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Abstract. The key to video inpainting is to use correlation information
from as many reference frames as possible. Existing flow-based propaga-
tion methods split the video synthesis process into multiple steps: flow
completion → pixel propagation → synthesis. However, there is a sig-
nificant drawback that the errors in each step continue to accumulate
and amplify in the next step. To this end, we propose an Error Com-
pensation Framework for Flow-guided Video Inpainting (ECFVI), which
takes advantage of the flow-based method and offsets its weaknesses. We
address the weakness with the newly designed flow completion module
and the error compensation network that exploits the error guidance
map. Our approach greatly improves the temporal consistency and the
visual quality of the completed videos. Experimental results show the
superior performance of our proposed method with the speed up of ×6,
compared to the state-of-the-art methods. In addition, we present a new
benchmark dataset for evaluation by supplementing the weaknesses of
existing test datasets.
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1 Introduction

Video inpainting is the task of filling missing regions in frames with realistic
content. Its applications cover object removal, watermark/logo/subtitle removal,
and even corrupted video restoration. It is challenging as the hole regions should
be filled with synthesized contents that are unnoticeable with the surrounding
background and temporally consistent.

Existing video inpainting methods usually extract useful information from
reference frames and merge them to fill the target frame. The key is to use as
many frames as possible since most correlated pixels are somewhere in other
frames. The common pipeline for video inpainting can be categorized into two
groups: 1) direct synthesis, 2) flow-based propagation.
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Fig. 1. Qualitative comparison with other video inpainting methods on object removal
scenarios. (a) The rear camel is originally shown in all frames, but it disappears in the
result of [22,23] due to the small temporal window. (b) Wrong pixels are propagated,
and the brightness inconsistency issue occurred in [6,20].

In general, direct synthesis methods adopt convolution-based [3,4,7,23] and
attention-based [13,22] networks. They usually take corrupted frames and cor-
responding pixel-wise masks as input and directly output completed frames.
However, due to the computational complexity, these methods have relatively
small temporal windows resulting in only a few reference frames to be used (up
to 10 frames). Serious temporal inconsistencies can occur if some key frames that
contain unique pixel values and textures needed to fill the hole are not selected.
Figure 1(a) illustrates failure cases of [13,22] when an occluded object is not
properly included in the small reference frame set.

Flow-based methods [6,20] split the synthesis process as into three steps:
flow completion, pixel propagation, and synthesis. During the flow completion,
the corrupted optical flow maps are processed by inpainting the holes within the
flow maps. In the pixel propagation step, pixel values from reference frames are
propagated to the holes with the guidance of the inpainted flows. Finally, in the
synthesis step, only the remaining holes are synthesized using an image inpaint-
ing method. Flow-based approaches show better long-term temporal consistency
compared to direct synthesis methods as they explicitly propagate pixel values
from other frames using flows.

Nevertheless, there are some drawbacks in flow-based methods. (1) Flow
completion. In flow inpainting, it is crucial to infer spatio-temporal relationships
from other corrupted flows. However, even adjacent flows can have different
values and directions due to inaccurate flow estimation or non-linear motion
between frames, resulting in temporally inconsistent flows. Also, without taking
the underlying video contents, errors from the flow estimator like From corrupted
in Fig. 2 cannot be handled. (2) Pixel propagation. Simply copy-and-pasting
propagated pixels causes pixel misalignment and brightness inconsistency. As
the pixel values/textures can be conveyed from distant frames, there are often
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perspective mismatch such as scale and shape. In addition, the brightness incon-
sistency may arise due to the changes in the lighting condition or camera expo-
sure in the given video sequence. Models will output visual artifacts without the
proper compensation for these errors. While existing methods attempt to address
these issues with checking flow consistency [6,20] and poisson blending [6], visual
artifacts still remain as shown in Fig. 1(b).

To this end, we propose a simple yet effective Error Completion Framework
for Flow-guided Video Inpainting (ECFVI) that addresses both drawbacks. We
follow the three steps in flow-based methods (i.e., flow completion, pixel propaga-
tion, synthesis) but significantly improve the first two steps by correcting errors,
preventing the error accumulation. For the flow completion, we make the flow
inpainting be aware of RGB values. Hallucinating missing flow values based on
the underlying video contents can infer temporally coherent flows. Specifically,
we first roughly complete RGB pixels on holes, considering the local temporal
relationship. Then, the locally coherent RGB inpainting results guide the flow
inpainting. Note that the local RGB inpainting here is only used for guiding
the flow, and the actual inpainting results are obtained in later steps. For the
pixel propagation step, we introduce additional compensation network to detect
and correct the misalignment and brightness inconsistency errors from the pixel
propagation. The network utilizes the error map outside the hole (called error
guidance map) to predict errors inside the hole. Such carefully designed com-
ponents can prevent errors from accumulating at the following stages, which
significantly improves the visual quality and temporal consistency of completed
videos.

For quantitative evaluation, many video inpainting methods construct their
own datasets by randomly masking regions on a video. They usually set the
unmasked video as the ground-truth and evaluate their models. However, when
the randomly generated mask covers an entire object like in Fig. 6(a), a model
will output object-removed results which are different from the unmasked video.
Evaluation values from this case are not proportional to human perception.
Therefore, we propose a new benchmark dataset by using an object segmentation
algorithm [5] so that the mask only partially covers the object. The results on
our dataset are identical to the unmasked video, which can provide comparative
analysis into video inpainting methods.

In summary, the contributions of the paper are as follows:

– We propose a simple yet effective way to compensate for the limitations of
the flow-based video inpainting. Specifically, we improve the flow completion
with RGB-awareness and propose to compensate errors in pixel propagation.

– Our method outperforms previous state-of-the-art video inpainting methods
in terms of PSNR/SSIM and visual quality. Compared with the state-of-the-
art in flow-based method FGVC [6], we produce better results while reducing
the computation time (×6 faster).

– We provide a new benchmark dataset for quantitative evaluation of video
inpainting, which can be very useful for evaluating future work on this topic
by providing a common ground.
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Fig. 2. This figure shows the corrupted flows with different settings. In [6,20], they
take original frames as input to the flow estimator and remove the values in the hole.
However, if the original frames are unavailable, errors can occur when the corrupted
frames are used as input. The flow values near the hole are different from the ground-
truth flow.

2 Related Work

2.1 Direct Synthesis Methods

From the success of deep learning, many deep-based video inpainting meth-
ods have emerged. [3,10,17] proposed to use 3D encoder-decoder networks
for enhancing the efficiency and the temporal consistency. [13,22] exploited
attention-based methods, which use transformer modules for matching similar
patches on inter-intra frames. Zou et al. [23] used the optical flow to progressively
merge target frames with reference frames to enrich feature representations on
temporal relationships. Due to the memory constraints, above methods can only
refer to a few frames. On the other hand, Oh et al. [14] exploited a non-local
pixel matching to have a global temporal window by using the memory network.
Although they refer to all frames, corruption of information occurs because the
frames are continuously referenced in an implicit way. While Lee et al. [12]
designed a network to take information from long-distance frames with global
affine matrices, it cannot handle non-rigid complex motions.

2.2 Flow-Based Methods

Huang et al. [8] adopted spatial patch matching and flow-based method but
suffered from mismatching issues caused by corrupted flows. Instead, [6,19] first
inpainted the corrupted flows and propagated pixels along their flow trajectories.
Despite the success, they still have some limitations to produce better results:
First, to estimate the corrupted flows, they entered original frames to the flow
estimator and removed the values with masks. This procedure works well in
object removal scenarios where the original frames exist. The problem is when
the original frames are not available as in video restoration scenarios. If the
flow estimator takes the corrupted frames as input, the masks can interfere with
estimating the motion of objects in the video (Fig. 2). The errors in corrupted
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flows will affect the flow completion stage, resulting in incorrect flow values.
Second, it is difficult to use spatio-temporal information between the corrupted
flows for flow completion as mentioned in previous section.

Wrong estimation from the flow completion would lead to the pixel mis-
alignment issue. Both methods checked the flow consistency and only propa-
gated trustworthy pixels to deal with the issue, but the consistency is not well
preserved as the completed flow itself is incorrect. Our framework focuses on
offsetting these limitations of flow-based methods.

3 Method

Let X = [x1, x2, ..., xT ] be a set of corrupted video frames of length T . M =
[m1,m2, ...,mT ] denotes the corresponding frame-wise masks, where the spatial
resolution is the same as X. For each mask, value 0 indicates valid regions, and 1
indicates hole (missing) regions. Video inpainting aims to predict the original or
object removed video Ŷ = [ŷ1, ŷ2, ..., ŷT ] given X and M as inputs. We call the
frame to be inpainted as the target frame and other frames as reference frames.

3.1 Overview

We illustrate our video inpainting framework in Fig. 3. The overall procedure
can be summarized as follows. (1) Flow completion with RGB guidance:
Given the corrupted frames, we first generate locally coherent frames. Then, we
estimate complete flows between adjacent frames using our flow estimator (Sect.
3.2). Before the propagation, we estimate bi-directional completed flows between
all frames. (2) Pixel Propagation with Error Compensation: With the
guidance of completed flows, we propagate valid pixels from reference frames
to target holes. In this process, we prevent the errors from propagating to the
following stages using our error compensation network (Sect.3.3). In the order
close to the target frame, we iterate propagation and compensation procedures
until the hole regions are entirely removed or all frames are referenced. (3) Syn-
thesis: If there are remaining holes to fill, we synthesize using an existing video
inpainting method. This case usually occurs due to occlusion, where some pixels
cannot be found in any other frames. For the synthesis, we used FuseFormer [13]
with the weights from their website.

3.2 Flow Completion with RGB Guidance

Previous methods [6,20] first estimate corrupted flows with the flow estimator [9,
16] and complete flow values with their methods. However, without considering
the original video contents, there is no ability to handle the errors from the
corrupted flows. Therefore, we design our flow completion module to be aware
of RGB values and directly output completed flows from the flow estimator.
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Fig. 3. Overview of our error compensation framework for flow-guided video inpainting
(ECFVI). At first, we estimate all completed flows between adjacent frames using
our flow completion module. With the guidance of the completed flows, we iteratively
propagate and compensate pixels from reference frames to fill target holes. One iteration
of the process is shown in Fig. 4. The remaining holes are further synthesized with the
existing video inpainting method.

A simple approach would be to have the flow estimator take the corrupted
frames and complete the flow values. However, since the flow estimator [9,16]
iteratively takes two frames to estimate entire flows, completed flows are created
without considering spatio-temporal information of other flows. Also, it is more
challenging to run flow estimation and completion simultaneously. Therefore,
we roughly complete RGB pixels through local neighboring frames (larger than
two frames) and pass the results to our flow estimator. This can further exploit
temporal information for estimating completed flows. Here, our flow estimator
takes locally coherent frames x̄ from a local temporal network LTN . Note that
the intermediate frames x̄ are only used for guiding the flow completion.

We design the local temporal network LTN to consist of an encoder, multiple
spatio-temporal transformer layers [13,22] and a decoder. We first extract fea-
tures of each input from the encoder and exploit transformer layers to merge the
information from the reference in the deep encoding space. The decoder takes
the output of the transformer layers to reconstruct locally coherent frames x̄ as
follows:

x̄i = LTN(xi−N :i+N ,mi−N :i+N ), (1)
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where N is the temporal radius and N = 5 is used in our experiment. Then, we
estimate a completed flow between adjacent frames as follows:

f̃t→t+1 = F (x̄t, x̄t+1,mt,mt+1), (2)

where F is our flow estimator. Backward flow f̃t→t−1 can be estimated in the
same manner. For classifying the regions where the original and coarsely com-
pleted content exist, we use masks m as additional input. The flow estimator is
initialized with pretrained weights from RAFT [16] except for the first layer to
take the masks as additional input. We jointly train our local temporal network
and flow estimator as follows:

L = Lrec + λflowLflow, (3)

where Lrec is the reconstruction L1 loss defined as ||x̄−y||1. λflow is a coefficient
for the loss terms and we set it to 2 in, our experiment. For the flow loss Lflow,
inspired by [15], we employ hard example mining mechanism to weigh more on
the difficult areas as follows:

Lflow = ||ht � (f̃t→t+1 − ft→t+1)||1, (4)

where � is element-wise multiplication and ground-truth ft→t+1 is calculated
from original frames Y . We set the hard mining weight ht with (1 + |x̄t − yt|)2.
It encourages the model to implicitly deal with errors from the local temporal
network. More details of our network are shown in the supplementary material.

This design choice has advantages in two aspects. First, it alleviates the
problems of corrupted flows mentioned in Sect.2.2. Second, with the strong ini-
tialization of pretrained weights and no need to inpaint flow values from scratch,
it can be trained much easier. Although there still could be errors from the two
networks, we can further compensate it in the next stage.

3.3 Pixel Propagation with Error Compensation

The next step, pixel propagation with error compensation, is illustrated in Fig. 4.
With the guidance of the completed flows, we iterate propagation and compen-
sation steps so that the errors do not accumulate or amplify in the next iteration.

Propagation. Let xi and xj be the target and the reference frame respectively.
With the completed flow f̃i→j , only the valid pixels in reference frame xj are
forwarded to target holes by using backward warping function w.

mp
i = mi � (1 − w(mj , f̃i→j)),

x̃i = xi + mp
i � w(xj , f̃i→j),

(5)

where x̃i is the filled target frame. To find the regions where the matched and
valid regions are in the reference frame, we warp the reference mask mj and
get valid regions 1 − w(mj , f̃i→j) in the warped reference frame. mp

i denotes a
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Fig. 4. For simplicity, we show the propagation and compensation stages from one
reference frame xj to the target frame xi. We dilate the original hole region to get
the overfilled frame x̃d

i . Pixels corresponding to the blue region are further propagated
from the aligned reference frame. The filled frame x̃i and overfilled frame x̃d

i are used
to estimate the error guidance map ei. Note that the green and blue regions correspond
to propagation and error mask respectively.

propagation mask where the propagated pixels exist, shown by the green region
in Fig. 4. This mask is used at the compensation stage to know where to compen-
sate for errors. After the propagation, there may be a remaining mask mr

i , where
mr

i = mi − mp
i . The remaining mask is further used for the next propagation or

input for the synthesis network.
Compensation. As shown in Fig. 5, we observe that directly propagating pix-
els from the reference frame may cause misalignment or brightness inconsistency
issues. To remedy these issues, one solution is taking filled frame x̃i and corre-
sponding mask mp

i as input and processing them through a GAN framework.
However, it is difficult to train such a network because it cannot easily detect
what types of problem occurred.

We approach this problem by introducing the error guidance map ei as input
to our network. To know what is wrong with the propagation, we need valid
(ground-truth) values. Since only regions outside the holes in the given corrupted
frame have valid values, we propagate more pixels by dilating the original hole
regions like in Fig. 4. Then, we calculate the errors on enlarged parts, which is
the error guidance map ei. This process assumes that the propagated pixels on
the enlarged and the propagated regions have similar error tendencies. We set
the dilation factor as 17 pixels in our experiment.

We set dilated mask as md
i and overfilled frame as x̃d

i . The error guidance
map ei and the corresponding error regions (mask) me

i are computed as follows:

me
i = (md

i − mi) � (1 − w(mj , f̃i→j)),

ei = me
i � (x̃d

i − x̃i).
(6)

In Fig. 5, this error guidance map intuitively shows the problems of pixel prop-
agation. If it has no issue, it will be black (zero). On the other hand, if it has a
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Fig. 5. Problems from the propagation stage and corresponding error maps. From top
to bottom: no issue, brightness inconsistency, pixel misalignment, and combined issues.
The estimated errors and compensated frames are computed using our method.

pixel misalignment issue, it will result in the edges being visible in the error map.
This additional information helps our network be more aware of the problems
from the propagation stage.

We design our error compensation network with a similar structure as our
local temporal network LTN , but with different input and output settings:

ẽi = ECN(x̃d
i−N :i+N , ei−N :i+N ,m

[e,p,r]
i−N :i+N ), (7)

where ECN is our error compensation network and m[e,p,r] denotes error, prop-
agation, remaining mask respectively. For simplicity, we will omit the index from
now on. x̃d, e,me are concatenated in the channel dimension and forwarded to
our encoder, and each of the two masks mp,mr are used at the transformer
layers. Note that the overfilled frames x̃d are used instead of filled frames x̃ as
input. It makes our network to learn the relationship between overfilled frame
x̃d and the error guidance maps e on the error regions me. Since the propagated
regions have some structure information, based on the relationship, our network
can estimate error values on the regions mp with accuracy. A final compensated
frame is ỹ = x̃d + ẽ. The results and corresponding errors are shown in Fig. 5.

The loss to train our error compensation network consists of reconstruction
loss Lrec and adversarial loss Ladv:

L = Lrec + λadvLadv, (8)

where λadv is a coefficient for the loss terms and we set 0.01 in our experiment.
Lrec is a L1 loss between the ground-truth frame yi and compensated output
ỹi. For Ladv, we use the model from Temporal PatchGAN (T-PatchGAN) [3].
Further details on our network are included in the supplementary material.
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Fig. 6. Two common scenarios for video inpainting: object removal and video restora-
tion. The gray region in the corrupted frame denotes a mask. In the object removal
scenario, the result and the original frame are different. Only the video restoration
scenario should be used for qualitative evaluation. (Color figure online)

4 Experiments

4.1 Training Details

Our whole networks are trained on Youtube-VOS [19] dataset. It consists of
4,453 videos, which are split into 3,471/474/508 for training, validation and
testing respectively. We randomly select 256 × 256 frames and free-form masks
from [22] as input. To train our compensation network, we freeze the weights of
flow completion. And for handling the brightness inconsistency issue, we further
modify the brightness, hue and saturation of reference frames. Adam optimizer
[11] is used where the learning rate starts with 1e−4 and is divided by 2 every
40,000 iterations. For each module, the total iteration is 120,000 with mini-batch
size 4, and it takes about 2 d using two NVIDIA RTX 2080 TI GPUs.

4.2 Youtube-VI Dataset

Most previous works created their own random masks and measured the perfor-
mance on Youtube-VOS [19] and DAVIS [2] datasets. However, when a randomly
generated mask coincidentally covers an entire object, a model will create the
object-removed result like in Fig. 6(a). The result is reasonable, but it is far
from the original frame. Only the case in Fig. 6(b) should be used for quantita-
tive evaluation. Also, if there is no motion in the mask and its vicinity, it is not
suitable for video inpainting, which cannot trace any pixels from other frames.
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Fig. 7. Four different types of mask. In FVI [23] dataset, they use (a), (b) as a moving
mask and (c) as a stationary mask. In our Youtube-VI dataset, (c) and (d) is used as
a moving mask and stationary mask respectively.

TSAM [23] publicly provides frame-wise masks for the FVI [21] dataset. It
consists of 100 scenes, each with 15 frames. For each scene, three types of masks
are provided, some of which are shown in Fig. 7. While the masks cover diverse
scenarios, 15 frames in a video are still limited compared to real-world videos.
Also, the problems mentioned above on the mask still exist.

To this end, we design the new Youtube Video Inpainting (Youtube-VI)
dataset, which will be publicly available. 100 scenes are selected in order of name
from the beginning of Youtube-VOS dataset, and each scene has 50 frames. We
generated two types of masks, which are shown in Fig. 7 and described as follows:
(1) Moving mask. We follow the same rules for generating free-form mask in
STTN [22]. But we use a video segmentation network STCN [5] so that an
object is not fully covered. With the help of STCN, we randomly generate one
moving mask that partially overlaps with objects. Then we modify the mask
again if the scene and mask do not look visually proper.
(2) Stationary mask. This case is usually used to cover the logo/subtitle removal
scenarios. We find that using free-form masks is unsuitable since there may be no
motion near the mask. Instead, we use 5× 4 small square masks like FGVC [6].

4.3 Comparisons

We quantitatively compare with others on published FVI [23] and our new
dataset for video restoration scenarios. Like [13,22,23], we use DAVIS [2] dataset
for qualitative comparison in object removal scenarios. DAVIS dataset consists
of 150 videos in total, in which 90 videos are annotated with the pixel-wise object
masks. In addition, DAVIS-shadow dataset [8] where the mask covers both an
object and its shadows are used for more visual comparison.

DFC-Net [20] and FGVC [6] only take original frames as input to the flow
estimator from their published code. It is acceptable in object removal scenarios,
but it is not fair to evaluate quantitative performance where the original frame
is equal to ground-truth. Therefore, we also experiment with corrupted frames
as input, and denote them as DFC-Net* and FGVC* respectively.

Quantitative Results. We evaluate video inpainting quality on PSNR and
SSIM. In Table 1, we achieve the best performance on PSNR and SSIM except
for the curve mask on FVI dataset. It is worth noting that the curve mask is a
particular case in real-world scenarios. As we assume our error guidance map for
common scenarios, the error values in dilated regions can be overlapped, which
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Table 1. Quantitative evaluation on FVI and Youtube-VI datasets. Best values are
shown in bold and second best values are underlined. For PSNR and SSIM, the higher
is better. Missing entries indicate the method impossible to run at those settings.

FVI [23] Youtube-VI

Stationary mask Circle mask Curve mask Stationary mask Moving mask

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Time(s)

DFC-Net [20] 29.20 0.9632 24.77 0.9219 28.03 0.9436 29.03 0.9609 32.94 0.9771 95

DFC-Net* [20] 28.51 0.9609 24.12 0.9141 26.60 0.9295 27.73 0.9536 32.14 0.9747 95

OPN [14] 31.59 0.9689 26.37 0.9264 29.79 0.9519 31.91 0.9721 33.56 0.9767 154

CPN [12] 31.76 0.9693 26.90 0.9315 31.09 0.9664 31.32 0.9687 34.15 0.9783 24

STTN [22] 32.18 0.9699 27.04 0.9288 30.01 0.9515 31.96 0.9716 34.66 0.9789 17

FGVC [6] 30.88 0.9690 26.14 0.9369 31.50 0.9676 32.25 0.9750 35.68 0.9841 734

FGVC* [6] 30.60 0.9682 25.55 0.9302 29.90 0.9565 31.21 0.9701 34.05 0.9795 734

TSAM [23] 31.74 0.9695 26.66 0.9250 31.18 0.9578 − − − − −
FuseFormer [13] 33.19 0.9733 27.85 0.9368 30.85 0.9577 33.04 0.9755 35.29 0.9806 18

ECFVI(Ours) 33.27 0.9749 28.24 0.9469 31.15 0.9638 33.53 0.9795 36.80 0.9860 121

worsens our results in such thin and overlapped masks. On the other hand,
on the moving and stationary mask, our framework clearly outperforms by a
large margin compared to DFC-Net [20] and FGVC [6], where the flow-based
propagation is used. Such results show that our overall framework plays critical
role in addressing the limitations of existing methods. More comparisons on other
metrics, Video-based Fréchet Inception Distance (VFID) [18] and optical flow
based warping error (EWarp) [18], are shown in the supplementary material.

We measure the execution time on 864 × 480 resolution for inpainting
50 frames to compare the efficiency. Since we design our entire components
with deep frameworks, ours is ×6 faster compared to FGVC [6] where the
optimization-based methods are used.

Qualitative Results. In Fig. 8, we show our model’s qualitative results com-
pared with other methods, including STTN [22], FGVC [6] and FuseFormer [13].
To visualize the temporal consistency, we show the temporal profile [1] of the
resulting videos below the completed frames. Sharp and smooth edges in the
temporal profile indicate that the video has much less flickering. As can be seen,
our method shows more visually pleasing results compared to others.

For a more comprehensive comparison, we conducted a user study to sub-
jectively compare our method against others on the DAVIS dataset through
Amazon Mechanical Turk. The experiments were performed on 30 videos that
excludes easy (Tennis, Flamingo, etc.) and difficult (India, Drone, etc.) cases
where every methods failed. The videos like Fig. 8 were shown to 20 partici-
pants. We unlabeled and shuffled the order in all videos, and asked to rank the
results from 1 to 4 (1 is the highest preference). As shown in Fig. 9, the results of
our model showed higher preference over others, supporting that our approach
can produce more visually pleasing outputs.
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Fig. 8. Qualitative results compared with [6,13,22]. The temporal profiles of the red
scan line are shown below the results. Best viewed in zoom. (Color figure online)

4.4 Ablation Study

Effectiveness of Flow Completion. In Table 2(a), we show the flow end-
point-error (EPE) metric to compare our flow completion with others. We set
the estimated flows from RAFT [16] as pseudo ground-truth flows. In the table,
FGVC/* means FGVC and FGVC* respectively. In DFC-Net [20] and FGVC [6],
the performance is significantly reduced when the corrupted frames are used as
input to the flow estimator. It verifies that the errors in corrupted flows prevent
estimating correct flows. In the same setting where the corrupted frames are
used, ours achieves the best performance.

Fig. 9. A user study on DAVIS [2] object removal. The lower is better.
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Table 2. Ablation studies on Youtube-VI dataset. For Flow-EPE, the lower is better.
FGVC/* means FGVC and FGVC* respectively.

(a) Flow completion

Stationary Mask Moving Mask

Flow-EPE Flow-EPE Time(s)

DFC-Net/* [19] 0.32/0.89 0.38/0.86 43

FGVC/* [6] 0.12/0.57 0.28/0.80 412

FF [13] + RAFT [16] 0.49 0.80 52

w/o LTN 0.71 0.83 24

w/o Hard 0.40 0.58 52

Ours 0.33 0.49 52

(b) Video inpainting

Stationary Mask Moving Mask

PSNR SSIM PSNR SSIM

FGVC* + Comp 32.87 0.9762 35.59 0.9823

GT flow + Comp 33.64 0.9796 37.17 0.9865

w/o Comp 30.05 0.9691 34.04 0.9810

w/o Guide 30.48 0.9692 33.81 0.9797

Ours 33.53 0.9795 36.80 0.9860

In addition, we conduct a series of ablation studies to analyze the effec-
tiveness of our flow completion module. First, we sequentially run pretrained
FuseFormer [13] followed by original RAFT [16] (FF + RAFT). To demonstrate
the effectiveness of local temporal network LTN , we show the results only using
the flow estimator (w/o LTN). The flow estimator is trained with the same
setting as ours. In addition, we train our flow estimator with equal weights in
Eq. (4) instead of h (w/o Hard). Such results verify that our jointly trained flow
completion module can deal with the errors from the local temporal network
LTN and produce more accurate completed flows.

Effectiveness of Compensation. In Table 2(b), we show the performance of
the error compensation network by replacing our flow completion with FGVC’s
method (FGVC* + Comp). Although the flow completion from FGVC* is worse
than ours, it outperforms the full procedure of FGVC*. We also show the pseudo
ground-truth flow from RAFT [16] (GT flow + Comp). These two experiments
demonstrate our error compensation network is robust to errors from the flow
completion. Also, we test our model without compensation stage (w/o Comp)
and without error guidance map (w/o Guide). In w/o Guide experiment, we use
naive GAN where filled frames with propagation masks and remaining masks are
only used as input. The results show severe performance drops compared to our
method. These two experiments demonstrate that our compensation network
using the error guidance map is necessary to handle the errors from the previous
stages.

5 Conclusion

In this paper, we have proposed a simple yet effective video inpainting frame-
work, which takes advantage of the flow-based methods while compensating
for its shortcomings. We can propagate valid pixels with our flow completion
and error compensation network, showing high-quality completed videos. Espe-
cially with the help of the error guidance map, we can prevent the errors from
accumulating and amplifying at the following stages. We show that our method
achieves state-of-the-art performance and demonstrate the benefits of our frame-
work through extensive experiments. We also provide a new benchmark dataset,
which provides comparative analysis into video inpainting methods.



Error Compensation Framework for Flow-Guided Video Inpainting 389

Acknowledgement. This work was supported by Institute of Information & Commu-
nications Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No. 2014-3-00123, Development of High Performance Visual BigData
Discovery Platform for LargeScale Realtime Data Analysis), and No. 2020-0-01361,
Artificial Intelligence Graduate School Program (Yonsei University).

References

1. Caballero, J., et al.: Real-time video super-resolution with spatio-temporal net-
works and motion compensation. In: CVPR, pp. 4778–4787 (2017)

2. Caelles, S., et al.: The 2018 davis challenge on video object segmentation. arXiv
preprint arXiv:1803.00557 (2018)

3. Chang, Y.L., Liu, Z.Y., Lee, K.Y., Hsu, W.: Free-form video inpainting with 3d
gated convolution and temporal patchgan. In: ICCV, pp. 9066–9075 (2019)

4. Chang, Y.L., Liu, Z.Y., Lee, K.Y., Hsu, W.: Learnable gated temporal shift module
for deep video inpainting. In: BMVC (2019)

5. Cheng, H.K., Tai, Y.W., Tang, C.K.: Rethinking space-time networks with
improved memory coverage for efficient video object segmentation. In: NeurIPS
(2021)

6. Gao, C., Saraf, A., Huang, J.-B., Kopf, J.: Flow-edge guided video completion. In:
Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12357, pp. 713–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58610-2 42

7. Hu, Y.-T., Wang, H., Ballas, N., Grauman, K., Schwing, A.G.: Proposal-based
video completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV
2020. LNCS, vol. 12372, pp. 38–54. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58583-9 3

8. Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Temporally coherent completion of
dynamic video. ACM Trans. Graph. (TOG) 35(6), 1–11 (2016)

9. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0:
evolution of optical flow estimation with deep networks. In: CVPR, pp. 2462–2470
(2017)

10. Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Deep video inpainting. In: CVPR, pp.
5792–5801 (2019)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Lee, S., Oh, S.W., Won, D., Kim, S.J.: Copy-and-paste networks for deep video
inpainting. In: ICCV, pp. 4413–4421 (2019)

13. Liu, R., et al.: Fuseformer: fusing fine-grained information in transformers for video
inpainting. In: ICCV, pp. 14040–14049 (2021)

14. Oh, S.W., Lee, S., Lee, J.Y., Kim, S.J.: Onion-peel networks for deep video com-
pletion. In: ICCV, pp. 4403–4412 (2019)

15. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors
with online hard example mining. In: CVPR, pp. 761–769 (2016)

16. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In:
Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58536-5 24

17. Wang, C., Huang, H., Han, X., Wang, J.: Video inpainting by jointly learning
temporal structure and spatial details. In: AAAI, vol. 33, pp. 5232–5239 (2019)

http://arxiv.org/abs/1803.00557
https://doi.org/10.1007/978-3-030-58610-2_42
https://doi.org/10.1007/978-3-030-58610-2_42
https://doi.org/10.1007/978-3-030-58583-9_3
https://doi.org/10.1007/978-3-030-58583-9_3
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-58536-5_24
https://doi.org/10.1007/978-3-030-58536-5_24


390 J. Kang et al.

18. Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601
(2018)

19. Xu, N., et al.: Youtube-vos: sequence-to-sequence video object segmentation. In:
ECCV, pp. 585–601 (2018)

20. Xu, R., Li, X., Zhou, B., Loy, C.C.: Deep flow-guided video inpainting. In: CVPR,
pp. 3723–3732 (2019)

21. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting
with gated convolution. In: ICCV, pp. 4471–4480 (2019)

22. Zeng, Y., Fu, J., Chao, H.: Learning joint spatial-temporal transformations for
video inpainting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV
2020. LNCS, vol. 12361, pp. 528–543. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58517-4 31

23. Zou, X., Yang, L., Liu, D., Lee, Y.J.: Progressive temporal feature alignment net-
work for video inpainting. In: CVPR, pp. 16448–16457 (2021)

http://arxiv.org/abs/1808.06601
https://doi.org/10.1007/978-3-030-58517-4_31
https://doi.org/10.1007/978-3-030-58517-4_31

	Error Compensation Framework for Flow-Guided Video Inpainting
	1 Introduction
	2 Related Work
	2.1 Direct Synthesis Methods
	2.2 Flow-Based Methods

	3 Method
	3.1 Overview
	3.2 Flow Completion with RGB Guidance
	3.3 Pixel Propagation with Error Compensation

	4 Experiments
	4.1 Training Details
	4.2 Youtube-VI Dataset
	4.3 Comparisons
	4.4 Ablation Study

	5 Conclusion
	References




