧ p), g = 1

c2

∂e

∂t
+ ∇ · p,

∂f
∂t

= c2∇g,

and the general Maxwell’s equations of electromagnetism as given by Wachter and
Hoeber [106] (page 124); thus

∇ · E = 4πk1ρ, ∇ ∧ E + k2 ∂B
∂t

= 0,

∇ · B = 0, ∇ ∧ B − k3 ∂E
∂t

= 4πk4j,

∂ρ

∂t
+ ∇ · j = 0,

where E is the electric field, B is the magnetic induction, ρ is the charge, j is the
current, and k1, k2, k3 and k4 are four constants which take on a variety of values
dependent upon the units adopted but in all cases are required to satisfy the two
constraints k1k3 = k4 and k2k3 = 1/c2.

If we attempt the correspondence

E = f, B = (∇ ∧ p),

then the above equations become

ρ = ∇ · f
4πk1

, ∇ ∧ f = −k2 ∂(∇ ∧ p)
∂t

, (3.27)

∇ ∧ (∇ ∧ p)− k3 ∂f
∂t

= 4πk4j,

and on substituting f = ∂p/∂t + ∇e into the second of these equations, it is
immediately apparent that k2 = −1, and therefore from the constraints k1k3 = k4
and k2k3 = 1/c2, we have k3 = −1/c2 and k4 = −k1/c2. Thus the third of these
equations becomes

j = − c2

4πk1

{
∇ ∧ (∇ ∧ p)+ 1

c2

∂f
∂t

}
,
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= − c2

4πk1

{
∇(∇ · p)− ∇2p + 1

c2

(
∂2p
∂t2

+ ∇ ∂e
∂t

)}
,

= − c2

4πk1

{
∇
(
g − 1

c2

∂e

∂t

)
+ 1

c2
∇ ∂e
∂t

}
,

= − c2

4πk1
∇g,

on using g = ∂e/c2∂t+∇ ·p and assuming that p satisfies the wave equation (3.21),
so that charge conservation becomes

∂ρ

∂t
+ ∇ · j = 1

4πk1

{
∂∇ · f
∂t

− c2∇2g

}
,

= 1

4πk1
∇
{
∂f
∂t

− c2∇g
}
,

= 0,

and therefore for all choices of the constant k1, the two sets of equations correspond
provided that the forces f and g satisfy (3.11) and are consequently derivable from
a potential function V (x, t) through Eqs. (3.25).

In summary, if the spatial force f and the force g in the direction of time satisfy
equation (3.11), then for all values of the constant k1, we have established the
following correspondence with Maxwell’s equations:

E = f, B = (∇ ∧ p), ρ = ∇ · f
4πk1

, j = − c2

4πk1
∇g.

In this event, Maxwell’s equations (3.27) become simply

∇ ∧ f = ∂(∇ ∧ p)
∂t

, ∇ ∧ (∇ ∧ p) = 0,

so that both ∇∧(∇ ∧ f) = ∇∧(∇ ∧ p) = 0. In fact if the forces f and g are derived
from a potential function V (x, t) through Eqs. (3.25), then both ∇ ∧ f = ∇ ∧ p = 0,
since f = −∇V and from (3.23) p = ∇φ, so that the curl of the “electric field”
∇ ∧ E and the curl of the “magnetic induction” B both vanish. However, of most
interest in this correspondence is that the gradient ∇g of the force in the direction
of time corresponds to the notion of “current”, and is such that if the force in the
direction of time does not exist, then there is no “current”.
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3.10 Centrally or Spherically Symmetric Systems

Here for purposes of illustration, we have in mind a central body generating a
spherically symmetric environment, such that the motion generated is in the radial
direction only with no angular contribution or dependence, and is such that all
variables are functions of (r, t) only, where r is the spatial radius taken from the
centre of the gravitating body and defined by r = (x2 + y2 + z2)1/2. This topic is
examined in detail in Chap. 9 which provides an illustration of the curious equality
∇(∇ · p) = ∇2p arising from (3.20) in the event that curl of the momentum
vector p vanishes, namely, ∇ ∧ (∇ ∧ p) = 0. The left-hand side of the equality
∇(∇ · p) = ∇2p involves the gradient of the divergence of the momentum vector p,
while the right-hand side involves the scalar operator ∇2, namely, the divergence
of the gradient, operating on the momentum vector p. Accordingly, we have a
situation where the divergence and gradient appear to commute, and since it is not
immediately obvious why this should occur, it is instructive to examine the details
for what this really means in this particular case.

In this case the momentum vector p becomes

p = p(r, t)r̂ = p(r, t)

r
(x î + y ĵ + zk̂), (3.28)

where (î, ĵ, k̂) denote the usual unit vectors in the (x, y, z) directions, respectively,
and r̂ is a unit vector in the spherical radial direction. Thus, explicitly we have the
three relations

px = p(r, t)x
r
, py = p(r, t)y

r
, pz = p(r, t) z

r
,

where r = (x2 + y2 + z2)1/2, and for which by partially differentiating these
expressions, it is a simple matter to verify directly that, for example, ∂px/∂y −
∂py/∂x = 0, and that all three components of ∇ ∧ p vanish.

For p given by Eq. (3.28), the divergence of the momentum vector is given by

(∇ · p) = ∂px

∂x
+ ∂py

∂y
+ ∂pz

∂z
= 3p

r
+
(
1

r

∂p

∂r
− p

r2

)
(x2 + y2 + z2)

r
=
(
∂p

∂r
+ 2p

r

)
,

and on taking the gradient of this scalar quantity, we have

∇
(
∂p

∂r
+ 2p

r

)
= ∂

∂r

(
∂p

∂r
+ 2p

r

)
r̂ = ∂

∂r

(
∂p

∂r
+ 2p

r

)
(
x

r
î + y

r
ĵ + z

r
k̂),

and from this equation we may deduce

∇(∇ · p) =
(
∂2p

∂r2
+ 2

r

∂p

∂r
− 2p

r2

)
(
x

r
î + y

r
ĵ + z

r
k̂). (3.29)
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We now need to evaluate the scalar operator ∇2 operating on the momentum vec-
tor p, so that we need to evaluate ∇2px and similarly for the other two components.
Now with px = p(r, t)x/r , we require the following partial derivatives:

∂px

∂x
= x2

r2

∂p

∂r
+ (y2 + z2) p

r3
,

∂2px

∂x2
= x

r

{
x2

r2

∂2p

∂r2
+ 3

r3
(y2 + z2)

(
∂p

∂r
− p

r

)}
,

along with

∂px

∂y
= xy

r2

(
∂p

∂r
− p

r

)
,

∂2px

∂y2
= x

r

{
y2

r2

∂2p

∂r2
+ (r2 − 3y2)

r3

(
∂p

∂r
− p

r

)}
,

and

∂px

∂z
= xz

r2

(
∂p

∂r
− p

r

)
,

∂2px

∂z2
= x

r

{
z2

r2

∂2p

∂r2
+ (r2 − 3z2)

r3

(
∂p

∂r
− p

r

)}
.

By addition of the second order partial derivatives, we might deduce

∇2px = ∂2px

∂x2
+ ∂2px

∂y2
+ ∂2px

∂z2
= x

r

(
∂2p

∂r2
+ 2

r

∂p

∂r
− 2p

r2

)
,

which is entirely in agreement with the first component of Eq. (3.29), and there are
corresponding calculations for the other two components, establishing that ∇(∇ ·
p) = ∇2p holds in this particular case.

Another way of understanding this result is to use spherical polar coordinates
(r, θ, φ) defined by the relations

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

so that the momentum vector p becomes

p = p(r, t)r̂ = p(r, t)

r
(x î + y ĵ + zk̂) (3.30)

= p(r, t)(sin θ cosφ î + sin θ sinφĵ + cos θ k̂),

and in terms of spherical polar coordinates, the Laplacian ∇2, which is a scalar
operator, becomes

∇2 = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
. (3.31)

On performing the partial differentiations, we may show from Eqs. (3.30) and (3.31)
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∇2p = ∇2
{
p(r, t)(sin θ cosφ î + sin θ sinφĵ + cos θ k̂)

}

=
(
∂2p

∂r2
+ 2

r

∂p

∂r
− 2p

r2

)
(sin θ cosφ î + sin θ sinφĵ + cos θ k̂),

in complete agreement with the previously obtained result.

3.11 Newtonian Kinetic Energy and Momentum

In the final three sections of this chapter, we provide a Newtonian interpretation of
the proposed extension of Newton’s second law represented by Eqs. (3.4), thus

f = ∂p
∂t

+ ∇e, g = 1

c2

∂e

∂t
+ ∇ · p, (3.32)

and with a work done function defined by (3.8), namely,

dW = f · dx + gc2dt.

These equations are primarily intended to be interpreted in the context of the
special relativistic expressions for both e = mc2 and p = mu with m(u) =
m0[1 − (u/c)2]−1/2 where u is the magnitude of the velocity defined by u2 = u · u
and m0 denotes the rest mass. However, it would seem worthwhile mentioning that
a Newtonian version of (3.32) is also meaningful that is based upon the classical
interpretations e = m0u

2/2 and p = m0u, for which we might readily deduce

f = m0

(
∂u
∂t

+ (u · ∇)u
)
, g = m0

(
u

c2

∂u

∂t
+ ∇ · u

)
, (3.33)

and for which the first expression can be shown to be simply the conventional
Newton’s second law, as might be expected; thus

f = m0
du
dt
,

where d/dt denotes the total or material time derivative. The second equation
of (3.33) provides a new element to Newton’s second law, and while the two
constitutive equations (3.33) are themselves non-linear, the model itself may be
referred to as a linearised model in the sense that the governing equation is linear,
namely, the classical linear wave equation

∂2u
∂t2

= c2∇2u, (3.34)
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which, assuming the existence of a work done function, is most easily seen from
Eq. (3.21) with the momentum vector p = m0u. A linearised model often has the
distinct advantages of simplicity and tractability, and the various contributing effects
not only become clearer and more apparent but often may be superimposed.

For a single spatial dimension x with particle velocity u = u(x, t), Eqs. (3.33)
become quite simply

f

m0
= ∂u

∂t
+ u∂u

∂x
,

g

m0
= u

c2

∂u

∂t
+ ∂u

∂x
. (3.35)

We observe that on using the primed notation for the space-time transformation
x′ = ct and t ′ = x/c, we have dx′ = cdt and dt ′ = dx/c, and u′ = c2/u so that
these equations become

f ′

m0
= ∂u′

∂t ′
+ u′ ∂u′

∂x′ = −
( c
u

)3 (∂u
∂t

+ u∂u
∂x

)
= −

( c
u

)3 f
m0
,

g′

m0
= u′

c2

∂u′

∂t ′
+ ∂u′

∂x′ = −
( c
u

)3 ( u
c2

∂u

∂t
+ ∂u

∂x

)
= −

( c
u

)3 g
m0
,

from which the following force transformation relations are apparent

f ′

(u′/c)3/2
= − f

(u/c)3/2
,

g′

(u′/c)3/2
= − g

(u/c)3/2
. (3.36)

3.12 Newtonian Wave-Like Solution

In Chaps. 5 and 6, we examine in some detail an exact relativistic wave-like solution
of Eqs. (3.4), and we seek a formal solution for which the forces f and g and
particle energy e are all functions of the particle velocity u only. In this section
we present the corresponding solution details assuming Newtonian kinetic energy
and momentum. Accordingly, we now look for forces f (u) and g(u) dependent
only upon the velocity u(x, t), and we employ the notation A(u) = f (u)/m0 and
B(u) = g(u)/m0, so that Eqs. (3.35) become

∂u

∂t
+ u∂u

∂x
= A(u), u

c2

∂u

∂t
+ ∂u

∂x
= B(u), (3.37)

which we solve as two equations in the two unknowns ∂u/∂x and ∂u/∂t to obtain

∂u

∂x
= B(u)− A(u)u/c2

(1 − (u/c)2) ,
∂u

∂t
= A(u)− B(u)u
(1 − (u/c)2) . (3.38)
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On partially differentiating the first of these with respect to t and the second with
respect to x, equating the two expressions and using the equations themselves, we
may eventually deduce the intriguingly simple result

(1 − (u/c)2)
(
B
dA

du
− AdB

du

)
= (B2 − (A/c)2),

which may be rearranged as

d(A/B)

(1 − (A/Bc)2) = du

(1 − (u/c)2) ,

and integrated to yield

(
1 + A/Bc
1 − A/Bc

)
= C

(
1 + u/c
1 − u/c

)
,

where C denotes the arbitrary constant of integration. This equation may be
rearranged to give

cB(u) = A(u)
(
u/c + λ
1 + λu/c

)
,

or more directly in terms of the forces f (u) and g(u)

cg(u) = f (u)
(
u/c + λ
1 + λu/c

)
,

where λ denotes another arbitrary constant related to C through λ = (C +
1)/(C − 1), and we observe that this equation coincides with the corresponding
equation obtained for the full theory (see Eq. (6.4)). With this latter relation, the two
Eqs. (3.38) now become

∂u

∂x
= λf (u)

cm0(1 + λu/c) ,
∂u

∂t
= f (u)

m0(1 + λu/c) , (3.39)

and from which it is clear that the particle velocity u(x, t) satisfies the partial
differential equation

c
∂u

∂x
= λ∂u

∂t
,

and therefore the particle velocity is of the form u(x, t) = u(ξ) where ξ = λx + ct ,
and both Eqs. (3.39) give rise to the ordinary differential equation
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du

dξ
= f (u)

cm0(1 + λu/c) = g(u)

m0(λ+ u/c) . (3.40)

This outcome is a direct consequence of the search for consistent solutions such that
both forces f (u) and g(u) depend only upon the velocity u(x, t).

3.13 Newtonian Work Done W(u, λ) from ∂f /∂t = c2∂g/∂x

Now from the two Eqs. (3.37) and the functional dependence u(x, t) = u(ξ) where
ξ = λx + ct , or directly from (3.40), we may deduce

f (u) = m0c

(
1 + λu

c

)
u′(ξ), g(u) = m0

(
λ+ u

c

)
u′(ξ),

where the prime here denotes differentiation with respect to ξ . In order that an
energy functionW exists, we have the constraint ∂f /∂t = c2∂g/∂x, and fromwhich
we obtain the condition (1 − λ2)u′′(ξ) = 0, so that either λ = ±1 or u′′(ξ) = 0.
Alternatively, if ∂f /∂t = c2∂g/∂x, then there exists a potential function V (x, t)
such that

f (u) = m0c

(
1 + λu

c

)
u′(ξ) = −∂V

∂x
, g(u)c2 = m0c

2
(
λ+ u

c

)
u′(ξ) = −∂V

∂t
,

and the condition (1 − λ2)u′′(ξ) = 0 arises from equating expressions for the
mixed partial derivative ∂2V /∂x∂t . Assuming that this condition is satisfied, on
using dξ/dt = λu+ c, we might formally integrate these two equations as follows:

− dV = ∂V

∂x
dx + ∂V

∂t
dt,

= m0c

(
1 + λu

c

)
u′(ξ)dx +m0c

2
(
λ+ u

c

)
u′(ξ)dt,

= m0c

λ

(
1 + λu

c

)
u′(ξ)dξ +m0c

2
(
λ− 1

λ

)
u′(ξ)dt,

= m0c

λ

(
1 + λu

c

)
u′(ξ)dξ +m0c

2

(
λ− 1

λ

)
u′(ξ)

(λu+ c) dξ,

and a straightforward integration yields

V (x, t) = −m0

2
u2 − m0cu

λ
−m0c

2
(
1 − 1

λ2

)
log

(
1 + λu

c

)
+ V0,
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where V0 denotes an arbitrary constant. We comment that the first two terms
explicitly demonstrate contributions from both the conventional kinetic energy and
a momentum term corresponding to the de Broglie wave energy, while the term
involving the logarithm, if it appears, is new. We recall that in this derivation we are
assuming that the condition (1− λ2)u′′(ξ) = 0 is satisfied, so that either λ = ±1 or
u′′(ξ) = 0.

Of course, the condition (1 − λ2)u′′(ξ) = 0 also follows immediately from
the classical wave equation (3.34) for a single spatial dimension. We note that
subsequently we identify λ = 1 as corresponding to a backward dark matter
wave, while the case λ = −1 corresponds to a forward dark energy wave. The
solutions arising from u′′(ξ) = 0 are the linearised versions of the explicit wave-
like solutions representing both forward and backward waves that the corresponding
full relativistic solutions are discussed in some considerable detail in two subsequent
chapters.

In terms of the work done function W(x, t) = −V (x, t), and again assuming
that either λ = ±1 or that u′′(ξ) = 0, we have

dW = f dx + gc2dt = m0c

(
1 + λu

c

)
u′(ξ)dx +m0c

2
(
λ+ u

c

)
u′(ξ)dt,

and on using dξ/dt = λu+ c, the same integration yields the energy expression

W(u, λ) = m0

2
u2 + m0cu

λ
+m0c

2
(
1 − 1

λ2

)
log

(
1 + λu

c

)
+m0c

2,

and here for the sake of definiteness, the constant of integration is chosen so that
the Einstein rest mass energy e0 = m0c

2 is recovered when u = 0. In the event that
λ = ±1, the following expressions for the total work done by the particleW apply,
where u = F(ct + x) for λ = 1 and u = G(ct − x) for λ = −1 and where F and
G denote arbitrary functions. Thus for λ = 1 and λ = −1, we have, respectively,

W(u, 1) = m0

2
u2 +m0cu+m0c

2, W(u,−1) = m0

2
u2 −m0cu+m0c

2.

Again the first two terms of each show explicitly the contributions from the kinetic
energy and the de Broglie wave energy, and we have

W(u, 1)+W(u,−1) = e0
[
2 +

(u
c

)2]
,

where e0 = m0c
2.



Chapter 4
Special Results for One Space Dimension

4.1 Introduction

The purpose of this chapter is to illustrate the formal extension of Newton’s second
law given by (3.4) in their simplest conceivable context. In this chapter we present
a number of additional general results which apply for de Broglie particle-wave
mechanical systems for a single Cartesian spatial dimension. We need to emphasise
that these results might be termed special or privileged in the sense that they are
only applicable to a single Cartesian spatial dimension and in the absence of any
curvature effects. In some instances their generalisation may be straightforward
while, in others, perhaps an entirely non-trivial matter. Nevertheless, even with this
in mind, special exact results and consequences are always important and helpful in
providing insight.

In the first section we present the basic equations applying to a single spatial
dimension and an illustrative similarity solution. In the following section, we detail
a number of general reformulations of the basic equations, and in the subsequent
section, we establish an important insightful formal identity which shows that if
f = ±cg, then the physical energy e(x, t) is necessarily either identically zero, or
it satisfies the wave equation. If it satisfies the wave equation, then the rest energy
e0 = 0, and this gives rise to the prospects of dark matter e = cp and dark energy
e = −cp, and for both the particle and wave energies coincide; thus e = E . In the
subsequent two sections, we formulate the basic equations in terms of two invariants
of the Lorentz group of transformations and which are later shown to be important
in the context of quantum mechanics.

We have previously noted de Broglie’s guidance formula of the particle by its
wave, as given by Eqs. (1.1) and (1.2), and that in the context of the present theory,
these equations suggest that f = 0 while g is determined from (1.3). In the next
two sections of the chapter, for a single spatial dimension x, we extend the analysis
of these equations first for the case f = 0 and g �= 0, which essentially applies
to quantum mechanics, and then we present the corresponding analysis for the case
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f �= 0 and g = 0, which essentially applies to special relativistic mechanics. In
these two sections, we present exact solutions arising by adopting constant values
for the Lorentz invariants, and we make the point that the approach presented here
no doubt also applies to more general situations. Adopting at least one of the Lorentz
invariants to be constant means that we may present explicit formulae and the
various partial derivatives can be easily evaluated. The analysis is suggestive of the
importance of Clairaut’s differential equation x−ut = U0(u) with parameter u, and
this constitutes the topic of the next section of the chapter. In the final two sections
of the chapter, we briefly outline, respectively, the Hamiltonian and Lagrangian
formulations for particle-wave mechanics with a single Cartesian spatial dimension,
with the conclusion that since dH/dt �= 0, the system is nonconservative in the
conventional sense with energy integral H + E = constant.

4.2 Basic Equations

For a single spatial dimension, we propose that every particle moving with velocity
u acquires a conventional momentum p = mu and energy e = mc2 where
m(u) = m0[1 − (u/c)2]−1/2 such that p satisfies the wave equation. We propose
that associated with this particle motion is a de Broglie wave moving with a wave
velocity c2/u for which there is an associated wave energy E such that the total
energy of the particle W is given by W = e + E . For a given momentum p(x, t),
we have

u(x, t) = pc2

(e20 + (pc)2)1/2 , e(x, t) = (e20 + (pc)2)1/2, (4.1)

from the one-dimensional versions of (3.10) or (3.14), namely,

dE = ∂E

∂x
dx + ∂E

∂t
dt = ∂p

∂t
dx + c2 ∂p

∂x
dt, (4.2)

we may deduce

∂E

∂t
= c2 ∂p

∂x
,

∂E

∂x
= ∂p

∂t
, (4.3)

and therefore the momentum p = mu and the de Broglie wave energy E both satisfy
the wave equation

∂2p

∂t2
= c2 ∂

2p

∂x2
,

∂2E

∂t2
= c2 ∂

2E

∂x2
. (4.4)
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Thus for a single spatial dimension, both the wave energy E (x, t) and the momen-
tum p(x, t) always satisfy the wave equation. In terms of velocity, using the
expression p(x, t) = m0u/(1 − (u/c)2)1/2, the velocity u(x, t) can be shown to
satisfy the non-linear partial differential equation

{
1 −

(u
c

)2}(∂2u
∂t2

− c2 ∂
2u

∂x2

)
+ 3u

c2

{(
∂u

∂t

)2

− c2
(
∂u

∂x

)2
}

= 0, (4.5)

noting especially the induced singular behaviour at the speed of light u = c. Since
the formal general solution of the wave equation (4.4)1 is given by p(x, t) = F(α)+
G(β), where F(α) and G(β) denote arbitrary functions and α = ct + x and β =
ct − x denote the characteristic coordinates, from (4.1)1 it is clear that the general
solution of the highly non-linear partial differential equation (4.5) becomes

u(x, t)

c
= pc

(e20 + (pc)2)1/2 = c(F (α)+G(β))
(e20 + c2(F (α)+G(β))2)1/2 .

Illustrative Similarity Stretching Solutions of (4.4) and (4.5) The one-
dimensional classical wave equations (4.4) are well known to remain invariant
under the stretching group of transformations

x∗ = λx, t∗ = λt, p∗ = λmp, E ∗ = λmE , (4.6)

where λ denotes any positive arbitrary parameter and m denotes any arbitrary
exponent. From these invariances, we observe the particular invariant quantities that
are independent of the parameter λ, and thus

x∗

t∗
= x

t
,

p∗

t∗m
= p

tm
,

E ∗

t∗m
= E

tm
,

and the partial differential equations (4.4) are reduced to ordinary differential
equations by adopting one invariant as a function of another; thus

p

tm
= F

(x
t

)
,

E

tm
= G

(x
t

)
,

where F and G denote functions to be determined by substitution into the partial
differential equations, which in this case are simply the classical one-dimensional
wave equation. For convenience we use the variable ξ = x/ct , and invariance under
the group of transformations (4.6) implies that the classical wave equations (4.4)
admit similarity solutions of the form

p(x, t) = tmφ(ξ), E (x, t) = tmψ(ξ), (4.7)
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where φ(ξ) and ψ(ξ) denote functions of ξ only. We show below that p(x, t) and
E (x, t) as solutions of the classical wave equation are given by expressions of the
form p(x, t) = C1(ct + x)m + C2(ct − x)m, where C1 and C2 denote arbitrary
constants. This outcome might well be anticipated, nevertheless, it is interesting that
it can be formally established, and in the context of centrally symmetric mechanical
systems, a corresponding analysis is provided in Chap. 9.

For example, for the momentum p(x, t), from (4.7)1, we may determine the four
partial derivatives

∂p

∂t
= tm−1(mφ − ξφ′), ∂p

∂x
= tm−1φ

′

c
,

∂2p

∂t2
= tm−2 [−ξ(mφ − ξφ′)′ + (m− 1)(mφ − ξφ′)

]
,

∂2p

∂x2
= tm−2φ

′′

c2
,

and therefore we find from (4.4)1

(1 − ξ2)d
2φ

dξ2
+ 2(m− 1)ξ

dφ

dξ
−m(m− 1)φ = 0,

and with the further substitution η = (1 + ξ)/2, we obtain

η(1 − η)d
2φ

dη2
+ [2(m− 1)η − (m− 1)]dφ

dη
−m(m− 1)φ = 0.

This is the hypergeometric equation which is usually denoted by F(−m, 1−m; 1−
m; η), and we may readily verify the exact solution φ(η) = (1 − η)m. On making
the further substitution φ(η) = (1 − η)m�(η), we obtain

η(1 − η)d
2�

dη2
= (2η +m− 1)

d�

dη
,

which may be integrated to give altogether

φ(η) = (1 − η)m
(
C∗
1 + C∗

2

ˆ η

zm−1(1 − z)−m−1dz

)
,

where C∗
1 and C∗

2 denote two arbitrary constants. On making the substitution ρ =
z/(1 − z) and noting that dρ = dz/(1 − z)2, the above integral becomes

ˆ η ( z

1 − z
)m−1

dz

(1 − z)2 =
ˆ
ρm−1dρ = ρm

m
= 1

m

(
η

1 − η
)m
,

and therefore we have�(η) = C∗
1 (1−η)m+C∗

2η
m/m. On retracing the substitutions

η = (1+ξ)/2, ξ = x/ct and p(x, t) = tmφ(ξ), we may readily deduce the solution
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p(x, t) = C1(ct + x)m +C2(ct − x)m, on introducing modified arbitrary constants
C1 and C2. We note however the singular case arising from m = 0 for which we
have

p(x, t) = C1 + C2 log

(
ct − x
ct + x

)
. (4.8)

From the relations p = mu and e = mc2, we may deduce

u(x, t)

c
= pc

e
= pc

(e20 + (pc)2)1/2 , (4.9)

and therefore the velocity field u(x, t) corresponding to the most general stretching
similarity solution for the momentum p(x, t) may be determined from the expres-
sion

u(x, t)

c
= (C1(ct + x)m + C2(ct − x)m)

[(e0/c)2 + (C1(ct + x)m + C2(ct − x)m)2]1/2 .

We observe that the existence of such solutions to the partial differential
equation (4.5) is not entirely obvious since on face value Eq. (4.5) only remains
invariant under the restricted one-parameter group of stretching transformations

x∗ = λx, t∗ = λt, u∗ = u,

corresponding to the group given by (4.6) with the index parameter m = 0. In this
case the similarity solutions of (4.5) have the functional form u(x, t) = c�(ξ),
where again ξ = x/ct . On substitution of the four partial derivatives

∂u

∂t
= −cξ�

′

t
,

∂u

∂x
= �′

t
,

∂2u

∂t2
= c

t2

[
ξ(ξ�′)′ + ξ�′] , ∂2u

∂x2
= �′′

ct2
,

the partial differential equation (4.5) reduces to the ordinary differential equation

(1 −�2)((1 − ξ2)�′′ − 2ξ�′)+ 3�(1 − ξ2)�′2 = 0,

and this equation may be reformulated to give

((1 − ξ2)�′)′

(1 − ξ2)�′ = −3
��

′

(1 −�2)
,

which upon integration yields (1 − ξ2)�′ = −2C2(1 − �2)3/2, where C2 denotes
the constant of integration. Thus we require to integrate
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d�

(1 −�2)3/2
= −C2

(
1

(1 − ξ) + 1

(1 + ξ)
)
,

and the substitution � = sin� eventually produces

tan� = �

(1 −�2)1/2
= 1

(1/�2 − 1)1/2
= C1 + C2 log

(
1 − ξ
1 + ξ

)
,

where C1 denotes a further constant of integration. Upon re-arrangement and using
u(x, t) = c�(ξ), we may finally obtain

u(x, t)

c
=

[
C1 + C2 log

(
1−ξ
1+ξ
)]

(
1 +

[
C1 + C2 log

(
1−ξ
1+ξ
)]2)1/2 ,

which, with slightly re-defined arbitrary constants C1 and C2, can be seen to
coincide with the above solution arising from (4.9) and (4.8).

4.3 General Reformulations of Basic Equations

In this section we detail a number of general reformulations of the basic equations
for a single space dimension given in the previous section.

Energy-Momentum Relations From the basic equations (3.4) and the companion
formulae (3.15), for one space dimension, these expressions become

f = dp

dt
= ∂p

∂t
+ ∂e

∂x
, g = 1

c2

dE

dt
= 1

c2

∂e

∂t
+ ∂p

∂x
, (4.10)

so that from p = m0u/(1 − (u/c)2)1/2 and using Eqs. (4.3), the formulae (4.10)
become

f = dp

dt
= ∂p

∂t
+ u∂p

∂x
= m0

(1 − (u/c)2)3/2
(
∂u

∂t
+ u∂u

∂x

)
= e0

c2(1 − (u/c)2)3/2
(
du

dt

)
part
,

gc2 = dE

dt
= c2 ∂p

∂x
+ u∂p

∂t
= m0

(1 − (u/c)2)3/2
(
c2
∂u

∂x
+ u∂u

∂t

)
= e0

(1 − (u/c)2)3/2
(
du

dx

)
wave

.

On division of these two equations, we may deduce the expression

dE

dp
=
(
c2 ∂u
∂x

+ u∂u
∂t

)
(
∂u
∂t

+ u∂u
∂x

) = c2 (du/dx)wave

(du/dt)part
,
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and using this we may deduce the interesting equation that

d(E + cp)
d(E − cp) = (dE /dp)+ c

(dE /dp)− c =
(
1 + u/c
1 − u/c

)(
c ∂u
∂x

+ ∂u
∂t

c ∂u
∂x

− ∂u
∂t

)
,

which might also be deduced by division of the following two equations:

d(E + cp)
dt

= (c + u)
(
∂p

∂t
+ c ∂p
∂x

)
= m0c(1 + u/c)
(1 − (u/c)2)3/2

(
c
∂u

∂x
+ ∂u

∂t

)
,

d(E − cp)
dt

= −(c − u)
(
∂p

∂t
− c ∂p
∂x

)
= m0c(1 − u/c)
(1 − (u/c)2)3/2

(
c
∂u

∂x
− ∂u

∂t

)
.

These relations reveal that E = ±cp either for waves travelling at the speed of light,
namely, u(x, t) = ±c, or for momentum waves travelling in the opposite direction;
thus p(x, t) = p(ct ± x).

In particular, if E = ±cp, then either u = ±c and we have

e + E = (e20 + (pc)2)1/2 ± pc = e0 exp(sinh−1 (±cp/e0)) = e0e±θ ,

on making use of the angle θ = sinh−1 (cp/e0) defined by (2.10) and the elementary
relation sinh−1(z) = log(z + (1 + z2)1/2). Alternatively, if E = ±cp, then from
the above or Eqs. (4.3), p(x, t) might satisfy ∂p/∂t = ±c∂p/∂x, and therefore
p(x, t) = p(ct ± x).

Equation in Conservation Form On multiplication of the first equation of (4.3)
by E and the second by c2p and then by addition, we have

1

2

∂

∂t

(
E 2 + (pc)2

)
= c2 ∂

∂x
(E p) ,

which in conservation form becomes

∂W

∂t
+ ∂Q

∂x
= 0, (4.11)

where the energy density W (x, t) and energy flow or instantaneous power Q(x, t)
are defined by

W = 1

2
(E 2 + (pc)2) = 1

4

(
(E − cp)2 + (E + cp)2

)
,

Q = −c2(E p) = 1

4

(
(E − cp)2 − (E + cp)2

)
,
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and Eq. (4.11) relates the time rate of increase (decrease) of the energy density
W (x, t) that is balanced by a decrease (increase) in the instantaneous power
Q(x, t).

Partial Differential Equation for Wave Energy-Momentum Ratio E (x, t)/cp(x, t)
We comment that if we make the assumption that E (x, t) = ω(x, t)cp(x, t) where
ω(x, t) is to be determined, then from (4.3) we obtain the two equations

p
∂ω

∂t
+ ω∂p

∂t
= c ∂p

∂x
, cp

∂ω

∂x
+ ωc∂p

∂x
= ∂p

∂t
,

which may be solved to give

(1 − ω2)
∂p

∂t
=
(
c
∂ω

∂x
+ ω∂ω

∂t

)
p, c(1 − ω2)

∂p

∂x
=
(
∂ω

∂t
+ cω∂ω

∂x

)
p,

which with some re-arrangement become

(1 − ω2)
∂q

∂t
= c ∂ω

∂x
, c(1 − ω2)

∂q

∂x
= ∂ω

∂t
,

where q = log
(
p(1 − ω2)1/2

)
. From these equations, we may deduce that both

q(x, t) and �(x, t) defined by the relations

� = 1

2
log

(
1 + ω
1 − ω

)
= tanh−1(ω),

(
1 + ω
1 − ω

)1/2
= e�. (4.12)

satisfy the classical one-dimensional wave equation, namely,

∂2�

∂t2
= c2 ∂

2�

∂x2
. (4.13)

Thus, if �(x, t) = C(α) + D(β), then q(x, t) = C(α) − D(β), where C(α) and
D(β) denote arbitrary functions, and we may make the identification 2F(α) =
exp(2C(α)) and 2G(β) = exp(−2D(β)) where F(α) and G(β) are the previously
introduced arbitrary functions. From these expressions we might deduce the follow-
ing three curious expressions for p(x, t); thus

p(x, t) = 2F(α)

(1 + ω), p(x, t) = 2G(β)

(1 − ω), p(x, t) = 2(F (α)G(β))1/2

(1 − ω2)1/2
,

results which are also immediately apparent from the general formulae (4.43),
noting that ω(x, t) = (F (α)−G(β)) / (F (α)+G(β)) and noting in particular the
special relativistic-like dependence of p(x, t) on (1 − ω2)1/2 in the latter relation.
As with much of the analysis of this present chapter, the immediately above
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analysis is very much dependent upon the assumption of a single Cartesian spatial
variable and in the absence of any effects due to curvature. For centrally symmetric
mechanical systems, a corresponding analysis is presented in Chap. 9, which follows
similar lines to the above but is more complicated due to the presence of the 1/r
terms.

Partial Derivatives Following Both Particle and Wave It may also be worthwhile
observing that the above Eqs. (4.3) take on an interesting form if we evaluate the
total space and time derivatives following both the particle and the wave, rather than
the partial derivatives; thus

(
dE

dt

)
part

= ∂E

∂t
+ u∂E

∂x
= c2 ∂p

∂x
+ u∂p

∂t
= c2

(
∂p

∂x
+ u

c2

∂p

∂t

)
= c2

(
dp

dx

)
wave

,

(
dE

dx

)
part

= ∂E

∂x
+ 1

u

∂E

∂t
= ∂p

∂t
+ c2

u

∂p

∂x
=
(
dp

dt

)
wave

,

so that together we have the equations

(
dE

dt

)
part

= c2
(
dp

dx

)
wave

,

(
dE

dx

)
part

=
(
dp

dt

)
wave

,

relating the total spatial and time rates of the energy exchanges between the particle
and the wave, namely, between the energies cp(x, t) and E (x, t).

Comparable Equations for Forces f and cg For a single spatial dimension, we
derive here an alternative expression for the spatial force f in a form for which there
is a comparable form for the force cg except that the velocity of light c is replaced
by the particle velocity u. We first make the observation that from the basic rate-of-
working relation de = f dx = udp, we have

f = dp

dt
= de

dx
= ∂p

∂t
+ u∂p

∂x
= ∂e

∂x
+ 1

u

∂e

∂t
,

so that by addition of these expressions we may deduce

2f = ∂p

∂t
+ u∂p

∂x
+ ∂e

∂x
+ 1

u

∂e

∂t
,

and therefore on using (4.10)1 we might deduce the interesting and comparable
equations

f = 1

u

∂e

∂t
+ u∂p

∂x
, cg = 1

c

∂e

∂t
+ c ∂p
∂x
,
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indicating that at least for one space dimension, the two forces f and cg assume
similar forms except that the velocity u is replaced by the velocity of light c in the
second equation.

Net Forces as Line Integrals In order to express the one spatial dimension
resultant or net forces as line integrals, we first need the standard two-dimensional
Green’s theorem for line and surface integrals. For two functions P(x, y) and
Q(x, y)which are assumed to be both finite and continuous inside and on the closed
boundary C of the region R of the (x, y)−plane, we have

‰

C

(P dx +Qdy) =
¨
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

noting that the line integral around the contour C is taken to be in the counter-
clockwise direction. If we now take C to be a closed contour surrounding a region
R of (x, t)−space, and we assume that the momentum p(x, t) and energy e(x, t)
are both finite and continuous inside and on C, then on making use of the one spatial
dimension equations (4.10) and Green’s theorem, we have

‰

C

(p dx − e dt) = −
¨
R

(
∂p

∂t
+ ∂e

∂x

)
dxdt = −

¨
R

f dxdt,

‰

C

(e dx − c2p dt) = −c2
¨
R

(
1

c2

∂e

∂t
+ ∂p

∂x

)
dxdt = −c2

¨
R

gdxdt,

so that for a single space dimension the resultant or net forces are given by the
respective line integrals

¨
R

f dxdt =
‰

C

(e dt − p dx),
¨
R

cgdxdt =
‰

C

(cp dt − e/c dx).

4.4 Important Identity

From the above equations and e = (e20 + (pc)2)1/2, we may establish the important
equation

f 2 − (cg)2 = e

c2

(
∂2e

∂t2
− c2 ∂

2e

∂x2

)
. (4.14)
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as follows: The relationship e2 = e20 + (pc)2 implies that e and p are functionally
related, and therefore the Jacobian ∂(e, p)/∂(x, t) vanishes, namely,

∂(e, p)

∂(x, t)
=
(
∂e

∂x

∂p

∂t
− ∂e

∂t

∂p

∂x

)
= 0,

so that either from (3.4) or the one-dimensional version (7.1), we have

f 2 − (cg)2 =
(
∂p

∂t

)2

+
(
∂e

∂x

)2

− 1

c2

(
∂e

∂t

)2

− c2
(
∂p

∂x

)2

. (4.15)

Now on using the relations

e
∂e

∂t
= c2p∂p

∂t
, e

∂e

∂x
= c2p∂p

∂x
,

which are obtained by differentiating e2 = e20 +(pc)2, and then from the derivatives
of these equations, we might obtain

e
∂2e

∂t2
+
(
∂e

∂t

)2

= c2p∂
2p

∂t2
+ c2

(
∂p

∂t

)2

,

and

e
∂2e

∂x2
+
(
∂e

∂x

)2

= c2p∂
2p

∂x2
+ c2

(
∂p

∂x

)2

.

If we use these relations to simplify Eq. (4.15), then on using the fact that p(x, t)
satisfies the wave equation, we might deduce (4.14). This important insightful
equation indicates that if either condition f = ±cg is satisfied, then either the
physical energy e(x, t) is necessarily identically zero, or it satisfies the wave
equation. If it is non-zero and satisfies the wave equation, then necessarily e0 = 0
and e = ±cp, and giving rise to the prospects of dark matter e = cp and dark
energy e = −cp, and for both, we have the condition that particle and wave energies
coincide; thus e = E .

We also observe from Eq. (4.14) that for a conservative mechanical system, the
external applied forces f and g are generated from a potential function V (x, t) such
that

f = −∂V
∂x
, gc2 = −∂V

∂t
, (4.16)

then the identity becomes
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e

c2

(
∂2e

∂t2
− c2 ∂

2e

∂x2

)
+ 1

c2

(
∂V

∂t

)2

−
(
∂V

∂x

)2

= 0, (4.17)

and since the wave energy E always satisfies the wave equation, we may deduce
from (4.17) and conservation of energy e + E = −V the following interesting
equation:

e

(
∂2V

∂t2
− c2 ∂

2V

∂x2

)
=
(
∂V

∂t

)2

− c2
(
∂V

∂x

)2

, (4.18)

which coincides with (8.42) obtained using the characteristic coordinates α = ct+x
and β = ct − x. This curious equation has the appearance of a singular perturbation
problem for which the potential V (x, t) loses its highest derivatives in the limit of
the particle energy e tending to zero and would therefore be governed by a lower
order partial differential equation. However, in this present situation, there is no limit
of the particle energy e tending to zero except for zero rest mass and zero velocity,
so that when the governing equation is the lower order equation

(
∂V

∂t

)2

− c2
(
∂V

∂x

)2

= 0,

it is then balanced by the vanishing of the other factor term, namely,

∂2V

∂t2
− c2 ∂

2V

∂x2
= 0,

which is the case for dark energy as a forward wave V (x, t) = V (ct − x) and dark
matter as a backward wave V (x, t) = V (ct + x).

4.5 Formulation in Terms of Lorentz Invariants

Lorentz Invariants ξ = ex − c2pt and η = px − et Here for a single spatial
dimension x, we examine the formulation in terms of the two Lorentz invariants
ξ = ex − c2pt and η = px − et which are defined previously by (2.48) and
shown to be invariants of the full Lorentz group. First, we examine the immediate
algebraic relations arising from these definitions, and it is not difficult to establish
the following formulae:

ξ + cη = (e + cp)(x − ct), ξ − cη = (e − cp)(x + ct),

and therefore we have
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ξ2 − (cη)2 = (e2 − (cp)2)(x2 − (ct)2) = e20(x2 − (ct)2), (4.19)

on using e2 − (cp)2 = e20 where e0 = m0c
2. Further, on using the relations

e + cp = e0
(
1 + u/c
1 − u/c

)1/2

= e0eθ , e − cp = e0
(
1 − u/c
1 + u/c

)1/2

= e0e−θ ,

where θ is the angle defined by (2.9)2 and satisfying the relations (2.10), we may
deduce

ξ + cη = e0(x − ct)eθ , ξ − cη = e0(x + ct)e−θ ,

and from which we may readily obtain

ξ = e0x cosh θ − e0ct sinh θ, cη = e0x sinh θ − e0ct cosh θ. (4.20)

Now the relations ξ = ex − c2pt and η = px − et may be inverted to yield

e =
(
xξ + c2tη
x2 − (ct)2

)
, p =

(
tξ + xη
x2 − (ct)2

)
, (4.21)

and under the space-time transformation x′ = ct and t ′ = x/c with u′ = c2/u, we
have e′ = cp and cp′ = e, and Eqs. (4.10) are left invariant under this symmetry
with f ′ = f and g′ = g since from these general Lorentz invariant equations for the
three energies e(x, t), cp(x, t) and E (x, t) for a single spatial dimension, we have

f = dp

dt
= ∂p

∂t
+ ∂e

∂x
, g = 1

c2

dE

dt
= 1

c2

∂e

∂t
+ ∂p

∂x
, (4.22)

where f (x, t) and cg(x, t) denote the applied external forces in the spatial and time
directions, respectively. The primed version of the above Eqs. (4.10) becomes

f ′ = dp′

dt ′
= ∂p′

∂t ′
+ ∂e′

∂x′ , g′ = 1

c2

dE ′

dt ′
= 1

c2

∂e′

∂t ′
+ ∂p′

∂x′ ,

which under the space-time transformation x′ = ct and t ′ = x/c become,
respectively,

f ′ = de

dx
= 1

u

de

dt
= dp

dt
= ∂e

∂x
+ ∂p

∂t
,

g′ = dP

dx
= 1

u

dP

dt
= 1

c2

dE

dt
= 1

c2

∂e

∂t
+ ∂p

∂x
,
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where E ′ = cP , so therefore f ′ = f and g′ = g, and these details are more fully
discussed in the final section of Chap. 7. Either directly from the relations (4.21)
or the equations corresponding to (4.22) when expressed in terms of ξ(x, t) and
η(x, t), namely,

xf − c2tg = ∂η

∂t
+ ∂ξ

∂x
, xg − tf = 1

c2

∂ξ

∂t
+ ∂η

∂x
,

we may deduce that under the transformation we have that ξ ′ = −ξ and
η′ = −η. These particular transformation rules are important in understanding
the transformations of the differential relations for ξ and η which are subsequently
derived in this chapter.

Quadratic Equation for the Determination of u(x, t) If we assume for the time
being that the two Lorentz invariants ξ(x, t) and η(x, t) are known, then from their
definition we have

x − ut = ξ(x, t)

e0

{
1 −

(u
c

)2}1/2
, x

u

c
− ct = cη(x, t)

e0

{
1 −

(u
c

)2}1/2
,

(4.23)

and on squaring and re-arranging these equations, we obtain two quadratic equations
for the determination of u(x, t); thus

(u
c

)2 {
(ct)2 +

(
ξ

e0

)2
}

− 2xct
(u
c

)
+
{
x2 −

(
ξ

e0

)2
}

= 0,

(u
c

)2 {
x2 +

(
cη

e0

)2
}

− 2xct
(u
c

)
+
{
(ct)2 −

(
cη

e0

)2
}

= 0.

In view of the relationship ξ2 − (cη)2 = e20(x2 − (ct)2), we have in particular

(ct)2 +
(
ξ

e0

)2

= x2 +
(
cη

e0

)2

, (ct)2 −
(
cη

e0

)2

= x2 −
(
ξ

e0

)2

,

leading to the important conclusion that these two quadratic equations coincide
assuming that the condition ξ2 − (cη)2 = e20(x2 − (ct)2) is satisfied.

On solving, say the first quadratic equation, we have

u(x, t)

c
= xct ± (ξ/e0)

{
(ct)2 − x2 + (ξ/e0)2

}1/2
{
(ct)2 + (ξ/e0)2

} , (4.24)

which in view of the above relations can be expressed in a number of alternative
forms including
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u(x, t)

c
= xct ± cξη/e20{

(ct)2 + (ξ/e0)2
} = xct ± cξη/e20{

x2 + (cη/e0)2
} , (4.25)

as well as the following expression which is symmetrical in x and ct as well as in ξ
and cη; thus

u(x, t)

c
= xct ± cξη/e20{

(ct)2 + (ξ/e0)2
}1/2 {

x2 + (cη/e0)2
}1/2 , (4.26)

Complementary Velocities u(x, t) and u∗(x, t) Such That uu∗ = c2 For a known
velocity u(x, t), of particular importance is the identification of the complementary
velocities u∗(x, t) such that uu∗ = c2. Here we derive the condition on the Lorentz
invariants ξ(x, t) and η(x, t) and ξ∗(x, t) and η∗(x, t) that must be satisfied in order
that the associated velocities u(x, t) and u∗(x, t) satisfy uu∗ = c2. By division of
the two equations (4.23), we may deduce the following expression for u(x, t) in
terms of the two Lorentz invariants ξ(x, t) and η(x, t); thus

u

c
= c(xη + tξ )
(xξ + c2tη) .

Accordingly, a necessary condition for uu∗ = c2 is that
c(xη + tξ )
(xξ + c2tη)

c(xη∗ + tξ∗)
(xξ∗ + c2tη∗)

= 1,

which, assuming that x �= ±ct , simplifies considerably to become simply ξξ∗ =
c2ηη∗ as the required condition necessary to ensure that uu∗ = c2.

Two Complementary Velocities u∗(x, t) Such That uu∗ = c2 The two comple-
mentary velocities u∗(x, t) such that uu∗ = c2 corresponding to the positive and
negative cases given in (4.25), namely,

u(x, t)

c
= xct + cξη/e20{

(ct)2 + (ξ/e0)2
} , u(x, t)

c
= xct − cξη/e20{

(ct)2 + (ξ/e0)2
} , (4.27)

are given, respectively, by

u∗(x, t)
c

= xct − cξη/e20{
x2 − (ξ/e0)2

} , u∗(x, t)
c

= xct + cξη/e20{
x2 − (ξ/e0)2

} , (4.28)

since in both cases we have
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uu∗

c2
= (xct)2 − (cξη/e20)2{

(ct)2 + (ξ/e0)2
} {
x2 − (ξ/e0)2

} = (xct)2 − (cξη/e20)2
(xct)2 − (ξ/e0)2

{
(ξ/e0)2 + (ct)2 − x2} = 1,

in view of the relation ξ2 − (cη)2 = e20(x
2 − (ct)2). Thus for prescribed Lorentz

invariants ξ(x, t) and η(x, t), we may determine the two associated velocities
u(x, t) through (4.29), while their complementary velocities u∗(x, t) are determined
from (4.28).

Furthermore, we may show independently that under reasonable assumptions,
the two velocities given by (4.29) are such that u/c < 1 while those given by (4.28)
are such that u/c > 1. Firstly for u(x, t), we introduce the working variables α, β
and γ defined by

α = x{
(ct)2 + (ξ/e0)2

}1/2 = x{
x2 + (cη/e0)2

}1/2 < 1, (4.29)

β = ct{
(ct)2 + (ξ/e0)2

}1/2 < 1, γ = (ξ/e0){
(ct)2 + (ξ/e0)2

}1/2 < 1,

then evidently β2 + γ 2 = 1, and from u(x, t) expressed in the form of (4.24), we
have

u(x, t)

c
= xct ± (ξ/e0)

{
(ct)2 − x2 + (ξ/e0)2

}1/2
{
(ct)2 + (ξ/e0)2

}

= αβ ± γ
{
γ 2 + β2 − α2

}1/2 = αβ ± γ
{
1 − α2

}1/2

= αβ ±
{
1 − β2

}1/2 {
1 − α2

}1/2
< 1,

since evidently ± {1 − β2}1/2 {1 − α2}1/2 < 1 − αβ. The negative case is
obvious since 1 − αβ > 0, while the positive case follows by squaring{
1 − β2}1/2 {1 − α2}1/2 < 1 − αβ to obtain −(α − β)2 < 0, which is certainly
true. The final equation reveals the critical structure of the expression, since with
α = sin θ and β = sinφ, then the positive case gives rise to u/c = cos(θ − φ),
while the negative case results in u/c = − cos(θ +φ), which are useful expressions
in terms of simplifying (1 − (u/c)2)1/2 involved in the denominator of both the
energy e and momentum p.

For the two complementary velocities defined by (4.28), a similar analysis
applies, and we might introduce the working variables a, b and δ defined by

a = x{
(x2 − (ξ/e0)2

}1/2 > 1, δ = (ξ/e0){
x2 − (ξ/e0)2

}1/2 ,
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b = ct{
x2 − (ξ/e0)2

}1/2 = ct{
(ct)2 − (cη/e0)2

}1/2 > 1,

along with a2 − δ2 = 1, and the two complementary velocities (4.28) become

u∗(x, t)
c

= xct ± (ξ/e0)
{
(ct)2 − x2 + (ξ/e0)2

}1/2
{
x2 − (ξ/e0)2

}

= ab ± δ
{
δ2 + b2 − a2

}1/2 = ab ± δ
{
b2 − 1

}1/2

= ab ±
{
a2 − 1

}1/2 {
b2 − 1

}1/2
> 1,

since ± {a2 − 1
}1/2 {

b2 − 1
}1/2

> 1 − ab. The positive case is obvious, while
for the negative case, both sides of the inequality are negative, and therefore when
we square both sides, we need to reverse the inequality leading to the requirement
−(a − b)2 < 0 which is certainly true. Again, with a = cosh θ and b = coshφ,
the positive case leads to u∗/c = cosh(θ + φ), while the negative case gives rise to
u∗/c = cosh(θ − φ), and again these expressions are useful in the simplification of
the energy e and the momentum p.

Single Space Equations in Terms of ξ and η We now examine the particular
consequences of the one spatial dimension equations arising from (3.4), namely,

f = ∂p

∂t
+ ∂e

∂x
, g = 1

c2

∂e

∂t
+ ∂p

∂x
, (4.30)

in terms of the two Lorentz invariants ξ = ex − c2pt and η = px − et , and by
a straightforward evaluation of the right-hand sides of the following equations, we
may readily verify that

xf − c2tg = ∂η

∂t
+ ∂ξ

∂x
, xg − tf = 1

c2

∂ξ

∂t
+ ∂η

∂x
, (4.31)

which in comparison with (4.30) seems to indicate a certain correspondence
between η and p and between ξ and e.

By partial differentiation of the expressions (4.20) with respect to both x and t ,
it is not difficult to show that

xf − c2tg = ∂η

∂t
+ ∂ξ

∂x
= cη ∂θ

∂x
+ ξ

c

∂θ

∂t
, xg − tf = 1

c2

∂ξ

∂t
+ ∂η

∂x
= ξ

c

∂θ

∂x
+ η

c

∂θ

∂t
,

and on solving these two equations for ∂θ/∂x and ∂θ/∂t and using the relation
ξ2 − (cη)2 = e20(x2 − (ct)2), we may deduce
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∂θ

∂x
= c

e20

(
ξG − ηF
x2 − (ct)2

)
,

∂θ

∂t
= c

e20

(
ξF − c2ηG
x2 − (ct)2

)
, (4.32)

where here for convenience we use the abbreviation F = xf − c2tg and G =
xg − tf . On using the expressions ξ = ex − c2pt and η = px − et , we find that

ξG − ηF = (x2 − (ct)2)(eg − pf ), ξF − c2ηG = (x2 − (ct)2)(ef − c2pg),

so that from (4.32) we obtain

∂θ

∂x
= c

e20

(eg − pf ), ∂θ

∂t
= c

e20

(ef − c2pg). (4.33)

Now with arbitrarily assigned external forces (f, gc), these equations must be well-
defined and compatible in the sense that ∂/∂t(∂θ/∂x) = ∂/∂x(∂θ/∂t). However,
with f and g given by the expressions (4.30), these equations are automatically
well-defined and meaningful. In order to see this, on using the relations (4.30),
performing the partial differentiations and equating the two expressions for the sec-
ond order partial derivative ∂2θ/∂x∂t , we might eventually deduce the interesting
equation

f 2 − (cg)2 + e
(
∂f

∂x
− ∂g

∂t

)
+ p

(
∂f

∂t
− c2 ∂g

∂x

)
= 0. (4.34)

We observe that on using p = eu/c2, this equation takes on the alternative
interesting form

f 2 + e
(
df

dx

)
wave

= (cg)2 + e
(
dg

dt

)
part
.

It is important to emphasise that this equation must be satisfied, and might
be viewed as a consistency condition imposed upon any allowable velocity fields
arising from the applied external forces (f, gc), so that f and g may not be entirely
arbitrarily assigned. Subsequently, we see that this equation corresponds to the
important identity (4.14) discussed in the previous section. On using the relations
(4.30), Eq. (4.34) becomes

∂

∂x

(
e
∂e

∂x

)
− 1

c2

∂

∂t

(
e
∂e

∂t

)
+ ∂

∂t

(
p
∂p

∂t

)
− c2 ∂

∂x

(
p
∂p

∂x

)
+ 2

∂(e, p)

∂(x, t)
= 0,

which evidently can be rewritten as simply

∂2(e2 − (cp)2)
∂x2

− 1

c2

∂2(e2 − (cp)2)
∂t2

+ 4
∂(e, p)

∂(x, t)
= 0,
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which is trivially satisfied since e2 − (cp)2 = e20, so that e and p are functionally
related and therefore the Jacobian also vanishes. We comment that throughout this
text we are assuming that the rest energy e0 = m0c

2 remains constant and all the
equations are derived accordingly. However, non-constant rest mass is thought to
be a real physical possibility, and in two sections of Chap. 8, a specific solution for
non-constant rest mass is derived, along with the equations corresponding to those
derived immediately above. The corresponding equations derived in Chap. 8 place
the above results in a more reasonable context.

Thus with external forces (f, gc) satisfying (4.30), Eqs. (4.33) constitute two
well-defined relations for the determination of θ(x, t), which also becomes clear on
closer examination, since from (4.33) on using (4.30), we have

dθ = ∂θ

∂x
dx + ∂θ

∂t
dt = c

e20

(
(eg − pf )dx + (ef − c2pg)dt

)
= c

e20

(edp − pde),

and on noting the relations e = e0 cosh θ and pc = e0 sinh θ , obtained from (2.11),
this equation is evidently satisfied.

Characteristic Coordinates α = ct + x and β = ct − x From (4.31), we have

F = xf − c2tg = ∂η

∂t
+ ∂ξ

∂x
, G = xg − tf = 1

c2

∂ξ

∂t
+ ∂η

∂x
,

and from these two equations, in terms of the characteristic coordinates α = ct + x
and β = ct − x and the differential formulae

∂

∂x
= ∂

∂α
− ∂

∂β
,

1

c

∂

∂t
= ∂

∂α
+ ∂

∂β
, (4.35)

we may deduce

F + cG = 2
∂(ξ + cη)
∂α

, F − cG = −2
∂(ξ − cη)
∂β

. (4.36)

From the definitions ofF and G , we may deduce

F + cG = −(f + cg)(ct − x), F − cG = (f − cg)(ct + x),

and therefore Eqs. (4.36) become

f + cg = − 2

β

∂(ξ + cη)
∂α

, f − cg = − 2

α

∂(ξ − cη)
∂β

.

and we have (F 2−(cG )2) = (f 2−(cg)2)(x2−(ct)2) = −(f 2−(cg)2)αβ. Again,
on noting the relation ξ2 − (cη)2 = e20(x

2 − (ct)2) = −αβe20, we may deduce the
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curious equation

f 2 − (cg)2 = −4e20
(ξ2 − (cη)2)

∂(ξ + cη)
∂α

∂(ξ − cη)
∂β

= −4e20
∂(log(ξ + cη))

∂α

(log ∂(ξ − cη))
∂β

.

We now examine in some detail the case when the external forces (f, gc)
are generated from a single potential function V (x, t) as given by (4.16). For
completeness we also include below some of the details arising from the case
when the external forces (f, gc) are generated from two scalar functions V (x, t)
and W(x, t), including the structure of Eq. (4.34). In the latter case, for non-trivial
W(x, t), the system is generally nonconservative.

Forces (f, gc) Generated from Single Potential Function V (x, t) If we now
assume that the external forces (f, gc) are generated as external forces from the
scalar field such that

f = −∂V
∂x
, gc2 = −∂V

∂t
, (4.37)

for some potential function V (x, t), then it is not difficult to show that the above
Eqs. (4.31) become simply

∂(η − tV )
∂t

+ ∂(ξ + xV )
∂x

= 0,
1

c2

∂(ξ + xV )
∂t

+ ∂(η − tV )
∂x

= 0,

and therefore there existsψ(x, t) such that η−tV = ∂ψ/∂x and ξ+xV = −∂ψ/∂t ,
where ψ(x, t) satisfies the classical wave equation

∂2ψ

∂t2
= c2 ∂

2ψ

∂x2
. (4.38)

and we have the following explicit formulae:

ξ(x, t) = −
(
∂ψ

∂t
+ xV (x, t)

)
, η(x, t) =

(
∂ψ

∂x
+ tV (x, t)

)
. (4.39)

Now the relations ξ = ex − c2pt and η = px − et may be inverted to yield

e =
(
xξ + c2tη
x2 − (ct)2

)
, p =

(
tξ + xη
x2 − (ct)2

)
,

and from these expressions and (4.39), we might deduce the following for the
momentum p and energy e; thus



4.5 Formulation in Terms of Lorentz Invariants 111

p =
(
x
∂ψ
∂x

− t ∂ψ
∂t

x2 − (ct)2
)
, e =

(
c2t

∂ψ
∂x

− x ∂ψ
∂t

x2 − (ct)2
)

− V, (4.40)

In terms of the characteristic coordinates α = ct + x and β = ct − x and the
differential formulae (4.35), the force relations (4.37) become

f + cg = −2
∂V

∂α
, f − gc = 2

∂V

∂β
.

The general solution of (4.38) is given by ψ(x, t) = A(α) + B(β), where both A
and B denote arbitrary functions of the indicated arguments, while from the above
equations, (4.47) we have

p = 1

αβ

(
α
∂ψ

∂β
+ β ∂ψ

∂α

)
, E = c

αβ

(
β
∂ψ

∂α
− α ∂ψ

∂β

)
, (4.41)

where in the second equality we have used the conservation of energy e + E +
V = constant. Subsequently, we present the simple general solutions of the wave
equation for the momentum p(x, t) = F(α) + G(β) and wave energy E (x, t) =
c (F (α)−G(β)) where α = ct + x and β = ct − x, and where both F and
G denote arbitrary functions of their arguments, and from the above expressions
(4.41), we may make the following straightforward identifications F(α) = A′(α)/α
and G(β) = B ′(β)/β, which on using (4.39) altogether give rise to the following
expressions for ξ(x, t) and η(x, t); thus

ξ(x, t) = −xV (x, t)− c(αF (α)+ βG(β)), (4.42)

η(x, t) = tV (x, t)+ (αF (α)− βG(β)).

Summary for Forces (f, gc) Generated from Single Potential Function V (x, t)
For a single Cartesian spatial dimension, with forces f and g derivable from a
potential V (x, t) as given by (4.37), the complete general solution of (4.30)

∂p

∂t
+ ∂e

∂x
= −∂V

∂x
,

1

c2

∂e

∂t
+ ∂p

∂x
= − 1

c2

∂V

∂t
,

is given by

ψ(x, t) = A(α)+ B(β), A′(α) = αF(α), B ′(β) = βG(β), (4.43)

p(x, t) = F(α)+G(β), E (x, t) = c (F (α)−G(β)) ,
ξ(x, t) = −xV (x, t)− c(αF (α)+ βG(β)),
η(x, t) = tV (x, t)+ (αF (α)− βG(β)),
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and since the particle energy e(x, t) = (e20 + (pc)2)1/2, from the conservation of
energy e + E + V = constant, formally the potential energy V (x, t) is given by

V (x, t) = −(e20 + c2(F (α)+G(β))2)1/2 − c(F (α)−G(β)), (4.44)

where α = ct +x and β = ct −x. In the laboratory we are accustomed to imposing
whatever electric or magnetic field that our equipment permits. However, this is not
the case here, and this equation reveals explicitly that unlike conventional theory, the
potential for the proposed model is not completely arbitrary and must satisfy certain
other requirements. This is similar to the gravitational field in general relativity
being determined as part of the solution. We note that in consequence of the above
general formulae (4.43), we may deduce in particular the important relations

E + pc = 2cF (α), E − pc = −2cG(β),

results that will appear again throughout the text.

Forces (f, gc) Generated from Two Potential Functions V (x, t) and W(x, t)
More generally we might assume that the external forces (f, gc) are generated from
two potential functions V (x, t) andW(x, t), namely,

f = 1

c

∂W

∂t
− ∂V

∂x
, gc = ∂W

∂x
− 1

c

∂V

∂t
, (4.45)

and in terms of α = ct + x and β = ct − x, the force relations (4.45) become

f + cg = 2
∂(W − V )
∂α

, f − gc = 2
∂(W + V )

∂β
.

In this case the basic one-dimensional equations (4.30) become

∂

∂t
(p −W/c)+ ∂

∂x
(e + V ) = 0,

1

c2

∂

∂t
(e + V )+ ∂

∂x
(p −W/c) = 0,

and therefore from the basic defining equation for the de Broglie wave energy (3.10),
we have dE = (∂p/∂t)dx + c2(∂p/∂x)dt , and we may deduce

d(e + E + V ) = 1

c

∂W

∂t
dx + c ∂W

∂x
dt. (4.46)

From this equation it is clear that unless W(x, t) is a solution of the classical
wave equation, then mechanical systems for which (4.45) applies will generally be
nonconservative. We comment that in the eventW(x, t) is a solution of the classical
wave equation, so thatW(x, t) = C(α)+D(β); then from (4.46), we might deduce
the conservation principle e+E +V = C(α)−D(β)+constant , noting that under
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certain circumstances conventional conservation of energy may take place along the
characteristics.

Further, it is not difficult to show that the above Eqs. (4.31) become

∂

∂t
(η − tV − xW/c)+ ∂

∂x
(ξ + xV + ctW) = 0,

1

c2

∂

∂t
(ξ + xV + ctW)+ ∂

∂x
(η − tV − xW/c) = 0,

and therefore there exists ψ(x, t) such that η− tV −xW/c = ∂ψ/∂x and ξ+xV +
ctW = −∂ψ/∂t , where again ψ(x, t) satisfies the classical wave equation and we
have

ξ(x, t) = −
(
∂ψ

∂t
+ xV (x, t)+ ctW(x, t)

)
, η(x, t) =

(
∂ψ

∂x
+ tV (x, t)+ xW(x, t)

c

)
.

The relations ξ = ex−c2pt and η = px−et may be inverted to yield the following
expressions for the momentum p and energy e; thus

p =
(
x
∂ψ
∂x

− t ∂ψ
∂t

x2 − (ct)2
)

+ W

c
, e =

(
c2t

∂ψ
∂x

− x ∂ψ
∂t

x2 − (ct)2
)

− V. (4.47)

Finally, we comment that in this case, Eq. (4.34) becomes

f 2 − (cg)2 + e

c2

(
∂2V

∂t2
− c2 ∂

2V

∂x2

)
+ p

c

(
∂2W

∂t2
− c2 ∂

2W

∂x2

)
= 0.

4.6 Differential Relations for Invariants ξ and η

In this section we formulate certain differential relations for the Lorentz invariants ξ
and η defined by (2.48). On taking the total time derivative d/dt of the two invariants
ξ = ex − c2pt and η = px − et and making use of de/dt = udp/dt , we obtain

e0
dξ

ds
= f cη, e0c

dη

ds
= f ξ − e20, (4.48)

where f = dp/dt is the force and ds denotes the infinitesimal line element ds =
c
(
1 − (u/c)2)1/2 dt arising from (ds)2 = (cdt)2−(dx)2. Accordingly, ds is related

to the proper time τ through the relation ds = cdτ . We may confirm the relations
(4.48) since on differentiating equation (4.19), namely, ξ2−(cη)2 = e20(x2−(ct)2),
totally with respect to time, we may deduce
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ξ
dξ

dt
− c2ηdη

dt
= e20(xu− c2t),

and this equation simplifies to give

ξ
dξ

ds
− c2ηdη

ds
= e0cη,

and Eqs. (4.48) can be readily seen to be consistent with this result.
On introducing the function σ(x, t) defined by the differential relation dσ =

f ds = f c
(
1 − (u/c)2)1/2 dt , from f = dp/dt we may readily deduce dσ =

m0cdu/
(
1 − (u/c)2) so that on integration the function σ is given by

σ = m0c
2

2
log

(
1 + u/c
1 − u/c

)
= e0 tanh−1

(u
c

)
.

Accordingly, in terms of the angle θ defined by (2.9), we have simply σ = e0θ , and
the two equations (4.48) become

dξ

dθ
= cη, c

dη

dθ
= ξ − e20

f
, (4.49)

and from which on differentiation with respect to θ , we may readily deduce

d2ξ

dθ2
− ξ = −e

2
0

f
,

d2η

dθ2
− η = −1

c

d(e20/f )

dθ
. (4.50)

Equations (4.49) and (4.50) can appear in a variety of forms. For example, on noting
the relations for the force and the line element, namely, f = dp/dt and ds =
c
(
1 − (u/c)2)1/2 dt , we may deduce the equation e0/f = ds/dθ , and in place of

Eqs. (4.49) and (4.50), we have

dξ

dθ
= cη, c

dη

dθ
= ξ − e0 ds

dθ
, (4.51)

and from which we may readily deduce

d2ξ

dθ2
− ξ = −e0 ds

dθ
, c

d2η

dθ2
− cη = −e0 d

2s

dθ2
, (4.52)

and we can provide an independent derivation of the latter Eqs. (4.51 and 4.52) as
follows:

On taking the total time derivative d/dt of the two Lorentz invariants ξ = ex −
c2pt and η = px − et , and making use of de/dt = udp/dt , we obtain
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dξ

dt
= η(

1 − (u/c)2)
du

dt
, c

dη

dt
= ξ

c
(
1 − (u/c)2)

du

dt
− e0c

(
1 − (u/c)2

)1/2
,

on using dp/dt = m0
(
1 − (u/c)2)−3/2

du/dt . Assuming that du/dt �= 0, these
two equations simplify to give

dξ

du
= η(

1 − (u/c)2) , c
dη

du
= ξ

c
(
1 − (u/c)2) − e0 ds

du
,

so that on introducing the substitution u = c sinφ, we have

cosφ
dξ

dφ
= cη, c cosφ

dη

dφ
= ξ − e0 cosφ ds

dφ
.

Now on introducing χ defined by

dχ = dφ

cosφ
= dφ(

cos2(φ/2)− sin2(φ/2)
) = sec2(φ/2)dφ(

1 − tan2(φ/2)
) ,

and from which, we may readily deduce that

χ = log

(
1 + tan(φ/2)

1 − tan(φ/2)

)
= 1

2
log

(
1 + sinφ

1 − sinφ

)
= 1

2
log

(
1 + u/c
1 − u/c

)
= θ,

where θ is again as previously defined in Eqs. (2.9), (4.51), and (4.52) follow
immediately.

Further, we comment that by direct differentiation of (4.20) totally with respect
to time, and using u = dx/dt = c tanh θ , we have
dξ

dt
= e0 (x sinh θ − ct cosh θ) dθ

dt
, c

dη

dt
= e0 (x cosh θ − ct sinh θ) dθ

dt
− e0 sech θ,

(4.53)

which coincide with (4.49) and (4.51), since on using u = c tanh θ , we have
ds/dt = c sech θ and (4.51) follows immediately from (4.53).

Summary and Differential Relations in Symmetric Form To recapitulate, for
a single spatial dimension x, in terms of the arbitrary applied forces f (x, t) and
g(x, t) and the two Lorentz invariants ξ = ex − c2pt and η = px − et , the two
postulated basic Eqs. (4.30), thus

f = ∂p

∂t
+ ∂e

∂x
, g = 1

c2

∂e

∂t
+ ∂p

∂x
, (4.54)

can be shown to become
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xf − c2tg = ∂η

∂t
+ ∂ξ

∂x
, xg − tf = 1

c2

∂ξ

∂t
+ ∂η

∂x
,

which might be verified simply by performing the partial differentiations on the
left-hand side and making use of (4.54).

Now by taking the material or total time derivative d/dt , the two Lorentz
invariants can be shown to satisfy the differential relations (4.48) which can be
expressed as

e
dξ

dt
= f c2η, e

dη

dt
= f ξ − e20, (4.55)

together with the integral ξ2 − (cη)2 = e20(x
2 − (ct)2). We observe especially that

the differential relations do not involve the force g(x, t) in the direction of time.
In order to deduce a comparable set of differential relations involving g(x, t), we
need to determine a corresponding total derivative of the Lorentz invariants. Now,
after trialling a number of potential candidates, it eventuates that the companion
total derivative is a spatial derivative, but not that following the particle but rather
that following the wave, so that the fundamental time and space total derivatives
underpinning the structure of the proposed model are defined by

d

dt
=
(
d

dt

)
part

= ∂

∂t
+
(
dx

dt

)
part

∂

∂x
= ∂

∂t
+ u ∂

∂x
, (4.56)

d

dx
=
(
d

dx

)
wave

= ∂

∂x
+
(
dt

dx

)
wave

∂

∂t
= ∂

∂x
+ u

c2

∂

∂t
,

which are not Lorentz invariant, but, under Lorentz transformation, transform in the
same manner (see Eqs. (4.59) and (4.60)). In terms of the total spatial derivative
following the wave d/dx, we show below that the relations corresponding to (4.55)
are

e
dξ

dx
= c2gη + e20, e

dη

dx
= gξ, (4.57)

involving only the force gc in the direction of time.
Thus, for the first Lorentz invariant ξ = ex − c2pt , we have

e
dξ

dx
= e

(
∂ξ

∂x
+ u

c2

∂ξ

∂t

)
,

= e
{
(xf − c2tg)− ∂η

∂t
+ u(xg − tf )− u∂η

∂x

}
,

= e
{
(x − ut)f + (xu− c2t)g − dη

dt

}
,
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=
{
f ξ + c2gη − (f ξ − e20)

}
= c2gη + e20,

while for the second Lorentz invariant η = px − et , we have

e
dη

dx
= e

(
∂η

∂x
+ u

c2

∂η

∂t

)
,

= e
{
(xg − tf )− 1

c2

∂ξ

∂t
+ u

c2
(xf − c2tg)− u

c2

∂ξ

∂x

}
,

= e
{
(x − ut)g + (xu− c2t) f

c2
− 1

c2

dξ

dt

}
,

= gξ + f η − f η = gξ,

so that altogether the comparable differential relations to (4.55) involving only the
force g(x, t) become (4.57), which together are important relations in revealing the
immediate consequences for the two cases examined below, namely, f = 0 and
g �= 0 suggested by de Broglie’s guidance equation, and the complementary case
f �= 0 and g = 0 arising in special relativistic mechanics.

The symmetry of Eqs. (4.55) and (4.57) arises because under a Lorentz transfor-
mation (2.3), the two total derivatives

d

dt
= ∂

∂t
+ u ∂

∂x
,

d

dx
= ∂

∂x
+ u

c2

∂

∂t
, (4.58)

are not Lorentz invariant, but rather transform in the same manner since from the
differential relations

∂

∂x
= 1

(1 − (v/c)2)1/2
{
∂

∂X
+ v

c2

∂

∂T

}
,

∂

∂t
= 1

(1 − (v/c)2)1/2
{
∂

∂T
+ v ∂

∂X

}
,

we have

∂

∂t
+ u ∂

∂x
, (4.59)

= 1

(1 − (v/c)2)1/2
{
∂

∂T
+ v ∂

∂X

}

+ (U − v)
(1 − Uv/c2)(1 − (v/c)2)1/2

{
∂

∂X
+ v

c2

∂

∂T

}
,

= (1 − (v/c)2)1/2
(1 − Uv/c2)

{
∂

∂T
+ U ∂

∂X

}
,

and



118 4 Special Results for One Space Dimension

∂

∂x
+ u

c2

∂

∂t
, (4.60)

= 1

(1 − (v/c)2)1/2
{
∂

∂X
+ v

c2

∂

∂T

}

+ (U − v)
c2(1 − Uv/c2)(1 − (v/c)2)1/2

{
∂

∂T
+ v ∂

∂X

}
,

= (1 − (v/c)2)1/2
(1 − Uv/c2)

{
∂

∂X
+ U

c2

∂

∂T

}
,

demonstrating that the two total derivatives defined by (4.58) transform under a
Lorentz transformation in an identical manner.

In order to understand the transformation properties of Eqs. (4.55) and (4.57)
under the space-time transformation x′ = ct and t ′ = x/c, as we have noted
previously, we have u′ = c2/u, e′ = cp, cp′ = e, f ′ = f , g′ = g, ξ ′ = −ξ ,
η′ = −η and that under this transformation the two total derivatives d/dt and d/dx
given by (4.58) transform in the following manner:

d

dt ′
= ∂

∂t ′
+ u′ ∂

∂x′ = c

u

(
∂

∂t
+ u ∂

∂x

)
= c

u

d

dt
,

d

dx′ = ∂

∂x′ + u′

c2

∂

∂t ′
= c

u

(
∂

∂x
+ u

c2

∂

∂t

)
= c

u

d

dx
,

so that we have

e′ d
dt ′

= e d
dt
, e′ d

dx′ = e d
dx
.

We also note that under this transformation the two total derivatives du/dt and
du/dx transform in the following manner:

du′

dt ′
= ∂u′

∂t ′
+ u′ ∂u′

∂x′ = −
( c
u

)3 (∂u
∂t

+ u∂u
∂x

)
= −

( c
u

)3 du
dt
,

du′

dx′ = ∂u′

∂x′ + u′

c2

∂u′

∂t ′
= −

( c
u

)3 (∂u
∂x

+ u

c2

∂u

∂t

)
= −

( c
u

)3 du
dx
.

4.7 de Broglie’s Guidance Equation

In Chap. 1 we have noted de Broglie’s general guidance formula of the particle by its
wave, as given by Eqs. (1.1) and (1.2), and we have further noted that in the context
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of the present theory, these equations suggest that f = 0 while g is determined
from (1.3). In this section, for a single spatial dimension x, we present an extended
analysis to determine ψ(x, t) for the relations

p = mu = −∂ψ
∂x
, e = mc2 = ∂ψ

∂t
, (4.61)

(
∂ψ

∂t

)2

− c2
(
∂ψ

∂x

)2

= e20,
1

c2

∂2ψ

∂t2
− ∂2ψ

∂x2
= g, (4.62)

where e0 = m0c
2, (4.62)1 arises from the relativistic expression m = m0/[1 −

(u/c)2]1/2 in the form e2 − (pc)2 = e20, and the velocity u(x, t) is assumed to be
given by

u

c
= pc

e
= −c (∂ψ/∂x)

(∂ψ/∂t)
.

From the relation (4.62)1, we may without loss of generality suppose that there
exists a function φ(x, t) such that

∂ψ

∂t
= e0 coshφ, c

∂ψ

∂x
= e0 sinhφ, (4.63)

so that the velocity u(x, t) becomes

u

c
= pc

e
= −c (∂ψ/∂x)

(∂ψ/∂t)
= − tanhφ. (4.64)

On equating the two expressions for the second derivative, ∂2ψ/∂t∂x gives
(∂φ/∂t) = c tanhφ(∂φ/∂x), while a second equation is obtained from (4.62)2,
which when combined yield

∂φ

∂x
= −cg

e0
coshφ,

∂φ

∂t
= −c

2g

e0
sinhφ. (4.65)

We observe that these relations imply that dφ/dt = 0 since we have

dφ

dt
= ∂φ

∂t
+ u∂φ

∂x
= −c

2g

e0
sinhφ + c tanhφ cg

e0
coshφ = 0,

and therefore from u = −c tanhφ, we may conclude that we also have du/dt = 0.
We note especially that in reality this condition constitutes a first order partial
differential equation, the solution of which involves an arbitrary function, and
therefore the condition might involve more than simply u(x, t) = constant. Further,
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we find that the two equations (4.65) are compatible provided that g(x, t) is a
solution of the first order partial differential equation

c sinhφ
∂g

∂x
− coshφ

∂g

∂t
= c2g2

e0
, (4.66)

which we may formally solve using Lagrange’s characteristic method.
This method involves introducing a characteristic parameter s and formally

solving the three ordinary differential equations

dx

ds
= c sinhφ, dt

ds
= − coshφ,

dg

ds
= c2g2

e0
.

From the first two equations, we have the relation which is entirely consistent with
(4.64), namely,

dx

dt
= −c tanhφ = − (∂φ/∂t)

(∂φ/∂x)
,

and therefore one integral is φ(x, t) = constant, while from the first and the third,
we obtain

dg

dx
= cg2

e0 sinhφ
.

On noting that, for the purposes of this integration, φ(x, t) = constant, a second
integral is found to be 1/g + cx/e0 sinhφ = constant, so that the general solution
of (4.66) which is obtained by equating one integral to be an arbitrary function of
the second integral may be expressed in the form

g(x, t) = − e0 sinhφ

c(x − x0(φ)) , (4.67)

where x0(φ) denotes an arbitrary function of φ. On substitution of this expression
into (4.66), we may readily confirm that (4.67) constitutes a solution of the equation
without further restriction on the arbitrary function x0(φ).

From Eqs. (4.65) and (4.67), we find that we are required to integrate

∂φ

∂x
= sinhφ coshφ

x − x0(φ) ,
∂φ

∂t
= c sinh2 φ

x − x0(φ) , (4.68)

which at first sight appears to be a non-trivial problem. However, if we introduce
ζ = x − x0(φ) as a working variable and change the independent variables from
(x, t) to (ζ, t), then from the relations



4.7 de Broglie’s Guidance Equation 121

∂φ

∂x
= ∂φ∗

∂ζ

(
1 − x ′

0(φ)
∂φ

∂x

)
,

∂φ

∂t
= ∂φ∗

∂t
+ ∂φ∗

∂ζ

(
−x ′

0(φ)
∂φ

∂t

)
,

where we are using an asterisk to make a distinction between the partial derivatives,
so that φ∗ designates that the partial differentiations are taking place with respect to
(ζ, t) as the independent variables, namely, φ(x, t) = φ∗(ζ, t). From these relations
we may deduce

∂φ

∂x
= ∂φ∗/∂ζ(

1 + x ′
0(φ)(∂φ

∗/∂ζ )
) = sinhφ coshφ

ζ
,

∂φ

∂t
= ∂φ∗/∂t(

1 + x ′
0(φ)(∂φ

∗/∂ζ )
) = c sinh2 φ

ζ
,

which give rise to the expressions

∂φ∗

∂ζ
= 1(
ζ/(sinhφ coshφ)− x ′

0(φ)
) , ∂φ∗

∂t
= c tanhφ(
ζ/(sinhφ coshφ)− x ′

0(φ)
) .

(4.69)

Now the two expressions (4.69) result in the first order partial differential
equation

∂φ∗

∂t
− c tanhφ ∂φ

∗

∂ζ
= 0,

which can be readily solved using Lagrange’s characteristic method to deduce ζ +
ct tanhφ = F(φ), where F(φ) denotes an arbitrary function and on substitution
of this relation into either of Eqs. (4.69) yields the following relation between the
arbitrary function F(φ) and x0(φ), namely,

dF(φ)

dφ
− F(φ)

sinhφ coshφ
= −dx0(φ)

dφ
.

Integration of this equation yields

F(φ) = −x0(φ)− tanhφ
ˆ
x0(φ)dφ

sinh2 φ
,

as the formal connection between the two arbitrary functions F(φ) and x0(φ), so
that from ζ + ct tanhφ = F(φ), we have finally the formal integral for Eqs. (4.68)
becomes

x + ct tanhφ = − tanhφ
ˆ
x0(φ)dφ

sinh2 φ
, (4.70)
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which on using u = −c tanhφ from (4.64) can be alternatively written as

x − ut = tanhφ
ˆ
x0(φ)d(cothφ) = −u

ˆ
x∗
0 (u)du

u2
, (4.71)

where x∗
0 (u) denotes x0(φ) with φ replaced by − tanh−1(u/c). Of course, since

x0(φ) refers to an arbitrary function, at one level these details might be considered
to be irrelevant, except that we do need to know the relationship between the two
arbitrary functions F(φ) and x0(φ). We also observe that the formal integral (4.70)
or (4.71) has the structure of the first Lorentz invariant ξ = ex − c2pt = e(x − ut)
previously defined in this chapter.

The structure of (4.71) leads to the topic of Clairaut’s differential equation with
parameter uwhich is examined subsequently in a separate section.We also comment
that we may undertake a corresponding calculation to that given in this section for
centrally symmetric mechanical systems which is presented in the final section of
Chap. 9.

Special Case Arising from x0(φ) = 0 For x0(φ) �= 0, Eq. (4.70) generally
involves implicit functions for u(x, t). The simplest solution in this family of
solutions which can be given explicitly arises from the special case x0(φ) = 0.
Necessarily u = −c tanhφ = x/t , and we have

e = e0ct

((ct)2 − x2)1/2 , p = e0x

c((ct)2 − x2)1/2 ,
c2p

e
= x

t
= u, (4.72)

with particle paths arising from dx/dt = x/t , namely, x/t = constant. We
comment that while the velocity u(x, t) = x/t is perfectly well-defined, it is
however an extremely special case but nevertheless sufficiently simple and tractable
to calculate explicit formulae and to demonstrate certain important characteristics.
Evidently this solution allows both sub-luminal (x < ct) and superluminal (x > ct)
motion such that at some fixed point in space, say x = a, we have

u(a, t)

c
=
{
a/ct > 1 if ct < a superluminal,

a/ct < 1 if ct > a sub-luminal,

which as far as an observer is concerned means that shortly after time t = a/c, a
particle suddenly appears moving at a velocity just below that of light. Further, we
may readily confirm that the total or material time derivative du/dt is zero, since
we have

du

dt
= ∂u

∂t
+ u∂u

∂x
= − x

t2
+ u

t
= − x

t2
+ x

t2
= 0,

and since p is a function of u only, this ensures that f = dp/dt = 0.
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For this special case, we may deduce simple expressions for all the various
quantities as follows: For u = −c tanhφ = x/t , we may readily show that

∂ψ

∂t
= e0 coshφ = e0ct

((ct)2 − x2)1/2 , c
∂ψ

∂x
= e0 sinhφ = − e0x

((ct)2 − x2)1/2 ,

and therefore together with u(x, t) = x/t , we have

ψ(x, t) = e0

c
((ct)2 − x2)1/2, g(x, t) = e0

c((ct)2 − x2)1/2 .

From these expressions and (4.61), we may confirm e(x, t) and p(x, t) are as given
by (4.72) and these expressions provide particular illustrations of Eqs. (3.12) in the
case of a single spatial dimension, namely,

∂e

∂t
= u∂p

∂t
,

∂e

∂x
= u∂p

∂x
,

de

dt
= udp

dt
.

Further, from (4.72)2 we may readily confirm that f = dp/dt = 0 since we have

dp

dt
= ∂p

∂t
+ u∂p

∂x
,

= e0

c

{ −xc2t
((ct)2 − x2)3/2 + x

t

(
1

((ct)2 − x2)1/2 + x2

((ct)2 − x2)3/2
)}
,

= 0,

and providing a specific illustration of non-constant momentum p(x, t) and yet f =
dp/dt = 0. With f = 0 the work done W(x, t) as defined by (3.8) is given by the
relation dW = gc2dt , from which we may deduce

W(x, t) =
ˆ

e0cdt

((ct)2 − x2)1/2 = e0 cosh−1
(
ct

x

)
,

on using the substitution ct = x cosh θ and ignoring any arbitrary constants of
integration. From the relation cosh−1 z = log(z + (z2 − 1)1/2) and u(x, t) = x/t ,
we might deduce

W(x, t) = e0 log
(
1 + (1 − (u/c)2)1/2

u/c

)
= −e0 log

(
u/c

1 + (1 − (u/c)2)1/2
)
.

This expression happens to coincide with one of the terms arising from the general
expression (6.14) and the special case λ → −∞ for the exact solution (5.1) which
is examined in some detail in the next two chapters.
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Special Case Arising from x0(φ) = (ξ0/e0) coshφ Another special case giving
rise to an explicit solution is obtained by taking x0(φ) = (ξ0/e0) coshφ where ξ0
denotes an arbitrary constant. In this case the integral in (4.70) may be evaluated
immediately to obtain

x − ut = −ξ0 tanhφ
e0

ˆ
coshφdφ

sinh2 φ
= ξ0

e0 coshφ
= ξ0

e0

{
1 −

(u
c

)2}1/2 = ξ0

e
,

(4.73)

on neglecting a non-essential arbitrary additive constant. This case corresponds to
assuming that the first Lorentz invariant is a constant, namely, ξ(x, t) = ex−c2pt =
e(x−ut) = ξ0. Here, following the analysis leading to (4.24), (4.25) and (4.26), we
note again that by squaring (4.73) we may deduce the quadratic equation

(u
c

)2 {
(ct)2 +

(
ξ0

e0

)2
}

− 2xct
(u
c

)
+
{
x2 −

(
ξ0

e0

)2
}

= 0,

which may be readily solved to give

u(x, t)

c
= xct ± (ξ0/e0)

{
(ct)2 − x2 + (ξ0/e0)2

}1/2
{
(ct)2 + (ξ0/e0)2

} ,

noting that the two limiting cases ξ0 −→ 0 give the above special solution u(x, t) =
x/t arising from x0(φ) = 0, while ξ0 −→ ∞ corresponds to u = ±c. In view of
the constraint ξ2 − (cη)2 = e20(x

2 − (ct)2), these solutions take on a number of
alternative forms including

u(x, t)

c
= xct ± (cξ0/e20)η0(x, t){

x2 + (cη0(x, t)/e0)2
} ,

where η0(x, t) is assumed to be defined by the relation cη0(x, t)/e0 =
± {(ct)2 − x2 + (ξ0/e0)

}2
.

In the following analysis, it proves convenient to introduce the working variables

λ = ξ0

e0
, μ = cη0(x, t)

e0
,

α = x

((ct)2 + λ2)1/2 = x

(x2 + μ2)1/2
= sin θ∗,

β = ct

((ct)2 + λ2)1/2 = sinφ∗,

giving rise to the important relations



4.7 de Broglie’s Guidance Equation 125

(ct)2 + λ2 = x2 + μ2, μ = ±((ct)2 + λ2 − x2)1/2,
u(x, t)

c
= αβ ± (1 − α2)1/2(1 − β2)1/2 = cos(θ∗ − φ∗) = cosψ∗,

where ψ∗ = θ∗ − φ∗, and to clarify matters we have adopted the positive sign
in the expression for the velocity. If we adopt the negative sign, then u(x, t)/c =
− cos(θ∗ + φ∗) and a similar analysis applies. For the positive case, we have

e(x, t) = e0

(1 − (u/c)2)1/2 = e0

sin(θ∗ − φ∗)
= e0

sinψ∗ ,

p(x, t) = e0u

c2(1 − (u/c)2)1/2 = e0

c tan(θ∗ − φ∗)
= e0

c tanψ∗ ,

where the angle ψ∗ = θ∗ − φ∗ is given explicitly by the expression

ψ∗(x, t) = sin−1
(

x

((ct)2 + λ2)1/2
)

− sin−1
(

ct

((ct)2 + λ2)1/2
)
,

so that we may evaluate the forces f and cg from the general expressions; thus

f = ∂p

∂t
+ ∂e

∂x
= − e0

c sin2 ψ∗

(
∂ψ∗

∂t
+ c cosψ∗ ∂ψ∗

∂x

)
= 0,

g = 1

c2

∂e

∂t
+ ∂p

∂x
= − e0

c2 sin2 ψ∗

(
cosψ∗ ∂ψ∗

∂t
+ c ∂ψ

∗

∂x

)
= −e0

c

∂ψ∗

∂x
= − e0

cμ
,

on making use of the formulae

∂ψ∗

∂t
= − c(xct + λμ)

μ((ct)2 + λ2) ,
∂ψ∗

∂x
= 1

μ
,

cosψ∗ = cos(θ∗ − φ∗) = cos θ∗ cosφ∗ + sin θ∗ sinφ∗ = xct + λμ
(ct)2 + λ2 ,

and the expression for g is most easily obtained using the result for f = 0. The
analysis is greatly facilitated by both the assumption that ξ(x, t) = constant and
the judicious use of the identity (ct)2 + λ2 = x2 + μ2 to facilitate the explicit
evaluation of the partial derivatives. We also observe that the approach adopted for
the above analysis for the case of ξ(x, t) = constant no doubt applies to more
general situations.

Alternative Analysis of (4.66) We may provide an equivalent analysis to the above
as follows: Instead of using Lagrange’s characteristic method for the first order
partial differential equation (4.66), we may assume that g(x, t) = g(φ,ψ) which is
a valid assumption since from Eqs. (4.63) and (4.65), the Jacobian becomes
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∂(φ,ψ)

∂(x, t)
= ∂φ

∂x

∂ψ

∂t
− ∂φ

∂t

∂ψ

∂x
= −cg,

and we assume that g is nonvanishing. With the assumption g(x, t) = g(φ,ψ),
Eq. (4.66) becomes

c sinhφ

(
∂g

∂φ

∂φ

∂x
+ ∂g

∂ψ

∂ψ

∂x

)
− coshφ

(
∂g

∂φ

∂φ

∂t
+ ∂g

∂ψ

∂ψ

∂t

)
= c2g2

e0
,

and again on using (4.63) and (4.65), this equation simplifies to give simply

∂g

∂ψ
= −

(
cg

e0

)2

,

which may be readily integrated to yield

g(φ,ψ) = e20

c2(ψ − ψ0(φ))
, (4.74)

where ψ0(φ) denotes an arbitrary function of φ. From this expression and (4.65),
we have

∂φ

∂x
= − e0 coshφ

c(ψ − ψ0(φ))
,

∂φ

∂t
= − e0 sinhφ

(ψ − ψ0(φ))
,

which we may readily confirm are well-defined in the sense that the second order

mixed partial derivatives ∂2φ
∂x∂t

and ∂2φ
∂t∂x

automatically coincide for all arbitrary
functions ψ0(φ). Further, from u = −c tanhφ and (4.63), these relations may be
used to confirm that

dφ

dt
= ∂φ

∂t
+ u∂φ

∂x
= 0,

dψ

dt
= ∂ψ

∂t
+ u∂ψ

∂x
= e0

coshφ
.

Integration of the latter equation yields

ψ = e0(t − t0(φ))
coshφ

.

where t0(φ) denotes some arbitrary function of φ, and on combining with (4.74) and
equating the alternative expression (4.67) for g(φ,ψ), we obtain

g(φ,ψ) = e0 coshφ

c2(t − t0(φ)− coshφψ0(φ)/e0)
= − e0 sinhφ

c(x − x0(φ)) ,
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and on simplification again it leads to an equation of the form x − ut = u0(φ)

where u0(φ) is essentially an arbitrary function of φ and specifically in terms of the
other introduced arbitrary functions is given by u0(φ) = x0(φ) + c tanhφt0(φ) +
c sinhφψ0(φ)/e0. Since u = −c tanhφ, the equation x − ut = u0(φ) constitutes
Clairaut’s differential equation with parameter u, and this is the subject of a
subsequent section of this chapter.

4.8 Vanishing of Force g in Direction of Time

In the previous section, we have presented a detailed analysis for the case f = 0
and g �= 0 which is motivated from de Broglie’s guidance equation. In this section
we present the corresponding analysis for the complementary case f �= 0 and
g = 0, with the understanding that the product of the two associated velocities
for the two problems is unity. We comment that while the calculation details of
this section evidently follow similar lines to those of the previous section, in places
there are critical departures from this rule. Specifically, in this section for one space
dimension, we solve the two equations

f = ∂p

∂t
+ ∂e

∂x
, g = 1

c2

∂e

∂t
+ ∂p

∂x
, (4.75)

where e and p are given, respectively, by

e = m0

(1 − (u/c)2)1/2 , p = m0u

(1 − (u/c)2)1/2 ,

for the case f �= 0 and g = 0. From the condition that g = 0, there exists �(x, t)
such that

p = 1

c2

∂�

∂t
, e = −∂�

∂x
,

so that from the energy relationship e2 − (pc)2 = e20 and (4.75)1, we have

(
∂�

∂x

)2

− 1

c2

(
∂�

∂t

)2

= e20,
1

c2

∂2�

∂t2
− ∂2�

∂x2
= f, (4.76)

where e0 = m0c
2, and the velocity u(x, t) is assumed to be given by

u

c
= pc

e
= −1

c

(∂�/∂t)

(∂�/∂x)
.

From the relation (4.76)1, we can without loss of generality introduce a function
�(x, t) such that
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∂�

∂x
= e0 cosh�, 1

c

∂�

∂t
= e0 sinh�, (4.77)

so that the velocity u(x, t) becomes

u

c
= pc

e
= −1

c

(∂�/∂t)

(∂�/∂x)
= −tanh�, (4.78)

and together these relations imply that d�/dt = 0 since we have

d�

dt
= ∂�

∂t
+ u∂�

∂x
= e0c sinh�− e0c tanh� cosh� = 0.

From the two expressions for the second derivative ∂2�/∂t∂x, we obtain
c∂�/∂x = tanh�(∂�/∂t), while a second equation is obtained from (4.76)2,
which when combined yield

∂�

∂x
= f

e0
sinh�,

∂�

∂t
= cf

e0
cosh�, (4.79)

which are well-defined provided that f (x, t) is a solution of the first order partial
differential equation

sinh�
∂f

∂t
− c cosh�∂f

∂x
= −cf

2

e0
, (4.80)

which again we may formally solve using Lagrange’s characteristic method. From
(4.79) we have

d�

dt
= ∂�

∂t
+ u∂�

∂x
= cf

e0 cosh�
.

Again, in order to solve (4.80), we introduce a characteristic parameter s and the
three ordinary differential equations

dx

ds
= −c cosh�, dt

ds
= sinh�,

df

ds
= −cf

2

e0
. (4.81)

so that on this occasion

dx

dt
= −c coth� = − (∂�/∂t)

(∂�/∂x)
. (4.82)

We note especially that for this present case f �= 0 and g = 0, from the two
equations (4.78 and 4.82), dx/dt does not coincide with the velocity u, but rather
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satisfies the de Broglie relationship such that their product equals c2, and therefore
corresponds to the complementary velocity.

From (4.82), one integral is �(x, t) = constant, and by division of the first and
the third differential equations (4.81), we obtain

df

dx
= f 2

e0 cosh�
.

and since for the purposes of this integration, �(x, t) = constant, a second integral
is found to be 1/f + x/e0 cosh� = constant, so that the general solution of (4.80),
which is obtained by equating one integral to be an arbitrary function of the second
integral, may be expressed in the form

f (x, t) = − e0 cosh�

x − x0(�), (4.83)

where x0(�) denotes an arbitrary function of �. On substitution of this expression
into (4.80), we may readily confirm that (4.83) constitutes a solution of the equation
without further restriction on the arbitrary function x0(�).

The details for the determination of �(x, t), although virtually identical to those
for (4.68) for the determination of φ(x, t), are nevertheless sufficiently different to
warrant inclusion. From Eqs. (4.79) and (4.83), we are required to integrate

∂�

∂x
= − sinh� cosh�

x − x0(�) ,
∂�

∂t
= − c cosh2�

x − x0(�), (4.84)

so as before we introduce ζ = x − x0(�) as the working variable and change the
independent variables from (x, t) to (ζ, t), then from the relations

∂�

∂x
= ∂�∗

∂ζ

(
1 − x ′

0(�)
∂�

∂x

)
,

∂�

∂t
= ∂�∗

∂t
+ ∂�∗

∂ζ

(
−x ′

0(�)
∂�

∂t

)
,

where we again use an asterisk to make a distinction between the partial derivatives,
so that �∗ designates partial derivatives with respect to (ζ, t) as the independent
variables, namely, �(x, t) = �∗(ζ, t). From these relations we may deduce

∂�

∂x
= ∂�∗/∂ζ(

1 + x ′
0(�)(∂�

∗/∂ζ )
) = − sinh� cosh�

ζ
,

∂�

∂t
= ∂�∗/∂t(

1 + x ′
0(�)(∂�

∗/∂ζ )
) = −c cosh

2�

ζ
,

which give rise to the expressions
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∂�∗

∂ζ
= −1(
ζ/(sinh� cosh�)+ x ′

0(�)
) , ∂�∗

∂t
= −c coth�(
ζ/(sinh� cosh�)+ x ′

0(�)
) .

(4.85)

Now the two expressions (4.85) result in the first order partial differential
equation

∂�∗

∂t
− c coth�∂�

∗

∂ζ
= 0,

which can be readily solved using Lagrange’s characteristic method to deduce ζ +
ct coth� = G(�), where G(�) denotes an arbitrary function and on substitution
of this relation into either of Eqs. (4.85) yields the following relation between the
arbitrary functions G(�) and x0(�), namely,

dG(�)

d�
+ G(�)

sinh� cosh�
= −dx0(�)

d�
.

Integration of this equation yields

G(�) = −x0(�)+ coth�
ˆ
x0(�)d�

cosh2�
,

as the formal connection between the two arbitrary functions G(�) and x0(�), so
that from ζ + ct coth� = G(�), we have finally the formal integral for Eqs. (4.84)
becomes

x + ct coth� = coth�
ˆ
x0(�)d�

cosh2�
.

On re-arrangement we obtain

x tanh�+ ct =
ˆ
x0(�)d�

cosh2�
, (4.86)

which on using u = −c tanh� from (4.78) can be alternatively written as

x
u

c
− ct = −

ˆ
x0(�)d(tanh�) = 1

c

ˆ
x∗
0 (u)du, (4.87)

where x∗
0 (u) denotes x0(�) with � replaced by − tanh−1(u/c), and we note that

the integral (4.87) has the structure of the second Lorentz invariant η = px − et =
e(xu− c2t)/c2 previously defined in this chapter.

Special Case Arising from x0(�) = 0 The special case x0(�) �= 0 is the
complementary solution of the special case u(x, t) = x/t arising in the previous
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section. Necessarily u = −c tanh� = c2t/x, and again this solution allows both
sub-luminal (x > ct) and superluminal (x < ct) motion, and we have

e = e0x

(x2 − (ct)2)1/2 , p = e0t

(x2 − (ct)2)1/2 ,
c2p

e
= c2t

x
= u,

with particle paths arising from dx/dt = c2t/x, namely, x2 − (ct)2 = constant,
and the total or material time derivative du/dt is given by

du

dt
= ∂u

∂t
+ u∂u

∂x
= c2

x

{
1 −

(
ct

x

)2
}

= 0.

From these explicit expressions we may readily verify f �= 0 and g = 0; thus

f = ∂p

∂t
+ ∂e

∂x

= e0
{

1

(x2 − (ct)2)1/2 + (ct)2

(x2 − (ct)2)3/2
}

+ e0
{

1

(x2 − (ct)2)1/2 − x2

(x2 − (ct)2)3/2
}
,

= e0

(x2 − (ct)2)1/2 ,

g = 1

c2

∂e

∂t
+ ∂p

∂x
= e0

{
xt

(x2 − (ct)2)3/2 − xt

(x2 − (ct)2)3/2
}

= 0.

In this special case, the second Lorentz invariant η(x, t) = 0, while the first
Lorentz invariant ξ(x, t) is given by

ξ(x, t) = e(x − ut) = e0x

(x2 − (ct)2)1/2
{
x − (ct)2

x

}
= e0(x2 − (ct)2)1/2,

which is completely in agreement with the relation ξ2 − (cη)2 = e20(x2 − (ct)2).
Again while the velocity u(x, t) = c2t/x is an extremely special case, it is

sufficiently simple and tractable to calculate explicit formulae and to demonstrate
certain important characteristics. In this case, at some fixed point in space, say
x = a, we have

u(a, t)

c
=
{
a/ct > 1 if ct < a sub-luminal,

a/ct < 1 if ct > a superluminal,

which as far as an observer is concerned means that shortly after time t = a/c, a
particle moving at a velocity just below that of light suddenly disappears.

Special Case Arising from x0(�) = (cη0/e0) sinh� The special case x0(�) =
(cη0/e0) sinh� also gives rise to an explicit solution, where η0 denotes an arbitrary
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constant. In this case the integral in (4.86) may be evaluated immediately to obtain

x
u

c
− ct = −cη0

e0

ˆ
sinh�dφ

cosh2�
= cη0

e0 cosh�
= cη0

e0

{
1 −

(u
c

)2}1/2
, (4.88)

on neglecting a non-essential arbitrary additive constant. This case corresponds to
assuming that the second Lorentz invariant is a constant, namely, η(x, t) = px −
et = e(xu/c−ct)/c = η0. Here, following the analysis leading to (4.24), (4.25) and
(4.26), we note again that by squaring (4.88) we may deduce the quadratic equation

(u
c

)2 {
x2 +

(
cη0

e0

)2
}

− 2xct
(u
c

)
+
{
(ct)2 −

(
cη0

e0

)2
}

= 0,

which may be readily solved to give

u(x, t)

c
= xct ± (cη0/e0)

{
x2 − (ct)2 + (cη0/e0)2

}1/2
{
x2 + (cη0/e0)2

} ,

noting that the two limiting cases η0 −→ 0 give the above special solution u(x, t) =
c2t/x arising from x0(�) = 0, while η0 −→ ∞ corresponds to u = ±c. In view
of the constraint ξ2 − (cη)2 = e20(x

2 − (ct)2), these solutions take on a number of
alternative forms including

u(x, t)

c
= xct ± (cη0/e20)ξ0(x, t){

x2 + (cη0/e0)2
} ,

where ξ0(x, t) is assumed to be defined explicitly by the relation ξ0(x, t)/e0 =
± {x2 − (ct)2 + (cη0/e0)

}2
.

Again, it proves convenient to introduce the working variables

λ = ξ0(x, t)

e0
, μ = cη0

e0
,

a = x

(x2 − λ2)1/2 = x

((ct)2 − μ2)1/2
= cosh θ∗, λ

(x2 − λ2)1/2 = sinh θ∗,

b = ct

((ct)2 − μ2)1/2
= coshφ∗, μ

((ct)2 − μ2)1/2
= sinhφ∗,

noting again that here μ is a constant and giving rise to the important relations

x2 − λ2 = (ct)2 − μ2, λ = ±(x2 + μ2 − (ct)2)1/2,
u(x, t)

c
= ab ± (a2 − 1)1/2(b2 − 1)1/2 = cosh(θ∗ + φ∗) = coshψ∗,



4.8 Vanishing of Force g in Direction of Time 133

where ψ∗ = θ∗ + φ∗, and to clarify matters we have adopted the positive sign
in the expression for the velocity. If we adopt the negative sign, then u(x, t)/c =
− cosh(θ∗ − φ∗) and a similar analysis applies. Evidently, in both cases u/c > 1,
and it is important to note that in this analysis, we are making an implicit hypothesis
that any superluminal motion is only possible within the energy interpretation e =
e0/(1−(u/c)2)1/2, provided that e20 < 0, and formally we assume this to be the case.
Alternatively, we might achieve the same outcome simply by adopting the formulae
e = e0/((u/c)2 − 1)1/2 and p = e0u/c2((u/c)2 − 1)1/2 for u/c > 1.

For the positive case, we have

e(x, t) = e0

((u/c)2 − 1)1/2
= e0

sinh(θ∗ + φ∗)
= e0

sinhψ∗ ,

p(x, t) = e0u

c2((u/c)2 − 1)1/2
= e0

c tanh(θ∗ + φ∗)
= e0

c tanhψ∗ ,

where the angle ψ∗ = θ∗ + φ∗ is given explicitly by the expression

ψ∗(x, t) = sinh−1
(

λ

(x2 − λ2)1/2
)

+ sinh−1
(

μ

((ct)2 − μ2)1/2

)
,

so that we may evaluate the forces f and cg from the general expressions; thus

f = ∂p

∂t
+ ∂e

∂x
= − e0

c sinh2 ψ∗

(
∂ψ∗

∂t
+ c coshψ∗ ∂ψ∗

∂x

)
= 0,

g = 1

c2

∂e

∂t
+ ∂p

∂x
= − e0

c2 sinh2 ψ∗

(
coshψ∗ ∂ψ∗

∂t
+ c ∂ψ

∗

∂x

)
= − e0

c2 coshψ∗
∂ψ∗

∂t
= − e0

cλ
,

on making use of the formulae

∂ψ∗

∂t
= − c(xct + λμ)

λ((ct)2 − μ2)
,

∂ψ∗

∂x
= 1

λ
,

coshψ∗ = cosh(θ∗ + φ∗) = cosh θ∗ coshφ∗ + sinh θ∗ sinhφ∗ = xct + λμ
(ct)2 − μ2

,

and again the expression for g is most easily obtained using the result for f =
0. Again, the present analysis is greatly facilitated by both the assumption that
η(x, t) = constant and the judicious use of the identity (ct)2 − λ2 = x2 − μ2

to evaluate the partial derivatives. We again observe that the approach adopted in
this and the previous sections for the two cases η(x, t) = constant and ξ(x, t) =
constant might also apply to more general situations.

From Eqs. (4.77) and (4.79), we may readily show that the Jacobian becomes

∂(�,�)

∂(x, t)
= ∂�

∂x

∂�

∂t
− ∂�

∂t

∂�

∂x
= −cf,
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and here we assume that f is nonvanishing. As in the previous section, this equation
allows an alternative analysis to the Lagrange’s characteristic method by assuming
that f (x, t) = f (�,�), so that Eq. (4.80) becomes

sinh�

(
∂f

∂�

∂�

∂x
+ ∂f

∂�

∂�

∂x

)
− c cosh�

(
∂f

∂�

∂�

∂t
+ ∂f

∂�

∂�

∂t

)
= −cf

2

e0
,

which on using (4.77) and (4.79) this equation simplifies to give simply

∂f

∂�
=
(
f

e0

)2

,

which may be readily integrated to yield

f (�,�) = e20

�0(�)−� ,

where �0(�) denotes an arbitrary function of �.
Further, to summarise the various relationships for the two distinct problems, we

have for f = 0 and g �= 0

u

c
= −c (∂ψ/∂x)

(∂ψ/∂t)
= − tanhφ = −1

c

(∂φ/∂t)

(∂φ/∂x)
,

with particle paths given by φ(x, t) = constant, while in this present section for
f �= 0 and g = 0, we have

u

c
= −1

c

(∂�/∂t)

(∂�/∂x)
= − tanh� = −c (∂�/∂x)

(∂�/∂t)
,

with particle paths given by �(x, t) = constant, and a number of simple relations
now follow.

Firstly, simply by equating the two alternative expressions for the same velocity
u(x, t), it is clear that for the two problems that we have,

∂φ

∂t

∂ψ

∂t
= c2 ∂φ

∂x

∂ψ

∂x
,

∂�

∂t

∂�

∂t
= c2 ∂�

∂x

∂�

∂x
, (4.89)

and secondly, if we impose the requirement that the two distinct velocities cor-
respond to the two solutions of the same physical problem, namely, the wave
and particulate solutions, so that we impose two versions of the same de Broglie
condition, then we may verify the Jacobians

∂(φ,�)

∂(x, t)
= ∂φ

∂x

∂�

∂t
− ∂φ

∂t

∂�

∂x
= 0,

∂(ψ,�)

∂(x, t)
= ∂ψ

∂x

∂�

∂t
− ∂ψ

∂t

∂�

∂x
= 0,
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and from which we may deduce that � = F(φ) and � = G(ψ), where F and
G denote arbitrary functions of the indicated argument. Thus, the requirement that
the two problems are complementary is equivalent to the condition that the (φ,ψ)
and (�,�) constant curves coincide, noting from (4.89) that these networks are
non-orthogonal.

4.9 Clairaut’s Differential Equation with Parameter u

In this section, we make the assumption that the two Lorentz invariants ξ = ex −
c2pt and η = px−et are functions of the velocity u only, and we frame the particle-
wave formulation in terms of Clairaut’s differential equation using the velocity u
as the parameter. In order to present this formulation, we need previously stated
equations from this present chapter which for convenience we list here. Firstly, from
(4.31) the two Lorentz invariants ξ = ex − c2pt and η = px − et , satisfy ξ2 −
(cη)2 = e20(x2 − (ct)2) and the following equations:

xf − c2tg = ∂η

∂t
+ ∂ξ

∂x
, xg − tf = 1

c2

∂ξ

∂t
+ ∂η

∂x
, (4.90)

where f (x, t) and g(x, t) denote arbitrary applied forces and where, in this instance,

f = dp/dt . By eliminating the mixed partial derivatives ∂2ξ
∂x∂t

and ∂2η
∂x∂t

, we might
deduce from (4.90) the following two important equations:

(
x
∂g

∂t
+ c2t ∂g

∂x

)
−
(
x
∂f

∂x
+ t ∂f
∂t

+ 2f

)
= 1

c2

∂2ξ

∂t2
− ∂2ξ

∂x2
, (4.91)

1

c2

(
x
∂f

∂t
+ c2t ∂f

∂x

)
−
(
x
∂g

∂x
+ t ∂g
∂t

+ 2g

)
= 1

c2

∂2η

∂t2
− ∂2η

∂x2
,

noting the evident symmetries with regard to both space and time. Bearing in mind
that the two Lorentz invariants ξ and η involve the variable (ct)2 − x2 through the
relation ξ2− (cη)2 = e20(x2− (ct)2), it may be worthwhile noting that the two force
functional forms f (x, t) for which either of

x
∂f

∂t
+ c2t ∂f

∂x
= 0, x

∂f

∂x
+ t ∂f
∂t

+ 2f = 0,

are, respectively, f (x, t) = f ((ct)2 − x2) and f (x, t) = f (x/t)/x2, which are
connected since a wave velocity w = x/t has a corresponding particle velocity
u = c2/w = c2t/x for which the integral curves arising from dx/dt = c2t/x are
(ct)2 − x2 = constant.

Secondly, from (4.48) by taking the total time derivative d/dt of the two
invariants, we have obtained the following differential relations:
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e
dξ

dt
= f c2η, e

dη

dt
= f ξ − e20. (4.92)

The three equations (4.90), (4.91), and (4.92) constitute results necessary to provide
a complete description of the particle-wave formulation in terms of Clairaut’s
differential equation using the velocity u as the parameter.

We first determine expressions for the two partial derivatives ∂u/∂t and ∂u/∂x.
From the two basic one-dimensional equations (4.30) and the two expressions for
the momentum and particle energy, namely, p(x, t) = e0u/c

2(1 − (u/c)2)1/2 and
e(x, t) = e0/(1 − (u/c)2)1/2, where e0 denotes the rest energy, we may deduce

∂u

∂t
+ u∂u

∂x
= f c2

e0

{
1 −

(u
c

)2}3/2
,

∂u

∂x
+ u

c2

∂u

∂t
= gc2

e0

{
1 −

(u
c

)2}3/2
.

On solving these equations as two equations in the two unknowns ∂u/∂x and ∂u/∂t ,
we obtain the following two expressions:

∂u

∂x
= gc2 − f u

e
,

∂u

∂t
= c2(f − gu)

e
, (4.93)

which we adopt to determine

1

c2

(
∂u

∂t

)2

−
(
∂u

∂x

)2

= c2

e2
(f 2 − (gc)2)

{
1 −

(u
c

)2}
. (4.94)

In order that (4.93) constitute two well-defined expressions for the first order partial

derivatives, the second order mixed partial derivatives ∂2u
∂x∂t

and ∂2u
∂t∂x

must coincide,
and from this condition and (4.93), we obtain

c2
(
∂g

∂t
− ∂f

∂x

)
− u

(
∂f

∂t
− c2 ∂g

∂x

)
= c2

e
(f 2 − (gc)2),

which we use as a means of expressing the first term in terms of the other two terms;
thus

(
∂g

∂t
− ∂f

∂x

)
= u

c2

(
∂f

∂t
− c2 ∂g

∂x

)
+ 1

e
(f 2 − (gc)2). (4.95)

We now use the relations (4.93) to determine an expression for the quantity

involving the second order derivatives, namely, 1
c2
∂2u
∂t2

− ∂2u
∂x2

, so we partially
differentiate (4.93)1 with respect to x and (4.93)2 with respect to t and make use
of the expressions themselves to eventually deduce
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∂2u

∂x2
= 1

e

(
c2
∂g

∂x
− u∂f

∂x

)
− (gc2 − f u)
(ec)2(1 − (u/c)2)

(
f c2

{
1 −

(u
c

)2}+ u(gc2 − f u)
)
,

1

c2

∂2u

∂t2
= 1

e

(
∂f

∂t
− u∂g

∂t

)
− (f − gu)
e2(1 − (u/c)2)

(
gc2

{
1 −

(u
c

)2}+ u(f − gu)
)
.

On combining these two expressions and making use of (4.95), we obtain finally

1

c2

∂2u

∂t2
− ∂2u

∂x2
= 1

e

(
∂f

∂t
− c2 ∂g

∂x

){
1 −

(u
c

)2}− 3u

e2
(f 2 − (gc)2), (4.96)

which we observe is in complete agreement with (4.5) for which the velocity u(x, t)
satisfies the non-linear partial differential equation

{
1 −

(u
c

)2}( 1

c2

∂2u

∂t2
− ∂2u

∂x2

)
+ 3u

c2

{
1

c2

(
∂u

∂t

)2

−
(
∂u

∂x

)2
}

= 0, (4.97)

which arises from the fact that if ∂f
∂t

= c2
∂g
∂x
, then the momentum p(x, t) satisfies

the wave equation. Thus, in this case we have from (4.94) and (4.97) that

1

c2

∂2u

∂t2
− ∂2u

∂x2
= −3u

e2
(f 2 − (gc)2).

which is entirely consistent with the general result (4.96).
We note in passing that from the expressions (4.93), the total time derivative of

u(x, t) does not depend explicitly on g(x, t) and simplifies to yield

du

dt
= ∂u

∂t
+ u∂u

∂x
= f c2

e

{
1 −

(u
c

)2}
, (4.98)

which is entirely consistent with f = dp/dt and p = mu = eu/c2. We may wish
to examine Eq. (4.98) rewritten as follows:

e
du

dt
= c2f

{
1 −

(u
c

)2}
,

because this version reveals the full options that are available if one side of the
equation vanishes. For example, if du/dt = 0, then either f = 0 or u = ±c or both
of these conditions hold. Similarly, if u = ±c, then either e = 0 (viz. e0 = 0) or
du/dt = 0 or both.

We now make the assumption that the Lorentz invariants ξ(x, t) = e(x−ut) and
η(x, t) = e(ux−c2t)/c2 are functions of the velocity u only, namely, ξ(x, t) = ξ(u)
and η(x, t) = η(u), so that we have
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x − ut = ξ(u)

e0
(1 − (u/c)2)1/2 = A(u), (4.99)

xu− c2t = c2η(u)

e0
(1 − (u/c)2)1/2 = B(u),

where A(u) and B(u) denote the shown functions of u only. In the following
development, we may either use ξ(u) and η(u) or A(u) and B(u) as entirely
equivalent formulations. We make the comment in passing that since in the
development below, we use the velocity u as a parametric variable with both x and t
defined by certain functions of u (see Eqs. (4.100)), the extent of the assumption
ξ(x, t) = ξ(u) and η(x, t) = η(u) is not entirely clear and is something of a
technical question.

The first equation (4.99) is in the form of Clairaut’s differential equation x−ut =
A(u), which on taking the total time derivative yields

du

dt

(
t + A′(u)

) = 0,

so that either du/dt = 0, corresponding to the constancy of the velocity of light, or
t + A′(u) = 0, in which case

t = −A′(u), x = A(u)− uA′(u), (4.100)

and we may check that these parametric equations provide the desired expression
for the velocity; thus

dx

dt
= A′(u)− uA′′(u)− A′(u)

−A′′(u)
= u,

as required. In addition, on taking the total time derivative of t = −A′(u), we have
the simple relationship

du

dt
= −1

A′′(u)
. (4.101)

It is perhaps important to point out that the option du/dt = 0 as well as implying
the constancy of the velocity of light also embraces non-constant velocities such as
u(x, t) = x/t considered in the previous section.

If we now turn to the second equation of (4.99), namely, xu− c2t = B(u), then
on using the parametric relations (4.100), we have the basic connection between the
two functions A(u) and B(u); thus

B(u) = c2
{
1 −

(u
c

)2}
A′(u)+ uA(u), (4.102)
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and it is not difficult to show that this equation coincides with (4.92)1, since on using

f = dp

dt
= e0

c2(1 − (u/c)2)3/2
du

dt
,

Equations (4.92) become, respectively,

ξ ′(u) = η(u)

(1 − (u/c)2) , η′(u) = ξ(u)

c2(1 − (u/c)2) − e0(1 − (u/c)2)1/2
du/dt

,

(4.103)

noting especially that both relations are derived on the assumption that du/dt �= 0,
which for the time being we assume to be the case.

Illustration of the Differential Conditions (4.103) On taking the total time
derivative of (cη)2 − ξ2 = e20((ct)2 − x2), we may deduce

(
c2η(u)η′(u)− ξ(u)ξ ′(u)

) du
dt

= e20(c2t − xu) = −e0c2η(u)(1 − (u/c)2)1/2,
(4.104)

on using (4.99)2. Now on adopting the differential conditions (4.103), Eq. (4.104)
becomes

(
c2η(u)

{
ξ(u)

c2(1 − (u/c)2) − e0(1 − (u/c)2)1/2
du/dt

}
− ξ(u)η(u)

(1 − (u/c)2)
)
du

dt

= −e0c2η(u)(1 − (u/c)2)1/2,

which is evidently properly satisfied, so that the differential conditions (4.103) are
entirely consistent with the integral (cη)2 − ξ2 = e20((ct)2 − x2), on the assumption
that the total time derivative du/dt �= 0.

From the basic relations A(u) = ξ(u)(1−(u/c)2)1/2/e0 and B(u) = c2η(u)(1−
(u/c)2)1/2/e0, we may show that Eq. (4.102) coincides with (4.103)1. Further, on
taking the total time derivative of xu− c2t = B(u), we obtain

du

dt

(
x − B ′(u)

) = c2
{
1 −

(u
c

)2}
,

and on using x = A(u)− uA′(u) and (4.101), this equation becomes

B ′(u) = c2
{
1 −

(u
c

)2}
A′′(u)− uA′(u)+ A(u), (4.105)

which is evidently entirely consistent with the derivative with respect to u of (4.102).
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First Illustration of Clairaut’s Differential Equation In the special case that the
first Lorentz invariant is constant, ξ(u) = ξ0, and the second is zero, η(u) = 0, we
have A(u) = ξ0(1 − (u/c)2)1/2/e0 and B(u) = 0, and the latter condition yields

u = c2t

x
= c2A′(u)
uA′(u)− A(u) , (4.106)

which on re-arrangement is simply (4.102) with B(u) = 0. Further, ξ(u) = ξ0,
η(u) = 0 andA(u) = ξ0(1−(u/c)2)1/2/e0 properly satisfy both of (4.103). We also
observe that for the associated wave velocity u(x, t) = x/t for which du/dt = 0,
formally in place of (4.106), we have

u = x

t
= uA′(u)− A(u)

A′(u)
,

resulting in A(u) = B(u) = 0 and therefore, of course, ξ(u) = η(u) = 0.

Second Illustration of Clairaut’s Differential Equation To provide a second
simple analytical example, we pose (4.103)2 in the following form:

η′(u)
(1 − (u/c)2)1/2 − ξ(u)

u

(
1

(1 − (u/c)2)1/2
)′

= e0A′′(u),

and we choose ξ(u) such that this equation becomes an exact differential, namely,
we adopt ξ(u)/u = −η(u) so that the above equation becomes

η(u)

(1 − (u/c)2)1/2 = e0A′(u)+ C1,

where C1 denotes the arbitrary constant of integration. From η(u) = −ξ(u)/u and
A(u) = ξ(u)(1 − (u/c)2)1/2/e0, this differential relation becomes

ξ ′(u)+ ξ(u)

u
= − C1

(1 − (u/c)2)1/2 ,

which upon integration yields

ξ(u) = C1c
2

u
(1 − (u/c)2)1/2 + C2

u
, η(u) = −C1c

2

u2
(1 − (u/c)2)1/2 − C2

u2
,

where C2 denotes a second arbitrary constant of integration. However, from the
relation ξ ′(u) = η(u)/(1 − (u/c)2), we may readily establish that we require C2 =
0 and therefore two simple analytical expressions satisfying both of the relations
(4.103) become
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ξ(u) = C1c
2

u
(1 − (u/c)2)1/2, η(u) = −C1c

2

u2
(1 − (u/c)2)1/2, (4.107)

where C1 denotes an arbitrary constant. In terms of A(u) and B(u), these relations
become

A(u) = C1c

e0

( c
u

− u

c

)
, B(u) = C1c

2

e0

{
1 −

( c
u

)2}
,

and from which we may confirm the relation (4.102). From the expressions (4.107)
and ξ2 − (cη)2 = e20(x

2 − (ct)2), we may readily deduce that the particle velocity
u(x, t) adopts one of the four allowable alternatives

u(x, t) = ±c(
1 ± e0((ct)2 − x2)1/2/C1c

)1/2 .

Summary for Clairaut’s Differential Equation Using Parameter u The assump-
tion that the Lorentz invariants are functions of u only gives rise to two entirely
consistent differential conditions x − ut = A(u) and xu − c2t = B(u), where
A(u) and B(u) are defined in terms of the Lorentz invariants by A(u) = ξ(u)(1 −
(u/c)2)1/2/e0 and B(u) = c2η(u)(1 − (u/c)2)1/2/e0. The important parametric
relations are

t = −A′(u), x = A(u)− uA′(u), du

dt
= −1

A′′(u)
, (4.108)

and it eventuates that the key relationships between ξ(u) and η(u) or between A(u)
and B(u) are either of the equivalent relations

ξ ′(u) = η(u)

(1 − (u/c)2) , B(u) = c2
{
1 −

(u
c

)2}
A′(u)+ uA(u). (4.109)

For example, the parametric relations (4.108) along with (4.109)1 automatically
ensure the validity of both ξ2 − (cη)2 = e20(x

2 − (ct)2) and the relation (4.103)2
which can be demonstrated by direct substitution. In the former case, we have

(cη)2 − ξ2 = c2
{
1 −

(u
c

)2}2
ξ ′2 − ξ2 = e20((ct)2 − x2) = e20(ct − x)(ct + x),

= e20
{
c
(
1 − u

c

)
A′(u)+ A(u)

} {
c
(
1 + u

c

)
A′(u)− A(u)

}
,

= e20
[
c2
{
1 −

(u
c

)2}2
A′(u)2 + 2uA(u)A′(u)− A(u)2

]
,
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which on using A(u) = ξ(u)(1 − (u/c)2)1/2/e0 and its derivative can be shown
to be identically satisfied. Similarly for the differential relation (4.103)2, on using
(4.109)1, we have

η′(u) =
{
1 −

(u
c

)2}
ξ ′′(u)− 2u

c2
ξ ′(u) = ξ(u)

c2(1 − (u/c)2) − e0(1 − (u/c)2)1/2
du/dt

,

= ξ(u)

c2(1 − (u/c)2) + e0(1 − (u/c)2)1/2A′′(u),

which is equivalent to

e0A
′′(u) = (1 − (u/c)2)1/2ξ ′′(u)− 2uξ ′(u)

c2(1 − (u/c)2)1/2 − ξ(u)

c2(1 − (u/c)2)3/2 ,

and this is simply the second derivative of the relation A(u) = ξ(u)(1 −
(u/c)2)1/2/e0. Thus to recapitulate, the key relations comprise the three parametric
equations (4.108) coupled with either of the equivalent equations (4.109).

Up to this point, we have only examined what might be termed the “kinematics”
of the motion, without serious reference to the mechanical aspects embodied in
either of Eqs. (4.90) or (4.91) which are formulated in terms of arbitrary applied
forces f (x, t) and g(x, t). As shown below, there are no “universal” allowable
Lorentz invariants ξ(u) and η(u) applying to all applied forces, and in order
to proceed further, we need to make a more precise prescription of f (x, t) and
g(x, t). The above analysis is useful since it provides insight into the particle-wave
duality, in the sense that either under Lorentz transformation or under the space-
time transformation x′ = ct and t ′ = x/c, the formulation in terms of Clairaut’s
differential equation is preserved. In the former case, this is obvious, while in
the latter case, the velocity transforms as u′ = c2/u, and the Lorentz invariants
ξ = e(x − ut) and η = e(ux − c2t)/c2 become

ξ ′ = e′(x′ − u′t ′) = e0(ct − (cx/u))
((c/u)2 − 1)1/2

= − e0(x − ut)
(1 − (u/c)2)1/2 = −ξ,

η′ = e′

c2
(u′x′ − c2t ′) = e0((c

3t/u)− cx)
((c/u)2 − 1)1/2

= − e0(ux − c2t)
(1 − (u/c)2)1/2 = −η,

which is based on the assumption of a formal interpretation for the energy e′ for
superluminal velocities u′, namely, e′ = e0/((u′/c)2−1)1/2 = e0/((c/u)2−1)1/2 =
eu/c.

The Lorentz invariants are connected to the applied forces f (x, t) and g(x, t)
through either of Eqs. (4.90) or (4.91) with the former the stronger version, since the
latter equations involve partial derivatives of the former equations. In the following
we examine both sets of equations.
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Arbitrary Applied Forces f (x, t) and g(x, t) with (4.90) From the two equa-
tions (4.90) and using the expressions (4.93) for the partial derivatives ∂u/∂x and
∂u/∂t along with the expressions (4.103) for ξ ′(u) and η′(u), we obtain

xf − c2tg =
(

ξ(u)

(1 − (u/c)2) + e0c2
{
1 −

(u
c

)2}1/2
A′′(u)

)
(f − gu)

e
+ η(u)(gc2 − f u)

e(1 − (u/c)2) ,

(4.110)

xg − tf = η(u)(f − gu)
e(1 − (u/c)2) +

(
ξ(u)

c2(1 − (u/c)2) + e0
{
1 −

(u
c

)2}1/2
A′′(u)

)
(gc2 − f u)

e
.

On collecting the coefficients of the linear terms in f and g, using the basic
definitions of ξ(u) and η(u) (Eqs. (4.99)) in terms of A(u) and B(u) and the
parametric relationships (4.100) for x and t , and then using the relationship (4.102)
to eliminate B(u), we may ultimately simplify (4.110) to become, respectively,

fX + gc2Y = 0, f Y + gX = 0,

where the quantities X and Y are given by

X = −c2
{
1 −

(u
c

)2}
A′′(u), Y = u

{
1 −

(u
c

)2}
A′′(u).

Assuming for the time being that u �= ±c and that A′′(u) �= 0, these equations
become simply

−f + gu = 0, f u− gc2 = 0,

which only coincide if f = ±gc and in which case necessarily u = ±c, noting,
however, that from (4.101), namely, du/dt = −1/A′′(u), so that within this
parametric formulation, A′′(u) = 0 is not an option unless u = ±c and the
rest energy e0 also vanishes in such a manner as to be physically meaningful.
However, clearly the intent of this parametric formulation is to exploit u as a variable
parameter, and therefore the approach is not sensible with u = ±c.

Prescribed Applied Forces f (u) = f0(1 + λu/c) and cg(u) = f0(λ + u/c)

with (4.90) In the following chapters, we examine in some detail an exact solution
arising from assuming the particular prescribed applied forces f (u) = f0(1+λu/c)
and cg(u) = f0(λ + u/c) where f0 and λ denote arbitrary constants. Here as
an illustrative example, we adopt the same applied forces in conjunction with the
two equations (4.90). The eventual outcome is unchanged from the above outcome
for arbitrary applied forces f (x, t) and g(x, t), except that the details are more
transparent resulting in a more insightful calculation. From the force relations
f (u) = f0(1 + λu/c), cg(u) = f0(λ + u/c) and (4.90), the left-hand sides of
this equation become
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xf − c2tg = f0
(
A(u)+ λB(u)

c

)
, xg − tf = f0

c2
(B(u)+ λcA(u)) ,

while from (4.93) we obtain the following expressions for the partial derivatives
∂u/∂x and ∂u/∂t ; thus

∂u

∂x
= cf0λ

e

{
1 −

(u
c

)2}
,

∂u

∂t
= c2f0

e

{
1 −

(u
c

)2}
,

Using these expressions and (4.103) for the derivatives ξ ′(u) and η′(u), we find that
the right-hand sides of (4.90) simplify to give

∂η

∂t
+ ∂ξ

∂x
= f0

(
c2
{
1 −

(u
c

)2}
A′′(u)+ A(u)

)
+ f0λB(u)

c
, (4.111)

1

c2

∂ξ

∂t
+ ∂η

∂x
= f0B(u)

c2
+ f0λ

c

(
c2
{
1 −

(u
c

)2}
A′′(u)+ A(u)

)
,

so that on comparing the left- and right-hand sides of (4.90), we again require
that the term involving A′′(u) must vanish, and accordingly bearing in mind the
assumption that u(x, t) �= ±c, there are again no solutions of these mechanical
equations with Lorentz invariants that are functions of u only.

We observe that in the case when the first Lorentz invariant is constant, ξ(u) =
ξ0, so that A(u) = ξ0(1 − (u/c)2)1/2/e0, and then we have

c2
{
1 −

(u
c

)2}
A′′(u)+ A(u) = − ξ0(u/c)

2

e0(1 − (u/c)2)1/2 , B(u) = − ξ0u(u/c)
2

e0(1 − (u/c)2)1/2 ,

so that Eqs. (4.111) become

∂η

∂t
+ ∂ξ

∂x
= − f0ξ0(u/c)

2

e0(1 − (u/c)2)1/2
(
1 + λu

c

)
= − ξ0(u/c)

2f (u)

e0(1 − (u/c)2)1/2 ,

1

c2

∂ξ

∂t
+ ∂η

∂x
= − f0ξ0(u/c)

2

ce0(1 − (u/c)2)1/2
(
λ+ u

c

)
= − ξ0(u/c)

2g(u)

e0(1 − (u/c)2)1/2 .

Arbitrary Applied Forces f (x, t) and g(x, t) with (4.91) On using the results
that

1

c2

∂2ξ

∂t2
− ∂2ξ

∂x2
= ξ ′(u)

(
1

c2

∂2u

∂t2
− ∂2u

∂x2

)
+ ξ ′′(u)

(
1

c2

(
∂u

∂t

)2

−
(
∂u

∂x

)2
)
,
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1

c2

∂2η

∂t2
− ∂2η

∂x2
= η′(u)

(
1

c2

∂2u

∂t2
− ∂2u

∂x2

)
+ η′′(u)

(
1

c2

(
∂u

∂t

)2

−
(
∂u

∂x

)2
)
,

and (4.95) along with the two expressions (4.94) and (4.96), we may eventually
show that Eqs. (4.91) become

− 2f = c2(f 2 − (gc)2)
e

{
1 −

(u
c

)2}
A′′(u),

− 2g = c2(f 2 − (gc)2)
e

({
1 −

(u
c

)2}2
A′′(u)

)′
+
(
∂f

∂t
− c2 ∂g

∂x

){
1 −

(u
c

)2}2
A′′(u),

where we have frequently used the basic relations and their derivatives (4.99) in the
form

ξ(u) = e0A(u)

(1 − (u/c)2)1/2 , η(u) = e0B(u)

c2(1 − (u/c)2)1/2 ,

and the two equations (4.102) and (4.108) connecting the functions A(u) and B(u).

4.10 Hamiltonian for One Space Dimension

In both classical and quantum mechanics, the variational principles underlying
Lagrange’s equations and Hamilton’s equations constitute both important general
mechanical principles and correspondingly important general methods for the
solution of problems. In this and the following section, we briefly discuss the
Hamiltonian and Lagrangian approaches for dual particle-wave mechanics. The
Hamiltonian formulation for dual particle-wave mechanics is most easily introduced
for a single spatial dimension x. In this section we need to be alive to the fact that
there are two distinct partial derivatives: one referring to independent variables (x, t)
and one referring to independent variables (x, p, t). Accordingly, in this section
we adopt the convention that the full symbols ∂/∂x and ∂/∂t refer to independent
variables (x, t), while subscripts refer to independent variables (x, p, t).

Assuming the existence of a Hamiltonian function H = H(x, p, t), and then on
taking the total derivative of this function with respect to time, we obtain

dH

dt
= Ht +Hx dx

dt
+Hp dp

dt
,

and on using u = dx/dt with the relations arising from (3.15) and assuming the
Hamiltonian relations, thus
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u = dx

dt
= Hp, f = dp

dt
= −Hx, gc2 = dE

dt
= −Ht, (4.112)

we may deduce

dH

dt
= Ht + uHx + fHp = Ht = −dE

dt
, (4.113)

and since dH/dt �= 0, the system is nonconservative in the conventional sense with
energy integral H +E = constant. We note that in the derivation of Eq. (4.113), we
are putting space and time on equal footings and assuming that the force g in the
direction of time is derivable from the Hamiltonian in the same manner as the spatial
force f , that is, we are assuming the relation gc2 = −Ht . Thus in summary, from
(4.113) we may conclude that H + E = constant, and we have the two relations,

f = −Hx, gc2 = −Ht,

which are evidently formally equivalent to the existence of a work done function
W(x, t) (Eq. (3.8)) or a potential energy function V (x, t) (Eq. (3.25)). Accordingly,
we now assume the compatibility constraint ∂f/∂t = c2∂g/∂x for the existence of
the work function W(x, t) is satisfied, or that there exists a potential V (x, t) such
that

f = −∂V
∂x
, gc2 = −∂V

∂t
,

and therefore on combining these equations, we obtain

∂V

∂x
= Hx, ∂V

∂t
= Ht .

On evaluating the partial derivatives ∂H/∂x and ∂H/∂t , we have, respectively,

∂H

∂x
= Hx +Hp ∂p

∂x
= ∂V

∂x
+Hp ∂p

∂x
, (4.114)

∂H

∂t
= Ht +Hp ∂p

∂t
= ∂V

∂t
+Hp ∂p

∂t
,

so that on equating expressions for the mixed partial derivative ∂2H/∂x∂t , we might
readily deduce that the following Jacobian vanishes; thus

∂(Hp, p)

∂(x, t)
= ∂Hp

∂x

∂p

∂t
− ∂Hp

∂t

∂p

∂x
= 0,

and therefore the compatibility condition ∂f/∂t = c2∂g/∂x is equivalent to the
condition Hp = �

′
(p) where �

′
denotes an arbitrary function of p. In this case



4.11 Lagrangian for One Space Dimension 147

Eqs. (4.114) partially integrate immediately to give the HamiltonianH = V+�(p),
which is entirely consistent with the Hamiltonian H = e + V where e is the
conventional particle energy considered here, namely, e = (e20+(pc)2)1/2, as might
be anticipated.

4.11 Lagrangian for One Space Dimension

In this section we provide the Lagrangian formulation for the dual particle-wave
mechanics in a single spatial dimension. Assuming the existence of a Lagrangian
function L(x, p, t) and with the convention for partial derivatives described in the
previous section, the standard relations connecting the Lagrangian and Hamiltonian
functions become

p = Lu, H = uLu − L = pHp − L,

and therefore the Lagrangian function L(x, p, t) for a single spatial dimension is
defined in terms of the Hamiltonian function H = H(x, p, t) by the equation

L = pHp −H = pu−H.

On taking the total time derivative of this equation and making use of the basic
relations (4.112) for the Hamiltonian, we might deduce

dL

dt
= d(pu)

dt
− dH

dt
= dp

dt
u+ pdu

dt
+ dE

dt
= d(pu+ E )

dt
= d(mu2 + E )

dt
,

and therefore apart from an arbitrary constant, the Lagrangian function L(x, p, t)
for dual particle-wave mechanics is given by

L = mu2 + E = mu2 − e − V = mu2 −mc2 − V = −m0c
2(1 − (u/c)2)

(1 − (u/c)2)1/2 − V,
(4.115)

on assuming a potential energy V (x, t) giving rise to an energy integral e+E +V =
constant. From this latter equation, we might readily deduce

L = −e0(1 − (u/c)2)1/2 − V, (4.116)

where e0 = m0c
2 denotes the rest mass energy, and the given expression for

the Lagrangian function coincides precisely with the conventional expression for
special relativistic mechanics (see for example [66], page 26). On using the well-
known identity e = pu + e0(1 − (u/c)2)1/2, Eq. (4.116) becomes simply L =
pu+ E , in complete accord with (4.115)1.



Chapter 5
Exact Wave-Like Solution

5.1 Introduction

In this and the following two chapters, we consider in some detail an exact
relativistic wave-like solution for the proposed model that is defined by Eqs. (3.4).
We seek a formal mathematical solution of (3.4) for which the forces f and g and
particle energy e are all functions of the particle velocity u only. In this chapter
we present the major solution details and some implications of the solution. In the
following chapter, we focus on the mathematical formalities and present the solution
derivation and the evaluation of various integrals for the de Broglie wave energy.
The chapter thereafter deals with Lorentz invariances and functional dependence of
the linear forces f and g.

In the following section of this chapter, we simply state the wave-like solution
and its major characteristics. In the subsequent section, assuming the linear force
relations (5.2), we present a detailed derivation of the work done function W(x, t)
(potential energy V (x, t) = −W(x, t)) which is basically the sum of the two
energies e and E arising from energy conservation. In the section thereafter, we
provide an elementary validation of the solution, and in the next section, we examine
its relation to a well-known solution of special relativity. In the following two
sections of the chapter, we show that the exact solution gives rise to an expression
for the Hubble parameter, and we evaluate certain integrals required for the Hubble
parameter formula. In the final section of the chapter, we put forward a tentative
proposal for dark matter and dark energy as de Broglie states characterised by force
relations f = ±cg and e0 = 0, with particle and wave energies either coinciding or
in balance under a zero potential; thus e = ±E .
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5.2 Wave-Like Solution

In order to deduce a solution of (3.4) that corresponds to Einstein’s simple formula
e = mc2, namely, one for which both momentum and energy are functions of
velocity u only, we show in the subsequent section that only wave-like solutions
are possible. Specifically, we show that for a single spatial dimension x, the only
solution for which both momentum and energy are functions of u has velocity
u(x, t) given explicitly by

u(x, t) = c
{

λx + ct
((e0/f0)2 + (λx + ct)2)1/2

}
, (5.1)

where again e0 = m0c
2 is the rest mass energy and λ and f0 denote arbitrary

constants appearing in the assumed linear force equations

f (u) = f0(1 + λu/c), cg(u) = f0(λ+ u/c). (5.2)

We emphasise that with the assumption the momentum p = mu and the particle
energy e = mc2 are functions of velocity u only, the present formulation only
permits forces f (u) and energy-mass production g(u) that are the above linear
functions in the particle velocity u. We observe that from the form of the solution
(5.1) for λ→ ±∞, the velocity u→ ±c.

From the above two equations (5.2), it is apparent that the following identity
holds:

f 2 − (cg)2 = f 2
0 (1 − λ2)(1 − (u/c)2), (5.3)

and to fix ideas, we suppose that f (u) > 0 and g(u) ≥ 0, since we have in mind
that particle-like behaviour might occur for f (u) > cg(u) ≥ 0, so that under
the circumstance f (u) > 0 and g(u) ≥ 0, the following allowable options are
as follows:

{
f 2 − (cg)2 > 0 if f − cg > 0 and f + cg > 0,

f 2 − (cg)2 < 0 if f − cg < 0 and f + cg > 0.

More generally, Eq. (5.3) gives rise to the following four possibilities:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f 2 − (cg)2 > 0 if λ2 < 1 and u/c < 1, particle-like dynamics,

f 2 − (cg)2 > 0 if λ2 > 1 and u/c > 1, wave-like dynamics,

f 2 − (cg)2 < 0 if λ2 < 1 and u/c > 1, wave-like dynamics,

f 2 − (cg)2 < 0 if λ2 > 1 and u/c < 1, particle-like dynamics,

and of course light-like dynamics occurs for either λ2 = 1 or u/c = ±1 in which
case f = ±cg. The above situation suggests that both particle- and wave-like
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behaviour might occur for all values of λ �= 1. However, throughout the book, we
principally have in mind that the velocity u represents either a sub-luminal particle
velocity with a corresponding superluminal wave velocity c2/u or a sub-luminal
wave velocity with a corresponding superluminal particle velocity c2/u, so that in
either case the substitution u = c sinφ is meaningful with φ real. In this situation it
is clear that both particle-like and wave-like dynamics may occur for both λ2 < 1
and for λ2 > 1, with light-like dynamics for λ2 = 1. The three cases give rise to
different expressions for the de Broglie wave energy which are discussed at length
in the following chapters. We note that from Eq. (5.3) we may deduce

(ef )2 − (ceg)2 = (e0f0)2(1 − λ2),

where as usual e denotes the particle energy, and this equation connects the two
Lorentz invariances ef and eg subsequently examined in Chap. 7.

The two terms of (3.10) produce two extreme limits of the proposed theory, de =
∂p/∂t · dx and dE = c2(∇ · p)dt , and correspond to either purely spatial or purely
temporal and also arise, respectively, from the above solution for the two limiting
parameter values λ = 0 and λ = ±∞. For a single spatial dimension, these extreme
limits become de = (dp/dt)dx and dE = c2(dp/dx)dt and with u = dx/dt give
rise to the two suggestive equations, de/dp = u and dE /dp = c2/u, namely, the
particle velocity and the de Broglie wave velocity, respectively, and subsequently
generate the two expressions

e(u) = e0(
1 − (u/c)2)1/2 , (5.4)

and

E (u) = e0
{

1(
1 − (u/c)2)1/2 + log

(
u/c

1 + (1 − (u/c)2)1/2
)}
. (5.5)

The first equation is the Einstein expression, and the second is singular at both
u = 0 and u = ±c, and it is clear that for 0 < u/c < 1 the logarithm is
negative and therefore E (u) < e(u). This inequality says that it is energetically
more favourable to travel solely through time than solely through space, if travelling
solely through time were technically feasible. From (5.5) it is not difficult to
envisage that extremely large negative energies might be generated for relatively
slowly moving bodies. For all other values of λ, we see in the following chapter that
there are two distinct energy expressions corresponding to ±λ, and it is only at the
extremes that the two energy expressions coincide.

The two extreme limits (5.4) and (5.5) arise, respectively, from the differential
relations

de

dp
= u, dE

dp
= c2

u
, (5.6)
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so that formally by division we have

dE

de
=
( c
u

)2 = 1

1 − (e0/e)2 = 1 + e0

2

(
1

e − e0 − 1

e + e0
)
,

and on integration we may express E as a function of e; thus

E (e) = e + e0

2
log

(
e − e0
e + e0

)
+ E0, (5.7)

where E0 denotes an arbitrary constant. Note that this formal relation only connects
the two extreme limiting cases for λ = 0 and λ = ±∞, and if E0 = 0, then for
e0 > 0 it is clear that E < e, and in this circumstance we would anticipate the
appearance of waves rather than particles.

We comment that the expression (5.5) can be alternatively derived directly from

dE = c2dp

u
= e0du

u
(
1 − (u/c)2)3/2 = e0dφ

sinφ cos2 φ
,

after making the substitution u = c sinφ, and this expression readily integrates to
yield

E (φ) = e0
{

1

cosφ
+ log

(
tan
φ

2

)}
+ E0,

where again E0 denotes an arbitrary constant. Also making use of the relation
(pc)2 = e2 − e20, the same expression in the form of Eq. (5.7) admits some re-
arrangement; thus

E (e) = e + e0 log
(
pc

e + e0
)

+ E0, E (e) = e − e0 log
(
pc

e − e0
)

+ E0,

reflecting an identical dependence on ±e0.

5.3 Work Done W(u, λ) from ∂f /∂t = c2∂g/∂x

The above two limits given by (5.6) arise as special cases of the more general
Lorentz invariant equation

dE

dp
= c

(
λ+ u/c
1 + λu/c

)
, (5.8)
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involving the arbitrary constant λ for which the above two special cases correspond,
respectively, to the values λ = 0 and λ = ±∞. We observe that Eq. (5.8) can be
alternatively derived quite simply by division of the two total derivatives of the two
solutions of the wave equation, namely, p(x, t) = f0(λx + ct)/c and E (x, t) =
f0(x + cλt); thus

dE = f0(dx + cλdt), dp = f0(λdx + cdt)/c,

and therefore with u = dx/dt , on division we obtain Eq. (5.8). This approach is
described later with reference to a general solution of the wave equation. Also
since the operator appearing in (3.10) is Lorentz invariant, and as a result, the
work done transfer rate dE /dp is also Lorentz invariant, and this is also discussed
subsequently.

We further comment that from the exact solution cp(x, t) = f0(λx + ct) and
E (x, t) = f0(x + cλt), we may deduce the following relations:

{
E − cp = f0(1 − λ)(x − ct), E + cp = f0(1 + λ)(x + ct),

E 2 − (cp)2 = f 2
0 (1 − λ2)(x2 − (ct)2), E 2 − e2 = f 2

0 (1 − λ2)(x2 − (ct)2)− e20.

Assuming that the forces f and g given by (5.2) are generated by a potential
V (x, t) and given by (3.11), then we have

f0

(
1 + λu

c

)
= −∂V

∂x
, f0c

(
λ+ u

c

)
= −∂V

∂t
,

and for u = u(ξ) where ξ = λx+ct , these two equations are consistent in the sense
that the same expression is obtained for the mixed partial derivative ∂2V /∂x∂t . The
two equations may then be integrated as follows:

− dV (x, t) = −∂V
∂x
dx − ∂V

∂t
dt,

= f0
(
1 + λu

c

)
dx + f0c

(
λ+ u

c

)
dt,

= f0
[(

1 + λu

c

)
u

c
+
(
λ+ u

c

)]
cdt,

= f0
[
λ (u/c)2 + 2(u/c)+ λ] dξ

(1 + λu/c) ,

= f0
[
(1 + λu/c) (λ+ (u/c))− (λ2 − 1)(u/c)

]
dξ

(1 + λu/c) ,

= f0
[(
λ+ u

c

)
dξ − (λ2 − 1)(u/c)dξ

(1 + λu/c)
]
,



154 5 Exact Wave-Like Solution

= f0
[
λdξ + ξdξ

(ξ20 + ξ2)1/2 − (λ2 − 1)udt

]
,

where ξ0 = e0/f0, which integrates to give

V (x, t) = −f0
(
λξ + (ξ20 + ξ2)1/2 − (λ2 − 1)x

)
+ V0,

where V0 denotes an arbitrary constant, and this equation finally simplifies to yield

V (x, t) = −f0
(
x + λct + (ξ20 + ξ2)1/2

)
+ V0.

Since E (x, t) = f0(x + cλt) and e = f0(ξ
2
0 + ξ2)1/2, this equation is merely

a statement of the conservation of energy e + E + V = constant. We comment
that even though, modulo a constant, the de Broglie wave energy is given simply
by E (x, t) = f0(x + cλt), the determination of the wave energy as a function of
velocity, namely, E (u), is far more complicated, and this aspect is examined in some
detail in the following chapter.

5.4 Simple Derivation of Wave-Like Solution

In the following chapter, we provide a formal derivation (5.1) and (5.2). Here we
merely assume the particular expressions (5.2) for the forces f and g and derive the
wave-like solution (5.1) from Eq. (7.1); thus

∂p

∂t
+ ∂e

∂x
= f0(1 + λu/c), 1

c2

∂e

∂t
+ ∂p

∂x
= f0

c
(λ+ u/c).

From the two expressions for the momentum and particle energy, p(x, t) =
m0u/(1 − (u/c)2)1/2 and e(x, t) = m0c

2/(1 − (u/c)2)1/2 where m0 denotes the
rest mass, we may deduce

∂u

∂t
+ u∂u

∂x
= w0(1 + λu/c)(1 − (u/c)2)3/2,

c2
∂u

∂x
+ u∂u

∂t
= w0c(λ+ u/c)(1 − (u/c)2)3/2,

where w0 = f0/m0. On solving these equations as two equations in the two
unknowns ∂u/∂x and ∂u/∂t , we may deduce the following two expressions:

∂u

∂x
= λw0

c
(1 − (u/c)2)3/2, ∂u

∂t
= w0(1 − (u/c)2)3/2,
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which by partial integration can be shown to give u/(1−(u/c)2)1/2 = w0(λx+ct)/c
and from which we may deduce the wave-like solution (5.1). Further, a minor re-
arrangement of u/(1− (u/c)2)1/2 = w0(λx + ct)/c gives p(x, t) = f0(λx + ct)/c
which corresponds to E (x, t) = f0(x + cλt) where f0 denotes the arbitrary force
constant appearing in the expressions (5.2).

5.5 Relation to Solution of Special Relativity

Equation (5.1) reduces to u = c in the event that the rest mass is zero, namely,m0 =
0, and apparently extends a well-known formula of conventional special relativity
that appears in many standard texts on the subject (see for example either [66], page
24, or [26], page 37) arising from assuming a Lorentz invariant constant acceleration
w0. In other words, at each instant of time, in any co-moving frame moving at the
same velocity, the particle has the same constant value acceleration w0, giving rise
to the equation

u(t) = w0t

(1 + (w0t/c)2)1/2
, (5.9)

which is formally derived from the differential relation
(
1 − (u/c)2)−3/2

du/dt =
w0, a relationship applying in any Lorentz frame. On setting λ = 0 in Eq. (5.1), we
may recover (5.9) with the interesting identification of the force and acceleration
constants f0 and w0, namely, f0 = m0w0. Similarly, with the same identification
of constants, we might alternatively deduce (5.1) from the differential relation

m0
(
1 − (u/c)2)−3/2

du/dt = f0(1 + λu/c), which becomes dp/dt = f0(1 +
λu/c) = f0d(t+λx/c)/dt . On integration and omitting the constant of integration,
we might deduce p(x, t) = f0(λx + ct)/c, and (5.1) follows immediately from

u(x, t) = cp(x, t)/ ((m0c)
2 + p(x, t)2)1/2.

5.6 Relation to Hubble Parameter

We may also observe that for sufficiently large values e0/f0, the above Eq. (5.1)
bears a remarkable resemblance to the Hubble law for receding galaxies. Specifi-
cally, for f0(λx+ct)/e0 � 1, Eq. (5.1) becomes simply u(x, t) ≈ f0c(λx+ct)/e0,
and from which we might deduce H0 ≈ f0λ/m0c as an approximate expression for
the Hubble constant H0 in terms of the constants f0 and λ and the mass m0 of the
receding galaxy.

Since the Hubble constant is known to vary over large distances, we have more
precisely, on using Eq. (5.1), a one-dimensional Hubble parameter H(t) (see for
example [26], page 311) which might be defined by
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H(t) = 1

x(t)

dx

dt
= c(1 − λ2)

{
ξ/((e0/f0)

2 + ξ2)1/2
E (ξ)/f0 − λξ + C1

}
,

where C1 denotes an arbitrary constant and ξ = λx + ct . We are using the fact that
the integral of (5.1) is given by

x(t) = E (ξ)/f0 − λξ + C1

(1 − λ2) , (5.10)

where E (ξ) denotes the de Broglie wave energy for which explicit expressions,
depending on whether λ2 < 1 or λ2 > 1, are given in the following chapter (see
Eqs. (6.13), (6.14), (6.21), and (6.22)). The formula (5.10) is formally derived in
the following section, but it can also be deduced from the previously noted relation
E (x, t) = f0(x + cλt) on elimination of t using ξ = λx + ct ; thus

E (ξ) = f0(x + λ(ξ − λx)− C1) = f0((1 − λ2)x + λξ − C1),

and since in terms of the angle φ defined by u = c sinφ, we have ξ = (e0/f0) tanφ,
and the following expression may be deduced for the Hubble parameter:

H(t) = 1

x(t)

dx

dt
= cf0(1 − λ2)

{
sinφ

E (φ)− λe0 tanφ + C2

}
, (5.11)

where C2 denotes a different arbitrary constant (C1f0), and explicit expressions for
E (φ) are given above for the two cases λ2 < 1 and λ2 > 1 (see Eqs. (6.13) and
(6.14)). For λ2 ≈ 1 we may deduce from the above approximation for E (φ) given
by (6.19) the simple approximate expression for the Hubble parameter

H(t) ≈ cf0

e0

cosφ(λ+ sinφ)

(1 + C3(λ+ sinφ) cosφ)
= cf0

e0

(
1 − (u/c)2)1/2 (λ+ (u/c))(

1 + C3(λ+ (u/c)) (1 − (u/c)2)1/2) ,

valid for λ2 ≈ 1 and where C3 denotes another arbitrary constant (C2/(1 − λ2)e0),
and noting that the value H0 ≈ f0λ/m0c arises in the limit u tending to zero with
the constant C3 zero, or alternatively we have the value H1 ≈ cλ/ξ0(1 + λC3) for
C3 non-zero.

5.7 Derivation of Integral for Hubble Formula

Here we give a formal derivation of the integral (5.10) arising from Eq. (5.1) that is
required for the formula (5.11) for the Hubble parameter. With u(x, t) = dx/dt and
ξ = λx + ct , we find that (5.1) becomes
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dξ

dt
= cλξ

((e0/f0)2 + ξ2)1/2 + c = c
(
λξ + ((e0/f0)2 + ξ2)1/2
((e0/f0)2 + ξ2)1/2

)
,

and with the substitution ξ = (e0/f0) tanφ yields

e0

ˆ (
sec2 φ

1 + λ sinφ
)
dφ = cf0t + constant. (5.12)

Now from the following chapter, various expressions for the de Broglie wave energy
E (φ) are evaluated for the integral

E (φ) = e0
ˆ (

λ+ sinφ

1 + λ sinφ
)
sec2 φdφ, (5.13)

and therefore we write (5.12)

e0

ˆ (
λ+ sinφ − sinφ

1 + λ sinφ
)
sec2 φdφ = cλf0t + constant.

With the integral I (φ) defined by

I (φ) = e0
ˆ (

λ sec2 φ

1 + λ sinφ
)
dφ,

we may deduce

I (φ) = e0
ˆ (

λ+ sinφ − sinφ

1 + λ sinφ
)
sec2 φdφ,

and therefore

I (φ) = E (φ)− e0

λ

ˆ (
1 + λ sinφ − 1

1 + λ sinφ
)
sec2 φdφ.

This equation simplifies to yield

I (φ) = E (φ)− e0

λ
tanφ + 1

λ2
I (φ)+ constant,

and from this equation and (5.12), we can deduce

(E (ξ)− f0ξ/λ)(
1 − 1/λ2

) = cf0t + constant = λf0(ξ − λx)+ constant,

which can be simplified to yield (5.10).
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5.8 Dark Matter and Dark Energy as de Broglie States

The Lorentz invariant extension of Newton’s second law given by Eqs. (3.4)
naturally admits two singular or privileged states, so that it does not require too
much of a leap in one’s imagination to envisage that possibly these two singular
states may well correspond to the two states which are commonly referred as dark
energy and dark matter. In this section, we speculate that this indeed might be the
case, but at this point in time, it is necessarily a matter of speculation, and much
more future work is required. Nevertheless given the preponderance of dark energy
and dark matter in the universe, it is likely that any ultimate resolution will require a
comparable rethinking of Newton’s second law and that the dark issues of mechanics
will emerge as essentially artefacts of the mechanical accounting.

We have previously noted that Einstein’s particle energy statement e2 = e0
2 +

(pc)2, where e0 = m0c
2 denotes the particle rest mass energy, logically admits four

distinct types of matter. Either the rest mass energy e0 is zero or non-zero and so
gives rise to precisely four distinct types of matter:

e =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(e0
2 + (pc)2)1/2 if e0 �= 0 baryonic matter,

pc if e0 = 0 dark or invisible matter,

−pc if e0 = 0 dark energy,

−(e02 + (pc)2)1/2 if e0 �= 0 anti-matter,

(5.14)

with the evident inequalities (Fig. 5.1)

−(e02 + (pc)2)1/2 � −pc � pc � (e02 + (pc)2)1/2,

and this interpretation constitutes the underlying basis for the work described in
[47–52]. We view baryonic matter as the most energetic form of matter which
is consistent with the Einstein picture that we should envisage baryonic matter
energetically as a form of an energy-battery. From the above inequalities, this picture
is also consistent with the cited percentages of matter in the universe and the fact
that each of the higher energy states has a ready access to the lower energy states in
the context of the allowable occupancies indicated in Table 5.1. The table shows, for
example, that a baryonic particle has the potential to be in any of the four states. Of
course however, depending upon local conditions, all energy states are allowable,
but in a natural environment, we might expect the lowest energy state to be the most
occupied.

The question arises as to whether this approach sheds any light on the particular
structure of the latest Planck data, either as a three-state universe or as in the above
interpretation as a four-state universe. The approximate known fractions given in
the table are based upon the latest Planck data [2] for our universe provided by the
Planck space craft observations between 2009 and 2015, which gives the relative
fractions for a three-state universe, namely, dark energy, dark matter and ordinary
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Fig. 5.1 Energy-momentum identification of the four types arising from −(e02 + (pc)2)1/2 �
−pc � pc � (e02 + (pc)2)1/2

or baryonic matter comprise, respectively, 68.3, 26.8 and 4.9% of all matter in the
universe, and this data has been modified for a four-state universe [52].

Specifically, the Planck data [2] gives the relative fractions for baryonic matter
α∗ = 0.049 per unit, dark matter β∗ = 0.268 per unit and dark energy γ ∗ = 0.683
per unit, where α∗, β∗ and γ ∗ are such that α∗ + β∗ + γ ∗ = 1. As noted in
[52], it seems to have gone unmentioned that this new data very nearly satisfies the
relationship 2α∗γ ∗ ≈ β∗2, namely, 2α∗γ ∗ = 0.067, as compared to β∗2 = 0.072.
It also seems to have gone unnoticed that this relationship still holds true if there
were a fourth component of matter, say antimatter, such that α + β + γ + δ = 1,
since then the ratios α∗ = α/(1 − δ), β∗ = β/(1 − δ) and γ ∗ = γ /(1 − δ)

are such that α∗ + β∗ + γ ∗ = 1 and moreover still satisfy the same formal
approximate relationship 2α∗γ ∗ ≈ β∗2. This opens up the prospect of having under
consideration four fundamental components of matter, namely, baryonic matter;
dark matter sometimes referred to as invisible matter; dark energy; and antimatter.
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Table 5.1 Allowable
occupancies for four energy
states

Energy state Fractions Allowable Predicted

Baryonic matter ≈0.0262 1 0 0 0 0.1

Dark matter ≈0.1433 1 1 0 0 0.2

Dark energy ≈0.3652 1 1 1 0 0.3

Antimatter ≈0.4653 1 1 1 1 0.4

Thus with baryonic fraction α, dark matter β, dark energy γ and antimatter δ,
where α + β + γ + δ = 1, if we suppose that 2αγ ≈ β2, then, since the four
energy states mirror each other in sign, it seems perfectly reasonable to suggest that
by symmetry we also have the approximate relation 2δβ ≈ γ 2. We now make use
of the following relations and the Planck data

α∗ = α

1 − δ = 0.049, β∗ = β

1 − δ = 0.268, γ ∗ = γ

1 − δ = 0.683,

and use the relation 2δβ ≈ γ 2 to determine the value of δ; thus 2δβ∗ ≈ γ ∗2(1− δ),
and from which we may deduce the determining equation for the fraction δ; thus

δ ≈ γ ∗2

γ ∗2 + 2β∗ = 1

1 + 2β∗/γ ∗2 .

On adopting the above values for β∗ and γ ∗, we may determine an approximate
value of δ from this equation and then determine the remaining as

α ≈ 0.0262, β ≈ 0.1433, γ ≈ 0.3652, δ ≈ 0.4653,

which are more or less in accord with the predicted values arising from the allowable
occupancies, namely,

α = 0.1, β = 0.2, γ = 0.3, δ = 0.4.

We observe from Eq. (5.8) that de Broglie relation E = cp for the electron and
the companion relation E = −cp arise immediately from (5.8) with λ = ±1, since
from (5.8) with λ = ±1, we may readily deduce dE = ±cdp and E = ±cp
follows immediately. Further, it is also apparent from (5.2) that these two de Broglie
states are characterised by the conditions f = ±gc, arising from the identity (5.3),
namely,

f 2 − (cg)2 = f 2
0 (1 − λ2)

(
1 − (u/c)2

)
,

indicating that f = ±cg if either λ = ±1 or u = ±c.
de Broglie states also arise from the above general solution p(x, t) = F(ct +

x)+G(ct − x) and E (x, t) = c (F (ct + x)−G(ct − x)) for arbitrary functions F
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and G, by assuming only one family of characteristics. Assuming only negatively
inclined characteristics, we have p(x, t) = F(ct + x) and E (x, t) = cF (ct + x),
while assuming only positively inclined characteristics yields p(x, t) = G(ct − x)
and E (x, t) = −cG(ct − x), from which the relations E = ±cp are apparent.

The special states also arise from Eq. (8.37) assuming either of the two force
relations f = cg or f = −cg, since if f = cg, then e = cp + A(α), and if f =
−cg, then e = −cp + B(β) where A(α) and B(β) denote, respectively, arbitrary
functions of α = ct+x and β = ct−x. This is because from the functional relation
e2 = e20 + (pc)2, we may conclude that in both cases both p(x, t) depend upon a
single characteristic only, and formally in the two cases, we may deduce

p(x, t) = e20 − A(ct + x)2
2cA(ct + x) , p(x, t) = B(ct − x)2 − e20

2cB(ct − x) ,

indicating explicitly that in both cases that p(x, t) is a function of a single
characteristic only, so that each is equivalent to one of the de Broglie relations
E = ±cp.

Consolidating these results we propose the following consistent mathematical
picture motivated from the results of this section. Since it is believed that there is
more dark energy in the universe than dark matter, we propose that dark matter as
a positive gravity force is characterised by E = cp and arises as an essentially
backward wave accruing from time past. On the other hand, we propose that dark
energy as an antigravity force is characterised by E = −cp arising as an essentially
forward wave occurring in consequence of future time. We propose that dark energy
and dark matter arise when there is a particular alignment of the physical force f
with the force g in the direction of time, so that the particle energy e and wave
energy E coincide; thus e = E . In a real circumstance, we might expect a situation
comparable to a “fuzzy region” where the key equalities are constantly switching
on and off dependent upon a varying local environment.

Specifically, we propose dark matter to be a backward wave occurring whenever
f = cg for which

e(x, t) = cp(x, t), E (x, t) = cp(x, t), p(x, t) = F(α),

where α = ct + x and F(α) denotes an arbitrary function. Similarly, we propose
that dark energy is a forward wave occurring whenever f = −cg for which

e(x, t) = −cp(x, t), E (x, t) = −cp(x, t), p(x, t) = G(β),

where β = ct − x and G(β) denotes an arbitrary function, further noting that in
both cases the rest mass energy e0 vanishes and that since in both cases we have
e = E , we are assuming that the underlying potential V (x, t) is generated from the
conservation of energy statement, namely, V (x, t) = −2e(x, t) + constant . Also
as noted above, we have the more general results that f = cg when e = pc+A(α),
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and f = −cg, when e = −pc + B(β), where A(α) and B(β) denote arbitrary
functions of their arguments.

We provide the following reasoning in support of the above identification of dark
matter and dark energy:

• The overall picture is suggested from the particular mathematical framework
under investigation.

• The identification of dark matter and dark energy arises from special or singular
states that are permitted within the theory.

• The identification of dark matter as a backward wave and dark energy as a
forward wave arises in consequence that there is believed to be more dark energy
in the universe than dark matter, which is equivalent to saying that time past is
less than future time.

• The particular identification of dark matter by the equation e = pc is motivated
from our present understanding of dark matter within conventional theory that it
is characterised by a positive gravity effect.

• On the other hand, the particular identification of dark energy by the equation
e = −pc is motivated from our present understanding that dark energy is an
antigravity force within conventional theory and that it is characterised by a
peculiar equation of state involving a minus sign (private communication).

• The combined identification of dark energy and dark matter by the respective
equations e = −pc and e = pc secures dark energy as the lower energy state,
and therefore it is energetically more accessible.

Of course, in the absence of hard numerical evidence, the above proposal must
be regarded as necessarily speculative. It does, however, provide a model capable of
direct testing, and while it may not be completely in accord with such findings, it is
highly likely that dark matter and dark energy arise in consequence of an artefact of
the mechanical equations and that their formal origin lies in the current mechanical
models neglecting the wave energy. In the proposed model it is suggested that the
most likely explanation of dark energy and dark matter is that they arise from a
balancing of particle and wave energies e = E which are supported by a potential
V = −2e. However, it is also apparent that another possibility allowed in the present
model is e = −E operating under zero potential V = 0, which might well explain
the perceived preponderance of dark energy and dark matter in the universe.



Chapter 6
Derivations and Formulae

6.1 Introduction

In this chapter we present the formal derivation and mathematical details of the
relativistic wave-like solution given by Eq. (5.1) discussed in the previous chapter.
We first derive the solution and then present various details relating to the integrals
and formulae for the de Broglie wave energy. As we have previously mentioned,
even though the de Broglie wave energy is given simply by E (x, t) = f0(x + cλt),
the determination of the wave energy as a function of velocity E (u) is far more
complicated, and there appears to be no simple single expression such as that for
the particle energy, namely, e = e0[1 − (u/c)2]−1/2. In the final section of this
chapter, for the sake of completeness, we present an alternative derivation that is
based on the hyperbolic representation u = c tanh θ rather than the trigonometric
representation u = c sinφ. The following chapter deals with Lorentz invariances
and functional dependence of the assumed underlying linear forces f and g given
by (5.2).

Now since the de Broglie wave energy E (φ) involves both an arbitrary additive
constant and the inverse tangent function admits many curious features, the bulk of
this chapter relates to the various seemingly differing expressions for E (φ) that are
obtained from the integral (5.13) by performing the integration in different ways. In
each case we provide an independent demonstration that the various expressions do
indeed coincide. As noted above we employ both the trigonometric representation
u = c sinφ and the hyperbolic representation u = c tanh θ . However, for clarity of
presentation, we present here a summary of the major results obtained in this chapter
with all formulae expressed in terms of the angle φ for which it may be useful to
have in mind the following elementary results:

tan

(
φ

2

)
= sinφ

(1 + cosφ)
= (1 − cosφ)

sinφ
,
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and

(
1 + sinφ

1 − sinφ

)1/2

= cosφ

1 − sinφ
= (1 + sinφ)

cosφ
.

For λ2 < 1 the three major formulae obtained are as follows:

E (φ) = e0
{

1

cosφ
+ λ

(1 − λ2)1/2 tan
−1
(

(λ+ sinφ)

(1 − λ2)1/2 cosφ
)}
,

E (φ) = e0
{

1

cosφ
+ 2λ

(1 − λ2)1/2 tan
−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)}
,

E (φ) = e0
{

1

cosφ
+ 2λ

(1 − λ2)1/2 tan
−1

((
(1 + λ)(1 + sinφ)

(1 − λ)(1 − sinφ)

)1/2
)}
.

For λ2 > 1 we obtain the following three expressions:

E (φ) = e0
{

1

cosφ
+ λ

(λ2 − 1)1/2
log

(
(λ+ sinφ)− (λ2 − 1)1/2 cosφ

(λ+ sinφ)+ (λ2 − 1)1/2 cosφ

)1/2}
,

E (φ) = e0
{

1

cosφ
+ λ

(λ2 − 1)1/2
log

(
λ+ tan(φ/2)− (λ2 − 1)1/2

λ+ tan(φ/2)+ (λ2 − 1)1/2

)}
,

E (φ) = e0

⎧⎪⎨
⎪⎩

1

cosφ
+ λ

(λ2 − 1)1/2
log

⎛
⎜⎝
(
1+sinφ
1−sinφ

)1/2 −
(
λ−1
λ+1

)1/2
(
1+sinφ
1−sinφ

)1/2 +
(
λ−1
λ+1

)1/2
⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

where in each case we have omitted an arbitrary additive constant and again noting
that u = c sinφ and that, contrary to appearances, all expressions are well-defined
for the important special case λ = ±1. Further, we have not included the modulus
signs in the logarithms, and we are assuming throughout that all logarithms are
appropriately well-defined.

Since the leading term for all of the above expressions is the Einstein expression
e(φ), it is apparent that e(φ) ≤ E (φ) or E (φ) ≤ e(φ) depending on whether the
second term is positive or negative. In order to make a meaningful comparison, we
need to prescribe a common datum energy level, say E (0) = e0. However, it is clear
that a number of particular cases arise depending upon the signs of both u/c and
λ. For example, for 0 < u/c < 1 and 0 < λ < 1, with E (0) = e0 it is apparent
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from the above three relevant expressions involving the inverse tangent that all the
second terms are necessarily positive and therefore E (φ) > e(φ). On the other hand,
if 0 < u/c < 1 and 1 < λ < ∞, then all three of the second terms involving the
logarithm are necessarily negative and therefore E (φ) < e(φ), and a number of
other special situations arise when either or both of u/c and λ are negative.

6.2 Derivation of Wave-Like Solution

In this section, in attempting to mimic the Einstein formulae for which both
momentum p = mu and particle energy e = mc2 are functions of velocity u
only, we seek corresponding solutions arising from (3.4) for which the forces f
and cg are functions of velocity u only and that we might subsequently use to
determine expressions for the de Broglie wave energy E . Here we assume the two
basic equations (4.10), and on introducing the angle φ(x, t) such that u = c sinφ,
we have from e2 − (pc)2 = e20 the following relations:

u = c sinφ, m = m0 secφ, e = e0 secφ, pc = e0 tanφ, (6.1)

where again e0 = m0c
2 is the rest mass energy. On substitution of these relations

into the two basic equations (4.10), we may readily deduce two equations for the
determination of the partial derivatives φx and φt ; thus

φt + c sinφφx = a(φ) cos2 φ, sinφφt + cφx = b(φ) cos2 φ,

where we have introduced a(φ) = cf (φ)/e0 and b(φ) = c2g(φ)/e0. On solving
these equations as two equations in the two unknowns φx and φt , we find

cφx = b(φ)− a(φ) sinφ, φt = a(φ)− b(φ) sinφ. (6.2)

On cross differentiation of these equations and equating two expressions for φxt , we
may deduce the following simple equation:

d(b/a)

dφ
=
(
1 − (b/a)2

)
secφ,

which may be readily integrated, and further simplification yields

b(φ)

a(φ)
=
(

sinφ + λ
1 + λ sinφ

)
, (6.3)

where λ denotes a nondimensional constant of integration. In terms of the force
f (u) and the energy-mass production g(u), we have the implied relation
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cg(u) = f (u)
(
u/c + λ
1 + λu/c

)
, (6.4)

noting that the case λ = 0 gives g(u) = f (u)u/c2 while the case λ = v/c, where
v denotes the relative frame velocity, produces g(u) = f (u)U/c2 where U = (u+
v)/(1 + uv/c2) arising from (2.6).

On substitution of (6.3) into (6.2) to eliminate a(φ), we obtain

cφx = b(φ)λ cos2 φ

(sinφ + λ) , φt = b(φ) cos2 φ

(sinφ + λ) , (6.5)

and from these two equations, it is apparent that cφx = λφt , so that φ(x, t) = φ(ξ)
where ξ = λx + ct , and indicating that with the assumption that the momentum
p = mu and the particle energy e = mc2 are functions of velocity u only, then only
wave-like solutions are permitted by this formulation. Further substitution of this
expression for φ(x, t) into either of Eqs. (6.5) yields

c
dφ

dξ
= b(φ) cos2 φ

(sinφ + λ) . (6.6)

Now from the one-dimensional version of the compatibility condition Eq. (3.11),
namely,

∂f

∂t
= c2 ∂g

∂x
, (6.7)

we may deduce at = cbx , and from φ(x, t) = φ(ξ), we find
da(φ)

dφ
= λdb(φ)

dφ
, (6.8)

which together with (6.3) constitutes a second equation for the determination
of a(φ) and b(φ). On elimination of one of a(φ) and b(φ) and integration of
the resulting first order ordinary differential equation, or more simply by direct
integration of (6.8), we may deduce

a(φ) = a0(1 + λ sinφ), b(φ) = a0(sinφ + λ), (6.9)

where a0 denotes the constant of integration. In terms of the force f (u) and the
energy-mass production g(u), these equations yield (5.2), that is,

f (u) = f0(1 + λu/c), cg(u) = f0(λ+ u/c),

where f0 is a re-defined constant given by f0 = e0a0/c, and it is clear from these
results that with the assumption that the momentum p = mu and the particle energy
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e = mc2 are functions of velocity u only, the formulation only permits forces f (u)
and energy-mass production g(u) that are linear functions in the particle velocity u.

From Eqs. (6.6) and (6.9), we may readily deduce cdφ/dξ = a0 cos2 φ which
readily integrates to yield c tanφ = a0(ξ − ξ0), where ξ0 denotes the constant of
integration, reflecting the arbitrary choice of coordinate and time origins. On taking
ξ0 = 0 the equation for φ simplifies to give the above explicit formula (5.1) for the
particle velocity u(x, t), namely,

u(x, t) = c
{

λx + ct
((e0/f0)2 + (λx + ct)2)1/2

}
, (6.10)

where again e0 = m0c
2 is the rest mass energy and f0 is the arbitrary constant

appearing in Eq. (5.2).

6.3 Expressions for de Broglie Wave Energy

In this section we utilise the solution of the previous section to determine expres-
sions for the de Broglie wave energy E . For one-dimensional motion, we have from
(3.10) that the incremental work done dE = (∂p/∂t)dx + c2(∂p/∂x)dt becomes
on using p = mu

dE

dt
= u∂p

∂t
+ c2 ∂p

∂x
= m0

{
u∂u
∂t

+ c2 ∂u
∂x

(1 − (u/c)2)3/2
}
,

and on using u = c sinφ and cdφ/dξ = a0 cos2 φ, we might deduce

dE

dt
= e0

{
λ+ sinφ

cos 2φ

}
c
dφ

dξ
= cf0(λ+ sinφ), (6.11)

noting the relation cf0 = e0a0. Now on using the relation dξ/dt = λu+c, Eq. (6.11)
becomes

dE = f0
(
λ+ sinφ

1 + λ sinφ
)
dξ = e0sec2 φ

(
λ+ sinφ

1 + λ sinφ
)
dφ, (6.12)

and the formal Lorentz invariance of the transfer rates dE /dp or dE /dξ specifically
for dE arising from (6.12) is examined subsequently. The integral, although
elementary, is lengthy, and evaluation involves the substitution z = tanφ to yield

ˆ (
λ+ sinφ

1 + λ sinφ
)
sec2 φdφ =

ˆ (
λ+ (1 − λ2)z(1 + z2)1/2

1 + (1 − λ2)z2
)
dz,
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and there are two cases to consider. If λ2 < 1, we make the substitution (1 −
λ2)1/2z = tanΦ, while if λ2 > 1, we make the substitution (λ2 − 1)1/2z = sinΨ ,
and the final results are as follows: For λ2 < 1 we find

E (φ) = e0
{

1

cosφ
+ λ

(1 − λ2)1/2 tan
−1
(

(λ+ sinφ)

(1 − λ2)1/2 cosφ
)}

+ E0, (6.13)

while if λ2 > 1, we obtain

E (φ) = e0
{

1

cosφ
+ λ

(λ2 − 1)1/2
log

(
(λ+ sinφ)− (λ2 − 1)1/2 cosφ

(λ+ sinφ)+ (λ2 − 1)1/2 cosφ

)1/2}
+ E0,

(6.14)

where again u = c sinφ and in both cases E0 denotes a suitable constant. We observe
that the underlying symmetry in both (6.13) and (6.14) is E (φ, λ) = E (−φ,−λ);
that is, the de Broglie wave energy E (φ) remains invariant under simultaneous
changing of both φ and λ to −φ and −λ, respectively. We further comment that
the two expressions involving the inverse tangent and the logarithm are formally
connected through the elementary relation

tan−1(z) = 1

2i
log

(
1 + iz
1 − iz

)
,

and the logarithm relation valid for λ2 > 1 can be formally obtained from that for
the inverse tangent valid for λ2 < 1 using (1− λ2)1/2 = i(λ2 − 1)1/2 and the above
elementary relation.

Again, since the inverse tangent function admits many curious features, and in
particular satisfies the relation tan−1(z) + tan−1(1/z) = π/2, and the fact that
the wave energy is determined modulo an arbitrary constant, there arise differing
expressions for E (φ) which at first sight might only be reconciled after some
thought. However, we may verify by direct differentiation that the above expressions
for the de Broglie wave energy are indeed correct as follows: For λ2 < 1 we have

d

dφ

{
1

cosφ
+ λ

(1 − λ2)1/2 tan
−1
(

(λ+ sinφ)

(1 − λ2)1/2 cosφ
)}

= sinφ

cos2 φ
+ λ

(1 − λ2)1/2

(
1

(1−λ2)1/2 + (λ+sinφ) sinφ
(1−λ2)1/2 cos2 φ

)
(
1 + (λ+sinφ)2

(1−λ2) cos2 φ
)

= sinφ

cos2 φ
+ λ

(
cos2 φ + (λ+ sinφ) sinφ

)
(1 − λ2) cos2 φ + (λ+ sinφ)2

= sinφ

cos2 φ
+ λ (1 + λ sinφ)
(1 + λ sinφ)2 = sinφ

cos2 φ
+ λ

(1 + λ sinφ)
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= sinφ(1 + λ sinφ)+ λ cos2 φ
cos2 φ(1 + λ sinφ) = (λ+ sinφ)

cos2 φ(1 + λ sinφ),

as required. For λ2 > 1 we have

d

dφ

{
1

cosφ
+ λ

(λ2 − 1)1/2
log

(
λ+ sinφ − (λ2 − 1)1/2 cosφ

λ+ sinφ + (λ2 − 1)1/2 cosφ

)1/2}
= sinφ

cos2 φ

+ λ

2(λ2 − 1)1/2

(
cosφ + (λ2 − 1)1/2 sinφ

λ+ sinφ − (λ2 − 1)1/2 cosφ
− cosφ − (λ2 − 1)1/2 sinφ

λ+ sinφ + (λ2 − 1)1/2 cosφ

)
,

which after considerable algebra and some simplification becomes exactly as for
λ2 < 1; thus

sinφ

cos2 φ
+ λ

(1 + λ sinφ) = sinφ(1 + λ sinφ)+ λ cos2 φ
cos2 φ(1 + λ sinφ)

= (λ+ sinφ)

cos2 φ(1 + λ sinφ),

which again is the required expression.
In terms of e = e0(1 − (u/c)2)−1/2, we have the relations

u

c
= sinφ = (e2 − e20)1/2

e
,

(
1 −

(u
c

)2)1/2

= cosφ = e0

e
,

and the following formulae are immediately apparent from Eqs. (6.13) and (6.14).
For λ2 < 1 we find

E (φ) = e + λe0

(1 − λ2)1/2 tan
−1

(
λe + (e2 − e20)1/2
(1 − λ2)1/2e0

)
+ E0, (6.15)

while if λ2 > 1, we obtain

E (φ) = e + λe0

2(λ2 − 1)1/2
log

(
λe + (e2 − e20)1/2 − (λ2 − 1)1/2e0
λe + (e2 − e20)1/2 + (λ2 − 1)1/2e0

)
(6.16)

+E0,

where e = e0(1 − (u/c)2)−1/2 and in both cases E0 denotes a suitable constant. We
observe that Eq. (5.7) emerges from Eq. (6.16) in the limit λ → ±∞, and again we
note that we are assuming throughout that the logarithms are always appropriately
well-defined, namely, the modulus signs have been omitted from the logarithms.

We observe that from either (6.15) or (6.16), we may deduce
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dE

dt
= de

dt
+ λe20

de
dt

(e2 − e20)1/2(e + λ(e2 − e20)1/2)
,

so that from the general equations (3.13) and (3.15), we have

gc2 = dE

dt
= ∂e

∂t
+ ∇ · (eu) = de

dt
+ e(∇ · u),

and from u/c = (e2 − e20)1/2/e, for a single spatial dimension x, we might deduce

∇ · u = ∂u

∂x
= e20

e2(e2 − e20)1/2
∂e

∂x
.

Altogether the above three equations become

λe
de

dt
= c(e + λ(e2 − e20)1/2)

∂e

∂x
,

which further simplifies to give

λe

(
∂e

∂t
+ c (e

2 − e20)1/2
e

∂e

∂x

)
= c(e + λ(e2 − e20)1/2)

∂e

∂x
,

and this equation finally yields

λ
∂e

∂t
= c ∂e

∂x
.

Thus, the same formulae (6.15) or (6.16) still apply provided that e(x, t) and
therefore p(x, t) are functions of the variable ξ = λx + ct . Since p(x, t) =
p(ξ) satisfies the classical one-dimensional wave equation, this means that (λ2 −
1)p′′(ξ) = 0, and therefore there are no further new solutions valid for all λ since
p(ξ) = Aξ +B, where A and B denote arbitrary constants, generates the wave-like
solution already examined in detail. However, for the special cases λ = ±1, we have
u = ±c, e = E = cp(ξ) with p(ξ) denoting an arbitrary function of ξ = ct ± x.

The new terms in the work done equation arising from the de Broglie wave
energy are identified for the two cases λ2 < 1 and λ2 > 1, and given explicitly
above by (6.13) and (6.14). For both λ2 < 1 and λ2 > 1, the given expressions
become singular, and we use an asterisk to designate the values at the singularity;
thus x∗, t∗, p∗ and u∗. For λ2 < 1 the inverse tangent function becomes unbounded
whenever

(λ+ sinφ∗)
(1 − λ2)1/2 cosφ∗ = ±π

2
,
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which we might square to deduce a quadratic equation in sinφ∗ which has the
following two roots:

sinφ∗ = (1 + (2/π)2)1/2λ− 1

λ− (1 + (2/π)2)1/2 , sinφ∗ = (1 + (2/π)2)1/2λ+ 1

λ+ (1 + (2/π)2)1/2 ,

with corresponding values of tanφ∗ given by

tanφ∗ = (1 + (π/2)2)1/2λ− (π/2)
(1 − λ2)1/2 , tanφ∗ = (1 + (π/2)2)1/2λ+ (π/2)

(1 − λ2)1/2 .

Thus the inverse tangent function in (6.13) becomes singular at the values

cp∗ = f0
(
λx∗ + ct∗) = e0

(
(1 + (π/2)2)1/2λ± (π/2)

(1 − λ2)1/2
)
,

u∗

c
= (1 + (2/π)2)1/2λ± 1

λ± (1 + (2/π)2)1/2 .

For λ2 > 1 the new terms appearing in the work done equation involve the log
function, possibly giving rise to massive energies and becoming singular whenever

cp∗ = f0
(
λx∗ + ct∗) = ± e0

c(λ2 − 1)1/2
,

u∗

c
= ±1

λ
,

where f0 is the constant appearing in the force equation (5.2) given above and
x∗, t∗, p∗ and u∗ designate the values at the singularity. The equation u∗ = ±c/λ
infers that at the singularity the particle velocity u∗ coincides with the wave velocity
−c/λ, which means that at this critical juncture, the particles move with the wave
and are not left behind.

6.4 de Broglie Wave Energy for Particular λ

We observe that clearly the first terms in both (6.13) and (6.14) correspond to the
Einstein contribution and formally arise in the limit λ→ 0 and in this limit we have

E (φ) ≈ e0
(

1

cosφ
+ λφ

)
+ E0.

For λ→ ±∞ we have from (6.14) the following limiting expression:
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E (φ) ≈ e0
{

1

cosφ
± log

(
sinφ

1 + cosφ

)}
+ E0 = e0

{
1

cosφ
± log

(
tan
φ

2

)}
+ E0,

(6.17)

which for λ→ ∞ gives rise to Eq. (5.5) and also formally arises directly from (3.10)
assuming that all variables are spatially dependent only, so that (3.10) becomes

dE = c2 dp
dx
dt = e0du

u
(
1 − (u/c)2)3/2 = e0dφ

sinφ cos2 φ
,

after making the substitution u = c sinφ, and this expression readily integrates to
yield (6.17).

Again, on recalling that the inverse tangent function admits a number of curious
relations, including tan−1(z) + tan−1(1/z) = π/2, we may if necessary adopt the
reciprocal of the argument of the inverse tangent function, together with a change
of sign and a redefinition of the arbitrary constant E0. By this means we observe
that in both cases, the additional terms are well-defined for λ = 1, which is the case
of energy-mass waves travelling at the speed of light, and both (6.13) and (6.14)
simplify to give

E (φ) = e0
(

1

cosφ
− cosφ

1 + sinφ

)
+ E0 = e0 tanφ + E0 = e0 + pc, (6.18)

with an appropriate choice for E0. Similarly, for energy-mass waves travelling at the
speed of light in the opposite direction, λ = −1, and we may deduce

E (φ) = e0
(

1

cosφ
− cosφ

1 − sinφ

)
+ E0 = −e0 tanφ + E0 = e0 − pc,

and we observe that both formulae are in complete accord with the well-established
relations for photons and light, namely, p = hν/c and E = hν where h is Planck’s
constant and ν denotes the frequency, which together yield E = pc and noting that
e0 is generally adopted to be zero for photons.

Further, assuming that λ2 ≈ 1, expanding both the inverse tangent and the
logarithm and retaining in each case only the leading term in each expansion give
rise to the following simple approximate expression:

E (φ) ≈ e0 (1 + λ sinφ) tanφ
(λ+ sinφ)

+ E0, (6.19)

valid for both λ2 < 1 and λ2 > 1, and this expression is exact when λ = 1 and
λ = −1 giving precisely (6.18) and (10.11), respectively. At the speed of light, we
anticipate that both f = ±gc and e = E = ±pc, and Eq. (6.19) allows a more
precise statement, and there are two possible approaches.

Firstly, if we write this equation as
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E (p) ≈ e0 (1 + λ(u/c)) tanφ
(λ+ (u/c)) + E0,

then from (6.1)4 and (5.8), this equation might be rearranged to yield E ≈
c2p(dp/dE )+ E0 which on integration becomes

(E − E0)
2 ≈ (cp)2 + E 2

1 , (6.20)

where E1 denotes a further arbitrary constant and the equation is valid for λ2 ≈ 1.
With appropriately chosen constants E0 and E1 and in comparison with e2 = e20 +
(pc)2, it is clear that the above Eq. (6.20) admits the possibility that close to the
speed of light E ≈ e.

Secondly, from Eq. (6.19) and the assumed force relations (5.2)

E ≈ f (u)p

g(u)
+ E0 ≈ f (u)e

cg(u)
+ E0,

since close to the speed of light e ≈ pc. Thus on taking E0 = 0, we have the
interesting possibility that close to the speed of light, the forces and energies exhibit
a balance such that f (u)e ≈ cg(u)E .

6.5 Alternative Approach to Evaluation of Integrals

In this section we provide an alternative approach to the evaluation of the energy
integrals which also serves to provide an independent confirmation of the de Broglie
energy expressions given by Eqs. (6.13) and (6.14). In this section we make use of
the variable ξ = λx + ct for which

p(x, t) = f0ξ, E (x, t) = f0(x + cλt), e(x, t) = f0(ξ20 + ξ2)1/2,

where ξ0 = e0/f0, and which give rise to the symmetrical expressions

u

c
= ξ

(ξ20 + ξ2)1/2 = sinφ,

(
1 −

(u
c

)2)1/2

= ξ0

(ξ20 + ξ2)1/2 = cosφ.

In terms of the velocity u, the two integrals given above for the combined energy
W = e + E become for λ2 < 1

W = e0
{

2

(1 − (u/c)2)1/2 + λ

(1 − λ2)1/2 tan−1
(

λ+ u/c
(1 − λ2)1/2(1 − (u/c)2)1/2

)}
+ E0,

(6.21)
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while for λ2 > 1 we have

W = e0

⎧⎪⎨
⎪⎩

2

(1 − (u/c)2)1/2 + λ

(λ2 − 1)1/2
log

⎛
⎝

λ+u/c
(λ2−1)1/2(1−(u/c)2)1/2 − 1

λ+u/c
(λ2−1)1/2(1−(u/c)2)1/2 + 1

⎞
⎠

1/2
⎫⎪⎬
⎪⎭+ E0,

(6.22)

noting that in both cases E0 denotes a suitable constant and in particular that the
arguments of both the inverse tangent and the log functions involve the Lorentz
invariant (λ+u/c)/(1−λ2)1/2(1− (u/c)2)1/2 which is noted below (see Eq. (7.9)).

We may provide an alternative approach to these integral evaluations through
integration using the variable ξ = λx + ct . From the basic energy equation (3.8)
and the force expressions (5.2) for the wave-like solution, we have

dW = f dx + gc2dt = f0
[(

1 + λu

c

)
dx +

(
λ+ u

c

)
cdt

]
,

so that on using u = dx/dt and dξ/dt = c + λu, we may deduce

dW

dξ
= f0

(
u

c
+ λ+ u/c

1 + λu/c
)
.

From this equation and the relation u/c = ξ/(ξ20 + ξ2)1/2, we have

dW

dξ
= f0

(
ξ

(ξ20 + ξ2)1/2 + ξ + λ(ξ20 + ξ2)1/2
λξ + (ξ20 + ξ2)1/2

)
. (6.23)

In terms of the variable ξ , the above two energy expressions become for λ2 < 1

W = e0
{
2(ξ20 + ξ2)1/2

ξ0
+ λ

(1 − λ2)1/2 tan
−1

(
ξ + λ(ξ20 + ξ2)1/2
(1 − λ2)1/2ξ0

)}
+ E0,

while for λ2 > 1 we have

W = e0

⎧⎪⎨
⎪⎩
2(ξ20 + ξ2)1/2

ξ0
+ λ

(λ2 − 1)1/2
log

⎛
⎜⎝
ξ+λ(ξ20+ξ2)1/2
(λ2−1)1/2ξ0

− 1

ξ+λ(ξ20+ξ2)1/2
(λ2−1)1/2ξ0

+ 1

⎞
⎟⎠

1/2⎫⎪⎬
⎪⎭+ E0,

and by differentiation of these expressions, it is a straightforward matter to confirm
that (6.23) is satisfied in both cases, noting that in the latter case ξ+λ(ξ20 +ξ2)1/2 >
(λ2 − 1)1/2ξ0 since in terms of φ this inequality is equivalent to (λ + sinφ) >
(λ2−1)1/2 cosφ, which on simplification is equivalent to (λ sinφ)2+2λ sinφ+1 =
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(λ sinφ + 1)2 > 0, which evidently always holds. Both formulae may be readily
verified using the following respective results: For λ2 < 1 we have

d

dξ

{
tan−1

(
ξ + λ(ξ20 + ξ2)1/2
(1 − λ2)1/2ξ0

)}
= ξ0(1 − λ2)1/2(
λξ + (ξ20 + ξ2)1/2) (ξ20 + ξ2)1/2 ,

while for λ2 > 1 we have

d

dξ

⎧⎪⎨
⎪⎩log

⎛
⎜⎝
ξ+λ(ξ20+ξ2)1/2
(λ2−1)1/2ξ0

− 1

ξ+λ(ξ20+ξ2)1/2
(λ2−1)1/2ξ0

+ 1

⎞
⎟⎠

1/2⎫⎪⎬
⎪⎭ = ξ0(λ

2 − 1)1/2(
λξ + (ξ20 + ξ2)1/2) (ξ20 + ξ2)1/2 .

6.6 Alternative Derivation for Wave Energy

In this section we provide yet another method to evaluate the integrals required to
determine the de Broglie wave energy and which result in alternative expressions.
Starting with the integral (6.12), we perform one integration by parts, to produce

ˆ
sec2 φ

(
λ+ sinφ

1 + λ sinφ
)
dφ

= tanφ

(
λ+ sinφ

1 + λ sinφ
)

− (1 − λ2)
ˆ

sinφ

(1 + λ sinφ)2 dφ

= tanφ

(
λ+ sinφ

1 + λ sinφ
)

+ (1 − λ2)∂I (φ, λ)
∂λ

,

where the integral I (φ, λ) is given by

I (φ, λ) =
ˆ

dφ

1 + λ sinφ = 2
ˆ

dt

(t + λ)2 + (1 − λ2) ,

where t = tan(φ/2) is used as a working variable for the half-tangent substitution,
and again there are two cases to consider. For λ2 < 1 we may make the substitution
t + λ = (1 − λ2)1/2 tanψ to determine the following expressions:

I (φ, λ) = 2

(1 − λ2)1/2 tan
−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)
, (6.24)

∂I (φ, λ)

∂λ
= 2λ

(1 − λ2)3/2 tan
−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)

+ cosφ

(1 − λ2)(1 + λ sinφ) + 1

(1 − λ2) ,



176 6 Derivations and Formulae

while for λ2 > 1, on using partial fractions, we find

I (φ, λ) = 1

(λ2 − 1)1/2
log

(
λ+ tan(φ/2)− (λ2 − 1)1/2

λ+ tan(φ/2)+ (λ2 − 1)1/2

)
,

∂I (φ, λ)

∂λ
= − λ

(λ2 − 1)3/2
log

(
λ+ tan(φ/2)− (λ2 − 1)1/2

λ+ tan(φ/2)+ (λ2 − 1)1/2

)

− cosφ

(λ2 − 1)(1 + λ sinφ) − 1

(λ2 − 1)
.

Altogether, from these expressions we may deduce the following formulae for the
de Broglie wave energy. For λ2 < 1 we obtain

E (φ) = e0
{

1

cosφ
+ 2λ

(1 − λ2)1/2 tan
−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)}

+ E0, (6.25)

while for λ2 > 1 we have

E (φ) = e0
{

1

cosφ
+ λ

(λ2 − 1)1/2
log

(
λ+ tan(φ/2)− (λ2 − 1)1/2

λ+ tan(φ/2)+ (λ2 − 1)1/2

)}
+ E0,

where in both cases u = c sinφ and E0 denotes an arbitrary constant.
The equality of these expressions with Eqs. (6.13) and (6.14) is not immediately

obvious, and their veracity is most easily established by direct differentiation. For
λ2 < 1 we have

d

dφ

{
1

cosφ
+ 2λ

(1 − λ2)1/2 tan
−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)}

= sinφ

cos2 φ
+ λ sec2(φ/2)

(1 − λ2)
(
1 + (λ+tan(φ/2))2

(1−λ2)
)

= sinφ

cos2 φ
+ λ sec2(φ/2)

(1 − λ2)+ (λ+ tan(φ/2))2

= sinφ

cos2 φ
+ λ(1 + tan2(φ/2))

(1 + tan(φ/2)2 + 2λ tan(φ/2))

= sinφ

cos2 φ
+ λ

(1 + λ sinφ) = sinφ(1 + λ sinφ)+ λ cos2 φ
cos2 φ(1 + λ sinφ)

= (λ+ sinφ)

cos2 φ(1 + λ sinφ),

as required. Similarly for λ2 > 1 we have
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d

dφ

{
1

cosφ
+ λ

(λ2 − 1)1/2
log

(
λ+ tan(φ/2)− (λ2 − 1)1/2

λ+ tan(φ/2)+ (λ2 − 1)1/2

)}
= sinφ

cos2 φ

+ λ sec2(φ/2)

(λ2 − 1)1/2

(
1

λ+ tan(φ/2)− (λ2 − 1)1/2
− 1

λ+ tan(φ/2)+ (λ2 − 1)1/2

)

= sinφ

cos2 φ
+ λ sec2(φ/2)

(1 − λ2)+ (λ+ tan(φ/2))2
= (λ+ sinφ)

cos2 φ(1 + λ sinφ),

following precisely the immediately above calculation for λ2 < 1.
For λ2 < 1, in order to provide an independent proof that Eq. (6.25) coincides

with the expression (6.13), we need to establish that the difference

tan−1
(

(λ+ sinφ)

(1 − λ2)1/2 cosφ
)

− 2 tan−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)
,

is at most a constant, and we do this in two stages. We first examine the difference

tan−1
(

(λ+ sinφ)

(1 − λ2)1/2 cosφ
)

− tan−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)
.

On using tan(φ/2) = (1 − cosφ)/sinφ and taking the tan of this expression, after
some lengthy algebra, we may eventually deduce

tan

{
tan−1

(
(λ+ sinφ)

(1 − λ2)1/2 cosφ
)

− tan−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)}

= (1 − λ2)1/2
λ+ cot(φ/2)

= (1 − λ2)1/2 tan(φ/2)
1 + λ tan(φ/2) ,

so that now we are led to examine

tan

{
tan−1

(
(1 − λ2)1/2 tan(φ/2)

1 + λ tan(φ/2)
)

− tan−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)}

= −λ
(1 − λ2)1/2 ,

and therefore altogether we obtain

tan−1
(

(λ+ sinφ)

(1 − λ2)1/2 cosφ
)

− 2 tan−1
(
λ+ tan(φ/2)

(1 − λ2)1/2
)

= tan−1
( −λ
(1 − λ2)1/2

)
,

as required and a result that is confirmed by setting φ = 0. (The above proof of this
result is due to Dr Barry Cox, personal communication.)
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For λ2 > 1 we may also formally establish the equality of (6.24) with Eq. (6.14),
but the proof is quite subtle and not at all immediately obvious. The proof hinges on
a subtle use of the identity

(λ+ (λ2 − 1)1/2)(λ− (λ2 − 1)1/2) = 1,

and the fact that the wave energy is determined only up to an arbitrary constant,
so that the log of any constants may be ignored. We start by writing the above
expression as

E (φ) = e0
{

1

cosφ
+ λ

2(λ2 − 1)1/2
log

(
λ+ tan(φ/2)− (λ2 − 1)1/2

λ+ tan(φ/2)+ (λ2 − 1)1/2

)2}
+ E0,

and then for the argument of the log, modulo any multiplicative constants, we
proceed as follows:

(
λ+ tan(φ/2)− (λ2 − 1)1/2

λ+ tan(φ/2)+ (λ2 − 1)1/2

)2

=
(
tan(φ/2)+ λ− (λ2 − 1)1/2

tan(φ/2)+ λ+ (λ2 − 1)1/2

)(
tan(φ/2)+ λ− (λ2 − 1)1/2

tan(φ/2)+ λ+ (λ2 − 1)1/2

)

=
(
tan(φ/2)+ λ− (λ2 − 1)1/2

tan(φ/2)+ λ+ (λ2 − 1)1/2

)(
(λ+ (λ2 − 1)1/2) tan(φ/2)+ 1

(λ− (λ2 − 1)1/2) tan(φ/2)+ 1)

)

= (λ+ (λ2 − 1)1/2) tan2(φ/2)+ 2 tan(φ/2)+ (λ− (λ2 − 1)1/2)

(λ− (λ2 − 1)1/2) tan2(φ/2)+ 2 tan(φ/2)+ (λ+ (λ2 − 1)1/2)

= λ(1 + tan2(φ/2))+ 2 tan(φ/2)− (λ2 − 1)1/2(1 − tan2(φ/2))

λ(1 + tan2(φ/2))+ 2 tan(φ/2)+ (λ2 − 1)1/2(1 − tan2(φ/2))

= (λ+ sinφ)− (λ2 − 1)1/2 cosφ

(λ+ sinφ)+ (λ2 − 1)1/2 cosφ
,

as required, and again we emphasise that in the above calculation, we have simply
ignored any multiplicative constants since these only affect the arbitrary additive
constant involved in the energy.

6.7 Alternative Derivation of Exact Solution

In this section we present an alternative derivation of the relativistic wave-like
solution given by (5.1) which is derived on the basis that the forces f (u) and g(u)
are assumed to be functions of velocity only and given by the linear expressions
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Eq. (5.2). Here we again assume the two basic equations (4.10) and e2−(pc)2 = e20,
and on introducing the angle θ(x, t) such that u(x, t) = c tanh θ , we have from
(2.11) the relations

e(x, t) = e0 cosh θ, cp(x, t) = e0 sinh θ, (6.26)

where again e0 = m0c
2 is the rest mass energy. On substitution of these relations

into the two basic equations (4.10), we may readily deduce two equations for the
determination of the partial derivatives ∂θ/∂t and ∂θ/∂x; thus

∂θ

∂t
= a(θ) cosh θ − b(θ) sinh θ, c

∂θ

∂x
= b(θ) cosh θ − a(θ) sinh θ, (6.27)

where we have introduced a(θ) = cf (θ)/e0 and b(θ) = c2g(θ)/e0. On cross
differentiation these two equations, using the equations themselves and equating
the two expressions for ∂2θ/∂t∂x, we may deduce the following simple ordinary
differential equation:

d(a/b)

dθ
=
(
1 − (a/b)2

)
,

which may be readily integrated, and further simplification yields simply a(θ) =
b(θ) tanh(θ−θ0) where θ0 denotes the constant of integration. With this relation the
two equations (6.27) simplify to become

∂θ

∂t
= − b(θ) sinh θ0

cosh(θ − θ0) , c
∂θ

∂x
= b(θ) cosh θ0

cosh(θ − θ0) ,

so that evidently θ(x, t) satisfies the simple partial differential equation

∂θ

∂t
+ c tanh θ0 ∂θ

∂x
= 0,

Again we may deduce θ(x, t) = θ(ξ)where ξ = λx+ct , we make the identification
λ = − coth θ0, and the two partial differential equations both reduce to the same
ordinary differential equation

dθ

dξ
= − b(θ) sinh θ0

c cosh(θ − θ0) = cg(θ)

e0(sinh θ + λ cosh θ) ,

noting again that here u = c tanh θ . Now from the condition ∂f/∂t = c2∂g/∂x and
the functional relationship θ(x, t) = θ(ξ), we may deduce df/dθ = cλdg/dθ , and
therefore on integration we have f (θ) − λcg(θ) = f0(λ

2 − 1) where the constant
of integration is specifically chosen to agree with the previously used constants.
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From this relation, together with the integral f (θ) = cg(θ) tanh(θ − θ0), we may
eventually deduce as before f (u) = f0(1 + λ(u/c)) and cg(u) = f0(λ+ (u/c)).

6.8 Yet Another Approach to Evaluation of Integrals

It would seem worthwhile noting that yet another approach to the evaluation of the
integrals involving the angle θ arises directly from Eq. (5.8) by simply multiplying
both numerator and denominator of this equation by e = mc2 = (e20 + (pc)2)1/2;
thus

dE

dp
= c

(
λ+ u/c
1 + λu/c

)
= c

(
λe + pc
e + λpc

)
= c

(
λ(e20 + (pc)2)1/2 + pc
(e20 + (pc)2)1/2 + λpc

)
,

and on using φ through the trigonometric expressions (6.1), this equation can
be seen to coincide precisely with (6.12). Here however, we use the angle θ =
tanh−1(u/c) and the hyperbolic relations given by either (2.11) or (6.26) so that the
immediately above equation becomes

dE

dθ
= e0 cosh θ

(
λ cosh θ + sinh θ

cosh θ + λ sinh θ
)
,

which with some re-arrangement becomes

dE

dθ
= e0

(
sinh θ + λ

cosh θ + λ sinh θ
)
.

On using the basic definitions of cosh and sinh, we obtain on integration

E (θ) = e0
(
cosh θ + 2λ

(λ+ 1)

ˆ
eθdθ

e2θ − (λ− 1)/(λ+ 1)

)
+ E0,

and again E0 denotes a suitable constant, and there are two cases to consider. If
λ2 < 1 and γ 2 = (1 − λ)/(1 + λ) and making the substitution ω = eθ , we have

E (θ) = e0
(
cosh θ + 2λ

(λ+ 1)

ˆ
dω

ω2 + γ 2
)

+ E0,

and on integration we have

E (θ) = e0
{
cosh θ + 2λ

(1 − λ2)1/2 tan
−1
(
ω

γ

)}
+ E0.
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If λ2 > 1 then with δ2 = (λ−1)/(λ+1), and again making the substitution ω = eθ ,
we have

E (θ) = e0
(
cosh θ + 2λ

(λ+ 1)

ˆ
dω

ω2 − δ2
)

+ E0,

which becomes

E (θ) = e0
{
cosh θ + λ

(λ2 − 1)1/2
log

(
ω − δ
ω + δ

)}
+ E0.

Thus in summary, in terms of the angle θ for which u = c tanh θ and the
hyperbolic relations given by either (2.11) or (6.26), for λ2 < 1 we have

E (θ) = e0
{
cosh θ + 2λ

(1 − λ2)1/2 tan
−1
(
eθ

γ

)}
+ E0, (6.28)

where γ 2 = (1 − λ)/(1 + λ), while if λ2 > 1, we have

E (θ) = e0
{
cosh θ + λ

(λ2 − 1)1/2
log

(
eθ − δ
eθ + δ

)}
+ E0, (6.29)

where δ2 = (λ−1)/(λ+1) and again noting that in both cases E0 denotes a suitable
constant.

In order to see that the above Eqs. (6.28) and (6.29) coincide, respectively, with
both Eqs. (6.13) and (6.14) and with both Eqs. (6.21) and (6.22), we need to use the
previously given identity (2.10), namely,

eθ =
(
1 + u/c
1 − u/c

)1/2

.

To confirm that Eq. (6.28) agrees with Eq. (6.21), we again recall the identity
tan−1(z) + tan−1(1/z) = π/2, and we write the term involving the inverse tangent
as follows:

2 tan−1
(
eθ

γ

)
= π

2
−
(
tan−1

( γ
eθ

)
− tan−1

(
eθ

γ

))
,

so that on taking the tangent of this expression, we have

tan

(
2 tan−1

(
eθ

γ

))
= cot

(
tan−1

( γ
eθ

)
− tan−1

(
eθ

γ

))



182 6 Derivations and Formulae

= 1

tan
(
tan−1

(
γ

eθ

)
− tan−1

(
eθ

γ

)) = 1
1
2

(
γ

eθ
− eθ

γ

)

= −2γ eθ

e2θ − γ 2 = − (1 − λ2)1/2(1 − (u/c)2)1/2
λ+ u/c ,

on simplification of the latter expression using the formulae

eθ =
(
1 + u/c
1 − u/c

)1/2

, γ =
(
1 − λ
1 + λ

)1/2

,

and the desired result, modulo an arbitrary constant, follows on again noting the
relation tan−1(z)+ tan−1(1/z) = π/2. Similarly, in order to confirm that Eq. (6.29)
coincides with (6.22), we write the logarithm as

1

2
log

(
eθ − δ
eθ + δ

)2

= 1

2
log

(
e2θ − 2eθ δ + δ2
e2θ + 2eθ δ + δ2

)
,

and again the desired result follows on simplification of this equation using

eθ =
(
1 + u/c
1 − u/c

)1/2

, δ =
(
λ− 1

λ+ 1

)1/2

.



Chapter 7
Lorentz and Other Invariances

7.1 Introduction

In special relativity the criterion of Lorentz invariance is there to establish the
veracity or otherwise of any proposal, or in other words, a good proposition in
special relativity must satisfy the criterion of Lorentz invariance, and this is a
nontrivial constraint. In this chapter we examine the Lorentz invariances of the
basic equations themselves and the associated Lorentz invariances implicit in the
previously derived exact wave-like solution. We have previously stated that a
Lorentz invariant quantity is one that assumes an identical form under a Lorentz
transformation, and we establish here that the general force equations (3.4) are fully
Lorentz invariant. However, this does not imply that all aspects of the solutions
of (3.4) are Lorentz invariant, and there will be solutions that are not fully Lorentz
invariant, and the exact wave-like solution provides an example.

In the following section, assuming the Lorentz invariant energy-momentum
relations (2.46) and (2.47), we show that the proposed general one-dimensional
force expressions given by (7.1) remain invariant under Lorentz transformations.
This is a particularly important and fundamental outcome, which means that the
model allows the same force values to be recorded in all frames moving with
constant relative velocity. In this section we also show that the operator arising
in (3.9) and (3.10) remains invariant under a Lorentz transformation.

In three subsequent sections of this chapter, with specific reference to the wave-
like solution given by (5.1), we investigate in some detail the formal Lorentz
invariance of the derivative dE /dp and the Lorentz invariances and the functional
dependence of the linear force expressions f (u) = f0(1 + λu/c) and cg(u) =
f0(λ+ u/c) arising in the wave-like solution. In the following section we examine
the variable ξ = λx + ct under a Lorentz transformation to determine the
corresponding parameter μ that corresponds to the parameter λ and the associated
invariances. We comment that the parameters λ and f0 are not themselves Lorentz
invariants since their transformations are dependent on the frame velocity v (see
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Eq. (7.8) below). The exact wave-like solution might be termed partially Lorentz
invariant in the sense that, under a Lorentz transformation, the assumed linear force
expressions f (u) = f0(1+λu/c) and cg(u) = f0(λ+u/c) transform to linear force
expressions involving F(U) = F0(1+μU/c) and cG(U) = F0(μ+U/c) with new
force constants F0 and μ dependent upon the translational velocity v arising in the
Lorentz transformation, but the actual Lorentz invariances turn out to involve the
products of force and energy.

In the next two sections, for the wave-like solution, we examine explicitly
the Lorentz invariance and functional dependence of the forces f (u) and cg(u).
We confirm that, with the assumption of the Lorentz invariant energy-momentum
relations (2.46) and (2.47), the basic equations (7.1) generate the same force values
in all Lorentz frames. We conclude with the curious outcome that the actual Lorentz
invariants involve mass times force or energy times force. That is, for forces and
energy f (u), g(u) and e(u) in one frame and F(U), G(U) and E(U) in another,
we formally establish the interesting result that e(u)f (u) = E(U)F(U) and
e(u)g(u) = E(U)G(U).

In the final three sections of this chapter, we examine the implications of the
space-time transformation x′ = ct and t ′ = x/c, involving only one Cartesian
spatial dimension and reflecting a simple invariance of the classical one-dimensional
wave equation. Formally, the de Broglie hypothesis arises from this transformation,
which essentially interchanges the roles of space and time and, for sub-luminal
particle velocities u = dx/dt , produces superluminal wave velocities w =
u′ = dx′/dt ′ = c2dt/dx = c2/u. Thus, any discussion of de Broglie waves
necessitates at the very least an appreciation of superluminal waves, and therefore,
some understanding of superluminal motion in general is necessary. Under the
transformation x′ = ct and t ′ = x/c, there are two important and distinct
restricted energy interchanges that we need to accommodate. Firstly, in the first
of the final three sections, we show that the two energies E (x, t) and momentum
cp(x, t) may be interchanged, and we also show that the operator arising in (3.9)
and (3.10) remains invariant under the space-time transformation x′ = ct and
t ′ = x/c. In the penultimate section of the chapter, and following the superluminal
Lorentz transformations derived in [54], we establish that the proposed basic force
equations (3.4) also remain unchanged under Lorentz frames moving with constant
velocities v that are in excess of the speed of light. In the final section, since particle
and wave velocities in the unprimed (x, t) frame are perceived as, respectively, wave
and particle velocities in the primed (x′, t ′) frame, the particle energy e(x, t) in the
unprimed (x, t) frame may be interchanged with the wave energy E (x′, t ′) in the
primed (x′, t ′) frame, and vice versa. We also show that when the two distinct energy
interchanges are combined, an invariant symmetry (7.26) of the basic equations (3.4)
of the model is produced.
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7.2 Force Invariance Under Lorentz Transformations

For one spatial dimension x, the proposed equations (3.4) become simply

f = ∂p

∂t
+ ∂e

∂x
, g = 1

c2

∂e

∂t
+ ∂p

∂x
, (7.1)

and it is not difficult to show that these equations remain invariant under the Lorentz
group (2.3) and the Lorentz invariant energy-momentum relations (2.46); in other
words the following relations hold:

f = ∂p

∂t
+ ∂e

∂x
= ∂P

∂T
+ ∂E

∂X
, g = 1

c2

∂e

∂t
+ ∂p

∂x
= 1

c2

∂E

∂T
+ ∂P

∂X
, (7.2)

which we establish as follows. From Eq. (2.3) we have the differential relations

∂

∂x
= 1

(1 − (v/c)2)1/2
{
∂

∂X
+ v

c2

∂

∂T

}
,

∂

∂t
= 1

(1 − (v/c)2)1/2
{
∂

∂T
+ v ∂

∂X

}
,

(7.3)

so that on using (2.46) and employing the subscript notation to denote partial
derivatives, for the spatial physical force f , we have

pt + ex =
1

(1 − (v/c)2)
{
(PT − v

c2
ET )+ v(PX − v

c2
EX)+ (EX − vPX)+ v

c2
(ET − vPT )

}

= PT + EX,

and similarly for the force in the direction of time g, we have

1

c2
et + px =

1

(1 − (v/c)2)
{
1

c2
(ET − vPT )+ v

c2
(EX − vPX)+ (PX − v

c2
EX)+ v

c2
(PT − v

c2
ET )

}

= 1

c2
ET + PX.

This important invariance property, derived under the assumption of the Lorentz
invariant energy-momentum relations (2.46) and (2.47), ensures that the same
force values are observed as perceived from any Lorentz frame. This key outcome
indicates, at the very least, that the two Eqs. (3.4) are well formulated. However, it
does not mean that all aspects of the solutions of the Eqs. (7.1) will be fully Lorentz
invariant. Specifically, there will be aspects of solutions of these equations that are
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not fully Lorentz invariant, and the exact wave-like solution presented in Chap. 5 is
one such example. We show in a subsequent section of this chapter that the Lorentz
invariants for this particular solution are force times energy, thus f e and cge.

This partial Lorentz invariance arises from the fact that while the general force
expressions (7.1) are fully Lorentz invariant, the corresponding condition for the
existence of a work-done function, namely

∂f

∂t
= c2 ∂g

∂x
, (7.4)

is not Lorentz invariant. In terms of the (X, T ) variables, from the formulae (7.3),
Eq. (7.5) becomes

∂f

∂T
+ v ∂f

∂X
= c2 ∂g

∂X
+ v ∂g

∂T
,

so that for full Lorentz invariance f (x, t) = F(X, T ) and g(x, t) = G(X, T ), and
therefore from the above equation it follows that

∂F

∂T
= c2 ∂G

∂X
,

∂F

∂X
= ∂G

∂T
.

Accordingly, for full Lorentz invariance, we need to supplement (7.5) with the
additional constraint

∂f

∂x
= ∂g

∂t
, (7.5)

and in terms of a potential function V (x, t) defined by (4.16), namely

f = −∂V
∂x
, gc2 = −∂V

∂t
,

it is clear that V (x, t) satisfies the classical wave equation

∂2V

∂t2
− c2 ∂

2V

∂x2
= 0.

Thus, the only force fields (f, cg) providing full Lorentz invariance are those
generated from potentials V (x, t), which satisfy the classical wave equation.

We comment that a more familiar example exhibiting related phenomena might
be the partial differential equation describing the one-dimensional temperature for
the movement of heat or for the concentration of diffusing particles; thus,

∂C

∂t
= ∂2C

∂x2
, (7.6)
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for C = C(x, t). It is well known that this partial differential equation remains
invariant under the one-parameter group of stretching transformations

x∗ = eεx, t∗ = e2ε t, C∗ = enεC,

where ε is the one parameter and n denotes an arbitrary constant. The existence
of this one-parameter stretching group of transformations means that there are
similarity solutions of the partial differential equation (7.6) with the functional
form C(x, t) = tn/2�(x/t1/2) for some function �, and the partial differential
equation (7.6) may be reduced to a second-order ordinary differential equation.
However, it does not mean that every solution of (7.6) has this structure, and
as is well known, there are certainly solutions of (7.6) that are not similarity
solutions. A similar situation applies to (7.1), which will admit solutions and
embody consequences that are not fully Lorentz invariant.

We may also confirm that the operator appearing in (3.9) and (3.10) is Lorentz
invariant, namely for any three-dimensional spatial vector q, we have

∂q
∂t

· dx + c2(∇ · q)dt = ∂q
∂T

· dX + c2(∇∗ · q)dT ,

where ∇∗ denotes the del operator with respect to the X variables. This equation
follows since for one dimension and relative frame velocity in the x-direction, we
have from (2.3) and the above differential relations

qtdx + c2qxdt =
1

(1 − (v/c)2)
{
(qT + vqX)(dX − vdT )+ c2(qX + v

c2
qT )(dT − v

c2
dX)

}

= qT dX + c2qXdT ,

as required and demonstrating that the operator in (3.9) and (3.10) is Lorentz
invariant.

7.3 Lorentz Invariance of dE /dp or dE /dξ

In this section we make a Lorentz transformation of the exact wave-like solution
examined in the two prior chapters, and we show the formal Lorentz invariance of
dE /dp or dE /dξ for the specific dE /dp given by (5.8). From ξ = λx + ct and the
Lorentz transformations (2.3)

x = X − vT
[1 − (v/c)2]1/2 , t = T − vX/c2

[1 − (v/c)2]1/2 , (7.7)



188 7 Lorentz and Other Invariances

we have

ξ = λ(X − vT )+ c(T − vX/c2)
[1 − (v/c)2]1/2 = (λ− v/c)X + (1 − λv/c) cT

[1 − (v/c)2]1/2 ,

and therefore with η = μX+ cT , we have ξ = ση where μ is the essential constant
in the (X, T ) variables that corresponds to λ in the (x, t) variable and μ and σ are
given by

μ =
(
λ− v/c
1 − λv/c

)
, σ = (1 − λv/c)

[1 − (v/c)2]1/2 , (7.8)

and if F0 is the constant in the (X, T ) variables corresponding to the constant f0
in the (x, t) variables, then F0 = σf0. With this notation, in either coordinates the
momentum p(x, t) and the wave energy E (x, t) for the wave-like solution become

p(x, t) = f0(λx + ct)/c = F0(μX + cT )/c = p∗(X, T ),

E (x, t) = f0(x + cλt) = F0(X + cμT ) = E ∗(X, T ).

Under this Lorentz transformation and with the usual Einstein formula for velocities,
we may verify by direct substitution of λ and u into the left-hand side, namely

u = U − v(
1 − Uv/c2) , λ =

(
μ+ v/c
1 + μv/c

)
,

and subsequent simplification, the important relations

λ+ u/c
1 + λu/c = μ+ U/c

1 + μU/c ,
1 − λ2

1 − λv/c = 1 − μ2

1 + μv/c . (7.9)

By a similar process, we may verify the following Lorentz invariants:

1 + λu/c
(1 − λ2)1/2(1 − (u/c)2)1/2 = 1 + μU/c

(1 − μ2)1/2(1 − (U/c)2)1/2 ,
λ+ u/c

(1 − λ2)1/2(1 − (u/c)2)1/2 = μ+ U/c
(1 − μ2)1/2(1 − (U/c)2)1/2 ,

noting especially that the left-hand side of the latter invariant is precisely the
argument of the inverse tangent function in the expression (6.13) for the wave
energy. Further, on making use of (7.9)2 and the symmetric identity (7.15), through
the identity

(
1 − λ2
1 − μ2

)1/2

=
(
1 − λv/c
1 + μv/c

)1/2

= (1 − λv/c)
(1 − (v/c)2)1/2 = σ,
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the immediately above Lorentz invariants might be seen to coincide with the two
invariants ef = EF and eg = EG subsequently discussed.

From Eq. (7.9)1 we find that Eq. (5.8) becomes

dE

dp
= c

(
λ+ u/c
1 + λu/c

)
= c

(
μ+ U/c
1 + μU/c

)
= dE ∗

dp∗ ,

where E ∗(X, T ) and p∗(X, T ) designate, respectively, E (x, t) and p(x, t) in terms
of the (X, T ) variables. The Lorentz invariance dE /dξ = dE ∗/dη now follows
from dE /dp = dE ∗/dp∗ on noting the relations pc = f0ξ and p∗c = F0η and
where E ∗(X, T ) = F0(X+cμT ) denotes the wave energy with respect to the (X, T )
variables. The constant f0 and the corresponding quantity in the (X, T ) variables
F0 are related by the equation F0 = σf0, where σ is defined by the latter relation
of (7.8).

We observe from (7.9) the privileged role played by the two special cases λ =
±1. The values λ = ±1 correspond to energy-mass waves travelling at the speed
of light and from the de Broglie wave energy expressions given in the two previous
chapters, arising as well-defined limiting cases that are consistent with established
results for photons and light, namely p = hν/c and E = hν, where h is Planck’s
constant and ν denotes the frequency, which together yield E = pc. The two cases
λ = 1 and λ = −1 correspond, respectively, to μ = 1 and μ = −1, and as
noted previously in Chap. 2, Eq. (2.4), the following important relations apply for
the characteristic variables α = ct + x and β = ct − x, also given by Hill and Cox
[54], thus

ct + x =
(
1 − v/c
1 + v/c

)1/2

(cT +X), ct − x =
(
1 + v/c
1 − v/c

)1/2

(cT −X),

which can also be seen to arise directly from ξ = ση and (2.3)2 with λ = ±1.
These relations imply that the special cases λ = ±1 possess certain privileged
properties under Lorentz transformation that are not shared by other values of λ.
For example, the particle energy corresponding to Eq. (5.1) is simply e(x, t) =
f0
(
(e0/f0)

2 + ξ2)1/2, where ξ = λx + ct , and e(x, t) only satisfies the wave
equation in the two special cases λ = ±1.

7.4 Lorentz Invariance of Forces

In this section, it is instructive to examine explicitly the Lorentz invariance for the
particular exact wave-like solution given by either (5.1) or (6.10), and we show
explicitly that the forces f and cg as determined through the basic equations (7.2)
are indeed independent of the Lorentz reference frame. However, as we establish in
the following section, this does not necessarily imply that the forces f (u) and cg(u)
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coincide, respectively, with F(U) and cG(U) in every Lorentz reference frame, and
we show in the next section that the Lorentz invariants turn out to be ef = EF and
eg = EG.

Here, we show explicitly that under the Lorentz transformation given by (2.3)
or immediately above by (7.7), and the transformations which are inverse to the
energy-momentum relations (2.46), namely

P = p + ev/c2
[1 − (v/c)2]1/2 , E = e + pv

[1 − (v/c)2]1/2 , (7.10)

the following general relations verified above hold for the particular solution, thus

f = ∂p

∂t
+ ∂e

∂x
= ∂P

∂T
+ ∂E

∂X
, g = 1

c2

∂e

∂t
+ ∂p

∂x
= 1

c2

∂E

∂T
+ ∂P

∂X
. (7.11)

Summarising the formulae from the previous section, we have

ξ = λx + ct, η = μX + cT , (7.12)

f0ξ = F0η, F0 = σf0, ξ = ση,

where λ and μ are related through the inverse formulae

μ =
(
λ− v/c
1 − λv/c

)
, λ =

(
μ+ v/c
1 + μv/c

)
, (7.13)

while σ is given by either of the expressions

σ = (1 − λv/c)
[1 − (v/c)2]1/2 , σ = [1 − (v/c)2]1/2

(1 + μv/c) , (7.14)

and from the latter relations, we may deduce the useful symmetric equality

(1 − λv/c) (1 + μv/c) = [1 − (v/c)2]. (7.15)

Now, in terms of ξ = λx + ct , the wave-like solution (5.1) has momentum p(x, t)
and energy e(x, t) given by

p(x, t) = f0ξ/c, e(x, t) =
(
e20 + (f0ξ)2

)1/2
,

while from the above inverse energy-momentum relations (7.10) and (7.12)3 we
may deduce

P = F0η + (e20 + (F0η)2
)1/2

(v/c)

c[1 − (v/c)2]1/2 , E =
(
e20 + (F0η)2

)1/2 + F0η(v/c)
[1 − (v/c)2]1/2 .
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Thus, from these equations with ξ = λx + ct and η = μX + cT , we may perform
the partial differentiations in (7.11) to demonstrate explicitly that

f = ∂p

∂t
+ ∂e

∂x
= f0

(
1 + λf0ξ(

e20 + (f0ξ)2
)1/2

)
,

g = 1

c2

∂e

∂t
+ ∂p

∂x
= f0

c

(
f0ξ(

e20 + (f0ξ)2
)1/2 + λ

)
,

while on simplifying the partial derivatives, we obtain

∂P

∂T
+ ∂E

∂X
= F0

[1 − (v/c)2]1/2
(
1 + μv

c
+ F0η(μ+ v/c)(
e20 + (F0η)2

)1/2
)
,

1

c2

∂E

∂T
+ ∂P

∂X
= F0

c[1 − (v/c)2]1/2
(
F0η(1 + μv/c)(
e20 + (F0η)2

)1/2 + μ+ v

c

)
,

and on writing F0 = σf0 in the latter expressions, using the above relations (7.13)
and making the recognition that f0ξ = F0η, we may conclude that the two
expressions for the forces coincide, as indeed they must.

7.5 Functional Dependence of Forces

In a prior section we have established that the general force equations (7.1) for
f and cg are Lorentz invariant, and in the previous section, we have verified
explicitly this Lorentz invariance for the exact wave-like solution. In this section
we investigate the functional dependence under Lorentz transformation of the linear
force expressions (5.2) arising from the wave-like solution, namely the forces f (u)
and cg(u) are given by

f (u) = f0(1 + λu/c), cg(u) = f0(λ+ u/c). (7.16)

Making use of the relations (7.12), (7.13) and (7.14)

f (u) = f0(1 + λu/c) = F0 (1 + μv/c)
[1 − (v/c)2]1/2

(
1 + (μ+ v/c)(U/c − v/c)

(1 + μv/c)(1 − Uv/c2)
)
,

and

cg(u) = f0(λ+ u/c) = F0 (1 + μv/c)
[1 − (v/c)2]1/2

(
(μ+ v/c)
(1 + μv/c) + (U/c − v/c)

(1 − Uv/c2)
)
,



192 7 Lorentz and Other Invariances

which upon simplification become

f (u) = f0
(
1 + λu

c

)
= F0 [1 − (v/c)2]1/2

(1 − Uv/c2)
(
1 + μU

c

)
, (7.17)

cg(u) = f0
(
λ+ u

c

)
= F0 [1 − (v/c)2]1/2

(1 − Uv/c2)
(
μ+ U

c

)
,

which indicate a different functional dependence on velocity in each of the Lorentz
frames. However, on using the identity for velocity addition (2.7), namely

[1 − (u/c)2]1/2(1 − Uv/c2) = [1 − (v/c)2]1/2[1 − (U/c)2]1/2,

we may deduce the rather intriguing Lorentz invariant expressions

f0 (1 + λu/c)(
1 − (u/c)2)1/2 = F0 (1 + μU/c)(

1 − (U/c)2)1/2 ,
f0(λ+ u/c)(
1 − (u/c)2)1/2 = F0(μ+ U/c)(

1 − (U/c)2)1/2 .

If we identify forces F and G in the Lorentz frame, thus

F(U) = F0
(
1 + μU

c

)
, cG(U) = F0

(
μ+ U

c

)
,

then the immediately above formulae indicate that the Lorentz invariants are mass
times force or energy times force; thus, ef = EF and eg = EG. This may
be independently confirmed from the force relations (7.16) by multiplication of
the energy e and making use of the previously derived Lorentz invariant energy-
momentum relations (2.46), which have inverse relations given by (7.10), thus

p = P − Ev/c2
[1 − (v/c)2]1/2 , e = E − Pv

[1 − (v/c)2]1/2 . (7.18)

Directly from (7.16)1 and (7.18) we have

f (u)e = f0(e + λpc) = f0

(1 − (v/c)2)1/2
((

1 − λv

c

)
E +

(
λ− v

c

)
Pc

)

= f0(1 − λv/c)
(1 − (v/c)2)1/2 (E + μPc) = σf0(E + μPc) = F0(E + μPc),

and similarly, directly from (7.16)2 we have
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cg(u)e = f0(λe + pc) = f0

(1 − (v/c)2)1/2
((
λ− v

c

)
E +

(
1 − λv

c

)
Pc

)

= f0(1 − λv/c)
(1 − (v/c)2)1/2 (P c + μE) = σf0(P c + μE) = F0(P c + μE),

where F0 = f0σ and μ and σ are as previously defined by (7.8), that is,

μ =
(
λ− v/c
1 − λv/c

)
, σ = (1 − λv/c)

[1 − (v/c)2]1/2 .

In a prior section we have established that the operator arising in the energy
equations (3.10) and (3.9) is Lorentz invariant for any three-dimensional spatial
vector q, and for a single dimension we verified directly that, under a Lorentz
transformation, we have

∂q

∂t
dx + c2 ∂q

∂x
dt = ∂q

∂T
dX + c2 ∂q

∂X
dT , (7.19)

which applies for an arbitrary scalar q. In terms of the wave-like solution, this
invariance characteristic is revealed in the following explicit manner. For a single
spatial dimension, the total energy as defined by (3.8) becomes

dW = f dx + gc2dt

= f0
[(

1 + λu

c

)
dx +

(
λ+ u

c

)
cdt

]

= F0
[(

1 + μu

c

)
dX +

(
μ+ u

c

)
cdT

]
,

noting especially that, in the latter equation, while both the parameters F0 and μ
and the variables (X, T ) all refer to the Lorentz frame, the velocity u is that which
applies in the (x, t) frame, that is, it is lower case u and not upper case U , reflecting
the invariant nature of the operator (7.19). This result follows immediately from
the above relations (7.17) and the Lorentz transformations, either equation (2.3) or
above Eq. (7.7), thus

f0

[(
1 + λu

c

)
dx +

(
λ+ u

c

)
cdt

]

= F0 [1 − (v/c)2]1/2
(1 − Uv/c2)

[(
1 + μU

c

)
(dX − vdT )

[1 − (v/c)2]1/2 +
(
μ+ U

c

)
(cdT − vdX/c)
[1 − (v/c)2]1/2

]

= F0

(1 − Uv/c2)
((

1 − Uv

c2

)
+ μ

(
U

c
− v

c

))
dX

+ F0

(1 − Uv/c2)
(
μ

(
1 − Uv

c2

)
+
(
U

c
− v

c

))
cdT ,
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and the desired result follows upon simplification and using the Einstein addition of
velocity law (2.6).

7.6 Transformation x′ = ct and t ′ = x/c

Formally, de Broglie’s particle-wave velocity relation w = c2/u arises from the
underlying space-time transformation x′ = ct and t ′ = x/c, for which w = u′ =
dx′/dt ′ = c2dt/dx = c2/u and which we have previously noted in Chapt. 2 that it
has been used to connect the Galilean and Carroll transformations as significant
limits of Lorentz invariant theories. Under this transformation, there are two
important and distinct restricted energy interchanges that may be accommodated. In
this section, we examine the interchange of the two energies E (x, t) and momentum
cp(x′, t ′), and we also show that the operator arising in (3.9) and (3.10) remains
invariant. In the final section of the chapter, we examine the interchange of the
particle and wave energies e(x, t) and E (x′, t ′), and then we combine the two
distinct energy interchanges to produce an invariant transformation of the basic
equations (3.4).

In this section, we first show that the one space dimension equations (4.3),
namely

∂E

∂t
= c2 ∂p

∂x
,

∂E

∂x
= ∂p

∂t
, (7.20)

admit the relations E ′ = E (x′, t ′) = cp(x, t) and cp′ = cp(x′, t ′) = E (x, t).
This restricted symmetry might be motivated from the simple exact solution of these
equations that underlies the previously discussed exact wave-like solution and which
is given by

E (x, t) = f0(x + cλt), cp(x, t) = f0(λx + ct), (7.21)

where f0 and λ denote arbitrary constants. Under the space-time transformation
x′ = ct and t ′ = x/c, the above solution (7.21) becomes

E (x, t) = f0(x + cλt) = f0(λx′ + ct ′) = cp(x′, t ′),

cp(x, t) = f0(λx + ct) = f0(x′ + cλt ′) = E (x′, t ′).

Thus, under certain circumstances, the wave-energy E (x, t) and the momentum
cp(x, t) interchange under the space-time transformation x′ = ct and t ′ = x/c, that
is, we have E (x′, t ′) = cp(x, t) and cp(x′, t ′) = E (x, t). This might be verified
directly from (4.3) or (7.20), since first on changing x and t these equations become
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∂E

∂x′ = ∂p

∂t ′
,

∂E

∂t ′
= c2 ∂p

∂x′ ,

and then a further change E = cp′ = cp(x′, t ′) and cp = E ′ = E (x′, t ′) produces

∂E ′

∂x′ = ∂p′

∂t ′
,

∂E ′

∂t ′
= c2 ∂p

′

∂x′ ,

showing that Eqs. (4.3) allow the transformation property E ′ = E (x′, t ′) = cp(x, t)
and cp = cp(x′, t ′) = E (x, t). Of course this outcome is not entirely unexpected,
since the system of Eqs. (4.3) is equivalent to the classical one spatial dimension
wave equation, which is left invariant by the transformation x′ = ct and t ′ = x/c. It
is important to emphasise again that this transformation involves only one Cartesian
spatial dimension, and that the appropriate extension and interpretation to other
coordinates involving curvature, is by no means obvious. Even with this in mind, the
simple exact solution (7.21) is still important because it is indicative of a significant
outcome.

On using the relations x′ = ct , t ′ = x/c, E ′ = E (x′, t ′) = cp(x, t) and cp′ =
cp(x′, t ′) = E (x, t), the primed version of Eq. (8.45), namely

dE ′ = ∂E ′

∂x′ dx
′ + ∂E ′

∂t ′
dt ′ = ∂p′

∂t ′
dx′ + c2 ∂p

′

∂x′ dt
′,

becomes precisely equation (8.46). Further, the primed versions of Eqs. (7.1)
become

f ′ = ∂p′

∂t ′
+ ∂e′

∂x′ = ∂E

∂x
+ 1

c

∂e′

∂t
= ∂p

∂t
+ 1

c

∂e′

∂t
= ∂

(
p + e′/c)
∂t

,

c2g′ = ∂e′

∂t ′
+ c2 ∂p

′

∂x′ = c ∂e
′

∂x
+ ∂E

∂t
= c ∂e

′

∂x
+ c2 ∂p

∂x
= c2 ∂

(
p + e′/c)
∂x

.

Thus, if the forces f and g are generated through a potential V (x, t) through the
equations f = −∂V /∂x and gc2 = −∂V /∂t , then the primed versions of these
equations become

f ′ = −∂V
′

∂x′ = −1

c

∂V ′

∂t
= ∂

(
p + e′/c)
∂t

,

c2g′ = −∂V
′

∂t ′
= −c ∂V

′

∂x
= c2 ∂

(
p + e′/c)
∂x

,

which may be integrated to yield V ′(x′, t ′) = −(e′ + pc) + constant , which is
simply the statement of conservation of energy in the primed variables, namely e +
E + V (x, t) = constant , noting that V ′ = V (x′, t ′) = V (ct, x/c).

Further, for a single spatial dimension, the two basic equations (3.4) or (7.1)
become simply



196 7 Lorentz and Other Invariances

f = ∂p

∂t
+ ∂e

∂x
= dp

dt
= ∂p

∂t
+ u∂p

∂x
,

c2g = ∂e

∂t
+ c2 ∂p

∂x
= dE

dt
= ∂E

∂t
+ u∂E

∂x
,

so that the primed version of the latter equalities becomes

f ′ = ∂p′

∂t ′
+ u′ ∂p′

∂x′ = 1

u

(
∂E

∂t
+ u∂E

∂x

)
= 1

u

dE

dt
= c2g

u
,

c2g′ = ∂E ′

∂t ′
+ u′ ∂E ′

∂x′ = c2

u

(
∂p

∂t
+ u∂p

∂x

)
= c2

u

dp

dt
= c2f

u
.

These equations give rise to the following interesting force transformation relations:

f ′

(u′/c)1/2
= cg

(u/c)1/2
,

cg′

(u′/c)1/2
= f

(u/c)1/2
,

as compared to the corresponding relations arising from a Newtonian interpretation
of the proposed model, which are given by Eq. (3.36). Clearly, these are the primed
versions of each other, and on multiplication of the first equation by dx′ and the
second equation by dt ′, we might deduce

f ′dx′

(u′/c)1/2
= c2gdt

(u/c)1/2
,

c2g′dt ′

(u′/c)1/2
= f dx

(u/c)1/2
,

which simplify to become

de′

(u′/c)1/2
= dE

(u/c)1/2
,

dE ′

(u′/c)1/2
= de

(u/c)1/2
.

Noting that E ′(x′, t ′) = cp(x, t), the second relation is merely a restatement of the
rate-of-working equation de/dp = u, and the first relation is the primed version of
this equation.

Finally, the relations E ′ = E (x′, t ′) = cp(x, t) and cp′ = cp(x′, t ′) =
E (x, t) are consistent with the exact wave-like solution (7.21) discussed in previous
chapters, for which dE /dp is given by (5.8), thus

dE

dp
= c

(
λ+ u/c
1 + λu/c

)
, (7.22)

arising from the specific forces f and g given by Eq. (5.2), namely

f (u) = f0(1 + λu/c), cg(u) = f0(λ+ u/c), (7.23)
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where f0 denotes an arbitrary constant. In the primed variables equation (7.22)
becomes

dE ′

dp′ = c
(
λ+ u′/c
1 + λu′/c

)
= c

(
1 + λu/c
λ+ u/c

)
= c2 dp

dE
,

from which on rearrangement yields the unprimed version (7.22).

7.7 Force Invariance Under Superluminal Lorentz Frames

In this section we establish that the proposed basic force equations (3.4) also remain
unchanged under Lorentz frames moving with constant velocities v that are in
excess of the speed of light. In de Broglie’s Nature article on waves and quanta,
previously quoted in Chap. 3 (Nature, no. 2815, Vol. 112, October 13, 1923, page
540), he writes:

The quantum energy-frequency relation e = hν, leads one to associate a periodical
phenomena with any isolated portion of matter or energy. An observer bound to the portion
of matter will associate with it a frequency ν0 determined by its internal energy, namely,
by its “matter at rest” (e0 = hν0 where e0 = m0c

2). An observer for whom the portion
of matter is in steady motion with velocity u, will see this frequency lower in consequence
of the Lorentz-Einstein time transformation. I have been able to show (Comptes Rendus,
September 10th and 24th, of the Paris Academy of Sciences) that the fixed observer will
constantly see the internal periodical phenomenon in phase with a wave the frequency given
by hν = e0/(1 − (u/c)2)1/2 which is determined by the quantum relation using the whole
energy of the moving body, provided that it is assumed that the wave spreads with the
velocity c2/u. This wave, the velocity of which is greater than c, cannot carry energy.

A radiation of frequency ν has to be considered as divided into atoms of light of very
small internal mass (≈ 10−10gm.) which move with a velocity u very nearly equal to that
determined by the relation hν = e0/(1 − (u/c)2)1/2. The atom of light slides slowly upon
the non-material wave, the frequency of which is ν and velocity c2/u, very little higher that
c.

It is clear from this commentary that the de Broglie hypothesis inevitably
involves at least an appreciation of superluminal waves, and therefore some
understanding of superluminal motion in general. These matters are naturally
controversial and are examined at length in Hill and Cox [54], including a
new derivation of Lorentz space-time transformations applicable at superluminal
velocities. Subsequent to the publication of [54], the work of Vieira [104] appeared
at about the same time, who proposed two alternative derivations of the same
extended Lorentz transformations, one algebraic in character and the other geomet-
ric. Accordingly, there is some commonality of agreement in the extended Lorentz
transformations for superluminal motion and in the basic equations underlying
superluminal motion. After the publication of [54], Andreka et al [4] provided
another derivation of the same extended Lorentz transformations, and [62] point
out that these extended Lorentz transformations are not entirely new and have
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a prior history (see also [70]). In these earlier contributions, the transformations
for v > c are presented but not formally derived as such, and the main original
contribution of [54] is the mode of their derivation as arising from the tangent
vector for special relativity, combined with an initial condition for infinite relative
velocity. In summary then, superluminal Lorentz transformations do exist, and while
the topic as a whole remains controversial, there is some agreement on some of the
basic equations, which are needed in any discussion on de Broglie’s particle-wave
duality.

We now establish that the force equations (3.4) remain invariant under Lorentz
frames moving with constant superluminal velocities v. For superluminal velocities
v such that c � v < ∞, Hill and Cox [54] show that the extended Lorentz
transformations become

X = −ε(x + vt)
((v/c)2 − 1)1/2

, T = −ε(t + vx/c2)
((v/c)2 − 1)1/2

, (7.24)

with the inverse transformation characterised by −v, thus

x = ε(X − vT )
((v/c)2 − 1)1/2

, t = ε(T − vX/c2)
((v/c)2 − 1)1/2

,

where ε2 = 1 and ε = ±1 according to the assumed behaviour at v = ∞, namely

x = −εcT , t = −εX/c.

For these superluminal Lorentz transformations, a key feature is that the Einstein
addition of velocities in its various forms, namely Eqs. (2.6), (2.7) and (2.12), are
left unchanged, and with the implication that at least one of the three velocities u, v
and U must be less than the speed of light. From (2.7) it is apparent that if the frame
velocity v exceeds the speed of light, then one, and only one, of u or U will be
superluminal and the other sub-luminal. Further, for superluminal Lorentz frames,
the Lorentz invariant energy-momentum relations become

P = −ε(p + ev/c2)
((v/c)2 − 1)1/2

, E = −ε(e + pv)
((v/c)2 − 1)1/2

,

along with the inverse relations

p = ε(P − Ev/c2)
((v/c)2 − 1)1/2

, e = ε(E − Pv)
((v/c)2 − 1)1/2

. (7.25)

From the above relations (7.24) and (7.25), it is now a straightforward matter to
show that for one spatial dimension x, the proposed Eqs. (3.4), namely
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f = ∂p

∂t
+ ∂e

∂x
, g = 1

c2

∂e

∂t
+ ∂p

∂x
,

are also invariant under the above superluminal Lorentz group. More precisely, for
both values of ε, the two Eqs. (3.4) have the same form in all superluminal Lorentz
frames, namely

f = ∂p

∂t
+ ∂e

∂x
= ∂P

∂T
+ ∂E

∂X
, g = 1

c2

∂e

∂t
+ ∂p

∂x
= 1

c2

∂E

∂T
+ ∂P

∂X
,

which we establish as follows. From Eq. (7.24) we have the differential relations

∂

∂x
= −ε
((v/c)2 − 1)1/2

{
∂

∂X
+ v

c2

∂

∂T

}
,

∂

∂t
= −ε
((v/c)2 − 1)1/2

{
∂

∂T
+ v ∂

∂X

}
,

so that on using (7.25) and employing the subscript notation to denote partial
derivatives, for the spatial physical force f , we have

pt + ex =
−1

((v/c)2 − 1)

{
(PT − v

c2
ET )+ v(PX − v

c2
EX)+ (EX − vPX)+ v

c2
(ET − vPT )

}

= PT + EX,

and similarly for the force in the direction of time g, we have

1

c2
et + px =

−1

((v/c)2 − 1)

{
1

c2
(ET − vPT )+ v

c2
(EX − vPX)+ (PX − v

c2
EX)+ v

c2
(PT − v

c2
ET )

}

= 1

c2
ET + PX.

Again this is an important key outcome, which tends to reinforce the belief that the
two Eqs. (3.4) are well formulated.

7.8 Particle and Wave Energies and Momenta

In this section, we detail expressions for the particle and wave energies and momenta
denoted, respectively, by e, E , pc and P . We deal with particle energy e(x, t),
particle momentum p(x, t), wave energy E (x, t) and wave momentumP(x, t), and
we frequently loosely refer to the energy pc as the momentum, since e, pc and E
constitute the three basic energies. For sub-luminal particle velocities 0 � u/c < 1,
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the particle momentum p couples the particle and wave energies e and E , while for
superluminal particle velocities 1 < u/c < ∞, it is the wave momentum P that
acts to couple the wave and particle energies E and e, respectively.

The space-time transformation x′ = ct and t ′ = x/c formally arises from the
superluminal Lorentz transformations given in [54], in the limit of the frame velocity
v −→ ∞, and moreover, the developments of [54] are based on the key premise that
for any two inertial frames separated by an infinite relative velocity, the product of
the two perceived velocities of the same physical incident equals the velocity of
light squared. Based upon this assumption, the Einstein addition law for velocities
still holds for superluminal motions and leads to the important physical notion of
two worlds separated by the speed of light c. In a subsequent publication, Hill and
Cox [55] infer the coexistence of two worlds comprising, with respect to some
fixed inertial frame, all the sub-luminal Lorentz frames and all the superluminal
Lorentz frames. From the perspective of special relativity, an observer in either
world would be unable to detect in which of the two worlds they existed, since
from either perspective both appear identical. This leads to the idea that not only
that the speed of light is relative to all observers in frames, which are sub-luminal
to some reference frame, but also there is a separate and symmetric reciprocal set of
frames of reference, which have an identical world view, in the sense that observers
in the reciprocal frames consider their velocities to be sub-luminal and those from
the original set of frames to be superluminal.

As described in Hill and Cox [55], this duality is very suggestive of a theory
of relativity, which transcends the usual notion of uniform measurement of the
speed of light. In this meta-relativity, the speed of light is not only constant for all
observers, but it also provides a boundary that separates two distinct but equivalent
sets of frames. Each frame from one set is associated with a single frame from
the other set by the reciprocal relationship, a relationship that holds independent of
the specific frame from which the measurement of velocities is made. Furthermore,
each frame from both sets measures the relative velocities as sub-luminal for all the
frames in their own set and superluminal for all the frames in the reciprocal set.
The only velocity that lacks a distinct reciprocal is the speed of light itself, which
is its own reciprocal and is not properly a member of either set. The implications to
causality are that either set of frames can interact with all others in their set without
violating the conventional notion of causality, since all velocities are less than c for
an observer at rest in any of the frames in a single set.

These considerations inevitably lead to the conclusion that the superluminal
world comprises the world of superluminal waves and that the notions of either
sub-luminal particles or superluminal waves are interchangeable and are themselves
relative notions dependent upon the frame of reference. Accordingly, particle and
wave velocities in the unprimed (x, t) frame are perceived as, respectively, wave
and particle velocities in the primed (x′, t ′) frame, with the implication that particle
energy e(x, t) in the unprimed (x, t) frame “coincides” with the wave energy
E (x′, t ′) in the primed (x′, t ′) frame. Similarly, wave energy E (x, t) in the unprimed
(x, t) frame “coincides” with the particle energy e(x′, t ′) in the primed (x′, t ′)
frame. To be more precise, in the formulae given below, there are two separate
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effects that have been accommodated. Firstly, the perceived particle and wave
energies in the primed frame become, respectively, e′ = e(x′, t ′) = E (x, t) and
E ′ = E (x′, t ′) = e(x, t), and secondly, a further transformation E ′ = E (x′, t ′) =
cp(x, t) and cp′ = cp(x′, t ′) = E (x, t) has been applied, which is necessary to
bring the quantities back to the unprimed frame.

The Lorentz invariant alternative to Newton’s second law developed by the author
in [47–52] is based upon the following structure. In the (x, t) frame, a particle is
assumed to be moving with velocity u = dx/dt , where 0 � u/c < 1, with an
associated de Broglie wave, which is moving with a superluminal wave velocity
w = c2/u. Assuming the standard Einstein formulae e = mc2 and m(u) = m0(1 −
(u/c)2)−1/2, where m0 denotes the rest mass, so that with e0 = m0c

2, the particle
energy e = e(x, t) and particle momentum p = p(x, t) are given by

e = e0

(1 − (u/c)2)1/2 , pc = e0u

c(1 − (u/c)2)1/2 ,
∂E

∂t
= c2 ∂p

∂x
,

∂E

∂x
= ∂p

∂t
,

where E = E (x, t) is the associated wave energy, which is determined from the
stated coupled partial differential equations through the momentum p. Note that
E = E (x, t) satisfies the classical wave equation and that the coupled partial
differential equations remain unchanged by the transformation E ′ = E (x′, t ′) =
cp(x, t) and cp′ = cp(x′, t ′) = E (x, t).

To summarise the above discussion, the unprimed (x, t) frame and primed (x′, t ′)
frame are characterised as follows. Particle and wave velocities in the unprimed
(x, t) frame become, respectively, wave and particle velocities in the primed (x′, t ′)
frame, and in both frames the “perceived” particles are assumed to follow the
Einstein formulation with respective particle energy e = mc2 or e′ = m′c2 and
particle momentum p = mu or p′ = m′u′, so that altogether we have:

• In the unprimed (x, t) frame, a particle is moving with velocity u = dx/dt ,
particle energy e = e(x, t), and there is an associated wave with wave velocity
w = c2/u and wave energy E = E (x, t), which is determined from the classical
wave equation.

• In the primed (x′, t ′) frame, a particle is moving with velocity u′ = dx′/dt ′ =
c2/u = w, particle energy e′ = e(x′, t ′) = E (x, t), and there is an associated
wave with wave velocity u = c2/w and wave energy E ′ = E (x′, t ′) = e(x, t),
which is determined from the classical wave equation.

• The interchange of particle and wave energies is then followed by the application
of a further transformation, namely E ′ = E (x′, t ′) = cp(x, t) and cp′ =
cp(x′, t ′) = E (x, t).

• These two steps when combined produce the following transformation, which is
subsequently shown to be a symmetry of the basic model given by (3.4), thus

e′ −→ cp, cp′ −→ e, E ′ −→ cP. (7.26)
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On adopting the standard Einstein formulae e = mc2 and m(u) = m0(1 −
(u/c)2)−1/2, where m0 denotes the rest mass, then arising from the superluminal
extension provided in [54], the key relations for particle and wave energies and
momenta may be summarised as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e = e0

(1 − (u/c)2)1/2 ,
e = E = pc = Pc,

E = E∞(u/c)
((u/c)2 − 1)1/2

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pc = e0u

c(1 − (u/c)2)1/2 , 0 � u/c < 1,

pc = Pc = e = E , u/c = 1,

Pc = E∞
((u/c)2 − 1)1/2

, 1 < u/c <∞,
(7.27)

with the complimentary energy, either E (x, t) or e(x, t), is assumed to be deter-
mined from coupled first-order partial differential equations through the correspond-
ing momenta p(x, t) or P(x, t), or from the classical wave equation, thus

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂E

∂t
= c2 ∂p

∂x
,

∂E

∂x
= ∂p

∂t
,

e = E = pc = Pc,
∂e

∂t
= c2 ∂P

∂x
,

∂e

∂x
= ∂P

∂t
,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2E

∂t2
= c2 ∂

2E

∂x2
, 0 � u/c < 1,

e = E = pc = Pc, u/c = 1,
∂2e

∂t2
= c2 ∂

2e

∂x2
, 1 < u/c <∞,

(7.28)

where e0 = m0c
2 and E∞ denote the limiting values of the particle and wave

energies in the limits u tending to zero and infinity, respectively, and in general
E∞ �= e0. However, if we require consistency for the determination of the de Broglie
internal frequency, namely the two sets of equations should coincide,

λν = c2

u
, hν = e(x, t) = e0

(1 − (u/c)2)1/2 ,

and

λ′ν′ = c2

w
, hν′ = e(x′, t ′) = cP(x, t) = E∞

((w/c)2 − 1)1/2
,

then we require E∞ = e0, noting that for parity in the second set of equations we are
using w = c2/u = u′ for the perceived particle velocity in the primed frame, and
in the final equation we have utilised the equivalent version of the transformation
E ′ = E (x′, t ′) = cp(x, t) and cp′ = cp(x′, t ′) = E (x, t), but with e in place of
E and P in place of p, respectively. We also have in mind that for a simple wave
of wavelength λ and frequency ν in the unprimed (x, t) frame with λν = c2/u,
as noted previously in Chap. 2 (see Eqs. (2.39), (2.40) and (2.41)), the wavelength
and frequency transform according to the formulae λ′ = c/ν and ν′ = c/λ so that
λ′ν′ = u. In this formulation, other than generating insight into the role interchange
of particles and waves, there can be no material advantage in adopting either the
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sub-luminal or superluminal set of frames, since any perceived advantage would
imply a loss of complete parity.

We also note that the above relations (7.27) satisfy the basic rate-of-working
equations and energy statements

⎧⎨
⎩
de = udp,
dE = c2

u
dP,

{
e2 = (pc)2 + e20, 0 � u/c < 1,
E 2 = (cP)2 + E 2∞, 1 < u/c <∞,

with e0 = E∞ = 0 when u/c = 1.
We now show that the space-time transformation x′ = ct and t ′ = x/c with

u′ = c2/u and the symmetry (7.26) involving the interchange of the energy and
momentum expressions across the page, namely

e′ −→ cp, cp′ −→ e, E ′ −→ cP, (7.29)

may be confirmed independently as follows. The general Lorentz invariant equations
for the three energies e(x, t), cp(x, t) and E (x, t) for a single spatial dimension
become simply

f = dp

dt
= ∂p

∂t
+ ∂e

∂x
, g = 1

c2

dE

dt
= 1

c2

∂e

∂t
+ ∂p

∂x
, (7.30)

where f (x, t) and cg(x, t) denote the applied external forces in the spatial and time
directions, respectively. Now the primed version of the above Eqs. (7.30), namely

f ′ = dp′

dt ′
= ∂p′

∂t ′
+ ∂e′

∂x′ , g′ = 1

c2

dE ′

dt ′
= 1

c2

∂e′

∂t ′
+ ∂p′

∂x′ ,

under the symmetry (7.29), becomes, respectively,

f ′ = de

dx
= 1

u

de

dt
= dp

dt
= ∂e

∂x
+ ∂p

∂t
,

g′ = dP

dx
= 1

u

dP

dt
= 1

c2

dE

dt
= 1

c2

∂e

∂t
+ ∂p

∂x
,

and therefore Eqs. (7.30) are left invariant under this symmetry, and moreover, f ′ =
f and g′ = g.

As previously described, we may view the symmetry (7.29) as arising from
the combination of two transformations. Firstly, in the primed frame there is an
interchange of the particle and wave energies e and E , thus e′ = E (x′, t ′) and
E ′ = e(x′, t ′). This interchange is then followed by an application of a limited
symmetry of the Eqs. (7.20), namely E ′ = E (x′, t ′) = cp(x, t) and cp′ =
cp(x′, t ′) = E (x, t), and we use the term limited to convey the fact that this is
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a symmetry of (7.20) but not of (7.30). These two transformations then combined
produce the symmetry (7.29).

For the velocity u (0 < u/c <∞), in terms of the momenta pc and cP , we find
from (7.27) and (7.28) that the full set of transformations for the particle velocities
u/c, along with the particle and wave energies e and E , become

u/c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pc

((pc)2 + e20)1/2
,

1,
((Pc)2 + E 2∞)1/2

Pc
,

⎧⎨
⎩
e = ((pc)2 + e20)1/2, 0 � u/c < 1,
e = E = pc = Pc, u/c = 1,
E = ((Pc)2 + E 2∞)1/2, 1 < u/c <∞,

while the corresponding expressions for the wave velocities w/c and particle and
wave energies e and E become

w/c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

((pc)2 + e20)1/2
pc

,

1,
Pc

((Pc)2 + E 2∞)1/2
,

⎧⎨
⎩
e = ((pc)2 + e20)1/2, 0 � u/c < 1,
e = E = pc = Pc, u/c = 1,
E = ((Pc)2 + E 2∞)1/2, 1 < u/c <∞,

noting again that uw = c2.
The major known fields, such as electricity, magnetism and gravitation, are

believed to propagate as waves travelling at the speed of light, and the immediately
above relations would seem to indicate that a necessary and sufficient condition for
u/c = 1 is that both the rest energy and the wave energy at infinite velocity are zero,
namely e0 = E∞ = 0. However, these relations also imply that for sufficiently large
momenta with e0 �= 0 and E∞ �= 0, a propagating field might well be travelling
sufficiently close to the speed of light so as to be perceived to be travelling at the
speed of light. It is also apparent that a wave travelling at the speed of light can only
materialise as a particle if there is a slowing to a sub-luminal speed, which hints at
a possible origin of the perceived probabilistic nature of quantum mechanics. That
is, the above relations indicate that the particle or wave nature of either light or
electrons occurs when the particular physical conditions are such that their speeds
drift into either the sub-luminal or superluminal ranges to give the appearance of a
random phenomenon. It is also apparent from this analysis that the phenomenon of
quantum entanglement might simply be explained by the two separate cases arising
from the positive and negative values of either the rest energy e0 or the wave energy
at infinite velocity E∞.



Chapter 8
Further Results for One Space Dimension

8.1 Introduction

In this chapter, we present further results applying to a single spatial dimension,
for which the key feature is that the momentum p(x, t) satisfies the conventional
wave equation, for which there exists a simple general solution. In the following
section, we detail the well-known general solution of the classical one-dimensional
wave equation. In the subsequent two sections, we are interested in the existence
or otherwise of solutions in the event that the force f (x, t) is switched off. If there
exists a work done function, namely ∂f/∂t = c2∂g/∂x, then only the trivial solution
exists if the spatial physical force f (x, t) is set to zero, as might be anticipated. If
however f (x, t) = 0 and there is no other underlying constraint on the forces, then
it is possible to generate an interesting class of general nontrivial solutions for zero
spatial force f . The section thereafter deals with a particular generalisation of the
relativistic wave-like solution studied in prior chapters, and the subsequent section
provides another generalisation, which is an example of a solution with a variable
rest mass. The penultimate section of the chapter deals with the formulation of the
basic equations in terms of the characteristic coordinates α = ct+x and β = ct−x.
The final section of the chapter develops a number of results assuming that the
momentum p(x, t) and wave energy E (x, t) can be treated as independent variables
which corresponds to the assumption that the applied forces f and g are such that
f �= ±cg.

8.2 Wave Equation General Solution

For a single spatial dimension, a particle moving with velocity u has a conventional
momentum p = mu and energy e = mc2 where m(u) = m0[1 − (u/c)2]−1/2, such
that p satisfies the wave equation. In addition, associated with the particle is a de
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Broglie wave moving with a wave velocity c2/u, for which there is an associated
wave energy E , such that the total energy of the particleW is given byW = e+ E .
For a given momentum p(x, t), we have

u(x, t) = pc2

(e20 + (pc)2)1/2 , e(x, t) = (e20 + (pc)2)1/2,

so that from Eq. (3.10), we obtain

dE = ∂p

∂t
dx + c2 ∂p

∂x
dt,

and we may deduce the basic relations

∂E

∂t
= c2 ∂p

∂x
,

∂E

∂x
= ∂p

∂t
.

Accordingly, both the momentum p = mu and the wave energy E satisfy the wave
equations,

∂2p

∂t2
= c2 ∂

2p

∂x2
,

∂2E

∂t2
= c2 ∂

2E

∂x2
.

Wemay exploit the simple general solutions of the wave equation p(x, t) = F(α)+
G(β) and E (x, t) = c (F (α)−G(β)), where α = ct+x and β = ct−x and where
both F and G denote arbitrary functions of their arguments.

Thus, if p(x, t) = F(ct + x)+G(ct − x) for arbitrary functions F and G, then
the wave energy E (x, t) is given by E (x, t) = c (F (ct + x)−G(ct − x)), and by
total differentiation of this expression with respect to time, it is not difficult to show
that the four expressions

p(x, t) = F(ct + x)+G(ct − x),
E (x, t) = c (F (ct + x)−G(ct − x)) ,

u(x, t) = c2 (F (ct + x)+G(ct − x))
(e20 + c2 (F (ct + x)+G(ct − x))2)1/2 ,

e(x, t) = (e20 + c2 (F (ct + x)+G(ct − x))2)1/2,

automatically satisfy the equation

dE

dt
= de

dt
+ e ∂u
∂x
,
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for all functions F(ct + x) and G(ct − x), which therefore constitutes the formal
general solution in a single spatial dimension.

The explicit solution given above by (5.1), which is valid for f (u) and g(u) given
by (5.2), arises from the immediately above analysis by taking F(α) = f0αA/c and
G(β) = f0βB/c, where A and B are constants, such that A + B = 1 and the
constant λ in (5.8) is given by A− B = λ, so that A = (1 + λ)/2, B = (1 − λ)/2,
F(α) = f0(1 + λ)α/2c and G(β) = f0(1 − λ)β/2c. Thus, in this particular case,
we have p(x, t) = f0(λx + ct)/c and E (x, t) = f0(x + cλt), where f0 denotes the
arbitrary force constant appearing in the expressions (5.2), and these expressions are
in agreement with the previously given results.

From Eq. (4.3)2, there certainly exists a function ψ(x, t) such that

p = ∂ψ

∂x
, E = ∂ψ

∂t
. (8.1)

and satisfying the wave equation

∂2ψ

∂t2
− c2 ∂

2ψ

∂x2
= 0. (8.2)

We also observe that the one-dimensional version of (3.10), namely

dE = udp + euxdt,

uses a subscript notation for partial derivatives, and this equation can be shown to
become

ψtxdx + ψttdt = u(ψxxdx + ψxtdt)+ euxdt.

On using u = dx/dt , together with the wave equation (8.2) to eliminate ψtt , the
resulting equation for ψxx becomes ψxx(1 − (u/c)2) = mux or ψxx = m0ux/(1 −
(u/c)2)3/2, which can be seen to be merely the partial derivative with respect to x
of the relation p = mu = ∂ψ/∂x.

8.3 Trivial Solution Only for Zero Spatial Force

For any physically reasonable theory, we might expect that only the trivial solution
arises if the spatial physical force is switched off. This is certainly the case for
Eqs. (7.1) arising from the basic model (3.4), if we assume the existence of a work
done functionW(x, t). Without this assumption, we show in the subsequent section
that it is not necessarily the case.

If for the above relations (8.1) and (8.2) we make the additional assumption that
f = pt + ex = 0, then apart from an arbitrary function of time, in addition to
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p = ∂ψ/∂x, we have the further relation e = −∂ψ/∂t , so that in the particular
case that there exists a work done function W(x, t), we have g = 0 and therefore
W = e + E = 0, as might be anticipated. Further, within the present theory, it is
a simple matter to show that there are no nontrivial solutions for ψ(x, t) for which
f = 0. In terms of the characteristic coordinates α = ct + x and β = ct − x, the
equation e2 − (pc)2 = e20 becomes ψαψβ = (e0/2c)2, and it is not difficult to show
that the only solutions for e and p arising from ψαβ = 0 and ψαψβ = (e0/2c)2 are
constant state solutions emanating from ψ(x, t) = C1α + C2β, where C1 and C2
denote constants such C1C2 = (e0/2c)2, and for which we have

e = −c(C1 + C2), p = (C1 − C2), E = c(C1 + C2),

corresponding to the constant velocity u/c = (C2 −C1)/(C1 +C2). However, since
e is a constant, we have (C1+C2) = −e0/c, and together withC1C2 = (e0/2c)2, we
might readily conclude C1 = C2 = −e0/2c, and therefore only the trivial solution
p = u = 0 applies, which confirms that if the work done function W(x, t) exists,
then zero external force f leads to only the trivial solution.

8.4 Nontrivial Solutions for Zero Spatial Force

If there is no work done functionW(x, t) and the spatial force f is zero, that is, we
are not assuming the relation ft = c2gx , then it is easy to demonstrate that indeed
nontrivial solutions do exist. If f = pt + ex = 0, then from the relations (8.1) we
have altogether

p = ∂ψ

∂x
, e = −∂ψ

∂t
, E = ∂ψ

∂t
,

where ψ(x, t) satisfies the equation

∂2ψ

∂x2
− 1

c2

∂2ψ

∂t2
= g. (8.3)

and where the force in the direction of time g(x, t) is an assumed prescribed
function. From the equation e2 − (pc)2 = e20, we have (∂ψ/∂t)2 − c2(∂ψ/∂x)2 =
e20, and therefore we might deduce

∂ψ

∂t
= e0 cosh θ, c

∂ψ

∂x
= e0 sinh θ, (8.4)

for some angle θ(x, t). On equating the two expressions for ∂2ψ/∂t∂x, we obtain
∂θ/∂t = c tanh θ∂θ/∂x, which together with (8.3) we obtain
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∂θ

∂x
= cg

e0
cosh θ,

∂θ

∂t
= c2g

e0
sinh θ, (8.5)

and the compatibility equation obtained by equating the two expressions for
∂2θ/∂t∂x becomes

c sinh θ
∂g

∂x
+ (cg)2

e0
= cosh θ

∂g

∂t
. (8.6)

Using the basic definitions of cosh θ and sinh θ , this equation may be reformulated
as a quadratic equation for eθ which on solving yields

eθ = μg2 + (μ2g4 − (∂g/∂t)2 + c2(∂g/∂x)2)1/2
(∂g/∂t − c∂g/∂x) , (8.7)

e−θ = μg2 − (μ2g4 − (∂g/∂t)2 + c2(∂g/∂x)2)1/2
(∂g/∂t + c∂g/∂x) ,

where μ = 1/m0, and from these relations, we find that

cosh θ = μg2∂g/∂t + (μ2g4 − (∂g/∂t)2 + c2(∂g/∂x)2)1/2 c∂g/∂x
((∂g/∂t)2 − c2(∂g/∂x)2) , (8.8)

sinh θ = μg2c∂g/∂x + (μ2g4 − (∂g/∂t)2 + c2(∂g/∂x)2)1/2 ∂g/∂t
((∂g/∂t)2 − c2(∂g/∂x)2) .

It happens that a simple but very general family of solutions exist for which
(∂g/∂t)2 − c2(∂g/∂x)2 = μ2g4, so that there exists some function φ(x, t) such
that

∂g

∂t
= μg2 coshφ, c

∂g

∂x
= μg2 sinhφ,

but immediately from (8.8), in this particular case, we have simply

∂g

∂t
= μg2 cosh θ, c

∂g

∂x
= μg2 sinh θ,

and therefore, we may conclude that φ(x, t) = θ(x, t). These equations together
with (8.5) yield

∂θ

∂x
= 1

cg

∂g

∂t
,

∂θ

∂t
= c

g

∂g

∂x
,

and therefore, both θ(x, t) and log g(x, t) satisfy the wave equation, so that with
α = ct + x and β = ct − x, we have log g(x, t) = F(α) + G(β) and θ(x, t) =
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F(α)−G(β), where F(α) and G(β) denote arbitrary functions, and we obtain

g(x, t) = eF(α)+G(β) = A(α)B(β), (8.9)

where A(α) and B(β) also denote arbitrary functions given by A(α) = eF(α) and
B(β) = eG(β).

Further, from the relations pc = c∂ψ/∂x = e0 sinh θ and e = −∂ψ/∂t =
−e0 cosh θ and therefore from the equation

u

c
= pc

e
= − sinh θ

cosh θ
= B(β)/A(α)− A(α)/B(β)
B(β)/A(α)+ A(α)/B(β) ,

we find that u/c is given by

u

c
= B(β)2 − A(α)2
B(β)2 + A(α)2 , (8.10)

noting that u/c < 1. Also, in terms of α = ct+x and β = ct−x, Eq. (8.3) becomes
simply ∂2ψ/∂α∂β = −A(α)B(β)/4 and therefore integrates immediately to give
the general solution arising from the assumed g(x, t) given by (8.9), thus

ψ(x, t) = −1

4

ˆ
A(α)dα

ˆ
B(β)dβ + C(α)+D(β),

where A(α), B(β), C(α) and D(β) denote four arbitrary functions. Thus, even
though the spatial physical force vanishes, for a wide range of forces in the direction
of time g(x, t) given by (8.9), we can generate velocities less than the speed of light
and given explicitly by (8.10).

Finally, in this section, we comment that the above solution happens to be
one particularly simple solution of many solutions that exist for arbitrary g(x, t).
Further, we comment that on using h(x, t) = 1/g(x, t), the above Eqs. (8.7)
and (8.8) simplify somewhat to become, respectively,

eθ = μ+ (μ2 − (∂h/∂t)2 + c2(∂h/∂x)2)1/2
(c∂h/∂x − ∂h/∂t) ,

e−θ = μ− (μ2 − (∂h/∂t)2 + c2(∂h/∂x)2)1/2
(c∂h/∂x + ∂h/∂t) ,

and

cosh θ = μ∂h/∂t + (μ2 − (∂h/∂t)2 + c2(∂h/∂x)2)1/2 c∂h/∂x
(c2(∂h/∂x)2 − (∂h/∂t)2) ,
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sinh θ = μc∂h/∂x + (μ2 − (∂h/∂t)2 + c2(∂h/∂x)2)1/2 ∂h/∂t
(c2(∂h/∂x)2 − (∂h/∂t)2) .

where again μ = 1/m0. In terms of the characteristic variables α = ct + x and
β = ct − x, the three Eqs. (8.5), (8.6) and (8.7) become, respectively,

∂θ

∂α
= μ

2ch
eθ ,

∂θ

∂β
= − μ

2ch
eθ , (8.11)

while the compatibility equation obtained by equating the two expressions for
∂2θ/∂α∂β becomes

e−θ ∂h
∂α

+ eθ ∂h
∂β

= −μ
c
,

and this may be solved as a quadratic equation for eθ to yield

eθ = −
(
μ+ (μ2 − 4c2∂h/∂α∂h/∂β

)1/2)
2c∂h/∂β

,

e−θ = −
(
μ− (μ2 − 4c2∂h/∂α∂h/∂β

)1/2)
2c∂h/∂α

.

These equations mean that in principle, for any prescribed force g(x, t) in the
direction of time, namely any h(α, β), we may generate θ(α, β) satisfying (8.11),
and therefore through (8.4), we might generate a solution of (8.3).

8.5 Generalisation of Wave-Like Solution

For a single spatial dimension, the above wave-like solution (5.1) can be generalised
in a variety of ways, and in this section, we provide a particular generalised version
of (5.1) and (5.8). We start with p(x, t) = F(α)+G(β) and Eq. (4.2) to deduce the
two differential relations

dp

dt
= u (F ′(α)−G′(β)

)+ c (F ′(α)+G′(β)
)
,

and

dE

dt
= uc (F ′(α)+G′(β)

)+ c2 (F ′(α)−G′(β)
)
,
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and by division, we may deduce an equation, which constitutes the generalised
version of (5.8) thus

dE

dp
= c

(
ω + u/c
1 + ωu/c

)
, (8.12)

where ω is defined by the ratio ω = (F ′(α)−G′(β)
)
/
(
F ′(α)+G′(β)

)
.

For example, for the special case F(α) = γ logα and G(β) = γ logβ where γ
is a constant, we find that ω = −x/ct and (8.12) becomes simply

dE

dp
= u− x/t

1 − xu/c2t .

From pc = e0(u/c)/(1−(u/c)2)1/2, we can deduce that u/c = pc/(e20+(pc)2)1/2,
and therefore from p(x, t) = γ log((ct)2−x2), the particle velocity u(x, t) is given
explicitly by

u(x, t) = c

⎧⎪⎨
⎪⎩

log
(
(ct)2 − x2)[

(e0/γ c)2 + (log ((ct)2 − x2))2]1/2
⎫⎪⎬
⎪⎭ .

For the general solution p(x, t) = F(α) + G(β) and E (x, t) = c (F (α)−G(β)),
the corresponding general expressions for the velocity u(x, t) and the required force
functions f (x, t) and g(x, t)might be evaluated as follows. From p(x, t) = F(α)+
G(β) and

u(x, t) = c
{

cp(x, t)

(e20 + (cp(x, t))2)1/2
}
,

therefore the velocity profile u(x, t) corresponding to the general solution is given
by

u(x, t) = c
{

c(F (α)+G(β))
(e20 + c2(F (α)+G(β))2)1/2

}
,

where again F and G denote arbitrary functions of α = ct + x and β = ct − x,
respectively.

We now seek the most general f (x, t) and g(x, t) satisfying (6.7), such that (7.1)
admit nontrivial solutions. Again on introducing φ through u = c sinφ, there
follows the relations (6.1), and we might readily deduce

cφx = b(x, t)− a(x, t) sinφ, φt = a(x, t)− b(x, t) sinφ, (8.13)
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where a(x, t) and b(x, t) are given by a(x, t) = cf (x, t)/e0 and b(x, t) =
c2g(x, t)/e0 and e0 = m0c

2. In terms of a(x, t) and b(x, t), Eq. (6.7) and the
equation obtained by equating expressions for φxt become

at = cbx, bt = cax + (a2 − b2) cosφ,

which not only constitutes two equations for a(x, t) and b(x, t) but also involves
the function φ(x, t). In order to obtain an equation in the single variable φ(x, t), we
use at = cbx to introduce the function ψ(x, t) such that a = cψx and b = ψt , and
Eqs. (8.13) become

cφx = ψt − cψx sinφ, φt = cψx − ψt sinφ,

and from which, we may deduce

ψt = (cφx + φt sinφ) sec2 φ, cψx = (φt + cφx sinφ) sec2 φ,

and on elimination of ψ(x, t) by equating expressions for the derivative ψxt , we
obtain

φtt + 2 tanφφt
2 = c2(φxx + 2 tanφφx

2),

which simplifies to give

∂2(tanφ)

∂t2
= c2 ∂

2(tanφ)

∂x2
.

This equation is of course merely (4.4)1 with pc = e0 tanφ. This means that the
most general f (x, t) and g(x, t) satisfying (6.7) are determined from (9.55) through
the relations

a(x, t) = (tanφ)t + c sinφ(tanφ)x, b(x, t) = c(tanφ)x + sinφ(tanφ)t ,

along with tanφ = c(F (ζ ) + G(η))/e0. The final relations for f (x, t) and g(x, t)
become

f (x, t) = c {(F ′(ζ )−G′(η))+ sinφ(F ′(ζ )+G′(η))
}
,

g(x, t) = {(F ′(ζ )+G′(η))+ sinφ(F ′(ζ )−G′(η))
}
,

where the primes denote differentiation with respect to the argument indicated and
with sinφ = u(x, t)/c given explicitly by

sinφ = u(x, t)

c
=
{

(F (ζ )+G(η))
((e0/c)2 + (F (ζ )+G(η))2)1/2

}
.
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8.6 Solutions with Non-constant Rest Mass

Baryonic matter appears to be characterised by a finite rest mass, and yet miracu-
lously this finite mass necessarily plunges to zero if the particle attains the speed
of light. As we have previously cited, according to de Broglie, he believed that the
rest mass of particles is not constant, but variable, and that both the neutrino and the
photon have nonzero rest masses, although necessarily extremely small. This means
that we need to entertain the possibility of a variable rest mass energy e0 = e0(x, t),
which might involve generalised functions, and in particular the representation
shown in Fig. 3.3, involving the Heaviside unit step function. Accordingly, the
question arises as to whether the present theory permits a variable rest mass, which
is finite at u = 0 and zero at u = c. In this section, we provide one example of this,
which is yet another generalisation of the wave-like solution (5.1) for a single spatial
dimension and with a variable rest mass. In the following section, we show that the
formal equations for the extension of Newton’s second law given by Eqs. (3.4), at
least for a single space dimension, are indeed well-defined for variable rest energy.

We follow the derivation given in the previous chapter, and we assume the two
basic equations either (4.30) or (7.1), and following (6.1), we again introduce an
angle φ(x, t) such that u = c sinφ through the relations

e = e0(x, t) secφ, pc = e0(x, t) tanφ, (8.14)

so that we have correctly e2 − (pc)2 = e20, but here we suppose that the quantity
e0(x, t) is itself also varying with position and time. Subsequently, in order to
facilitate the analysis, we make the additional assumption that e0(x, t) = e0(φ), and
ultimately, we determine constants in the solution that we may identify as the rest
mass energy constant, say e∗0, or as the rest mass constant, saym∗

0, where e
∗
0 = m∗

0c
2.

On substitution of the above two relations into the two basic equations given by
either (7.1) or (4.30), we may obtain two equations for the determination of the two
partial derivatives φx and φt ; thus,

φt + ψt sinφ cosφ + c sinφφx + cψx cosφ = a(x, t) cos2 φ,
sinφφt + ψt cosφ + cφx + cψx sinφ cosφ = b(x, t) cos2 φ,

where ψ(x, t) = log e0(x, t), and we have again introduced a(x, t) =
cf (x, t)/e0(x, t) and b(x, t) = c2g(x, t)/e0(x, t). On solving these equations
as two equations in the two unknowns φx and φt , we find

cφx = b(x, t)− a(x, t) sinφ − ψt cosφ, φt = a(x, t)− b(x, t) sinφ − cψx cosφ.

In order to proceed further, we need to cross differentiate these equations and
equate the two expressions for φxt . There results a complicated second-order partial
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differential equation for ψ(x, t), for which further progress appears difficult in the
absence of additional restrictions on the assumed form of ψ(x, t).

Accordingly, we return to the case when the forces f and g depend only on
velocity u = c sinφ, and we make the additional assumption that e0(x, t) = e0(φ)

so that a(x, t), b(x, t) and ψ(x, t) are all functions of φ only; thus, a(x, t) = a(φ),
b(x, t) = b(φ) and ψ(x, t) = ψ(φ) and the above equations become

cφx + ψ ′(φ) cosφφt = b(φ)− a(φ) sinφ, φt + cψ ′(φ) cosφφx = a(φ)− b(φ) sinφ,

which on solving as two equations for the determination of the two partial
derivatives φx and φt yields

cφx = b(φ)− a(φ) sinφ
(1 − F 2)

− (a(φ)− b(φ) sinφ)F
(1 − F 2)

, (8.15)

φt = a(φ)− b(φ) sinφ
(1 − F 2)

− (b(φ)− a(φ) sinφ)F
(1 − F 2)

,

where for convenience we have introduced the function F(φ) = ψ ′(φ) cosφ.
Further, on introducing the two functions A(φ) and B(φ) defined by

A(φ) = a(φ)− b(φ) sinφ
(1 − F 2)

, B(φ) = b(φ)− a(φ) sinφ
(1 − F 2)

,

the two Eqs. (8.15) become simply

cφx = B(φ)− A(φ)F (φ), φt = A(φ)− B(φ)F (φ).

We observe that these latter equations enjoy exactly the same mathematical structure
as (6.2), except that sinφ has been replaced by F(φ). Effectively, this means that
the solution procedure follows much the same lines as that for (6.2). On cross
differentiation of these equations, equating two expressions for φxt and repeatedly
using the equations themselves, we may deduce the following simple equation:

d(B/A)

dφ
=
(
1 − (B/A)2

) dF
dφ
, (8.16)

which may be readily integrated, and further simplification yields

log

(
1 + B/A
1 − B/A

)
= 2(F − F0),

where F0 denotes the constant of integration. With some rearrangement, this
equation becomes simply B(φ) = A(φ) tanh(F − F0), which in terms of a(φ) and
b(φ) becomes
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b(φ)

a(φ)
=
(

sinφ + tanh(F − F0)
1 + sinφ tanh(F − F0)

)
, (8.17)

while in terms of the force f (u) and the energy-mass production g(u), we have the
implied relation

cg(u) = f (u)
(
(u/c)+ tanh(F − F0)
1 + (u/c) tanh(F − F0)

)
, (8.18)

where F(φ) is given by

F(φ) = cosφ

e0(φ)

de0(φ)

dφ
. (8.19)

We observe that the case e0 = constant gives F(φ) = 0 and that the two Eqs. (8.17)
and (8.18) recover precisely (6.3) and (6.4), respectively, with the constant λ =
− tanhF0 as might be expected.

With the relation (8.17), the two Eqs. (8.15) for the partial derivatives φx and φt
simplify dramatically to give

cφx = a(φ) cos2 φ(tanh(F − F0)− F)
(1 − F 2)(1 + sinφ tanh(F − F0)) , (8.20)

φt = a(φ) cos2 φ(1 − F tanh(F − F0))
(1 − F 2)(1 + sinφ tanh(F − F0)) ,

which correspond to Eqs. (6.5) and for which it is clear that φ(x, t) satisfies the
interesting nonlinear partial differential equation

cφx =
(

tanh(F − F0)− F
1 − F tanh(F − F0)

)
φt ,

where F(φ) is defined in terms of e0(φ) by Eq. (8.19). At this point in the
mathematical analysis, we may determine further solutions in any number of ways,
depending upon particular assumptions.

As an illustration of the process, we assume that the forces f (u) and g(u) are
given by the previously introduced linear force equations (5.2), so that

f (φ) = f0(1 + λ sinφ), cg(φ) = f0(λ+ sinφ). (8.21)

where f0 and λ are constants, and in the above analysis, we make the identification
λ = tanh(F − F0) so that the function F(φ) is assumed to be a constant, say
F(φ) = κ for κ �= ±1, and for which we have the relation, F0 + tanh−1 λ = κ . We
comment that the terminology for the constant κ is intentionally chosen so as to be
consistent with the constant κ used in the final section of Chap. 2. We also comment
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that with the forces f and cg defined by (8.21), B/A = λ and therefore with F = κ ,
Eq. (8.16) is satisfied trivially.

The function e0(φ) is determined from the condition F(φ) = κ , and from (8.19),
we require to integrate

1

e0(φ)

de0(φ)

dφ
= κ

cosφ
, (8.22)

and we close this section with an entirely independent derivation of this condition
arising from (2.56). In order to integrate equation (8.22), we introduce the working
variable t = tan(φ/2) to deduce

log e0(φ) = κ log
(
1 + t
1 − t

)
+ log e∗0,

where e∗0 is a constant that can be identified with the rest mass energy. From this
equation, we may progressively deduce an expression for e0(φ), thus

e0(φ) = e∗0
(
1 + t
1 − t

)κ
= e∗0

(
cos(φ/2)+ sin(φ/2)

cos(φ/2)− sin(φ/2)

)κ
= e∗0

(
1 + sinφ

cosφ

)κ
,

to eventually determine

e0(φ) = e∗0
(

1 + u/c
(1 − (u/c)2)1/2

)κ
= e∗0

(
1 + u/c
1 − u/c

)κ/2
, (8.23)

which for both u/c > 0 and κ < 0 provides an example of a rest mass, which is
finite at u = 0 and zero at u = c. However, (8.23) is not a symmetric function of
u/c, and for u/c < 0, we require κ > 0. Despite this, the expression for e0(φ) is
particularly illuminating, since from Eq. (2.10), the angle θ that is defined by

θ = 1

2
log

(
1 + u/c
1 − u/c

)
= tanh−1(u/c),

(
1 + u/c
1 − u/c

)1/2

= eθ ,

is the angle for which a Lorentz invariance appears as a translational invariance,
and therefore, we have the expression e0(φ) = e∗0eκθ . Further, the resulting
energy expression e(u) coincides exactly with the energy expression (2.59), arising
from (2.56).

Now from the force assumptions (8.21) and the assumption that F(φ) is a
constant, we may deduce that the two Eqs. (8.20) become simply

φx = f0(λ− κ) cos2 φ
e0(φ)(1 − κ2) , φt = cf0(1 − κλ) cos2 φ

e0(φ)(1 − κ2) , (8.24)
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where e0(φ) is assumed to be given by (8.23). From these two equations, it is
apparent that c(1 − κλ)φx = (λ − κ)φt , so that φ(x, t) = φ(ζ ) where ζ =
(λ − κ)x + c(1 − κλ)t , and both Eqs. (8.24) reduce to the ordinary differential
equation

dφ

dζ
= f0 cos2 φ

e0(φ)(1 − κ2) . (8.25)

Again with the working variable t = tan(φ/2), this equation becomes

(
1 + t
1 − t

)κ
d tanφ

dζ
= f0

e∗0(1 − κ2) , (8.26)

so that we make the substitution

z =
(
1 + t
1 − t

)
=
(
cos(φ/2)+ sin(φ/2)

cos(φ/2)− sin(φ/2)

)
=
(
1 + sinφ

cosφ

)
= (tanφ + secφ) ,

and after rearrangement and squaring the equation z = tanφ + (1 + tan2 φ)1/2, we
obtain

tanφ = 1

2

(
z− 1

z

)
,

and the integration (8.26) becomes merely

zκ
(
1 + 1

z2

)
dz = 2f0

e∗0(1 − κ2)dξ .

Thus, assuming that the constant κ �= ±1, this differential equation readily
integrates to yield

z1+κ

(1 + κ) − z−1+κ

(1 − κ) = 2f0(ζ − ζ0)
e∗0(1 − κ2) ,

where ζ0 denotes the constant of integration. This equation may be alternatively
written in a variety of ways, including

ζ = ζ0 + e∗0
2f0

(
(1 − κ)z1+κ − (1 + κ)z−1+κ) = ζ0 + e∗0eκθ

f0
(sinh θ − κ cosh θ) ,

where ζ = (λ−κ)x+c(1−κλ)t , z = tanφ+(1+tan2 φ)1/2 and ζ0, f0, e∗0, λ and κ �=
±1 all denote arbitrary constants, where f0 and λ are the two constants appearing
in the assumed linear force relations (8.21) and e∗0 denotes the rest mass energy.
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Further, θ is the angle, in which the Lorentz invariance appears as a translational
invariance and defined by (2.10).

Independent Derivation of the Condition (8.22) In this note, we show that we
may provide an independent derivation of the condition (8.22) by assuming (2.56)
for the incremental energy-momentum raio de/dp, namely

de

dp
= c

(
κ + u/c
1 + κu/c

)
,

since from the relations (8.14), namely e = e0(x, t) secφ, pc = e0(x, t) tanφ and
u = c sinφ, this equation becomes

(
sinφ + ρ(φ) cosφ
1 + ρ(φ) sinφ cosφ

)
=
(
κ + sinφ

1 + κ sinφ
)
, (8.27)

where ρ(φ) is used here to denote (de0(φ)/dφ)/e0(φ). Equation (8.27) readily
simplifies to give ρ(φ) = κ secφ, which is precisely the assumed condition (8.22).

8.7 Formulation for Variable Rest Mass

In this text, we assume throughout the Einstein relations of special relativity and
that the rest energy e0 remains constant. In the prior section, we have obtained
a particular solution applying for non-constant rest energy e0 = e0(x, t). In
this section, we show that at least for a single space dimension, the formal
equations for the extension of Newton’s second law given by Eqs. (3.4) appear to
be perfectly well-defined and meaningful for variable rest energy. Thus, the basic
equations (3.4), in terms of the momentum p = mu and the energy e = mc2, would
appear to be equally sensible for variable rest energy, that is, e2− (pc)2 = e0(x, t)2,
where p = (p · p)1/2 is the momentum magnitude, and this validity seems to apply
without further restriction on e0(x, t).

In this section, for a single space dimension x, we present the formulation of
the basic equations in terms of the two Lorentz invariants ξ = ex − c2pt and η =
px − et , assuming that the rest energy is non-constant, thus e0 = e0(x, t) and e2 −
(cp)2 = e20(x, t), and we show after a complicated calculation that the governing
partial differential equations are well-defined for all e0(x, t). This calculation gives
some perspective to the corresponding equations derived in Chap. 4 for constant rest
energy, as well as an independent verification of the special solution derived in the
previous section. Unless partial differentiation of the rest energy is involved, the
corresponding equations derived in Chap. 4 remain unchanged.

Accordingly, these are simply listed below, except that we make explicit the
assumed non-constant nature of the rest energy, thus
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ξ + cη = (e + cp)(x − ct), ξ − cη = (e − cp)(x + ct),

ξ2 − (cη)2 = (e2 − (cp)2)(x2 − (ct)2) = e20(x, t)(x2 − (ct)2),

e + cp = e0(x, t)
(
1 + u/c
1 − u/c

)1/2

= e0(x, t)eθ , e − cp = e0(x, t)
(
1 − u/c
1 + u/c

)1/2

= e0(x, t)e−θ ,

ξ + cη = e0(x, t)(x − ct)eθ , ξ − cη = e0(x, t)(x + ct)e−θ ,

ξ = e0(x, t)(x cosh θ − ct sinh θ), cη = e0(x, t)(x sinh θ − ct cosh θ),
(8.28)

f = ∂p

∂t
+ ∂e

∂x
, g = 1

c2

∂e

∂t
+ ∂p

∂x
, (8.29)

xf − c2tg = ∂η

∂t
+ ∂ξ

∂x
, xg − tf = 1

c2

∂ξ

∂t
+ ∂η

∂x
,

where θ is the angle defined by (2.9)2 and satisfying the relations (2.10).
By partial differentiation of the expressions (8.28) with respect to both x and t ,

we may show that

xf − c2tg = cη ∂θ
∂x

+ ξ

c

∂θ

∂t
+ ξ ∂ψ

∂x
+ η ∂ψ

∂t
= ξ

(
1

c

∂θ

∂t
+ ∂ψ

∂x

)
+ η

(
c
∂θ

∂x
+ ∂ψ

∂t

)
,

xg − tf = ξ

c

∂θ

∂x
+ η

c

∂θ

∂t
+ ξ

c2

∂ψ

∂t
+ η ∂ψ

∂x
= ξ

c2

(
c
∂θ

∂x
+ ∂ψ

∂t

)
+ η

(
1

c

∂θ

∂t
+ ∂ψ

∂x

)
,

where ψ(x, t) = log e0(x, t), and with the abbreviation F = xf − c2tg and G =
xg − tf , we solve these as two equations for the two unknowns A and B defined by

A =
(
1

c

∂θ

∂t
+ ∂ψ

∂x

)
, B =

(
c
∂θ

∂x
+ ∂ψ

∂t

)
,

namely, F = ξA+ ηB and G = ξB/c2 + ηA to obtain

A =
(
ξF − c2ηG
ξ2 − (cη)2

)
, B = c2

(
ξG− ηF
ξ2 − (cη)2

)
.



8.7 Formulation for Variable Rest Mass 221

On using the expressions ξ = ex − c2pt and η = px − et and the relation ξ2 −
(cη)2 = e20(x2 − (ct)2),we obtain

ξG− ηF = (x2 − (ct)2)(eg − pf ), ξF − c2ηG = (x2 − (ct)2)(ef − c2pg),

and from which we may eventually deduce

∂θ

∂t
= c

e20

(ef − c2pg)− c ∂ψ
∂x
,

∂θ

∂x
= c

e20

(eg − pf )− 1

c

∂ψ

∂t
,

(8.30)

as the basic underlying coupled partial differential relations for the case of non-
constant rest energy, where θ is the angle defined by (2.9)2 and ψ(x, t) =
log e0(x, t).

Again, we comment that with arbitrarily assigned external forces (f, gc), these
equations must be well-defined and compatible in the sense that ∂/∂x(∂θ/∂t) =
∂/∂t(∂θ/∂x). Again, however, with f and g defined by the expressions (8.29), these
equations are surprisingly automatically well-defined and meaningful, although for
variable rest energy, this is not immediately apparent, and the calculation is slightly
more complicated than that previously given.

In order to see this, on using the relations (8.29), performing the partial
differentiations in (8.30) and equating the two expressions for the second order
partial derivative ∂2θ/∂x∂t , we might deduce the generalisation of (4.34), namely

f 2 − (cg)2 + e
(
∂f

∂x
− ∂g

∂t

)
+ p

(
∂f

∂t
− c2 ∂g

∂x

)
+ e20

(
1

c2

∂2ψ

∂t2
− ∂2ψ

∂x2

)

(8.31)

= 2(ef − c2pg)∂ψ
∂x

− 2(eg − pf )∂ψ
∂t
,

which again might be viewed as a consistency condition imposed upon any
allowable velocity fields arising from the applied external forces (f, gc), indicating
that f and g may not be entirely arbitrarily assigned. With f and g given by (8.29),
these equations can be shown to simplify to give

1

2

(
∂2e20

∂x2
− 1

c2

∂2e20

∂t2

)
+ e20

(
1

c2

∂2ψ

∂t2
− ∂2ψ

∂x2

)
+ 2

∂(e, p)

∂(x, t)

=
{
∂e20

∂x
+ 2

(
e
∂p

∂t
− p∂e

∂t

)}
∂ψ

∂x
−
{

1

c2

∂e20

∂t
+ 2

(
e
∂p

∂x
− p ∂e

∂x

)}
∂ψ

∂t
,

and on using ψ(x, t) = log e0(x, t), we might finally deduce the apparently cyclicly
interchangeable constraint
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p
∂(e, e0)

∂(x, t)
+ e ∂(e0, p)

∂(x, t)
+ e0 ∂(p, e)

∂(x, t)
= 0.

By direct calculation, this seemingly nontrivial condition can be shown to be
identically satisfied using the relations e = e0(x, t) secφ and pc = e0(x, t) tanφ.
Thus, with external forces (f, gc) satisfying (8.29), Eqs. (8.30) constitute two well-
defined relations for the determination of θ(x, t), which also becomes clear on
closer examination, since from (8.30) on using (8.29), we have

∂θ

∂t
= c

e20

{
e

(
∂p

∂t
+ ∂e

∂x

)
− p

(
∂e

∂t
+ c2 ∂p

∂x

)}
− c

e0

∂e0

∂x
= c

e20

(
e
∂p

∂t
− p ∂e

∂t

)
,

(8.32)

∂θ

∂x
= c

e20

{
e

(
1

c2

∂e

∂t
+ ∂p

∂x

)
− p

(
∂p

∂t
+ ∂e

∂x

)}
− 1

ce0

∂e0

∂t
= c

e20

(
e
∂p

∂x
− p ∂e

∂x

)
.

Thus, as for the case of constant rest energy mass, we obtain the seemingly simple
differential relation

dθ = ∂θ

∂x
dx + ∂θ

∂t
dt = c

e20

(edp − pde), (8.33)

applying to all variable rest energies e0 = e0(x, t). Now using the relations e =
e0(x, t) secφ and pc = e0(x, t) tanφ, Eq. (8.33) becomes

dθ = 1

e20

{e0 secφ(e0 sec2 φdφ + de0 tanφ)− e0 tanφ(e0 secφ tanφdφ + de0 secφ)} = secφdφ,

and, apart from an arbitrary additive constant, the simple relation dθ = secφdφ
integrates to give θ = log((1+ sinφ)/ cosφ), and with u = c sinφ, this is precisely
the relation (2.10)1, where θ is the angle in which the Lorentz invariance appears as
a translational invariance.

The upshot of this long calculation, which applies to any rest energy e0 =
e0(x, t), is that we may view Eq. (8.31) as a constraint that must be satisfied by
the applied external forces (f, gc) and allowable momentum-energy fields (pc, e).
If, however, the applied external forces (f, gc) are generated from (8.29) from
the (pc, e) momentum-energy field, then the above equations are all automatically
satisfied and the coupled relations such as (8.30) or (8.32) are well-defined and
meaningful as two coupled partial differential relations for θ(x, t).

Independent Verification for Solution of Previous Section Given the above
formalism, it is a relatively easy matter to verify the particular solution derived in
the previous section. The solution derived there applies to rest energies e0(φ) given
by (8.23), namely
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e0(φ) = e∗0
(
1 + u/c
1 − u/c

)κ/2
,

which is derived from the condition (8.22)

1

e0(φ)

de0(φ)

dφ
= κ

cosφ
, (8.34)

where κ is a constant. Further, the angle φ(ζ ) where u = c sinφ is assumed to be
determined from the differential relation (8.25)

dφ

dζ
= f0 cos2 φ

e0(φ)(1 − κ2) , (8.35)

where ζ = (λ − κ)x + c(1 − κλ)t , and λ is an arbitrary constant appearing in the
assumed linear force relations (8.21), thus

f (φ) = f0(1 + λ sinφ), cg(φ) = f0(λ+ sinφ),

where f0 is a further arbitrary force constant. Using these equations, it is now a
simple matter to independently verify the solution given in the previous section.
From the relations e = e0(φ) secφ, pc = e0(φ) tanφ and ψ(x, t) = log e0(φ), the
basic underlying coupled partial differential equations for the case of non-constant
rest energy equations (8.30) become

∂θ

∂t
= c

e20

(ef − c2pg)− c ∂ψ
∂x
,

= cf0

e0
{secφ(1 + λ sinφ)− tanφ(λ+ sinφ)} − ce

′
0(φ)

e0(φ)

∂φ

∂x
,

= cf0

e0
cosφ − cκ secφ ∂φ

∂x
,

and

∂θ

∂x
= c

e20

(eg − pf )− 1

c

∂ψ

∂t
,

= f0

e0
{secφ(λ+ sinφ)− tanφ(1 + λ sinφ)} − e

′
0(φ)

ce0(φ)

∂φ

∂t
,

= f0

e0
λ cosφ − κ secφ

c

∂φ

∂t
,
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on using the condition (8.34), where θ is the angle defined by (2.9)2. Now on using
φ(x, t) = φ(ζ ) where ζ = (λ− κ)x + c(1 − κλ)t , these two equations become

∂θ

∂t
= cf0

e0
cosφ − cκ(λ− κ) secφ dφ

dζ
= cf0

e0
cosφ

(
1 − κ(λ− κ)

(1 − κ2)
)

= cf0

e0
cosφ

(
1 − κλ
1 − κ2

)
,

and

∂θ

∂x
= f0

e0
λ cosφ − κ secφ(1 − κλ)dφ

dζ
= f0

e0
cosφ

(
λ− κ(1 − κλ)

(1 − κ2)
)

= f0

e0
cosφ

(
λ− κ
1 − κ2

)
,

on using the condition (8.35). From both equations, it is clear that the assumption
θ(x, t) = θ(ζ ) leads to the single condition

dθ

dζ
= f0 cosφ

e0(φ)(1 − κ2) = secφ
dφ

dζ
,

on using the relation (8.35), and therefore, as expected, we obtain the correct
outcome dθ = secφdφ, and we have provided an independent check on the validity
of the solution given in the previous section.

8.8 Characteristics α = ct + x and β = ct − x

In terms of the characteristic coordinates α = ct + x and β = ct − x and the
differential relations

∂

∂x
= ∂

∂α
− ∂

∂β
,

1

c

∂

∂t
= ∂

∂α
+ ∂

∂β
, (8.36)

Equations (7.1) may be alternatively written as

f − cg = −2
∂(e − cp)
∂β

, f + cg = 2
∂(e + cp)
∂α

, (8.37)

indicating that if f = cg, then e = cp + A(α), and if f = −cg, then e =
−cp + B(β), where A(α) and B(β) denote arbitrary functions of the indicated
argument. These results give rise to the prospect of identifying dark matter with
the equation e = cp and identifying dark energy with the equation e = −cp and
with the arbitrary functions A(α) and B(β), taken to be zero.

On recalling that e2 − (cp)2 = e20, we may use the relations

e − cp = e20

(e + cp) , e + cp = e20

(e − cp) , (8.38)
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to show that the above Eqs. (8.37) become

∂p

∂α
= e

2ce20
(e − cp)(f + cg), ∂p

∂β
= e

2ce20
(e + cp)(f − cg). (8.39)

Further, if f and g are generated from a potential function V (x, t) such that

f = −∂V
∂x
, gc2 = −∂V

∂t
, (8.40)

then it is not difficult to show that the above Eqs. (8.37) become simply

∂V

∂β
= −∂(e − pc)

∂β
,

∂V

∂α
= −∂(e + pc)

∂α
, (8.41)

so that we have the two relations V = −(e− pc)− 2cF (α) and V = −(e+ pc)+
2cG(β), where F(α) and G(β) coincide with the arbitrary functions previously
introduced. On using f + cg = −2∂V /∂α and f − cg = 2∂V /∂β, Eqs. (8.39) can
be shown to become

∂p

∂α
= − e

ce20

(e − cp)∂V
∂α
,

∂p

∂β
= e

ce20

(e + cp)∂V
∂β
.

On differentiating the first with respect to β, the second with respect to α, and using
the equations themselves to eliminate the partial derivatives of p with respect to
both α and β, the two equations yield

∂2p

∂α∂β
= − (e − cp)

ce20

(
e
∂2V

∂α∂β
− ∂V

∂α

∂V

∂β

)
= (e + cp)

ce20

(
e
∂2V

∂α∂β
− ∂V

∂α

∂V

∂β

)
,

demonstrating that necessarily the potential V (α, β) and the particle energy e(α, β)
must be such that the following partial differential equation is satisfied

e
∂2V

∂α∂β
= ∂V

∂α

∂V

∂β
, (8.42)

in order that the momentum p(α, β) satisfies the wave equation ∂2p/∂α∂β = 0.
We observe that this equation is in complete agreement with the same Eq. (4.18),
expressed in terms of (x, t) coordinates, and again reflects a singular limit for
particle energy e tending to zero.

With E = −(e + V ), the two basic equations (7.1) become simply

∂E

∂x
= ∂p

∂t
,

∂E

∂t
= c2 ∂p

∂x
, (8.43)
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which in terms of the characteristic variables α = ct + x and β = ct − x can be
alternatively expressed as

∂E

∂α
= c ∂p

∂α
,

∂E

∂β
= −c ∂p

∂β
. (8.44)

Alternatively, for a single spatial dimension x, the one-dimensional equations (4.3)
or (8.44) above are obtained from either (3.9) or (3.14) by equating the expressions,
thus

dE = ∂E

∂x
dx + ∂E

∂t
dt = ∂p

∂t
dx + c2 ∂p

∂x
dt. (8.45)

The corresponding equation for p(x, t) becomes

dp = ∂p

∂x
dx + ∂p

∂t
dt = 1

c2

∂E

∂t
dx + ∂E

∂x
dt, (8.46)

so that on using (8.45)2 together with (8.46)2, we might deduce the relations

d(E − pc) = −1

c

(
∂(E − pc)

∂t
dx + c2 ∂(E − pc)

∂x
dt

)
= ∂(E − pc)

∂x
dx + ∂(E − pc)

∂t
dt,

d(E + pc) = −1

c

(
∂(E + pc)

∂t
dx + c2 ∂(E + pc)

∂x
dt

)
= ∂(E + pc)

∂x
dx + ∂(E + pc)

∂t
dt.

On equating coefficients of the differentials, using the characteristic coordinates
α = ct + x and β = ct − x and the differential relations (8.36), the above equations
can be shown to yield

∂(E − pc)
∂α

= 0,
∂(E + pc)

∂β
= 0,

from which we might deduce

E + pc = 2cF (α), E − pc = −2cG(β), (8.47)

where F(α) andG(β) refer to the same arbitrary functions that are used throughout.
We note that for the particularly simple exact solution of Eqs. (4.3) underlying

the previously discussed exact wave-light solution, which is given by

E (x, t) = f0(x + cλt), cp(x, t) = f0(λx + ct),

where f0 and λ denote arbitrary constants, the functions F(α) and G(β) are simply

F(α) = f0

2c
(1 + λ)α, G(β) = f0

2c
(1 − λ)β.
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Finally, in this section, we determine two families of solutions of the partial
differential equations (8.41) or (8.42), both of which involve a general solution of
the wave equation.

Solution (i) With ρ = e+pc, we may deduce, directly from Eqs. (8.38) and (8.41),
the two equations

∂V

∂β
= e20

ρ2

∂ρ

∂β
,

∂V

∂α
= − ∂ρ

∂α
, (8.48)

and therefore, on eliminating V (α, β) and introducing σ = ρ/e0, we may deduce
the nonlinear partial differential equation

(
1 + 1

σ 2

)
∂2σ

∂α∂β
= 2

σ 3

∂σ

∂α

∂σ

∂β
. (8.49)

We may deduce simple solutions of this equation with the assumption σ = f (θ),
where θ(α, β) is assumed to be a solution of the wave equation, that is, ∂2θ/∂α∂β =
0. We have the partial derivatives

∂σ

∂α
= f ′(θ) ∂θ

∂α
,

∂σ

∂β
= f ′(θ) ∂θ

∂β
,

∂2σ

∂α∂β
= f ′(θ) ∂

2θ

∂α∂β
+ f ′′(θ) ∂θ

∂α

∂θ

∂β
,

and from which we may deduce the ordinary differential equation

(
1 + 1

f 2

)
f ′′ = 2f ′2

f 3 ,

assuming that both ∂θ/∂α �= 0 and ∂θ/∂β �= 0. On rearrangement, this equation
becomes f ′′/f ′ = 2f ′/f (1 + f 2), which integrates to give f ′ = C1f

2/(1 + f 2),
and a further integration gives

f − 1

f
= C1(θ − θ0),

where C1 and θ0 denote two arbitrary constants. This final equation may be solved
as a quadratic equation to yield f (θ) as an explicit function of θ and a general family
of solutions for (8.38) and the two partial differential equations (8.41), thus

f (θ) = 1

2

(
C1(θ − θ0)±

[
C2
1(θ − θ0)2 + 4

]1/2)
,

where f (θ) = (e+pc)/e0 and where θ(α, β) is assumed to be a solution of the wave
equation, that is, ∂2θ/∂α∂β = 0. With the notation z = C1(θ − θ0)/2, altogether
we have
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e + pc
e0

=
(
1 + u/c
1 − u/c

)1/2

= z± (z2 + 1)1/2,

so that for the positive case, we obtain

e + pc
e0

=
(
1 + u/c
1 − u/c

)1/2

= etanh−1(u/c) = z+ (z2 + 1)1/2 = esinh−1(z),

and from the relation tanh−1(u/c) = sinh−1(z), we may deduce that

u

c
= tanh(sinh−1(z)) = sinh(sinh−1(z))

cosh(sinh−1(z))
= z

(z2 + 1)1/2
.

On rearrangement of this latter equation, we may identify the quantity z =
C1(θ − θ0)/2 with essentially the momentum p, which we know for a single spatial
dimension satisfies the wave equation, and this ties in with the fact that θ(α, β) is
assumed to be a solution of the wave equation.

Alternatively, with ρ = e − pc and then directly from Eqs. (8.38) and (8.41), in
place of (8.48) we have

∂V

∂α
= e20

ρ2

∂ρ

∂α
,

∂V

∂β
= − ∂ρ

∂β
, (8.50)

so that again on eliminating V (α, β) and introducing σ = ρ/e0, we may deduce that
σ(α, β) satisfies exactly the same nonlinear partial differential equation as (8.49),
and we may proceed as above.

Further, if in the above two solutions we identify the wave energy E = ±pc,
then because of the conservation of energy e + E + V = constant , only one of
Eqs. (8.48) or (8.50) applies, since one is trivially satisfied. This ties in directly with
the expressions e = e0/(1 − (u/c)2)1/2, pc = e0u/c(1 − (u/c)2)1/2, and the rate
equation (3.18), which becomes dE /dt = de/dt+e∂u/∂x and which for E = ±pc
simplifies considerably to give

∂u

∂t
= ±c ∂u

∂x
,

and the two solutions reduce to either forward or backward waves only, which
connects with the remaining nontrivial equation from either (8.48) or (8.50).

Solution (ii) The wave energy E (α, β) satisfies the wave equation ∂2E /∂α∂β = 0,
and in the terminology of (4.43), we have E (α, β) = c (F (α)−G(β)), where F
andG denote the arbitrary functions used in (4.43). From the conservation of energy,
we have e = −(E + V ), modulo a constant, and therefore Eq. (8.42) becomes the
nonlinear partial differential equation
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(V + E )
∂2V

∂α∂β
+ ∂V

∂α

∂V

∂β
= 0, (8.51)

for which some limited solutions may be determined from the assumption
V (α, β) = V (E ). In this case, we have
∂V

∂α
= V ′(E ) ∂E

∂α
,

∂V

∂β
= V ′(E ) ∂E

∂β
,

∂2V

∂α∂β
= V ′(E ) ∂

2E

∂α∂β
+ V ′′(E ) ∂E

∂α

∂E

∂β
= V ′′(E ) ∂E

∂α

∂E

∂β
,

since ∂2E /∂α∂β = 0. With the further assumptions that both ∂E /∂α �= 0 and
∂E /∂β �= 0, the above partial differential equation (8.51) may be reduced to the
following ordinary differential equation, thus

(V + E )V ′′(E )+ V ′(E )2 = 0,

where primes of course denote differentiation with respect to E . The first integral
may be readily obtained, thus

(V + E )V ′(E ) = V + V0, (8.52)

where V0 denotes the constant of integration. A further integral of this equation may
be deduced by introducing the working variables y = V + V0 and x = E − V0, so
that the differential equation becomes simply dy/dx = y/(y + x), which may be
integrated with the standard substitution v = y/x, to give the final result

E = V0 + (V + V0) (log(V + V0)+ V1) , (8.53)

where V1 denotes the second constant of integration, and notice that V (E ) is defined
only as an implicit function. We observe that in the case V1 = −1, the particle
energy e is essentially (V +V0) log(V +V0), and note the curiosity that this function
happens to coincide with the entropy function arising in Shannon’s information
theory, namely the function p logp (see, e.g. [80], page 124).

We may extend this result somewhat by making use of the one-dimensional
version of Eq. (3.17). For a single space dimension x, this result becomes simply
J∂u/∂x = dJ/dt , where J is the magnitude of the derivative, thus J = |∂x/∂X|,
the validity of which follows since J∂u/∂x = ∂u/∂X = dJ/dt , and this latter
equality follows from the fact that the total or material time derivative d/dt and
the material spatial derivative ∂/∂X are interchangeable. With the working notation
W = V + V0, Eq. (8.53) becomes

E + V = W +W (logW + V1) = W log(W/κ),

where κ is another constant defined by log κ = −(1+V1), so that from e = −(E +
V ), we have e = −W log(W/κ) and the incremental relation (3.18) yields
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2

e

de

dW
+ 1

J

dJ

dW
= −1

e
= 1

W log(W/κ)
,

on using dW = dV . This equation integrates immediately to give

log Je2 = log(log(W/κ))+ log J0,

where J0 denotes a further arbitrary constant, and from this latter relation, we
may deduce J = J0/W

2 log(W/κ)), so that altogether the Jacobian of the
transformation between material and spatial coordinates is given explicitly by

J = ∣∣ ∂x
∂X

∣∣ = J0

(V + V0)2 log((V + V0)/κ) ,

where J0, V0 and κ = −(1 + V1) all denote arbitrary constants.

8.9 p(x, t) and E (x, t) Assumed Independent Variables

In this section, we assume that the Jacobian � = ∂(p,E )/∂(x, t) is non-zero, so
that we may regard p(x, t) and E (x, t) as independent variables, and we observe
that this Jacobian is given by

� = ∂(p,E )

∂(x, t)
= ∂p

∂x

∂E

∂t
− ∂p

∂t

∂E

∂x
= c2

(
∂p

∂x

)2

−
(
∂p

∂t

)2

= −4c2
∂p

∂α

∂p

∂β

= −
(
e

e0

)2

(f 2 − (cg)2) = 4

(
e

e0

)2
∂V

∂α

∂V

∂β
,

so that here we are explicitly assuming that the forces f and g are such that f �=
±cg. Now with the working notation F = f + cg and G = f − cg, Eq. (8.39)
becomes

∂p

∂α
= e

2ce20
(e − cp)F , ∂p

∂β
= e

2ce20
(e + cp)G .

Again on differentiating the first equation with respect to β, the second with respect
to α, and using the chain rule and the equations themselves to eliminate the partial
derivatives of p with respect to both α and β, except that on this occasion we are
treating both F and G as functions of the independent variables p and E , thus
F = F (p,E ) and G = G (p,E ), the two equations can be shown to eventually
yield
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∂2p

∂α∂β
= G e2

4c2

(
∂F

∂p
− c ∂F

∂E
− c(e − pc)

e2
F

)
, (8.54)

= F e2

4c2

(
∂G

∂p
+ c ∂G

∂E
+ c(e + pc)

e2
G

)
.

Now since the momentum p satisfies the classical wave equation, both expressions
must vanish independently. If however we simply equate the two expressions for
∂2p/∂α∂β, then we might deduce the following equation:

(
G
∂F

∂p
− F

∂G

∂p

)
− c

(
G
∂F

∂E
+ F

∂G

∂E

)
= 2cFG

e
. (8.55)

We comment that the wave-like solution, exhaustively examined in subsequent
chapters, also arises from this equation, assuming that both F and G are functions
of the variable p only, so that the following relation holds

(
G
dF

dp
− F

dG

dp

)
= 2cFG

e
.

This equation simplifies to become

d (F/G )

dp
= 2c

(e20 + (pc)2)1/2 (F/G ) ,

so that on integration using the substitution pc = e0 tanφ yields

1

2
log

(
F

G

)
= 1

2
log

(
1 + sinφ

1 − sinφ

)
+ constant.

This equation can be shown to be equivalent to Eq. (6.4) arising in a different
derivation of the wave-like solution. Specifically, from the above equation, we have

F

G
= C

(
1 + sinφ

1 − sinφ

)
,

where C is a constant, which may be reconciled with the constant λ appearing in
Eq. (6.4) through the relation λ = (C − 1)/(C + 1).

More generally, on solving the two partial differential equations arising
from (8.54), namely

∂F

∂p
− c ∂F

∂E
− c(e − pc)

e2
F = 0,

∂G

∂p
+ c ∂G

∂E
+ c(e + pc)

e2
G = 0,

by Lagrange’s characteristic method, we may deduce the two general solutions
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F (p,E ) = (e + pc)
e

�(E + pc), G (p,E ) = (e − pc)
e

�(E − pc),

where both� and � denote arbitrary functions of the indicated argument. By direct
substitution and performing the partial differentiations, and perhaps contrary to
expectations, these general solutions can be shown to satisty equation (8.55) for
all arbitrary functions�(E +pc) and�(E −pc). From these general solutions, we
may deduce the following explicit expressions for the forces f and g as functions
of p and E , thus

f (p,E ) = 1

2
(�(E + pc)+�(E − pc))+ pc

2e
(�(E + pc)−�(E − pc)) ,

cg(p,E ) = 1

2
(�(E + pc)−�(E − pc))+ pc

2e
(�(E + pc)+�(E − pc)) ,

noting again the underlying assumption that the Jacobian � = ∂(p,E )/∂(x, t) is
non-zero, so that p(x, t) and E (x, t) can be treated as independent variables, which
corresponds to the assumption that f �= ±cg. We also note that since pc/e = u/c,
these equations have the same essential structure of the assumed forces f and g
underlying the exact wave-like solution and given by either (5.2) or (7.23), thus

f (p,E ) = 1

2
(�(E + pc)+�(E − pc))+ u

2c
(�(E + pc)−�(E − pc)) ,

cg(p,E ) = 1

2
(�(E + pc)−�(E − pc))+ u

2c
(�(E + pc)+�(E − pc)) ,

giving rise to the simple expressions

f (p, E )+ cg(p, E ) = �(E + pc)
(
1 + u

c

)
, f (p, E )− cg(p, E ) = �(E − pc)

(
1 − u

c

)
,

(8.56)

and therefore

f (p,E )2 − c2g(p,E )2 = �(E + pc)�(E − pc)
(
1 −

(u
c

)2)
.

We note that on using the formulae (3.15), the relations (8.56) can be shown to be
equivalent to

d(E + pc)
�(E + pc) = dα, d(E − pc)

�(E − pc) = dβ,

where as usual α and β denote the characteristic coordinates α = ct + x and
β = ct − x, and after formal integration, the latter relations are entirely consistent
with (8.47).



Chapter 9
Centrally Symmetric Mechanical Systems

9.1 Introduction

In this chapter, our specific purpose is to examine the consequences of the model
in a centrally or spherically symmetric gravitating environment to determine the
physically admissible or allowable potentials V (r, t). We have in mind a central
gravitating body generating a spherically symmetric environment, such that the
motion generated is in the radial direction only with no angular contribution or
dependence and is such that all variables are functions of (r, t) only, where r is
the spatial radius taken from the centre of the gravitating body and defined by
r = (x2 + y2 + z2)1/2. The potentials V (r, t) are shown to arise as the solutions
of four distinct partial differential equations, and the mathematical framework,
corresponding to each of the four states of matter, is briefly described and, where
possible, some of the simpler and physically more interesting solutions are noted.
Further, as in Chap. 5, we speculate that dark matter and dark energy arise when
there is a particular alignment of f and g, such that e = E and for which a special
solution becomes available. In this chapter, however, the curvature is involved in
the particular alignment of f and g. These proposals are supported by an entirely
consistent mechanical and mathematical framework, for which there remains much
future work, including the solution of specific problems and a stability analysis of
the various states of matter.

The following four sections relate the basic equations, their general solution,
the statement of energy conservation and the fundamental identity involving the
external forces f and cg. In the section thereafter, we pose the question as to whether
there exist solutions, for which both e0 is non-zero and one of the constraints
f = ±c(g− 2p/r) is satisfied. The next three sections deal with the Schwarzschild
radius r0 = GM/c2 used here, which is one-half of the conventional value; the
pseudo-Newtonian gravitational potential V (r, t) = −e(r, t)r0/r; and the proposal
for dark energy and dark matter. The subsequent four sections deal with the
determination of the gravitational potentials V (r, t), corresponding to each of the
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designated four types of matter. The following three sections present some technical
details relating to similarity solutions, and there is one section containing a number
of illustrative examples of spherically symmetric pulse waves, all the examples
involving the Dirac delta function. The final section of the chapter deals with de
Broglie’s guidance equation in a centrally symmetric environment.

9.2 Basic Equations with Spherical Symmetry

Here, we assume a spherically symmetric environment, so that for the momentum
vector p = (px, py, pz), we may deduce from the differential relation (3.9), namely

dE = ∂p
∂t
.dx + c2(∇.p)dt,

the following four equations

∂E

∂x
= ∂px

∂t
,

∂E

∂y
= ∂py

∂t
,

∂E

∂z
= ∂pz

∂t
,

∂E

∂t
= c2

(
∂px

∂x
+ ∂py

∂y
+ ∂pz

∂z

)
.

(9.1)

Accordingly, for the case of spherical symmetry, for which we have

p = p(r, t), E = E (r, t), (9.2)

where r = (x2 + y2 + z2)1/2, we may deduce

p = p(r, t)r̂ = p(r, t)

r
(x î + y ĵ + zk̂),

where (î, ĵ, k̂) denote the usual unit vectors in the (x, y, z) directions, respectively,
and r̂ is a unit vector in the spherical radial direction. From this equation and (9.2),
we may deduce that the four Eqs. (9.1) become

∂E

∂r
= ∂p

∂t
,

∂E

∂t
= c2

(
∂p

∂r
+ 2p

r

)
, (9.3)

and from these two equations, we may readily obtain

∂2E

∂t2
= c2

(
∂2E

∂r2
+ 2

r

∂E

∂r

)
,

∂2p

∂t2
= c2

(
∂2p

∂r2
+ 2

r

∂p

∂r
− 2p

r2

)
, (9.4)

again noting that the wave energy E (r, t) satisfies the classical wave equation, while
the momentum p(r, t) satisfies a wave-like equation. Notice also that the equation
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for the wave energy involves only derivatives of E (r, t), reflecting the fact that the
wave energy is determined modulo an arbitrary additive constant.

Both Eqs. (9.4) are standard linear partial differential equations, for which many
analytical solutions may be generated. Indeed, we may readily confirm that the
immediately above equations are formally satisfied by

E (r, t) = 1

r

∂ψ

∂t
= ∂ (ψ/r)

∂t
, p(r, t) = 1

r

∂ψ

∂r
− ψ

r2
= ∂ (ψ/r)

∂r
, (9.5)

where the potential ψ(r, t) satisfies the one-dimensional wave equation

∂2ψ

∂t2
= c2 ∂

2ψ

∂r2
. (9.6)

Further, if E (r, t) is any solution of the spherically symmetric wave equation (9.4)1,
then E ∗ = ∂E /∂t is a further solution, while p∗ = ∂E /∂r is a solution of (9.4)2,
and it is not difficult to show that E ∗(r, t) and p∗(r, t) constitute a matching or
corresponding pair of the coupled equations (9.3), since from

∂2E

∂r∂t
= ∂

∂r

(
∂E

∂t

)
= ∂

∂t

(
∂E

∂r

)
,

we have immediately

∂E ∗

∂r
= ∂p∗

∂t
,

and therefore, the first equation of (9.3) is satisfied. Further, on writing the second
equation of (9.3) in the form

∂E

∂t
=
(c
r

)2 ∂
∂r
(r2p),

and on partially differentiating this equation with respect to time, we obtain

∂E ∗

∂t
=
( c
r

)2 ∂
∂r

(
r2
∂p

∂t

)
=
( c
r

)2 ∂
∂r

(
r2
∂E

∂r

)
=
( c
r

)2 ∂
∂r
(r2p∗) = c2

(
∂p∗

∂r
+ 2p∗

r

)
.

Thus, if E (r, t) is any solution of the wave equation (9.4)1, then

E ∗(r, t) = ∂E

∂t
, p∗(r, t) = ∂E

∂r
,

constitute a matching or corresponding pair of the coupled equations (9.3). This
result can be a useful mechanism to identify corresponding pairs (E , p) of the
coupled equations (9.3). It is also implicit in the general solution (9.5), since if
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ψ(r, t) is any solution of the one-dimensional wave equation (9.6), then E ∗∗(r, t) =
ψ(r, t)/r satisfies the spherically symmetric wave equation (9.4)1, as can be readily
verified by substituting ψ(r, t) = rE ∗∗(r, t) into Eq. (9.6).

It may also be worth noting that if p(r, t) = q(r, t)/r2 satisfies (9.4)2 then q(r, t)
satisfies the deceptively similar partial differential equation to (9.4)1 but with an
important sign difference, thus

∂2q

∂t2
= c2

(
∂2q

∂r2
− 2

r

∂q

∂r

)
.

9.3 General Solutions for E (r, t) and p(r, t)

Equation (9.6) is well-known to admit the general solution ψ(r, t) = F(ct + r) +
G(ct − r), where F and G denote arbitrary functions, so that

E (r, t) = c

r
(F ′(α)+G′(β)), p(r, t) = 1

r
(F ′(α)−G′(β))− 1

r2
(F (α)+G(β)),

(9.7)

where α = ct + r and β = ct − r . In [49, 51], for a single spatial dimension, the
notion of generalised de Broglie states are characterised by the condition E (r, t) =
±cp, being immediate generalisations of the two de Broglie relations p = h/μ and
E = hν. For one spatial dimension, these states may be characterised in a variety of
ways, including as waves involving only a single family of characteristics. For more
than one spatial dimension involving curvature, this characterisation is far more
complicated, since it is clear from the immediately above equation that E (r, t) ∓
cp necessarily involve both families of characteristics. Specifically, in terms of the
characteristic coordinates, we have r = (α − β)/2 and t = (α + β)/2c, and the
differential relations

∂

∂r
= ∂

∂α
− ∂

∂β
,

1

c

∂

∂t
= ∂

∂α
+ ∂

∂β
,

we have on using Eqs. (9.5) and (9.7) the following results:

E (r, t)− cp(r, t) = 2c
∂

∂β

(
ψ

r

)
= 2c

∂

∂β

(
(F (α)+G(β)

r

)
= 2cG′(β)

r
+ c

r2
(F (α)+G(β)),

E (r, t)+ cp(r, t) = 2c
∂

∂α

(
ψ

r

)
= 2c

∂

∂α

(
(F (α)+G(β)

r

)
= 2cF ′(α)

r
− c

r2
(F (α)+G(β)),

and therefore, for backward waves G(β) = 0 and forward waves F(α) = 0, we
have, respectively,
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E (r, t)− cp(r, t) = cF (α)

r2
, E (r, t)+ cp(r, t) = −cG(β)

r2
.

Alternatively, with the definitions

E−(r, t) = E (r, t)− cp(r, t), E+(r, t) = E (r, t)+ cp(r, t),

we may show using (9.3) and (9.4) that E−(r, t) and E+(r, t) satisfy, respectively,
the following two partial differential equations:

∂2E−

∂t2
= c2

{
∂2E−

∂r2
+ 2

r

∂E−

∂r
+ 1

r

(
∂E−

∂r
+ 1

c

∂E−

∂t

)}
, (9.8)

and

∂2E+

∂t2
= c2

{
∂2E+

∂r2
+ 2

r

∂E+

∂r
+ 1

r

(
∂E+

∂r
− 1

c

∂E+

∂t

)}
. (9.9)

In terms of the characteristic coordinates, these latter two equations become,
respectively,

∂2E−

∂α∂β
− 1

r

∂E−

∂α
+ 1

2r

∂E−

∂β
= 0,

∂2E+

∂α∂β
+ 1

r

∂E+

∂β
− 1

2r

∂E+

∂α
= 0.

(9.10)

With the respective substitutions

E−(r, t) = E − cp = 2c
∂

∂β

(
ψ

r

)
, E+(r, t) = E + cp = 2c

∂

∂α

(
ψ

r

)
,

(9.11)

the two Eqs. (9.10) become, respectively,

∂3ψ

∂α∂β2
= 0,

∂3ψ

∂α2∂β
= 0,

which from (9.6), namely ∂2ψ/∂α∂β = 0, are guaranteed to be satisfied. Equa-
tions (9.8) and (9.9) are important partial differential equations, which subsequently
arise as Eqs. (9.53) and (9.45), respectively, and for which the major solution types
are discussed in Sects. 9.12 and 9.13. Here, we merely comment that e = pc

associates with E+(r, t) (see Eq. (9.45)) while e = −pc associates with E−(r, t)
(see Eq. (9.53)).

The principal technical interest here is the determination of the allowable
potentials V (r, t) introduced subsequently in (9.12), and we may show that for the
special cases e = pc and e = −pc, the corresponding potentials V (r, t) satisfy
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Eqs. (9.9) and (9.8), respectively. However, the determination of a simple partial
differential equation for V (r, t) for the general cases e = ±(e02 + (pc)2)1/2 with
e0 �= 0 is more complicated. Throughout this chapter, we illustrate the theory with
one or two of the major solution types. Since similarity stretching solutions are
often physically the most interesting, we show in a subsequent section that the only
similarity stretching solutions of the two wave equations (9.4) are those generated
from ψ(r, t) = C1(ct + r)n + C2(ct − r)n, where C1 and C2 denote arbitrary
constants and n is an arbitrary exponent. This result might well be anticipated, but
it is not entirely obvious, and it is interesting that it can be formally established.

9.4 Conservation of Energy e + E + V = Constant

Now assuming that both f and g are spherically symmetric, so that f = f (r, t) and
g = g(r, t) and that both are generated from a potential V (r, t), then from the basic
expressions (3.4), we have

f = ∂p

∂t
+ ∂e

∂r
= −∂V

∂r
, g = 1

c2

∂e

∂t
+
(
∂p

∂r
+ 2p

r

)
= − 1

c2

∂V

∂t
, (9.12)

which simplify to become

∂p

∂t
= −∂(e + V )

∂r
,

∂p

∂r
+ 2p

r
= − 1

c2

∂(e + V )
∂t

,

and therefore (e + V ) satisfies the classical wave equation. Further, from the
immediately above relations and (9.3), we have

dE

dt
= ∂E

∂t
+ u∂E

∂r
= −∂(e + V )

∂t
− u∂(e + V )

∂r
= −d(e + V )

dt
, (9.13)

where u = dr/dt is the particle velocity, and we confirm e + E + V = constant.

Equation in Conservation Form Following the corresponding result for a single
spatial dimension (see Eq. (4.11)), Eqs. (9.3) can be expressed in conservation form
as follows. On multiplication of the first equation of (9.3) by E , the second by c2p
and then by addition, we have

1

2

∂

∂t

(
E 2 + (pc)2

)
= c2

(
∂

∂r
(E p)+ 2(E p)

r

)
,

which in conservation form becomes

∂W

∂t
+ ∂Q

∂r
+ 2Q

r
= 0, (9.14)
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where the energy density W (r, t) and energy flow or instantaneous power Q(r, t)
are defined by

W = 1

2
(E 2 + (pc)2) = 1

4

(
(E − cp)2 + (E + cp)2

)
,

Q = −c2(E p) = 1

4

(
(E − cp)2 − (E + cp)2

)
,

and again Eq. (9.14) relates the time rate of increase (decrease) of the energy density
W (r, t) that is balanced by a decrease (increase) in the instantaneous powerQ(r, t).

Partial Differential Equation for Wave Energy-Momentum Ratio E (r, t)/cp(r, t)
Again, following the corresponding result for a single spatial dimension (see
Eqs. (4.12) and (4.13)), we may make the assumption that E (r, t) = ω(r, t)cp(r, t),
where ω(r, t) is to be determined, then from the above general solution (9.7), we
might deduce the expression

ω(r, t) =
[(
F ′(α)−G′(β)
F ′(α)+G′(β)

)
− 1

r

(
F(α)+G(β)
F ′(α)+G′(β)

)]−1

. (9.15)

Alternatively, in order to deduce the partial differential equation giving rise to this
expression, from E (r, t) = ω(r, t)cp(r, t) and the two first-order partial differential
equations (9.3), we may deduce the two equations

p
∂ω

∂t
+ ω∂p

∂t
= c

(
∂p

∂r
+ 2p

r

)
, cp

∂ω

∂r
+ ωc∂p

∂r
= ∂p

∂t
,

which may be solved to give

(1 − ω2)
∂p

∂t
=
(
c
∂ω

∂r
+ ω∂ω

∂t
− 2cω

r

)
p, c(1 − ω2)

∂p

∂r
=
(
∂ω

∂t
+ cω ∂ω

∂r
− 2c

r

)
p,

which with some rearrangement become

(1 − ω2)
∂q

∂t
= c

(
∂ω

∂r
− 2ω

r

)
, c(1 − ω2)

∂q

∂r
= ∂ω

∂t
− 2c

r
, (9.16)

where q = log
(
p(1 − ω2)1/2

)
. Following the corresponding analysis in Chap. 4, on

introducing �(r, t) defined by the relations

� = 1

2
log

(
1 + ω
1 − ω

)
= tanh−1(ω),

(
1 + ω
1 − ω

)1/2
= e�, (9.17)

the two Eqs. (9.16) simplify to become
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∂q

∂t
= c ∂�

∂r
− c

r

(
1

(1 − ω) − 1

(1 + ω)
)
, c

∂q

∂r
= ∂�

∂t
− c

r

(
1

(1 − ω) + 1

(1 + ω)
)
.

In terms of the characteristic variables α = ct + r and β = ct − r , these two
equations can be shown to become

∂q

∂α
= ∂�

∂α
− (1 + e2�)
(α − β) ,

∂q

∂β
= −∂�

∂β
+ (1 + e−2�)

(α − β) ,

which gives rise to the second order partial differential equation

∂2�

∂α∂β
= 1

(α − β)
(
e2�

∂�

∂β
− e−2� ∂�

∂α

)
+ sinh 2�

(α − β)2 , (9.18)

for which Eq. (9.15), together with the relations (9.17), constitutes the formal
general solution in terms of the characteristic variables α = ct + r and β = ct − r
and two arbitrary functions F(α) and G(β).

We observe that in terms of the (r, t) variables, the highly nonlinear partial
differential equation (9.18) simplifies eventually to become

1

c2

∂2�

∂t2
− ∂2�

∂r2
= 1

c

∂

∂t

(
cosh 2�

r

)
− ∂

∂r

(
sinh 2�

r

)
,

which can be written alternatively as follows:

1

c

∂

∂t

(
1

c

∂�

∂t
− cosh 2�

r

)
= ∂

∂r

(
∂�

∂r
− sinh 2�

r

)
.

9.5 Fundamental Identity for f and g

From the functional relation e2 = e02 + (pc)2 and the basic relations (9.12)

f = ∂p

∂t
+ ∂e

∂r
, g = 1

c2

∂e

∂t
+
(
∂p

∂r
+ 2p

r

)
, (9.19)

we find

f 2 − c2
(
g − 2p

r

)2

=
(
∂p

∂t

)2

+
(
∂e

∂r

)2

− c2
(
∂p

∂r

)2

− 1

c2

(
∂e

∂t

)2

, (9.20)

which vanishes for the two special cases e = ±pc. From the derived relations

e
∂e

∂t
= c2p∂p

∂t
, e

∂e

∂r
= c2p∂p

∂r
(9.21)
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we find that (9.20) can be rearranged to give

f 2 − c2
(
g − 2p

r

)2

= e
(
1

c2

∂2e

∂t2
− ∂2e

∂r2

)
− pc2

(
1

c2

∂2p

∂t2
− ∂2p

∂r2

)
, (9.22)

using the wave-like equation (9.4) for p(r, t) along with the relation e2 = e0
2 +

(pc)2 and the derived formulae (9.21), so that

f 2 − c2
(
g − 2p

r

)2

(9.23)

= e
(
1

c2

∂2e

∂t2
− ∂2e

∂r2

)
− pc2

(
2

r

∂p

∂r
− 2p

r2

)

= e
{
1

c2

∂2e

∂t2
−
(
∂2e

∂r2
+ 2

r

∂e

∂r
− 2e

r2

)}
− 2(e2 − (cp)2)

r2
,

to eventually deduce the interesting and important formal identity

f 2 − c2
(
g − 2p

r

)2

= e
{
1

c2

∂2e

∂t2
−
(
∂2e

∂r2
+ 2

r

∂e

∂r
− 2e

r2

)}
− 2e02

r2
, (9.24)

demonstrating explicitly that f = ±c(g − 2p/r) when e = ±pc and e0 = 0, and
then e(r, t) satisfies the same wave-like equation (9.4) as that for the momentum
p(r, t), as indeed it must. Using the relations (9.21) and their derivatives, in terms
of the momentum p(r, t), this identity becomes

f 2 − c2
(
g − 2p

r

)2

+ p
{
∂2p

∂t2
− c2

(
∂2p

∂r2
+ 2

r

∂p

∂r
− 2p

r2

)}
= 0.

First Alternative Version The above identity (9.24) can be expressed in a number
of ways. Firstly, from Eqs. (9.20) and (9.22), we have the formal identity

(
∂p

∂t

)2

+
(
∂e

∂r

)2

− c2
(
∂p

∂r

)2

− 1

c2

(
∂e

∂t

)2

− e
(
1

c2

∂2e

∂t2
− ∂2e

∂r2

)
+ pc2

(
1

c2

∂2p

∂t2
− ∂2p

∂r2

)

= 0,

and this equation can be simplified to give
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∂

∂r

(
e
∂e

∂r

)
− 1

c2

∂

∂t

(
e
∂e

∂t

)
+ ∂

∂t

(
p
∂p

∂t

)
− c2 ∂

∂r

(
p
∂p

∂r

)
+ 2

∂(e, p)

∂(r, t)
= 0,

which evidently can be rewritten as simply

∂2(e2 − (cp)2)
∂r2

− 1

c2

∂2(e2 − (cp)2)
∂t2

+ 4
∂(e, p)

∂(r, t)
= 0.

This equation is of course trivially satisfied, since e2 − (cp)2 = e20 and therefore e
and p are functionally related and the Jacobian also vanishes. In terms of the basic
assumed force relations

f = ∂p

∂t
+ ∂e

∂r
, g = 1

c2

∂e

∂t
+
(
∂p

∂r
+ 2p

r

)
,

the formal identity (9.23) becomes

f 2 − c2
(
g − 2p

r

)2

+ e
{
∂f

∂r
− ∂

∂t

(
g − 2p

r

)}
+ p

{
∂f

∂t
− c2 ∂

∂r

(
g − 2p

r

)}
= 0,

which can be expressed in the alternative form

f 2 + e
(
df

dr

)
wave

= c2
(
g − 2p

r

)2

+ e
(
d(g − 2p/r)

dt

)
part

,

where the time and spatial total derivatives follow the particle and the wave,
respectively, thus

(
d

dt

)
part

= ∂

∂t
+
(
dr

dt

)
part

∂

∂r
= ∂

∂t
+ u ∂

∂r
,

(
d

dr

)
wave

= ∂

∂r
+
(
dt

dr

)
wave

∂

∂t
= ∂

∂r
+ u

c2

∂

∂t
.

Second Alternative Version Secondly, we may make these relations more precise,
since directly from (9.19) using the characteristic coordinates of the wave equation,
namely α = ct + r and β = ct − r and the differential formulae

∂

∂r
= ∂

∂α
− ∂

∂β
,

1

c

∂

∂t
= ∂

∂α
+ ∂

∂β
,

we may deduce
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f − c
(
g − 2p

r

)
= −2

∂(e − pc)
∂β

, f + c
(
g − 2p

r

)
= 2

∂(e + pc)
∂α

,

(9.25)

indicating explicitly that f = c(g − 2p/r), when e = pc, and f = −c(g − 2p/r),
when e = −pc, and more generally we have f = c(g−2p/r), when e = pc+A(α),
and f = −c(g − 2p/r), when e = −pc + B(β), where A(α) and B(β) denote
arbitrary functions of their arguments.

Third Alternative Version in Terms of a Force Potential V (r, t) Thirdly, we
observe from the identity (9.24) that in the event that the applied forces f and g are
generated from a potential V (r, t) such that

f = −∂V
∂r
, g = − 1

c2

∂V

∂t
,

then Eq. (9.24) becomes

e

{
1

c2

∂2e

∂t2
−
(
∂2e

∂r2
+ 2

r

∂e

∂r

)}
+ 2(e2 − e02)

r2

= f 2 − c2
(
g − 2p

r

)2

=
(
∂V

∂r

)2

−
(
1

c

∂V

∂t
+ 2pc

r

)2

,

and since the wave energy E (r, t) always satisfies the wave equation, we have from
conservation of energy e + E = −V the following interesting equation:

e

{
1

c2

∂2V

∂t2
−
(
∂2V

∂r2
+ 2

r

∂V

∂r

)}

=
(
1

c

∂V

∂t
+ 2pc

r

)2

−
(
∂V

∂r

)2

+ 2(e2 − e02)
r2

=
(
1

c

∂V

∂t

)2

−
(
∂V

∂r

)2

+ 2pc

r

(
2

c

∂V

∂t
+ 3pc

r

)
.

Dark matter is an essentially backward wave occurring whenever f = c(g−2p/r),
while dark energy is an essentially forward wave occurring whenever f = −c(g −
2p/r), and in both cases e0 = 0 and the above equation simplify to become

1

c2

∂2V

∂t2
−
(
∂2V

∂r2
+ 2

r

∂V

∂r

)
= 1

2

(
∂V

∂r
± 1

c

∂V

∂t

)2

= 2(pc)2

er2
= 2e

r2
, (9.26)
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since 2pc/r = ±∂V /∂r − (1/c)∂V /∂t , noting that e = ±pc when e0 = 0. These
two states are discussed at length subsequently in this chapter. We note that from
V = −(E + e) and using the fact that E (r, t) satisfies the wave equation (9.4)1, we
might deduce from (9.26) the equation arising from (9.27) in the case when e0 = 0,
which we now examine in the following section.

9.6 f = ±c(g − 2p/r) Implies e0 Is Zero

Equation (9.23) would seem to indicate that the relations f = ±c(g − 2p/r) apply
for e0 �= 0, provided that e(r, t) is a solution of the nonlinear partial differential
equation

1

c2

∂2e

∂t2
−
(
∂2e

∂r2
+ 2

r

∂e

∂r
− 2e

r2

)
= 2e02

r2e
. (9.27)

Noting that while e = e0 constitutes a formal solution (9.27) with e0 �= 0, we show
later in this section that although the differential equation evidently admits nontrivial
solutions with e0 �= 0, it turns out that, when the additional constraints are taken
into account that for such solutions to exist, e0 is necessarily zero. However, in the
absence of the other constraints it would still be interesting to determine any simple
analytical solutions of this equation with e0 �= 0. There are certainly nontrivial
solutions of the single equation (9.27) with e0 �= 0, and we mention here two such
examples.

Time-Independent Solutions e = e(r) Firstly, there are the time-independent
solutions e = e(r), for which the partial differential equation (9.27) reduces to
the ordinary differential equation

d2e

dr2
+ 2

r

de

dr
− 2e

r2
= −2e02

r2e
.

This equation remains invariant under the simple one-parameter stretching group of
transformations, r∗ = λr and e∗ = λe, and therefore may be reduced to a first-order
ordinary differential equation by first making the substitution τ = log r to give

d2e

dτ 2
+ de

dτ
= 2

(
e − e0

2

e

)
,

followed by the substitution z = de/dτ to obtain the following first-order ordinary
differential equation

z

(
dz

de
+ 1

)
= 2

(
e − e0

2

e

)
, (9.28)
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and it would be interesting to proceed further with this equation to determine any
specific simple solutions. With a very small change of variables (z = −y and e =
x), Eq. (9.28) becomes an Abel equation of the second kind in standard form, for
which [85] (first order 0.1.6–1 and 1.3.1 Tables 5–8) provides many special solvable
cases. Unfortunately, however, Eq. (9.28) appears not to be included there.

Similarity Solutions e = e(r/ct) Secondly, there are the similarity solutions
e = e(ξ), where ξ = r/ct arising from the invariance of the partial differential
equation (9.27) under the one-parameter stretching group of transformations, r∗ =
λr , t∗ = λt and e∗ = λe, and therefore on using the formulae

∂e

∂t
= −ξ

t
e′, ∂e

∂r
= e′

ct
,

∂2e

∂t2
= ξ

t2

(
ξe′′ + 2e′

)
,

∂2e

∂r2
= e′′

(ct)2
,

where primes denote differentiation with respect to ξ , the partial differential
equation reduces to the ordinary differential equation

(1 − ξ2)(ξ2e′)′ = 2

(
e − e0

2

e

)
.

This equation may be further simplified with the substitution η = 1/ξ to obtain

(η2 − 1)
d2e

dη2
= 2

(
e − e0

2

e

)
,

and the transformations x = (η+1)/2 and e = e0y simplify this equation somewhat
to give

x(1 − x)d
2y

dx2
+ y = 1

y
. (9.29)

Again, it would be interesting to determine any specific simple solutions, but we do
not examine either (9.28) or (9.29) further.

Thus, while there are certainly nontrivial solutions e(r, t) of (9.27) for which
e0 �= 0, the critical question is whether or not the momentum p(r, t), as generated
from the expression pc = (e2 − e0

2)1/2, satisfies the Eq. (9.4)2. Making use of
the additional constraint f = ±c(g − 2p/r), so that either e = pc + A(α) or
e = −pc + B(β), then a straightforward analysis would seem to indicate that there
are no such solutions of (9.27), unless e0 = 0. For example, if f = c(g − 2p/r),
then e = pc + A(α), where α = ct + r , and from Eq. (9.22), we may deduce

(pc + A(α))
(
1

c2

∂2p

∂t2
− ∂2p

∂r2

)
= pc

(
1

c2

∂2p

∂t2
− ∂2p

∂r2

)
,

and therefore,
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A(α)

(
1

c2

∂2p

∂t2
− ∂2p

∂r2

)
= 0.

This implies that either A(α) = 0, in which case e0 is necessarily zero from
the expression pc = (e2 − e0

2)1/2, or p(r, t) is a solution of the classical one-
dimensional wave equation, which from Eq. (9.4)2 implies that ∂(p/r)/∂r = 0 and
therefore p(r, t) = rP (t), where P(t) is a function of time only. Thus, we may
conclude that P ′′(t) = 0 and therefore

p(r, t) = r(C1t + C2), e(r, t) = cr(C1t + C2)+ A(α),

where C1 and C2 denote arbitrary constants, and from pc = (e2 − e0
2)1/2, it is

clearly not possible to determine a meaningful nontrivial solution for A(α) from the
resulting quadratic equation A(α)2 + 2cr(C1t + C2)A(α) − e20 = 0, and a similar
proof applies when f = −c(g − 2p/r) and e = −pc + B(β), where β = ct − r .

For the time-independent solutions e = e(r) and the similarity solutions e =
e(r/ct), this outcome is most apparent by direct examination of (9.20), since in the
former case this equation becomes (de/dr)2 = c2(dp/dr)2, but from (9.21)2, we
have e(de/dr) = c2p(dp/dr) and therefore necessarily e0 = 0. In the latter case,
a similar argument using (9.20) and (9.21) yields e′2 = c2p′2 and ee′ = c2pp′, and
again from which we might deduce that e0 is necessarily zero. Thus, even though the
proposed model appears to allow nontrivial solutions for e(r, t) satisfying Eq. (9.27)
for e0 �= 0, we have established the important outcome that whenever the relations
f = ±c(g − 2p/r) apply, the rest energy e0 is necessarily zero.

9.7 Newtonian Gravitation and Schwarzschild Radius

The Newtonian gravitational field V (r, t) = −GMm0/r , where as usual G is
the universal gravitational constant and M is the mass of the larger gravitating
body, can be seen to arise from the above formulation in a variety of asymptotic
limits. For example, the simplest solution of (9.6) ψ(r, t) = GMm0t + C1r + C2,
where C1 and C2 denote arbitrary constants, gives E (r, t) = r0e0/r and p(r, t) =
−r0e0(t − t0)/r

2, where for convenience we have adopted C2 = −r0e0t0 for
some arbitrary time t0, and r0 = GM/c2 denotes one-half of the conventional
Schwarzschild radius. From the conservation of energy e + E + V = constant and
modulo an arbitrary constant, we find that the potential V (r, t) is given by

V (r, t) = − r0e0
r

− e0
{
1 +

(
r0c(t − t0)

r2

)2
}1/2

, (9.30)

which on expansion in powers of 1/r4 gives the Newtonian potential correct to
order (r0c(t − t0))2/r4, and given that r0 is extremely small and typically r is large,
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we might expect that such a potential would be numerically indistinguishable from
the conventional expression. It is clear from such approximations that the major
contribution of the potential V (r, t) arises from the wave energy E (r, t), which
always satisfies the classical wave equation, and this is entirely consistent with the
post-Newtonian approximation (see, e.g. [95]).

We comment that the escape velocity is defined to be the velocity necessary to
escape a gravitational field, so that for classical Newtonian gravitation, from the
usual conservation of energy kinetic energy + potential energy = constant, we have,
assuming that v = v0 at r = a,

mv2

2
− GMm

r
= mv20

2
− GMm

a
,

so that in order that v = 0 at r = ∞, then classical Newtonian mechanics
predicts that the escape velocity is given by v20 = 2GM/a. If the escape velocity
is prescribed to be the speed of light, namely v0 = c, then a = 2GM/c2, and this
is conventionally referred to as the Schwarzschild radius. However, if we undertake
the same calculation from the perspective of special relativistic mechanics, then we
obtain a radius r0, which is precisely one-half of the Schwarzschild radius, since in
this case the corresponding conservation of energy principle gives

m0c
2

(1 − (v/c)2)1/2 − GMm

r
= m0c

2

(1 − (v0/c)2)1/2 − GMm0

a(1 − (v0/c)2)1/2 ,

so that again in order that v = 0 at r = ∞, we have (1−(v0/c)2)1/2 = 1−GM/ac2,
and therefore if the escape velocity is the speed of light, then we obtain a = r0 =
GM/c2, namely precisely one-half of the conventional Schwarzschild radius.

9.8 Pseudo-Newtonian Gravitational Potential

It seems natural to ask the question as to whether or not the model admits the
Newtonian gravitational potential V (r, t) = −GMm/r as an exact consequence,
where as usual m denotes the mass given by m = m0[1 − (u/c)2]−1/2. That
is, assuming that M remains fixed, does the proposed formulation admit the
gravitational potential V (r, t) given by

V (r, t) = − r0
r
e(r, t), (9.31)

where e(r, t) = mc2 and again r0 = GM/c2 is one-half of the conventional
Schwarzschild radius. In making the hypothesis (9.31), we are imposing a definite
constraint involving both V (r, t) and e(r, t), and while we might fully determine
the general mathematical solution assuming this constraint, it is not possible to
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determine p(r, t) and e(r, t), which also satisfy the nonlinear relation e2 − (pc)2 =
e20. Nevertheless, the formal details of the general mathematical solution arising
from (9.31) are not without interest.

From (9.31) and conservation of energy e+E +V = constant, we might deduce

e(r, t) = − r
r0
V (r, t), E (r, t) = −(e + V ) = −

(
1 − r

r0

)
V (r, t),

and since we know that E (r, t) satisfies the wave equation, we might readily obtain
from (9.4)1

∂2V

∂t2
= c2

{
∂2V

∂r2
+ 2

r

∂V

∂r
+ 2

(r − r0)
(
∂V

∂r
+ V

r

)}
, (9.32)

and a general solution to this equation may be found as follows. On making the
substitution V (r, t) = U(r, t)/r , Eq. (9.32) becomes

∂2U

∂t2
= c2

(
∂2U

∂r2
+ 2

(r − r0)
∂U

∂r

)
,

so that on using x = r − r0 as a working variable, this equation becomes

∂2U

∂t2
= c2

(
∂2U

∂x2
+ 2

x

∂U

∂x

)
,

which with the substitution U(r, t) = W(x, t)/x simplifies to give the classical
one-dimensional wave equation, thus

∂2W

∂t2
= c2 ∂

2W

∂x2
. (9.33)

From the general solution of (9.33), namely W(x, t) = F(α) + G(β), F(α) and
G(β) denote arbitrary functions, and in this section, α and β are defined by

α = ct + x = ct + r − r0, β = ct − x = ct − r + r0.

On retracing the above substitutions, we might readily verify that the following
results constitute the formal general mathematical solution arising from the assump-
tion (9.31), thus

V (r, t) = F(α)+G(β)
r(r − r0) , e(r, t) = − (F (α)+G(β))

r0(r − r0) , E (r, t) = F(α)+G(β)
rr0

,

(9.34)
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and it is a straightforward matter to confirm that energy conservation e + E + V =
constant is correctly satisfied. We observe that on face value the gravitational
potential V (r, t) has singularities at both r = 0 and r = r0, while the particle and
wave energies each acquire only one of these singularities. Further, from Eqs. (9.3),
we can perform two partial integrations to show that p(r, t) becomes

cp(r, t) = F(α)−G(β)
rr0

(9.35)

− 1

r0r2

(ˆ
F(α)dα +

ˆ
G(β)dβ + C1

)
,

where C1 denotes an arbitrary constant. It is clear from the above expressions
that even with F(α) and G(β) as arbitrary functions, the nonlinear condition
e2 − (pc)2 = e20 presents a formidable constraint, and the very best that might
be expected is to satisfy this latter constraint in some approximate manner. Taking
into account the different singularities in the above expressions, we might readily
verify the following relations:

cp(r, t)−
(
1 − r0

r

)
e(r, t) = 2F(α)

rr0
− 1

r0r2

(ˆ
F(α)dα +

ˆ
G(β)dβ + C1

)
,

cp(r, t)+
(
1 − r0

r

)
e(r, t) = −2G(β)

rr0
− 1

r0r2

(ˆ
F(α)dα +

ˆ
G(β)dβ + C1

)
,

and noting that since E (r, t) = − (1 − r0/r) e(r, t), the same equations become

E (r, t)+ cp(r, t) = 2F(α)

rr0
− 1

r0r2

(ˆ
F(α)dα +

ˆ
G(β)dβ + C1

)
,

E (r, t)− cp(r, t) = 2G(β)

rr0
+ 1

r0r2

(ˆ
F(α)dα +

ˆ
G(β)dβ + C1

)
.

As a simple illustrative example, we consider the case F(α) = μα2 and G(β) =
−μβ2 for some constant μ, so that from (9.34), we have

V (r, t) = 4μct

r
, e(r, t) = −4μct

r0
, E (r, t) = 4μct

(
1

r0
− 1

r

)
,

while from (9.35), we obtain

cp(r, t) = 2μ

[(
ct

r

)2

+ 1

3

(
1 − r0

r

)2 (
1 + 2r

r0

)
+ C2

]
,

where C2 denotes an arbitrary constant, and clearly these expressions do not satisfy
the nonlinear relationship e2 − (pc)2 = e20.
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9.9 Dark Matter-Dark Energy and Four Types of Matter

Consolidating the results of this chapter, and since it is believed that there is more
dark energy in the universe than dark matter, we propose that dark matter arises
as an essentially backward wave and accrues from time past, while dark energy is
essentially a forward wave arising in consequence of future time. The following
is a consistent mathematical picture motivated from the results of this chapter. We
propose that dark energy and dark matter arise when there is a particular alignment
of the physical force f with the force g in the direction of time, so that the particle
energy e and wave energy E coincide, thus e = E . In a single spatial dimension,
this alignment is exact, namely f = ±cg and e = E , but here the problem is three-
dimensional, and therefore there are curvature effects arising through the 1/r term,
and precise equality occurs only for large values of r . In a real circumstance, we
might expect a situation comparable to a “fuzzy region”, where the key equalities
are constantly switching on and off dependent upon a varying local environment.

Specifically, we propose dark matter to be an essentially backward wave
occurring whenever f = c(g − 2p/r), which in terms of the potential V (r, t)
becomes Eq. (9.44), namely p(r, t) = r(∂V/∂r − ∂V/c∂t)/2c, and for which

e(r, t) = cp(r, t), E (r, t) = cp(r, t)+ cF (α)

r2
,

p(r, t) = F ′(α)
r

− F(α)

r2
, V (r, t) = −2cF ′(α)

r
+ cF (α)

r2
,

where F(α) denotes an arbitrary function. Similarly, we propose that dark energy
is an essentially forward wave occurring whenever f = −c(g − 2p/r), which in
terms of the potential V (r, t) becomes Eq. (9.52), namely p(r, t) = −r(∂V/∂r +
∂V/c∂t)/2c, and for which

e(r, t) = −cp(r, t), E (r, t) = −cp(r, t)− cG(β)

r2
,

p(r, t) = −G′(β)
r

− G(β)

r2
, V (r, t) = −2cG′(β)

r
− cG(β)

r2
,

where G(β) denotes an arbitrary function. As noted above, we also have the more
general results that f = c(g−2p/r), when e = pc+A(α), and f = −c(g−2p/r),
when e = −pc + B(β), where A(α) and B(β) denote arbitrary functions of their
arguments. In the above definition of states (III) and (IV) presented in Sect. 9.1,
the arbitrary functions A(α) and B(β) are taken to be zero. However, we note that
the more general approach reinforces the picture of potentials V (r, t) involving
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ascending powers of 1/r with coefficients that are either forward or backward
waves.

In the remainder of this chapter, we are particularly concerned to determine the
allowable potentials V (r, t) corresponding to each of the four types. In one sense,
by virtue of (9.5) and (9.6), the formal solutions of any problems for E (r, t) and
p(r, t) are fully determined, so that in principle, the potential is prescribed through
the equation V (r, t) = −E (r, t)− (e02 + (cp(r, t))2)1/2, arising from conservation
of energy. However, because of the square root, the determination of a partial
differential equation for the allowable potentials is not obvious for types (I) and
(II). For dark matter and dark energy, the situation is more straightforward.

9.10 Positive Energy (I) e = (e0
2 + (pc)2)1/2, e0 �= 0

In this section, we assume that e0 �= 0 and that conventional or baryonic matter is
described by the relation e = (e02+(pc)2)1/2, so that we introduce the angle φ(r, t)
such that

pc = e0 tanφ, e = e0 secφ, (9.36)

and the relation pc = e sinφ sheds insight on the subsequent analysis, since the
cases pc = ±e correspond to the maximum and minimum values of sinφ, namely
φ = ±π/2, which are examined subsequently. Using the fact that the momentum
p(r, t) satisfies the wave-like equation (9.4), we might readily deduce

1

c2

∂2φ

∂t2
=
(
∂2φ

∂r2
+ 2

r

∂φ

∂r

)
+ 2 tanφ

{(
∂φ

∂r

)2

− 1

c2

(
∂φ

∂t

)2

− cos2 φ

r2

}
,

as the governing equation for φ(r, t). Although nonlinear, this equation is merely
a restatement of the wave-like equation (9.4) for the momentum pc = e0 tanφ,
and for small angles φ, on neglecting the nonlinear terms and approximating the
term 2 sinφ cosφ = sin 2φ ≈ 2φ, we again recover precisely the wave-like
equation (9.4) for φ(r, t) as for the momentum p(r, t).

Alternatively, on using the relations (9.36) together with the Eqs. (9.12), we may
deduce the coupled partial differential equations

1

c

∂φ

∂t
+ sinφ

∂φ

∂r
= cos2 φ

∂U

∂r
,

sinφ

c

∂φ

∂t
+ ∂φ

∂r
+ 2

r
sinφ cosφ = cos2 φ

c

∂U

∂t
,

where for working convenience we have introduced U(r, t) = −V (r, t)/e0. These
two equations may be reformulated to read



252 9 Centrally Symmetric Mechanical Systems

∂φ

∂r
=
(
1

c

∂U

∂t
− 2

r
tanφ

)
− sinφ

∂U

∂r
,

1

c

∂φ

∂t
= ∂U

∂r
− sinφ

(
1

c

∂U

∂t
− 2

r
tanφ

)
,

(9.37)

and on noting the particular grouping identified in (9.37) and cross-differentiating
the left-hand sides of the two equations, we may eventually deduce

1

c2

∂2U

∂t2
=
(
∂2U

∂r2
+ 2

r

∂U

∂r

)
(9.38)

+ cosφ

{(
∂U

∂r

)2

−
(
1

c

∂U

∂t
− 2

r
tanφ

)2

− 2

r2
tan2 φ

}
,

Further, from (9.37), we have the identity

cos2 φ

{(
∂U

∂r

)2

−
(
1

c

∂U

∂t
− 2

r
tanφ

)2
}

= 1

c2

(
∂φ

∂t

)2

−
(
∂φ

∂r

)2

,

and from which we may deduce the alternative form for (9.38), namely

1

c2

∂2U

∂t2
=
(
∂2U

∂r2
+ 2

r

∂U

∂r

)
+ secφ

{(
1

c

∂φ

∂t

)2

−
(
∂φ

∂r

)2

− 2

r2
sin2 φ

}
.

(9.39)

In terms of the potential V (r, t), Eqs. (9.38) and (9.39) become, respectively,

1

c2

∂2V

∂t2
=
(
∂2V

∂r2
+ 2

r

∂V

∂r

)
+ cosφ

e0

(
1

c

∂V

∂t
+ 2e0
r

tanφ

)2

− cosφ

e0

{(
∂V

∂r

)2

− 2e20
r2

tan2 φ

}
,

and

1

c2

∂2V

∂t2
=
(
∂2V

∂r2
+ 2

r

∂V

∂r

)
+ e0 secφ

{(
∂φ

∂r

)2

−
(
1

c

∂φ

∂t

)2

+ 2

r2
sin2 φ

}
,

from which it is apparent that the limiting situation e0 → 0 and φ → ±π/2 is tricky
and not entirely straightforward, and in both equations, e0 and φ appear through the
combination e0 secφ.

The two key points here are that unlike classical theory, the determination
of the potential V (r, t) arises as part of the solution procedure and cannot be
arbitrarily assigned, so that the situation is more akin to general relativity, where
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the gravitational field is determined from solving the field equations. The second
point is that while the potential V (r, t) almost satisfies the classical wave equation,
the correspondence is not exact, and the actual equation for V (r, t) is far more com-
plicated, noting that post-Newtonian theory predicts that V (r, t) satisfies precisely
the classical wave equation (see, e.g. [95]). As previously noted, this means that we
cannot simply merge a Newtonian gravitational field V (r, t) = −GMm0/r (using
the usual symbols) in a consistent manner, but we can frequently see such a potential
emerging in a variety of asymptotic limits.

9.11 Negative Energy (II) e = −(e0
2 + (pc)2)1/2, e0 �= 0

In this section, we assume that e0 �= 0 and the relation e = −(e02 + (pc)2)1/2, so
that in terms of the angle φ(r, t), we have

pc = e0 tanφ, e = −e0 secφ, (9.40)

and we may relate the governing equations of this section to those of the previous
section through the transformation φ → φ − π , noting that both sinφ and cosφ
change sign while tanφ remains unchanged by this transformation. Accordingly,
the momentum wave-like equation (9.4) again yields the same equation as for case
(I) for (9.40), while in place of (9.38) and (9.39), we may readily deduce from

∂φ

∂r
=
(
1

c

∂U

∂t
− 2

r
tanφ

)
+ sinφ

∂U

∂r
,

1

c

∂φ

∂t
= ∂U

∂r
+ sinφ

(
1

c

∂U

∂t
− 2

r
tanφ

)
,

either of the following two equations:

1

c2

∂2U

∂t2
=
(
∂2U

∂r2
+ 2

r

∂U

∂r

)
(9.41)

− cosφ

{(
∂U

∂r

)2

−
(
1

c

∂U

∂t
− 2

r
tanφ

)2

− 2

r2
tan2 φ

}
,

1

c2

∂2U

∂t2
=
(
∂2U

∂r2
+ 2

r

∂U

∂r

)
− secφ

{(
1

c

∂φ

∂t

)2

−
(
∂φ

∂r

)2

− 2

r2
sin2 φ

}
,

(9.42)

where again for working convenience U(r, t) = −V (r, t)/e0. In terms of the
potential V (r, t), Eqs. (9.41) and (9.42)
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1

c2

∂2V

∂t2
=
(
∂2V

∂r2
+ 2

r

∂V

∂r

)

+ cosφ

e0

{(
∂V

∂r

)2

−
(
1

c

∂V

∂t
+ 2e0
r

tanφ

)2

− 2e20
r2

tan2 φ

}
,

and

1

c2

∂2V

∂t2
=
(
∂2V

∂r2
+ 2

r

∂V

∂r

)
+ e0 secφ

{(
1

c

∂φ

∂t

)2

−
(
∂φ

∂r

)2

− 2

r2
sin2 φ

}
.

9.12 Positive Energy (III) e = pc, e0 = 0

In this section, we assume that the rest mass is zero, so that e0 = 0 and that
e = pc, which we speculate is the equation of state applying to dark matter. From
this assumption and (9.12), we may deduce the two coupled partial differential
equations:

∂p

∂t
+ c ∂p

∂r
= −∂V

∂r
,

1

c

∂p

∂t
+
(
∂p

∂r
+ 2p

r

)
= − 1

c2

∂V

∂t
, (9.43)

which are only consistent, provided that the momentum p(r, t) is given explicitly
by the expression

p(r, t) = r

2c

(
∂V

∂r
− 1

c

∂V

∂t

)
= r

2c
(cg − f ) , (9.44)

and we comment that this equality is merely the equation f = c(g − 2p/r) valid
for e = pc and e0 = 0 and arising from Eq. (9.25). Substitution of this expression
into either of (9.43) produces the resulting wave-like partial differential equation for
the potential V (r, t), thus

∂2V

∂t2
= c2

{
∂2V

∂r2
+ 2

r

∂V

∂r
+ 1

r

(
∂V

∂r
− 1

c

∂V

∂t

)}
, (9.45)

and indeed the assumed potential V (r, t) must satisfy this equation in order that
the assumption e = pc is meaningful. We comment first that (9.45) is entirely
consistent with (9.9) with e = pc, since in this eventE+(r, t) = E (r, t)+cp(r, t) =
E (r, t)+e(r, t) = −V (r, t)+constant and thereforeE+(r, t) and V (r, t) satisfy the
same equation. We further comment, as a check on the consistency of the formulae,
that if we differentiate (9.44) with respect to t and use both the first equation of (9.3)
and (9.45), we obtain an expression for ∂E /∂r , which may be formally integrated
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with respect to r to give

E (r, t) = r

2

{
1

c

∂V

∂t
−
(
∂V

∂r
+ 2V

r

)}
,

which on using (9.44)1 and e = pc is again simply a restatement of the energy
integral.

General Solution We may determine the general solution of Eq. (9.45) by first
making the substitution V (r, t) = U(r, t)/r2 so that (9.45) becomes

∂2U

∂t2
= c2

(
∂2U

∂r2
− 1

r

∂U

∂r
− 1

cr

∂U

∂t

)
,

which we may solve using the characteristic coordinates of the wave equation,
namely α = ct + r and β = ct − r , and the differential formulae

∂

∂r
= ∂

∂α
− ∂

∂β
,

1

c

∂

∂t
= ∂

∂α
+ ∂

∂β
,

so that (9.45) becomes simply

(α − β) ∂
2U

∂α∂β
+ ∂U

∂α
= 0.

This equation may be integrated immediately to give ∂U/∂α = F ′(α)(α−β), where
F ′(α) denotes an arbitrary function of α, and a further integration with respect to α
yields the general solution of (9.45), thus

U(α, β) = (α − β)F (α)+G(β)−
ˆ
F(α)dα,

where G(β) denotes a further arbitrary function of the variable β. Altogether, we
have that the general solution of (9.45) becomes

V (r, t) = 2

r
F (ct + r)+ 1

r2

(
G(ct − r)−

ˆ ct+r
F (α)dα

)
.

Separable Solutions Equation (9.45) also admits simple separable solutions of the
form

V (r, t) = e−λtv(λr) = e−λtv(x), (9.46)
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where λ is a constant, and here for convenience, we use x = λr . From (9.45), we
may deduce the second-order ordinary differential equation for v(x)

x
d2v

dx2
+ 3

dv

dx
+ (1 − x)v = 0, (9.47)

which from [85] (Section 2.1.2.68, page 139) has solutions

v(x) = C∗
1

(
2

x
+ 1

x2

)
e−x + C∗

2

x2
ex, (9.48)

where again C∗
1 and C∗

2 denote arbitrary constants. From these separable solutions
and with a minor rearrangement of the arbitrary constants, we have from (9.46)
and (9.48) that a particular solution of (9.45) becomes

V (r, t) = C1

(
2λ

r
+ 1

r2

)
e−λ(ct+r) + C2

r2
e−λ(ct−r), (9.49)

where again C1 and C2 denote re-defined arbitrary constants. This is another
potential that would predict similar numerical outcomes to the standard Newtonian
gravitational potential V (r, t) = −GMm0/r , but as previously mentioned, this
latter potential is certainly not an exact consequence of the present theory. However,
from (9.49), with appropriate arbitrary constants and in the limit λ → ∞, it is
clear that the 1/r term might dominate the solution and give numerical outcomes
comparable to those of the Newtonian potential.

We note that we might use (9.49) as the basic solution to generate other more
complicated solutions. For example, by setting λ = nμ, where n is an integer,
ρ = e−μ(ct+r) and σ = e−μ(ct−r) so that

V (r, t) = C1

(
2μn

r
+ 1

r2

)
ρn + C2

r2
σn, (9.50)

And by summation over n using the elementary results for both the geometric series
and the derived geometric series, namely

∑∞
n=0 ρ

n = (1 − ρ)−1 and
∑∞
n=1 nρ

n =
ρ(1 − ρ)−2, we might eventually deduce solutions of (9.45) of the form

V (r, t) = A

r2
+ μ(A+ B)
r(cosh(μ(ct + r))− 1)

+ A sinh(μct)− B sinh(μr)

r2(cosh(μct)− cosh(μr))
,

where A and B denote arbitrary constants related to the arbitrary constants C1 and
C2 in (9.50) by the formulae C1 = A+ B and C2 = A− B.

Similarity Solutions Subsequently, in the final section of this chapter, we report
details for similarity solutions of (9.45) of the form
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V (r, t) = rmw(r/ct) = rmw(ξ),

where here ξ = r/ct , m is a constant and w(ξ) is a function of ξ only. Generally,
these solutions are quite complicated to determine analytical expressions. However,
simple analytical expressions can be readily found for the four special cases
corresponding to m = 0, m = −1, m = −2 and m = −3, and we derive the
following explicit simple solutions:

V (r, t) = C1

{
2ct

r
+
(
ct

r

)2
}

+ C2, (m = 0),

V (r, t) = C1

r2

{
ct + (ct + r)

2
log

(
ct + r
ct − r

)}
+ C2

r2
(ct + r), (m = −1),

V (r, t) = C1

r2

{
ct

(ct − r) + 1

2
log

(
ct − r
ct + r

)}
+ C2

r2
, (m = −2),

V (r, t) = C1

r2(ct + r)

{
1 −

(
r

ct − r
)2
}

+ C2

(ct − r)2(ct + r) , (m = −3),

where in each case C1 and C2 denote re-defined arbitrary constants, slightly
different from those used in the subsequent derivation. We note that the potentials
for m = 0 and m = −1 both exhibit 1/r dependence as the leading term.

9.13 Negative Energy (IV) e = −pc, e0 = 0

The results of this section may be deduced in an analogous manner to those given
in the previous section. Here, we again assume that e0 = 0 and that e = −pc,
which we speculate is the equation of state applying to dark energy. Instead
of (9.43), (9.44) and (9.45), we obtain, respectively,

∂p

∂t
− c ∂p

∂r
= −∂V

∂r
,

∂p

∂r
− 1

c

∂p

∂t
+ 2p

r
= − 1

c2

∂V

∂t
, (9.51)

which are consistent only if the momentum p(r, t) is given by the expression

p(r, t) = − r

2c

(
∂V

∂r
+ 1

c

∂V

∂t

)
= r

2c
(f + cg) , (9.52)
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and again we comment that this equation coincides with f = −c(g − 2p/r) valid
for e = −pc and e0 = 0 and arising from Eq. (9.25). Substitution of (9.52) into
either of (9.51) produces the resulting wave-like partial differential equation for the
determination of the potential V (r, t), thus

∂2V

∂t2
= c2

{
∂2V

∂r2
+ 2

r

∂V

∂r
+ 1

r

(
∂V

∂r
+ 1

c

∂V

∂t

)}
, (9.53)

and again the assumed potential V (r, t) must satisfy this equation in order that the
assumption e = −pc is meaningful. We again comment that (9.53) is entirely
consistent with (9.8) with e = −pc, since in this event E−(r, t) = E (r, t) −
cp(r, t) = E (r, t) + e(r, t) = −V (r, t) + constant and therefore E−(r, t) and
V (r, t) must satisfy the same equation. We further comment that we may check the
consistency of these formulae, by differentiating (9.52) with respect to t and using
both the first equation of (9.3) and (9.53), to obtain an expression for ∂E /∂r , which
may be formally integrated with respect to r to again produce the energy integral on
using e = −pc.
General Solution These equations are identical to those of the previous section,
except the sense of time is reversed, and the general solution of (9.53) is much the
same as (9.45). After the transformation V (r, t) = U(r, t)/r2, we obtain

∂2U

∂t2
= c2

(
∂2U

∂r2
− 1

r

∂U

∂r
+ 1

cr

∂U

∂t

)
,

which in terms of the variables α = ct + r and β = ct − r becomes

(α − β) ∂
2U

∂α∂β
− ∂U

∂β
= 0,

and this has the general solution

U(α, β) = (α − β)G(β)+ F(α)+
ˆ
G(β)dβ,

where again F(α) and G(β) denote arbitrary functions of the variables α = ct + r
and β = ct − r , and the general solution of (9.53) becomes

V (r, t) = 2

r
G(ct − r)+ 1

r2

(
F(ct + r)+

ˆ ct−r
G(β)dβ

)
.

Separable Solutions As might be expected, Eq. (9.53) admits separable solutions
of the form
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V (r, t) = eλtv(λr) = eλtv(x),

where again λ is a constant and x = λr . Precisely as before, v(x) satisfies (9.47)
and is again given explicitly by (9.48), so that similar results to those of the previous
section might be obtained.

Similarity Solutions In the final section of the chapter, we present the details for
similarity solutions of (9.53) of the form

V (r, t) = rmw(r/ct) = rmw(ξ),

where here ξ = −r/ct , m is a constant and w(ξ) is a function of ξ only. We obtain
the following simple solutions for the four special cases corresponding to m = 0,
m = −1, m = −2 and m = −3:

V (r, t) = C1

{
2ct

r
−
(
ct

r

)2
}

+ C2, (m = 0),

V (r, t) = C1

r2

{
ct − (ct − r)

2
log

(
ct + r
ct − r

)}
+ C2

r2
(ct − r), (m = −1),

V (r, t) = C1

r2

{
ct

(ct + r) + 1

2
log

(
ct + r
ct − r

)}
+ C2

r2
, (m = −2),

V (r, t) = C1

r2(ct − r)

{
1 −

(
r

ct + r
)2
}

+ C2

(ct + r)2(ct − r) , (m = −3),

where in each case C1 and C2 denote re-defined arbitrary constants, which are
slightly different from those used in the following derivation.

9.14 Similarity Stretching Solutions of Wave Equation

Here, we formally establish that the only solutions of (9.4) that remain invariant
under the stretching group of transformations

r∗ = λr, t∗ = λt, p∗ = λn−2p, E ∗ = λn−2E , (9.54)
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where λ denotes a positive arbitrary parameter and n denotes an arbitrary exponent,
are generated from the expressions given in Eq. (9.5), where the solution ψ(r, t) of
the classical wave equation (9.6) is given by ψ(r, t) = C1(ct + r)n + C2(ct − r)n
and where C1 and C2 denote arbitrary constants. Essentially the same calculation
has been presented in Chap. 4 in the context of one-dimensional motion with (x, t)
variables, and for the reader’s convenience, the calculation is reproduced here in
the notation of this chapter. As mentioned previously, although this outcome might
be expected, it is not entirely obvious, and it is interesting that it can be formally
established in the following manner.

Following invariance under the group of transformations (9.54), we look for
similarity solutions of the classical wave equation (9.6) of the form ψ(r, t) =
tn�(x), where here x = r/ct , and we find

(1 − x2)d
2�

dx2
+ 2(n− 1)x

d�

dx
− n(n− 1)� = 0,

which with the further substitution y = (1 + x)/2 gives

y(1 − y)d
2�

dy2
+ [2(n− 1)y − (n− 1)]d�

dy
− n(n− 1)� = 0.

This is the hypergeometric equation F(−n, 1 − n; 1 − n; y) and with the exact
solution �(y) = (1 − y)n as can be readily verified. Accordingly, on making the
substitution �(y) = (1 − y)n�(y), we obtain

y(1 − y)d
2�

dy2
= (2y + n− 1)

d�

dy
,

and this may be integrated to yield

�(y) = (1 − y)n
(
C∗
1 + C∗

2

ˆ y

zn−1(1 − z)−n−1dz

)
,

where C∗
1 and C∗

2 denote two arbitrary constants. On making the substitution ρ =
z/(1 − z) and noting that dρ = dz/(1 − z)2, the above integral becomes

ˆ y ( z

1 − z
)n−1

dz

(1 − z)2 =
ˆ
ρn−1dρ = ρn

n
= 1

n

(
y

1 − y
)n
,

and therefore, we have�(y) = C∗
1 (1−y)n+C∗

2y
n/n. On retracing the substitutions

y = (1+x)/2, x = r/ct and ψ(r, t) = tn�(x), we may readily deduce the solution
ψ(r, t) = C1(ct+r)n+C2(ct−r)n, on introducing modified arbitrary constants C1
and C2. We note however the singular case arising from n = 0 for which we have
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ψ(r, t) = C1 + C2 log

(
ct − r
ct + r

)
. (9.55)

Thus, in summary, the complete similarity solutions of (9.4) arising from ψ(r, t) =
C1(ct + r)n + C2(ct − r)n for n arbitrary are given by

p(r, t) = n

r

[
C1(ct + r)n−1 − C2(ct − r)n−1

]
− 1

r2

[
C1(ct + r)n + C2(ct − r)n

]
,

(9.56)

E (r, t) = nc

r

[
C1(ct + r)n−1 + C2(ct − r)n−1

]
,

with the particle energy e(r, t) and potential V (r, t) determined, respectively, from
the relations

e(r, t) =
(
e20 + (cp(r, t))2

)1/2
,

V (r, t) = −e(r, t)− nc

r

[
C1(ct + r)n−1 + C2(ct − r)n−1

]
+ V0,

where V0 denotes an arbitrary constant, noting that the above potential V (r, t) given
by (9.30) arises from the case n = 1.

9.15 Some Examples Involving the Dirac Delta Function

In this section, we consider some simple illustrative examples all involving the
Dirac delta function. The Dirac delta function, which occurs throughout applied
mathematics and mathematical physics, is usually denoted by the symbol δ and is
referred to as a generalised function in contrast to an ordinary function, such as the
familiar and well-defined functions, for example, x3 and cosh x. Roughly speaking,
the Dirac delta function is zero for x �= 0 and non-zero and very large and positive
for x = 0. Its proper definition relies on a space of test functions ψ(x), which
are assumed to be well-behaved functions vanishing at infinity, and the Dirac delta
function δ(x) is defined to be that function for which

ˆ ∞

−∞
ψ(x)δ(x)dx = ψ(0),

for all test functions ψ(x). More generally, equality between generalised functions
refers to two functions having an identical effect on a space of test functions. Also,
the notion of delta convergent sequences is an important one, that is, a sequence of
real functions which tend to a generalised function in some limiting process. There
are many generalist textbooks containing excellent brief summaries of these issues
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and of the other important aspects of generalised functions, such as [5, 58] and [94],
while both textbooks [36] and [69] are devoted to the topic and accordingly provide
more comprehensive accounts.

Formally, for the Dirac delta function δ(x), we have the elementary properties

δ(−x) = δ(x), δ(λx) = δ(x)

λ
, δ(x) = dH(x)

dx
,

where λ is assumed to be a positive scalar, and H(x) is the Heaviside unit function
defined by

H(x) =
{
1 if x ≥ 0,

0 if x < 0.
(9.57)

In addition, for a > 0, we have

δ(a2 − x2) = 1

2a
{δ(a − x)+ δ(a + x)} , (9.58)

and if we use ξ(x) to designate some arbitrary function of x, then on repeated
differentiation of the formal identity ξδ(ξ) = 0, we may deduce the following
successive relations between the derivatives of the delta function δ(ξ), thus

ξδ′(ξ)+ δ(ξ) = 0, ξδ′′(ξ)+ 2δ′(ξ) = 0, ξδ′′′(ξ)+ 3δ′′(ξ) = 0, ξδiv(ξ)+ 4δ′′′(ξ) = 0,

(9.59)

and so on, and further details of these interesting relations can be found in [36]
(pages 212 and 233).

In the first example, the notion of a spherically symmetric delta function δ(r) in
a three-dimensional space is required. In terms of rectangular Cartesian coordinates
(x, y, z) and with a fully three-dimensional delta function δ(r) = δ(x)δ(y)δ(z), we
have the relationship δ(r) = δ(r)/4π . The factor 1/4π arises from a normalisation
requirement, since in terms of the usual spherical polar coordinates (r, θ, φ), the
spherically symmetric delta function δ(r) requires a normalisation in order that δ(r)
represents a source of unit magnitude, thus δ(r) = δ(r)/4π , where the factor 1/4π
is determined from the integral

´ 2π
0

´ π
0 sin θdθdφ = 4π .

Impulsive Spherical Expansion in a Medium at Rest As an illustration of the
similarity profiles, we consider the problem of a medium, which is initially at rest
and set in motion by an impulsive spherical expansion. We assume that at time
t = 0, the medium is subjected to an impulsive spherical expansion

p(r, 0) = p∗
0δ(r),
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where δ(r) is the three-dimensional delta function, and p∗
0 denotes a constant pre-

scribing the strength of the initial impulsive motion. In terms of the one-dimensional
spherically symmetric delta function δ(r), this initial condition becomes

p(r, 0) = p0

r2
δ(r),

where p0 = p∗
0/4π and from the stretching property of the one-dimensional delta

function, namely δ(λr) = δ(r)/λ, we have

p(λr, 0) = p0

λ2r2
δ(λr) = p0δ(r)

λ3r2
,

and therefore, we require a similarity stretching solution with n = −1. From (9.56)
with n = −1, we may deduce

p(r, t) = −C1(ct + 2r)

r2(ct + r)2 − C2(ct − 2r)

r2(ct − r)2 , (9.60)

where C1 and C2 denote two arbitrary constants to be determined by the continuity
of both p(r, t) and E (r, t) across the moving boundary r = R(t) and the
conservation of momentum, namely

4π
ˆ R(t)

0
p(r, t)r2dr = 4πp0.

With ξ = r/ct , we find from the two immediately above equations

ˆ R(t)

0
p(r, t)r2dr = −

ˆ ξ0

0

(
C1(1 + 2ξ)

(1 + ξ)2 + C2(1 − 2ξ)

(1 − ξ)2
)
dξ = p0, (9.61)

where ξ0 is the constant value of ξ = r/ct on the moving boundary, which is
necessarily defined by r = R(t) = ξ0ct .

On evaluation of the integral in (9.61), we obtain the onstraint

−C1 log(1 + ξ0)2 + C2 log(1 − ξ0)2 + C1ξ0

(1 + ξ0) + C2ξ0

(1 − ξ0) = p0, (9.62)

While from (9.60) continuity of p(r, t) across the moving boundary, namely
p(ξ0ct, t) = 0, gives

C1(1 − ξ0)2(1 + 2ξ0)+ C2(1 + ξ0)2(1 − 2ξ0) = 0. (9.63)

The third constraint comes from the continuity of the wave energy E (r, t) across the
moving boundary. From (9.56) with n = −1, we have
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E (r, t) = −c
r

(
C1

(ct + r)2 + C2

(ct − r)2
)
,

and E (ξ0ct, t) = 0 gives

C1(1 − ξ0)2 + C2(1 + ξ0)2 = 0. (9.64)

Thus, immediately from (9.63), we might deduce the relation

C1(1 − ξ0)2 = C2(1 + ξ0)2,

which together with (9.64) implies that

C1(1 − ξ0)2 = C2(1 + ξ0)2 = 0.

These conditions give rise to the only physically allowable option (since r > 0)
ξ0 = 1 and C2 = 0, so that the moving boundary is given by R(t) = ct and

p(r, t) = −C1(ct + 2r)

r2(ct + r)2 , E (r, t) = − cC1

r(ct + r)2 ,

where the constant C1 is determined from (9.62), thus C1 = p0/(1/2−2 log 2), and
any such impulsive motion must necessarily propagate at the speed of light.

Spherically Symmetric Pulse Waves The following four examples originate from
the existence of a well-known delta function solution E (r, t) = δ((ct)2 − r2) of the
spherically symmetric wave equation, namely equation (9.4)1, and the result hinges
upon the identity (9.59)2 (see, e.g. [36], page 234). For these examples, we use ξ as
the working variable, which is defined by

ξ = (ct)2 − r2,

and we note that for r > 0 and t > 0, strictly speaking, only the first term arises in
the expansion

δ((ct)2 − r2) = 1

2r
{δ(ct − r)+ δ(ct + r)} ,

since evidently ct + r > 0. Here, however, we do not necessarily assume that this is
the case, and we leave open the possibility that in certain scenarios time itself might
be adopted to take on negative values.

From E (r, t) = δ((ct)2 − r2), we may calculate the partial derivatives

∂E

∂t
= 2c2tδ′(ξ), ∂E

∂r
= −2rδ′(ξ),
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∂2E

∂t2
= 2c2δ′(ξ)+ 4c4t2δ′′(ξ), ∂2E

∂r2
= −2δ′(ξ)+ 4r2δ′′(ξ),

so that from the spherically symmetric wave equation (9.4)1,

∂2E

∂t2
= c2

(
∂2E

∂r2
+ 2

r

∂E

∂r

)
, (9.65)

we might deduce

ξδ′′(ξ)+ 2δ′(ξ) = 0, (9.66)

which is the second relation of (9.59). We make two important points. Firstly,
clearly the solution is modulo both an arbitrary scale factor and an arbitrary additive
constant. Secondly, we have in mind that δ(ξ) refers to the Dirac delta function, but
it could also refer to an ordinary function, which is the solution of the second-order
ordinary differential equation (9.66), namely δ(ξ) = C1/ξ

2 +C2, where C1 and C2
denote the two constants of integration.

Another solution of the spherically symmetric wave equation (9.65), which is
not so well-known, is E (r, t) = H((ct)2 − r2)/r , where H(x) is the Heaviside unit
function defined by (9.57). For this solution, we may calculate the following partial
derivatives

∂E

∂t
= 2c2t

r
δ(ξ),

∂E

∂r
= −2δ(ξ)− H(ξ)

r2
,

∂2E

∂t2
= 2c2

r
δ(ξ)+ 4c4t2

r
δ′(ξ), ∂2E

∂r2
= 4rδ′(ξ)+ 2H(ξ)

r3
+ 2δ(ξ)

r
,

so that from the spherically symmetric wave equation (9.65), we might deduce

ξδ′(ξ)+ δ(ξ) = 0,

which in this case is the first relation of (9.59).
Thus, we have two pulse solutions of the spherically symmetric wave equa-

tion (9.65), namely

E (r, t) = δ((ct)2 − r2), E (r, t) = H((ct)2 − r2)
r

, (9.67)

and corresponding to each of these, we may calculate p(r, t) = ∂E /∂r to obtain a
solution of (9.4)2, namely

∂2p

∂t2
= c2

(
∂2p

∂r2
+ 2

r

∂p

∂r
− 2p

r2

)
. (9.68)
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Accordingly, from (9.67), we might generate two solutions of (9.68), thus

p(r, t) = rδ′((ct)2 − r2), p(r, t) = 2δ((ct)2 − r2)+ H((ct)2 − r2)
r2

,

(9.69)

and as previously noted, these solutions do not constitute a matching pair of the
coupled equations (9.3). Arising from each of the four solutions (9.67) and (9.69),
we determine the matching pairs of the coupled equations (9.3) in the four examples
immediately below. The calculations involve varying degrees of difficulty, with the
first example being by far the most challenging.

(i) Determination of p(r, t) corresponding to E (r, t) = δ((ct)2 − r2): In this
example, we determine the function p(r, t) from the coupled partial differential
equations (9.3), namely

∂E

∂r
= ∂p

∂t
,

∂E

∂t
= c2

(
∂p

∂r
+ 2p

r

)
, (9.70)

and corresponding to E (r, t) = δ((ct)2 − r2). From these equations and
E (r, t) = δ((ct)2 − r2), we may deduce

∂p

∂t
= −2rδ′(ξ), ∂p

∂r
+ 2p

r
= 2tδ′(ξ),

where ξ = (ct)2 − r2. On making the substitution p(r, t) = q(r, t)/r2, these
equations become

∂q

∂t
= −2r3δ′(ξ), ∂q

∂r
= 2tr2δ′(ξ), (9.71)

and we may confirm that this is a well-defined problem for the determination
of q(r, t) by equating the two expressions for the mixed partial derivative
∂2q/∂r∂t , which result in the second relation of (9.59). From the two
Eqs. (9.71), we may deduce the first-order partial differential equation

c2t
∂q

∂r
+ r ∂q

∂t
= 2r2ξδ′(ξ) = −2r2δ(ξ),

where we have used the first relation of (9.59). On making the substitution
q(r, t) = φ(r, t)δ(ξ), this equation becomes

c2t
∂φ

∂r
+ r ∂φ

∂t
= −2r2, (9.72)

and the general solution of this equation may be determined using Lagrange’s
characteristic method. We introduce a characteristic parameter s such that
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dr

ds
= c2t, dt

ds
= r, dφ

ds
= −2r2,

and then the general solution for φ(r, t) may be determined from any two
integrals of the reduced system

dr

dt
= c2t

r
,

dφ

dr
= −2r2

c2t
.

From the first equation, we see that one integral is ξ = (ct)2 − r2, which we
may exploit as constant in the integration of the second equation, thus ct =
(ξ + r2)1/2, and we have

dφ

dr
= − 2r2

c(ξ + r2)1/2 ,

which integrates to give φ = −(r/c)(ξ + r2)1/2 + (ξ/c) log(r + (ξ +
r2)1/2), and therefore the general solution of the first-order partial differential
equation (9.72) is given by

φ(r, t) = −rt + ξ

c
log(ct + r)+�(ξ), (9.73)

where �(ξ) denotes an arbitrary function to be determined, such that either
partial differential equation (9.71), involving the derivative of the delta function
δ′(ξ), is properly satisfied by q(r, t) = φ(r, t)δ(ξ). We find that either equation
is properly satisfied and reduces to the first relation of (9.59), provided that
�(ξ) satisfies the first-order ordinary differential equation

ξ�′(ξ)−�(ξ) = − ξ

2c
,

from which we may deduce �(ξ) = −(ξ/2c) log ξ + C1ξ , where C1 denotes
the constant of integration. From Eq. (9.73), we obtain

φ(r, t) = −rt + ξ

2c
log

(
ct + r
ct − r

)
+ C1ξ,

so that altogether the momentum p(r, t) corresponding to the wave energy
E (r, t) = δ((ct)2 − r2) is given by

p(r, t) =
{
− t
r

+ ((ct)2 − r2)
2cr2

log

(
ct + r
ct − r

)
+ C1

r2
((ct)2 − r2)

}
δ((ct)2 − r2).

We observe that while the term involving the arbitrary constant does not
contribute due to the identity ξδ(ξ) = 0, on the other hand, the term
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involving the logarithm is essential, since it is singular and its behaviour is far
more subtle. Thus, the final corresponding expressions for E (r, t) and p(r, t)
become

E (r, t) = δ((ct)2 − r2), p(r, t) =
{
− t
r

+ ((ct)2 − r2)
2cr2

log

(
ct + r
ct − r

)}
δ((ct)2 − r2).

(ii) Determination of p(r, t) corresponding to E (r, t) = H((ct)2 − r2)/r:
The remaining three examples are far more straightforward than the previous
example. From the coupled partial differential equations (9.3) or (9.70) and
E (r, t) = H((ct)2 − r2)/r , we may deduce

∂p

∂t
= −2δ(ξ)− H(ξ)

r2
,

∂p

∂r
+ 2p

r
= 2t

r
δ(ξ),

and on making the same substitution as in the previous example, namely
p(r, t) = q(r, t)/r2, these equations become

∂q

∂t
= −2r2δ(ξ)−H(ξ), ∂q

∂r
= 2trδ(ξ). (9.74)

On integrating the second equation with respect to r , we find q(r, t) =
−tH(ξ) + �(t), where �(t) denotes an arbitrary function of time, and on
substitution into the first of Eqs. (9.74), we obtain � ′(t) = 2ξδ(ξ). Since
ξδ(ξ) = 0, we have therefore� ′(t) = 0, and altogether the final corresponding
expressions for E (r, t) and p(r, t) become

E (r, t) = H((ct)2 − r2)
r

, p(r, t) = − tH((ct)
2 − r2)
r2

.

(iii) Determination of E (r, t) corresponding to p(r, t) = rδ′((ct)2 − r2): In
this case, from the coupled partial differential equations (9.70) and p(r, t) =
rδ′((ct)2 − r2), we have

∂E

∂r
= 2c2trδ′′(ξ), ∂E

∂t
= c2

(
3δ′(ξ)− 2r2δ′′(ξ)

)
, (9.75)

and again we may confirm that this is a well-defined problem for the
determination of E (r, t) by equating the two expressions for the mixed partial
derivative ∂2E /∂r∂t which result in the third relation of (9.59). From the first
of the Eqs. (9.75), it is not difficult to conclude that E (r, t) = −c2tδ′(ξ), and
the second equation of (9.70) reduces to the second relation of (9.59). Thus,
we have the corresponding or matching solutions of (9.70):

E (r, t) = −c2tδ′(ξ), p(r, t) = rδ′(ξ),
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which can be seen to arise from the general solution (9.5) or (9.11), namely

E (r, t) = ∂ (ψ/r)

∂t
, p(r, t) = ∂ (ψ/r)

∂r
,

with ψ(r, t)/r = −δ(ξ)/2, noting that formally ψ(r, t) does indeed have
the required structure ψ(r, t) = F(α) + G(β), since from the delta function
identity (9.58), we have

δ(ξ) = δ((ct)2 − r2) = 1

2r
{δ(ct + r)+ δ(ct − r)} = 1

2r
{δ(α)+ δ(β)} .

(iv) Determination of E (r, t) corresponding to p(r, t) = 2δ((ct)2 − r2) +
H((ct)2 − r2)/r2: In this case from p(r, t) = 2δ(ξ) + H(ξ)/r2 and the two
Eqs. (9.70), we have

∂E

∂r
= 4c2tδ′(ξ)+ 2c2tδ(ξ)

r2
,

∂E

∂t
= c2

(
−4rδ′(ξ)+ 2δ(ξ)

r

)
,

(9.76)

and again we may confirm that this is a well-defined problem for the
determination of E (r, t) by equating the two expressions for the mixed partial
derivative ∂2E /∂r∂t which result in a condition involving a combination of
the first and second relations of (9.59), specifically

2(ξδ′′(ξ)+ 2δ′(ξ))+ (ξδ′(ξ)+ δ(ξ))
r2

= 0.

The first equation of (9.76) may be readily integrated to yield E (r, t) =
−2c2tδ(ξ)/r , and the second equation of (9.76) becomes the identity ξδ′(ξ)+
δ(ξ), so that altogether the corresponding or matching solutions of (9.70)
become

E (r, t) = −2c2t

r
δ((ct)2 − r2), p(r, t) = 2δ((ct)2 − r2)+ H((ct)2 − r2)

r2
.

9.16 Calculation Details for Similarity Solutions

Here, we present the calculation details for similarity solutions of both (9.45)
and (9.53) of the form

V (r, t) = rmw(ξ),
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where ξ = r/ct for (9.45) and ξ = −r/ct for (9.53), and for both we have

∂V

∂r
= rm−1(ξw′ +mw),

while for ξ = r/ct and for ξ = −r/ct we have, respectively,
∂V

∂t
= −crm−1ξ2w′, ∂V

∂t
= crm−1ξ2w′,

where primes denote differentiation with respect to ξ . On substitution of the above
expressions into (9.45) and (9.53), both equations give rise to the same second-order
ordinary differential equation

ξ2(ξ2w′)′ + (ξ2w′) = ξ(ξw′ +mw)′ + (m− 1)(ξw′ +mw)+ 3(ξw′ +mw),

which may be simplified to give

ξ2(ξ2w′′ + 2ξw′ + w′) = ξ2w′′ + (2m+ 3)ξw′ +m(m+ 2)w. (9.77)

It turns out that after making the change of variable ξ = 1/x, this differential
equation reduces to a special case of the hypergeometric differential equation given
by (9.85), where η = (1 + x)/2. However, this end result is by no means obvious
when initially faced with solving equation (9.77), and rather than simply stating
the necessary change of variable, it may be more instructive to follow some of
the thought processes, which ultimately prove effective. We first comment that
while this equation is clearly linear, it nevertheless appears to be complicated,
since it involves three terms of distinct character, namely ξ2(ξ2w′)′, ξ2w′, and the
remaining terms. On face value, this means that any series solutions are generally
more complicated than the generalised hypergeometric series, which arise from
differential equations involving only two terms of distinct character (see, e.g. [6]
volume 1, page 182). The first priority might be to undertake the most simple
analysis to determine the accessible analytical solutions applying to particular
values of m, and it turns out that the special cases m = 0, m = −1, m = −2
and m = −3 can be determined by elementary means.

We now proceed to derive some simple analytical expressions for Eq. (9.77) by
elementary means for the four values of m, namely m = 0, m = −1, m = −2 and
m = −3. For the two cases m = 0 and m = −2, Eq. (9.77) simplifies to give

(1 − ξ2)W ′ + ((2m+ 1)/ξ − 1)W = 0, (9.78)

whereW = ξ2w′. For m = 0, this equation simplifies further to become

W ′

W
+ 1

ξ(1 + ξ) = 0,



9.16 Calculation Details for Similarity Solutions 271

which may be integrated once to give W(ξ) = A(1 + ξ)/ξ , and a further
straightforward integration yields

w(ξ) = −A
2

(
1

ξ2
+ 2

ξ

)
+ B,

where A and B denote the arbitrary constants. For m = −2, (9.78) becomes

W ′

W
= 3

ξ(1 − ξ2) + 1

(1 − ξ2) = 3

(
1

ξ
+ ξ

(1 − ξ2
)

+ 1

2

(
1

(1 − ξ) + 1

(1 + ξ)
)
,

which on integration becomesW(ξ) = Aξ3/(1 − ξ)2(1 + ξ), so that we have

w′(ξ) = Aξ

(1 − ξ)2(1 + ξ) = A

4

(
2

(1 − ξ)2 − 1

(1 − ξ) − 1

(1 + ξ)
)
,

and a further integration gives

w(ξ) = A

2

{
1

(1 − ξ) + 1

2
log

(
1 − ξ)
1 + ξ)

)}
+ B,

where A and B denote the arbitrary constants.
Two further special cases of Eq. (9.77) can be readily integrated with the

observation that

(ξ2w′ + w)′ = w′′ + (2m+ 3)w′/ξ +m(m+ 2)w/ξ2,

which might be immediately integrated, provided that m(m + 2) = −(2m + 3), in
which case, we have either m = −1 or m = −3, and the integral

ξ2w′ + w = w′ + (2m+ 3)w′/ξ + A, (9.79)

where A denotes the constant of integration. For m = −1, we have

w′ + w

ξ(1 + ξ) = A

(1 − ξ2) ,

to obtain the further integral

w(ξ) = A

2ξ

{
1 + (1 + ξ)

2
log

(
1 + ξ)
1 − ξ)

)}
+ B(1 + ξ)

ξ
,

where B denotes the second constant of integration. For the case m = −3, we have
from (9.79)
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w′ − (3 + ξ)w
ξ(1 − ξ2) = A

(1 − ξ2) ,

which may be integrated to give

w(ξ) = − Aξ(1 − 2ξ)

2(1 − ξ)2(1 + ξ) + Bξ3

(1 − ξ)2(1 + ξ) ,

and A and B denote the constants of integration. The simple analytical results
derived here by elementary means are summarised in Sects. 9.12 and 9.13 in terms
of the potential V (r, t).

We now proceed to attempt to identify the general solution of Eq. (9.77) in the
following manner. We first note that Eq. (9.77) can be progressively transformed
into an Heun differential equation (for further information, refer to any of the three
comprehensive texts; [85] linear second order, 2.1.2, item 204, [88] page 7 or [6]
volume 3, page 57). If we attempt the change of variable w(ξ) = ξny(ξ), then
it becomes apparent that the case n = −1 is an important special case providing
many major simplifications. Accordingly, we are led to make the transformation
w(ξ) = y(ξ)/ξ , and (9.77) becomes

ξ2(1 − ξ2)y′′ + ξ(2m+ 1 − ξ)y′ + (m2 − 1 + ξ)y = 0, (9.80)

which can be alternatively written as

y′′ +
(
2m+ 1

ξ
+ m

1 − ξ − (m+ 1)

1 + ξ
)
y′ +

(
(m2 − 1)

ξ
+ 1

)
y

ξ(1 − ξ)(1 + ξ) = 0,

which on face value has regular singular points at ξ = 0 and ξ = ±1, except that
later it becomes apparent that the singularity corresponding to ξ = 0 is an induced
singularity as a result of the transformation w(ξ) = y(ξ)/ξ . Further, since with the
differential equation in standard notation y′′ + p(ξ)y′ + q(ξ)y = 0, we have

p(ξ) = (2m+ 1 − ξ)
ξ(1 − ξ2) , q(ξ) = (m2 − 1 + ξ)

ξ2(1 − ξ2) ,

And therefore, the two quantities 2 − ξp(ξ) and ξ2q(ξ) are given by

2 − ξp(ξ) = ((1 − 2m)+ ξ − 2ξ2)

(1 − ξ2) , ξ2q(ξ) = (m2 − 1 + ξ)
(1 − ξ2) ,

which are both are well-defined and analytic at ξ = ∞, and therefore the point
ξ = ∞ is also a regular singular point. On face value, the existence of the four
regular singular points for Eq. (9.80) indicate that the equation might be transformed
into a Heun differential equation, which in standard notation takes the form
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x(x − 1)(x − a) d
2y

dx2
+
[
(α + β + 1)x2 − (α + β + 1 + a(γ + δ)− δ)x + aγ

] dy
dx

+ (αβx − q)y = 0,

(9.81)

where a, α, β, γ , δ and q denote six arbitrary parameters. On changing the
independent variable ξ = 1/x in Eq. (9.80), we may deduce

x(x − 1)(x + 1)
d2y

dx2
+
[
(1 − 2m)x2 + x − 2

] dy
dx

+ ((m2 − 1)x + 1)y = 0,

which is the Heun differential equation (9.81) with parameter values given by

a = −1, α = 1 −m, β = −(1 +m), γ = 2, δ = −m, q = −1.
(9.82)

In this case, the parameter γ is an integer, and therefore, the standard Heun power
series solutions are not available to provide the general solution (see [85], linear
second order, 2.1.2, item 168). However, much information is known regarding
Heun’s equation, and especially integrable results for particular parameter values
which can be found in the three previously cited references.

In particular, the Heun functions corresponding to the parameter values (9.82)
can be shown to be expressed in terms of Jacobi polynomials Pα,βn (x) (see, e.g. [85],
linear second order, 2.1.2, item 168, [6] volume 3, page 247), which for integer n
are defined by

Pα,βn (x) = (−1)n

2nn! (1 − x)−α(1 + x)−β d
n

dxn

[
(1 − x)α+n(1 + x)β+n] ,

which in standard notation satisfy the differential equation

(1 − x2)d
2y

dx2
+ [β − α − (α + β + 2)x]

dy

dx
+ n(n+ α + β + 1)y = 0,

(9.83)

This is most easily seen by applying the change of variable ξ = 1/x directly to
Eq. (9.77), that is, to the equation

ξ2(1 − ξ2)w′′ + ξ(2m+ 3 − ξ − 2ξ2)w′ +m(m+ 2)w = 0,

and from which we may deduce

(1 − x2)d
2w

dx2
+ [(2m+ 1)x − 1]

dw

dx
−m(m+ 2)w = 0, (9.84)
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and the parameter values in the general equation for Jacobi polynomials
P
α,β
n (x) (9.84) giving rise to Eq. (9.84) are as follows:

α = −(m+ 1), β = −(m+ 2), n = m, n = m+ 2.

Finally, we observe that on making the change of variable η = (1+x)/2, the general
equation for Jacobi polynomials (9.84) becomes the hypergeometric equation

η(1 − η)d
2y

dη2
+ [β + 1 − (α + β + 2)η]

dy

dη
+ n(n+ α + β + 1)y = 0,

which in the standard notation for the hypergeometric differential equation becomes
([85] linear second order, 2.1.2, item 171, [6] volume 1, page 57)

η(1 − η)d
2y

dη2
+ [c − (a + b + 1)η]dy

dη
− aby = 0,

which has formal series solutions denoted by F(a, b; c; η), with the hypergeometric
parameter values a, b and c given by

a = −n, b = n+ α + β + 1, c = β + 1,

and therefore, the two sets of hypergeometric parameters a, b and c corresponding
to Eq. (9.77) and arising from n = m and n = m+ 2 are

a = −m, b = −(m+ 2), c = −(m+ 1),

a = −(m+ 2), b = −m, c = −(m+ 1),

revealing the anticipated symmetry in the two parameters a and b.
In summary, the two linearly independent solutions of the second-order differen-

tial equation (9.77) may be determined from those of the hypergeometric equation,
which arises from (9.84) and the substitution η = (1 + x)/2, thus

η(1 − η)d
2w

dη2
+ [(2m+ 1)η − (m+ 1)]

dw

dη
−m(m+ 2)w = 0, (9.85)

which in standard notation has solutions given by F(−m,−(m+ 2);−(m+ 1); η),
and therefore, the general solutions of (9.77) are given explicitly by

w(ξ) = F
(

−m,−(m+ 2);−(m+ 1); 1 + ξ
2ξ

)
.

There are many simple analytical solutions of the hypergeometric equation corre-
sponding to particular parameter values a, b and c, and a table of the numerous
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special cases can be found in [85] (linear second order, 2.1.2, Tables 16 and 17, after
item 176) and [6] (volume 1, page 89). In the present case a = −m, b = −(m+ 2)
and c = −(m + 1) and in the event that either a or b is a negative integer, the
standard hypergeometric series terminates after a finite number of terms, resulting
in a simple analytical expression; thus, with a = −m, we have

F(a, b; c; η) =
∞∑
k=0

(a)k(b)k

(c)k

ηk

k!

=
m∑
k=0

(a)(a + 1)(a + 2) . . . . . . .(a + k − 1)(b)(b + 1)(b + 2) . . . . . . .(b + k − 1)

(c)(c + 1)(c + 2) . . . . . . .(c + k − 1)

ηk

k!

=
m∑
k=0

(−m)(−m+ 1)(−m+ 2) . . . . . . .(−m+ k − 1)(−m− 2)(−m− 1)(−m) . . . . . . .(−m+ k − 3)

(−m− 1)(−m)(−m+ 1) . . . . . . .(−m+ k − 2)

ηk

k!

=
m∑
k=0

(−1)k(m)(m− 1)(m− 2) . . . . . . .(m− (k − 1))(m+ 2)

(m+ 2 − k)
ηk

k!

=
m∑
k=0

(−1)km!(m+ 2)

(m− k)!(m+ 2 − k)
ηk

k!

=
m∑
k=0

(−1)k(m+ 2)!(m+ 1 − k)
(m+ 2 − k)!(m+ 1)

ηk

k!

=
m∑
k=0

(−1)k
(
1 − k

(m+ 1)

)
(m+ 2)!

(m+ 2 − k)!k! η
k

=
m∑
k=0

(−1)k
(
1 − k

(m+ 1)

)(
m+ 2

k

)
ηk,

where (a)k denotes the Pochhammer symbols which are defined by

(a)k = (a)(a + 1)(a + 2) . . . . . . .(a + k − 1),

with (a)0 = 1. Thus, if m is a positive integer, one solution of (9.77) is given
explicitly by

wm(ξ) = F
(

−m,−(m+ 2);−(m+ 1); 1 + ξ
2ξ

)
=

m∑
k=0

(
1 − k

(m+ 1)

)(
m+ 2

k

)(−(1 + ξ)
2ξ

)k
,

so that, for example, for m = 1, m = 2 and m = 3, we have, respectively,

w1(ξ) = 1

4

(
1 − 3

ξ

)
, w2(ξ) = 1

6

(
1 − 2

ξ
+ 3

ξ2

)
, w3(ξ) = 1

16

(
1 − 5

ξ
+ 5

ξ2
− 5

ξ3

)
,

and we may verify by direct substitution that all three are indeed solutions of (9.77)
for the appropriate values ofm, and there are no doubt numerous other special values
of m giving rise to equally simple analytical expressions.
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Given one solution wm(ξ), a second linearly independent solution might be
formally determined by making the substitution w(ξ) = wm(ξ)W(ξ) and then
solving the resulting first-order differential equation forW ′(ξ), thus

W ′′(ξ)
W ′(ξ)

+ 2
w′
m(ξ)

wm(ξ)
= (2ξ2 + ξ − (2m+ 3))

ξ(1 − ξ)(1 + ξ) = (m+ 1)

(1 + ξ) − m

(1 − ξ) − (2m+ 3)

ξ
,

which integrates finally to give the general solution

w(ξ) = C1wm(ξ)

ˆ ξ

0

(1 − ζ )m(1 + ζ )1+mdζ
ζ 2m+3wm(ζ )2

+ C2wm(ξ),

where C1 and C2 denote two arbitrary constants.

9.17 de Broglie’s Centrally Symmetric Guidance Formula

In Chap. 4, we have presented an analysis for de Broglie’s guidance formula of the
particle by its wave, as given by Eqs. (1.1) and (1.2) for a single spatial dimension
x. For centrally symmetric mechanical systems, a similar analysis applies, which
we present here. For the function ψ(r, t), the particle momentum and energy are
assumed to be defined by

p = mu = −∂ψ
∂r
, e = mc2 = ∂ψ

∂t
,

where ψ(r, t) satisfies

(
∂ψ

∂t

)2

− c2
(
∂ψ

∂r

)2

= e20,
1

c2

∂2ψ

∂t2
−
(
∂2ψ

∂r2
+ 2

r

∂ψ

∂r

)
= g, (9.86)

where e0 = m0c
2, (9.86) arises from the relativistic expression m = m0/[1 −

(u/c)2]1/2 in the form e2 − (pc)2 = e20. From the relation (9.86)1, there exists a
function φ(r, t) such that

∂ψ

∂t
= e0 coshφ, c

∂ψ

∂r
= e0 sinhφ,

so that the velocity u(r, t) becomes

u

c
= pc

e
= −c (∂ψ/∂r)

(∂ψ/∂t)
= − tanhφ. (9.87)
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On equating the two expressions for the second derivative, ∂2ψ/∂t∂r gives
(∂φ/∂t) = c tanhφ(∂φ/∂r), while the second equation is obtained from (9.86)2,
which when combined yield

∂φ

∂r
= −

(
cg

e0
+ 2 sinhφ

r

)
coshφ,

∂φ

∂t
= −c

(
cg

e0
+ 2 sinhφ

r

)
sinhφ.

We now introduce ω = cg/e0 + 2 sinhφ/r so that the immediately above two
equations become simply

∂φ

∂r
= −ω coshφ,

∂φ

∂t
= −cω sinhφ, (9.88)

and compatibility is satisfied, provided that ω(r, t) is a solution of the first-order
partial differential equation

c sinhφ
∂ω

∂r
− coshφ

∂ω

∂t
= cω2, (9.89)

which we again solve using Lagrange’s characteristic method.
The three characteristic differential equations become

dr

ds
= c sinhφ, dt

ds
= − coshφ,

dω

ds
= cω2,

and from the first two equations, we have

dr

dt
= −c tanhφ = − (∂φ/∂t)

(∂φ/∂r)
,

and therefore, one integral is φ(r, t) = constant , while from the first and the third,
we obtain

dω

dr
= ω2

sinhφ
.

On integration, the second integral is found to be 1/ω + r/sinhφ = constant , and
the general solution of (9.89), which is obtained by equating one integral to be an
arbitrary function of the second integral, may be expressed in the form

ω(r, t) = − sinhφ

r − r0(φ) , (9.90)

where r0(φ) denotes an arbitrary function of φ. On substitution of this expression
into (9.89), we may readily confirm that (9.90) constitutes a solution of the equation
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without further restriction on the arbitrary function r0(φ). The function g(r, t) is
now given by

g(r, t) = −e0
c
sinhφ

(
2

r
+ 1

r − r0(φ)
)
, (9.91)

while φ(r, t) is obtained by integration of the coupled relations (9.88) which now
become

∂φ

∂r
= sinhφ coshφ

r − r0(φ) ,
∂φ

∂t
= c sinh2 φ

r − r0(φ) .

The integration of (9.91) is precisely analogous to (4.68), and therefore, we may
use that analysis to state that the general solution for φ(r, t) becomes r − r0(φ) +
ct tanhφ = G(φ), where G(φ) denotes a second arbitrary function which is related
to r0(φ) through the differential relation

dG(φ)

dφ
− G(φ)

sinhφ coshφ
= −dr0(φ)

dφ
.

On integration of this equation, we have

G(φ) = −r0(φ)− tanhφ
ˆ
r0(φ)dφ

sinh2 φ
,

as the formal connection between the two arbitrary functions G(φ) and r0(φ), and
from r − r0(φ)+ ct tanhφ = G(φ), we obtain

r + ct tanhφ = − tanhφ
ˆ
r0(φ)dφ

sinh2 φ
. (9.92)

On using u = −c tanhφ from (9.87), this equation may be alternatively written as

r − ut = tanhφ
ˆ
r0(φ)d(cothφ) = −u

ˆ
r∗0 (u)du
u2

,

where r∗0 (u) denotes r0(φ) with φ replaced by − tanh−1(u/c).
Again, for the sake of completeness, we consider the most basic solution in

this family of solutions arising from the special case r0(φ) = 0. For r0(φ) �= 0,
Eq. (9.92) generally involves transcendental functions for u(r, t), and the only
solution in this family of solutions, which can be given explicitly, arises from the
special case r0(φ) = 0. This solution corresponds to the wave velocity (see table in
Chap. 10) with u = −c tanhφ = r/t , and therefore,
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e = e0ct

((ct)2 − r2)1/2 , p = e0r

c((ct)2 − r2)1/2 ,
c2p

e
= r

t
= u, (9.93)

and with particle paths arising from dr/dt = c2t/r , so that r2 − (ct)2 = constant .
Further, the total or material time derivative du/dt is zero, arising from

du

dt
= ∂u

∂t
+ u∂u

∂r
= − r

t2
+ u

t
= − r

t2
+ r

t2
= 0.

In this case, physically from u(r, t) = r/t , we have

u(a, t)

c
=
{
a/ct > 1 if ct < a superluminal,

a/ct < 1 if ct > a sub-luminal,

which means that around the fixed sphere in space r = a, shortly after time t = a/c,
there is the sudden appearance of particles moving outwards at a velocity just below
that of light.

The details for this special case are virtually identical to those given in Chap. 4
for a single spatial dimension. Accordingly, we simply list the major results. We
have u(r, t) = −c tanhφ = r/t , and ψ(r, t) is determined from the relations

∂ψ

∂t
= e0 coshφ = e0ct

((ct)2 − r2)1/2 , c
∂ψ

∂r
= e0 sinhφ = − e0r

((ct)2 − r2)1/2 ,

so that, together from (9.91) with u(r, t) = r/t , we have

ψ(r, t) = e0

c
((ct)2 − r2)1/2, g(r, t) = 3e0

c((ct)2 − r2)1/2 ,

with e(r, t) and p(r, t) given by (9.93). Again, we may confirm these expressions
as providing particular illustrations of the Eqs. (3.12) for centrally symmetric
mechanical systems, namely

∂e

∂t
= u∂p

∂t
,

∂e

∂r
= u∂p

∂r
,

de

dt
= udp

dt
.

Further, from (9.93)2, we may again verify that f = dp/dt = 0, since we have

dp

dt
= ∂p

∂t
+ u∂p

∂r
,

= e0

c

{ −rc2t
((ct)2 − r2)3/2 + r

t

(
1

((ct)2 − r2)1/2 + r2

((ct)2 − r2)3/2
)}
,

= 0,
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providing a specific illustration of non-constant momentum p(r, t) and yet f =
dp/dt = 0. With f = 0, the work done W(r, t) as defined by (3.8) is given by the
relation dW = gc2dt , from which we may deduce

W(r, t) =
ˆ

3e0cdt

((ct)2 − r2)1/2 = 3e0 cosh
−1
(
ct

r

)
,

on using the substitution ct = r cosh θ and ignoring any arbitrary constants of
integration. From the relation cosh−1 z = log(z + (z2 − 1)1/2) and u(r, t) = r/t ,
we might deduce

W(r, t) = 3e0 log

(
1 + (1 − (u/c)2)1/2

u/c

)
= −3e0 log

(
u/c

1 + (1 − (u/c)2)1/2
)
.

Thus, apart from the factor of 3, this expression coincides with that given for the
case of a single spatial dimension and with one of the terms arising from the
general expression (6.14) for the special case λ → −∞ for the exact solution (5.1)
examined in some detail in Chaps. 5 and 6.



Chapter 10
Relation with Quantum Mechanics

10.1 Introduction

As we have previously mentioned, the operator structure of quantum mechanics,
p −→ −ih̄∂/∂x and e −→ ih̄∂/∂t , is intrinsically inherent in the proposed theory,
assuming conservative external forces f = −∂V/∂x and gc2 = −∂V/∂t . From
the relations (10.4), we have p = ∂ψ/∂x and E = ∂ψ/∂t and conservation of
energy e + E + V = constant immediately gives e = −(∂ψ/∂t + V ), and this is
precisely the structure of the standard operator relations of quantummechanics. That
is, the established structure of the conventional operators of quantum mechanics is
embodied in the present approach and arises from conservation of energy.

The purpose of this chapter is to formulate the role of the invariants ξ(x, t) and
η(x, t) defined by (2.48), namely ξ(x, t) = ex − c2pt and η(x, t) = px − et ,
relating to de Broglie waves and quantum mechanics. The determination of a formal
connection between special relativity and quantum mechanics has long attracted the
interest of many eminent researchers, including Einstein himself, culminating in
the highly successful Dirac and Klein–Gordon equations, and the literature leading
to these developments and their numerous consequences is now extensive; see, for
example, Bjorken and Drell [7], Dirac [27], Dirac [28] and Gross [43] to name
only four of many substantial texts on this topic. In this chapter, we examine the
relationship of the ideas developed here with quantum mechanics and, in particular,
the relationship of the two invariants of ξ(x, t) and η(x, t) of special relativity.

In the following section, we make some general comments on quantum mechan-
ics and the Schrödinger wave equation, and from which we might propose two open
questions. Firstly, are there any alternative interpretations for the wave function
ψ(x, t) other than the probabilistic interpretation of quantum mechanics, and
secondly is it possible to deduce discrete energy states directly from the wave
equation without forcing an eigenvalue problem? In the subsequent section, we
present the conventional approach to the notions of group velocities and de Broglie
waves. In the section thereafter, we examine the role of the invariants ξ(x, t)
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and η(x, t) as defined by Eq. (2.48) relating to de Broglie waves and quantum
mechanics. We first show that the simple harmonic waves e2πiη/h and e2πiξ/hc

are connected to particles moving with velocities u and c2/u, respectively, and
moreover with corresponding de Broglie wave velocities c2/u and u, respectively.
Further, on adopting the standard operator relations of quantum mechanics p −→
−ih̄∂/∂x and e −→ ih̄∂/∂t , as usual h̄ = h/2π , ξ and η give rise to two Lorentz
invariant operators (10.10)1 and (10.10)2, leading to the Klein–Gordon partial
differential equation (10.13) arising as the operator equivalent of the algebraic
identity ξ2 − (cη)2 = e20(x2 − (ct)2).

In the next section, we deduce a modified second-order Klein–Gordon equa-
tion (10.21), which arises from incorporating a potential function V (x, t) into
the operator relations, which become p −→ −ih̄∂/∂x and e −→ ih̄∂/∂t +
V (x, t), and in place of Eq. (10.13), we deduce the entirely new partial differential
equation (10.21), which enjoys characteristics of both the Klein–Gordon equation
and of Schrödinger’s second-order wave equation. While the general solution of
the classical wave equation is well-known, in the context of the de Broglie wave
energy, the question of the essential general structure of both the amplitude and
the phase of solutions of the wave equation might be of considerable interest, and
this is examined in the penultimate section of this chapter. In the final section of
the chapter, and for the sake of completeness, some details for the time-dependent
Dirac equation for a free particle are included. The Klein–Gordon equation is a
fundamental equation of relativistic quantum mechanics and is second order in
both space and time coordinates. On the other hand, Dirac’s Lorentz invariant
relativistic equation is first order in both space and time coordinates and is purposely
constructed so that the probability density function remains non-negative.

10.2 Quantum Mechanics and Schrödinger Wave Equation

In quantum mechanics, it is well-established that the variables become operators
and wave functions involve a probability density. For a single spatial dimension, the
standard quantum mechanical operator relations for momentum p and energy e are,
respectively, p −→ −ih̄∂/∂x and e −→ ih̄∂/∂t , namely

p = −ih̄ ∂�
∂x
, e = ih̄ ∂�

∂t
, (10.1)

for some function �(x, t). To a certain extent, the probabilistic interpretation in
quantum mechanics arises in consequence of identifying variables as complex (pure
imaginary) operators in order to adopt analogous energy integrals from classical
mechanics.

From a special relativistic perspective, the conventional signatures of these
operators are entirely meaningful in the sense of being precisely what is required
to produce the correct Lorentz invariances. Firstly, if we adopt P −→ −ih̄∂/∂X



10.2 Quantum Mechanics and Schrödinger Wave Equation 283

and E −→ ih̄∂/∂T and we apply these operator relations to the Lorentz invariant
energy-momentum relations (2.46) and then from p −→ −ih̄∂/∂x and e −→
ih̄∂/∂t , we obtain precisely the correct differential transformation formulae (7.3).
Furthermore, the usual signatures of the quantummechanical operators are precisely
that required to ensure the Lorentz invariances of the operators arising from the
Lorentz invariants ξ and η defined by (2.48) and established below.

In conventional quantum mechanics, the second-order Schrödinger equation
is usually motivated as arising from the classical wave equation. The usual
requirements being that the equation be linear, so that different solutions may
be superimposed, and that it involves only fundamental constants, rather than
parameters associated with a particular motion of the particle, such as momentum,
energy, frequency or propagation number. It is therefore important to emphasise
that within the theory proposed here, the classical wave equation is not a matter
of speculation, but rather a consequence, and it is not difficult to envisage the
second-order Schrödinger wave equation arising in the present context as a formal
consequence, following the numerous ad hoc derivations of the Schrödinger wave
equation presented in several texts (such as [71], pages 18–19 or [93], pages 218–
220).

For example, for a single non-relativistic particle, Semat [93] starts with the wave
equation

∂2�

∂t2
= w2

(
∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2

)
, (10.2)

where w denotes the wave speed, assumed constant, and �(x, y, z, t) denotes a
wave function. On using the three relations p = h/μ, w = μν and E = hν,
[93] makes use of conservation of energy E = mu2/2 + V , where V denotes
potential energy, to deduce p = mu = (2m(E − V ))1/2 and therefore w =
hν/(2m(E − V ))1/2. On looking for solutions of (10.2) of the form �(x, y, z, t) =
ψ(x, y, z) exp(2πiνt), we might readily deduce Schrödinger’s wave equation for a
single particle, namely

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= −8π2m

h2
(E − V )ψ, (10.3)

and the question arises as to whether or not there are other derivations of
Schrödinger’s equation arising from alternative formulations.

Both the standard operator relations of quantum mechanics and the Schrödinger
wave equation are immediately apparent from the present formulation. For a single
spatial dimension, within the present proposed model, the following equations apply
for the momentum p(x, t) and the wave energy E (x, t),

∂E

∂t
= c2 ∂p

∂x
,

∂E

∂x
= ∂p

∂t
,



284 10 Relation with Quantum Mechanics

so that there certainly exists a function ψ(x, t) such that

p = ∂ψ

∂x
, E = ∂ψ

∂t
, (10.4)

satisfying the wave equation

∂2ψ

∂t2
− c2 ∂

2ψ

∂x2
= 0. (10.5)

From (10.5) we may readily deduce Schrödinger’s wave equation following
Eq. (10.3) above, and which indicates that there may be alternative interpretations
for ψ(x, t) other than the probabilistic interpretation of quantum mechanics? We
may derive Schrödinger’s wave equation from the present formulation and for a
single spatial dimension from the above wave equation (10.5), without the need to
introduce complex operators. It is therefore natural to pose a second question as
to whether it is possible to deduce discrete energy states directly from the wave
equation without forcing an eigenvalue problem.

Remark We comment that on adopting the usual operator relations of quantum
mechanics p −→ −ih̄∇ and e −→ ih̄∂/∂t , where as usual h̄ = h/2π and h is
Planck’s constant, so that

p = −ih̄∇ψ, e = ih̄ ∂ψ
∂t
, (10.6)

for some function ψ = ψ(x, t), we see that on face value (3.4) gives f = 0 and

g = ih̄

c2

(
∂2ψ

∂t2
− c2∇2ψ

)
, (10.7)

for which we make three observations. Firstly, as previously noted, conventional
quantummechanics is a compromised theory allowing both particle and wave states,
with no distinction made between physical particle energy e and wave energy E . In
the formalism developed here, simply replacing p and e by (10.6), conventional
quantum mechanics would appear to operate under circumstances for which the
spatial physical force f vanishes. In a subsequent section, we examine the case
when the external forces f and g are generated from a potential. Secondly, the
three-dimensional Klein–Gordon equation (10.45) can be seen to emerge under the
linearity assumption g(ψ) ≈ −i(e20/h̄c2)ψ where e0 = m0c

2, so that the Klein–
Gordon equation might be only a first approximation in a nonlinear setting. The third
observation is that Schrödinger’s wave equation might equally well be deduced as
arising from the wave equation operator appearing in (10.7).
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10.3 Group Velocity and de Broglie Waves

Energy transmission by a stream of particles involves mass transport through a
flow of matter. However, wave motion, as the passage of a local disturbance in a
medium, may transmit energy without any accompanying flow of matter. There are
numerous types of wave motion, such as ocean waves, in which the disturbance is
an oscillation of the sea water along the path of the wave; sound waves, in which
the disturbance is a deformation of the medium (perhaps elastic or viscoelastic)
along the direction of the medium; electromagnetic waves, in which the disturbance
consists of oscillations of the electric and magnetic fields; and so on. Since it
is generally believed that even the most complicated wave structure can be built
up from a linear combination of simple harmonic waves, attention is accordingly
focussed on simple harmonic waves of the form e2πi(x/μ−t/T ), where μ is the
wavelength and T is the period of oscillation.

On introducing, the wave number k = 2π/μ and angular frequency ω = 2π/T ,
in standard notation the simple harmonic wave becomes ei(kx−ω(k)t), noting that
typically the angular frequency ω depends upon the wave number k, namely the
wavelength μ (see, e.g. [71], pages 13–16). In this notation, the wave velocity
w as measured by the movement of one wave peak (crest) to the next, namely
“wavelength/ period”, becomes simply w = ω(k)/k. Now in any dispersive
medium, that is, one in which the wave velocity depends upon the wavelength,
waves of different wavelengths are propagated through the medium as a group
with a velocity u = dω/dk, which is generally different from w = ω/k and the
relationship u = dω/dk = d(kw)/dk = w + kdw/dk holds (see, e.g. [93], pages
208–213).

de Broglie’s idea [17] of an accompanying pilot wave originates as follows. In
the Bohr theory of the hydrogen atom (see, e.g. [35], pages 29–61 for a general
historical account), the nth orbit of the electron has radius r given by

r =
(
nh

2π

)2 1

me∗2 , (10.8)

where m and e∗ denote, respectively, the mass and charge of the electron. Mechan-
ical and electrical force balance gives

mrω2 = e∗2
r2
,

where ω denotes angular velocity. By substitution of e∗2 from this equation into
Eq. (10.8) and taking the square root, we may deduce de Broglie’s relation 2πr =
nh/p. On noting that the momentum p = mu and the electron velocity u = rω, he
makes the critical observation that 2πr is an integer multiple of the wavelength μ if
p = h/μ, and speculates that this results applies to all elementary particles.
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The present conventional approach for such an elementary particle with wave
velocityw = μν, where ν = 1/T is the frequency, and with the analogous result for
energy e = hν, is to apply the special relativistic energy relation e2 − (pc)2 = e20,
where e0 = m0c

2 and m0 is the rest mass. Thus, from e = hw/μ, together with
p = h/μ, we may deduce that the wave velocity w is given by

w = c
(
1 +

(e0μ
hc

)2)1/2

.

Now on using the abovementioned relations k = 2π/μ, we have, after differentia-
tion and simplification,

u = w + k dw
dk

= w − μdw
dμ

= c
(
1 +

(e0μ
hc

)2)−1/2

,

from which we may deduce uw = c2, connecting the group velocity u with the
wave velocity w. Further, with the usual relations e = mc2 and p = mu, we have
e/p = c2/u = w = μν, and it is not difficult to show that the group velocity u
of the wave package coincides with the particle velocity as defined by that velocity
occurring in the expression p = mu for momentum.

Thus, the group velocity of the wave u coincides with the particle velocity,
and if the particle velocity u is sub-luminal, then the associated wave or phase
velocity c2/u through the de Broglie relation is necessarily superluminal. This is
“believed” not to contradict the fact that information cannot be carried faster than
the speed of light c, because “supposedly” the wave phase does not carry energy.
However, the superluminal phase velocity may well be physically significant, and
dark energy may well exist as a consequence that the associated de Broglie wave
energy is neglected. If the wave energy through the superluminal wave speed c2/u
is accommodated, then it is not difficult to envisage interesting outcomes for slowing
particle speeds u tending to zero.

10.4 Lorentz Invariants ξ = ex − c2pt and η = px − et

In this section, assuming the usual quantum mechanical relations (10.1), we
investigate the formal implications arising from the two Lorentz invariants ξ(x, t) =
ex − c2pt and η(x, t) = px − et of special relativity and previously defined
by (2.48). The formal connection between special relativity and quantum mechanics
has alluded researchers, since in quantummechanics, there is no distinction between
particle energy e and wave energy E . Once this distinction is made clear and
the two invariants ξ = ex − c2pt and η = px − et of special relativity are
identified, the connection between the two topics becomes apparent. We first show
that the simple harmonic waves e2πiη/h and e2πiξ/hc are connected to particles
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Table 10.1 Wave and particle (group) velocities for Lorentz invariants ξ and η

Waves Wave velocity Particle (group) velocity

exp[i(kx − ω(k)t)] w = ω(k)/k u = dω/dk
exp(iη/h̄) = exp[i(px − et)/h̄] e/p = c2/u de/dp = c2p/e = u
exp(iξ/ch̄) = exp[i(ex − c2pt)/ch̄] c2p/e = u c2dp/de = e/p = c2/u

moving with velocities u and c2/u, respectively, and moreover with corresponding
de Broglie wave velocities c2/u and u, respectively. Subsequently, following the
usual replacement with operators in quantum mechanics p −→ −ih̄∂/∂x and
e −→ ih̄∂/∂t , where as usual h̄ = h/2π , we show that ξ and η give rise to two
commuting Lorentz invariant operators.

Waves of the Form e2πiη/h and e2πiξ/hc With the relations p = h/μ and e = hν
in mind, on comparison of the expressions e2πi(ex−c2pt)/hc and e2πi(px−et)/h with
the previously noted standard simple harmonic wave ei(kx−ω(k)t) = e2πi(x/μ−νt),
we see an immediate correspondence in the latter case, while in the former case for
the invariant ξ , we have e2πi(ex−c2pt)/hc = e2πi(wx/μ−νut)/hc involving both the
wave and group velocities w and u, respectively. It is apparent that the invariant η
is intimately connected to a particle moving with velocity u with an accompanying
de Broglie wave speed c2/u, since waves of the form e2πiη/h = e2πi(px−et)/h have
a particle velocity de/dp = u and a wave velocity e/p = c2/u. On the other
hand, it is apparent that the invariant ξ is intimately connected to a particle moving
with velocity c2/u with an accompanying de Broglie wave speed u, since waves
of the form e2πiξ/hc = e2πi(ex−c2pt)/hc have a particle velocity c2dp/de = c2/u

and a wave velocity c2p/e = u. We comment that in each case the de Broglie
relation uw = c2 arises from (2.43) and that we might anticipate that the invariant
η associates with the sub-luminal or particle world, while the invariant ξ associates
with the superluminal or wave world. This information is summarised in tabular
form in Table 10.1 and most easily deduced, making use of e = mc2, p = mu and
the differential relation ede = c2pdp.

Waves of the Form A exp(iξ/ch̄) + B exp(iη/h̄) and A exp(iξ/ch̄) +
B exp(−iη/h̄) With γ and δ defined by (2.49), the two Lorentz invariants ξ
and η are given by (2.50), thus

γ = 1

2c
(e + pc)(ct − x) = − 1

2c
(ξ + cη), δ = 1

2c
(e − pc)(ct + x) = 1

2c
(ξ − cη),

ξ = ex − c2pt = −c(γ − δ), η = px − et = −(γ + δ),

and therefore, waves of the general form y(x, t) = A exp(iξ/ch̄) + B exp(iη/h̄)
become

y(x, t) = A exp[−i(γ − δ)/h̄] + B exp[−i(γ + δ)/h̄]
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= [A exp(iδ/h̄)+ B exp−(iδ/h̄)] exp(−iγ /h̄)
= [(A+ B) cos(δ/h̄)+ i(A− B) sin(δ/h̄)] exp(−iγ /h̄),

and correspondingly, waves of the general form y(x, t) = A exp(iξ/ch̄) +
B exp(−iη/h̄) become

y(x, t) = A exp[−i(γ − δ)/h̄] + B exp[i(γ + δ)/h̄]
= [A exp(−iγ /h̄)+ B exp(iγ /h̄)

]
exp(iδ/h̄)

= [(A+ B) cos(γ /h̄)+ i(B − A) sin(γ /h̄)] exp(iδ/h̄),

where A and B are used here to designate arbitrary amplitudes. Thus, in summary,
and in terms of the original variables, we have the companion formulae

A exp

(
iξ

ch̄

)
+ B exp

(
iη

h̄

)

=
{
(A+B) cos

(
(e−pc)(ct+x)

2ch̄

)
+ i(A−B) sin

(
(e − pc)(ct+x)

2ch̄

)}
exp

(
− i(e + pc)(ct − x)

2ch̄

)
,

A exp

(
iξ

ch̄

)
+ B exp

(
− iη
h̄

)

=
{
(A+B) cos

(
(e+pc)(ct−x)

2ch̄

)
+ i(B − A) sin

(
(e + pc)(ct − x)

2ch̄

)}
exp

(
i(e − pc)(ct + x)

2ch̄

)
.

Lorentz Invariant Quantum Mechanical Operators It proves convenient to
adopt the convention that the operator corresponding to a given variable is sub-
scripted, so that, for example, in this notation, the two standard operators arising
from momentum p and energy e become

Lp = −ih̄ ∂
∂x
, Le = ih̄ ∂

∂t
, (10.9)

so that directly from Eq. (2.48), namely ξ = ex − c2pt and η = px − et , we might
introduce operators Lξ and Lη that are defined by

Lξ = ih̄
(
x
∂

∂t
+ c2t ∂

∂x

)
, Lη = −ih̄

(
x
∂

∂x
+ t ∂
∂t

)
, (10.10)

both of which are fully Lorentz invariant operators, as can be verified from Eqs. (2.3)
and (7.3), thus

Lξ = ih̄(X − vT )
(1 − (v/c)2)

{
∂

∂T
+ v ∂

∂X

}
+ ih̄c2(T − vX/c2)

(1 − (v/c)2)
{
∂

∂X
+ v

c2

∂

∂T

}
,
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and

Lη = − ih̄(X − vT )
(1 − (v/c)2)

{
∂

∂X
+ v

c2

∂

∂T

}
− ih̄(T − vX/c2)

(1 − (v/c)2)
{
∂

∂T
+ v ∂

∂X

}
,

and from which we may deduce

Lξ = ih̄
(
X
∂

∂T
+ c2T ∂

∂X

)
, Lη = −ih̄

(
X
∂

∂X
+ T ∂

∂T

)
,

and therefore, the operators Lξ and Lη are Lorentz invariant. Furthermore, by direct
computation, it is not difficult to show that the two operators commute, namely
LξLη = LηLξ . In conventional quantum mechanical thinking, this means that the
corresponding observables ξ and η are simultaneously measurable (compatible),
and the two operators share the same eigenfunctions (see, e.g. [11], page 101). We
further observe that the operator Lξ is essentially the Lorentz operator Lv arising
from the one-parameter group of Lorentz transformations (2.3), which is given by

Lv = −
(
T
∂

∂X
+ X

c2

∂

∂T

)
,

which therefore also commutes with Lη. The full implications of this intriguing
correspondence are not immediately apparent but further underscore the formal
connection established here between special relativity and quantum mechanics.
Starting with the full invariant ξ = ex−c2pt of the Lorentz group, we formulate the
quantummechanical operatorLξ given by (10.10), which turns out to be the Lorentz
operator formed from the one-parameter group of Lorentz transformations (2.3).

10.5 Klein–Gordon Partial Differential Equation

In this section, we show that the Lorentz invariant operators (10.10) give rise
to the Klein–Gordon partial differential equation (10.13), arising as the operator
equivalent of the algebraic identity ξ2 − (cη)2 = e20(x

2 − (ct)2). The various
properties of the two operators Lξ and Lη are most apparent in terms of the
characteristic coordinates α = ct+x and β = ct−x. Using the differential formulae

∂

∂x
= ∂

∂α
− ∂

∂β
,

∂

∂t
= c

(
∂

∂α
+ ∂

∂β

)
,

we may deduce

Lξ = ih̄c
(
α
∂

∂α
− β ∂

∂β

)
, Lη = −ih̄

(
α
∂

∂α
+ β ∂

∂β

)
, (10.11)
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and from which there arises the intriguingly simple formulae

Lξ−cη = 2ih̄cα
∂

∂α
, Lξ+cη = −2ih̄cβ

∂

∂β
. (10.12)

From these two expressions, the formal operator equation corresponding to the
identity (6.2), namely ξ2 − (cη)2 = e20(x

2 − (ct)2), gives rise immediately to the
Klein–Gordon equation (see, e.g. [11], page 312)

Lξ−cηLξ+cη� = 4(h̄c)2αβ
∂2�

∂α∂β
= −e20αβ�,

for some function �(x, t) and from which we have

4
∂2�

∂α∂β
= −

(
e0

h̄c

)2

�,

or alternatively, in terms of the conventional (x, t) wave equation operator, we have
the more usual form of the Klein–Gordon equation ([11], page 313)

∂2�

∂t2
− c2 ∂

2�

∂x2
= −

(
e0

h̄

)2

�. (10.13)

Einstein Energy Relation e2 = e20+(pc)2 It is interesting to note that on assuming
the usual de Broglie relations, e = hν and p = h/μ, where ν is the frequency, μ
is the wavelength and νμ = c, the Einstein relation e2 = e20 + (pc)2 emerges from
the so-called dispersion relation, arising from the Klein–Gordon equation (10.13)
for the simple wave

�(x, t) = �0 exp(i(kx − ωt)), (10.14)

where �0 is a constant, k = 2π/μ and ω = 2πν in the following manner.
From (10.14), we have

∂2�

∂t2
= −ω2�,

∂2�

∂x2
= −k2�,

so that the dispersion relation for the Klein–Gordon equation (10.13) becomes
simply ω2 − (kc)2 = (e0/h̄)

2, which on using ω = e/h̄ and k = p/h̄ produces
the desired relation e2 = e20 + (pc)2.
Remark We observe that on introducing the new variables ζ and ρ defined by

ζ = ((ct)2 − x2)1/2, ρ = 1

2
log

(
ct + x
ct − x

)
,
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which in terms of the characteristic coordinates α = ct+x and β = ct−x, become

ζ = ((ct)2 − x2)1/2 = (αβ)1/2, ρ = 1

2
log

(
ct + x
ct − x

)
= 1

2
log

(
α

β

)
,

and from (10.11), we may readily deduce the formulae

Lξ (ζ ) = 0, Lη(ζ ) = −ih̄ζ, Lξ (ρ) = ih̄c, Lη(ρ) = 0,

along with

LξLη� = h̄2c
(
α2
∂2�

∂α2
+ α ∂�

∂α
− β2 ∂

2�

∂β2
− β ∂�

∂β

)
,

so that on making the Euler transformations γ = logα and δ = logβ, we obtain

LξLη� = h̄2c
(
∂2�

∂γ 2
− ∂2�

∂δ2

)
.

We also observe that for the variables ζ and ρ, the Jacobian and wave equation for
the momentum become

∂(ζ, ρ)

∂(x, t)
= c

ζ
,

∂2p

∂t2
− c2 ∂

2p

∂x2
= 4c2

∂2p

∂α∂β
= 0, (10.15)

and the latter equation becomes

ζ 2
∂2p

∂ζ 2
+ ζ ∂p

∂ζ
− ∂2p

∂ρ2
= 0,

∂2p

∂τ 2
− ∂2p

∂ρ2
= 0, (10.16)

where we have made another Euler transformation τ = log ζ . On noting the
relations γ = logα = τ + ρ and δ = logβ = τ − ρ, the well-known general
solution of the wave equation p = F(α)+G(β) is apparent from the latter equations
of either (10.15) or (10.16).

10.6 Alternative Klein–Gordon–Schrödinger Equation

In this section, we deduce the modified second-order Klein–Gordon equa-
tion (10.21), arising from incorporating a potential function V (x, t) into the operator
relations. In terms of the present formulation, from Eq. (8.1) and assuming that the
external forces are generated from a potential function V (x, t), then
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p = ∂ψ

∂x
, E = ∂ψ

∂t
, e = −

(
∂ψ

∂t
+ V (x, t)

)
, (10.17)

and it is important to note that the conventional quantum mechanical operator
structure p −→ −ih̄∂/∂x and e −→ ih̄∂/∂t is immediately inherent in the present
approach. Also, we observe that if the ψ(x, t) satisfies the wave equation (8.2),
then (10.17) immediately satisfies (3.4), assuming that the external forces f and g
are generated from f = −∂V/∂x and gc2 = −∂V/∂t .

On incorporating a potential function V (x, t), the operator relations now become
p −→ −ih̄∂/∂x and e −→ ih̄∂/∂t+V (x, t), so that in place of Eq. (10.9), we have

Lp = −ih̄ ∂
∂x
, Le = ih̄ ∂

∂t
+ V (x, t), (10.18)

while Eqs. (10.12) become

Lξ−cη = 2ih̄cα
∂

∂α
+ αV, Lξ+cη = −2ih̄cβ

∂

∂β
− βV, (10.19)

and the structure of (10.18), and (10.18)2 in particular, is not immediately apparent
from the corresponding structure of (10.17), and (10.18)2 is selected on the basis
that the dispersion relation arising from (10.21) and (10.14) is sensible, noting that
this point was not picked up in [52].

Now when we seek to define the operator equation corresponding to the algebraic
identity ξ2 − (cη)2 = (ξ + cη)(ξ − cη) = −e20αβ, we find that the two operators
Lξ−cη and Lξ+cη are now non-commuting operators, and therefore, we need to
define a product operator in the most obvious manner. Accordingly, we adopt the
defintion

Lξ2−(cη)2 = (Lξ−cηLξ+cη + Lξ+cηLξ−cη
)
/2, (10.20)

and in place of (10.13), we may eventually deduce the modified second-order Klein–
Gordon equation

∂2�

∂t2
− c2 ∂

2�

∂x2
− 2iV

h̄

∂�

∂t
− i�

h̄

∂V

∂t
−
(
V

h̄

)2

� = −
(
e0

h̄

)2

�, (10.21)

which is an entirely new partial differential equation that enjoys characteristics of
both the Klein–Gordon equation and Schrödinger’s second-order wave equation.

Now the dispersion relation arising from (10.21) and (10.14) can be readily
shown to become

(h̄ω + V )2 + ih̄ ∂V
∂t

= e20 + (h̄kc)2,

which in terms of ω = e/h̄ and k = p/h̄ becomes
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(e + V )2 + ih̄ ∂V
∂t

= e20 + (pc)2.

While we may readily find a physical interpretation for the term involving the sum
of the two energies (e + V )2 as E 2, the physical meaning of the imaginary term
ih̄∂V /∂t is not immediately apparent, noting however that in the approach adopted
here, we might be more inclined to interpret hν as E rather than as e, but either
way the sum of the two energies, either e + V or E + V , is a physically sensible
combination.

Remark Clearly Eq. (10.21) is a linear partial differential equation and therefore
admits many analytical solutions. For example, we might make the assumption that
the potential V (x, t) satisfies the partial differential relation

ih̄
∂V

∂t
= e20 − V 2, (10.22)

in which case the equation simplifies considerably to give

∂2�

∂t2
− c2 ∂

2�

∂x2
− 2iV

h̄

∂�

∂t
= 0. (10.23)

By partial integration of (10.22), we deduce that

log

(
e0 + V
e0 − V

)
= −2icε(t − t0(x)),

where ε = e0/ch̄ and t0(x) denotes an arbitrary function of x. From this relation,
we obtain

iV (x, t) = e0 tan[cε(t − t0(x))], (10.24)

and Eq. (10.23) becomes

∂2�

∂t2
− c2 ∂

2�

∂x2
− 2cε tan[cε(t − t0(x))]∂�

∂t
= 0. (10.25)

In the case when t0 is a constant, then it is easy to show that cos[cε(t − t0)]�(x, t)
satisfies a Klein–Gordon equation. In the event that t0(x) = γ x/c, where γ denotes
an arbitrary constant, then Eq. (10.25) becomes

∂2�

∂t2
− c2 ∂

2�

∂x2
− 2cε tan(εξ)

∂�

∂t
= 0,
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where ξ = ct − γ x, and this equation admits solutions of the form � =
exp(−ωt)�(ξ), where ω is a constant and�(ξ) denotes a function of ξ only. These
solutions simplify considerably in the two particular cases γ = ±1.

10.7 General Wave Structure of Solutions of Wave Equation

Of course, although the general solution of the classical wave equation is well-
known, in the context of the de Broglie wave energy, it would be of some
considerable interest to have an understanding of the essential general structure of
both the amplitude and the phase of solutions of the wave equation. If we look for
solutions of the classical wave equation of the form

E (x, t) = a(x, t) exp(iη(x, t)/h̄),

where a(x, t) denotes an arbitrary amplitude to be determined and we have in
mind that η(x, t) might be one of the Lorentz invariants η(x, t) = px − et , then
we know that on solving the necessary partial differential equations for a(x, t)
and η(x, t) and reconstituting the wave energy E (x, t) = a(x, t) exp(iη(x, t)/h̄),
ultimately we must obtain the general solution of the wave equation, namely
E (x, t) = c (F (α)−G(β)), where F(α) and G(β) denote arbitrary functions of
the characteristic coordinates α = ct+x and β = ct−x, respectively. Accordingly,
we know the end result; the real issue is to determine how the functions a(x, t) and
η(x, t) are individually structured to ensure this outcome.

Now from the classical wave equation, we may deduce

∂2a

∂t2
− a

h̄2

(
∂η

∂t

)2

+ i

h̄

(
a
∂2η

∂t2
+2
∂a

∂t

∂η

∂t

)
= c2

{
∂2a

∂x2
− a

h̄2

(
∂η

∂x

)2

+ i

h̄

(
a
∂2η

∂x2
+ 2

∂a

∂x

∂η

∂x

)}
,

so that by equating real and imaginary parts, we have

∂2a

∂t2
− c2 ∂

2a

∂x2
= a

h̄2

{(
∂η

∂t

)2

− c2
(
∂η

∂x

)2
}
, (10.26)

a

(
∂2η

∂t2
− c2 ∂

2η

∂x2

)
+ 2

(
∂a

∂t

∂η

∂t
− c2 ∂a

∂x

∂η

∂x

)
= 0.

From these two coupled partial differential equation,s we may deduce the interesting
result that both a(x, t) and the product a(x, t)η(x, t) satisfy the same Klein–Gordon
partial differential equation, thus

∂2a

∂t2
− c2 ∂

2a

∂x2
= a

h̄2

{(
∂η

∂t

)2

− c2
(
∂η

∂x

)2
}
, (10.27)
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∂2(aη)

∂t2
− c2 ∂

2(aη)

∂x2
= aη

h̄2

{(
∂η

∂t

)2

− c2
(
∂η

∂x

)2
}
.

In terms of the characteristic coordinates α = ct + x and β = ct − x, the two
equations (10.27) become

∂2a

∂α∂β
= a

h̄2

∂η

∂α

∂η

∂β
,

∂2(aη)

∂α∂β
= aη

h̄2

∂η

∂α

∂η

∂β
, (10.28)

so that with b = aη, we may readily deduce b∂2a/∂α∂β − a∂2b/∂α∂β = 0, and
therefore, b∂a/∂α − a∂b/∂α = C′(α) and b∂a/∂β − a∂b/∂β = D′(β), where
C(α) and D(β) denote arbitrary functions of the indicated arguments. On solving
these latter two equations as two equations for the two unknown functions a and b,
we obtain

a = C′(α) ∂a
∂β

−D′(β) ∂a
∂α

∂(a,b)
∂(α,β)

, b = C′(α) ∂b
∂β

−D′(β) ∂b
∂α

∂(a,b)
∂(α,β)

,

and therefore from b = aη, we have

a = C′(α) ∂a
∂β

−D′(β) ∂a
∂α

a
∂(a,η)
∂(α,β)

, aη =
C′(α)

(
η ∂a
∂β

+ a ∂η
∂β

)
−D′(β)

(
η ∂a
∂α

+ a ∂η
∂α

)

a
∂(a,η)
∂(α,β)

.

On using the first equation, the second simplifies to give simply D′(β)∂η/∂α −
C′(α)∂η/∂β = 0 as a linear first-order partial differential equation for the deter-
mination of η(α, β), the general solution of which is η(α, β) = φ(C(α) + D(β)),
where φ denotes an arbitrary function of the indicated argument. Now on using this
general solution in the first equation, the equation admits a factor, and we obtain

(
1 + a2 dφ

dζ

)(
D′(β) ∂a

∂α
− C′(α)∂a

∂β

)
= 0, (10.29)

where here we are using ζ = C(α) + D(β) as a working variable. Assuming for
the time being that the first factor is non-zero, then D′(β)∂a/∂α − C′(α)∂a/∂β =
0, with general solution a(α, β) = ψ(C(α) + D(β)), where again ψ denotes an
arbitrary function of ζ = C(α)+D(β).

In terms of η(α, β) = φ(ζ ) and a(α, β) = ψ(ζ ), the two partial differential
equations (10.28) reduce to the two ordinary differential equations

d2ψ

dζ 2
= ε2ψ

(
dφ

dζ

)2

,
d2(φψ)

dζ 2
= ε2(φψ)

(
dφ

dζ

)2

, (10.30)
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where for the moment we are using ε = 1/h̄. Now on adopting ψ as a function of
φ, namely ψ = ψ(φ) and using

d2φ

dζ 2
/

(
dφ

dζ

)2

= d(dφ/dζ )

dφ
/

(
dφ

dζ

)
= d log(dφ/dζ )

dφ
, (10.31)

so that with ρ(φ) = dφ/dζ , the two equations (10.30) become

ρ
d2ψ

dφ2
+ dρ

dφ

dψ

dφ
= ε2ρψ, ρ

d2(φψ)

dφ2
+ dρ

dφ

d(φψ)

dφ
= ε2ρφψ.

Again, on using the first equation, the second simplifies to give simply 2ρdψ/dφ+
ψdρ/dφ = 0, and therefore, ρψ2 = C1 or ρ = C1/ψ

2, where C1 denotes
an arbitrary constant, and noting that the assumed non-zero factor in (10.29)
corresponds to the special case of ρ = C1/ψ

2 with C1 = −1. Substitution of
ρ = C1/ψ

2 into the first equation gives the simple equation d2ω/dφ2 + ε2ω = 0,
where ω denotes 1/ψ . The general solution of this equation may be expressed as

ω = 1

ψ
= C2 cos{ε(φ − φ0)}, (10.32)

where C2 and φ0 denote further arbitrary constants. Now from

ρ = dφ

dζ
= C1

ψ2 = C1C
2
2 cos

2{ε(φ − φ0)},

we are required to integrate sec2{ε(φ − φ0)}dφ = C1C
2
2dζ , and therefore, we may

finally deduce

tan{ε(φ − φ0)} = εC1C
2
2(ζ − ζ0),

where ζ0 denotes another arbitrary constant, and altogether we have

a(α, β) = ψ(ζ ) = 1

C2
sec{ε(φ − φ0)} = 1

C2

(
1 + {εC1C

2
2(ζ − ζ0)}2

)1/2
,

η(α, β) = φ(ζ ) = φ0 + h̄ tan−1{εC1C
2
2(ζ − ζ0)},

where ζ = C(α)+D(β).
Now since C(α) and D(β) are assumed to be arbitrary, we may include the two

constants εC1C
2
2 and φ0 in these functions, and therefore, the essential structure of

a(α, β) and η(α, β) becomes

a(α, β) = a0
(
1 + ζ 2

)1/2
, η(α, β) = η0 + h̄ tan−1(ζ ), (10.33)
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where a0 and η0 denote arbitrary constants, ζ = C(α)+D(β) and C(α) and D(β)
are arbitrary functions of the characteristic coordinates α = ct + x and β = ct −
x, respectively. We may check by direct substitution that these expressions indeed
satisfy the two ordinary differential equations (10.30). Thus, on reconstituting the
wave energy E (α, β), these expressions give

E (α, β) = a(α, β) exp(iη(α, β)/h̄) = a0 exp(iη0/h̄)
(
1 + ζ 2

)1/2
exp(i tan−1 ζ )

= a0 exp(iη0/h̄)
(
1 + ζ 2

)1/2 (
cos(tan−1 ζ )+ i sin(tan−1 ζ )

)
= a0 exp(iη0/h̄)(1 + iζ ),

and therefore, as expected, E (α, β) has the structure of the general solution of
the wave equation. The question is, of course, how knowledge of this structure
improves our understanding of the Lorentz invariant energy profiles arising from
the classical wave equation, and we first consider the Einstein energy relation
e = e0(1 − (u/c)2)−1/2.

Einstein Energy Relation e = e0(1 − (u/c)2)−1/2 On making a comparison

of (10.33)1 with e = e0(1 − (u/c)2)−1/2, clearly we have the factor
(
1 + ζ 2)1/2

instead of (1 − (u/c)2)−1/2, where ζ = C(α)+D(β) denotes the general solution of
the classical one space dimension wave equation. With σ = u/c, the transformation

σ = ζ

(1 + ζ 2)1/2 , ζ = σ

(1 − σ 2)1/2 , (10.34)

takes the factor
(
1 + ζ 2)1/2 into the factor (1 − σ 2)−1/2, as required, and with σ =

u/c we might examine this transformation in more detail, thus

ζ = σ

(1 − σ 2)1/2 = u/c

(1 − (u/c)2)1/2 = m0u

m0c(1 − (u/c)2)1/2 = p

m0c
= pc

e0
,

where p = mu denotes the momentum. Now for a single space dimension, the
momentum p does indeed satisfy the classical wave equation (see Eq. (4.4)1),
and therefore, the above analysis together with the transformation (10.34) makes
considerable sense.

General Lorentz Invariant Energy Relation (2.59) The most general Lorentz
invariant energy expression that we have is that given by (2.59) for particle energy,
namely

e(u) = e0

(1 − (u/c)2)1/2
(
1 + (u/c)
1 − (u/c)

)κ/2
, (10.35)

where e0 = m0c
2 is the rest energy and κ denotes an arbitrary constant, and the

conventional relativistic energy expression e(u) = e0/(1 − (u/c)2)1/2 arising from
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the case κ = 0. For κ �= 0, we need the relation (see Eq. (2.10))

1

2
log

(
1 + u/c
1 − u/c

)
= tanh−1(u/c),

so that (10.35) becomes

e(u) = e0

(1 − (u/c)2)1/2
(
1 + (u/c)
1 − (u/c)

)κ/2

= e0

(1 − (u/c)2)1/2 e
κ tanh−1(u/c),

and from elementary relations, we have

tanh−1(u/c) = tanh−1 σ = tanh−1(ζ/(1 + ζ 2)1/2) = sinh−1(ζ ),

so that we have

e(u) = e0

(1 − (u/c)2)1/2 e
κ tanh−1(u/c) = e0(1 + ζ 2)1/2eκ sinh−1(ζ ),

in comparison to that arising from (10.33). We also note that on using sinh−1 ζ =
log(ζ + (1 + ζ 2)1/2), we have the alternative expression

e(u) = e0

(1 − (u/c)2)1/2
(
1 + (u/c)
1 − (u/c)

)κ/2
= e0(1 + ζ 2)1/2(ζ + (1 + ζ 2)1/2)κ .

10.8 Wave Solutions of Klein–Gordon Equation

Much of the analysis of the previous section also applies to the Klein–Gordon
equation (10.13) in place of the classical wave equation, namely

∂2�

∂t2
− c2 ∂

2�

∂x2
= −

(
e0

h̄

)2

�,

so that on investigating solutions of the form �(x, t) = a(x, t) exp(iη(x, t)/h̄)
to determine their possible amplitudes a(x, t) and phases η(x, t)/h̄, in place
of (10.26), we have

∂2a

∂t2
− c2 ∂

2a

∂x2
= a

h̄2

{(
∂η

∂t

)2

− c2
(
∂η

∂x

)2

− e20
}
, (10.36)
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a

(
∂2η

∂t2
− c2 ∂

2η

∂x2

)
+ 2

(
∂a

∂t

∂η

∂t
− c2 ∂a

∂x

∂η

∂x

)
= 0,

while in terms of the characteristic coordinates α = ct + x and β = ct − x and in
place of (10.28), we obtain

∂2a

∂α∂β
= a

h̄2

{
∂η

∂α

∂η

∂β
−
( e0
2c

)2}
,

∂2(aη)

∂α∂β
= aη

h̄2

{
∂η

∂α

∂η

∂β
−
( e0
2c

)2}
.

(10.37)

Further, all the above analysis pertaining to a and b = aη and leading to η(α, β) =
φ(C(α) + D(β)) and a(α, β) = ψ(C(α) + D(β)) also applies, where φ and
ψ denote arbitrary functions of ζ = C(α) + D(β) and C(α) and D(β) are
also arbitrary functions of the indicated argument. However, at this point further
extension of the above analysis is not possible for arbitrary C(α) and D(β), and in
order to reduce (10.37) to ordinary differential equations, we need to assume that
ζ = λx + ct , where λ denotes an arbitrary constant.

Accordingly, in the following we solve (10.36) or (10.37), assuming that
η(x, t) = φ(ζ ) and a(x, t) = ψ(ζ ), where ζ = λx + ct and λ denotes an arbitrary
constant. On substitution of these expressions for η(x, t) and a(x, t) into (10.36), the
two partial differential equations reduce to the two ordinary differential equations

d2ψ

dζ 2
= ε2ψ

{(
dφ

dζ

)2

− k2
}
,

d2(φψ)

dζ 2
= ε2(φψ)

{(
dφ

dζ

)2

− k2
}
,

(10.38)

where ε = 1/h̄ and k = e0/c(1 − λ2)1/2, noting that k is pure imaginary for
λ2 > 1. On adopting ψ as a function of φ, namely ψ = ψ(φ) and using (10.31)
with ρ(φ) = dφ/dζ , the two equations (10.38) become

ρ
d2ψ

dφ2
+ dρ

dφ

dψ

dφ
= ε2ρψ

{
1 −

(
k

ρ

)2}
, ρ

d2(φψ)

dφ2
+ dρ

dφ

d(φψ)

dφ
= ε2ρφψ

{
1 −

(
k

ρ

)2
}
.

Using the first equation, the second simplifies to give simply 2ρdψ/dφ +
ψdρ/dφ = 0, and therefore, again we obtain ρψ2 = C1 or ρ = C1/ψ

2, where
C1 denotes an arbitrary constant. Substitution of ρ = C1/ψ

2 into the first equation
gives d2ω/dφ2 + ε2ω = δ2/ω3, where ω denotes 1/ψ and δ is another constant
defined by

δ = kε

C1
= e0ε

C1c(1 − λ2)1/2 = e0

C1ch̄(1 − λ2)1/2 .

The second-order differential equation d2ω/dφ2 + ε2ω = δ2/ω3 may be readily
integrated to obtain



300 10 Relation with Quantum Mechanics

(
dω

dφ

)2

+ (εω)2 +
(
δ

ω

)2

= 2εC2,

where C2 denotes an arbitrary constant, and this equation may be rearranged to give

ωdω

(2εC2ω2 − ε2ω4 − δ2)1/2 = ±dφ,

which may be further integrated to yield

ε

ψ2 = εω2 = C2 +
(
C2
2 − δ2

)1/2
cos 2ε(φ − φ0), (10.39)

where φ0 denotes a second integration constant, and noting that in the limit δ −→ 0,
this expression agrees with Eq. (10.32) with a suitably adjusted arbitrary constant.
Now from

ε
dφ

dζ
= ερ = ε C1

ψ2 = εC1ω
2 = C1

{
C2 +

(
C2
2 − δ2

)1/2
cos 2ε(φ − φ0)

}
,

we are required to integrate

d(tan�){[C2 + (C2
2 − δ2)1/2] + [C2 − (C2

2 − δ2)1/2] tan2�} = C1dζ,

where � = ε(φ − φ0), and this equation integrates to give

(
C2 − (C2

2 − δ2)1/2
C2 + (C2

2 − δ2)1/2
)1/2

tan[ε(φ − φ0)] = tan[C1δ(ζ − ζ0)], (10.40)

where ζ0 denotes a further arbitrary constant. This equation may be rearranged
to provide an expression for φ(ζ ), while an expression for ψ(φ) can be obtained
from (10.39).

From the above expressions, it is clear that there are two critical combinations of
the constants, which we denote by δ1 and δ2, thus

δ1 = C1δ = e0

ch̄(1 − λ2)1/2 , δ2 = δ

C2
= e0

C1C2ch̄(1 − λ2)1/2 ,

and in terms of these constants, we have from (10.40)

φ(ζ ) = φ0 + h̄ tan−1

⎧⎨
⎩
(
1 + (1 − δ22)1/2
1 − (1 − δ22)1/2

)1/2

tan[δ1(ζ − ζ0)]
⎫⎬
⎭ , (10.41)
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while from (10.39), we may deduce

1

ψ2 = h̄C2

{
1+
(
1−δ22

)1/2
cos 2�

}
= h̄C2

{
(1+(1−δ22

)1/2
)+ (1−(1−δ22

)1/2
) tan2�

}
(1 + tan2�)

,

where� = ε(φ−φ0). On using the following expression for tan�which is obtained
from (10.41), namely

tan� =
(
1 + (1 − δ22)1/2
1 − (1 − δ22)1/2

)1/2

tan[δ1(ζ − ζ0)],

we obtain

1

ψ2 = h̄C2δ
2
2

(1 + tan2[δ1(ζ − ζ0)]){
(1 − (1 − δ22

)1/2
)+ (1 + (1 − δ22

)1/2
) tan2[δ1(ζ − ζ0)]

} ,

and therefore, ψ(ζ ) is given by

ψ(ζ ) = cos[δ1(ζ − ζ0)]
(h̄C2)1/2δ2

{
(1 −

(
1 − δ22

)1/2
)+ (1 +

(
1 − δ22

)1/2
) tan2[δ1(ζ − ζ0)]

}1/2
.

On reconstituting �(x, t) = a(x, t) exp(iη(x, t)/h̄) = ψ(ζ ) exp(iφ(ζ )/h̄), we
obtain

�(ζ) = eiφ0/h̄ cos[δ1(ζ − ζ0)]
(h̄C2)1/2δ2

{
(1 −

(
1 − δ22

)1/2
)+ (1 +

(
1 − δ22

)1/2
) tan2[δ1(ζ − ζ0)]

}1/2

× exp i tan−1

⎧⎨
⎩
(
1 + (1 − δ22)1/2
1 − (1 − δ22)1/2

)1/2

tan[δ1(ζ − ζ0)]
⎫⎬
⎭ ,

= eiφ0/h̄ cos[δ1(ζ − ζ0)]
(h̄C2)1/2δ2

{
(1 −

(
1 − δ22

)1/2
)+ (1 +

(
1 − δ22

)1/2
) tan2[δ1(ζ − ζ0)]

}1/2

×

⎧⎪⎨
⎪⎩
(1 − (1 − δ22

)1/2
)1/2 + i(1 + (1 − δ22

)1/2
)1/2 tan[δ1(ζ − ζ0)]{

(1 − (1 − δ22
)1/2
)+ (1 + (1 − δ22

)1/2
) tan2[δ1(ζ − ζ0)]

}1/2
⎫⎪⎬
⎪⎭ ,

= eiφ0/h̄ cos[δ1(ζ − ζ0)]
(h̄C2)1/2δ2

{
(1 −

(
1 − δ22

)1/2
)1/2 + i(1 +

(
1 − δ22

)1/2
)1/2 tan[δ1(ζ − ζ0)]

}
,

= eiφ0/h̄

(h̄C2)1/2δ2

{
(1 −

(
1 − δ22

)1/2
)1/2 cos[δ1(ζ − ζ0)] + i(1 +

(
1 − δ22

)1/2
)1/2 sin[δ1(ζ − ζ0)]

}
,

which as might be expected comprises simply two linearly independent solutions of
� ′′(ζ )+ δ21�(ζ) = 0, as indeed it must. However, it is important to appreciate that
the amplitude (a(x, t)) and phase (η(x, t)/h̄) enjoy a certain structure, which in the
absence of the nonessential constants (ζ0 and φ0) simplify somewhat to become
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a(ζ ) = ψ(ζ ) = 1

(h̄C2)1/2δ2

{
(1 −

(
1 − δ22

)1/2
) cos2(δ1ζ )+ (1 +

(
1 − δ22

)1/2
) sin2(δ1ζ )

}1/2
,

η(ζ )

h̄
= φ(ζ )

h̄
= tan−1

⎧⎨
⎩
(
1 + (1 − δ22)1/2
1 − (1 − δ22)1/2

)1/2

tan(δ1ζ )

⎫⎬
⎭ ,

where ζ = λx + ct , and for a prescribed value of λ, the constant δ1 =
e0/ch̄(1 − λ2)1/2 is assumed to be known, while the constants δ2 and C2 are
essentially completely arbitrary, provided only that the above expressions are
meaningful. If we introduce the angle χ such that δ2 = sinχ , then the amplitude
and phase are given, respectively, by

a(ζ ) = 1

(2h̄C2)1/2

{(
sin(δ1ζ )

sin(χ/2)

)2
+
(
cos(δ1ζ )

cos(χ/2)

)2}1/2
,

η(ζ )

h̄
= tan−1

{
tan(δ1ζ )

tan(χ/2)

}
.

We also observe that λ = ±1 constitutes critical values of λ and that a transition
from λ2 < 1 to λ2 > 1 and vice versa might well be achievable, if in the limit
λ −→ 1 occurs in such a manner that the constant δ1 always remains well-defined.

10.9 Time-Dependent Dirac Equation for Free Particle

Finally in this chapter and for the sake of completeness, some details for the time-
dependent Dirac equation for a free particle are summarised in this section. The
Klein–Gordon equation is second order in both space and time coordinates, and it is
a fundamental equation of relativistic quantum mechanics. Dirac’s Lorentz invariant
relativistic equation, which is first order in both space and time coordinates, is
purposely constructed so that the probability density remains non-negative, which
is not a feature of the Klein–Gordon equation (see, e.g. [11], page 317). The Dirac
equation itself for three spatial dimensions (x, y, z) becomes

ih̄
∂�

∂t
+ ich̄(A.∇)� = e0B�,

where � is given by

� =

⎛
⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ ,

where the four matrices Ax, Ay, Az and B are as defined in the following subsection.
For three spatial dimensions, each component of �, namely ψj = ψj (x, y, z, t) for
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j = 1, 2, 3, 4, may be shown to satisfy the three spatial-dimensional Klein–Gordon
equation (10.45).

Again for the sake of completeness, we present the following details for the time-
dependent Dirac equation for a free particle and confirm that each component of �
satisfies the Klein–Gordon equation. The matrices Ax, Ay, Az and B appearing in
the time-dependent Dirac equation for a free particle are given, respectively, by

Ax =

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , Ay =

⎛
⎜⎜⎝
0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ , Az =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

and

B =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

and the Dirac equation becomes

⎛
⎜⎜⎜⎝

∂
∂t

0 ∂
∂z

∂
∂x

− i ∂
∂y

0 ∂
∂t

∂
∂x

+ i ∂
∂y

− ∂
∂z

∂
∂z

∂
∂x

− i ∂
∂y

∂
∂t

0
∂
∂x

+ i ∂
∂y

− ∂
∂z

0 ∂
∂t

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−if0ψ1

−if0ψ2

if0ψ3

if0ψ4

⎞
⎟⎟⎠ ,

where f0 = e0/h̄. With a subscript notation for partial derivatives, we have in
component form

ψ1t + cψ3z + cψ4x − icψ4y = −if0ψ1, (10.42)

ψ2t + cψ3x + icψ3y − cψ4z = −if0ψ2,

ψ3t + cψ1z + cψ2x − icψ2y = if0ψ3,

ψ4t + cψ1x + icψ1y − cψ2z = if0ψ4.

By an examination of the particular case of one spatial dimension, so that ψj =
ψj (x, t) for j = 1, 2, 3, 4, it is not difficult to show the first equation couples with
the last, while the second and third are coupled together, thus

ψ1t + cψ4x = −if0ψ1, ψ4t + cψ1x = if0ψ4,

ψ2t + cψ3x = −if0ψ2, ψ3t + cψ2x = if0ψ3,
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and from which we may show that each component ψj = ψj (x, t) for j = 1, 2, 3, 4
satisfies the one spatial-dimensional Klein–Gordon equation

∂2ψj

∂t2
− c2 ∂

2ψj

∂x2
= −

(
e0

h̄

)2

ψj .

For three spatial dimensions with ψj = ψj (x, y, z, t) for j = 1, 2, 3, 4, we may
exploit the above coupling and write the first and last equations of (10.42)

ψ1t + if0ψ1 + cψ4x − icψ4y = −cψ3z, (10.43)

ψ4t − if0ψ4 + cψ1x + icψ1y = cψ2z

and the second and third as

ψ2t + if0ψ2 + cψ3x + icψ3y = cψ4z, (10.44)

ψ3t − if0ψ3 + cψ2x − icψ2y = −cψ1z.

On repeatedly using the expressions for two of the derivatives, say ψ2z and ψ3z
as obtained from (10.43), and substituting into the differentiated with respect to
z versions of (10.44), we may, after changing the order of the mixed partial
derivatives, deduce that both ψ2 and ψ3 satisfy the Klein–Gordon equation for three
spatial dimensions, thus

∂2ψj

∂t2
− c2∇2ψj = −

(
e0

h̄

)2

ψj . (10.45)

for j = 2, 3. Similarly, by repeating this process with the two expressions obtained
from (10.44) for ψ1z and ψ4z and substitution into the derived versions of (10.43),
we may conclude that indeed both ψ1 and ψ4 also satisfy the three spatial-
dimensional Klein–Gordon equation (10.45).



Chapter 11
Coordinate Transformations, Tensors
and General Relativity

In this chapter, we provide some basic information on coordinate transformations,
tensors, partial covariant differentiation, Christoffel symbols and Ricci and Einstein
tensors, leading to general relativity. As previously stated, this is necessarily a
limited progressive introduction, termed progressive, in the sense that the reader is
invited to read on to later sections if more information and further detail are required.
Einstein’s general theory of relativity was published over a century ago, and up to
this point in time provides the best description of a gravitation field, and is capable of
describing a myriad of interesting phenomena in the universe, such as the bending
of light through gravitational lensing, the slowing of clocks in gravitational fields
and the recently detected ripples in space time due to cataclysmic astrophysical
events, such as the coalescence of dense stellar objects. The next generation of GPS
systems will require a detailed mapping of the earth’s gravitational field combined
with the development of accurate predictive mathematical models. Accordingly
for such applications, a superficial understanding may not be sufficient for future
space scientists, but rather some prior experience of the actual “gory” details of the
discipline may be required.

The first two sections of the chapter deal with an introduction to Cartesian
tensors and an alternative derivation of the basic identity (3.7), previously derived
in Chap. 3. The two sections thereafter deal with general curvilinear coordinates
and the important notion of partial covariant differentiation, including briefly
mentioning the fundamental tensors of general relativity, which are the Riemann-
Christoffel tensor, the covariant curvature tensor, the Ricci tensor, the curvature
invariant and the Einstein tensor. Bianchi’s identity is also briefly mentioned, and
the subsequent section provides an illustrative example involving a single spatial
Cartesian dimension.

Throughout we follow the approach to general relativity adopted in the excellent
recent text of [15] and the older texts of [78, 100, 102], and we follow the
development of tensor analysis as pursued by [97, 101] or the Appendix of [31].
While there exist a number of exact space-times for the Einstein field equations
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of general relativity, such as those listed in [42, 81, 98] and to a lesser extent in
[84, 91, 107], in the search for new exact space-time solutions of general relativity,
the major prohibiting factors include the shear complexity of the underlying equa-
tions and the lack of any strategic perspective to guide the analysis. In Sect. 11.6,
we deduce some general formulae for a line element involving seven arbitrary
metric tensor components, and each component is assumed to depend only on two
spatial variables and the temporal variable. While the assumed line element is not
completely general, it nevertheless includes many known exact space-time solutions
of general relativity. Some general formulae are presented for the Ricci and Einstein
tensors expressed in terms of six components of the covariant curvature tensor,
and two well-known cosmological models are presented as illustrative examples
of the formulation in the section thereafter. In the final section of the chapter, we
examine a possible cosmological model involving logarithmic spirals and seven
arbitrary constants. While spiral structures frequently occur in the universe, at
present there appears to be no known formal solutions of the general relativistic field
equations reflecting such structures. A particular case of the spiral model gives rise
to an Einstein tensor, which is reminiscent of the tensor involving the cosmological
constant.

11.1 Summation Convention and Cartesian Tensors

In this section, we present the background material required to give an alternative
derivation of the identity (3.7) for the spatial physical force f using a suffix or index
notation, for which we represent the Cartesian coordinates (x, y, z) as (x1, x2, x3),
and accordingly, we would write (x, y, z) as simply xj for j = 1, 2, 3. In order to
achieve this, there are four important ideas and results that we need to introduce.
These ideas provide an elementary introduction to the general topic of tensor
analysis, which deals with the transformations of curvilinear coordinates for which
the issue regarding the level of the index, namely either upper of lower, is critical,
and this is the case in the subsequent sects. 11.3 and 11.4. In this and the following
section, however, we deal only with Cartesian coordinates for which the level of the
index is not relevant. Also, we comment that we could if necessary deal with a four-
dimensional space time with coordinates (ct, x, y, z) as (x0, x1, x2, x3) or xj for
j = 1, 2, 3, 4, but since the identity (3.7) involves only the three spatial dimensions
(x, y, z), we restrict attention to xj for j = 1, 2, 3.

Einstein Summation Convention We first need to mention the Einstein sum-
mation convention, which is an important accepted convention that any repeated
index implies that a summation is taken over that index. Thus, for the two vectors
u = (ux, uy, uz) = (u1, u2, u3) and p = (px, py, pz) = (p1, p2, p3), their scalar
product u.p would be written as

u · p = uxpx + uypy + uzpz = u1p1 + u2p2 + u3p3 = ujpj ,
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and the repeated j index implies that a summation must be made over j = 1, 2, 3.

Kronecker Delta δij The second idea that is needed is the Kronecker delta symbol
δij , which is defined to have a unit value if i = j and the value zero otherwise, thus

δij =
{
1 if i = j,
0 if i �= j.

so as an example, combining the two notions of the Einstein summation convention
and the Kronecker delta symbol δij , we might write the above scalar vector product
u · p as follows:

u · p = δij uipj = ujpj = u1p1 + u2p2 + u3p3.

We would observe that repeated indices occur over both i and j , so that in reality
the first equality reveals a summation of precisely nine terms, thus

δij uipj = δ11u1p1 + δ12u1p2 + δ13u1p3 + δ21u2p1 + δ22u2p2 + δ23u2p3

+ δ31u3p1 + δ32u3p2 + δ33u3p3,

but of course, only the three terms arising from δ11, δ22 and δ33 provide a non-zero
contribution to the summation.

Levi-Civita Symbol Denoted by εijk The third notion that is required is the
mathematical symbol, often referred to as the Levi-Civita symbol denoted by
εijk , which represents numbers arising from the sign of a permutation of the
natural numbers 1, 2 and 3. They are also referred to as the permutation symbols,
antisymmetric symbols or alternating symbols, referring to their antisymmetric
property and their definition in terms of permutations. The Levi-Civita symbols εijk

are defined to be unity if ijk is a cyclic permutation of 1, 2 and 3, minus one if ijk
is an anticyclic permutation of 1, 2 and 3 and zero otherwise, thus

εijk =

⎧⎪⎪⎨
⎪⎪⎩

+1 if ijk is cyclic permutation of 123

−1 if ijk is anticyclic permutation of 123

0 if ijk is otherwise

(11.1)

Vector Product u ∧ p Armed with this symbol, we are now able to express a num-
ber of important vector relations and vector differential relations and, principally,
those vector relations involving either the vector product or the differential operator,
known as the curl of a vector. For example, the three components of the vector
product u ∧ p, which has the formal determinant definition
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u ∧ p =
∣∣∣∣∣∣

î ĵ k̂
ux uy uz

px py pz

∣∣∣∣∣∣ =
∣∣∣∣∣∣

î ĵ k̂
u1 u2 u3

p1 p2 p3

∣∣∣∣∣∣ ,

are given by (u ∧ p)i = εijkujpk , where there are implied summations over both j
and k, and the specific ordering of ijk is critical, where as usual (î, ĵ, k̂) denote the
unit vectors in the three Cartesian directions. Thus, for example

(u ∧ p)1 = ε1jkujpk = ε123u2p3 + ε132u3p2 = u2p3 − u3p2 = uypz − uzpy,

since ε123 = 1 and ε132 = −1 are the only non-zero values of εijk involving 1 in
the indices.

Further, we may use these symbols to write the ith component of the curl
differential operator ∇ ∧ p, which has the formal determinant definition

∇ ∧ p =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

px py pz

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x1

∂
∂x2

∂
∂x3

p1 p2 p3,

∣∣∣∣∣∣∣
,

thus

(∇ ∧ p)i = εijk ∂p
k

∂xj
,

again noting the summations over both repeated indices j and k and their specific
placement in the above expression.

Fundamental Identity Involving δij and εijk The fourth and final result that
we need is the following fundamental identity involving both the Kronecker delta
symbol δij and the Levi-Civita symbol εijk , thus

εijkεimn = δjmδkn − δjnδkm, (11.2)

for which we observe the implied summation over the repeated index i and the
specific association of the indices in the positive and negative contributions. This is
the fundamental identity from which the vast majority of all other vector identities
involving either the vector product or the curl differential operator can be quickly
established.
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11.2 Alternative Derivation of Basic Identity

We are now well placed to establish the identity (3.7) for the spatial physical force
f, and we start with the ith component of the triple vector differential product u ∧
(∇ ∧ p), thus

εijkuj (∇ ∧ p)k = εijkεkmnuj ∂p
n

∂xm

= εkij εkmnuj ∂p
n

∂xm
= (δimδjn − δinδjm)uj ∂p

n

∂xm
,

on using the fundamental identity (11.2); the fact that the indices of εkij are a cyclic
permutation of those of εijk , therefore the two symbols have the same value. On
applying the values of the Kronecker delta symbols, we finally have that the ith

component of the triple vector differential product u ∧ (∇ ∧ p) is given by

(u ∧ (∇ ∧ p))i = εijkuj (∇ ∧ p)k = un ∂p
n

∂xi
− um ∂p

i

∂xm
. (11.3)

In this equation, we recognise the term un∂pn/∂xi as arising from the rate-of-
working equation de = dx · dp/dt = u · dp, so that

∂e

∂xi
= un ∂p

n

∂xi
= u1 ∂p

1

∂xi
+ u2 ∂p

2

∂xi
+ u3 ∂p

3

∂xi
,

while the term um∂pi/∂xm we recognise as that arising in the total or material
derivative defined by (3.6), namely (u · ∇)pi . Thus, on rearrangement of (11.3),
we obtain

un
∂pn

∂xi
= (u ∧ (∇ ∧ p))i + (u · ∇)pi,

so that finally from (3.4), we may deduce

f i = ∂pi

∂t
+ ∂e

∂xi
= ∂pi

∂t
+ (u · ∇)pi + (u ∧ (∇ ∧ p))i ,

and the required result follows, thus

f i = dpi

dt
+ (u ∧ (∇ ∧ p))i ,

where the total or material derivative is defined by Eq. (3.6).
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11.3 General Curvilinear Coordinates

In this section, we present the main details for the extended force formulation
given by (3.4) but in terms of a general spatial curvilinear coordinate system xj

for j = 1, 2, 3, where now the index level shown here as upper is critical. We
follow the development of tensor analysis as pursued in the standard text [97], and
the reader might be referred to any of [15, 97, 101] or the Appendix of [31] for
much of the necessary background detail. In this section, we utilise the notion of
the partial covariant derivative without giving the full details. For the interested
reader, these details are presented in a subsequent section along with the notion
of Christoffel symbols. For a general curvilinear coordinate system (x1, x2, x3),
we assume a symmetric metric tensor with components gij for i, j = 1, 2, 3. The
metric tensor gij may be expressed in terms of rectangular Cartesian coordinates
(z1, z2, z3) = (x, y, z) and is defined by the following equation for the three-
dimensional line element, thus

ds2 = (dx)2 + (dy)2 + (dz)2 = dzkdzk = gij dxidxj , (11.4)

so that formally the metric tensor is given by

gij = ∂zk

∂xi

∂zk

∂xj
,

noting the implied summation over k = 1, 2, 3, the apparent symmetry in i and j ,
and that both sides of this equation are lower in the indices i and j , and we say that
gij is a covariant tensor of rank 2. Further, we remind the reader that the index level
for Cartesian vectors and tensors is not relevant. We also remind the reader that we
would refer to the general curvilinear coordinate system xj as either a contravariant
vector or as a contravariant tensor of rank 1, and we observe from Eq. (11.4) that, in
such a coordinate system, the Einstein summation convention only applies over one
raised index and one lower index and that it has no meaning if both indices are on
the same level. Formally, the proper tensorial version of the Kronecker delta symbol
δij would be defined, thus

δij =
{
1 if i = j,
0 if i �= j. (11.5)

and we would refer to δij as a mixed tensor of rank 2, contravaraint in i and covariant
in j .

Associated with the symmetric metric tensor with components gij is the conju-
gate symmetric metric tensor with components gij for i, j = 1, 2, 3, which is such
that
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gij g
jk = δki , (11.6)

so that viewing gij as a matrix, the conjugate metric tensor with components gij

is simply the formal matrix, which is the inverse to gij . We would refer to the
metric tensor gij as a symmetric covariant tensor of rank 2, while the conjugate
metric tensor gij would be referred to as a symmetric contravariant tensor of rank
2. We further note that in this section, we use the symbol g to denote the formal
determinant of the matrix, which has components gij , thus g = |gij |, and there
should be no confusion with the same symbol g, which is used for the force in the
direction of time.

The metric tensor and its conjugate are fundamental in terms of raising and
lowering indices, thus for example, we have

Aij = gikgjmAkm, Aij = gikAkj , Aij = gikgjmAkm,

most importantly noting that in all cases the indices i and j appear on the same level
on each side of the equations and that summation only occurs over two indices on
different levels. In this manner, with the Kronecker delta δij defined by (11.5), we
might give meaning to the covariant and contravaraint tensors of rank 2, namely δij
and δij , respectively, thus

δij = gikδkj = gij , δij = gikδjk = gij ,

so that δij is simply the covariant metric tensor gij , while δij is the contravariant
conjugate metric tensor gij .

Spherical Polar Coordinates (r, θ, φ) As a simple example, for the spherical polar
coordinates (r, θ, φ) defined by the relations

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

from Eq. (11.4), we might deduce

ds2 = (dx)2 + (dy)2 + (dz)2 = (dr)2 + r2(dθ)2 + (r sin θ)2(dφ)2,

so that the metric tensor gij and its conjugate gij are given, respectively, by

gij =
⎛
⎝1 0 0
0 r2 0
0 0 (r sin θ)2

⎞
⎠ , gij =

⎛
⎝1 0 0
0 r−2 0
0 0 (r sin θ)−2

⎞
⎠ .

With these preliminary observations in tensor calculus, we may proceed to
present the main details for the extended force formulation given by (3.4) in a
general spatial curvilinear coordinate system (x1, x2, x3). The velocity vector u has
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components ui = dxi/dt with magnitude u arising from (11.4), thus

u2 =
(
ds

dt

)2

=
(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

= gij dx
i

dt

dxj

dt
= gijuiuj ,

while the momentum vector p has components pi = mui and magnitude p, where
p2 = gijp

ipj , and as usual the mass m is defined in terms of the magnitude of the
velocity vector by m(u) = m0[1 − (u/c)2]−1/2, where m0 denotes the rest mass.

On taking the total derivative of the usual energy equation in tensorial form

e2 = e20 + (pc)2 = e20 + c2gijpipj ,

where p denotes the magnitude of the momentum vector given explicitly by
p2 = gijp

ipj , we might deduce the rate-of-working equation ede = c2gijp
idpj ,

which using e = mc2 simplifies to give de = giju
idpj = gij dp

iuj on using the
symmetry of the metric tensor gij . Further, in tensor calculus, the notion of partial
differentiation is generalised to become partial covariant differentiation, which is
designated by a semicolon, thus ; and since here the energy e is a scalar quantity
(namely a tensor of rank 0), the partial derivatives of e coincide with the partial
covariant derivative, so that from de = giju

idpj we might deduce the important
relation

∂e

∂xk
= e;k = gijuipj;k, (11.7)

where pj;k refers to the partial covariant derivative with respect to xk of the

contravariant vector pj . For further information relating to the partial covariant
derivatives, we refer the reader to the following section or again to either [97] or
the Appendix of [31]. Here, it suffices to mention that partial covariant derivatives
satisfy the usual rules of differentiation, such as the product rule, and they possess
the very curious properties that all partial covariant derivatives of both the metric
tensor and its conjugate vanish, thus gij ;k = 0 and gij;k = 0, results which are
used frequently below. Maybe it is worth noting that, for example, these two partial
covariant derivatives with respect to xk are formally quite distinct. The first is the
partial covariant derivative of a covariant tensor of rank 2, while the second is the
partial covariant derivative of a contravariant tensor of rank 2, which are different.

For i = 1, 2, 3, the tensorial version of (3.4) in a general curvilinear coordinate
system (x1, x2, x3) becomes

f i = ∂pi

∂t
+ gike;k = ∂pi

∂t
+ gik ∂e

∂xk
, (11.8)

g0 = 1

c2

∂e

∂t
+ pk;k = 1

c2

∂e

∂t
+ 1√

g

∂(
√
gpk)

∂xk
,
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where pk;k is the divergence of the contravariant vector pk , and in the last part of
Eq. (11.8), we have used a standard formula of tensor calculus for the divergence of
a vector p that is verified in the following section and given on page 32 of Spain
[97], namely

divp = pk;k = 1√
g

∂(
√
gpk)

∂xk
, (11.9)

where we again remind the reader that g denotes the determinant of the metric tensor
gij , thus g = |gij |, and that in this present section, we have momentarily added
a zero to the force g in the direction of time, thus g0, to ensure that there is no
confusion when the two quantities are used in the same equation.

Work Done Or Energy Function W(xi, t) On assuming the existence of a work
done or energy functionW(xi, t) which is defined by

dW = f · dx + gc2dt

=
(
∂pi

∂t
+ gik ∂e

∂xk

)
gimdx

m +
(

1

c2

∂e

∂t
+ 1√

g

∂(
√
gpk)

∂xk

)
dt,

and using gij gjk = δki and E = W − e, we might deduce

dE = gim ∂p
i

∂t
dxm + c2√

g

∂(
√
gpk)

∂xk
dt,

for which the following partial differential relations evidently apply

∂E

∂xm
= gim ∂p

i

∂t
,

∂E

∂t
= c2√

g

∂(
√
gpk)

∂xk
. (11.10)

Basic Identity (3.7) In order to provide a formal tensorial proof of the identity
(3.7), we have from both (11.7) and (11.8)1

f i = ∂pi

∂t
+ gikgmjumpj;k = dpi

dt
+ gikgmjumpj;k − umpi;m, (11.11)

where d/dt denotes the total or material time derivative that is defined by

dpi

dt
= ∂pi

∂t
+ umpi;m.

Now on using (11.6) in the form δkm = gkjgmj , we have from (11.11)
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f i = dpi

dt
+ gikgmjumpj;k − umpi;kδkm (11.12)

= dpi

dt
+ gmjum(gikpj;k − gjkpi;k),

and the tensorial versions of the curl operator (∇ ∧ p) and the vector product u ∧
(∇ ∧ p) are given by

(∇ ∧ p)i = ε∗ijngjkpn;k, ((u ∧ (∇ ∧ p))i = ε∗ijkgjmum(∇ ∧ p)k,

where the tensorial permutation symbols ε∗ijk and ε∗ijk are defined in terms of the

Cartesian permutation symbols εijk (see Eq. (11.1)) by the following formulae that
may be found in Eringen [31] (pages 441 and 442), thus

ε∗ijk = √
gεijk, ε∗ijk = εijk√

g
.

The identity (3.7) now follows on using both

((u ∧ (∇ ∧ p))i = ε∗ijkgjmumε∗knrgnspr;s = ε∗kij ε∗knrgjmumgnspr;s ,

and the tensorial version of the identity (11.2) becomes

ε∗kij ε∗knr = δinδjr − δirδjn,

so that together we obtain

((u ∧ (∇ ∧ p))i = (δinδjr − δirδjn)gjmumgnspr;s = gjmum(gispj;s − gjspi;s),

which coincides precisely with the term in (11.12)2, and therefore, we have provided
a formal tensorial proof of (3.7).

Now on using gij gjk = δki , Eq. (11.10)1 may be rewritten as

∂pi

∂t
= gik ∂E

∂xk
= gikE;k = (gikE );k,

and together the two relations (11.10) become

∂pi

∂t
= (gikE );k, ∂E

∂t
= c2pk;k. (11.13)

From these relations, we may deduce that there exists a scalar function φ(xj , t) such
that
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pi = gik ∂φ
∂xk

= gikφ;k = (gikφ);k, E = ∂φ

∂t
,

and that φ(xj , t) satisfies the equation

∂2φ

∂t2
= c2pk;k = c2gikφ;ik = c2∇2φ,

which is the wave equation, where ∇2φ = gikφ;ik is the tensorial version of the
Laplacian operator for which further details may be found in the following section or
in [97] (page 32). The existence of the scalar function φ(xj , t) ensures the vanishing
of the curl of the vector p, since from

(∇ ∧ p)i = ε∗ijkgjmpk;m = ε∗ijkgjm(gknφ);mn = ε∗ijkgjmgknφ;mn,

we may, for example, deduce that in particular for i = 1, we have

(∇ ∧ p)1 = √
g(ε123g2mg3nφ;mn + ε132g3mg2nφ;mn),

which evidently vanishes, since ε123 = 1 and ε132 = −1, the conjugate metric
tensor gij is symmetric and assuming the partial derivatives coincide φ;mn = φ;nm.

Wave Energy E (xj , t) Satisfies Wave Equation From Eq. (11.13), we observe
that the wave energy E (xj , t) satisfies the wave equation

∂2E

∂t2
= c2

(
∂pk

∂t

)
;k

= c2
(
(gkmE );m

)
;k = c2gkmE;km = c2∇2E , (11.14)

while the momentum vector pi(xj , t) satisfies

∂2pi

∂t2
= c2

(
gikpm;m

)
;k = c2gik

(
pm;m
)

;k . (11.15)

We note that while the double covariant partial differentiations appear to be the
same in both cases, there is a distinction arising from the fact that in the former
case we are undertaking the double partial covariant derivative of the scalar quantity
E (xj , t), while in the second case we are undertaking the double partial covariant
derivative of the momentum vector pm(xj , t), the first leading to the divergence
of the momentum vector and the second simply the partial derivative of a scalar.
In the former case, the first covariant derivative is simply the partial derivative
∂E /∂xk , while the second differentiation involves the partial covariant derivative of
a covariant vector. This is in contrast to the two differentiations of the momentum
vector pm(xj , t), for which the first pm;m is the partial covariant derivative of a
contravariant vector, namely the divergence of the vector p. Now the divergence
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of p is a scalar, and the second partial covariant derivative with respect xk is that of
differentiation of a scalar, namely the partial derivative, even though it arises from
pm;n, which a mixed tensor of rank 2. This distinction corresponds to the distinction
between the divergence of the gradient, which is the former case, and the gradient
of the divergence, corresponding to the latter case.

The reader may find it instructive to compare the above Eqs. (11.14) and (11.15)
directly with the corresponding general equations (3.22) and (3.19) and those for
centrally symmetric systems, namely (9.4). For the general equations, we have for
the de Broglie wave energy E (x, t) and the momentum vector p(x, t),

∂2E

∂t2
= c2∇2E = c2∇ · (∇E ),

∂2p
∂t2

= c2∇(∇ · p),

while for the centrally symmetric systems, the de Broglie wave energy E (r, t) and
the radial component of momentum p(r, t), satisfy

∂2E

∂t2
= c2

(
∂2E

∂r2
+ 2

r

∂E

∂r

)
,

∂2p

∂t2
= c2 ∂

∂r

(
∂p

∂r
+ 2p

r

)
,

since under these circumstances the gradient ∇ = ∂/∂r .

11.4 Partial Covariant Differentiation

In the previous section, we have utilised the notion of the partial covariant derivative
without giving a full explanation and presenting all the details, and this can only be
achieved by introducing the Christoffel symbols which is the major objective of this
section. Again the reader is referred to any of [15, 97, 101] or the Appendix of [31]
for a fuller explanation and much of the necessary background detail. Essentially,
both the notions of partial covariant differentiation and Christoffel symbols arise
in consequence that when we transform from rectangular Cartesian coordinates
(x, y, z) = (z1, z2, z3) with corresponding fixed unit base vectors (î, ĵ, k̂) to a
general curvilinear coordinate system (x1, x2, x3), then the corresponding base
vectors (e1, e2, e3) are no longer fixed in space, and the Christoffel symbols are
the mechanism required to describe their variability. In addition, and as a secondary
issue, we note that the base vectors (e1, e2, e3) are not necessarily unit vectors.

In rectangular Cartesian coordinates, the position vector r is defined by the
equation

r = x î + y ĵ + zk̂ = z1 î + z2 ĵ + z3k̂,

and we might conceive that the three fixed base vectors (î, ĵ, k̂) are defined by the
three equations
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î = ∂r
∂x
, ĵ = ∂r

∂y
, k̂ = ∂r

∂z
.

In fact, in general curvilinear coordinates (x1, x2, x3), we adopt this definition as
the defining equation for the base vectors (e1, e2, e3), thus

e1 = ∂r
∂x1

, e2 = ∂r
∂x2

, e3 = ∂r
∂x3

,

or equivalently

ej = ∂r
∂xj

, (11.16)

for j = 1, 2, 3. So, for example, suppose that we transform to cylindrical polar
coordinates (r, θ, z), then, with the usual relations x = r cos θ and y = r sin θ , the
position vector becomes

r = x î + y ĵ + zk̂ = r cos θ î + r sin θ ĵ + zk̂,

while the three base vectors (er , eθ , ez) are given by

er = ∂r
∂r

= cos θ î + sin θ ĵ, eθ = ∂r
∂θ

= −r sin θ î + r cos θ ĵ, ez = ∂r
∂z

= k̂,

and we notice that, in this particular case, the three base vectors are mutually
orthogonal to one another and that er and ez are both unit vectors, while eθ is not a
unit vector, since eθ .eθ = r2.

In general curvilinear coordinates (x1, x2, x3), we have from (11.4) that the line
element becomes on using (11.16)

ds2 = dr · dr = ∂r
∂xi
dxi · ∂r

∂xj
dxj = ∂r

∂xi
· ∂r
∂xj

dxidxj = gij dxidxj ,

and therefore we may make the important identification

gij = ∂r
∂xi

· ∂r
∂xj

= ei · ej , (11.17)

for i, j = 1, 2, 3. From this equation, it is apparent that if the base vectors are
mutually orthogonal, then gij = 0 for i �= j , and that for a particular i, the quantity
gii provides the magnitude squared of the base vector ei ; thus, we have gii = ei · ei ,
with no implied summation over the i in this particular instance.

In an analogous manner, we might introduce a set of base vectors (e1, e2, e3)
of simply ej for j = 1, 2, 3, so that for an arbitrary vector u, we have the two
representations
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u = uj ej = ukek, (11.18)

with implied summations over both j and k, noticing that each of these summations
occurs over two levels, namely one index is an upper index and one index is a lower
index. We refer to uj as the contravariant components of the vector u, while uk are
referred to as the covariant components of the vector u. Thus, without being overly
specific, when we consider a tensor of higher rank, say the mixed tensor of rank 4,
Ajkmn, then we have in mind that the contravariant indices jk somehow relate to the
base vectors ej , while the covariant indices mn somehow relate to the base vectors
ej . Further, in addition to (11.17) the complete set of relations connecting the scalar
products of the two sets of base vectors ej and ej with the metric tensor gij , the
conjugate metric tensor gij and the Kronecker delta δij are as follows:

gij = ei · ej , gij = ei · ej , δij = ei · ej .

Christoffel Symbols of the Second Kind �kij The Christoffel symbols arise on
taking the partial derivative of the vector u, and from Eq. (11.18), we have

∂u
∂xi

= ∂uj

∂xi
ej + uj ∂ej

∂xi
= ∂uk

∂xi
ek + uk ∂ek

∂xi
, (11.19)

and the Christoffel symbols of the second kind �kij arise as follows:

∂ej
∂xi

= �kijek,
∂ek

∂xi
= −�kij ej ,

and, of course, with summation over repeated indices. On using these results, we
obtain from (11.19) the formulae for the partial covariant derivatives of contravariant
and covariant vectors, respectively, thus

u
j

;i = ∂uj

∂xi
+ �jikuk, uj ;i = ∂uj

∂xi
− �kijuk, (11.20)

and it is instructive to examine such formulae carefully, noticing that corresponding
indices on one side of the equation are at the same level on the other side of the
equation, and if an index is repeated on one side of the equation, one index is upper
while the other is lower. If the reader keeps these two simple rules in mind, then
in tensor analysis, it is very difficult to write down an equation that is incorrect.
We note further that the partial covariant derivatives are themselves well-defined
tensors, so that uj;i is a mixed tensor of rank 2, while uj ;i is a covariant tensor
of rank 2. Also if we bear in mind the two formulae (11.20) with the plus sign for
contravariant vectors and the minus sign for convariant vectors, then we may readily
write down the partial covariant derivative of a tensor of any rank. For example, for
the mixed tensor of rank 3Aijk , which is contravariant in two indices and covariant in
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one, we have two plus signs and one minus sign, and the partial covariant derivative
is given by the formula

A
ij

k;m = ∂A
ij
k

∂xm
+ �jmnAink + �ipmApjk − �qmkAijq . (11.21)

Christoffel Symbols of the First Kind [ij , k] The Christoffel symbols of the
second kind �kij are defined in terms of the metric tensor gij and the conjugate

metric tensor gij through the Christoffel symbols of the first kind [ij, k], which are
defined in terms the partial derivatives of the metric tensor, thus

[ij, k] = 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)
, (11.22)

and these are related to the Christoffel symbols of the second kind through the
formulae

[ij, k] = gkm�mij , �kij = gkn[ij, n],

and are such that both symbols are symmetric with respect to the paired indices,
thus

[ij, k] = [ji, k], �kij = �kji .

Partial Covariant Derivatives of Metric Tensors Are Zero: gij ;k = 0 and gij;k =
0 The definition of the Christoffel symbols in terms of the metric tensor gij and
the conjugate metric tensor gij is such that the partial covariant derivatives of all
components of the metric tensor and its conjugate vanish, thus gij ;k = 0 and gij;k =
0. In order to formally prove these important results, we proceed as follows:

gij ;k = ∂gij

∂xk
− �mjkgim − �nikgjn = ∂gij

∂xk
− gmp[jk, p]gim − gnq [ik, q]gjn,

= ∂gij

∂xk
− δpi [jk, p] − δqj [ik, q] = ∂gij

∂xk
− [jk, i] − [ik, j ],

= ∂gij

∂xk
− 1

2

(
∂gji

∂xk
+ ∂gik

∂xj
− ∂gjk

∂xi

)
− 1

2

(
∂gij

∂xk
+ ∂gjk

∂xi
− ∂gik

∂xj

)
,

= 0,
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and similarly for the conjugate metric tensor, we have

g
ij

;k = ∂gij

∂xk
+ �imkgjm + �jnkgin = ∂gij

∂xk
+ gip[mk, p]gjm + gjq [nk, q]gin,

= ∂gij

∂xk
+ gipgjm

2

(
∂gmp

∂xk
+ ∂gkp

∂xm
− ∂gmk

∂xp

)
+ gjqgin

2

(
∂gnq

∂xk
+ ∂gkq

∂xn
− ∂gnk

∂xq

)
,

= ∂gij

∂xk
+ gipgjm

2

(
∂gmp

∂xk
+ ∂gkp

∂xm
− ∂gmk

∂xp

)
+ gipgjm

2

(
∂gpm

∂xk
+ ∂gkm

∂xp
− ∂gpk

∂xm

)
,

= ∂gij

∂xk
+ gipgjm ∂gmp

∂xk
,

where in the final term of the second last equality we have changed the repeated
indices n −→ p and q −→ m. Now on taking the partial derivative with respect to
xk of Eq. (11.6), namely gmpgpi = δim, the above equality becomes

g
ij

;k = ∂gij

∂xk
− gmpgjm ∂g

ip

∂xk
= ∂gij

∂xk
− δjp ∂g

ip

∂xk
= 0,

and the result is established.
In order to verify the formula (11.9) for the divergence of a contravariant vector

pj , we first recall that if g denotes the determinant of the metric tensor gij , thus
g = |gij |; then, ggij is the cofactor of the element gij in the determinant, and from
the rule for differentiating determinants, we have

∂g

∂xk
= ggij ∂gij

∂xk
.

Now the partial covariant derivative of the contravariant vector pj is given by

p
j

;i = ∂pj

∂xi
+ �jikpk,

and therefore summation over the repeated index j gives

p
j

;j = ∂pj

∂xj
+ �jjkpk = ∂pj

∂xj
+ gjm[jk,m]pk,

= ∂pj

∂xj
+ gjm

2

(
∂gjm

∂xk
+ ∂gkm

∂xj
− ∂gjk

∂xm

)
pk,

= ∂pj

∂xj
+ gjm

2

∂gjm

∂xk
pk = ∂pj

∂xj
+ 1

2g

∂g

∂xk
pk,

= ∂pj

∂xj
+ 1

2g

∂g

∂xj
pj = 1√

g

∂(
√
gpj )

∂xj
,
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as required. We comment that in this derivation, we have also established the
formula

�
j
jk = 1

2g

∂g

∂xk
= 1√

g

∂
√
g

∂xk
, (11.23)

where g is replaced by −g if g < 0, and this identity becomes important as a useful
check on any expressions obtained for the Chistoffel symbols of the second kind.

Formula for the Laplacian of a Scalar We may exploit the above formalism to
obtain the following useful formula for the Laplacian of a scalar function φ(xi, t),
thus

∇2φ = gikφ;ik = gik
(
∂2φ

∂xi∂xk
− �jik

∂φ

∂xj

)
= 1√

g

∂

∂xk

(√
ggik

∂φ

∂xi

)
,

(11.24)

which follows, since on using the fact that the partial covariant derivatives of all
metric tensors are zero, we have

∇2φ = gikφ;ik =
(
gik
∂φ

∂xi

)
;k

= 1√
g

∂

∂xk

(√
ggik

∂φ

∂xi

)
,

where the final equality follows on using the above result for the divergence of a
contravariant vector pj , since the quantity gik∂φ/∂xi operates as a contravariant
vector. The expression (11.24) provides a convenient means to evaluate the Lapla-
cian in a particular given coordinate system.

The full import of the notions of partial covariant differentiation and Christoffel
symbols comes to fruition in the formulation of the four-dimensional theory of
general relativity, and indeed these notions are fundamental to the development of
the subject. For this reason, we briefly state some of the major results underpinning
general relativity theory. Now we have previously established that the partial
covariant derivatives of a covariant vector Ai and a covariant tensor of rank 2 Bij
are given by the formulae

Ai;j = ∂Ai

∂xj
− �kijAk, Bij ;k = ∂Bij

∂xk
− �mkjBim − �nikBjn,

and for both partial covariant derivatives, we may take a further partial covariant
derivative Ai;jk and Bij ;km and pose the question as to the circumstances under
which these partial covariant derivatives commute. A full investigation reveals the
following relations:

Ai;jk − Ai;kj = RmijkAm, Bij ;km − Bij ;mk = RnjkmBin + RpikmBjp,
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where Rmijk is a tensor of rank 4 covariant in three indices and contravariant in one,
and can be shown to be given by (see, e.g. [97], page 53)

Rmijk = ∂�mik

∂xj
− ∂�mij

∂xk
+ �mjn�nik − �mkp�pij ,

and altogether there are five major tensors leading to the development of general
relativity as follows:

• Riemann-Christoffel tensor Rmijk defined above
• Covariant curvature tensor Rijkm = ginRnjkm
• Ricci tensor Rij = Rkijk
• Curvature invariant R = gijRij
• Einstein tensor Gij = gikRjk − Rδij /2
for which there are many known results and many formulae are known to exist such
as

Rijkm = 1

2

(
∂2gim

∂xj ∂xk
+ ∂2gjk

∂xi∂xm
− ∂2gik

∂xj ∂xm
− ∂2gjm

∂xi∂xk

)
(11.25)

+ gnp ([jk, n][im, p] − [jm, n][ik, p]) ,

Rijkm = ∂[jm, i]
∂xk

− ∂[jk, i]
∂xm

+ �njk[im, n] − �njm[ik, n], (11.26)

and Bianchi’s identity

Rijkm;n + Rijnk;m + Rijmn;k = 0. (11.27)

Further, we have the relation

Rij = ∂2 log
√
g

∂xi∂xj
− ∂�kij

∂xk
+ �min�njm − �pij

∂ log
√
g

∂xp
,

from which the symmetry Rij = Rji is apparent. We further note that on careful
inspection of (11.25), we may verify the following symmetries of the covariant
curvature tensor Rijkm, namely

Rijkm = −Rjikm, Rijkm = −Rijmk, Rijkm = Rkmij , (11.28)

Rijkm + Rikmj + Rimjk = 0.

For a proof of Bianchi’s identity and further details on these symmetries, we refer
the reader to either Spain [97] or to the Appendix of Eringen [31].
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On making use of Bianchi’s identity, by purposeful construction, the Einstein
tensor is divergence free, namely Gi

j ;i = 0 (also refer to Spain [97]). Briefly, this
may be established using the fact that all partial covariant derivatives of all metric
tensors vanish, and therefore in Bianchi’s identity (11.27), we may raise and lower
the symbols freely. Thus, from Bianchi’s identity and the above symmetries, so that
Rijmn;k = −Rijnm;k , we may deduce

Rijkm;n + Rijnk;m − Rijnm;k = 0,

which on contracting i and m produces

Rjk;n + Rijnk;i − Rjn;k = 0,

and these are referred to as the contracted Bianchi identity. A second contraction
of this identity may be shown to yield R;j = 2Rk

j ;k , which are equivalent to the

vanishing of the divergence of the Einstein tensor, namely Gi
j ;i = 0. While the

vanishing of the divergence of the Einstein tensor is a fundamental result in general
relativity, the above abbreviated derivation belies the underlying complexities
involved in demonstrating the result in a particular coordinate representation. Two
illustrative examples are provided in Sect. 11.7, and the result is also verified for the
spiral gravitating structures examined in the final section of the chapter.

In the verification of the equations Gi
j ;i = 0, sometimes it is simpler to express

the equations in terms of the covariant Einstein tensor Gij through the relations
Gik = gijGjk , so that on taking the partial covariant derivative with respect to xm,
we have

Gik;m = gijGjk;m = gij
{
∂Gjk

∂xm
− �nmjGnk − �pmkGjp

}
, (11.29)

noting again that all partial covariant derivatives of the metric tensor gij and its
conjugate gij are zero. On contracting this equation, that is, setting m = i and then
summing over i, the equations Gi

j ;i = 0 become

Gik;i = gijGjk;i = gij
{
∂Gjk

∂xi
− �nijGnk − �pikGjp

}
= 0, (11.30)

and the latter equality is sometimes the most convenient formulation to use. We
note that in a stress-free vacuum space, the Einstein tensor is assumed to vanish
identically, namely Gij = 0.
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11.5 Illustration for Single Space Dimension

To provide an illustration of the machinery for the above tensors, in a four-
dimensional space (x0, x1, x2, x3) = (ct, x, y, z) where (x, y, z) denote rectangu-
lar Cartesian coordinates, we consider the particular four-dimensional line element,
thus

ds2 = gij dxidxj

= a(x, t)(cdt)2 − b(x, t)(dx)2 − 2f (x, t)cdtdx − (dy)2 − (dz)2,

where a(x, t), b(x, t) and f (x, t) denote three functions to be determined from
Gi
j ;i = 0, and the indices i, j run through i, j = 0, 1, 2, 3. The metric tensor gij

has components given by

gij =

⎛
⎜⎜⎝
a(x, t) −f (x, t) 0 0

−f (x, t) −b(x, t) 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

while the conjugate metric tensor gij has components given by

gij =

⎛
⎜⎜⎝
b(x, t)/δ −f (x, t)/δ 0 0

−f (x, t)/δ −a(x, t)/δ 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (11.31)

where δ(x, t) is defined by δ = ab + f 2 and the determinant g = |gij | = −δ.
Using the formula (11.22) for the Christoffel symbols of the first kind [ij, k],

namely

[ij, k] = 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)
,

we may deduce the following expressions for the non-zero Christoffel symbols of
the first kind, thus

[01, 0] = 1

2

∂a

∂x
, [01, 1] = − 1

2c

∂b

∂t
, [00, 0] = 1

2c

∂a

∂t
, [11, 1] = −1

2

∂b

∂x
,

[00, 1] = −
(
1

2

∂a

∂x
+ 1

c

∂f

∂t

)
, [11, 0] =

(
1

2c

∂b

∂t
− ∂f

∂x

)
,
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noting that other non-zero components may be deduced from the symmetry [ij, k] =
[ji, k]. From these relations and the formulae �kij = gkn[ij, n], we may deduce that
the only non-zero Christoffel symbols of the second kind are as follows:

�0
01 = 1

2δ

(
b
∂a

∂x
+ f

c

∂b

∂t

)
, �1

01 = 1

2δ

(
a

c

∂b

∂t
− f ∂a

∂x

)
,

�0
00 = 1

2δ

(
f
∂a

∂x
+ b

c

∂a

∂t
+ 2f

c

∂f

∂t

)
, �1

00 = 1

2δ

(
a
∂a

∂x
− f

c

∂a

∂t
+ 2a

c

∂f

∂t

)
,

�0
11 = 1

2δ

(
f
∂b

∂x
+ b

c

∂b

∂t
− 2b

∂f

∂x

)
, �1

11 = 1

2δ

(
a
∂b

∂x
− f

c

∂b

∂t
+ 2f

∂f

∂x

)
.

We may make use of (11.23) to check these formulae, thus

�
j

j0 = �0
00 + �1

10

= 1

2δ

(
f
∂a

∂x
+ b

c

∂a

∂t
+ 2f

c

∂f

∂t
+ a

c

∂b

∂t
− f ∂a

∂x

)

= 1

2cδ

∂δ

∂t
,

and

�
j

j1 = �0
01 + �1

11

= 1

2δ

(
b
∂a

∂x
+ f

c

∂b

∂t
+ a ∂b

∂x
− f

c

∂b

∂t
+ 2f

∂f

∂x

)

= 1

2δ

∂δ

∂x
,

as required.
With i = k = 1 and j = m = 0, we may deduce from the symmetries of

the covariant curvature tensor Rijkm (see Eq. (11.28)) the following results R1010 =
−R0110 = R0101 and R0011 = 0, and since there is essentially only one non-zero
component, we chose to adopt R0101 and express the other non-zero components in
terms of R0101. Again with i = k = 1 and j = m = 0, we may deduce from (11.25)
the following expression for R0101 in terms of the metric tensor and the Christoffel
symbols of the first kind, thus

R0101 = 1

2

(
∂2g01

∂x1∂x0
+ ∂2g10

∂x1∂x0
− ∂2g00

∂x1∂x1
− ∂2g11

∂x0∂x0

)

+ gnp ([10, n][01, p] − [11, n][00, p])
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= 1

2

(
2
∂2g01

∂x1∂x0
− ∂2g00

∂x1∂x1
− ∂2g11

∂x0∂x0

)

+ gn0 ([10, n][01, 0] − [11, n][00, 0])+ gn1 ([10, n][01, 1] − [11, n][00, 1])

= 1

2

(
2
∂2g01

∂x1∂x0
− ∂2g00

∂x1
2

− ∂2g11

∂x0
2

)

+ g00 ([10, 0][01, 0] − [11, 0][00, 0])+ g10 ([10, 1][01, 0] − [11, 1][00, 0])
+ g01 ([10, 0][01, 1] − [11, 0][00, 1])+ g11 ([10, 1][01, 1] − [11, 1][00, 1]) .

After much simplification and rearrangement, this expression can be shown to
become

R0101 = 1

2

(
1

c2

∂2b

∂t2
− 2

c

∂2f

∂x∂t
− ∂2a

∂x2

)

+ 1

4δ

{(
∂a

∂x
+ 1

c

∂f

∂t

)
∂δ

∂x
−
(
1

c

∂b

∂t
− ∂f

∂x

)
1

c

∂δ

∂t

}

+ 1

4cδ

{
a
∂(f, b)

∂(t, x)
+ b∂(a, f )

∂(t, x)
+ f ∂(b, a)

∂(t, x)

}
,

where δ(x, t) is defined by δ = ab + f 2 and closer inspection of the final term
reveals the structure of the scalar triple product, thus

1

4cδ

{
a
∂(f, b)

∂(t, x)
+ b∂(a, f )

∂(t, x)
+ f ∂(b, a)

∂(t, x)

}
= − 1

4cδ

∣∣∣∣∣∣∣
a b f
∂a
∂t

∂b
∂t

∂f
∂t

∂a
∂x

∂b
∂x

∂f
∂x

∣∣∣∣∣∣∣
.

We use Rjk = gimRijkm to determine the components of the Ricci tensor Rij =
Rkijk , thus

R00 = gimRi00m = gi0Ri000 + gi1Ri001
= g00R0000 + g10R1000 + g01R0001 + g11R1001

= g11R1001 = g11R0110 = −g11R0101,

on using the above symmetries of the covariant curvature tensor Rijkm given by
(11.28), since from Eq. (11.25) it is apparent that any component of the tensor Rijkm
with three indices coinciding must be zero. Proceeding further in this manner and
making use of (11.31) for the components the conjugate metric tensor gij , we may
show that the only non-zero components of the Ricci tensor Rjk are given by



11.6 Formulae for Ricci and Einstein Tensors 327

R00 = aR0101/δ, R10 = R01 = −fR0101/δ, R11 = −bR0101/δ,

so that the curvature invariant R = gijRij becomes

R = gijRij = g00R00 + 2g01R01 + g11R11 = 2(ab + f 2)R0101/δ
2 = 2R0101/δ,

since by definition δ(x, t) is defined by δ = ab+f 2. From the relationGij = Rij −
Rgij /2, it is apparent that the only non-zero components of the covariant Einstein
tensor Gij arising through the term −Rgij /2 are G22 = G33 = R0101/δ with all
others identically zero, so that the equations for the vanishing of the divergence of
the Einstein tensor become simply ∂G22/∂y = 0 and ∂G33/∂z = 0, which are
trivially satisfied. In the following section, we provide some general formulae for
the Riemann and Einstein tensors applying to a particular metric of some generality.

11.6 Formulae for Ricci and Einstein Tensors

While there exist a number of exact space-times for the Einstein field equations of
general relativity, such as those listed in [42, 81, 98] and to a lesser extent in [84,
91, 107], as previously stated, in the search for further exact space-time solutions
of general relativity, the major prohibiting factors include the shear complexity of
the underlying equations and the lack of any strategic perspective that might guide
the analysis. For any given line element, the Riemann-Christoffel tensor itself has a
complicated dependence on the components of the particular assumed metric tensor.
The metric tensor for the most general four-dimensional line element involves ten
arbitrary components, which are possibly dependent upon three spatial variables and
the temporal variable.

We attempt to reduce the complexity of the problem in the determination of
exact solutions by considering a line element involving only seven arbitrary metric
tensor components, and each component is assumed to depend only on two of the
spatial variables and the temporal variable. Of course, while not completely general,
the assumed line element includes many existing exact space-time solutions of
general relativity. We show that six components of the covariant curvature tensor
act as a basis, and we present some general formulae for the Ricci and Einstein
tensors expressed in terms of these six components of the covariant curvature tensor.
In the next section, we illustrate this general formulation with two well-known
cosmological models. Although similar general metrics have been studied in the
past and it is known that the four-dimensional structure can be represented in terms
of the corresponding three-dimensional tensors (see, e.g. [30] or [42]), the present
approach differs in the sense that it involves the determination of explicit formulae.

In four-dimensional space (x0, x1, x2, x3), we consider the line element with the
particular structure,
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ds2 = gij dxidxj = g00(dx0)2 + g11(dx1)2 + g22(dx2)2 + g33(dx3)2 (11.32)

+ 2g01dx
0dx1 + 2g02dx

0dx2 + 2g12dx
1dx2,

where x0 = ct , and we assume that the non-zero components of the metric tensor gij
depend only on x0, x1 and x2 and are independent of the x3 coordinate. Specifically,
we assume that the metric tensor has the structure

gij =

⎛
⎜⎜⎝
g00(x

0, x1, x2) g01(x
0, x1, x2) g02(x

0, x1, x2) 0
g01(x

0, x1, x2) g11(x
0, x1, x2) g12(x

0, x1, x2) 0
g02(x

0, x1, x2) g12(x
0, x1, x2) g22(x

0, x1, x2) 0
0 0 0 g33(x

0, x1, x2)

⎞
⎟⎟⎠ .

(11.33)

This particular metric, although not completely general, includes many of the
metrics for which exact space-time solutions have been determined (see, e.g. [81]).

Working Notation Now in order to undertake lengthy algebraic calculations with
this tensor, we may facilitate these manipulations and without loss of generality, we
may employ the notation (ct, x, y, z) for (x0, x1, x2, x3) and in place of the above
equations we use a notation devoid of indices, thus

ds2 = gij dxidxj = a(x, y, t)(cdt)2 − b(x, y, t)(dx)2 − h(x, y, t)(dy)2
(11.34)

− 2f (x, y, t)cdtdx − 2j (x, y, t)cdtdy − 2k(x, y, t)dxdy −m(x, y, t)(dz)2,

where a(x, y, t), b(x, y, t), f (x, y, t), h(x, y, t), j (x, y, t), k(x, y, t) and
m(x, y, t) all denote functions to be ultimately determined from the Einstein
equations Gi

j ;i = 0, and the indices i, j here run through i, j = 0, 1, 2, 3. Thus, the
metric tensor gij has components given by

gij =

⎛
⎜⎜⎝
a(x, y, t) −f (x, y, t) −j (x, y, t) 0

−f (x, y, t) −b(x, y, t) −k(x, y, t) 0
−j (x, y, t) −k(x, y, t) −h(x, y, t) 0

0 0 0 −m(x, y, t)

⎞
⎟⎟⎠ , (11.35)

while the conjugate metric tensor gij has components given by

gij =

⎛
⎜⎜⎝
m(k2 − bh)/g∗ m(f h− jk))/g∗ m(bj − f k)/g∗ 0
m(f h− jk))/g∗ m(ah+ j2)/g∗ −m(ak + jf )/g∗ 0
m(bj − f k)/g∗ −m(ak + jf )/g∗ m(f 2 + ab)/g∗ 0

0 0 0 −1/m

⎞
⎟⎟⎠ ,

where g∗(x, y, t) is the determinant g∗ = |gij | given by
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g∗ = m(ak2 + 2jkf − abh− bj2 − hf 2),

and we emphasise that the specific line element (11.34) with the symbols (x, y, z)
is for working purposes only and that they do not necessarily represent rectangular
Cartesian coordinates and might represent any three-dimensional spatial coordinates
(x1, x2, x3).

The assumptions underlying the metric tensor gij mean that in many respects,
and specifically in terms of the conjugate metric tensor gij , the three-dimensional
and four-dimensional problems uncouple and the conjugate metric tensor becomes

gij =

⎛
⎜⎜⎝
(bh− k2)/g (jk − f h))/g (f k − bj)/g 0
(jk − f h))/g −(ah+ j2)/g (ak + jf )/g 0
(f k − bj)/g (ak + jf )/g −(f 2 + ab)/g 0

0 0 0 −1/m

⎞
⎟⎟⎠ ,

where g(x, y, t) is the three-dimensional determinant g = |gij | given by

g = abh+ bj2 + hf 2 − ak2 − 2jkf,

and g∗ = g33g.

Christoffel Symbols of the First Kind [ij, k] Using the standard formula for the
Christoffel symbols of the first kind [ij, k], namely

[ij, k] = 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)
,

we may deduce the following expressions for the non-zero Christoffel symbols of
the first kind in a straightforward manner, thus

[00, 0] = 1

2

∂g00

∂x0
, [00, 1] =

(
∂g01

∂x0
− 1

2

∂g00

∂x1

)
, [00, 2] =

(
∂g02

∂x0
− 1

2

∂g00

∂x2

)
,

[11, 0] =
(
∂g01

∂x1
− 1

2

∂g11

∂x0

)
, [11, 1] = 1

2

∂g11

∂x1
, [11, 2] =

(
∂g12

∂x1
− 1

2

∂g11

∂x2

)
,

[22, 0] =
(
∂g02

∂x2
− 1

2

∂g22

∂x0

)
, [22, 1] =

(
∂g12

∂x2
− 1

2

∂g22

∂x1

)
, [22, 2] = 1

2

∂g22

∂x2
,

[01, 0] = 1

2

∂g00

∂x1
, [01, 1] = 1

2

∂g11

∂x0
, [01, 2] = 1

2

(
∂g02

∂x1
+ ∂g12

∂x0
− ∂g01

∂x2

)
,

[02, 0] = 1

2

∂g00

∂x2
, [02, 1] = 1

2

(
∂g01

∂x2
+ ∂g12

∂x0
− ∂g02

∂x1

)
, [02, 2] = 1

2

∂g22

∂x0
,

[12, 0] = 1

2

(
∂g02

∂x1
+ ∂g01

∂x2
− ∂g12

∂x0

)
, [12, 1] = 1

2

∂g11

∂x2
, [12, 2] = 1

2

∂g22

∂x1
,
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which in terms of the working symbols become

[00, 0] = 1

2c

∂a

∂t
, [00, 1] = −

(
1

2

∂a

∂x
+ 1

c

∂f

∂t

)
, [00, 2] = −

(
1

2

∂a

∂y
+ 1

c

∂j

∂t

)
,

[11, 0] =
(

1

2c

∂b

∂t
− ∂f

∂x

)
, [11, 1] = −1

2

∂b

∂x
, [11, 2] =

(
1

2

∂b

∂y
− ∂k

∂x

)
,

[22, 0] =
(

1

2c

∂h

∂t
− ∂j

∂y

)
, [22, 1] =

(
1

2

∂h

∂x
− ∂k

∂y

)
, [22, 2] = −1

2

∂h

∂y
,

[01, 0] = 1

2

∂a

∂x
, [01, 1] = − 1

2c

∂b

∂t
, [01, 2] = 1

2

(
∂f

∂y
− ∂j

∂x
− 1

c

∂k

∂t

)
,

[02, 0] = 1

2

∂a

∂y
, [02, 1] = 1

2

(
∂j

∂x
− ∂f

∂y
− 1

c

∂k

∂t

)
, [02, 2] = − 1

2c

∂h

∂t
,

[12, 0] = −1

2

(
∂j

∂x
+ ∂f

∂y
− 1

c

∂k

∂t

)
, [12, 1] = −1

2

∂b

∂y
, [12, 2] = −1

2

∂h

∂x
,

noting that other non-zero components may be deduced from the symmetry [ij, k] =
[ji, k], and with the convention that i and j immediately below refer only to 0, 1, 2,
we have

[ij, 3] = [3i, j ] = 0, [3i, 3] = −1

2

∂m

∂xi
, [33, i] = 1

2

∂m

∂xi
.

Christoffel Symbols of the Second Kind �kij The Christoffel symbols of the
second kind are more complicated, and we derive the following formulae as follows.
From the above 4 × 4 matrix, we formulate the 3 × 3 matrix

gij =
⎛
⎝g00 g01 g02g01 g11 g12

g02 g12 g22

⎞
⎠ , (11.36)

and we assign g to be the determinant of this matrix, so that g∗ = |gij | = gg33.
Basically, in terms of the index-free notation, we need to individually calculate
each of the Christoffel symbols of the second kind using the above formulae for
the Christoffel symbols of the first kind along with the formulae �kij = gkn[ij, n].
Having undertaken these extensive algebraic calculations, it becomes apparent that
we may express the final formulae for each of the non-zero Christoffel symbols
of the second kind �kij in terms of three 3 × 3 determinants, two of positive sign
and one of negative sign, no doubt emanating from the corresponding signatures
involved in the three terms in the Christoffel symbols of the first kind [ij, k]. With
the designation of i, j and k as in the symbol �kij , we proceed as follows:
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• In each of the three determinants, we delete the kth row.
• In one of the determinants of positive sign, we replace the kth row by
(∂gi0/∂x

j , ∂gi1/∂x
j , ∂gi2/∂x

j ).
• In the other determinant of positive sign, we replace the kth row by
(∂gj0/∂x

i, ∂gj1/∂x
i, ∂gj2/∂x

i).
• In the determinant of negative sign, we replace the kth row by
(∂gij /∂x

0, ∂gij /∂x
1, ∂gij /∂x

2).
• Each of the three determinants is weighted with a factor 1/2g.
• In the event that i = j , the two determinants of positive sign coincide and merge

to produce one determinant of positive sign of weight 1/g.

The final expressions are as follows:
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∂x2

g20 g21 g22

∣∣∣∣∣∣∣
,

�2
12 = 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x1

∂g21
∂x1

∂g22
∂x1

∣∣∣∣∣∣∣
+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g10
∂x2

∂g11
∂x2

∂g12
∂x2

∣∣∣∣∣∣∣
− 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g21
∂x0

∂g21
∂x1

∂g21
∂x2

∣∣∣∣∣∣∣
.

Since these expressions involve the scalar triple product, no doubt there exists any
number of equivalent alternative expressions dependent upon one’s own personal
preferences. We may use the well-known formula

�
j
ij = 1

2g

∂g

∂xi
,

to check the above expressions obtained for the Chistoffel symbols of the second
kind. These calculations are not entirely trivial, and for purposes of illustration, the
proof for the particular value i = 0 is as follows. On writing the identity out in full
for i = 0, we have

�
j

0j = �0
00 + �1

01 + �2
02,

and from the above formulae, we obtain

�
j
ij

= 1

2g

∣∣∣∣∣∣∣

∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣
+ 1

2g

∣∣∣∣∣∣∣

∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣
− 1

2g

∣∣∣∣∣∣∣

∂g00
∂x0

∂g00
∂x1

∂g00
∂x2

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣
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+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g10
∂x0

∂g11
∂x0

∂g12
∂x0

g20 g21 g22

∣∣∣∣∣∣∣
+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g00
∂x1

∂g01
∂x1

∂g02
∂x1

g20 g21 g22

∣∣∣∣∣∣∣
− 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g10
∂x0

∂g10
∂x1

∂g10
∂x2

g20 g21 g22

∣∣∣∣∣∣∣

+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x0

∂g21
∂x0

∂g22
∂x0

∣∣∣∣∣∣∣
+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g00
∂x2

∂g01
∂x2

∂g02
∂x2

∣∣∣∣∣∣∣
− 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x0

∂g20
∂x1

∂g20
∂x2

∣∣∣∣∣∣∣
,

where we have specifically written the first term of this equation as two identical
terms, so that the sum of the first three terms on the left-hand side gives the desired
result as the partial derivative of g with respect to x0 divided by 2g, and it is left
to show that the remaining six terms are zero. This is most easily achieved using
the permutation symbols εijk and the summation convention. In this notation, the
determinant g of the 3 × 3 metric tensor becomes g = εijkg0ig1j g2k , and the
six determinants in the above expression that are required to be shown to be zero
become

1

2g

∣∣∣∣∣∣∣

∂g00
∂x0

∂g01
∂x0

∂g02
∂x0

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣
− 1

2g

∣∣∣∣∣∣∣

∂g00
∂x0

∂g00
∂x1

∂g00
∂x2

g10 g11 g12

g20 g21 g22

∣∣∣∣∣∣∣
+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g00
∂x1

∂g01
∂x1

∂g02
∂x1

g20 g21 g22

∣∣∣∣∣∣∣

− 1

2g

∣∣∣∣∣∣∣
g00 g01 g02
∂g10
∂x0

∂g10
∂x1

∂g10
∂x2

g20 g21 g22

∣∣∣∣∣∣∣
+ 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g00
∂x2

∂g01
∂x2

∂g02
∂x2

∣∣∣∣∣∣∣
− 1

2g

∣∣∣∣∣∣∣
g00 g01 g02

g10 g11 g12
∂g20
∂x0

∂g20
∂x1

∂g20
∂x2

∣∣∣∣∣∣∣

= εijk

2g

(
∂g0i

∂x0
g1j g2k + g0i

∂g0j

∂x1
g2k + g0ig1j ∂g0k

∂x2

)

− εijk

2g

(
∂g00

∂xi
g1j g2k + g0i ∂g10

∂xj
g2k + g0ig1j ∂g20

∂xk

)

= εijk

2g

{(
∂g0i

∂x0
− ∂g00

∂xi

)
g1j g2k +

(
∂g0j

∂x1
− ∂g10

∂xj

)
g0ig2k +

(
∂g0k

∂x2
− ∂g20

∂xk

)
g0ig1j

}

= 1

2g

{(
∂g01

∂x0
− ∂g00

∂x1

)
(g12g20 − g10g22)+

(
∂g02

∂x0
− ∂g00

∂x2

)
(g10g21 − g11g20)

}

+ 1

2g

{(
∂g00

∂x1
− ∂g10

∂x0

)
(g02g21 − g01g22)+

(
∂g02

∂x1
− ∂g10

∂x2

)
(g01g20 − g00g21)

}

+ 1

2g

{(
∂g00

∂x2
− ∂g20

∂x0

)
(g01g12 − g02g11)+

(
∂g01

∂x2
− ∂g20

∂x1

)
(g02g10 − g00g12)

}
,

each term of which can be seen to have a corresponding term that cancels, and
therefore, the sum total produces zero as required, and a similar proof can be
presented for i = 1 and i = 2.
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Christoffel Symbols of the Second Kind �kij Involving the Index 3 For the
Christoffel symbols of the second kind involving the index 3, we again assume
that the indices i and j immediately below refer only to 0, 1, 2, and we have the
following formulae:

�3
ij = g3n[ij, n] = g33[ij, 3] = 0,

�i33 = gin[33, n] = gij [33, j ] = −g
ij

2

∂g33

∂xj
,

�3
3j = g3n[3j, n] = g33[3j, 3] = g33

2

∂g33

∂xj
= 1

2g33

∂g33

∂xj
,

and we observe that these expressions are entirely consistent with the extended
identity

�
j
ij = �0

i0 + �1
i1 + �2

i2 + �3
i3 = 1

2g

∂g

∂xi
+ 1

2g33

∂g33

∂xi
= 1

2g∗
∂g∗

∂xi
,

where g∗ is the determinant of the 4 × 4 matrix and g∗ = |gij | = gg33, and the
derived identity is as might be expected.

Covariant Curvature Tensor Rijkm The metric tensor (11.32) (see also (11.34))
has been purposely chosen so that there is an uncoupling of certain aspects
of the three-dimensional problem (x0, x1, x2) and the four-dimensional problem
(x0, x1, x2, x3). Thus, with i, j, k and m restricted to 0, 1 and 2, other than those
connected through the symmetries (11.28), there are essentially only six non-
zero components of the covariant curvature tensor Rijkm, which here we adopt
to be R0101, R0202, R1212, R0112, R0120 and R2012. As far as the author is aware,
there is no immediate way to identify the trivial components of the covariant
curvature tensor Rijkm, other than close inspection of the assumed metric tensor
and (11.25) or (11.27) along with the known symmetries (11.28), so for the sake of
completeness, these components are listed below. From the assumed metric tensor
and either Eqs. (11.25) or (11.27), we may verify that the following components of
the following components of the covariant curvature tensor Rijkm are all zero, thus

R0000 = R0001 = R0002 = R0111 = R0222 = R0010

= R0011 = R0012 = R0020 = R0021 = R0022 = R0122

= R1000 = R1110 = R1111 = R1112 = R1222 = R1011

= R1022 = R1120 = R1121 = R1122 = R2000 = R2111

= R2220 = R2221 = R2222 = R2011 = R2022 = R2122 = 0,

while through the symmetries (11.28), we have the results:
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R0110 = R1001 = −R0101, R1010 = R0101,

R0220 = R2002 = −R0202, R2020 = R0202,

R1221 = R2112 = −R1212, R2121 = R1212,

R0121 = R1012 = −R0112, R1021 = R2110 = R0112,

R0102 = R2010 = −R0120, R1002 = R2001 = R0120,

R0212 = R2120 = −R2012, R2012 = R1220 = R2012.

Now following similar lines, and with i, j, k and m still restricted to 0, 1 and 2, we
may show that for the covariant curvature tensor Rijkm involving the index 3, we
have the following results

R3jkm = Ri3km = Rij3m = Rijk3 = R33km = Rij33 = 0,

Rj3k3 = R3j3k = −R3jk3,

where R3jk3 is given by

R3jk3 = 1

2

(
∂2g33

∂xj ∂xk
− �pjk

∂g33

∂xp

)
− g33

4

∂g33

∂xj

∂g33

∂xk
,

and since g33 = 1/g33, it is apparent that

R3jk3 = √
g33

(
∂2

√
g33

∂xj ∂xk
− �pjk

∂
√
g33

∂xp

)
,

or

R3jk3 = −√−g33
(
∂2

√−g33
∂xj ∂xk

− �pjk
∂
√−g33
∂xp

)
,

in the event that g33 < 0.
The components R3jk3 involve another six non-zero components of the covariant

curvature tensor Rijkm arising from j, k = 0, 1, 2, which contribute to the Ricci
tensor through Rjk = Rnjkn = gimRijkm = g33R3jk3, thus

Rjk = g33R3jk3 = 1√
g33

(
∂2

√
g33

∂xj ∂xk
− �pjk

∂
√
g33

∂xp

)
,

and to the curvature invariant R = gjkRjk = gimgjkRijkm through the term R∗
given by
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R∗ = gjkg33R3jk3 + gimg33Ri33m = 2gjkg33R3jk3,

which becomes

R∗ = 2gjk√
g33

(
∂2

√
g33

∂xj ∂xk
− �pjk

∂
√
g33

∂xp

)
= 2∇2√g33√

g33
,

where ∇2 is the conventional generalised Laplacian associated with the three-
dimensional coordinates (x0, x1, x2), namely

∇2 = gjk
(

∂2

∂xj ∂xk
− �pjk

∂

∂xp

)
.

In general, there are overall 12 essentially independent non-zero components of
the covariant curvature tensor Rijkm, which act as a basis in which we might express
the Ricci tensor and Einstein tensor components Rjk and Gjk and the curvature
invariant R, and we now proceed to do precisely this. As far as the author is aware,
in order to deduce the final expressions, there is no approach other than by direct
individual calculations, since each of the 12 curvature tensor components are not
readily characterised in some general way. By way of illustration, we start with the
calculation for R00, thus

R00 = gimRi00m
= g11R1001 + g12R1002 + g21R2001 + g22R2002 + g33R3003

= −g11R0101 + g12R0120 + g21R0120 − g22R0202 + g33R3003

= −g11R0101 + 2g12R0120 − g22R0202 + g33R3003,

and proceeding similarly, we may deduce the following expressions:

R00 = −g11R0101 + 2g12R0120 − g22R0202 + g33R3003, (11.37)

R11 = −g00R0101 + 2g02R0112 − g22R1212 + g33R3113,

R22 = −g00R0202 + 2g01R2012 − g11R1212 + g33R3223,

R01 = g10R0101 − g12R0112 − g20R0120 + g22R2012 + g33R3013,

R02 = −g10R0120 + g11R0112 + g20R0202 − g21R2012 + g33R3023,

R12 = −g00R0102 − g01R0112 − g20R2012 + g21R1212 + g33R3123,

and R33 = gimRi33m = R∗g33/2. Now on forming the curvature invariant R =
gjkRjk = gimgjkRijkm, the x3 spatial direction contributes both through the terms
R3jk3 in the above relations and through the term R33, and we have
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R = g00R00 + g11R11 + g22R22 + 2g01R01 + 2g02R02 + 2g12R12 + R∗,
(11.38)

where R∗ = g33gjkR3jk3 + gimg33Ri33m = 2gjkg33R3jk3 is the total contribution
to the curvature invariant arising from the x3 spatial dimension and the summations
over j and k in this expression are restricted to 0, 1, 2. On using the above
expressions for the Ricci tensor components Rjk , we find that

R = R∗

− 2[(g00g11 − g01g01)R0101 + (g00g22 − g02g02)R0202 + (g11g22 − g12g12)R1212
− 2(g00g12 − g20g10)R0120 − 2(g11g02 − g01g12)R0112 − 2(g22g10 − g02g21)R2012].

Now by direct calculation or otherwise, we may deduce the formulae

g00g11 − g01g01 = g22

g
, g00g22 − g02g02 = g11

g
, g11g22 − g12g12 = g00

g
,

g00g12 − g20g10 = −g12
g
, g11g20 − g01g12 = −g02

g
, g22g10 − g02g12 = −g01

g
,

where g is the determinant of the 3 × 3 matrix (11.36), and from Eqs. (11.37) and
(11.38), we may eventually deduce the expression for the curvature invariant R,
namely

R = 2(gmnR3mn3)/g33 (11.39)

− 2(g00R1212 + g11R0202 + g22R0101 + 2g12R0120 + 2g02R1021 + 2g01R2012)/g,

where g∗ = gg33 is the determinant of the 4×4 matrix given by (11.33), and the first
term in this expression can be alternatively written as simply R∗ = 2gjkg33R3jk3,
and R∗ is the contribution to the curvature invariant R arising from the x3 spatial
direction.

We are now in a position to evaluate the Einstein tensor from Gij = Rij −
Rgij/2, and to achieve this, we need the particular relations

g11g22

g
− g00 = g12g12

g
,

g00g22

g
− g11 = g02g02

g
,

g00g11

g
− g22 = g01g01

g
,

g02g12

g
− g01 = g01g22

g
,

g01g12

g
− g02 = g02g11

g
,

g01g02

g
− g12 = g00g12

g
.

On combining these relations with the above Eqs. (11.37) and (11.38), we may
deduce the following equations for the Einstein tensor Gij = Rij − Rgij/2, thus

G00 = g02g02

g
R0101 + g01g01

g
R0202 + g00g00

g
R1212 + 2g01g02

g
R0120 (11.40)
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+ 2g00g02
g

R0112 + 2g00g01
g

R2012 − R∗

2
g00 + g33R3003,

G11 = g12g12

g
R0101 + g11g11

g
R0202 + g01g01

g
R1212 + 2g01g12

g
R0112

+ 2g11g12
g

R0120 + 2g11g01
g

R2012 − R∗

2
g11 + g33R3113,

G22 = g22g22

g
R0101 + g12g12

g
R0202 + g02g02

g
R1212 + 2g12g22

g
R0120

+ 2g22g02
g

R0112 + 2g12g02
g

R2012 − R∗

2
g22 + g33R3223,

G01 = g02g12

g
R0101 + g01g11

g
R0202 + g00g01

g
R1212 + (g00g12 + g01g02)

g
R0112

+ (g11g02 + g01g12)
g

R0120 + (g00g11 + g01g01)
g

R2012 − R∗

2
g01 + g33R3013,

G02 = g02g22

g
R0101 + g01g12

g
R0202 + g00g02

g
R1212 + (g00g22 + g02g02)

g
R0112

+ (g01g22 + g02g12)
g

R0120 + (g00g12 + g01g02)
g

R2012 − R∗

2
g02 + g33R3023,

G12 = g12g22

g
R0101 + g12g11

g
R0202 + g01g02

g
R1212 + (g01g22 + g02g12)

g
R0112

+ (g11g22 + g12g12)
g

R0120 + (g11g02 + g01g12)
g

R2012 − R∗

2
g12 + g33R3123,

andG33 = R33 −Rg33/2 = (R∗ −R)g33/2 and all other components involving the
index 3, namely G3j for j = 0, 1, 2 are zero.

Now from the expressions for the Einstein tensor Gij = gikRjk − Rδij /2, it is
immediately apparent that the trace G = R − 2R = −R, and we can use this result
to check the veracity of the above expressions for Gij as follows. In the summation
G = gjkGjk and because of the essentially three-dimensional nature of the tensors
involved, we first need to perform the summation over j, k = 0, 1, 2, and then
we have to include the term involving G33. Further, each of the above expressions
involve three types of terms: the terms involving the six non-zero components of the
covariant curvature tensor Rijkm, which are R0101, R0202, R1212, R0112, R0120 and
R2012, and then the two terms −R∗gjk/2 and g33R3jk3.

First, we examine the contribution to G = gikGjk arising from the six terms
R0101, R0202, R1212, R0112, R0120 and R2012, and for purposes of illustration, we
examine the contribution from the term R0101, which becomes

(g00g02g02 + g11g12g12 + g22g22g22 + 2g01g02g12
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+ 2g02g02g22 + 2g12g12g22)
R0101

g
,

which we may reorganise as

[(g02(g00g02 + g01g12 + g02g22)+ g12(g01g02 + g11g12 + g12g22)

+ g22(g02g02 + g12g12 + g22g22)]R0101

g
,

so that on using gikgkj = δij , this term becomes simply g22R0101/g. Similarly,
we may show that the contribution arising from the six terms R0101, R0202, R1212,
R0112, R0120 and R2012 becomes

(g00R1212 + g11R0202 + g22R0101 + 2g12R0120 + 2g02R1021 + 2g01R2012)/g,

which from (11.39) we can identify as simply (R∗−R)/2. Thus, the total summation
becomes

G = gjkGjk = (R∗ − R)
2

− R∗

2
gjkgjk + g33gjkR3jk3 + g33G33,

= (R∗ − R)
2

− 3R∗

2
+ R∗

2
+ (R∗ − R)

2
= −R,

as required.
Although not particularly illuminating or insightful, with i, j and k all distinct

and taking on only the values 0, 1 and 2, and with no summation over repeated
indices, these formulae can be formally summarised by the following expressions:

Gii = gij gij

g
Rkiki + gikgik

g
Rijij + giigii

g
Rkjkj + 2gij gik

g
Rkiij

+ 2giigij
g

Rikkj + 2giigik
g

Rjkij − R∗

2
gii + g33R3ii3,

Gij = gikgjk

g
Rijij + gij gii

g
Rkjkj + gij gjj

g
Rkiki + (giigjj + gij gij )

g
Rkijk

+ (gkigjj + gij gkj )
g

Rkiij + (gkj gii + gij gki)
g

Rkjji − R∗

2
gij + g33R3ij3.

11.7 Two Illustrative Line Elements

Illustration (i) As an illustration of these results, we consider the simple wormhole
geometry of [79], which is given by the four-dimensional line element, thus



11.7 Two Illustrative Line Elements 341

ds2 = (cdt)2 − (dρ)2 − (b2 + ρ2)(dθ)2 − (b2 + ρ2) sin2 θ(dφ)2,

where b is the throat radius and (ρ, θ, φ) are the usual spherical polar coordinates,
so that in this case, we have (x0, x1, x2, x3) = (ct, ρ, θ, φ) and the metric and
conjugate metric tensors are given, respectively, by

gij =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −(b2 + ρ2) 0
0 0 0 −(b2 + ρ2) sin2 θ

⎞
⎟⎟⎠ ,

and

gij =

⎛
⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 − 1

(b2+ρ2) 0

0 0 0 − 1
(b2+ρ2) sin2 θ

⎞
⎟⎟⎟⎠ ,

where the determinants g∗ = −(b2 + ρ2)2 sin2 θ and g = (b2 + ρ2). The non-zero
Christoffel symbols of the first kind are

[22, 1] = ρ, [12, 2] = −ρ, [33, 1] = ρ sin2 θ, [31, 3] = −ρ sin2 θ,
[33, 2] = (b2 + ρ2) sin θ cos θ, [32, 3] = −(b2 + ρ2) sin θ cos θ,

and from these relations and Eq. (11.25), we may deduce the following non-zero
components of the covariant curvature tensor Rijkm, thus

R1212 = −1

2

∂2g22

∂x1
2 + g22[12, 2][12, 2] = 1 − ρ2

(b2 + ρ2) = b2

(b2 + ρ2) ,

R3113 = 1

2

∂2g33

∂x1
2 − g33[13, 3][13, 3] = − sin2 θ + ρ2 sin2 θ

(b2 + ρ2) = − b2 sin2 θ

(b2 + ρ2) ,

R3223 = 1

2

∂2g33

∂x2
2

+ g11[22, 1][33, 1] − g33[23, 3][23, 3]

= (b2 + ρ2)(sin2 θ − cos2 θ)− ρ2 sin2 θ + (b2 + ρ2) cos2 θ = b2 sin2 θ.

The latter two components result in a net zero contribution to the curvature invariant
arising from the x3 spatial direction, since

R∗ = 2g33(g11R3113 + g22R3223) = 2

(b2 + ρ2) sin2 θ

(
− b2 sin2 θ

(b2 + ρ2) + b2 sin2 θ

(b2 + ρ2)

)
= 0,
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so that only the component R1212 contributes to the curvature invariant R through
the term −2g00R1212/g, and we have simply R = −2b2/(b2 + ρ2)2.

From the relations (11.40), we find that the only non-zero components of the
Einstein tensor Gij become

G00 = g00g00

g
R1212 = b2

(b2 + ρ2)2 , G11 = g33R3113 = b2

(b2 + ρ2)2 ,

G22 = g33R3223 = − b2

(b2 + ρ2) , G33 = −Rg33
2

= − b2 sin2 θ

(b2 + ρ2) ,

where G33 originates from the expression G33 = R33 − Rg33/2 = (R∗ − R)g33/2
with R∗ = 0 and noting that correctly G = gijGij = −R. On noting that the only
non-zero Christoffel symbols of the second kind are

�2
12 = ρ

(b2 + ρ2) , �3
13 = ρ

(b2 + ρ2) , �1
22 = ρ,

�1
33 = −ρ sin2 θ, �2

33 = − sin θ cos θ, �3
23 = cot θ,

the above expressions for the Einstein tensor can be shown to satisfy the divergence
free equations Gi

k;i = 0 in the form of Eqs. (11.35); thus, we have

Gik;i = gijGjk;i = gij
{
∂Gjk

∂xi
− �nijGnk − �pikGjp

}
= 0,

and for k = 1 we obtain

Gik;i = gij
{
∂Gj1

∂xi
− �nijGn1 − �pi1Gjp

}

=
{
−∂G11

∂ρ
− gij�1

ijG11 − gij�2
i1Gj2 − gij�3

i1Gj3

}

= −
{
∂G11

∂ρ
+ g22�1

22G11 + g33�1
33G11 + g22�2

21G22 + g33�3
31G33

}

= −
{
∂G11

∂ρ
+ 2ρ

(b2 + ρ2)G11 − ρ

(b2 + ρ2)2
(
G22 + G33

sin2 θ

)}
,

which on performing the differentiation can be shown to be identically zero, and
similarly the three equations Gi

k;i = 0 arising from k = 0, 2 and 3 can be shown
to be trivially satisfied. The reader may be comforted to know that these results are
not completely apparent and are consequences of the particular diagonal structure
of the tensorGij and the particular non-zero Christoffel symbols of the second kind
and the reader may need to give each equation a close examination before being
convinced.



11.7 Two Illustrative Line Elements 343

Illustration (ii) As a second illustration of the results of the previous section, we
consider the Einstein universe given by the four-dimensional line element, thus

ds2 = (cdt)2 − (dr)2

(1 − (r/R)2) − r2(dθ)2 − r2 sin2 θ(dφ)2,

whereR is a constant and (r, θ, φ) are the usual spherical polar coordinates, so that
in this case, we have (x0, x1, x2, x3) = (ct, r, θ, φ) and the metric and conjugate
metric tensors are given, respectively, by

gij =

⎛
⎜⎜⎜⎝
1 0 0 0
0 −1
(1−(r/R)2) 0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎟⎠ ,

and

gij =

⎛
⎜⎜⎜⎝
1 0 0 0
0 −(1 − (r/R)2) 0 0
0 0 − 1

r2
0

0 0 0 − 1
r2 sin2 θ

⎞
⎟⎟⎟⎠ ,

and for the determinants g∗ and g, we have g∗ = −r4 sin2 θ/(1 − (r/R)2) and
g = r2/(1 − (r/R)2). The non-zero Christoffel symbols of the first kind are

[11, 1] = − r/R2

(1 − (r/R)2)2 , [12, 2] = −r, [22, 1] = r, [33, 1] = r sin2 θ,

[31, 3] = −r sin2 θ, [33, 2] = r2 sin θ cos θ, [32, 3] = −r2 sin θ cos θ,

and from these relations and Eq. (11.25), we may deduce the following non-zero
components of the covariant curvature tensor Rijkm, thus

R1212 = −1

2

∂2g22

∂x1
2 + g22[12, 2][12, 2] − g11[22, 1][11, 1] = − (r/R)2

(1 − (r/R)2) ,

R3113 = 1

2

∂2g33

∂x1
2 + g11[33, 1][11, 1] − g33[13, 3][13, 3] = (r/R)2 sin2 θ

(1 − (r/R)2) ,

R3223 = 1

2

∂2g33

∂x2
2 + g11[22, 1][33, 1] − g33[23, 3][23, 3] = (r/R)2r2 sin2 θ,

R3123 = 1

2

∂2g33

∂x1∂x2
+ g22[12, 2][33, 2] − g33[13, 3][23, 3] = 0.
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The two components R3113 and R3223 both contribute to the curvature invariant R∗
arising from the x3 spatial direction, thus

R∗ = 2g33(g11R3113 + g22R3223) = 2

r2 sin2 θ

(
(1 − (r/R)2)R3113 + R3223

r2

)

= 2

r2 sin2 θ

(
(r/R)2 sin2 θ + (r/R)2 sin2 θ

)
= 4

R2 ,

so that altogether along with the contribution to the curvature invariant R from the
component R1212 we have from Eq. (11.39) the following result:

R = 4

R2 + 2(1 − (r/R)2)
r2

(r/R)2

(1 − (r/R)2) = 6

R2 ,

which is well-known.
From Eq. (11.40), we may show that the only non-zero components of the

Einstein tensor Gij become

G00 = g00g00

g
R1212 − R∗

2
g00 = − 3

R2 ,

G11 = −R
∗

2
g11 + g33R3113 = 1

R2(1 − (r/R)2) ,

G22 = −R
∗

2
g22 + g33R3223 = (r/R)2,

G33 = (R∗ − R)
2

g33 = (r/R)2 sin2 θ,

where G33 originates from the expression G33 = R33 −Rg33/2 = (R∗ −R)g33/2,
and again as a check, we may confirm that the above expressions correctly satisfy
G = gijGij = −6/R2 = −R. For this metric, the only non-zero Christoffel
symbols of the second kind are

�1
11 = r/R2

(1 − (r/R)2) , �2
12 = 1

r
, �3

13 = 1

r
, �1

22 = −r(1 − (r/R)2),

�1
33 = −r sin2 θ(1 − (r/R)2), �2

33 = − sin θ cos θ, �3
23 = cot θ,

and again the above expressions for the Einstein tensor can be shown to satisfy the
divergence free equation Gi

k;i = 0 in the form of Eqs. (11.35); thus, we have

Gik;i = gijGjk;i = gij
{
∂Gjk

∂xi
− �nijGnk − �pikGjp

}
= 0,
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so that for k = 1, we have

Gik;i = gij
{
∂Gj1

∂xi
− �nijGn1 − �pi1Gjp

}

=
{
g11
∂G11

∂x1
− gij�1

ijG11 − gij�1
i1Gj1 − gij�2

i1Gj2 − gij�3
i1Gj3

}

=
{
g11
∂G11

∂r
− (g11�1

11 + g22�1
22 + g33�1

33)G11 − g11�1
11G11 − g22�2

21G22 − g33�3
31G33

}
,

and again on performing the differentiation and using the above expressions for the
conjugate metric tensor and the Christoffel symbols, this equation may be shown to
be identically zero, and similarly the three equationsGi

k;i = 0 arising from k = 0, 2
and 3 can be shown to be trivially satisfied. Again, we remind the reader that none
of these outcomes are immediately obvious, and in formulating each of the results,
we constantly have in mind the particular diagonal structures of the tensors gij and
Gij and the particular non-zero Christoffel symbols of the second kind, and the
reader should give each outcome a close examination to convince themselves of its
veracity. In the final section of this chapter, we provide an example for which the
details are far more complicated.

11.8 Spiral Gravitating Structures

In this section, we examine a possible cosmological model of general relativity
involving logarithmic spirals and seven arbitrary constants. While there is consid-
erable astronomical evidence that spiral structures commonly occur in the universe,
there appear to be no known formal solutions of the general relativistic field
equations reflecting such structures. The Schwarzschild solution relates to spatially
spherically symmetric gravitational fields, while the stationary Kerr solution is
axially symmetric. However, in nonlinear continuum mechanics, formal similarity
solutions involving logarithmic spiral similarity invariants are well-known, and
indeed the most general similarity forms for isotropic materials satisfying the
principle of material indifference have been given by the author [46]. These formal
similarity solutions essentially arise from rotational invariances and invariance
under the basic length scale that is adopted. We generalise the particular Minkowski
line element given by (11.42) to the line element given by Eq. (11.41), which
involves the seven completely arbitrary constants A,B,C,D,E, F and λ. The
motivating Minkowski line element (11.42) is a special case of (11.41) that arises
from the particular values of the constantsA,B,C,D,E, F and λ given by (11.43),
which satisfy the three relations (11.44).

Below we show that solutions of the Einstein vacuum equations that might
involve logarithmic spirals as a similarity variable arise from the essentially two-
dimensional (spatially) metric given by
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(ds)2 = (1 − λr2)(cdt)2 − A(dr)2 − Br2(dθ)2 − 2Crdrcdt (11.41)

− 2Dr2dθcdt − 2Erdrdθ − F(dz)2,

where (x0, x1, x2, x3) = (ct, r, θ, z), (r, θ, z) denote the usual cylindrical polar
coordinates and where A,B,C,D,E, F and λ denote seven arbitrary constants, in
principle, to be determined from the general relativistic field equations. We provide
a detailed verification below that the Einstein tensor for the metric (11.41) is indeed
divergence free for all values of the seven constants without additional restrictions.

From a conventional general relativistic perspective, only five of these constants
would be regarded as essential, since on face value the constants A and F can be
scaled immediately to unity, even though the special case A = 0 would have to be
considered as a separate case. From the author’s perspective, setting A = F = 1,
there is an apparent loss of symmetry and parity in the structure, and moreover as
shown in [59], reducing and simplifying the metric in this manner often closes off
opportunities to determine new solutions. We demonstrate below that the metric
(11.41) provides a formal solution of the divergence free vacuum field equations
for all values of the seven constants without additional restrictions. We comment
that while the two illustrative examples presented above are both such that the
Einstein tensor satisfies the divergence free vacuum condition, it is however non-
vanishing, and therefore, these models are considered to represent some underlying
intrinsic property of space-time that is additional to that generated from the energy-
momentum tensor. It is important to point out that the model examined here also
shares this characteristic, and formally here, we simply verify the vanishing of the
divergence of the Einstein tensor.

The particular structure of this metric is motivated as follows. In the cylindrical
polar coordinates (r, θ, z), a rotation around the z−axis is given simply by θ

′ = θ +
ωt , and therefore in order generalise this to generate logarithmic spirals, we consider
the invariant ξ = σθ + μ log r + ωt and the generalised rotational and stretching
transformation which in rectangular Cartesian coordinates (x, y, z) is given by

x = νr cos(σθ + μ log r + ωt), y = νr sin(σθ + μ log r + ωt),

combined with a constant stretch along the z−axis, thus z −→ κz, where σ,μ, ν, ω
and κ all denote arbitrary constants. From the differentials

dx = ν cos ξdr − νr sin ξ
(
σdθ + μ

r
dr + ωdt

)
,

dy = ν sin ξdr + νr cos ξ
(
σdθ + μ

r
dr + ωdt

)
,

the Minkowski line element becomes

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 (11.42)
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= (1 − (νωr/c)2)(cdt)2 − ν2(1 + μ2)(dr)2 − (νσ r)2(dθ)2 − 2(μων2/c)rdrcdt

− 2(σων2/c)r2dθcdt − 2μσν2rdrdθ − κ2(dz)2,

which evidently assumes the form of the line element (11.41) with the seven
arbitrary constants A,B,C,D,E, F and λ taking on the particular valiues

A = ν2(1 + μ2), B = (νσ )2, C = μων2/c, (11.43)

D = σων2/c, E = μσν2, F = κ2, λ = (νω/c)2.

We emphasise that subsequently we regard the seven constants A,B,C,D,E, F
and λ to be completely arbitrary, and we exploit the above particular values rather
as reference values to guide the ensuring mathematical analysis. Specifically, we
observe that these particular values satisfy the three relations,

BC −DE = 0, CD − λE = 0, D2 − λB = 0, (11.44)

and we subsequently observe these quantities emerging as factors in the analysis.
We further comment that in proposing the metric (11.41) as a potentially interesting
line element, we have in mind certain issues arising from nonlinear continuum
mechanics. If we have in mind a spiral gravitating structure, then note that the
invariant ξ = σθ + μ log r + ωt arises from both the two- and three-dimensional
spatial rotational groups and that use of this invariant has two important features.
Firstly, the constant σ �= 1 embodies more than a strict rotation and might well
on its own produce an interesting outcome. Secondly, the log r term is a natural
amendment, since it behaves formally like θ in the sense that the factor 1/r
precedes both ∂/∂θ and ∂/∂r . In finite elasticity, this characteristic is well-known
and the invariant σθ +μ log r forms the basis of an important exact solution in that
discipline, and further references to this topic may be found in [46]. Accordingly,
these two features in their own right might generate interesting and new outcomes,
but here in proposing the line element (11.41), we are adding further levels of
arbitrariness.

Again noting that (r, θ, z) are the usual cylindrical polar coordinates and
(x0, x1, x2, x3) = (ct, r, θ, z), then corresponding to (11.41) the metric tensor gij
and conjugate metric tensor gij are given, respectively, by

gij =

⎛
⎜⎜⎝
1 − λr2 −Cr −Dr2 0
−Cr −A −Er 0
−Dr2 −Er −Br2 0

0 0 0 −F

⎞
⎟⎟⎠ , (11.45)

and
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gij =

⎛
⎜⎜⎜⎝
(AB − E2)r2/g −(BC −DE)r3/g −(AD − CE)r2/g 0

−(BC −DE)r3/g −[Br2 + (D2 − λB)r4]/g [Er + (DC − λE)r3]/g 0

−(AD − CE)r2/g [Er + (DC − λE)r3]/g −[A+ (C2 − λA)r2]/g 0

0 0 0 −1/F

⎞
⎟⎟⎟⎠ ,

(11.46)

where the determinant g of the three-dimensional matrix gij is given by

g = (1 − λr2)(AB − E2)r2 + (BC2 − 2CDE + AD2)r4 (11.47)

= (AB − E2)r2 + [(BC −DE)2 + (AB − E2)(D2 − λB)]r4/B,

while the determinant g∗ of the four-dimensional matrix gij is simply given by
g∗ = −Fg.
Christoffel Symbols of First Kind [ij, k] The only non-zero Christoffel symbols
of the first kind for the metric (11.41) are

[00, 1] = λr, [11, 0] = −C, [11, 2] = −E, [22, 1] = Br, [01, 0] = −λr,
(11.48)

[01, 2] = −Dr, [12, 2] = −Br, [02, 1] = Dr, [12, 0] = −Dr.

Covariant Curvature Tensor Rijkm From the relations (11.48) and Eq. (11.25),
we may deduce the following non-zero components of the covariant curvature tensor
Rijkm, thus

R0101 = −1

2

∂2g00

∂x1
2

+ gnp([01, n][01, p] − [11, n][00, p])

= λ+ g0p[01, 0][01, p] + g2p[01, 2][01, p] − gn1[11, n][00, 1]

= λ+ g00[01, 0]2 + 2g02[01, 0][01, 2] + g22[01, 2]2

− g01[11, 0][00, 1] − g12[11, 2][00, 1]

= − r
2

g
[A(D2 − λB)+ (DC − λE)2r2],
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R0202 = gnp([02, n][02, p] − [22, n][00, p])

= g1p([02, 1][02, p] − [22, 1][00, p])

= − r
4

g
[B + (D2 − λB)r2](D2 − λB),

R1212 = −1

2

∂2g22

∂x1
2 + gnp([12, n][12, p] − [22, n][11, p])

= B + g00[12, 0]2 + g22[12, 2]2 + 2g02[12, 0][12, 2]
− g01[22, 1][11, 0] − g12[22, 1][11, 2]

= − r
4

g
(BC −DE)2,

R2012 = gnp([01, n][22, p] − [02, n][12, p])

= gn1([01, n][22, 1] − g1p[02, 1][12, p])

= g01[01, 0][22, 1] + g21[01, 2][22, 1] − g01[02, 1][12, 0] − g12[02, 1][12, 2]

= − r
5

g
(BC −DE)(D2 − λB),

R0112 = 1

2

∂2g02

∂x1
2 + gnp([11, n][02, p] − [12, n][01, p])

= −D + g10[02, 1][11, 0] + g21[02, 1][11, 2] − g00[12, 0][01, 0]
− g20[12, 2][01, 0] − g02[12, 0][01, 2] − g22[12, 2][01, 2]
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= r4

g
(BC −DE)(DC − λE),

R0120 = gnp([12, n][00, p] − [01, n][02, p])

= gn1([12, n][00, 1] − [01, n][02, 1])

= g01[12, 0][00, 1] + g21[12, 2][00, 1] − g01[01, 0][02, 1] − g21[01, 2][02, 1]

= r3

g
[E + (DC − λE)r2](D2 − λB),

We now introduce five new constants α, β, γ, δ and ε defined by

α = BC −DE, β = D2 − λB, γ = λE −DC,
δ = AB − E2, ε = AD − CE,

so that the above expressions for R0101, R0202, R1212, R0112, R0120 and R2012,
simplify to become

R0101 = − r
2

g
(βA+ γ 2r2), R0202 = − r

4

g
(βB + β2r2), R1212 = − r

4

g
α2,

(11.49)

R2012 = − r
5

g
αβ, R0112 = − r

4

g
αγ, R0120 = − r

3

g
(βγ r2 − βE).

We may readily verify that the new constants satisfy

αλ+ βC + γD = 0, αD + βE + γB = 0,

αC + βA+ γE = AD2 + BC2 − 2CDE − λ(AB − E2),

and it proves convenient to introduce yet another new constant � defined by

� = αC + βA+ γE,

so that we have the important relations

AD2 + BC2 − 2CDE = �+ λδ, � = (α2 + βδ)/B,
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and, noting that in terms of these new constants, the determinant g given by
Eq. (11.47) becomes

g = δr2 +�r4 = δr2 + (α2 + βδ)r4/B.

Curvature Invariant R On using the immediately above relations together with
Eq. (11.39) and the metric tensor (11.45), we may deduce the following expression
for the curvature invariant R, thus

R = 2r4

g2

{
(α2 − 2βδ)− r2(λα2 + Aβ2 + Bγ 2 + 2Cαβ + 2Dαγ + 2Eβγ )

}
.

We may simplify the coefficient of r2 in this expression as follows:

λα2 + Aβ2 + Bγ 2 + 2Cαβ + 2Dαγ + 2Eβγ

= α(αλ+ βC + γD)+ β(αC + βA+ γE)+ γ (αD + βE + γB)
= β(αC + βA+ γE) = β�,

and therefore, the above expression for the curvature invariant R becomes simply

R = 2r4

g2

{
(α2 − 2βδ)− β�r2

}
.

Einstein Tensor Gij Using the expressions (11.49) for the non-zero components
of the covariant curvature tensorRijkm, the components of the metric tensor (11.45),
we may deduce directly from the relations (11.40) the following components of the
Einstein tensor

G00 = − r
4

g2

{
α2 + β(AD2 + BC2 − 2CDE)r2

}
= − r

4

g2

{
α2 + β(�+ λδ)r2

}
,

(11.50)

G11 = − r
4

g2

{
βA(AB − E2)+ (αC + βA+ γE)2r2

}
= − r

4

g2
(βδA+�2r2),

(11.51)

G22 = − r
6

g2

{
βB(AB − E2)+ (αD + βE + γB)2r2

}
= − r

6βδB

g2
, (11.52)
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G01 = − r
5

g2

{
βC(AB − E2)− α(αC + βA+ γE)

}
= − r

5

g2
(βδC − α�),

(11.53)

G02 = − r
6

g2
βD(AB − E2) = − r

6βδD

g2
, G12 = − r

5

g2
βE(AB − E2) = − r

5βδE

g2
,

(11.54)

noting that in this case G33 = −(R/2)g33. We observe that these components can
be alternatively expressed as

G00 = βδr4

g2
g00 − r4

g2

{
α2 + β(δ +�r2)

}
, G11 = βδr4

g2
g11 − r6

g2
�2,

G22 = βδr4

g2
g22, G33 = βδr4

g2
g33 − r4

g2

{
α2 − β(δ +�r2)

}
,

G01 = βδr4

g2
g01 + α�r5

g2
, G02 = βδr4

g2
g02, G12 = βδr4

g2
g12.

We further observe that in the event � = 0, then α2 = −βδ and these expressions
simplify to become

Gij = β

δ
gij , (i, j = 0, 1, 2), G33 = 3β

δ
g33,

and R = −6β/δ, and we note that these equations are slightly reminiscent of
Einstein’s cosmological constant  for which Gij = − gij , but of course here
the constant takes on two distinct values.

Check on Einstein Tensor We may apply a reasonably robust check on the
veracity of these individual expressions by evaluating the trace of the Einstein tensor
Gkk = gijGij + g33G33 which should give −R. Using the above equations for Gij
and (11.46) for the components of the conjugate metric tensor, which in terms of the
new constants α, β, γ, δ and ε become

gij =

⎛
⎜⎜⎝
δr2/g −αr3/g −εr2/g 0

−αr3/g −(B + βr2)r2/g −(γ r2 − E)r/g 0
−εr2/g −(γ r2 − E)r/g −[A+ (C2 − λA)r2]/g 0

0 0 0 −1/F

⎞
⎟⎟⎠ ,

and after some algebra and simplification, the contribution gijGij admits g as a
factor and simplifies as follows:
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gijGij = r6

g3

{
δ(2βδ − α2)+ [B�+ 2(βδ − α2)]�r2 + β�2r4

}

= r6

g3

{
δ(2βδ − α2)+ (3βδ − α2)�r2 + β�2r4

}

= r6

g3
(δ +�r2)(2βδ − α2 + β�r2)

= r4

g2
(2βδ − α2 + β�r2) = −R

2
,

where we have used B� = α2 + βδ and g = r2(δ + �r2), and the required result
follows since G33 = −(R/2)g33.

Christoffel Symbols of First Kind �kij The non-zero Christoffel symbols of the
second kind are

�0
00 = −αλr

4

g
, �1

00 = −λr
3

g
(βr2 + B), �2

00 = −λr
2

g
(γ r2 − E),

�0
11 = −αAr

2

g
, �1

11 = r

g

{
(αC + γE)r2 − E2

}
, �2

11 = −A
g
(γ r2 − E),

�0
22 = −αBr

4

g
, �1

22 = −Br
3

g
(βr2 + B), �2

22 = −Br
2

g
(γ r2 − E),

�0
01 = r3

g
(βA+ γE), �1

01 = − r
2

g
(βCr2 +DE), �2

01 = − r
g
(γCr2 − AD),

�0
02 = −αDr

4

g
, �1

02 = −Dr
3

g
(βr2 + B), �2

02 = −Dr
2

g
(γ r2 − E),

�0
12 = −αEr

3

g
, �1

12 = −Er
2

g
(βr2 + B), �2

12 = r

g

{
(αC + βA)r2 + AB

}
,

and we might provide a limited check on these expressions with the well-known
formula �iki = (1/2g)∂g/∂xk , and for k = 0, 1, 2, we obtain

�0
00 + �1

01 + �2
02 = − r

4

g
(αλ+ βC + γD) = 0,

�0
10 + �1

11 + �2
12 = r

g

{
δ + 2(αC + βA+ γE)r2

}
= 1

2g

∂g

∂r
,

�0
20 + �1

21 + �2
22 = − r

4

g
(αD + βE + γB) = 0,

as required.
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Verification Einstein Tensor Is Divergence Free Although the Einstein tensor
is purposely constructed to be divergence free, it is often a nontrivial matter
to convince oneself that this is indeed the case, and the following provides a
demonstration of the underlying complexities and detail that are often required. In
order to verify that the metric (11.41) produces a divergence free Einstein tensor,
that is, the equations Gi

j ;i = 0 are indeed satisfied, we proceed as follows. Using

the relations Gik = gijGjk , we need the partial covariant derivative with respect to
xm, thus

Gik;m = gijGjk;m = gij
{
∂Gjk

∂xm
− �nmjGnk − �pmkGjp

}
, (11.55)

which we contract; that is, we set m = i and then sum over i to obtain

Gik;i = gijGjk;i = gij
{
∂Gjk

∂xi
− �nijGnk − �pikGjp

}
= 0. (11.56)

It is clear from these latter relations that for the problem on hand, the summations
in each equation generates a large number of terms, actually 57 separate terms in all
for each of the equations arising from k = 0, 1, 2. We observe that while the scale of
this problem may be greatly reduced with the observation that the above particular
expressions for the Einstein tensor Gij have the structure

Gij = βδψ2gij + hij , (11.57)

where ψ(r) is a function of r only that is defined by ψ(r) = r2/g and hij is the
tensor defined by

hij =

⎛
⎜⎜⎝

−ψ(β + α2ψ) αψ2�r 0 0
αψ2�r −(ψ�r)2 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

we do not however follow this approach, since there is an apparent lack of parity
in the calculation, and it turns out to be more straightforward to deal with the full
equations directly.

However, if we were to adopt this approach, then it would seem worthwhile
noting that the field equations might be manipulated as follows. On observing again
that all the partial covariant derivatives of the metric tensor gij and its conjugate
gij are zero and that the partial covariant derivative of a scalar is simply the partial
derivative, we have from (11.55) and (11.57)

Gik;m = βδgij gjk ∂ψ
2

∂xm
+ gij

{
∂hjk

∂xm
− �nmjhnk − �pmkhjp

}
,
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which becomes

Gik;m = βδδik
∂ψ2

∂xm
+ gij

{
∂hjk

∂xm
− �nmjhnk − �pmkhjp

}
.

Further, since ψ is a function of r = x1 only, on contraction the divergence free
equations become

Gik;i = βδδ1k
∂ψ2

∂x1
+ gij

{
∂hjk

∂xi
− �nijhnk − �pikhjp

}
= 0,

which are the alternative form for the three basic equations for k = 0, 1, 2 to be
satisfied.

Proceeding directly, we observe that the three basic equations (11.56) for k =
0, 1, 2 become

g1j
∂Gjk

∂x1
= gij�nijGnk + gij�pikGjp,

since all components Gij are functions of x1 = r only, and so

g10
∂G0k

∂x1
+ g11 ∂G1k

∂x1
+ g12 ∂G2k

∂x1

= G0kg
ij�0

ij +G1kg
ij�1

ij +G2kg
ij�2

ij

+ gij�0
ikGj0 + gij�1

ikGj1 + gij�2
ikGj2,

and the three basic equations (11.56) for k = 0, 1, 2 when written out in full are as
given below.

Equation for k = 0 For k = 0, we have

g10
∂G00

∂x1
+ g11 ∂G10

∂x1
+ g12 ∂G20

∂x1

= G00g
ij�0

ij +G10g
ij�1

ij +G20g
ij�2

ij

+ gij�0
i0Gj0 + gij�1

i0Gj1 + gij�2
i0Gj2.

On writing this equation out in full, we have

g10
∂G00

∂x1
+ g11 ∂G10

∂x1
+ g12 ∂G20

∂x1
(11.58)

= G00(g
00�0

00 + g01�0
01 + g02�0

02)+G00(g
01�0

01 + g11�0
11 + g12�0

12)
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+G00(g
02�0

02 + g12�0
12 + g22�0

22)+G10(g
00�1

00 + g01�0
01 + g02�2

02)

+G10(g
01�1

01 + g11�1
11 + g12�1

12)+G10(g
02�1

02 + g12�1
12 + g22�1

22)

+G20(g
00�2

00 + g01�2
01 + g02�2

02)+G20(g
01�2

01 + g11�2
11 + g12�2

12)

+G20(g
02�2

02 + g12�2
12 + g22�2

22)+G00(g
00�0

00 + g01�0
10 + g02�0

20)

+G10(g
10�0

00 + g11�0
10 + g12�0

20)+G20(g
20�0

00 + g21�0
10 + g22�0

20)

+G01(g
00�1

00 + g10�1
10 + g20�1

20)+G11(g
01�1

00 + g11�1
10 + g21�1

20)

+G21(g
02�1

00 + g12�1
10 + g22�1

20)+G02(g
00�2

00 + g10�2
10 + g20�2

20)

+G12(g
01�2

00 + g11�2
10 + g12�2

20)+G22(g
02�2

00 + g21�2
10 + g22�2

20).

Equation for k = 1 Similarly, the corresponding equation for k = 1 is

g10
∂G01

∂x1
+ g11 ∂G11

∂x1
+ g12 ∂G21

∂x1
(11.59)

= G01(g
00�0

00 + g01�0
01 + g02�0

02)+G01(g
01�0

01 + g11�0
11 + g12�0

12)

+G01(g
02�0

02 + g12�0
12 + g22�0

22)+G11(g
00�1

00 + g01�0
01 + g02�2

02)

+G11(g
01�1

01 + g11�1
11 + g12�1

11)+G11(g
02�1

02 + g12�1
12 + g22�1

22)

+G12(g
00�2

00 + g01�2
01 + g02�2

02)+G12(g
01�2

01 + g11�2
11 + g12�2

12)

+G12(g
02�2

02 + g12�2
12 + g22�2

22)+G00(g
00�0

01 + g01�0
11 + g02�0

21)

+G10(g
10�0

01 + g11�0
11 + g12�0

21)+G20(g
20�0

01 + g21�0
11 + g22�0

21)

+G01(g
00�1

01 + g10�1
11 + g20�1

21)+G11(g
01�1

01 + g11�1
11 + g21�1

21)

+G21(g
02�1

01 + g12�1
11 + g22�1

21)+G02(g
00�2

01 + g10�2
11 + g20�2

21)

+G12(g
01�2

01 + g11�2
11 + g12�2

21)+G22(g
02�2

01 + g21�2
11 + g22�2

21).

Equation for k = 2 For k = 2, we have

g10
∂G02

∂x1
+ g11 ∂G12

∂x1
+ g12 ∂G22

∂x1
(11.60)

= G02(g
00�0

00 + g01�0
01 + g02�0

02)+G02(g
01�0

01 + g11�0
11 + g12�0

12)

+G02(g
02�0

02 + g12�0
12 + g22�0

22)+G12(g
00�1

00 + g01�0
01 + g02�2

02)
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+G12(g
01�1

01 + g11�1
11 + g12�1

12)+G12(g
02�1

02 + g12�1
12 + g22�1

22)

+G22(g
00�2

00 + g01�2
01 + g02�2

02)+G22(g
01�2

01 + g11�2
11 + g12�2

12)

+G22(g
02�2

02 + g12�2
12 + g22�2

22)+G00(g
00�0

02 + g01�0
12 + g02�0

22)

+G10(g
10�0

02 + g11�0
12 + g12�0

22)+G20(g
20�0

02 + g21�0
12 + g22�0

22)

+G01(g
00�1

02 + g10�1
12 + g20�1

22)+G11(g
01�1

02 + g11�1
12 + g21�1

22)

+G21(g
02�1

02 + g12�1
12 + g22�1

22)+G02(g
00�2

02 + g10�2
12 + g20�2

22)

+G12(g
01�2

02 + g11�2
12 + g12�2

22)+G22(g
02�2

02 + g21�2
12 + g22�2

22).

Christoffel Symbol Identities In order to confirm, the given expressions for the
Einstein tensor Gij given by Eqs. (11.50), (11.51), (11.52), (11.53) and (11.54)
constitute a bonafide solution of these lengthy divergence equations by means of
the following identities, which take the form gik�mij for fixed j, k and m and with
summation over i, which are no doubt related to the particular case of this formula
given by [15] (page 68), namely

gij�kij = − 1√
g

∂(
√
ggkm)

∂xm
.

By direct individual calculations, we may confirm the following identities:

g00�0
00 + g01�0

01 + g02�0
02 = 0, g00�1

00 + g01�1
01 + g02�1

02 = βr3

g
, (11.61)

g00�2
00 + g01�2

01 + g02�2
02 = γ r2

g
, g10�0

10 + g11�0
11 + g12�0

12 = αδr4

g2
,

g10�1
10 + g11�1

11 + g12�1
12 = −α

2r5

g2
, g10�2

10 + g11�2
11 + g12�2

12 = −αεr
4

g2
,

g20�0
20 + g21�0

21 + g22�0
22 = αr2

g
, g20�1

20 + g21�1
21 + g22�1

22 = (βr2 + B) r
g
,

g20�2
20 + g21�2

21 + g22�2
22 = 0, g01�0

00 + g11�0
10 + g21�0

20 = −βr
3

g
,

g01�1
00 + g11�1

10 + g21�1
20 = 0, g01�2

00 + g11�2
10 + g21�2

20 = −Dr
g
,

g00�0
01 + g01�0

11 + g02�0
21 = �δr5

g2
, g00�1

01 + g01�1
11 + g02�1

21 = −�αr
6

g2
,
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g00�2
01 + g01�2

11 + g02�2
21 = −�εr

5

g2
, g02�0

00 + g12�0
10 + g22�0

20 = −γ r
2

g
,

g02�1
00 + g12�1

10 + g22�1
20 = Dr

g
, g02�2

00 + g12�2
10 + g22�2

20 = 0,

g02�0
01 + g12�0

11 + g22�0
21 = −�εr

5

g2
,

g02�1
01 + g12�1

11 + g22�1
21 = (δ + 2�r2)

Er2

g2
− �γ r6

g2
,

g02�2
01 + g12�2

11 + g22�2
21 = −(δ + 2�r2)

Ar

g2
− (C2 − λA)�r

5

g2
,

g00�0
02 + g10�0

12 + g20�0
22 = 0, g00�1

02 + g10�1
12 + g20�1

22 = 0,

g00�2
02 + g10�2

12 + g20�2
22 = −αr

2

g
, g01�0

02 + g11�0
12 + g21�0

22 = 0,

g01�1
02 + g11�1

12 + g21�1
22 = 0, g01�2

02 + g11�2
12 + g21�2

22 = −(βr2 + B) r
g
.

In terms of ψ(r) = r2/g = 1/(δ +�r2), the components of the Einstein tensor
become

G00 = −ψ2
{
α2 + β(�+ λδ)r2

}
, G11 = −ψ2(βδA+�2r2), (11.62)

G22 = −ψ2r2βδB, G01 = −ψ2r(βδC − α�),
G02 = −ψ2r2βδD, G12 = −ψ2rβδE,

and we may use the immediately above identities given by (11.61) to show that the
lengthy Eqs. (11.58), (11.59) and (11.60) simplify as follows. For k = 0, we have

αr
dG00

dr
+ (βr2 + B)dG10

dr
+
(
γ r − E

r

)
dG20

dr
(11.63)

+ α(1 + δψ)G00 +
((
βr + B

r

)
+ βr − α2ψr

)
G10 + (γ − αεψ)G20 = 0,

while for k = 1, we obtain

αr
dG01

dr
+ (βr2 + B)dG11

dr
+
(
γ r − E

r

)
dG21

dr
(11.64)

+ α(1 + δψ)G01 +
((
βr + B

r

)
+ βr − α2ψr

)
G11 + (γ − αεψ)G21

+ δ�ψrG00 + αδψG01 − ε�ψrG02 − α�ψr2G01 − α2ψrG11
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+
(
(δ + 2�r2)

E

r2
− γ�r2

)
ψG21 −�εψrG02 − αεψG12

−
(
(δ + 2�r2)

A

r3
+ (C2 − λA)�r

)
ψG22 = 0,

noting that evidently further grouping of terms is possible. The above form is that in
which the terms arise immediately from Eq. (11.59) and in the verification below, it
is useful to leave in this form. For k = 2, we have

αr
dG02

dr
+ (βr2 + B)dG12

dr
+
(
γ r − E

r

)
dG22

dr
(11.65)

+ α(1 + δψ)G02 +
((
βr + B

r

)
+ βr − α2ψr

)
G12 + (γ − αεψ)G22 = 0.

We may verify that each of Eqs. (11.63), (11.64) and (11.65) is correctly satisfied
by the expressions forGij given by (11.62) as follows. All three can be verified in a
similar manner, and for k = 0 and k = 2, there are two important equalities, namely

αG00 + βrG10 + γG20 = −α3ψ2, δG00 − αrG10 − εG20 = −α2ψ, (k = 0)

αG02 + βrG12 + γG22 = 0, δG02 − αrG12 − εG22 = 0, (k = 2)

while for k = 1, there are three important equalities, which are as follows:

αG01 + βrG11 + γG21 = (α2ψ − β)�ψr, δG01 − αrG11 − εG21 = α�ψr,
εG02 + γ rG12 + (C2 − λA)G22 = −βδ�ψ2r2.

In addition to these equalities, we also require the three subsidiary equalities for
k = 0, 1 and 2, respectively,

BrG01 − EG02 = α3ψ2r2, BrG11 − EG12 = −(α2�ψr2 + βδ)ψr,
BrG21 − EG22 = 0.

The proofs for all three values of k follow a similar approach, so we only give the
details for the case of k = 1, which is the most complicated. In each case, we
purposely rearrange each of Eqs. (11.63), (11.64) and (11.65) to exploit the above
equalities. For k = 1, Eq. (11.64) can be shown to become

r
d

dr
(αG01 + βrG11 + γG21)+ 1

r

d

dr
(BrG11 − EG12)

+ (αG01 + βrG11 + γG21)+ 2αψ(δG01 − αrG11 − εG21)

+�ψr(δG01 − αrG11 − εG21)−�ψr(εG02 + γ rG12 + (C2 − λA)G22)



360 11 Coordinate Transformations, Tensors and General Relativity

+ (δ + 2�r2)(ErG21 − AG22)
ψ

r3
= 0,

and in this case, we need the additional equality that ErG21 − AG22 = β(δψr)2.
Throughout these proofs, we make frequent use of the relations arising from g =
r2(δ +�r2) and ψ(r) = r2/g = 1/(δ +�r2), namely

δ +�r2 = 1

ψ
,

dψ

dr
= −2�ψ2r,

along with the identity B� = α2 + βδ.



Chapter 12
Conclusions, Summary and Postscript

12.1 Introduction

In the search to understand the dark issues of astrophysics, a fundamental reexam-
ination of mechanical accounting is necessary, and the most basic of all mechanics
is Newton’s second law involving force, mass and acceleration. In this chapter,
we briefly summarise some of the major ideas and outcomes presented for the
proposed dual particle-wave mechanical model given by Eqs. (3.4) or (12.3). The
mathematics underpinning the model is motivated from the use of potentials in
electromagnetism, while the physical idea originates from de Broglie’s idea of the
simultaneous existence of both particle and wave. Neither are sufficient alone, since
even the best ideas require the correct theoretical framework for their successful
implementation. de Broglie’s [23] interpretation of the dual particle-wave nature
of matter involved a concrete physical picture of the coexistence of both particle
and the associated wave, and he proposed “the theory of the double solution”, for
which he formulated an equation which he called “the guidance formula” (see also
de Broglie [21, 24]). In de Broglie’s own words, previously quoted in Chap. 3:

When I conceived the first basic ideas of wave mechanics in 1923–1924, I was guided by
the aim to perform a real physical synthesis, valid for all particles, of the coexistence of the
wave and of the corpuscular aspects that Einstein had introduced for photons in his theory
of light quanta in 1905.

that the particle must be the seat of an internal periodic movement (e0 = m0c
2 = hν0 and

e = mc2 = hν) that must move in a wave in order to remain in phase with it, was ignored by
the actual physicists (who are) wrong to consider a wave propagation without localisation
of the particle, which was quite contrary to my original ideas.

de Broglie’s guidance equation involves a combination of special relativistic and
quantum mechanical ideas, such that the momentum p and the particle energy e
simultaneously admit the two representations
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p = mu = −∇ψ, e = mc2 = ∂ψ

∂t
, (12.1)

where m is assumed to be given by the relativistic expression m = m0/[1 −
(u/c)2]1/2 and therefore the velocity u is given by

u = −c2 ∇ψ
(∂ψ/∂t)

, (12.2)

and de Broglie refers to this formula, which determines the motion of the particle at
each point of its trajectory in the wave, as the “the guidance formula of the particle
by its wave”.

Given the attention focussed on the experiments of Yves Couder and colleagues
[14], involving droplets walking on the surface of a vibrating fluid bath, and the
theoretical work and commentrary of John W. M. Bush and coworkers [10, 45, 82]
that “the walking-drop system displays comparable effects such as single and
double-slit diffraction, tunnelling, orbital quantisation, level-splitting and wave-
like statistics in confined geometries. The walking drop is propelled through
resonant interaction with its own wave field, and represents the first macroscopic
realisation of a double-wave pilot-wave quantum mechanical system envisaged by
de Broglie” [45], de Broglie’s quantum mechanical pilot-wave ideas, previously
believed exclusive to the microscopic quantum realm, are likely to assume a new
importance in numerous macroscopic particle-fluid systems.

In the following section, we present some of the major conclusions and outcomes,
and in the subsequent section, we summarise some of the results that apply to a
single space dimension x. In the final section of the chapter, we attempt to present
some insight through the perspective of others on the hurdles encountered by those
trying to develop new ideas in mechanics and physics.

12.2 Conclusions

In the mathematical modelling of various phenomena, there is often more than one
model generating comparable numerical outcomes, and one of the major messages
of applied mathematical modelling is to start with the simplest models first, with
the objectives of both simplicity and tractability. Special relativity arising from
Lorentz invariance is known to be successful and physically meaningful at least
at certain scales, and the question arises as to whether or not these notions might
be meaningfully extended to larger scales. Our purpose here is to produce an
extended model of special relativity, which is both simple and tractable and capable
of refinement and generalisation at a later time.

In [47–52], the author has proposed a modified version of special relativistic
mechanics, which extends conventional theory, in such a way as to be inclusive
of traditional Newtonian mechanics and of quantum mechanics, in the form
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of Schrödinger’s second-order wave equation, and therefore inclusive of many
of the great achievements of atomic physics. In conventional special relativity,
Einstein’s variation of mass formula is both a necessary and sufficient condition
for the invariance of Newton’s second law under Lorentz transformations. The
modified Newton’s second law proposed here involves the Lorentz invariance of
two equations, one representing the spatial accumulation of energy and the other
representing the temporal accumulation of energy. This Lorentz invariant extension
of Newton’s second law necessitates the notion of a force g in the direction of
time, which in the language of continuum mechanics is merely the energy-mass
production term.

Assuming the usual formulae of special relativity, namely energy e = mc2

and momentum p = mu, with mass m(u) = m0[1 − (u/c)2]−1/2, we propose the
following modified Newton’s second law:

f = ∂p
∂t

+ ∇e, g = 1

c2

∂e

∂t
+ ∇ · p, (12.3)

where f and g denote, respectively, the applied force and energy-mass production,
and all derivatives in (12.3) are partial. For g �= 0, this proposal also has implications
for Newton’s first law, giving rise to the possibility of motion in the absence of any
spatial force. If the two equations (12.3) are combined with de Broglie’s guidance
formulae relations (12.1), then f = 0, while

1

c2

∂2ψ

∂t2
− ∇2ψ = g.

For both the single spatial dimension and the centrally symmetric mechanical
systems, examined in Chaps. 4 and 9, respectively, de Broglie’s guidance formu-
lae (12.1) and (12.2) provide nontrivial illustrations of solutions, for which f = 0,
and yet both p and e are non-constant with e2 − c2p · p = e20, and no doubt there are
many such examples.

The proposed general force relations, Eqs. (3.4) or (12.3), constitute a modest
extension of the special relativistic version of Newton’s second law. In a special
relativistic context, these equations attempt to elevate Newton’s second law to a
model, for which time and space are on an equal footing. Of course, this has always
been the case for most of special relativity, but not for Newton’s second law. For the
spatial force f given by (12.3)1, the following identity, reminiscent of the Lorentz
force expression, holds

f = dp
dt

+ u ∧ (∇ ∧ p),

and in Chap. 3, we have described a correspondence of the proposed model with
Maxwell’s equations of electromagnetism. In this correspondence, the gradient ∇g
of the force in the direction of time is analagous to the notion of “current”, so that if
the force in the direction of time does not exist, then there is no “current”.
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If the Einstein relativistic energy equation e2 − c2p · p = e20 is assumed, or if
(f, gc) are generated as external forces from a scalar potential V (x, t) such that

f = −∇V, gc2 = −∂V
∂t
, (12.4)

then ∇∧p = 0 and the conventional special relativistic Newton second law applies,
namely f = dp/dt . In the latter situation, a conventional conservation of energy
applies, namely e + E + V = constant , where E is identified as the de Broglie
wave energy. In the case when the forces are generated from a potential V (x, t)
through Eq. (3.25) or (12.4), then the potential itself cannot be arbitrarily assigned
and must satisfy certain requirements that are determined as part of the solution
procedure. This is in contrast to conventional thinking that in the laboratory we are
free to impose whatever fields our equipment allows, and the feature is reminiscent
of general relativity, for which the field equations determine the metric tensor and
the gravitational nature of the field itself.

The modified theory applies when the particle and wave energies become of
comparable magnitude to the potential energy generating the motion and might be
viewed as intermediate theory between special and general relativity, in the sense
that for an energy function E (x, t) to exist, any external forces f and g must satisfy
a compatibility condition (3.11), namely

∂f
∂t

= c2∇g. (12.5)

and in these circumstances, the following companion formulae apply

f = dp
dt
, gc2 = dE

dt
= de

dt
+ e(∇ · u), (12.6)

so that a key inequality might be determined from the relation

d(E − e)
dt

= e(∇ · u). (12.7)

In Chaps. 5 and 6, based on the assumption that both momentum and energy are
functions of velocity u only, we examine in some detail the exact wave-like solution
of (12.3), namely

u(x, t) = c
{

λx + ct
((e0/f0)2 + (λx + ct)2)1/2

}
, (12.8)

where e0 = m0c
2 is the rest mass energy and λ and f0 denote arbitrary constants,

appearing in the assumed linear force equations

f (u) = f0(1 + λu/c), cg(u) = f0(λ+ u/c). (12.9)
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It is important to observe that while the proposed force equations (12.3) are
fully Lorentz invariant, the above compatibility equation (12.5) is not automatically
Lorentz invariant without further restriction, and this fact gives rise to the notion of
partial Lorentz invariance, which is exhibited by the exact wave-like solution (12.8)
that is discussed in depth in Chaps. 5 and 6. In Chap. 7, we show that the above
assumed linear force expressions (12.9) satisfy another Lorentz invariance involving
the product of force times energy, or in other words, force times mass.

In the modified theory, we make a distinction between particle energy e = mc2

and the de Broglie wave energy E , which are such that the total work done by the
particleW = e+E accumulates from both the spatial physical force f and the force
g in the direction of time. In the belief that nature tends to prefer to adopt minimum
energy structures, we propose that in an experiment, particles appear for e < E and
waves for E < e, but in either event, both a measurable and an unmeasurable energy
exists. In conventional quantum theory, energy is just energy; only one energy is
measured, and the two energies become blurred into a single entity.

We show that within this modified theory, a simple but logical analysis of the
conventional integrated rate-of-working equation might give rise to the prospect of
four distinct types of matter: positive and negative energies, with non-zero rest mass,
and positive and negative energies, with zero rest mass. This identification of the
four types of matter is meaningful only because it is interpreted within the proposed
modified theory. Within this new theory, dark energy and dark matter emerge as
singular or privileged states, occurring when there are particular alignments of
the forces (f, g), and these possibilities do not arise within conventional special
relativistic mechanics, since there is no notion of “force in the direction of time”.

The most likely explanation of dark energy and dark matter is that they arise
from a balancing of particle and wave energies e = E , which are supported by a
potential V = −2e. However, another possibility permitted in the present model
is e = −E , which then operates under a zero potential V = 0, and this might
well be the underlying reason for the perceived huge amounts of dark energy
and dark matter in the universe. This necessarily speculative proposal provides a
model capable of testing, and while it may not be completely in accord with such
findings, it is probable that dark energy and dark matter are singular states, arising
as artefacts of the mechanical accounting, and that their formal origin lies in the
current mechanical models, neglecting either the particle or the wave energy.

Specifically, the proposed theory allows the following interpretation of Einstein’s
particle energy statement e2 = e0

2 + (pc)2, where e0 = m0c
2 denotes the particle

rest mass energy, which within the context of the present theory logically admits
four distinct types of matter. Either the rest mass energy e0 is zero or non-zero and
so gives rise to precisely four distinct types of matter:
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e =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(e0
2 + (pc)2)1/2 if e0 �= 0 baryonic matter,

pc if e0 = 0 dark or invisible matter,

−pc if e0 = 0 dark energy,

−(e02 + (pc)2)1/2 if e0 �= 0 anti-matter,

with the evident inequalities

−(e02 + (pc)2)1/2 � −pc � pc � (e02 + (pc)2)1/2,

and we accordingly view baryonic matter as the most energetic form of matter.
This is consistent with the Einstein picture that we should envisage baryonic matter
energetically as a form of an energy-battery. It is also consistent with the fact that
each of the higher energy states has a ready access to the lower energy states, and
the values are sensible in the context of the allowable occupancies indicated in
Table 5.1. The table shows, for example, that a baryonic particle has the potential to
be in any of the four states. Of course, however, depending upon local conditions,
all energy states are allowable, but in a natural environment, we might expect the
lowest energy state to be the most occupied.

12.3 Summary

In this section, for purposes of illustration, we summarise in dot point form some of
the particular formulae applying to the case of one space dimension x.

• The model presented here and in [47–52] is based upon the idea that, along
with a spatial force f , there exists a force g in the direction of time and that
particle energy e(x, t) and wave energy E (x, t) need to be considered distinct
and accounted for separately. We propose that the particle energy accrues from
the standard work-done relation de = f dx, while the wave energy accrues
from the corresponding incremental relation in the direction of time, namely
dE (x, t) = gc2dt . The later elementary differential relation emerges from the
general three-dimensional formulation (see either Eqs. (3.15) or (12.6)).

• In conventional special relativity, a necessary and sufficient condition for the
Lorentz invariance of Newton’s second law as a single equation is that Einstein’s
mass variation with velocity applies (see Sect. 2.13). As a system of two equa-
tions, the one-dimensional version (4.10) of the proposed force relations (3.4)
is properly invariant under the full one-parameter group of both sub-luminal
and superluminal Lorentz transformations. Further, if both forces f and g are
derivable as the gradient of a potential function V (x, t), namely f = −∂V/∂x
and gc2 = −∂V/∂t , then the total particle energy is necessarily conserved in the
conventional manner, namely e+ E + V = constant , and the usual law that the
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spatial force equals the total time rate of change of momentum still holds (see
Eq. (3.15)1).

• In Chaps. 5, 6 and 7, we have presented an exhaustive account of an exact wave-
like solution given by Eq. (5.1), which involves an arbitrary parameter λ, for
which light-like behaviour occurs for λ2 = 1, and both particle-like behaviour
and wave-like behaviour occur for the two distinct cases λ2 < 1 for λ2 > 1. The
exact wave-like solution is an illustrative example, exhibiting explicitly some of
the major characteristics of the model and extending a well-known solution of
relativity as well as giving rise to a formula for the Hubble parameter. Further,
the well-known formulae for light, namely p = h/λ and E = hν, so that together
E = cp, termed here the de Broglie relation, emerges as an exact consequence
from the wave-like solution (5.1) for the particular parameter value λ = 1.

• In the proposed extended special relativistic mechanics, there are two singular
states termed here de Broglie states, which are characterised by particles with
zero rest mass energy e0 and by the relations E = ±pc, arising from particular
force alignments f = ±cg, and for which the particle and wave energies might
satisfy e = ±E . It is therefore natural to propose that these two states might
correspond to dark matter and dark energy. Specifically, we speculate that dark
matter as a positive gravity contributor is characterised by the relations f = cg

and E = pc, while dark energy as a negative gravity contributor is characterised
by the relations f = −cg and E = −pc. The model also admits the possibility
that such singular states might be supported by zero potential with e = −E ,
giving rise to the notion that these singular states might occur as artefacts of the
mechanical accounting.

• For a single spatial dimension x, with arbitrary applied forces f (x, t) and g(x, t),
the two basic equations (12.3) are

f = ∂p

∂t
+ ∂e

∂x
, g = 1

c2

∂e

∂t
+ ∂p

∂x
, (12.10)

and in terms of the two Lorentz invariants ξ = ex− c2pt and η = px− et , these
equations can be shown to become

xf − c2tg = ∂η

∂t
+ ∂ξ

∂x
, xg − tf = 1

c2

∂ξ

∂t
+ ∂η

∂x
,

which can be verified by undertaking the partial differentiations on the left-hand
side and making use of (12.10).

• In traditional continuum mechanics, we automatically inherit the total or material
time derivative d/dt as part of a well-established framework. However, within
the present dual particle-wave context, the determination of a matching total
derivative is not an entirely straightforward matter. Only after some trial and
error does it become apparent that the corresponding total derivative is a spatial
derivative d/dx, but following the wave rather than that following the particle.
The two Lorentz invariants ξ = ex− c2pt and η = px− et satisfy the basic rate
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equations

e
dξ

dt
= f c2η, e

dη

dt
= f ξ − e20,

and

e
dξ

dx
= c2gη + e20, e

dη

dx
= gξ,

where d/dt and d/dx are the fundamental time and space total derivatives
underpinning the structure of the proposed model. These time and spatial total
derivatives follow the particle and the wave, respectively, thus

d

dt
=
(
d

dt

)
part

= ∂

∂t
+
(
dx

dt

)
part

∂

∂x
= ∂

∂t
+ u ∂

∂x
,

d

dx
=
(
d

dx

)
wave

= ∂

∂x
+
(
dt

dx

)
wave

∂

∂t
= ∂

∂x
+ u

c2

∂

∂t
,

which are not Lorentz invariant, but under Lorentz transformation, transforming
in the same manner (see Eqs. (4.59) and (4.60)).

• The Schrödinger wave equation in quantum mechanics is usually motivated as
arising from the classical wave equation. Within the present extended theory, the
wave equation is not a matter of speculation, but rather a consequence of the
theory, and the two Lorentz invariants of special relativity ξ = ex − c2pt and
η = px − et provide the formal mechanism to connect special relativity and
quantum mechanics. These two Lorentz invariants may be expressed in terms of
two other Lorentz invariants ζ and τ defined by (2.15) (see the relations (2.18)
and (2.19)).

• On incorporating a potential function V (x, t) into the usual operator relations
in quantum mechanics, thus p −→ −ih̄∂/∂x and e −→ ih̄∂/∂t + V (x, t),
where h̄ = h/2π , the Klein–Gordon equation (10.13) emerges as the quantum
mechanical equation corresponding to the algebraic identity e2 − (pc)2 = e20,
or ξ2 − (cη)2 = e20(x

2 − (ct)2) in the case V (x, t) = 0. If V (x, t) is assumed
to be non-zero, the two quantum mechanical operators Lξ−cη and Lξ+cη defined
by (10.19) are now non-commuting, and with the product definition (10.20), a
modified Klein–Gordon equation (10.21) emerges as the quantum mechanical
equation corresponding to the algebraic identity ξ2 − (cη)2 = e20(x2 − (ct)2).

12.4 Postscript

From the long view of the history of mankind, Maxwell may well be viewed as
the greatest theoretical physicist of the nineteenth century, and there can be little
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doubt that the most significant event of the nineteenth century will be his discovery
of the laws of electrodynamics. His discoveries helped usher in the era of modern
physics, laying the foundation for such fields as special relativity and quantum
mechanics. Existing special relativity and quantum mechanics not only account for
atomic physics, but they do so to a very high degree of accuracy. However, this close
agreement understandably makes it difficult to propose any alternative mechanical
theories even though intended for the astrophysical scale. There is a problem with
mechanical accounting at the astrophysical scale, and the question arises as to how
best this might be resolved.

The intention of the theory proposed here is to extend special relativity, in such
a way that both conventional special relativity and quantum theory in the form of
Schrödinger’s second-order wave equation are included, and therefore, the major
achievements in atomic physics remain unchanged. Proposing new physical theory
has never been easy or gladly received by the scientific community.

Thomas Kuhn in his book on the structure of scientific revolutions [64] argues
that there are two types of science: normal science and revolutionary science.
Normal science is conducted within an existing set of well-established rules that
are accepted by all scientists working in that particular field. However, occasionally
an unexpected discovery occurs that is inconsistent or lies outside the accepted
rules, concepts and procedures. This causes a tense situation among the scientists,
gradually increasing in intensity until a scientific revolution is achieved, after which
a new paradigm emerges and normal science is resumed.

As early as 1612, Sir Francis Bacon wrote, “For when propositions are denied,
there is an end of them, but if they be allowed, it requireth a new worke”, which is
taken from the Essaies of Sir Francis Bacon, London, 1612, and quoted by Sidney
Goldstein in the first volume of “Modern developments in fluid dynamics” [40].

Writing in 1982, Bohm and Hiley [9], in relation to the then formal structural-
driven approach to physics, comment that “For one can see that concepts that
do not give immediate new experimental predictions may still be valuable, in
that they permit new insight and understanding (from which new predictions may
ultimately emerge). An approach that discourages this kind of insight will thus tend
to prevent creative new perceptions, such as those of Einstein, de Broglie, etc. The
pilot wave theory of de Broglie was indeed a significant and fruitful example of
imaginative concepts that help lead to new insights”. These authors conclude, “the
early work of de Broglie played a key part in making possible the development
of the mathematical form of the quantum theory itself. Unfortunately, his physical
intuition and imaginative insights were not generally taken up, and therefore did
not have a widespread effect on what was subsequently done”. And later they write,
“some are still working with extensions or developments of de Broglie ideas aimed
at a better understanding of the underlying physical reality than is treated by the
mathematical formalism alone”.

Along similar lines, Weinberger [108] in his 2006 account of de Broglie’s 1924
paper, “Revisiting Louis de Broglie’s famous 1924 paper in the Philosophical
Magazine”, writes, “There is of course one final observation to be made: in terms
of the present politics of publishing scientific papers; de Broglie’s contribution
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could never have been published because it only essentially contains speculations.
However, one can just as well say that this paper proves that speculations are
an essential part of physics; without them no new ideas and theories are born.
Quantum mechanics has to be regarded as a true rupture in the history of physics,
as a revolution in the philosophy of science, a revolution that desperately needed
speculations and deviations beyond well-accepted ways of thinking”.

In 1887, Woldemar Voigt [105] published a paper on Doppler’s principle, in
which he proposed that in inertial reference frames, the speed of light remains
constant and the classical wave equation remains invariant, and he obtained a set
of space-time transformations different from the Lorentz transformations. Although
not explicitly stated, Voigt anticipated special relativity arising out of the wave
equation, and writing in relation to Voigt’s 1887 paper on relativity, Freeman
Dyson [29] said, “When the great innovation appears, it will almost certainly be
in a muddled, incomplete and confusing form. To the discoverer himself it will
only be half-understood; to everybody else it will be a complete mystery. For any
speculation which does not at first glance look crazy, there is no hope”. He further
explained that “The reason why new concepts in any branch of science are hard to
grasp is always the same; contemporary scientists try to picture the new concept in
terms of ideas which existed before”.

Bernard Cohen in his book on the Newtonian revolution comments, “Above
all, Newton set forth a style of science that showed how mathematical principles
might be applied to physics and astronomy (that is to natural philosophy) in a
particularly fruitful way, and this may have been even more influential in the long
run than his system of the world based on universal gravity” ([12], page 149). In
a lecture in 1933, Albert Einstein emphasised “the free inventions of the human
intellect”, declared that reason and not empirical data must be the basis for any
scientific system and said, “I am convinced that we can discover, by means of purely
mathematical constructions, those concepts and those lawful connections between
them which furnish the key to the understanding of natural phenomena. Experience
may suggest the appropriate mathematical concepts, but they most certainly cannot
be deduced from it. Experience remains, of course, the sole criterion of physical
utility of a mathematical construction. In a certain sense, therefore, I hold it true
that pure thought can grasp reality, as the ancients dreamed” (also quoted in [12],
pages 152–153).

Our current knowledge and understanding of the physical universe, combined
with the great achievements of Newtonian mechanics and modern physics, are so
overwhelming, that as time passes, it becomes increasingly difficult to attempt the
fundamental problems with a fresh mind and an open disposition. It seems to the
author that we need to start at the beginning while being as inclusive as is possible
of well-established theory. The mathematical construct presented here and in [47–
52] is an attempt to satisfy these two not entirely consistent objectives.
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